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a b s t r a c t

In the present work, we present a free energy derivation of the multi-component phase-field crystal
model [1] and illustrate the capability to simulate dendritic and eutectic solidification in ternary alloys.
Fast free energy minimization by a simulated annealing algorithm of an approximated crystal is
compared with the free energy of a fully simulated phase field crystal structure. The calculation of
ternary phase diagrams from these free energies is described. Based on the free energies related to the
ternary AleCueMg system, we show phase field crystal simulations of both, ternary dendritic growth as
well as lamellar eutectic growth of three distinct solid phases.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

In the last years, simulations of atomistic effects have become an
important field in materials research. For this purpose, density
functional theory (DFT) and molecular dynamics (MD) are the
classicmethods. On a larger scale, the phase fieldmethod (PFM) can
be used for simulations of microstructure formations up to several
micrometers. Through continuous consideration, the effects on a
smaller scale are no longer modeled, but their effects are taken into
account. As shown in Ref. [2], details are lost, however, and the
results between MD and PFM are comparable to each other. Elder
et al. [3,4] introduce a continuous field of the probability density of
atomic presence, by adapting the SwifteHohenbergeEquation [5]
and later approximating the functional of DFT. In line of these ap-
proaches, the phase field crystal (PFC) method is able to reproduce
results of DFT and MD such as the physics of grain boundaries [6],
elastic and plastic deformations [4] and thermodynamics of iron [7]
off).

r B.V. This is an open access article
and fcc metals [8]. In terms of time, PFC lies between DFT, MD and
PFM, although PFC can be regarded as the time average of MD [9].
While the normal PFC acting on the atomic length scale, a PFC for
colloids is proposed in Ref. [10] and operates on the length scale
resolving colloidal structures. The extension to two components
[11] allows the simulation of lamellar eutectic structures [12]. The
multi-component PFC was introduced as a consequence, in the
style of the multi-component PFM by OforieOpoku et al. [1].

In Sec. 2, we derive the multi-component PFC from DFT, point
out the assumptions and elaborate the implementation scheme. In
the following Sec. 3, we exhibit the calculation of ternary phase
diagrams using the analytical expression of the free energies for a
unit cell. Based on the model preparations, we apply the PFC
simulation framework in Sec. 4 to compute 2D and 3D ternary
dendrites and eutectic lamellae. We finally draw conclusion of the
results.
2. Multi-component PFC model

The basis of the multi-component PFC model (MPFC) is the free
energy functional for a pure material given by
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Z
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�
rðrÞ
r[

�
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� 1
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Z
drðrÞC2ðjr; r0jÞdrðr0Þdrdr0 þ/;

where the dots stand for the omitted correlations of higher order.
As is usual in the pure case, only excess energy contributions of
pairwise correlations are taken into consideration, even for the
multi-component free energy functional. For K types of atom, the
free energy functional can be modeled as the sum of K pure, free
energy functionals DF i, i 2 {1,…, K} and additional coupling terms
between two types of atom a time according to

DF
kBT

¼
X
i

DF i

kBT
�
X
i< j

Z
driðrÞCij

2ðr; r0Þdrjðr0Þdr0dr

with Cij
2 being the pairwise correlation functions between iej

atoms. We write the free energy as a sum of the ideal energy
density DFid comprising entropy contributions for an K-component
system and the excess energy density DFex, which is based on the
interactions of the atoms. This yields

DF
kBT

¼
Z

DFid
kBT

þ DFex
kBT

dr;

with

DFid
kBT

¼
X
i

riln
�
ri

r[i

�
� dri (1)

and

DFex
kBT

¼ �1
2

Z X
i;j

driðrÞCij
2ðr; r0Þdrjðr0Þdr0: (2)

Here, ri represents the density for the component i and r[i is the
reference density in the liquid phase during coexistence.
dri:¼ri� r[i is the difference in density. In order to get a similarity to
the phase field model, we define the total mass density r :¼P

i
ri,

the total reference mass density r[ :¼
P
i
r[i, the concentrations

ci :¼ ri
r
, the corresponding reference concentrations c[i :¼ r[i

r[
and the

dimensionless mass density n :¼ r�r[
r[

. With these definitions, the

condition
P
i
ci ¼ 1 is fulfilled and Eq. (1) results in

DFid
kBT

¼ r[

 
ðnþ 1Þlnðnþ 1Þ � nþ ðnþ 1Þ

X
i

ciln
�
ci
c[i

�!
:

We denote the ideal mixing entropy density by

DFmixðcÞ :¼
X
i

ciln
�
ci
c[i

�

and with the Taylor expansion for ln(n þ 1), we get

DFid
kBTr[

¼ n2

2
� n3

6
þ n4

12
þ ðnþ 1ÞDFmix: (3)

Assuming that the correlation functions Cij
2ðr; r0Þ are isotropic,

the correlation functions only depend on the value of jr � r0j and
hence Cij

2 ¼ Cji
2 . We write Cij

2ðr � r0Þ.
We next consider a single term of the sum in Eq. (2) for an
arbitrary i,j 2 [1, K] using the definitions and introducing the short
notation $0 for the dependence on r0 we obtain

�1
2

Z
driC

ij
2dr

0
jdr

0 ¼ �1
2
ðri � r[iÞrl

Z
Cij
2c

0
jn0 þ Cij

2c
0
j � Cij

2c
0
[jdr

0:

(4)

The density n is periodic with the lattice constant, whereas cj is
an extensive field. As proposed in Refs. [12,13], we consider a first
approximation of these contributions of the formZ

Cij
2ðr � r0Þnðr0Þcjðr0Þdr0zcjðrÞ

Z
Cij
2ðr � r0Þnðr0Þdr0:

We integrate by substitution formultiple variables and using the
substitution t :¼ r � r0. The associated functional determinant
det(Dt) ¼ (�1)K, and hence, the following equation applies:Z

Cij
2ðr � r0Þc[jdr0 ¼ c[j

Z
Cij
2ðtÞdt:

Because the substitution is linear, we do not consider the inte-
gration boundaries any further. Applying the Fourier transform
results in

c[j

Z
Cij
2ðtÞ$1dt ¼ c[j

Z
Cij
2ðtÞ$e�ik,tdt

��
k¼0 ¼ c[jbCij

2ð0Þ

with bCij
2ðkÞ as the Fourier transform of Cij

2 .
We redefine Cij

2 :¼ r[C
ij
2 . The prefactor in Eq. (4), can be written

as ri � r[i ¼ cir[ðnþ 1Þ � c[irl ¼ r[ðciðnþ 1Þ � c[iÞ. Integration over
r results in the excess energy

DF ex

kBTr[
¼� 1

2

X
i;j

Z
ðcinþ ci � c[iÞcj

Z
Cij
2n

0dr0dr

� 1
2

X
i;j

Z
ðcinþ ci � c[iÞ

Z
Cij
2c

0
jdr

0dr

þ 1
2

X
i;j

Z
ðcinþ ci � c[iÞc[jbCij

2ð0Þdr:

(5)

According to Refs. [11,14e16] all terms of linear order in n and n0

disappear in Eq. (5). We calculate the term with the coupling of ci
and cj with Cij

2 of Eq. (5) for any i, j by

Aij :¼
Z

ciðrÞ
Z

Cij
2ðr � r0Þcjðr0Þdr0dr: (6)

We can write the correlation function as an inