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Summary

The mechanical behavior of a short-fiber reinforce composite is sig-
nificantly governed by its microstructure. The microstructure of
short-fiber reinforced composites shows heterogeneities on differ-
ent length scales concerning micro-structural properties like the
fiber volume fraction and the fiber orientation distribution.

This work is focused on the prediction of the elastic behavior of
short-fiber reinforced composites. For this purpose, a self-consistent
homogenization method, the interaction direct derivative estimate,
and a two-step bounding method are considered. These mean-field
approaches account for detailed microstructure data experimentally
determined by micro-computed tomography and, additionally, vir-
tually generated microstructure data.

Firstly, the predictions of the elastic behavior of the homogeniza-
tion methods are compared with experimental measurements. Sec-
ondly, these mean-field methods are contrasted with a full-field
voxel-based homogenization approach. Thirdly, based on the class
of materials with transversally isotropic fiber orientation distribu-
tions, it is investigated, whether the second-order orientation tensor
delivers a sufficient microstructure description for the prediction of
the elastic properties of the composite.
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Zusammenfassung

Das mechanische Verhalten kurzfaserverstärkter Werkstoffe wird
maßgeblich durch ihre Mikrostruktur bestimmt. Diese Mikrostruk-
tur weist Heterogenitäten bezüglich des Volumenanteils und der
Orientierungsverteilung der Fasern auf verschiedenen Längen-
skalen auf.

Diese Arbeit beschäftigt sich mit der Vorhersage des elastischen
Verhaltens von kurzfaserverstärkten Werkstoffen. Hierfür wer-
den die Selbstkonsistenzmethode, die Interaction-Direct-Derivative
Schätzung und ein Zwei-Schritt Ansatz betrachtet. Diese Mean-
Field-Ansätze ermöglichen es, detaillierte Mikrostrukturinforma-
tionen zu berücksichtigen, die entweder mitttels Mikro-Computer-
Tomographie experimentell ermittelt oder künstlich generiert wur-
den.

Zunächst werden die Vorhersagen des elastischen Verhal-
tens der Homogenisierungsmethoden mit experimentellen
Messungen verglichen. Dann werden die Mean-Field-Ansätze
einem voxelbasierten numerischen Homogenisierungsverfahren
gegenübergestellt. Zuletzt wird basierend auf der Klasse von Ma-
terialien mit transversalisotroper Faserverteilung diskutiert, ob der
Orientierungstensor zweiter Stufe ausreichend für die Berechnung
elastischer Eigenschaften ist.
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1 Introduction

1.1 Motivation

Nowadays, fiber reinforced composites are increasingly used for
different kinds of application. These composites play a very impor-
tant role in, e.g., the aerospace, the automotive and the sport equip-
ment industry. The main driving force for this trend is the grow-
ing effort to obtain lightweight constructions and, thus, to increase
the performance, the efficiency and the ease of use of the products.
Simultaneously, composite materials have to be relatively cheap,
comparatively easy to process and, also, they have to provide ad-
vantageous specific mechanical properties in order to justify their
substantial market share.

Even though, fiber reinforced composites are used for more and
more applications, a robust dimensioning of light-weight construc-
tions with reinforced materials is still a challenging task. This is due
to the fact, that fiber reinforced composites show heterogeneities
on different length scales concerning microstructural properties like
fiber volume fraction and fiber orientation distribution (Fu and
Lauke, 1996; Fu et al., 2000). In addition, the microstructural prop-
erties depend on the particular manufacturing process and the ge-
ometry of the target part.
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1 Introduction

The essential element of the microstructure of fiber reinforced com-
posites is the fiber itself. The geometry of the fibers is often used
to classify these materials into composites with continuous and dis-
continuous fibers. A typical representative of the first-mentioned,
referred to as continuous fiber reinforce composites (CoFRC), are
materials with unidirectionally aligned woven fibers. Short-fiber
reinforced composites (SFRCs) are typical representatives of the dis-
continuous fiber reinforced composites (DiCoFRC).

The focus of the present work lies on SFRCs consisting of a thermo-
plastic matrix and glass fibers. These materials are, usually, man-
ufactured by injection molding. The microstructure of SFRCs is
characterized by the spatial distribution, the orientation distribu-
tion, the distribution of the aspect-ratio, and the volume fraction of
the fibers. Additionally, the microstructure is affected by the manu-
facturing process. Particularly in shell-like injection-molded parts,
the fibers are oriented in layers. In the boundary layer, the fibers are
mostly oriented in the filling direction, and in the core layer in the
transversal direction, which is perpendicular to the filling direction.
The melted polymer behaves like a viscous fluid and the orienta-
tion distribution of the fibers can be attributed to the complex flow
conditions in the mold cavity with a variation of the flow veloc-
ity perpendicular to the flow direction. In addition to this velocity
gradient, the orientation distribution of the fibers is determined by
the geometrical properties of the fibers itself, the properties of the
matrix material, the manufacturing process parameters and the ge-
ometry of the mold cavity. The thickness of the core layer increases
with increasing viscosity of the polymer melt, with increasing fiber
volume fraction and aspect ratio of the fibers and with increasing
injection speed of the material (Horst, 1997).

In consequence of the complexity of the microstructure of SFRCs, a
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1.1 Motivation

reliable prediction of the mechanical properties depends on the par-
ticularities of the microstructure itself. In contrary to phenomeno-
logical approaches, micromechanically based methods allow for a
separate modeling of the properties of each constituent and the in-
teraction between them. Additionally, considering the relation of
the microstructure characteristics, the manufacturing process and
the effective properties, conclusions on the manufacturing process
can be made. Thus, micromechanical approaches permit a deeper
understanding of the material behavior, which may be used to in-
crease the performance of structural parts made of such compos-
ites.

Thus, a reliable prediction of the mechanical properties depends on
the particularities of the microstructure. On the one hand, this com-
plex microstructure can be analyzed experimentally in order to ob-
tain the corresponding descriptors. On the other hand, numerical
simulations of the manufacturing process as, e.g., injection mold-
ing simulations, can be applied to predict the microstructure con-
figuration. Considering the huge amount of scientific work, which
has been accomplished in this field (e.g., Milton (2002) and Dvorak
(2012)), the aim to incorporate the microstructure of SFRCs in the
dimensioning process becomes obvious.

Despite the high level of knowledge concerning the experimen-
tal analysis of the microstructure and the prediction of mechanical
properties using mean-field or full-field methods, there are, how-
ever, still some open topics which are treated here. In essence, this
work represents a collocation of three publications in peer reviewed
journals.

After a brief revision of the common methods to determine mi-
crostructural properties of fiber reinforced composites, and the ap-
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1 Introduction

plication of mean-field and full-field approaches predicting the ef-
fective properties of fiber reinforced composites, possibilities to de-
scribe and to visualize the microstructure of SFRCs are discussed
in chapter 2. In chapter 3, the homogenization of linear elastic
properties using experimentally determined microstructural infor-
mation is discussed. The predictions of linear elastic properties of
mean-field homogenization approaches and full-field voxel-based
homogenization methods for short-fiber reinforced materials are
opposed in chapter 4. In chapter 5, the description of the mi-
crostructure of short-fiber reinforced composites using fiber orien-
tation tensors and their effect on the elastic properties is discussed.
Finally, in chapter 6, the main findings of this work are summarized
and concluded.

1.2 State of the art

Determination of microstructure properties Information about
the microstructure is essential in the prediction of the material be-
havior by means of micromechanical approaches. Different tech-
niques have been proposed in order to obtain this information
(Bernasconi et al., 2012). On the one hand, the microstructure
information is determined by means of polished cross-sections.
Therefore, the elliptical footprints left by fibers on this polished
cross-sections are observed (Fakirov and Fakirova, 1985; Bay and
Tucker III, 1992; Clarke et al., 1993). The ellipticity is used to de-
termine the angle between the fiber orientation and the observed
cross-section. This method allows to determine the orientation of
each single fiber, and is often used due to its simplicity. There are,
however, a few inherent disadvantages: firstly, since sectioning of
the specimen is necessary, it is a destructive method. Secondly, the

4



1.2 State of the art

fiber orientation information emerging from the elliptical footprints
is not unique. Several improvements have been suggested, such as
the observation of multiple sections (Clarke et al., 1995; Eberhardt
et al., 2001). And thirdly, the orientation distribution of the fibers is
not directly correlated with the length distribution.

On the other hand, x-ray observation by means of computed to-
mography are, meanwhile, a common approach in order to ob-
tain detailed information about the microstructure of composites
(Shen et al., 2004; Bernasconi et al., 2008; Ohser and Schladitz, 2009).
Micro-computed tomography (μCT) in laboratories or synchrotron
tomography have been used not only to observe and evaluate mi-
crostructures, but also to characterize damage through ex situ and
in situ observations (Bull et al., 2013, 2014). A detailed review on
x-ray tomography can be found in (Maire and Withers, 2013). This
methodology produces a three-dimensional voxel-based picture of
the specimen in gray-scale. This picture has to be processed further
in order to analyze the fiber architecture and to gain the informa-
tion, which is useful for the prediction of mechanical properties.

Generally, three basic methods may be applied to calculate the effec-
tive properties based on the μCT data. First, the voxel picture can be
used directly within full-field approaches like finite element meth-
ods and fast Fourier transformation methods. With regard to the
details of the microstructure, efforts to calculate full-field solutions
directly based on CT scans are, however, still handicapped by rough
meshes, since the computational time is extremely high for these
methods (Düster et al., 2012; Węglewski et al., 2013). Second, meth-
ods have been proposed, aiming to extract the mean orientation dis-
tribution in terms of orientation tensors (Bernasconi et al., 2008). Re-
lying on these tensors, full-field (Demirci et al., 2011; Duschlbauer
et al., 2006) and also mean-field (Müller et al., 2015b) approaches
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1 Introduction

may be applied. The third approach consists of a segmentation of
the fibrous microstructure and, eventually, a calculation of the mean
orientation distribution based on these segmented data. In this case,
the effective properties can be calculated by mean-field and also
full-field methods incorporating the segmented data directly or in
terms of orientation tensors.

Mean-field homogenization of mechanical properties In con-
text of mean-field theories, which are also called average-field the-
ories, the fields on the macroscale are determined by volume aver-
aging the fields on the microscale. The effective properties are then
defined as the relation between the averages of the fields on the mi-
croscale. This understanding of mean-field theories is motivated by
the fact, that the effective mechanical properties from experiments
are relations between volume averages of strain and stress (Hori
and Nemat-Nasser, 1999). Extensive overviews concerning the lin-
ear and non-linear homogenization are given by Willis (1981), Mura
(1987), Ponte Castañeda and Suquet (1997), Torquato (2002), Nemat-
Nasser and Hori (1999), Gross and Seelig (2007) and Kanouté et al.
(2009).

Generally, the set of mean-field methods can be divided into bound-
ing and estimating methods. The former specify an admissible
range of possible effective properties for given microstructural in-
formation. Since the first order or simple bounds, known as the
Voigt and Reuss bounds (Voigt, 1889; Reuss, 1929), only take into
account the volume fractions, they enclose a wide range of ad-
missible effective properties. Provided by Hashin and Shtrikman
(1962a,b, 1963), the second-order bounds are based on a variation
principle. This approach was extended and applied to anisotropic
materials (Böhlke and Lobos, 2014) and also nonlinear material be-
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1.2 State of the art

havior (Talbot and Willis, 1985, 1992), as well. Both extensions of
the Hashin-Shtrikman variational principle are based on the intro-
duction of a homogeneous comparison material. A further exten-
sion of this concept is referred to as the Linear Comparison Composite
(LCC) approach (Ponte Castañeda and Suquet, 1997). Here, instead
of a homogeneous comparison material a heterogeneous compari-
son material is optimally chosen in order to apply a linear homog-
enization procedure by incorporating heterogeneities of piecewise
constant inelastic fields.

Contrary to the bounding methods, estimating approaches give ap-
proximations of the effective properties. The Mori-Tanaka (Mori
and Tanaka, 1973), the self-consistent (Kröner, 1977) (SC), the gener-
alized self-consistent (Christensen and Lo, 1979) and the interaction
direct derivative (IDD) (Zheng and Du, 2001) estimates are promi-
nent representatives of such mean-field schemes, which take the in-
teraction of the inclusions into account.

Based on the Eshelby solution (Eshelby, 1957), the general idea of
SC is to embed each inclusion in an infinite matrix with the prop-
erties of the effective material. Due to this assumption, the SC ap-
proach owns an inherently implicit character. The SC method was
applied to granular and also to particulate materials with multiple
phases and non-linear properties (Budiansky, 1970; Gillman et al.,
2013; Miled et al., 2011). The major shortcoming of SC is, that the in-
teraction between the inclusions and the surrounding matrix is not
considered directly. This drawback is the main motivation to apply
methods like IDD, which are based on the three-phase model. Here,
one inclusion interacts with the matrix directly, and with the other
inclusions through the effective medium.

Additionally, two-step (TS) methods may be applied to homoge-
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1 Introduction

nize particulate materials with arbitrarily oriented inclusions (Pier-
ard et al., 2004). Within these methods, the microstructure is de-
composed into as many domains as there exist different inclusions.
Each domain is homogenized individually, and then, all domains
are homogenized to determine the effective properties. This method
can be applied to a much larger class of microstructures compared
to second-order bounding schemes (Doghri and Friebel, 2005) and
also in conjunction with strength prediction (Kaiser and Stommel,
2012).

Full-field homogenization of mechanical properties In the last
years, serious advance in the research and application of numeri-
cal homogenization techniques based on full-field simulations has
been obtained (Suquet, 1987; Guedes and Kikuchi, 1990; Ghosh
et al., 1995; Moulinec and Suquet, 1994; Andrä et al., 2013b). This
approach allows for the treatment of complicated microstructures,
inelastic material laws, e.g., plasticity or viscoplasticity and also
multi-physics problems (Hain and Wriggers, 2008; Geers et al., 2010;
Roland et al., 2014; Helfen and Diebels, 2014).

For full-field methods, a boundary value problem is defined on
a representative volume element (RVE). The microstructure of the
composite is represented in the RVE. The local field in the RVE
caused by an external load may be determined by, e.g., finite ele-
ment methods or fast Fourier transformation approaches. Gener-
ally, the choice of the size of the RVE, and the definition of proper
boundary conditions with regard to the considered microstruc-
ture are essential when applying this method (Dirrenberger et al.,
2014).

The Fourier method proposed by Moulinec and Suquet (1994) ap-

8



1.3 Notation and frequently used symbols

plies the fast Fourier transformation (FFT) to solve integral equa-
tions of Lippmann-Schwinger type (Zeller and Dederichs, 1973;
Kröner, 1977). These integral equations are equivalent to the local
periodic cell problems in numerical homogenization. In this ap-
proach meshing and the assembly of the linear system is not re-
quired. Thus, the memory needed for the solution of the boundary
value problem is significantly smaller compared to other methods.
Since very fast FFT implementations (Frigo and Johnson, 1998, 2005;
Johnson and Frigo, 2007) are available, this approach has been ap-
plied for real word problems (Andrä et al., 2013a). A full-field FFT
approach has been compared to various mean-field methods based
on artificial variation of the properties of the constituents of a com-
posite consisting of a matrix and spherical inclusions (Ghossein and
Lévesque, 2012) and to experimental data (Spahn et al., 2014).

Regarding the high level of knowledge concerning the experimen-
tal analysis of the microstructure and the prediction of mechanical
properties, the key achievement of this work is the detailed quali-
tative and quantitative comparison of mean-field, full-field and ex-
perimental methods for the case of SFRC by combining established
methods from mechanics, applied mathematics and materials sci-
ence.

1.3 Notation and frequently used symbols

A direct tensor notation is preferred throughout the text. If ten-
sor components are used, then Latin indices are used and Einstein’s
summation convention is applied. In the following, frequently used
symbols, tensor operations, subscripts and superscripts and abbre-
viations are listed.

9



1 Introduction

Scalars

a Aspect ratio
a1, a2, a3 First, second and third half axis of an ellipsoid
c Volume fraction
d Diameter
dRVE Side length of an representative volume element

(RVE)
E Young’s modulus
l Length
N Number of phases/fibers
r Radius
S Surface of unit sphere
V Volume

Vectors and Tensors

a, b, c, . . . Vectors
A,B,C, . . . Tensors of second order
A,B,C, . . . Tensors of fourth order
A Strain localization tensor
C Stiffness tensor
D Deviatoric part of second-order orientation tensor
ϕ Azimuthal angle of spherical coordinate system
ε Strain tensor
I Second-order identity
I
s Symmetric part of fourth-order identity
n Unit vector, fiber axis orientation
N Second-order orientation tensor
ν Poisson ratio
λ1, λ2, λ3, . . . Eigenvalues
p Stress polarization

10



1.3 Notation and frequently used symbols

P Hill’s polarization tensor
σ Stress tensor
S Compliance tensor
θ polar angle of spherical coordinate system
u Displacement vector
Z Ellipsoidal description of fiber geometry
ZD Ellipsoidal description of fiber distribution

Tensor operations

〈·〉 Volume/ensemble averaging
[·] Linear mapping of second-order tensors by a

fourth-order tensor: A = C[B]

· Scalar product: A ·B
� Box product: (A�B)[C] = ACB

⊗ Dyadic product: (A⊗B) [C] = (B ·C)A

�·� Contraction operator:
(a⊗ b) · (C�a⊗ b�) = (a⊗ a) · (C[b⊗ b])

n⊗α Higher-order dyadic products of the same tensor:
n⊗α = n⊗ · · · ⊗ n, n⊗α is a tensor with the rank
α times the rank of n

sym(·) Symmetric part of a tensor
grad (·) Eulerian gradient of a quantity

Subscripts and superscripts

(·)0 Initial or reference quantity
(·)F Reference to fiber
(·)M Reference to matrix

11



1 Introduction

(·)α Reference to inclusion/fiber α
(̄·) Averaged quantity
(·)± Upper and lower bound
(·)′ Irreducible part of quantity
(·)〈α〉 Tensor of rank α

(̂·) Quantity in Fourier space

Abbreviations

BS Basic scheme of the FFT solution
DFT Discrete fast Fourier transformation
DIC Digital image correlation
FFT Fast Fourier transformation
FRC Fiber reinforced composite
HS Hashin-Shtrikman
IDD Interaction direct derivative
μCT Micro-computed tomography
MF Mean field
PP Polypropylene
PPGF30 Polypropylene reinforced with 30wt.% of glass

fibers
RVE Representative volume element
SFRC Short-fiber reinforced composite
SC Self-consistent
TS Two-step (mean-field approach)
TP Thin plate (microstructure type)
UD Unidirectional (microstructure type)
vol.% Volume fraction
wt.% Weight fraction

12



2 Microstructure of
short-fiber reinforced
composites

2.1 Classification and general
modeling assumptions

Generally, materials with heterogeneous microstructures are mod-
eled as assemblies of a set of N homogeneous phases. The total
volume V of the aggregate is composed of all volume parts Vα oc-
cupied by the phases α = 1, 2, . . . N :

V =
N∑

α=1

Vα, α ∈ 1, 2, . . . N. (2.1)

Each of the phases with the volume Vα has certain physical prop-
erties, a certain geometrical shape, and a specific orientation. Since
there are no limitations in the geometrical and spatial compilation
of a heterogeneous microstructure of solid materials, a simplified
classification of these microstructures is convenient for this work: a
heterogeneous microstructure may be of particulate or granular type
(Agoras and Ponte Castañeda, 2011). On the one hand, materials

13



2 Microstructure of short-fiber reinforced composites

(a) (b)

Figure 2.1: Illustrations of (a) a particular and (b) a granular microstructure

with particle or fiber reinforcements are examples for materials with
particulate microstructures. This type of materials exhibits a dis-
tinct phase. This distinct phase, called the matrix in the following,
surrounds all the over phases, see Figure 2.1(a). On the over hand,
polycrystalline materials represent exemplarily the family of gran-
ular materials, see Figure 2.1(b). In both microstructure types, a
phase comprises all constituents with similar properties, shape and
orientation. Thus, a polycrystalline material can, generally, be re-
ferred to as multiphase composite, where each set of anisotropic
grains with similar alignment may constitute a particular phase. A
typical two-phase composite is, e.g., a matrix-based material, which
is reinforced with dispersed and isotropic spherical particles.

Fiber reinforced composites (FRCs) exhibit a particulate microstruc-
ture. The main constituent of FRCs is the fiber. Apart from the phys-
ical properties, the length is the critical attribute of the fibers. By
means of the fiber length, FRCs are divided into two groups: FRCs
with long or short fibers are referred to as continuous or discontin-
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2.2 Mathematical description of microstructures

uous FRCs, respectively. In addition to the length, the orientation
distribution of the fibers plays an important role. Especially in case
of continuous FRCs, the fiber orientation can be adjusted properly
to meet the requirements of external loads. In case of discontinuous
FRCs, the manufacturing process, however, mainly defines the fiber
orientation distribution.

In this work, the focus is exclusively on discontinuous, short-fiber
reinforced composites (SFRCs). For the fibers, a cylindrical shape
with a circular cross section and a constant diameter is assumed.
Since the aspect-ratio, i.e., the length to diameter ratio, is moderate,
the fibers are assumed to be straight. Both, the matrix and the ar-
bitrary oriented fibers are assumed to be linear elastic and isotropic
with piecewise constant properties. The material behavior of the
fibers is assumed to be uniform. The theoretical approaches are
considered in the concepts of small strains with quasi-static load-
ing and linear elasticity by neglecting viscous effects.

2.2 Mathematical description
of microstructures

A heterogeneous microstructure can be regarded as a specific real-
ization of a stochastic process. The set of all realizations or samples
of this process is called ensemble. The volume of the ensemble Ω is
much larger than the volume of a single sample ω. In each sample,
the volume fraction of all phases cα = Vα/V is constant. The total
volume of phase α in sample ω is denoted by Vα(ω). Thus, the func-
tion Φ = Φ(x, ω) describing a specific mechanical property depends
on the location in space x and a particular sample ω of the stochastic
process. The ergodicity hypothesis states that averaging Φ(x, ω) over
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2 Microstructure of short-fiber reinforced composites

all samples of an ensemble at a constant position x0 delivers the
same result as averaging this function over one realization ω0 with
an infinitely large volume:

〈Φ(x0, ω)〉Ω = 〈Φ(x, ω0)〉ω0
ω0 → ∞, (2.2)

where 〈·〉Ω denotes the ensemble averaging and 〈·〉ω0
the averaging

over the volume ω0. Since usually a few microstructure realiza-
tions are available only it is possible to calculate, e.g., the mechan-
ical properties using volume averaging for ergodic materials. For
this purpose, the indicator function, also referred to as characteris-
tic function, is defined as

Iα (x, ω) =
⎧⎨
⎩1 ∀x ∈ Vα(ω)

0 otherwise
. (2.3)

The indicator function Iα (x, ω) yields 1 if the position vector x de-
picts a point in phase α within the sample ω, and 0 in all other cases.
For the sake of completeness, it should be mentioned that this func-
tion is complete, idempotent and bi-orthogonal:

N∑
α

Iα(x, ω) = 1 (complete), (2.4)

Iα(x, ω)Iα(x, ω) = Iα(x, ω) (idempotent), (2.5)

Iα(x, ω)Iβ 
=α(x, ω) = 0 (bi-orthogonal). (2.6)

The ensemble average of the indicator function is denoted by the
one-point probability function of phase α:

Sα
1 (x) = 〈Iα(x, ω)〉Ω. (2.7)
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2.3 Convenient description of microstructure of SFRCs

This function gives the probability to meet phase α at the location x

in the ensemble Ω. In the case of homogeneous material, this func-
tion is independent of the position vector x and gives the volume
fraction cα of the corresponding phase. In the case of heterogeneous
materials, Sα

1 (x) can be regarded as the position dependent volume
fraction of phase α. Higher-order correlation functions (n-point cor-
relations) are defined in a similar way. Since these functions do not
play a role in this work, the reader may refer to Ohser and Mücklich
(2000); Torquato (2002) and Dvorak (2012) for a detailed evaluation
of these functions.

Along with the ergodicity hypothesis, the statistical homogeneity and
statistical isotropy are, however, important properties of microstruc-
tures. For statistical homogeneous microstructures, the n-point cor-
relation functions are translation invariant. If the n-point correla-
tion functions are, additionally, rotational invariant, then the mi-
crostructure is referred to as statistical isotropic. In all, for statis-
tical isotropic microstructures, the one-point correlation function
is constant and equal to the volume fraction of the corresponding
phase, and the higher-order correlations only depend on a scalar
distance.

2.3 Convenient description of
microstructure of SFRCs

In this work, the microstructure of SFRCs is considered in two dif-
ferent ways: firstly, a discrete description and, secondly, an aver-
aged description are used. Within the discrete description, each
fiber is fully characterized as cylinder with the position vector pα,
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2 Microstructure of short-fiber reinforced composites

e2

e1

e3
n

ϑ

ϕ

Figure 2.2: Parametrization of the fiber axis n in spherical coordinates

the axis orientation vector nα, the length lα, and the radius rα. Ad-
ditionally, the aspect ratio aα = lα/(2rα) of the fiber can be com-
puted as the ratio of the length to the diameter. The axis of the
fiber is parameterized in spherical coordinates with the angles ϑ

and ϕ, see Figure 2.2. The total fiber volume fraction is indicated
with cF = 1− cM =

∑N
α=1 cα, where cM denotes the volume fraction

of the matrix, cα the volume fraction of fiber α, and N the number of
different fibers. In chapters 3 and 4, this microstructure description
is applied.

In chapter 5, the average description is used. This approach relies
on an average volume fractions of fibers cF and matrix cM, mean
aspect ratio ā respectively mean length l̄, and a mean description
of the orientation distribution of the fibers using tensorial quanti-
ties called orientation tensors or fiber orientation distribution func-
tions (FODFs). Details concerning orientation tensors and FODFs
are given in chapter 5.
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2.4 Visualization of orientation distributions

2.4 Visualization of orientation
distributions and scalar valued
direction dependent functions

In materials science, the orientation distribution of crystallographic
lattice planes is often represented by pole figures. A pole figure
shows the orientation of an object in space. It is a stereographic
projection of poles. Whereby, a pole is the intersection point of a
sphere and a line going through its origin. Pole figures are conve-
nient to represent discrete orientations, such as discrete fiber ori-
entations nα, and also scalar valued directional dependent func-
tions f(n).

In Figure 2.3(a), the construction of a pole figure is shown, as it is
used in this work. Here, a unit sphere is divided in an upper and a
lower hemisphere by a reference plane called the equatorial plane.
The south pole Psouth of the unit sphere is used as reference pole for
the projection of the intersections P of the orientation axes n, with
the upper hemisphere on the equatorial plane P ′.

In Figure 2.3(b), the equatorial plane and the projection point P ′

are shown. Generally, stereographic projections of this kind are
conformal but not isometric, meaning that the angle between two
projected points is preserved, however, the distance not. Thus, in
case of a random distribution of orientations, the intersection points
on the unit sphere would be uniformly distributed. The pole fig-
ure would show an accumulation of points in its center, see Fig-
ure 2.5(a).

A direct projection of single orientations as points on the equatorial
plane is meaningful as long as not too many orientations have to be
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2 Microstructure of short-fiber reinforced composites
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e3 e1

e2

P ′

(b)

Figure 2.3: (a) Principle construction of a pole figure; (b) Illustration of a pole
figure for one orientation

shown. Otherwise, a continuous representation of the pole figure
is appropriate. Therefore, a unimodal kernel function k (n,n0, κ)

is chosen, which is radially symmetrical with the rotation axis n0

and the parameter κ controlling the localization of the kernel func-
tion around n0. This is a scalar valued and directional dependent
function. Considering a set of N discrete fiber orientations, the con-
tinuous distribution function f̃(n), which is used to create the pole
figure, is defined as

f̃ (n) =
N∑

α=1

ψαk(n,nα, κ). (2.8)

Here, ψα are weighting factors, which may be used to take the vol-
ume fractions of the fibers into account. If all orientations have an
equal probability, ψα = ψ = 1/N holds. An appropriate kernel func-
tion in the analysis of fiber orientations is, e.g., the von Mises-Fisher
distribution function. Since fiber orientation distributions are axial
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2.4 Visualization of orientation distributions

n0

ϑ
fmax

1
2
fmax

k(n,n0, κ)

Figure 2.4: Determination of the concentration parameter κ

distributions, the von Mises-Fisher distribution (Mardia and Jupp,
2009) is symmetrized :

kvMF (n,n0, κ) =
κ

2 sinh (κ)
(exp (κn0 · n) + exp (−κn0 · n)) , (2.9)

where n0 is the reference direction and κ the concentration param-
eter. This function is radially symmetric with respect to n0. It de-
scribes a uniform distribution if κ = 0. In the construction of f̃(n),
κ is chosen in such a way that the half width at half maximum is
located at an angle ϑ from the reference direction, see Figure 2.4.
Once κ is calculated, f̃(n) emerges from a superposition of the ker-
nel function for each orientation according to the prescription in
equation (2.8), where the reference direction n0 in the kernel func-
tion coincides with the fiber orientations nα. Then, the resulting
directional dependent function f̃(n) can be visualized by means of
a pole figure.

In Figure 2.5, a discrete and a continuous pole figure for a uniform
and a transversal symmetric orientation distribution of equally
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2 Microstructure of short-fiber reinforced composites

weighted fiber orientations, respectively, are shown. In case of the
continuous pole figure, the half width at half maximum is located
at ϑ = 15◦.

(a)
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(d)

Figure 2.5: Orientation distribution of fiber axes: (a) Discrete and (b) continu-
ous pole figure of 10000 uniformly distributed axes; (c) Discrete and
(d) continuous pole figure of 10000 transversal symmetric distributed
axes
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3 Homogenization of elastic
properties based on
measured microstructure
data1

3.1 Introduction

In this chapter, a composite material consisting of polypropylene
reinforced with 30wt.% of short glass fibers (PPGF30) is exam-
ined. The microstructure of this composite material is analyzed
and segmented using μCT and a segmentation algorithm. The
segmented microstructure data consist of non-aligned fibers with
varying aspect-ratios. It is used within three homogenization ap-
proaches directly, namely the SC method, the IDD and a bounding
TS approach. In all applied methods, each fiber is considered in
the homogenization procedure without a need of orientation av-
eraging of transversal isotropic stiffnesses or compliances for uni-
directional structures like it is often done in conjunction with the
Mori-Tanaka approach (Ghossein and Lévesque, 2014).

1 This chapter is based on the paper “Homogenization of elastic properties of short-fiber rein-
forced composites based on measured microstructure data” (Müller et al., 2015a)
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3 Homogenization based on measured microstructure data

3.2 Experimental methods

3.2.1 Fabrication of specimens

The materials for the test specimens have been compounded at
Fraunhofer LBF2. Thus, full control over all constituents has been
achieved. The polypropylene (PP) Moplen HP500N (Lyondell-
Basell) has been used as matrix material. Along with a fraction
of 30wt.% of short glass fibers, three additives have been added to
the polymeric bulk material in order to assure stability, durability
and an adequate performance of the reinforced material. A frac-
tion of 0.5wt.% of Irganox B225 (BASF) served as long-term thermal
stabilizer, and additionally, 0.07wt.% of the calcium stearate acid
scavenger Ceasit AV (Baerlocher) and 3.0wt.% of the coupling agent
Exxelor PO 1015 (Exxon Mobil) have been added. These additives
have also been added to the pure PP material. Thus, the effect of the
reinforcing fibers can be determined.

Both compounded material, pure PP and the composite PPGF30,
have been used to manufacture plates of the dimensions
80mm × 80mm × 2.5mm by means of injection molding. A tri-
angular gating system has been chosen as infeed. Thus, a homoge-
neous filling of the plate cavity with a parallel melt front has been
achieved (Becker, 2009). From these plates, the specimens for the
mechanical testing have been machined. In case of the pure PP ma-
terial, the specimens have been extracted at 0◦ and 90◦ in reference
to the filling direction during injection molding. In case of PPGF30,
specimens with three orientations (0◦, 45◦ and 90◦) have been pre-
pared. Hence, the anisotropic material behavior can be determined.

2 The preparation of the specimens and the tensile tests have been performed by F. Dillenberger
(Fraunhofer LBF).
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3.2 Experimental methods

Details concerning the specimen geometry of the tension rod as well
as the different extraction angles are shown in Figure 3.1(a).

3.2.2 Quasi-static tensile tests

The quasi-static tensile tests were conducted on a Z020 testing ma-
chine by Zwick-Roell with a velocity of 1mm/min. During the test-
ing procedure, temperature and humidity have been kept constant
(23◦C and 50%). All samples have been tested within a two week
time frame. Thus, influences of long-term post-crystallization pro-
cesses in the PP matrix have been prevented.

The deformation of the specimen has been observed using 2D digi-
tal image correlation (DIC) (Tarigopula et al., 2008; Palanivelu et al.,
2009). Different stages of the sample deformation have been cap-
tured with a monochromatic CCD-camera equipped with a reso-
lution of 1280 px × 1024 px, a color depth of 8 bit and a pixel-size
of 8μm/px. Subsequently, local strain measurement has been per-
formed using the software package Vic2D (Limes GmbH). This soft-
ware calculates the strain field of the gray-scale pattern for an area
of interest by analyzing the deformation of predefined gray-scale
facets between consecutive deformation steps and a reference im-
age. As the correlation results refer to pixel differences, they have
to be calibrated to the actual geometry of the specimen. In order to
get stress-strain curves, the local strain values in a rectangular area
of 12mm × 2mm over the region of maximum deformation have
been averaged and combined with the data from the machine inte-
grated force sensor. The surface strain field and the averaging area
are shown in Figure 3.1(b).
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3 Homogenization based on measured microstructure data
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Figure 3.1: (a) Locations of specimen extraction from plate (circles distinguish po-
sition of samples for microstructural analysis), (b) Example of 2D sur-
face strain field calculated by the software Vic2D (Limes GmbH) us-
ing digital image correlation (DIC), and averaging area on a tension
specimen
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3.2 Experimental methods

The final result has been calculated by averaging values of five sin-
gle tests for each configuration. In Figure 3.2(a) these results are
shown for the pure PP matrix material for specimens oriented in 0◦

and 90◦-direction. Since the difference between the two curves is in
the range of scatter of the single experiments, the matrix material
has been considered to be isotropic and the results of both orienta-
tions have been averaged.

The stress-strain response of the SFRC shows a significant deviation
depending on the orientation of sample extraction from the sample
plate, see Figure 3.2(b). This mechanical anisotropy is a result of
the material orientation induced by the fiber distribution inherent
in the injection-molded plates.

The linear elastic properties for the subsequent homogenization
procedure have been calculated according to DIN EN ISO 527 1-
4 (2012). Since no distinct definition of a linear elastic region is
possible, the data has been evaluated in the small strain intervals
0.05%-0.25%, 0.05%-0.5% and 0.05%-1.0%, as shown in Tab. 3.1. Any
influence of viscous material behavior has been neglected. Young’s
modulus has been calculated as the secant gradient in the examined
strain range, as shown in 3.2(a). The values of Young’s modulus and
Poisson’s ratio for both materials are given in Tab. 3.1. The Poisson’s
ratios have been calculated as the secant gradient in the interval of
interest of the lateral strain versus longitudinal strain curve. The
elastic properties of the glass fibers have been taken from literature
and are also shown in Tab. 3.1.
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3 Homogenization based on measured microstructure data
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Figure 3.2: (a) Stress-strain curve of PP material showing details on derivation of
Young’s modulus, (b) Stress-strain curve of PPGF30
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3.3 Analysis of microstructure

3.3 Analysis of microstructure

3.3.1 Micro-computed tomography

The cylindrical specimens for micro-computed tomography (μCT)
measurements3 have been milled from the injection-molded plate at
the positions defined in Figure 3.1(a). In order to resolve the rein-
forcing fibers accurately with the maximal resolution, the diameter
of the specimen should have a maximal diameter of 4mm.

Figure 3.3: μCT measurement setup

The samples have been analyzed with a resolution of 1.8μm. The
procedure of a μCT-measurement is shown in Figure 3.3: the ro-
tating specimen is exposed to a low intensity x-ray. Since the ab-
sorption of the x-ray depends on the density of the material of the
sample, the amount of the x-ray reaching the detector varies with

3 The μCT measurements have been performed by F. Dillenberger (Fraunhofer LBF).
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3 Homogenization based on measured microstructure data

Table 3.1: Experimental values of Young’s modulus E and Poisson’s ratio ν

Strain interval
(0.0005) - (0.0025)

Material E [MPa] ν [−]
PP 0◦ 1665.5± 6.6% 0.364± 6.4%
PP 90◦ 1748.4± 15.3% 0.346± 3.0%
mean PP 1706 0.355
PPGF30 0◦ 4482.4± 2.9% 0.271± 11.2%
PPGF30 45◦ 3540.9± 5.4% 0.304± 4.7%
PPGF30 90◦ 3452.4± 2.2% 0.217± 2.1%

(0.0005) - (0.005)
PP 0◦ 1608.1± 3.3% 0.360± 4.4%
PP 90◦ 1663.7± 6.0% 0.357± 3.4%
mean PP 1636 0.359
PPGF30 0◦ 4137.4± 4.8% 0.273± 10.1%
PPGF30 45◦ 3250.6± 5.1% 0.300± 7.4%
PPGF30 90◦ 3227.7± 1.8% 0.222± 3.5%

(0.0005) - (0.01)
PP 0◦ 1450.4± 2.1% 0.371± 2.0%
PP 90◦ 1501.3± 3.1% 0.368± 2.2%
mean PP 1476 0.37
PPGF30 0◦ 3671.4± 2.9% 0.294± 6.3%
PPGF30 45◦ 2947.7± 4.3% 0.310± 8.0%
PPGF30 90◦ 2938.8± 1.2% 0.238± 5.0%

Glass fibers 73000 0.22
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3.3 Analysis of microstructure

the sample orientation. For each full rotation, the sample is ana-
lyzed on the vertical axis. This layer-wise voxel information of the
density distribution is transformed to slice images as shown in Fig-
ure 3.4 and to a three-dimensional geometrical representation of the
sample.

Figure 3.4: μCT slice image of PPGF30

3.3.2 Evaluation of microstructure

The applied evaluation method4 allows to determine the fiber
length, the diameter, the orientation, and the local position distri-
butions by means of an iterative analysis of μCT images (Glöckner
et al., 2013). This method is based on model assumptions consid-
ering geometrical and symmetrical properties of the fibers: a con-
stant diameter and a small curvature without turning points are
assumed. These assumptions allow for derivation of heuristic ap-
proaches for the identification of single fibers, and, for assigning of
voxels of the μCT image to individual fibers in spite of the inher-
ent image noise. The four steps of the μCT-evaluation process are

4 The evaluation of the μCT-images has been perfomed by R. Glöckner (Fraunhofer LBF).
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3 Homogenization based on measured microstructure data

Figure 3.5: Fiber identification process

shown in Figure 3.5. In the first step, the μCT images are filtered
and binarizated (see Figure 3.4). Herein, the fiber volume fraction
has to be defined in order to achieve a reasonable binarization. For
this work, the fiber volume fraction known from the plate fabrica-
tion process, has been confirmed by a thermogravimetric analysis.
In the second step, the iterative Monte-Carlo pattern identification
process is applied. Here, several identification processes are started.
During each process, it is tried to identify the center of a separate
fiber section. This is done by evaluation integrals over a spherical
region at random positions. Then, the fiber orientation n is approx-
imately determined by using the main eigenvalues of second-order
moments. Calculating integrals over a cylindrical region for differ-
ent directions, the exact orientation and length of the fiber is ob-
tained.

The identification process is followed by the control process.
Herein, the information of each identification process is merged,
voxels of reasonably well detected fibers are deleted from the in-
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3.3 Analysis of microstructure

put image, duplicate fibers are found, and the next iteration of the
identification process is started. If a predefined detection accuracy
is reached, the control process terminates the identification proce-
dure. In the last step of the μCT-evaluation process, the geometry
of the detected fibers is analyzed. The resulting data consisting of
the position, orientation, length and diameter of each recognized
fiber is called segmented μCT data in the following and can be used
to reconstruct the microstructure, see Figure 3.6.

The algorithm has been evaluated in three ways: Firstly, artificially
generated fiber data with three different lengths has been mapped
on a regular mesh, which corresponds to a 3D voxel picture. The
fiber positions have been chosen randomly, however, the length and
orientation were correlated. An analysis of this volume-image re-
veals an overestimation of the fiber length of up to 8% for the short
fibers. Secondly, the polymer material of the composite has been re-
moved via combustion and the residual fibers were measured via
microscope. Qualitatively similar length distributions have been
found. Thirdly, a visual comparison of the volume-image and the
detected fibers has been undertaken. This confirmed visually the
mentioned small overestimation of the fiber length. Additionally,
the reproducibility of the algorithm has been checked by repeated
measurement of three different specimen. A standard deviation of
the length of approximately 5% has been found. Further details on
the image analysis method and its properties can be found in Glöck-
ner et al. (2013).
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3 Homogenization based on measured microstructure data
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3.3 Analysis of microstructure

3.3.3 Properties of microstructure

In the reconstructions of the microstructure of the evaluated spec-
imen shown in Figure 3.6, the characteristically graded mesostruc-
ture of injection-molded plates made of SFRC can be recognized.
This phenomenon is well-known in literature (Mlekusch et al.,
1999).

Since the segmented μCT data allows a detailed analysis of the
properties of the microstructure, the μCT datasets were partitioned
into 20 equal-sized layers in through-thickness direction of the
plate. The mean aspect-ratio of the fibers āγ and the mean orien-
tation distribution in terms of the second-order moment tensor N γ

of the fiber orientations have been determined for each layer.

The second-order moment tensor, also called fabric ten-
sor (Kanatani, 1984) or orientation tensor (Advani and Tucker III,
1987), is generally defined by

N =

∫
S

f(n)n⊗ n dS. (3.1)

Herein, f(n) is the fiber orientation distribution function, n the
fiber axis orientation and dS a surface element of the unit sphere
S := {n ∈ R

3 : ‖n‖ = 1}. Utilizing Dirac’s delta distribution
δ(n − nβ) on unit vectors, the empirical orientation distribution
function (Kanatani, 1984) for N orientations is given by

f(n) =
1

N

N∑
β=1

δ(n− nβ). (3.2)

Inserting the last equation in the definition of the second-order ten-
sor given in equation (3.1), results in a discrete form of the second-
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3 Homogenization based on measured microstructure data

order fabric tensor:

N =
1

N

N∑
β=1

nβ ⊗ nβ. (3.3)

Since the available microstructure data does not contain only the
orientations of the fiber axes, but also their length and diameter, it
is reasonable to consider these quantities during the calculation of
the fabric tensor. Thus, in this work, fabric tensors are considered
in a weighted manner. For each of the 20 layers, the weighted fabric
tensor N γ is calculated as

N γ =

Nγ∑
β=1

ωβ nβ ⊗ nβ. (3.4)

In the last equation, Nγ is the number of fibers in layer γ, and ωβ is
the volume fraction of the fiber with the axis direction nβ.

In the figures 3.7, 3.8 and 3.9, the mean aspect-ratio of the fibers āγ,
the diagonal components (N11, N22, N33), and the eigenvalues (λ1,
λ2, λ3) of the second-order fabric tensor N γ are shown for all three
segmented μCT datasets. The indices (·)11, (·)22 and (·)33 corre-
spond to the e1, e2 and e3-direction, respectively, introduced in Fig-
ure 3.1(a), whereby, the e2-direction is the filling direction.

From the figures 3.7(a), 3.8(a) and 3.9(a) it is obvious, that the
mean aspect-ratio of the fibers in each layer is not constant
throughout the thickness of the plate. Especially in the case of
the μCT-specimen (−10) and (00), see Figure 3.1(a), the mean
aspect-ratio of the fibers in the layers near the bounding sec-
tions are slightly larger than those in the core section. The over-
all mean aspect-ratio and the overall mean length for each spec-
imen is approximately 26.3 and 330 μm, respectively. The over-
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3.3 Analysis of microstructure

all mean aspect-ratio is marked in the figures 3.7(a), 3.8(a) and
3.9(a).

The fiber orientation distribution is also not constant throughout the
thickness. In the figures 3.7(b), 3.8(b) and 3.9(b), the diagonal com-
ponents N11, N22 and N33, and in the figures 3.7(c), 3.8(c) and 3.9(c),
the eigenvalues of the fabric tensor N γ, are shown. In particular, the
former three diagrams highlight the sectional structure of injection-
molded plates made of SFRCs: In the bounding sections, layers 1-2
and 19-20, respectively, the majority of the fibers is oriented in the
filling direction. In the layers 11-12 at the core section of the speci-
men, the fibers are oriented in the transversal direction.

The fiber orientation distribution is often characterized only
through the diagonal components N11, N22 and N33 of the second-
order fabric tensor N γ (e.g., Laspalas et al. (2008), Vincent et al.
(2005)). The comparison of the diagonal components with the
eigenvalues of N γ of the 8th and 14th layer for the (00) data in Fig-
ure 3.8(b) and (c) highlights, that the diagonal components do not
specify completely the orientation distribution. According to the
diagonal components of N γ in the aforementioned layers, the ori-
entation distribution seems to be planar isotropic. The eigenvalues
for the same cases indicate, however, a planar isotropic distribution
for layer 14, not for layer 8.

These results are confirmed through the stereographic projections
of all fiber axes orientations in each of the layers 8, 11 and 14 in
Figure 3.10. Here, the out-of-plane direction coincides with the fill-
ing direction (e2-direction) and the horizontal direction with the
transversal direction (e1-direction). Thus, the vertical direction in
these figures corresponds to the through thickness direction, which
is perpendicular to the injection-molded plate.
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3 Homogenization based on measured microstructure data

(a) Mean aspect-ratio of the fibers in each layer
āγ and the whole dataset ā

(b) Diagonal components of Nγ for each layer

(c) Eigenvalues of Nγ for each layer

Figure 3.7: Microstructural properties of the μCT specimen at (−10)
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3.3 Analysis of microstructure

(a) Mean aspect-ratio of the fibers in each layer
āγ and the whole dataset ā

(b) Diagonal components of Nγ for each layer

(c) Eigenvalues of Nγ for each layer

Figure 3.8: Microstructural properties of the μCT specimen at (00)
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3 Homogenization based on measured microstructure data

(a) Mean aspect-ratio of the fibers in each layer
āγ and the whole dataset ā

(b) Diagonal components of Nγ for each layer

(c) Eigenvalues of Nγ for each layer

Figure 3.9: Microstructural properties of the μCT specimen at (10)
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3.4 Homogenization of linear elastic properties

In Figure 3.10(a), a preferred orientation of the fibers between the
out-of-plane direction and the transversal direction in layer 8 can
be seen. In the pole figure for layer 11, Figure 3.10(b), the pre-
ferred orientation of the fibers corresponds to the transverse direc-
tion. In the case of layer 14 in Figure 3.10(c), an approximately
planar isotropic fiber orientation distribution can be noticed. The
through-thickness orientation distribution in the other segmented
μCT datasets is qualitatively and quantitatively similar to the sec-
tion discussed before.

The stereographic projections of the entire segmented μCT data are
shown in Figure 3.11. Since each μCT dataset contains more than
6000 fibers, continuous representations of the stereographic projec-
tions are shown. In all examples the fiber orientation distribution is
only approximately planar isotropic. There exists rather a preferred
orientation different from the filling direction. This can be affili-
ated with the manufacturing process and the flow conditions dur-
ing manufacturing. The mean lengths l̄, the diagonal components
and the eigenvalues of N for the entire datasets are summarized in
Tab. 3.2.

3.4 Homogenization of linear
elastic properties

3.4.1 Modeling preliminaries

In the present work, the polymeric matrix and the arbitrary oriented
glass fibers are assumed to be linear elastic and isotropic with piece-
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3 Homogenization based on measured microstructure data

(a) Layer 8 (b) Layer 11

(c) Layer 14

Figure 3.10: Pole figures for the layers 8, 11 and 14 of μCT data at position (00)
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3.4 Homogenization of linear elastic properties

x

z

y

(a) μCT data (−10)

x

z

y

(b) μCT data (00)

x

z

y

(c) μCT data (10)

Figure 3.11: Stereographic projection of fiber axes for the μCT data (−10), (00)
and (10)
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3 Homogenization based on measured microstructure data

Table 3.2: Number of fibers, mean length with standard deviation, diagonal com-
ponents and eigenvalues of N for three μCT datasets

Data (−10)

N 6329
l̄ [μm] 330.28± 165.9

N̄11; N̄22; N̄33 (0.381; 0.593; 0.026)
eig(N̄ ) (0.594; 0.380; 0.026)

Data (00)

N 6355
l̄ [μm] 330.18± 167.4

N̄11; N̄22; N̄33 (0.392; 0.584; 0.024)
eig(N̄ ) (0.635; 0.341; 0.024)

Data (10)

N 6200
l̄ [μm] 332.66± 164.3

N̄11; N̄22; N̄33 (0.404; 0.571; 0.025)
eig(N̄ ) (0.613; 0.361; 0.025)

wise constant properties. The microstructure of this composite con-
sists of a matrix reinforced with N fibers.

The matrix phase is specified by the stiffness tensor CM and the vol-
ume fraction cM. Each fiber is characterized with the stiffness Cα,
the volume fraction cα, the length lα, the diameter dα and the orien-
tation of its axis nα.
The fibers are approximated by spheroids of equal length and vol-
ume. Thus, the half-axes of the spheroid are correlated with the
length and diameter of the corresponding fiber according to the
following prescription: 2a1α = lα and 2a2α =

√
3/2 dα, whereby a1α

and a2α are the first and the second half-axis of the spheroid related
to fiber α.
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3.4 Homogenization of linear elastic properties

The total fiber volume fraction is cF = 1− cM =
∑N

α=1 cα. The
material behavior of the fibers is assumed to be uniform, i.g.,
Cα = CF ∀α.

3.4.2 Self-consistent homogenization

The effective elastic stiffness tensor C̄ can be formulated as ensem-
ble average using the strain localization tensor A (Kröner, 1977).

C̄ = 〈CA〉. (3.5)

The strain localization tensor is symmetric and meets the normal-
ization condition

〈A〉 = I
s. (3.6)

In case of ergodic media, the ensemble average can be interpreted
as a volume average.

For microstructures with piecewise constant properties, the effec-
tive elastic stiffness is then given by

C̄ = CM +
N∑

α=1

cα (Cα − CM)Aα, (3.7)

where Aα describes the average strain localization tensor in terms of
phase α or fiber α, respectively. For the formulation of the effective
stiffness in equation (3.7), the normalization condition from equa-
tion (3.6) has been used. The SC homogenization scheme generally
assumes that each fiber is embedded in an infinite homogeneous
matrix with the properties of the effective material C̄ = C

SC. The in-
clusion problem is solved based on the single inclusion formula of
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3 Homogenization based on measured microstructure data

Eshelby (Eshelby, 1957). Thus, for the special case of an ellipsoidal
approximation of the cylindrical fibers, the strain localization Aα is
a function of the effective stiffness C

SC, the stiffness Cα and the ge-
ometry of the ellipsoid Zα, which contains the information about
the fiber axis orientation:

Aα = A(CSC,Cα,Zα) =
(
I
s + P

SC
α

(
Cα − C

SC))−1
. (3.8)

Herein, PSC
α denotes Hill’s polarization tensor (see equation 4.34 in

Willis (1981)):

P
SC
α (CSC,Zα) =

1

4π det(Zα)

∫
S

H(CSC,n)
(
n · (Z−T

α Z−1
α n

))−3/2
dS,

(3.9)

with H(CSC,n) = I
s(K−1�(n⊗ n))Is and K = C

SC�n⊗ n�. The po-
larization tensor PSC

α depends on the stiffness CSC and the ellipsoidal
geometry of the fibers Zα:

‖Zαx‖2 = x · (ZT
αZαx

) ≤ 1. (3.10)

x denotes a position vector in the three-dimensional space. The in-
verse eigenvalues of Zα correspond to the half axis of the ellipsoid
with the number α. In equation (3.9), dS is a surface element of the
unit sphere S := {n ∈ R

3 : ‖n‖ = 1}, and det(Zα) represents the
determinant of Zα.

The stiffness CSC can be computed by solving the following implicit
equation resulting from equations (3.7) and (3.8) and the SC approx-
imation C̄ = C

SC (Willis, 1986):

C
SC = CM +

N∑
α=1

cα (Cα − CM)
(
I
s + P

SC
α

(
Cα − C

SC))−1
. (3.11)
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3.4 Homogenization of linear elastic properties

This equation for the unknown tensorial quantity C
SC is solved nu-

merically using a Newton-Raphson algorithm combined with a line
search procedure. To determine Hill’s polarization tensor P

SC
α nu-

merically, a Gaussian quadrature over the unit sphere according to
Mura (1987) is used.

3.4.3 Interaction direct derivative estimate

The interaction direct derivative (IDD) estimate, proposed by
Zheng and Du (2001) is based on the three-phase model. In the
three-phase model, the inclusions are embedded in a finite matrix
material region, directly. This inclusion-matrix cell itself is embed-
ded in the unbounded initially unknown effective medium. The
difference between the three-phase model and IDD can be identi-
fied in the estimation of the stresses in the inclusions: In contrary to
the three-phase model, Zheng and Du (2001) assume an unbounded
medium with the properties of the matrix for the embedding of the
inclusion in the matrix material. Du and Zheng (2002) have proven
that the stresses in the inclusions are well approximated by this as-
sumption with an error of second order of the inclusion volume
fraction. The advantage of the IDD is its explicit structure, which
is valid for multi-phase composites with different material symme-
tries and distributions.

The following prescription gives the IDD estimation of the proper-
ties of the effective medium:

C
IDD = CM +

⎛
⎝I

s −
N∑
β=1

cβ (Cβ − CM)NβP
D
β

⎞
⎠

−1
N∑

α=1

cα (Cα − CM)Nα,

(3.12)
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3 Homogenization based on measured microstructure data

with Nα = (Is + Pα (Cα − CM))
−1. Here, Pα = P(CM,Zα) is Hill’s po-

larization tensor as defined in equation (3.9) but CSC replaced with
CM. If the matrix-inclusion cell takes on an ellipsoidal shape, then,
P
D
α = P(CM,Z

D
α) is the polarization tensor corresponding to an el-

lipsoidal inclusion with geometry of the matrix-inclusion cell ZD
α ,

which is embedded in an infinite matrix with the stiffness CM. The
shape of the matrix-inclusion cell defines the inclusion distribution
in the composite (Zheng and Du, 2001). In the present work, this
shape is assumed to be equal to the shape of the spheroidal approx-
imation Zα of the corresponding inclusion itself.

Particularly if the distribution is constant for all inclusions
(ZD

α = ZD), the IDD estimate is equivalent to the Hashin-Shtrikman
estimate of Ponte Castañeda and Willis (1995), which is based on
the Hashin-Shtrikman variational structure in the form developed
by Willis (1977, 1978). A detailed discussion of the relation of IDD
to the estimate of Ponte Castañeda and Willis (1995) and, e.g., Mori-
Tanaka can be found in Zheng and Du (2001) and Du and Zheng
(2002).

3.4.4 A two-step bounding method

The SC and IDD approaches deliver estimates of the effective elastic
properties. The two-step bounding method (TS) is a simple method
providing an admissible range of possible effective properties. It
should be noted, however, that the TS homogenization applying
the HS method based on constant stress polarization and two sub-
sequent steps does not represent a rigorous second-order bounding
scheme.
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3.4 Homogenization of linear elastic properties

The first step of the TS approach consists of a decomposition of the
microstructure into as many domains as there are different fibers
(Pierard et al., 2004). Thus, fibers of the same shape and orientation
are aggregated into unidirectional domains. The fiber volume frac-
tion in the domains corresponds to the total fiber volume fraction cF.
For each of these domains, the upper and lower bounds, denoted
by C

UD+
α and C

UD−
α , respectively, are calculated using the unidirec-

tional (UD) special case of the second-order HS bounds. Assuming
the fiber material being stiffer than the matrix material leads to the
following prescriptions for CUD+

α and C
UD−
α (Willis, 1977):

C
UD+
α = Cα + (1− cF) (CM − Cα)

(
I
s + cFP

UD
α (CM − Cα)

)
)−1,

C
UD−
α = CM + cF (Cα − CM)

(
I
s + (1− cF)P

UD
α (Cα − CM)

)
)−1.

(3.13)
Hill’s polarization tensor PUD

α is known explicitly for the case of uni-
directionally aligned ellipsoidal inclusions. The resulting bounds
exhibit a transversely isotropic linear elastic behavior. If each fiber is
unique in terms of direction, geometry or material properties, then
N domains have to be considered. In equation (3.13), α depicts the
number of the particular domain with α ∈ {1, . . . , N}.

Within the second step, again HS bounds are calculated assum-
ing an isotropic two-point correlation function for the domains
(Ponte Castañeda and Suquet, 1997). Herein, only corresponding
bounds are combined: the lower (upper) bound of the domains is
homogenized with the lower (upper) bound for the granular struc-
ture. The resulting stiffness tensors are denoted by C

TS- and C
TS+,

respectively:

C
TS± =

N∑
α=1

cα
cF
C

UD±
α A

±
α =

N∑
α=1

cα
cF
C

UD±
α M

±
α

〈
M

±〉−1
, (3.14)
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3 Homogenization based on measured microstructure data

with
M

±
α =

(
I
s + P0(C

UD±
α − C

±
0 )
)−1

,

〈
M

±〉 = N∑
β=1

cβ
cF

(
I
s + P0(C

UD±
β − C

±
0 )
)−1

.
(3.15)

In the last equation, the definition of P0 depends on modeling as-
sumptions concerning the shape and distribution of the domains.
Assuming an isotropic two-point correlation of the domains, P0 cor-
responds to the spherical polarization tensor. Another possible as-
sumption would be an ellipsoidal two-point correlation. Due to
simplicity, the isotropic two-point correlation has been assumed. In
the case of the upper (lower) HS bound, for C±

0 the maximum (min-
imum) isotropic part of all stiffness tensors of the domains C

UD+
α

(CUD−
α ) is taken (Nadeau and Ferrari, 2001).

3.5 Results and discussion

The mean values of Young’s moduli and Poisson’s ratios of the
isotropic polypropylene material in the strain region 0.0005-0.0025,
as shown in Tab. 3.1, were used as input parameters for the homog-
enization of the composite. The fiber mass fraction is 30wt.%, what
corresponds to a fiber volume fraction of cF = 0.13.

Combining this data with the segmented μCT data, the effective
elastic properties were calculated according to the methods de-
scribed in the foregoing section. To compare the experimentally
measured Young’s moduli to the computational results, for each
homogenized stiffness, the direction-dependent Young’s modu-
lus(Böhlke and Brüggemann, 2001) E(d), given in equation (3.16),
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3.5 Results and discussion

was determined and evaluated in the appropriate direction:

1

E (d)
= d⊗ d · S [d⊗ d] . (3.16)

In combination with the direction-dependent bulk modulus K(d)

1

3K(d)
= I · S [d⊗ d] (3.17)

the linear elastic behaviour is completely defined. In equation
(3.16), the direction d is parametrized with spherical coordinates,
and S = C

−1 is the compliance tensor.

In the following, first, the numerical results based on the three seg-
mented μCT datasets are compared to each other, and second, the
numerical estimations are compared to the experimentally mea-
sured Young’s moduli. In Figure 3.12, the contours of the direction-
dependent Young’s moduli in the x-y plane are shown in depen-
dence of the azimuth angle as depicted in Figure 2.2. It can be seen
that the SC and IDD estimates are located between the bounding
TS results for all three datasets. SC predicts a stiffer behavior than
IDD. The direction-dependence of Young’s modulus is more pro-
nounced by SC and IDD than by the TS methods. The TS bounding
methods exhibit a rather large range of admissible Young’s moduli.
Furthermore, in Figure 3.12, it can be observed that the direction-
dependence of Young’s moduli is very similar for the (00) and the
(10) data, see Figure 3.12(b) and Figure 3.12(c). The data at the po-
sition (−10) yields a different direction-dependence of the Young’s
modulus, see Figure 3.12(a). This can be attributed to the flow con-
ditions during the manufacturing process. The same phenomenon
is visible in the stereographic projections of all fibers in Figure 3.11.
The maximum Young’s modulus is located apart from the filling di-
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3 Homogenization based on measured microstructure data
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Figure 3.12: Comparison of numerical Young’s moduli for the three segmented
μCT datasets (see Figure 3.6)
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Figure 3.13: Orientation dependence of Young’s modulus in the (a) x1-x3 plane,
(b) x2-x3 plane, (c) x1-x2 plane for the overall data

53



3 Homogenization based on measured microstructure data

Table 3.3: Comparison of experimental and numerical Young’s modulus E [GPa]
for the overall dataset

Eexp ETS- EIDD ESC ETS+

0◦ 4.482 3.798 4.809 5.463 7.754
90◦ 3.452 3.035 3.741 4.167 6.842
45◦ 3.541 2.986 3.661 4.087 6.912

rection (e2-direction), which is also an effect of the inhomogeneous
flow process.

Since the volume element analyzed with the μCT measurements is
small compared to the size of the tensile specimen, the three μCT
datasets are combined to an overall dataset for the comparison of
the numerical and experimental results. In Figure 3.13, the shapes
of the direction-dependent Young’s moduli are shown on the x1-
x3, x2-x3, and x1-x2 plane for the overall data. As the specimens
for the tensile test were prepared in the x1-x2 plane, the experimen-
tal results are added to Figure 3.13(c). It can be observed, that the
direction-dependent Young’s modulus of the overall data exhibits
a defined symmetry in the x1-x3 and the x2-x3 plane. In the x1-x2
plane, no characteristic symmetry is obvious. In Tab. 3.3, the exper-
imental and the numerical results for all homogenization methods
for the overall data are given.

In addition to the qualitative evaluation of the numerical re-
sults compared to experimental measurements in Figure 3.13 and
Tab. 3.3, it is interesting to notice that the predicted anisotropy of
the direction-dependent Young’s modulus essentially depends on
the homogenization procedure. Especially the upper bound of the
two-step approach does not represent the anisotropy accurately. It
predicts a rather isotropic material behavior.

54



3.6 Summary and conclusions
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Figure 3.14: Anisotropy ratios of Young’s modulus for the overall μCT data

To observe this more quantitatively, the ratios E90/E0, E45/E0 and
E90/E45 between the Young’s modulus values in different directions
were calculated for experimental and numerical results separately.
In Figure 3.14, the comparison of these ratios is given for the overall
μCT data.

The TS methods predict a smaller anisotropy for E90/E0 and E90/E45

and TS- also for E45/E0. SC predicts a greater anisotropy for E90/E0

and E45/E0 and IDD only for E45/E0. The lower bound of TS reflects
the experimental anisotropy ratios better than the upper bound.
Generally, all ratios of the upper bound are on a similar elevated
level. This conveys a nearly isotropic material behavior.

3.6 Summary and conclusions

This chapter discusses the examination of the thermoplastic com-
posite PPGF30 through tensile tests in three different directions,
and its microstructure through μCT measurements in combination
with a stochastic fiber analysis approach. The microstructure was
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3 Homogenization based on measured microstructure data

analyzed by means of the resulting segmented μCT data. Three
different mean-field homogenization methods were applied to es-
timate the effective elastic properties directly based on segmented
microstructural data.

Relying on the experimental and numerical results, the following
conclusions can be made:

• Anisotropy: The evaluated injection-molded SFRC specimens
show an anisotropic material behavior. The experiments in
different material directions, indicate the importance of attain-
ing detailed knowledge of the microstructure in order to di-
mension parts made of such a material.

• Inhomogeneity: Important properties of the microstructure,
like the fiber orientation distribution and fiber length distribu-
tion, can be analyzed by using the segmented μCT data. Thus,
a layer-wise analysis reveals the dependence of these proper-
ties on the position in the specimen. Thereby, a more accurate
observation of the microstructure of SFRCs is possible.

• Microstructural information: All presented mean-field ho-
mogenization approaches consider the segmented μCT data
and take advantage of the information about the distribution
of the fiber axes, fiber lengths and fiber radii.

• Two-step homogenization: In order to get an admissible
range for the effective properties, two-step bounding meth-
ods have been applied: In the first step, the Hashin-Shtrikman
bounds for unidirectional aligned fiber domains and, in the
second step, the Hashin-Shtrikman bounds for granular sys-
tems have been calculated.
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3.6 Summary and conclusions

• SC and IDD estimates: Both methods, SC and IDD, allow for
a direct consideration of the segmented μCT data. IDD uses
the matrix material as reference material. SC is an implicit ap-
proach using the effective properties as reference material. In
addition to the shape, the orientation and the material proper-
ties, IDD accounts for a statistical description of the distribu-
tion of the inclusions. Here, an spheroidal distribution equal
to the shape of the spheroidal approximation of the fibers have
been used.

• Experimental vs numerical results: The self-consistent ho-
mogenization method delivers a stiffer material behavior
compared to experimental measurements. Due to the inher-
ent characteristics of the SC approach (Hill, 1965; Torquato,
2002), this method tends to overestimate the elastic properties
for the case of hard inclusions embedded in a soft matrix sim-
ilar to the problem at hand.

The Young’s modulus values predicted by IDD are located be-
tween the lower TS bounds and SC. Like SC, this approach
delivers also a stiffer material behavior compared to exper-
iments. The IDD predictions of the Young’s modulus values
show the closest agreement with experimental measurements.

In terms of the anisotropy ratios, SC and IDD show similar
trends. Both methods predict a close agreement with experi-
ments for E90/E0, a larger anisotropy for E45/E0 and a smaller
for E90/E45.

The TS methods, except TS- for E45/E0, show larger
anisotropy-ratios compared to experiments. Two reasons are
responsible for that: First, in the second step, the reference
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3 Homogenization based on measured microstructure data

material has to be isotropic. Therefore, the minimal and max-
imal isotropic part of the domain stiffnesses, respectively, has
been taken as reference material. Second, an isotropic two-
point correlation function has been assumed by applying the
spherical polarization tensor for TS- and TS+.

The present investigation shows the modeling of the elastic be-
havior of SFRCs, using homogenization techniques in combination
with detailed microstructural data from a micro-computed tomog-
raphy image analysis method. The homogenization results demon-
strate the need of realistic microstructural data for the simulation
of parts made of SFRCs. Relying on the segmented μCT data,
the IDD approximation of the elastic properties delivers the clos-
est agreement with experimental results for the considered compos-
ite PPGF30. PPGF30 is, however, a thermoplastic based composite.
Thus, the predictions of the effective material behavior can be im-
proved by taking viscous effects and defects especially at the fiber
ends into account.
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4 Mean-field vs full-field voxel
based homogenization
methods1

4.1 Introduction

In this chapter, the mean-field homogenization methods described
in section 3.4 are opposed to a voxel-based full-field approach. For
this purpose, artificially generated microstructures with unidirec-
tionally aligned, and two configurations with misaligned fibers are
considered, as well. The misaligned configurations are inspired by
the characteristics of the microstructure of injection molded SFRCs.
In addition, for all microstructures the phase contrast of the elastic
moduli is varied. Phase contrast of 44, 100, and 1000 are consid-
ered. The phase contrast of 44 corresponds to the relation of Young’s
moduli of glass and polypropylene. For the unidirectional configu-
ration the volume fractions of fibers of 13%, 17% and 21% are taken
into account. With this variation of parameters, it is possible to re-
veal trends in the prediction of the elastic properties of the methods
applied, and to draw conclusions also on other cases.

1 This chapter is based on the paper “Homogenization of linear elastic properties of short-fiber
reinforced composites – A comparison of mean-field and voxel-based methods”(Müller et al.,
2015b)
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4 Mean-field vs full-field voxel based homogenization methods

4.2 Determination of elastic properties

4.2.1 Modeling preliminaries

Equivalently to the forgoing chapter, again SFRCs are considered,
where the matrix and the arbitrary oriented fibers are assumed to
be linear isotropic with piecewise constant properties. The matrix
is characterized by its stiffness tensor CM and volume fraction cM.
Accordingly, the fiber with number α is specified by the orientation
of the axis nα, the length lα, the radius rα, the volume fraction cα and
the stiffness tensor Cα. The total fiber volume fraction is indicated
with cF = 1− cM =

∑N
α=1 cα.

4.2.2 Full-field homogenization2

Periodic boundary value problem

In contrary to the mean-field methods presented in section 3.4,
for the numerical homogenization using full-field approaches,
the microstructure is fully resolved within a representative vol-
ume element (RVE). The RVE is often of rectangular shape
and it is also referred to as unit-cell or statistic volume ele-
ment. On this RVE, which represents a heterogeneous periodic
medium with position dependent stiffness C(x), a periodic bound-
ary value problem for the displacement fluctuations ũ has to

2 The theory presented in this chapter, and the appropriate implementation have been elaborated
by M. Kabel and H. Andrä (Müller et al., 2015b). For the sake of completeness, the theory
is reproduced in this chapter.
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4.2 Determination of elastic properties

be solved in order to obtain the homogeneous material behav-
ior:

div (σ(x)) = 0, x ∈ Ω,

σ(x) = C(x)[ε(x)], x ∈ Ω,

ε(x) = ε̄+ sym(grad (ũ(x))), x ∈ Ω,

ũ(x) periodic, x ∈ ∂Ω,

(σn) (x) anti− periodic, x ∈ ∂Ω.

(4.1)

This periodic boundary value problem is uniquely
solvable for all constant strains ε̄ in the
space

ũ ∈ (H1,#(Ω)
)3

: 〈ũ〉Ω :=

∫
Ω

ũ(x) dΩ = 0, (4.2)

where H1,#(Ω) is the closure of C∞,#(Ω) = {v ∈ C∞(Ω) :

v periodic} in H1(Ω) (see, e.g., Bakhvalov and Panasenko
(1989); Cioranescu and Donato (1999)). In this work, the
microstructure is represented in a binary manner using a
regular three-dimensional voxel discretization within the
RVE.

Equivalent strain and stress based Lippmann-Schwinger
equation

The constitutive equation for the stress σ(x) = C(x)[ε(x)] can be
rewritten into

σ(x) = C0[ε(x)] + p(x). (4.3)

In the foregoing equation, C0 is the stiffness tensor of a homoge-
neous comparison material and p(x) the stress polarization, which
is defined as

p(x) = (C(x)− C0) [ε(x)]. (4.4)
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4 Mean-field vs full-field voxel based homogenization methods

If the stress polarization p(x) with support in Ω, e.g., supp(p) ⊆ Ω

is known, the solution of div (σ(x)) = 0, see equation (4.1), can be
depicted as (Kröner, 1977)

ε(x) = ε̄− (G0 ∗ p) (x), (4.5)

where G0 is the nonlocal elastic Green operator for strains associ-
ated with the comparison material C0. The convolution in equa-
tion (4.5) is defined by

(G0 ∗ p) (x) =
∫
Ω

G0(x− y)[p(y)] dΩ. (4.6)

Hence, the strain based formulation of the Lippmann-Schwinger
equation can be derived by considering equation (4.4) in equa-
tion (4.5)

(Is + Bε) [ε(x)] := ε(x) + (G0 ∗ ((C− C0) [ε(x)])) (x) = ε̄. (4.7)

This integral equation for the strain is equivalent to an integral
equation for the stress (Kröner, 1971)

(Is + Bσ) [σ(x)] := σ(x) + (L0 ∗ ((S− S0) [σ(x)])) (x) = σ̄, (4.8)

with the local compliance S(x) = C
−1(x), the compliance of the

comparison material S0 = C
−1
0 , the macroscopic stress σ̄ = C0[ε̄] and

the Green operator L0 for stresses associated with the comparison
material. Using the following prescription

L0 = C0 − C0G0C0, (4.9)

the Green operator L0 for stresses can be determined in dependence
of the Green operator G0 for strains. For the sake of a simpler no-
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4.2 Determination of elastic properties

tation, the dependency of the quantities on the spatial position x is
not noted in the following equations anymore.

Energy and strain equivalence principle

Taking Hill’s condition, also known as the energy equivalence prin-
ciple,

1

2
〈εα · C[εβ]〉 = 1

2
〈εα〉 · C̄[〈εβ〉] (4.10)

into consideration, the effective and homogeneous stiffness C̄ can be
determined. For this purpose, the boundary value problem in equa-
tion (4.1) has to be solved for a basis of the six dimensional space of
macroscopic strains ε̄. Hence, εα or εβ, respectively, denote the six
necessary linear independent loading cases with α, β ∈ {1, . . . , 6}.
The same can be done for the effective compliance S̄

1

2
〈σα · S[σβ]〉 = 1

2
〈σα〉 · S̄[〈σβ〉]. (4.11)

The effective stiffness and compliance tensors can then be calcu-
lated by (Bishop and Hill, 1951b,a)

〈C[εβ]〉 = C̄[〈εβ〉], (4.12)

〈S[σβ]〉 = S̄[〈σβ〉]. (4.13)

Lippmann-Schwinger equations for the Hashin-Shtrikman
bounds

In the case of C ≤ C0 (C ≥ C0), the energy principle of Hashin and
Shtrikman (1962b) states that the following bounds on the elastic
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4 Mean-field vs full-field voxel based homogenization methods

energy in the unit-cell hold true for an arbitrary stress polarization
field p(x):

〈ε · C[ε]〉 ≤
(≥)

ε̄ · C0[ε̄] + 2 〈p〉 · ε̄−
〈
p · (C− C0)

−1 [p]
〉

− 〈p · (G0 ∗ p)〉 .
(4.14)

If the stress polarization takes on the form given in equation (4.4),
equality is obtained in the last equation.

Willis (1977) has shown that the Hashin-Shtrikman bounds are
quadratic positive (negative) definite forms on the space of all po-
larization fields. Thus, an optimal pHS has to exist in the subspace
of voxel-wise constant polarization fields. The bounds in equa-
tion (4.14) are applied exactly to this subspace. By introducing the
periodized Green operator G#

0 , the bounds (4.14) or G0 ∗ p, respec-
tively, can be calculated by a discrete fast Fourier transformation in
the subspace of voxel-wise constant polarization fields without any
approximation error.

The application of this result for the polarization fields to the asso-
ciated strain field

εHS := (C− C0)
−1 [pHS], (4.15)

results in
εHS +G

#
0 ∗ ((C− C0) [ε

HS]
)
= ε̄. (4.16)

This equation is of the same form as (4.7), what implies that the
bounds of Hashin-Shtrikman can be calculated by the methods dis-
cussed for the strain based formulation of the Lippmann-Schwinger
equation. The difficulties arising in the calculation of the peri-
odized Green operator G#

0 are discussed in (Brisard and Dormieux,
2010).
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4.2 Determination of elastic properties

The stress based form of the Lippmann-Schwinger equation can be
rewritten, accordingly. With this formulation, rigid inclusions can
be treated without problems. Taking the eigenstrain ε� according to
Hill (1963) into consideration

ε� = S0[p] = (S0 − S) [σ], (4.17)

the bounds of Hashin-Shtrikman can be formulated as follows
(Willis, 1977):

〈σ · S[σ]〉 ≤
(≥)

σ̄ · S0[σ̄] + 2 〈ε�〉 · σ̄ +
〈
ε� · (S− S0)

−1 [ε�]
〉

+ 〈ε� · (L0 ∗ ε�)〉 ,
(4.18)

if C ≤ C0 (C ≥ C0) or equivalently S ≥ S0 (S ≤ S0). Equiva-
lently to equation (4.14), equality is reached for ε� = (S0 − S)[σ].
Applying the above arguments to the associated stress field
σHS := (S0 − S)−1 [ε�HS] of the optimal eigenstrain field ε�HS in the
subspace of voxel-wise constant eigenstrain fields, the following
equation is obtained

σHS(x) +
(
L
#
0 ∗ ((S− S0) [σ

HS]
))

(x) = σ̄ (4.19)

with L
#
0 being the periodized Green operator for stresses. This op-

erator is defined equivalent to the periodized Green operator for
strains.

Numerical algorithm

The strain based (4.7) as well as the stress based formulation (4.8)
of the Lippmann-Schwinger equation can be solved iteratively. Us-
ing the Neumann series expansion for the inversion of I

s + Bε or

65



4 Mean-field vs full-field voxel based homogenization methods

I
s + Bσ, the iterates of the local strain or stress, respectively, reads

εn =
n∑

α=0

(−Bε)
α [ε̄], σn =

n∑
α=0

(−Bσ)α [σ̄], (4.20)

which can also be written as

ε0 = ε̄, σ0 = σ̄, (4.21)

εn+1 = −Bε[ε
n] + ε̄, σn+1 = −Bσ[σn] + σ̄. (4.22)

The iterates in equation (4.22) can be efficiently computed in four
steps using discrete fast Fourier transformation (DFT) by the so
called basic scheme (BS) for polarization and eigenstrain, respec-
tively (see Moulinec and Suquet (1994)):

p = (C− C0)[ε
n], ε� = (S− S0)[σ

n], (4.23)

p̂ = DFT(p), ε̂� = DFT(ε�), (4.24)

ε̂� = −Ĝ0[p̂], p̂ = −L̂0[ε̂�], (4.25)

ε̂�(0) = ε̄, p̂(0) = σ̄, (4.26)

εn+1 = DFT−1(ε̂�), σn+1 = DFT−1(p̂). (4.27)

In these equations, the sign of the eigenstrain ε� is changed, to get
an identical algorithm for the strain and stress formulation. Pre-
scriptions for Ĝ0 can be found in Mura (1987) for different types of
anisotropy.

For the computation of the Hashin-Shtrikman bounds (4.16) and
(4.19), the Green operators G0 and L0 in the basic scheme are re-
placed by their periodized counterparts G

#
0 and L

#
0 (Brisard and

Dormieux, 2010).
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4.2 Determination of elastic properties

Hashin-Shtrikman bounds on the effective moduli

According to Kabel and Andrä (2013), it is possible to use the so-
lutions of the Lippmann-Schwinger equations (4.16) and (4.19) to
obtain upper and lower bounds on the effective moduli. Due to the
assumptions of the Hashin-Shtrikman bounds on C0, it is not possi-
ble to calculate an upper (lower) bound of the effective stiffness nu-
merically, if the composite contains any rigid (porous) region. Since
the upper Hashin-Shtrikman bound depicts a rigid behavior in the
first case, and the lower Hashin-Shtrikman bound a material with-
out any elastic stiffness in the second, this is not a real limitation. If a
composite contains rigid and also porous regions, the assumptions
of the Hashin-Shtrikman bounds cannot be fulfilled.

In can be shown (Müller et al., 2015b), that combining (4.10) and
(4.12) with (4.14) yields

ε̄ · C̄[ε̄] = ε̄ · CHS
ε [ε̄]. (4.28)

It follows

C≤
(≥)

C0 ⇒ C̄≤
(≥)

C
HS
ε . (4.29)

Further it can be shown, that combining (4.11) and (4.13) with (4.18)
yields an analogous result for the compliance

σ̄ · S̄[σ̄]− σ̄ · S0[σ̄] = σ̄ · (S0 − S
HS
σ
)
[σ̄]. (4.30)

Therefore, if S ≥
(≤)

S0

S̄ ≤
(≥)

2S0 − S
HS
σ ≤

(≥)
2S̄− S

HS
σ , (4.31)
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which means that
S ≥

(≤)
S0 ⇒ S

HS
σ ≤

(≥)
S̄. (4.32)

For non-rigid materials this implies

C ≤
(≥)

C0 ⇒ C̄ ≤
(≥)

C
HS
σ . (4.33)

According to Michel et al. (2001) and Eyre and Milton (1999), the
convergence of the Neumann series expansion in equation (4.20)
for the strain based formulation of the Lippmann-Schwinger equa-
tion (4.16) is only guaranteed for C ≤ C0. For the stress based for-
mulation only S ≤ S0 guarantees the convergence of the Neumann
expansion (4.20).

Thus, using the strain (stress) based formulation it is possible to
determine an upper (lower) bound of the effective stiffness if the
composite does not contain any rigid region (porous region)

C
HS
σ ≤ C̄ ≤ C

HS
ε . (4.34)

4.2.3 Mean-field homogenization

The FFT based full-field methods described in the foregoing section
are compared with the SC, the IDD and the TS approach, which are
presented in the sections 3.4.2, 3.4.3 and 3.4.4.
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4.3 Model microstructures and material parameters

4.3 Model microstructures and
material parameters

4.3.1 Generation of the model microstructures

The mean orientation distribution can be described with fabric ten-
sors of second rank N (Kanatani, 1984), also called fiber orientation
tensors (Advani and Tucker III, 1987). For N equal weighted fiber
orientations n, the orientation tensor is defined as

N =
1

N

N∑
α=1

nα ⊗ nα. (4.35)

Since the fiber axis orientation n is normalized, the trace of the fiber
orientation tensor is always one: sp(N ) = 1.

Three different microstructures have been used for the comparison
of the methods. Firstly, a microstructure with unidirectional aligned
fibers has been considered. Results affiliated with this microstruc-
ture are referred to with UD in the following. Secondly, inspired
by the orientation distribution of the fiber axes in injection-molded
thin plates, two different microstructures with misaligned fiber axes
have been considered. Results based on this microstructures are
denoted with TP1 and TP2 (thin plate) in the following. All mi-
crostructures are generated under a periodicity constraint. In Ta-
ble 4.1, the components of the orientation tensors, which have been
used to generate the model microstructures, are given. The arti-
ficial microstructures have been generated by using Math2Market
(2014). The corresponding data files can be found on the internet
page http://www.itm.kit.edu/cm/288.php. The algorithm
is described in Schladitz et al. (2006).
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Table 4.1: Components of orientation tensors, used for the generation of the
model microstructures

N11 N22 N33 N23 N13 N12

NTP1
0 0.61 0.36 0.03 0.0 0.0 0.0

NTP2
0 0.80 0.18 0.02 0.0 0.0 0.0

NUD
0 1.0 0.0 0.0 0.0 0.0 0.0

For all microstructures, the fibers have been modeled by cylinders
with a length of l = 200μm and a diameter of d = 10μm. Ten differ-
ent RVEs have been realized for each microstructure type. The side
length of the RVEs has been dRVE = 250μm, and they have been dis-
cretized with the resolutions 125, 250 and 500, corresponding to a
side length of one voxel of 2μm, 1μm, and 0.5μm, in all directions
for consideration in the full-field approach. For all realizations, the
fiber volume fraction is assumed to be equal to cF = 13%. Addi-
tionally, for UD, fiber volume fractions of 17% and 21% have been
taken into account. Since the mean-field methods only rely on the
orientation information, the explicit geometrical description of the
orientation and geometry of each fiber is necessary. In Figure 4.1,
one example for UD each of the microstructures is given.

4.3.2 Properties of the model microstructures

The microstructure generation process, which is implemented in
GeoDict, is a random process.3 In the UD case, the microstructure
generation algorithm matches perfectly the unidirectional align-
ment of the fibers. The achieved mean orientation tensors of the TP
3 The model microstructures have been generated by M. Kabel (Fraunhofer ITWM).
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(a)

(b)

Figure 4.1: (a) UD microstructure; (b) TP microstructure.
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RVEs are compared with the target orientation tensors in Table 4.2.

Table 4.2: Components of the average orientation tensors of 10 realization of the
TP microstructures and their deviations compared with the target ori-
entation tensors (see Table 4.1)

N̄
TP1

NTP1
0 − N̄

TP1
N̄

TP2
NTP2

0 − N̄
TP2

N11 0.6083 0.17% 0.8058 −0.58%
N22 0.3615 −0.15% 0.1743 0.57%
N33 0.0302 1.02% 0.0199 0.01%
N23 0.0064 −0.64% −0.0006 0.06%
N13 −0.0017 0.17% 0.0022 −0.22%
N12 0.0004 −0.04% 0.0114 −0.11%

4.3.3 Parameter overview

As mentioned above, three different microstructure types with three
different fiber volume fractions have been regarded for the com-
parison of the homogenization methods. Additionally, three differ-
ent combination of elastic moduli for fibers and matrix have been
taken into account: First, the elastic moduli have been chosen corre-
sponding to polypropylene (EPP = 1.665GPa, νPP = 0.36) and glass
(EG = 73GPa, νG = 0.2) (Joshi et al., 1994; Tomasetti et al., 1998).
These materials are frequently used to compound composites like
PPGF30, consisting of polypropylene reinforced with glass fiber of
a weight fraction of 30%. The phase contrast of this combination
amounts to ξ = 44.
Further, the phase contrast has been increased to 100 and 1000,
whereby Young’s modulus of the matrix and fibers is set to
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EM = 1GPa and EF = 100GPa or EF = 1000GPa. The parameter
variation is summarized in Table 4.3.

Table 4.3: Variation of microstructural and material parameters

Microstr. Fiber vol. fraction Material combination

TP1 TP1/TP2 UD ξ 44 100 1000
TP2 13% 13% EM [GPa] 1.665 1 1
UD 17% νM 0.36 0.36 0.36

21% EF [GPa] 73 100 1000
νF 0.2 0.2 0.2

4.4 Numerical results4

4.4.1 Directional dependent elastic properties

To compare the effective stiffnesses, the directional dependent
Young’s modulus and bulk modulus can be evaluated. The direc-
tional dependent Young’s modulus

1

E(d)
= d⊗ d · S̄ [d⊗ d] (4.36)

and the directional dependent bulk modulus

1

3K(d)
= I · S̄ [d⊗ d] (4.37)

determine uniquely the effective compliance tensor S̄ = C̄
−1 (see,

e.g., Böhlke and Brüggemann (2001)). In Figure 4.2, the graphical
4 The numerical homogenization results have been provided by M. Kabel (Fraunhofer ITWM).
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representations of these quantities are given exemplarily for a UD
realization. In the following, the numerical results are compared by

(a) (b)

Figure 4.2: Graphical representation of the directional dependent (a) Young’s
modulus and (b) bulk modulus for one UD realization.

means of the directional dependent Young’s modulus. on the one
hand, a quarter of the contour of this quantity is shown on the x-y-
plane. Here, this plane is the plane with the main fiber orientation
distribution in terms of UD and TP. On the over hand, the compar-
ison is expressed by means of a relative deviation of the directional
dependent Young’s modulus of method X and Y:

ηXY =

(∫
S

(
EX(n)− EY(n)

)2
dS∫

S (E
X(n))

2
dS

)1/2

. (4.38)

4.4.2 Resolution, size and realization dependency

of Young’s modulus

Spatial resolution of RVE In order to evaluate the dependencies
of the FFT solution on the resolution, Young’s moduli have been cal-
culated in 0◦-direction (E0) for each realization of the three different
resolutions for two different phase contrasts, ξ = 44 and ξ = 1000.
For UD microstructures with a volume fraction of 13%, these results
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are shown in Figure 4.3, and, for TP1 microstructures in Figure 4.4.
In both figures, the mean Young’s modulus values and the corre-
sponding standard deviation of all realizations for the lower bound
(FFT-HS−), the basic scheme (FFT-BS), and the upper bound (FFT-
HS+) in the appropriate direction are shown.

Since the averaged Young’s modulus values of the FFT-BS solu-
tion are on an approximately constant level for both microstruc-
ture types, a dependency on the resolution cannot be observed. The
standard deviation of the FFT-BS results in terms of different RVE
realizations is similar for all resolutions. Contrary to this, FFT-HS+
and FFT-HS− dependent obviously on the resolution: the gap be-
tween the corresponding bounds is narrowed with increasing res-
olution. This can be reasoned with an increasing space for solu-
tion in this case of voxel-wise constant field variables. Thus, tighter
bounds can be found based on equation (4.18).

For the smaller phase contrast of ξ = 44, FFT-HS+ is closer and con-
verges faster to FFT-BS for UD and TP1 in the considered direction.
Just the opposite can be observed for the larger phase contrast of
ξ = 1000. The standard deviation of FFT-HS+ is slightly increasing
for UD with ξ = 44 and obviously increasing for UD with ξ = 1000.
In the TP1 case, its standard deviation is approximately constant for
the smaller phase contrast and decreasing for the larger phase con-
trast. The standard deviation of FFT-HS− increases in all cases with
increasing resolution.

Size of RVE In order to verify the representativity of the volume
element for the misaligned microstructure configuration, additional
volume elements of three different sizes have been considered for
TP1: Starting with 250μm, the side length has been doubled two
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(a) UD with cF = 13% and ξ = 44

(b) UD with cF = 13% and ξ = 1000

Figure 4.3: Mean Young’s modulus and standard deviation in 0◦-direction of UD
microstructure realizations in dependence of the resolution of the RVE
for FFT methods
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(a) TP1 with cF = 13% and ξ = 44

(b) TP1 with cF = 13% and ξ = 1000

Figure 4.4: Mean Young’s modulus and standard deviation in 0◦-direction of TP1
microstructure realizations in dependence of the resolution of the RVE
for FFT methods
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times to 500μm and 1000μm. Again, ten volume elements with a
resolution of 125, 250 and 500 voxels, respectively, in each direc-
tion have been generated and homogenized using the FFT and MF
methods. The resulting averaged Young’s modulus in 0◦-direction
and its standard deviation are shown in Figure 4.5(a) for the FFT
and in Figure 4.5(b) for the MF approaches.

Despite the low resolution which has been chosen due to compu-
tational issues, it is obvious from Figure 4.5, that the mean values
of Young’s modulus are approximately constant for all RVE sizes.
The FFT and MF methods show qualitatively comparable results in
Figure 4.5(a) and in Figure 4.5(b), respectively. On the one hand, for
small RVEs with 130 inclusions, a dependency on the specific real-
ization is evident. On the other hand, for the midsize and large vol-
ume elements with 1035 and 8277 inclusions, respectively, Young’s
modulus does not show a significant dependency on a specific real-
ization. The correspondence of the orientation distribution in terms
of the fiber orientation tensor compared to the target given in Ta-
ble 4.1 is the better, the larger the volume elements become, see
Table 4.4. Since the mean stiffnesses and also the mean direction-

Table 4.4: Components of orientation tensors of RVEs with an endge-length of
250μm, 500μm and 1000μm

N11 N22 N33 N23 N13 N12

NTP1
130 0.6086 0.3614 0.0299 0.0062 −0.0020 0.0014

NTP1
1035 0.6115 0.3581 0.0304 −0.0005 0.0007 −0.0007

NTP1
8277 0.6113 0.3586 0.0301 0.0000 −0.0001 −0.0003

dependent Young’s modulus are constant regarding different RVE
sizes, it is concluded, that the representativity is also given for the
small RVEs in an averaged manner.
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(a) TP1 with cF = 13% and ξ = 44

(b) TP1 with cF = 13% and ξ = 44

Figure 4.5: Mean Young’s modulus and standard deviation of TP1 microstructure
realizations in 0◦-direction in dependence of the size of the RVE for (a)
FFT methods and (b) MF approaches
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Variation in RVE generation The variation of the microstructure
realization process is analyzed by means of averaged directional de-
pendent Young’s moduli and standard deviations of all realizations
on the x-y-plane. In Figure 4.6 and 4.7, FFT results are shown for
UD and TP1, respectively. In each figure, results for microstructures
with a fiber volume fraction of 13% and a phase contrast of 44 and
1000 are presented. Especially for UD, a direction dependence of
the standard deviation of Young’s modulus can be observed: The
greatest deviation occurs in fiber direction (0◦-direction) and the
smallest in transversal direction for all FFT methods. It increases for
higher averaged Young’s modulus. Thus, for the upper bound FFT-
HS+ and for larger phase contrast the greatest standard deviation
is found. However, relating the standard deviation to the averaged
Young’s modulus in the corresponding direction reveals two facts:
The greatest relative deviation of approximately 2% for ξ = 44 and
25% for ξ = 1000 occurs again in fiber direction but now for FFT-BS.
Since the UD alignment is perfectly matched in all RVE realizations,
no deviations can be observed in the MF results.

In the TP1 case in Figure 4.7, no distinct direction dependence of
the standard deviation can be observed for FFT results. However,
the greatest deviations occur for methods delivering the greatest
Young’s modulus. If the standard deviation is related to the av-
eraged Young’s modulus, a deviation of 8% for ξ = 44 and 18% for
ξ = 1000 is found. The MF results also depend on the RVE realiza-
tion in the TP1 case, see Figure 4.8. Here, again, no distinct direction
dependence of the standard deviation can be observed. MF-SC de-
livers the highest sensitivity on specific RVE realizations and, thus,
the highest standard deviation, also compared to FFT methods: 11%
for ξ = 44 and 25% for ξ = 1000.
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(a) UD with cF = 13% and ξ = 44

(b) UD with cF = 13% and ξ = 1000

Figure 4.6: Direction dependent Young’s modulus and standard deviation in x-y-
plane for UD microstructure realizations for FFT methods

81



4 Mean-field vs full-field voxel based homogenization methods

(a) TP1 with cF = 13% and ξ = 44

(b) TP1 with cF = 13% and ξ = 1000

Figure 4.7: Direction dependent Young’s modulus and standard deviation in x-y-
plane for TP1 microstructure realizations for FFT methods
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(a) TP1 with cF = 13% and ξ = 44

(b) TP1 with cF = 13% and ξ = 1000

Figure 4.8: Direction dependent Young’s modulus and standard deviation in x-y-
plane for TP1 microstructure realizations for MF methods

83



4 Mean-field vs full-field voxel based homogenization methods

Effects of the periodicity constraint For the generation of the TP
microstructures, a periodicity constraint has been imposed. In order
to quantify the effect of the periodicity, non-periodic TP1 RVEs with
the side length of 250, 500 and 1000μm have been generated addi-
tionally. Although the RVEs are not periodic, it is still possible to
solve the boundary value problem using the FFT approaches with
periodic boundary conditions. Compared to the results of FFT-BS
for periodic microstructures, the relative deviation, which is defined
in equation (4.38), decreases with increasing RVE side length of the
non-periodic microstructures. For 250μm the deviation amounts
to 9.0%, for 500μm to 6.7% and for the largest RVE with 1000μm

to 4.8%. The periodicity constraint ensures a constant fiber length,
however, this is not the case for the non-periodic RVEs, which con-
tain shorter fiber ends at their boundaries. Since the volume fraction
of the short fiber ends decreases for increasing RVE size, the results
are reasonable.

4.4.3 Deviation of Young’s modulus

In the following, FFT-BS is compared with MF-IDD and MF-SC by
means of a relative deviation defined in equation (4.38). Herein, the
highest resolution of the RVEs have been used for FFT-BS. The effec-
tive averaged Young’s moduli of the mentioned methods are com-
pared for all microstructure types, phase contrasts and fiber volume
fractions. For each comparison, the relative deviation has been cal-
culated and shown in a heat map, see, e.g., Figure 4.9. Herein, the
relative deviation is entered directly on the one hand, and repre-
sented in color in order to see the tendencies better on the other
hand.
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In Figure 4.9(a), first, FFT-BS and MF-IDD are compared for all mi-
crostructure types and phase contrasts. The smallest deviation of
1.5% occurs for TP1 with the smallest phase contrast ξ = 44. The
largest deviation of 31.8% is found for UD with ξ = 1000. The devi-
ation increases with increasing phase contrast and with advancing
alignment of the fibers (TP1 → TP2 → UD). Similar results can be
seen in Figure 4.9(c), where FFT-BS and MF-IDD are compared for
UD microstructures with all considered phase contrasts and volume
fractions. Starting from 3%, the deviation increases with increas-
ing phase contrast and also with increasing volume fraction up to
49.5%.

The relative deviation between MF-SC and FFT-BS for UD, shown
in Figure 4.9(d), reveal the same tendencies as MF-IDD and FFT-BS.
Again, the deviation increases with increasing fiber volume frac-
tion and phase contrast. The minimum and maximum deviations
amount to 4.5% and 29.2%, respectively. Another tendency can be
observed for the comparison of MF-SC and FFT-BS in terms of dif-
ferent microstructure types, see Figur 4.9(b). Here, the deviation
still increases with increasing phase contrast, however, it decreases
with advancing alignment of the fibers.

The direct comparison of Young’s modulus for TP2 with cF = 13%

and ξ = 100 is shown in Figure 4.10(a) on the x-y-plane for all MF
and FFT methods. Accordingly, in Figure 4.10(b), the UD results of
all methods are compared for cF = 17% and ξ = 100. It can be seen,
that the results of all methods are located between MF-TS+ and
FFT-HS−, where FFT-BS appears between the narrow FFT bounds.
MF-SC predicts a higher Young’s modulus than FFT-BS and a par-
tially higher Young’s modulus than FFT-HS+, especially in fiber di-
rection in the UD case. MF-IDD is located between FFT-BS and the
lower bound FFT-HS−. In the UD case, MF-IDD and MF-TS− coin-
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4 Mean-field vs full-field voxel based homogenization methods

(a) MF-IDD vs FFT-BS for cF = 13% (b) MF-SC vs FFT-BS for cF = 13%

(c) MF-IDD vs FFT-BS for UD (d) MF-SC vs FFT-BS for UD

Figure 4.9: Relative deviation of FFT-BS and (a) MF-IDD for TP1, TP2 and UD
with cF = 13%, (b) MF-SC for TP1, TP2 and UD with cF = 13%, (c)
MF-IDD for UD with cF = 13, 17, 21% and (d) MF-SC for UD with
cF = 13, 17, 21%

86



4.4 Numerical results

(a) TP2 with cF = 13% and ξ = 100

(b) UD with cF = 17% and ξ = 100

Figure 4.10: Direction dependent Young’s modulus of all FFT and MF methods
on x-y-plane
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4 Mean-field vs full-field voxel based homogenization methods

Cyl Ell 1 Ell 2

Figure 4.11: Approximation of a cylindrical fiber with equal volume and aspect
ratio or volume and length

cide for all parameters and appear between FFT-BS and FFT-HS−.
MF-TS+ predicts a much higher Young’s modulus then all other
methods, additionally for UD, the shape of the MF-TS+ Young’s
modulus is different compared to the other approaches.

Effects of the ellipsoidal approximation of the cylindrical fibers
Generally, it is known that for UD, the effective material behavior
in fiber direction is getting stiffer with increasing fiber length. The
MF results discussed so far are based on the modeling of the cylin-
drical fibers by ellipsoids of equal aspect ratio and volume. Thus,
the ellipsoids are longer than the cylindrical fibers in the RVE. The
half axes of the ellipsoid, a1, a2 and a3 are scaled by (3/2)1/3:

2a1 =

(
3

2

)1/3

l, 2a2 = 2a3 =

(
3

2

)1/3

d,

where l and d are the length and the diameter of the cylindri-
cal fiber. Alternatively, the cylindrical fibers can also be approx-
imated by ellipsoids with the side condition of equal length and
equal volume. Herein, the second and third half axis have to be
scaled with (3/2)1/2, while the first is exactly 2a1 = l. In Figure 4.11,
both approximations are shown for a fiber with an aspect ratio
of 20. The ellipsoidal approximation with equal volume and as-
pect ratio overestimates the length and the width of the cylinder
by about 14.5%, while the approximation with equal volume and
equal length overestimates the width by 22.5%. In the following,
these two approaches to model the cylindrical fibers by ellipsoids
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4.4 Numerical results

Figure 4.12: Relative deviation of the directional dependent Young’s modulus∣∣EX
cyl(ϕ)− EX

ell(ϕ)
∣∣ /EX

cyl(ϕ) for UD with cF = 13% and ξ = 44 of the
FFT methods for ellipsoidal and cylindrical inclusion geometry

are distinguished by the terms first type ellipsoid and second type
ellipsoid.

To determine the effect of the ellipsoidal approximation on the
effective material properties, additional RVEs with unidirectional
aligned first type ellipsoids and a fiber volume fraction of cF = 13%

have been generated. In Figure 4.12, the relative differences be-
tween the averaged stiffnesses of the RVEs with cylindrical inclu-
sions and ellipsoidal inclusions for FFT-BS, FFT-HS+ and FFT-HS−
are shown for the phase contrast of 44. In this figure, that error is
indicated, which is introduced if the cylindrical fibers are modeled
by first type ellipsoids. In the fiber direction, the difference ranges
between 4% in case of FFT-BS and FFT-HS−, and 5% in case of FFT-
HS+.

Using the second type ellipsoid for MF-SC and MF-IDD ap-
proaches, denoted by MF-SC2 and MF-IDD2, again an analysis of
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4 Mean-field vs full-field voxel based homogenization methods

(a) MF-IDD2 vs FFT-BS for cF = 13% (b) MF-SC2 vs FFT-BS for cF = 13%

(c) MF-IDD2 vs FFT-BS for UD (d) MF-SC2 vs FFT-BS for UD

Figure 4.13: Relative deviation of FFT-BS and (a) MF-IDD2 for TP1, TP2 and UD
with cF = 13%, (b) MF-SC2 for TP1, TP2 and UD with cF = 13%, (c)
MF-IDD2 for UD with cF = 13, 17, 21% and (d) MF-SC2 for UD with
cF = 13, 17, 21%
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the relative deviation to FFT-BS with cylindrical inclusions have
been performed. The results of this analysis is shown in Figure 4.13.
Compared with the former deviation analysis shown in Figure 4.9,
it can be seen, that the tendencies remain the same. However, all
deviations of the comparison of MF-IDD2 and FFT-BS are higher
than the deviations between MF-IDD and FFT-BS. The contrary is
the case for MF-SC2 and FFT-BS: Here, the deviation are smaller
than in the former analysis. This can be reasoned by the smaller
aspect-ratio of the second type ellipsoidal approximation. Gener-
ally, MF-IDD predicts smaller Young’s moduli than FFT-BS. Smaller
aspect-ratios lead to smaller Young’s moduli and, therefore, the de-
viations become larger. In case of MF-SC, which generally predicts
larger Young’s moduli than FFT-BS, the deviations become smaller
for smaller aspect-ratios of the inclusions.

4.5 Summary and conclusions

The main objective of this chapter is the detailed comparison of the
predicted effective linear elastic properties of full-field and mean-
field methods for discontinuous short-fiber reinforced composites.
For this purpose, the IDD scheme, the SC method and a TS ap-
proach, on the one hand, and a full-field solution based on fast
Fourier transformation, on the other hand, have been applied. In
the case of the mean-field methods, an explicit geometrical descrip-
tion of the fibers in terms of their geometrical properties can be
taken into account. Whereas for the full-field method, a regular
three-dimensional discretization of the microstructures with voxel-
wise constant properties is additionally necessary. The explicit de-
scription of the microstructures is available online. The proper-
ties of the considered microstructures have been analyzed. Three
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4 Mean-field vs full-field voxel based homogenization methods

different types of microstructures have been considered, two mis-
aligned and one unidirectional configuration, in conjunction with
three phase contrasts, the smallest contrast of 44 for a PPGF com-
posite and two artificial of 100 and 1000. Three different fiber vol-
ume fractions have been taken into account for the unidirectional
configuration: 13%, 17% and 21%, what corresponds to weight frac-
tions of 30%, 40% and 50% for the PPGF composite material. The
numerical solutions have been compared in terms of the directional
dependent Young’s modulus regarding the dependency on resolu-
tion and size of the RVEs, the relative deviations of Young’s modu-
lus, and the anisotropy of Young’s modulus in the plane of the main
fiber orientation distribution.

In the following, the term Young’s modulus always refers to the
realization averaged Young’s modulus. The term specific Young’s
modulus denotes Young’s modulus of one particular RVE realiza-
tion.

With respect to the model microstructures and their discretiza-
tion, the following can be concluded:

• The range of Young’s modulus between the upper and lower
HS bounds of the FFT solution depends on the resolution
(voxel) of the RVE. With increasing resolution, both bounds
converge to the FFT-BS solution. The Young’s modulus of the
FFT-BS solution does not show an obvious dependency on the
selected resolution of the RVE.

• No significant effect of the size of the RVE on Young’s modu-
lus of the TP configuration has been observed. While for small
RVEs with 130 fibers, the specific Young’s modulus depends
on the realization, this is not the case for larger RVEs with 1035

and more fibers.
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• In the UD case, the standard deviation of specific Young’s
moduli of FFT solutions show a dependency on a particular
realization only in fiber direction. The deviation is higher for
higher effective Young’s moduli. The highest relative devia-
tion, where the standard deviation is divided by the average
Young’s modulus, occurs for FFT-BS: 2% for a phase contrast
of 44 and 25% for a phase contrast of 1000. No deviations oc-
cur for MF approaches.

• In the TP1 case, no distinct direction dependency of the stan-
dard deviation of specific Young’s moduli can be observed.
The SC method shows the highest sensitivity on the specific
RVE realization. The relative standard deviation amounts to
11 and 25% for a phase contrast of 44 and 1000, respectively.

Thus, an RVE with a side length of 250μm is sufficient for the con-
sidered microstructure with a constant fiber length of 200μm, espe-
cially by means of averaged stiffnesses.

The comparison of the effective elastic properties predicted by the
different homogenization schemes yields the following results:

• The comparison of FFT-BS and MF-IDD by means of a rela-
tive deviation of Young’s modulus reveals the following ten-
dencies for all considered microstructures with a fiber volume
fraction of 13%: the relative deviation increases with increas-
ing phase contrast and advancing alignment of the fibers. The
relative deviation varies between 1.5% and 31.8%.

• In case of UD microstructures, the deviation of FFT-BS and
MF-IDD increases with increasing phase contrast and with
increasing fiber volume fraction. It varies between 3% and
49.5%.
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• The relative deviation between FFT-BS and MF-SC shows an-
other tendency for microstructures with a fiber volume frac-
tion of 13%: It increases with increasing phase contrast but
decreases with advancing alignment of the fibers. The relative
deviation varies between 4.5% and 68.5%.

• For UD microstructures, the deviation between FFT-BS and
MF-SC again increases with increasing phase contrast and
with increasing fiber volume fraction. The relative deviation
varies between 4.5% and 29.2%.

• If the cylindrical fibers are approximated with ellipsoids not
under the conditions of equal aspect-ratio and volume, but,
of equal length and volume, the tendencies of the relative de-
viations between MF and FFT approaches remain the same.
However, it affects the comparison of FFT-BS and FFT-IDD
in such way, that the deviations become slightly larger. In
the comparison of FFT-BS with FFT-SC the deviation become
slightly smaller.

Hence, under the assumption of first type ellipsoids in the MF ap-
proaches, quantitatively similar results of FFT-IDD and MF-BS ap-
proaches, i.e., a maximum relative deviation of 10%, are obtained
for all considered microstructure types with a maximum phase con-
trast of 100 and a maximum fiber volume fraction of 17%. In the case
of MF-SC and FFT-BS, only UD microstructures with a maximum
phase contrast of 44 deliver a deviation, which suits to this con-
dition. If second type ellipsoids are assumed for MF approaches,
the relative deviation between FFT-BS and MF-IDD2 is smaller than
10% only for microstructures with a phase contrast of 44. The same
is valid for the comparison of FFT-BS and MF-SC. Additionally, in
the last comparison the UD microstructures with cF = 13% for all
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considered phase contrast and cF = 17% for ξ = 100 deliver small
deviations.

The effect of the geometrical fiber modeling assumptions on the
effective elastic properties can be summarized as follows:

• Apart from the volume fraction, the geometrical shape of the
inclusions significantly affects the effective elastic properties
predicted by the mean-field and the full-field approaches. The
FFT-BS solution predicts a deviation of the effective Young’s
modulus in fiber orientation of 5% for the UD microstructures
with a fiber volume fraction of 13% if cylindrical fibers are re-
placed with ellipsoidal approximations of equal aspect ratio.

Hence the shape of the inclusions affect the prediction of the effec-
tive elastic properties.

Altogether, it can be concluded, that the selection of the appropriate
homogenization method should be done with regard to the prob-
lem at hand. The presented mean-field approaches are numerically
less expensive than the full-field FFT method. On the one hand,
this property allows to handle an equivalent amount of discrete mi-
crostructure datasets in shorter time or, on the other hand, to con-
sider more expanded data like segmented microstructure data ex-
perimentally measured through micro-computer tomography. The
presented FFT-method is able to account for more complex geo-
metrical characteristics, like long curved fibers, than the discussed
mean-field approaches. Additionally, the full-field approach is nu-
merically more efficient than other established full-field methods
like, e.g., FEM.
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5 Prediction of elastic
properties using fiber
orientation tensors1

5.1 Introduction

The mechanical properties of composite materials like SFRCs are
crucially dominated by their microstructure. An essential attribute
of their microstructure is the orientation distribution of the fibers.
The one point statistics of the fiber orientations can be described
with fiber orientation distribution functions (FODFs) or, equiva-
lently, with an infinite set of orientation tensors (Torquato, 2002).
Kanatani (1984) distinguishes three kinds of orientation tensors,
which are also called fabric tensors, orientation-moments or order
parameters (see, e.g., Gurp (1998)).

Second-order orientation tensors frequently appear in literature
dealing with composite materials (Advani and Tucker III, 1987;
Bernasconi et al., 2008, 2012; Dray et al., 2007; Hine et al., 2004; Jör-
dens et al., 2010). Bernasconi et al. (2012), for example, analyzed
the fiber orientation distribution of a SFRC using two methods: the

1 This chapter is based on the paper “Prediction of effective elastic properties of short-fiber rein-
forced composites using fiber orientation tensors” (Müller and Böhlke, 2015)
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first method is based on the observation of the elliptical footprints
of the fibers on polished cross sections. The second method starts
from a micro-computed tomography scan of the material, which
then is examined by an image analysis procedure. The results of
both methods are compared by means of the second-order orienta-
tion tensor.

Second-order orientation tensors are usually the only microstruc-
ture related output variable of mold flow simulation pack-
ages (Yang et al., 2010; De Monte et al., 2010). Dray et al. (2007) cal-
culated the thermoelastic properties for an injection molded SFRC.
This was done using experimentally determined second and fourth-
order orientations tensors, and, additionally, second-order orienta-
tion tensors predicted by mold flow simulation. In the latter case,
it was necessary to calculate the fourth-order orientation tensor ap-
plying closure algorithms. The authors demonstrated the depen-
dence of the thermoelastic properties on the applied closure algo-
rithm (see, e.g., Chung and Kwon (2002)).

Many closure algorithms have been proposed in literature (Advani
and Tucker III, 1990; Cintra and Tucker III, 1995; Chung and Kwon,
2002). Some of them, like the linear or the quadratic closure, are
directly based on the second-order orientation tensor. Others, like
the orthotropic fitted closure, the eigenvalue fitted or the invariant
based optimal fitted closures are based on flow data from the calcu-
lation of the orientation distribution function. The accuracy of the
approximation of the non-fitted closures is only acceptable in par-
ticular cases. The fitted closures utilize additional information to
calculate their predictions; and still the FODF is not available.

Further, second-order orientation tensors play a role in the homog-
enization of, e.g., SFRC using full-field approaches. Müller et al.
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(2015a) compared predictions of the elastic properties of full-field
and mean-field homogenization approaches by means of artificially
generated short-fiber microstructure data. The microstructure gen-
eration process was based only on the second-order orientation ten-
sor. Hence, the second-order orientation tensor is commonly used
and a well established quantity describing approximately the mi-
crostructure of certain composites. However, the question remains
open, whether the second-order orientation information is sufficient
for the prediction of elastic properties. In the present work, this
question is addressed for the special case of transversal symmetric
fiber orientation distributions.

In this chapter, the properties of FODFs and a classification of dif-
ferent kinds of orientation tensors are described, especially, with a
focus on orientation tensors with transversal symmetry. Then, it
is shown, how FODF can be estimated if only the elading orienta-
tion tensors are available. These FODFs are then used within the
homogenization methods SC and IDD in order to calculate the elas-
tic predictions for the properties of PPGF30. Regarding the class
of materials with transversal symmetric orientaiton distribution of
fibers, it is discussed, whether the second order orientation tensor
is a sufficient description of the microstructure in order to predict
the elastic properties.

5.2 Fiber orientation distribution function

5.2.1 Properties of FODFs

Throughout this work, the terms “orientation” or “direction” in
context of fiber orientations are both describing an axis n of a
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straight fiber with a constant diameter d and circular profile. The
FODF specifies the volume fraction dv/v of all fibers with a certain
orientation n (see, e.g., Zheng and Zou (2001)):

dv

v
(n) = f(n) dS. (5.1)

The quantity dS is a surface element of the unit sphere
S := {n ∈ R

3 : ‖n‖ = 1} in the three-dimensional Euclidean space
R

3. In spherical coordinates, dS = sin (ϑ) dϕ dϑ/ (4π) holds with the
polar and azimuthal angles ϑ and ϕ.

Generally, an FODF is normalized and non-negative:

∫
S

f(n) dS = 1, f(n) ≥ 0 ∀n ∈ S. (5.2)

Since fibers are not truly directional, f(n) = f(−n) holds. FODFs
with this property are called to be centrosymmetric (Zheng and
Zou, 2001) or antipodal symmetric (Tyler, 1987).

5.2.2 Empirical FODF

For a set of N equal weighted fiber orientations n, the empirical
FODF is defined as

f(n) =
1

N

N∑
α=1

δ(n− nα). (5.3)

Herein, δ(n− nα) is the Dirac delta distribution.
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5.2.3 Orientation tensors

Kanatani (1984) distinguished three different kinds of orientation
tensors. The orientation tensors of the first kind are moment tensors
of the dyadic products of the direction n:

N 〈β〉 =
∫
S

f(n)n⊗β dS, (5.4)

whereas, n⊗β specifies a (β − 1)-times tensor product. In case of the
empirically defined FODF, the first kind orientation tensors result
to

N 〈β〉 =
1

N

N∑
α=1

n⊗β
α . (5.5)

Orientation tensors of the first kind are entirely symmetric. Since
the FODF is an even function, they are only of even rank. A con-
traction of a β-order tensor reduces the rank and delivers the orien-
tation tensor N 〈β−2〉:

N 〈β〉 [I] = N 〈β−2〉 ∀β ∈ {2, 4, 6, . . . }. (5.6)

Hence, the orientation tensors of the first kind are not linearly in-
dependent. Since the orientation tensors of the second kind do not
play a role in this work, the reader is referred to (Kanatani, 1984) for
details.

The orientation tensors of the third kind are defined as the entirely
symmetric and traceless part of the first-kind orientation tensors:

D〈α〉 =
(
N 〈α〉

)′
. (5.7)

These tensors are referred to as irreducible tensors. It can be shown,
that they are linear independent from each other (Kanatani, 1984).
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5.2.4 Irreducible orientation tensors of second and

fourth-order with transversal symmetry

An irreducible orientation tensor of second-order D〈2〉, which pos-
sesses a transversal symmetry with respect to the e3-axis of an or-
thonormal basis system {e1, e2, e3}, can be fully described with one
independent parameter ξ:

D〈2〉 = −1

2
ξ (e1 ⊗ e1 + e2 ⊗ e2) + ξe3 ⊗ e3. (5.8)

An irreducible fourth-order tensor D〈4〉 with a transversal symme-
try with respect to the e3-axis can also be fully described with one
parameter (Böhlke and Lobos, 2014). Using the normalized Voigt
notation, as introduced by Cowin (1989), the components of this
tensor can be denoted by a six times six matrix:

D
〈4〉
αβ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3ψ ψ −4ψ 0 0 0

ψ 3ψ −4ψ 0 0 0

−4ψ −4ψ 8ψ 0 0 0

0 0 0 −8ψ 0 0

0 0 0 0 −8ψ 0

0 0 0 0 0 2ψ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.9)

To represent D〈4〉 =
∑6

α,β=1D
〈4〉
αβBα ⊗Bβ by a matrix in the last

equation, the following basis tensor have been used:

B1 = e1 ⊗ e1, B4 =

√
2

2
(e2 ⊗ e3 + e3 ⊗ e2) ,

B2 = e2 ⊗ e2, B5 =

√
2

2
(e1 ⊗ e3 + e3 ⊗ e1) , (5.10)

B3 = e3 ⊗ e3, B6 =

√
2

2
(e1 ⊗ e2 + e2 ⊗ e1) .
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Both irreducible tensors are included in the fourth-order orientation
tensor of the first kind N 〈4〉.

Since a transversally isotropic N 〈4〉 is entirely symmetric and
sp(N 〈2〉) = sp(N 〈4〉[I]) = 1 holds, this tensor depends on two pa-
rameters:

N
〈4〉
αβ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3γ γ δ 0 0 0

γ 3γ δ 0 0 0

δ δ 1− 8γ − 4δ 0 0 0

0 0 0 2δ 0 0

0 0 0 0 2δ 0

0 0 0 0 0 2γ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (5.11)

with γ = (7− 15ξ + 105ψ) /105 and δ = (14 + 15ξ − 840ψ) /210.

For valid orientation tensors, ξ and ψ can not be chosen in a com-
pletely arbitrary way. According to its definition in equation (5.4) or
(5.5), fourth-order orientation tensors of the first-kind are entirely
symmetric and positive semi-definite with respect to an arbitrary
second-order tensor M 〈2〉:

M 〈2〉 ·N 〈4〉[M 〈2〉] ≥ 0. (5.12)

The solution of this eigenvalue problem yields the range for the pa-
rameters ξ and ψ (see Figure 5.1 and Nomura et al. (1970)):

−1

3
≤ ξ ≤ 2

3
, − 1

90
− 1

42
ξ +

1

8
ξ2 ≤ ψ ≤ 1

60
+

1

56
ξ. (5.13)

The space bounded by this inequalities is shown in Figure 5.1.

103



5 Prediction of elastic properties using fiber orientation tensors

5.3 Estimation of the FODF based on
leading orientation tensors

5.3.1 Information-theoretic entropy

The inherent incompleteness of measured data implies mathemati-
cal problems, which do not have unique solutions. Such problems
are called ill-posed. With the maximum entropy principle (MEP), it
is possible to tackle ill-posed problems and to single out one solu-
tion by choosing the solution with the maximal entropy. Initially,
Shannon (1948) identified a quantity in the context of information
theory, that is a measure of uncertainty of an information source.
Due to the related meaning and the equivalent mathematical for-
mulation of this quantity to the entropy in thermodynamics, it is
called Shannon’s-entropy or information-theoretic entropy.

Jaynes (1957a,b) introduced the MEP in the field of statistical me-
chanics. Since then, MEP has been applied in, e.g., spectral analy-
sis (Ulrych and Bishop, 1975) or image restoration (Frieden, 1972).
MEP has been applied to solve differential equations (Mead, 1986),
moment problems in texture analysis (Böhlke, 2005), and in the
simulation of crystallographic textures (Böhlke, 2006). Junk et al.
(2012) have shown the existence of solutions of moment problems
in texture analysis for a specific crystal symmetry. A comprehensive
overview of the MEP is given in Wu (1997).

The information-theoretic entropy E is defined by

E = −
∫
S

f(n) ln (f(n)) dS ∈ (−∞, 0], (5.14)
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where f(n) is an FODF. In case of a uniform distribution, E = 0

holds.

5.3.2 Moment problem

The approximation of an FODF based on the leading orientation
tensors only, can be formulated as a moment problem. Since the mo-
ment of the function n⊗α regarding f(n) is computed by (5.4), ori-
entation tensors N 〈α〉 can be considered as averages or expectations
of the corresponding functions n⊗α. Thus, in order to consistently
estimate f(n) by f̄(n) using N given irreducible orientation tensors
{D〈2〉, . . . ,D〈N〉}, the moment problem is stated as follows:

Ē = −
∫
S

f̄(n) ln
(
f̄(n)

)
dS → max,

G〈0〉 :=
∫
S

f̄(n) dS − 1
!
= 0,

G〈α〉 :=
∫
S

f̄(n)
(
n⊗α

)′
dS −D〈α〉

!
= 0,

(5.15)

where α is even and ranges from 2 to N .

The first condition G〈0〉 represents the normalization condition in
equation (5.2). The additional conditions take into account the
given orientation tensors to be reproduced by the function f̄(n).

Since an irreducible tensor D〈α〉 of rank α has 2α + 1 independent
coefficients, there is a number of 1 +

∑N
α=2(2α + 1) equations to be

considered within the constrained maximization problem. Using
the Lagrange multiplier method, this problem can be solved with
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the following Lagrange functional:

L = Ē −
N∑

α=0

L〈α〉 ·G〈α〉 ∀α ∈ {0, 2, 4, . . . }. (5.16)

Herein, L〈α〉 are the Lagrange multipliers. The first variation of L
with respect to f̄(n) has to vanish:

δL = 0 =

∫
S

q(n)δf̄(n) dS, (5.17)

with q(n) = −1− ln
(
f̄(n)

)−L0 −
∑N

α=2L〈α〉 · (n⊗α)′. For arbi-
trary δf̄(n), the function q(n) has to be zero. Thus, the approxi-
mating density function results to

f̄(n) = exp

(
−1−L0 −

N∑
α=2

L〈α〉 ·
(
n⊗α

)′) ∀α ∈ {2, 4, . . . }.
(5.18)

Numerically, this problem has been solved by inserting f̄(n) in the
conditions G〈0〉 and G〈α〉 and calculating the Lagrange multipliers
using a damped Newton-Raphson algorithm. The integration has
been carried out by an adaptive quadrature scheme (Hahn, 2005).

5.4 Homogenization of elastic properties
using FODFs

5.4.1 Self-consistent homogenization

The first mean-field homogenization method applied is the self-
consistent scheme based on the formulation of Willis (1981). Ac-
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5.4 Homogenization of elastic properties using FODFs

cording to this, the effective elastic stiffness tensor CSC for a N + 1-
phase particulate composite is given by

C
SC = CM +

N∑
α=1

cα (Cα − CM)
(
I
s + P

SC
α

(
Cα − C

SC))−1
, (5.19)

with cα and Cα being the volume fraction and stiffness tensor of
phase α. N corresponds to the number of phases inside the consid-
ered volume element. The index (·)N+1 is replaced by (·)M, which
denotes the matrix phase. P

SC
α denotes Hill’s polarization tensor,

see equation (3.9). Details on the self-consistent approach in terms
of a discrete microstructure description are given in section 3.4.2.

Equation (5.19) is valid for a matrix-inclusion composite with N in-
clusions. A similar prescription for the effective stiffness is found,
if a composite with N → ∞ phases with a total volume fraction cF

is considered, where the phases only differ in terms of their orien-
tation, i.e., uniform aspect-ratio and stiffness:

C
SC = CM + cF

∫
S

f(n) (C(n)− CM)A(n) dS, (5.20)

with A(n) =
(
I
s + P

SC(n)
(
C(n)− C

SC
))−1, the FODF f(n), and the

orientation dependent stiffness C(n). The polarization tensor P
SC

still depends on C
SC and the description of the ellipsoidal geome-

try Z(n) = QTZ0Q. Whereby Q = Q(n) is an orthogonal tensor,
which rotates the reference geometry Z0 in the direction n.

5.4.2 Interaction direct derivative estimate

The second mean-field method applied is the interaction direct
derivate (IDD) estimate, see section 3.4.3. The advantage of the IDD
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5 Prediction of elastic properties using fiber orientation tensors

lies in its explicit structure, which is valid for multi-phase compos-
ites with different material symmetries and distributions.

Similar to equation (5.20), the following prescription gives the IDD
estimate of the properties of the effective medium for an ∞-phase
composite, where the inclusion phases amount to a total volume
fraction of cF, and differ only in their orientation:

C
IDD = CM+

(
I
s − cF

∫
S

f(n)N(n)PD(n) dS

)−1(
cF

∫
S

f(n)N(n) dS

)
,

(5.21)
with N(n) = (C(n)− CM) (I

s + P(n) (C(n)− CM))
−1.

Here, P = P(CM,Z(n)) is the Hill’s polarization tensor as defined
in equation (3.9), however, CSC is replaced with CM. If the matrix-
inclusion cell takes on an ellipsoidal shape, then P

D = P(CM,Z
D(n))

is the polarization tensor corresponding to an ellipsoidal inclusion
with geometry of the matrix-inclusion cell ZD(n), which is embed-
ded in an infinite matrix with the stiffness CM. The shape of the
matrix-inclusion cell defines the inclusion distribution in the com-
posite. In the present work, ZD(n) = Z(n) is assumed.

5.5 Results

5.5.1 Model parameter

Exemplarily, the properties of the composite material PPGF30
are considered. Both constituents, the polypropylene matrix
(EM = 1.705GPa, νM = 0.355) and the glass fibers (EF = 73.0GPa,
νF = 0.22) are assumed to be linear elastic and isotropic. The
microstructure of PPGF30 is modeled by a constant aspect ratio
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5.5 Results

Figure 5.1: Space for the irreducible parameters ξ and ψ, and its discretization by
pairs of ξ and ψ values

of a = 20 for the fibers, and a fiber orientation distribution with
transversal symmetry given by an FODF f(n). The FODF is de-
fined in terms of the parameters ξ and ψ (see section 5.2.4). The
discretization of the space for valid orientation tensors is shown
in Figure 5.1. The parameter combinations (ξ = 2/3, ψ = 1/35),
(ξ = −1/3, ψ = 3/280) and (ξ = 0.0, ψ = 0.0) denote the unidirec-
tional (PUD), the planar isotropic (P PISO) and the isotropic (P ISO) dis-
tribution, respectively. The FODF is calculated in two ways: firstly,
only the second-order orientation tensor, described by the parame-
ter ξ, is assumed to be given. Secondly, the second and fourth-order
orientation tensors are assumed to be given. All results based on the
first and second approximations are marked with (·)mep2 and (·)mep4,
respectively, in the following. The estimate of the fourth-order ten-
sor based on the FODF fmep2 is indicated by a green dashed line in
the Figure 5.1, and in the following figures, also.
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5 Prediction of elastic properties using fiber orientation tensors

5.5.2 Anisotropy of estimated FODFs

The deviation of an FODF from a uniform distribution can be in-
terpreted as the anisotropy of this FODF. The following measure
is applied, in order to quantify this anisotropy and to compare the
FODFs with each other:

K (f1, f2) = −
∫
S

f1(n) ln

(
f1(n)

f2(n)

)
dS ∈ (−∞, 0]. (5.22)

This measure is referred to as the entropy or the Kullback informa-
tion (Kullback, 1968; Kanatani, 1984). It vanishes, if the functions are
equal, and tends to minus infinity for independent functions f1 (n)

and f2 (n).

In Figure 5.2, the anisotropy of fmep2, fmep4 and a comparison of
these two functions is shown. fmep2 depends only on ξ, see Fig-
ure 5.2(a). Thus, starting at P ISO, the anisotropy of fmep2 increases
with increasing and decreasing ξ. At PUD, the anisotropy reaches
its peak. Since fmep4 depends on both parameters, the anisotropy in-
creases with increasing distance from P ISO, see Figure 5.2(b). Again,
higher anisotropy can be observed at the boundaries of the region
and the peak at PUD. The comparison of fmep2 and fmep4 in Fig-
ure 5.2(c) reveals a fairly good conformity in the center of the re-
gion, at P PISO and PUD. At the bounds, a greater deviation can be
observed.

5.5.3 Comparison of effective elastic properties

For both approximations, fmep2 and fmep4, the SC and the IDD
method have been applied to calculate the effective elastic stiff-
ness. The results have been compared by means of three quantities:
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(a) K
(
fmep2, 1

)
(b) K

(
fmep4, 1

)

(c) K
(
fmep4, fmep2

)
Figure 5.2: Anisotropy and comparison of the estimated FODFs fmep2 and fmep4
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5 Prediction of elastic properties using fiber orientation tensors

firstly, the anisotropy of the effective stiffness tensors have been cal-
culated:

A(C) =
λmin (H(C))

λmax (H(C))
∈ (0, 1], (5.23)

with H(C) = exp (aniso (ln (C))). The function aniso (C) is defined
as

aniso (C) = C−
2∑

α=1

(
C · Pα

‖Pα‖
)

Pα

‖Pα‖ , (5.24)

with the first and second isotropic projector P1 =
1
3I ⊗ I and

P2 = I
s − P1. This anisotropy measure delivers the same dimension-

less scalar value for a stiffness and the corresponding compliance
tensor. The ‖ · ‖-function is the Frobenius norm. Secondly, the stiff-
ness tensors have been compared directly using the following nor-
malized measure of two real tensorial or non-tensorial variables C

and C̃:

ηC

(
C, C̃

)
=

‖C − C̃‖
‖C‖ . (5.25)

Thirdly, the directional dependent Young’s modulus E(n)

1

E (n)
= n⊗ n · S[n⊗ n], (5.26)

with the compliance tensor S = C
−1, has been used for comparisons

by means of a relative deviation

ηE(E1, E2) =

(∫
S (E1 (n)− E2 (n))

2 dS∫
S (E1 (n))

2 dS

)1/2

, (5.27)

for direct comparisons in particular directions and, finally, for a
comparison of its transversal symmetric shape.

Figures 5.3, 5.4 and 5.5 show the SC results. Figures 5.3(a) and 5.3(c)
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(a) A
(
C

mep2
)

(b) ηC
(
C

mep4,Cmep2
)

(c) A
(
C

mep4
)

(d) ηE
(
Emep4, Emep2

)
Figure 5.3: Comparison of (·)mep2 and (·)mep4 results for SC homogenization
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(a) ηC
(
Emep4

0 , Emep2
0

)
(b) ηC

(
Emep4

90 , Emep2
90

)

Figure 5.4: Comparison of Emep2 and Emep4 in the direction of the transversal sym-
metry axis and perpendicular to it for SC homogenization

demonstrate the anisotropy of the effective stiffness. Again, the
anisotropy increases with increasing distance from P ISO, whereas
C

mep2 does not depend on ψ. The highest anisotropy can be ob-
served at PUD. In Figure 5.3(b), Cmep2 and C

mep4 are compared by
means of the relative deviation ηC . The deviation is approximately
constant if ψ is fixed and ξ is varied. The largest deviations can be
observed at the top and bottom boundary of the parameter region.
At PUD and P PISO, the predictions agree fairly well. The maximal
deviation amounts to 18% for the considered parameter combina-
tions. Very similar trends can be seen in the figures 5.3(d), 5.4(a)
and (b). In Figure 5.3(d), the relative deviation ηE of Young’s mod-
uli is shown. For the Figures 5.4(a) and (b), the directional depen-
dent Young’s modulus has been evaluated in the direction of the
transversal symmetry axis (0◦-direction) and perpendicular to this
axis (90◦-direction), respectively, for C

mep2 and C
mep4. The result-

ing Young’s moduli are then compared by means of ηC . While,
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the trends are similar, the deviations are very different. The de-
viation ηE

(
Emep4, Emep2

)
shows slightly higher values compared to

the comparison of the stiffnesses ηC
(
C

mep4,Cmep2
)
. In both cases, the

highest deviations occur at the upper bound (20% for ηE and 18% for
ηC). However, in 0◦-direction, the deviations are much higher. The
largest deviations occur at the lower bound at smaller ψ (46%). The
same trend is observed for Young’s moduli in 90◦-direction, with a
maximal deviation of 17%.

In Figure 5.5, shapes of the directional dependent Young’s mod-
uli for particular parameter combinations are shown. In all illus-
trations, the horizontal axis agrees with the transversal symmetry
axis. Due to the antipodal symmetry of the directional dependent
Young’s modulus, see equation (5.26), the vertical axis is also a sym-
metry axis. Thus, the full Young’s modulus body can be obtained
by mirroring the shown shape on the vertical axis and rotating the
obtained shape about the horizontal axis. First, in the figures 5.5(a)-
(d), ψ is varied, while ξ = 0.0 is kept constant. This implies for all
cases an isotropic second-order orientation tensor. In this series of
figures, Emep2 takes on always the same spherical shape. Whereas,
Emep4 changes its shape, significantly. The curves shown in Fig-
ure 5.5(c) denote an isotropic Young’s modulus for both approxi-
mations. Apart from that configuration, the difference in the shape
is distinct. In the second series of figures (5.5(e)-(h)), ξ is varied,
while ψ = 0 is constant. In this comparison, no distinct difference
can be observed.

It is known from literature, that the applied SC approach generally
overestimates the true stiffness of a composite with stiff inclusions
in a soft matrix. However, the IDD method yields a lower bound
for the elastic properties if all inclusions are modeled with the same
geometry and distribution (Zheng and Du, 2001). Hence, it is rea-
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sonable to compare both methods and the effects of the approxima-
tions of FODFs in combination with them. In the figures 5.6 and 5.7,
the IDD results are aggregated. In all examples, the anisotropy of
the stiffnesses and all deviation measures show the same trends, but
they are less pronounced compared to the SC examples. The devi-
ation ηC

(
C

mep4,Cmep2
)

and ηE
(
Emep4, Emep2

)
, however, still amount

to approximately 15.8% and 16.2%, respectively. The deviation of
Young’s modulus in 0◦ and 90◦-direction comes to 39% and 14%.
Thus, the IDD results confirm the observations made above: for
constant ψ and variable ξ, the deviations do not change signifi-
cantly. If ξ is kept constant and ψ is varied, significant changes occur
in terms of each considered deviation. The shapes of Young’s mod-
uli in terms of IDD are qualitatively equal to that of SC and will,
thus, not be examined further.

5.6 Summary and conclusions

The main objective of this chapter is to give an answer to the ques-
tion: is it sufficient to consider only the second-order fiber orien-
tation tensor as the main quantity describing the microstructure of
short-fiber reinforced composites (SFRCs) with transversal isotropic
symmetry, especially in terms of the prediction of effective elastic
properties?

This topic has been elaborated by means of the SFRC PPGF30. This
material consists of a polypropylene matrix and glass fibers with a
mass fraction of 30%. The microstructure of this composite is sup-
posed to be governed by a transversal orientation distribution of
the fibers with a constant aspect-ratio of 20. The transversal orien-
tation distribution is described by irreducible orientation tensors of
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(a) A
(
C

mep2
)

(b) ηC
(
C

mep4,Cmep2
)

(c) A
(
C

mep4
)

(d) ηE
(
Emep4, Emep2

)
Figure 5.6: Comparison of (·)mep2 and (·)mep4 results for IDD homogenization
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(a) ηC
(
Emep4

0 , Emep2
0

)
(b) ηC

(
Emep4

90 , Emep2
90

)

Figure 5.7: Comparison of Emep2 and Emep4 in the direction of the transversal sym-
metry axis and perpendicular to it for IDD homogenization

second and fourth-order. FODFs have been calculated on the basis
of the second-order irreducible orientation tensor, on the one hand,
and on the basis of both tensors, on the other hand. The estimation
of the FODFs has been taken out within the concept of maximal en-
tropy. The effective elastic properties have been calculated applying
the SC and IDD approaches.

Referring to the resulting FODFs fmep2 and fmep4, the effective stiff-
ness tensors Cmep2 and C

mep4, and the directional dependent Young’s
moduli Emep2(n) and Emep4(n), the following conclusions can be
made:

• Properties of the fourth-order orientation tensor of first
kind: By definition, this tensor is entirely symmetric, normal-
ized, and positive semi-definite. For a valid fourth-order ori-
entation tensor, these properties have to be taken into account
by closure algorithms
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5 Prediction of elastic properties using fiber orientation tensors

• Implication of MEP on the fourth-order orientation tensor:
The application of MEP in order to calculate the fourth-order
orientation tensor implies a special coupling of ψ and ξ. These
couplings are unique for the isotropic point P ISO and for all
pairs with ψ > 3/280. In all other couplings, ψ appears twice.
However, many other couplings are also generally possible
which show significant differences in the mechanical proper-
ties compared to the MEP estimate.

• Anisotropy of fmep2 and fmep4: The anisotropy of the FODFs
increases with increasing distance from the isotropic point in
the ξ-ψ-parameter space of the irreducible second and fourth-
order tensors. The difference between fmep2 and fmep4 is ap-
proximately constant if ξ is varied, only. The largest devia-
tions occur at extremal ψ-values. At PUD and P PISO, the FODF
approximations are similar.

• Anisotropy of C
mep2 and C

mep4: The stiffness tensors are di-
rectly affected by the FODFs. Thus, the anisotropy of the
stiffness tensor shows the same trends as the corresponding
FODF.

• Comparison of C
mep2 vs C

mep4 and Emep2 vs Emep4: For
a constant ψ but variable ξ, the deviation between C

mep2

and C
mep4 in terms of the relative norm ηC(C

mep4,Cmep2)

is approximately constant. For a constant ξ, the devia-
tion varies significantly. These observations hold also for
the relative deviation of the directional dependent Young’s
modulus ηE(E

mep4, Emep2). The maximal deviations for the
stiffnesses and Young’s moduli amount to 18% and 20%

in case of SC, and 15.8% and 16.2% in case of IDD.
Hence, if the second-order orientation tensor is available,
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only, one has to be aware of a relative error of at least
16%.

• Young’s moduli in particular directions: In the 0◦-direction,
which corresponds to the axis of transversal symmetry of the
FODF, the deviations partially have very high values: up to
46% in case of SC, and 39% in case of IDD. In the perpen-
dicular 90◦-direction, the deviations are smaller: up to 17%

in case of SC, and 14% in case of IDD. Hence, relying on
the second-order orientation tensor, only, at least an error of
39% may occur in the direction of the transversal symmetry
axis.

• Directional dependence of Young’s modulus: The shapes
of Young’s moduli for the considered configurations of ξ

and ψ confirm the foregoing observations: If ψ is kept con-
stant, the shape of Emep2(n) does not differ significantly from
Emep4(n). If ξ is kept constant, significant differences in
terms of the shapes of Emep2(n) and Emep4(n) become obvi-
ous.

In view of these large deviations, we conclude, that a description
of the microstructure of a composite with transversally isotropic
symmetry using only the second-order orientation tensor is gen-
erally insufficient. However, Hine et al. (2004) concluded that the
microstructure of real SFRC follows the maximum entropy statis-
tics. This conclusion was based on fiber orientations determined
by image analysis of cross sections measuring the ellipticity of each
fiber and, therefore, refer to specific experimental data. Since our
first maximum entropy approximated FODF fmep2(n) relies on the
second-order orientation tensor, only, it agrees exactly with the
transversally isotropic structures of Hine et al. (2004). Thus, if
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5 Prediction of elastic properties using fiber orientation tensors

real microstructures indeed follow the maximum entropy statis-
tics, then, in combination with the maximum entropy approach, the
second-order orientation tensor is a sufficient description of the mi-
crostructure of SFRC in order to predict the elastic properties.
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6 Summary and conclusions

Modern fiber reinforced composite offer so many opportunities in
designing structural parts and visible surfaces, as well. The possi-
bility to adjust the required properties by combining different ma-
terials allows the usage of composites in nearby every conceivable
application.

All these possibilities and opportunities comprise, however, a simi-
lar amount of challenges. With the aim to design a reliable product,
these challenges have to be met. Considering the entire complexity,
a serious attempt to lift the level of knowledge a little bit, has to
focus on one specific topic.

Hence, the focus of the present work lies on the prediction of
elastic behavior of short-fiber reinforced composites. In particu-
lar, mean-field homogenization methods are considered, which ac-
count for detailed experimentally determined and also artificially
constructed microstructure data in a discrete and averaged form.

This set of issues is elaborated by the following three main topics of
this work: the first topic concerns the prediction of elastic properties
of short-fiber reinforced composites using mean-field approaches
under consideration of experimentally determined microstructure
data. For this purpose, the microstructure of injection-molded spec-
imens made of polypropylene reinforced with 30wt% of short glass
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fibers have been analyzed by micro-computed tomography mea-
surements. Applying a segmentation algorithm, the spatial posi-
tion, the orientation distribution and the length of the fibers have
been determined. This data is evaluated in terms of orientation ten-
sors, and length distribution and is used within three mean-field
approaches: a self-consistent homogenization method, the interac-
tion direct derivative estimate based on the three-phase model, and
a two-step bounding method. All methods account for the orienta-
tion, the length, and the diameter distribution. The numerical re-
sults are compared to experimental tensile tests.

In the second topic, a detailed comparison of the predictions of lin-
ear elastic properties of mean-field homogenization approaches and
full-field voxel-based homogenization methods for short-fiber rein-
forced materials is given. In the former case, the self-consistent, the
interaction direct derivative, and a two-step-bounding approach,
applying the Hashin-Shtrikman bounds, are used. In the latter case,
the boundary value problem for representative volume elements is
solved using fast Fourier transformation. Model microstructures
with unidirectionally aligned and two misaligned fiber configura-
tions are considered exemplarily. Fiber volume fractions of 13%,
17% and 21% and phase contrasts of 44, 100 and 1000 in the elastic
moduli have been taken into account. The different homogenization
schemes are compared by means of effective directional dependent
Young’s modulus.

In the last topic, it is discussed, whether it is sufficient to con-
sider only the second-order fiber orientation tensor as microstruc-
ture variable describing the orientation distribution of short-fiber
reinforced composites in the prediction of effective elastic proper-
ties? This question is addressed in the context of SFRCs with an
overall transversal symmetric orientation distribution of fibers and,
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hence, effective transversal isotropic properties. Using the maxi-
mum entropy principle, it is shown, how the fiber orientation dis-
tribution function can be estimated by relying on the second-order
tensor and/or the fourth-order orientation tensor, only. Both es-
timates are used within the self-consistent and the interaction di-
rect derivate approach to calculate the effective linear elastic prop-
erties.

Taking all results together, the most important conclusions are the
following: precise predictions of the effective elastic properties by
mean-field methods are possible, if the homogenization approaches
account for detailed microstructure data, which, in the best case,
is determined experimentally. The experimentally determined mi-
crostructure data should be appraised with regard to the orientation
distribution, volume fraction and length distribution of the fibers.
In the case of a description of the orientation distribution of fibers
by orientation tensors, it is important to consider orientation tensors
of higher order. Fourth-order tensors capture relevant microstruc-
tural information, which may not be included in orientation tensors
of second order. The combination of different fourth-order tensors
with the same second-order tensor yields fundamentally different
orientation distributions of fibers. This leads to significantly vary-
ing mechanical properties, and it reveals a wide range of opportuni-
ties for material design of fiber reinforced composites. For realistic
material properties, the applied mean-field and full-field methods
give comparable results.

The key achievement of this work is the qualitative and quantita-
tive comparison of mean-field, full-field and experimental methods
for the case of SFRC by combining well established methods from
mechanics, applied mathematics and materials science.
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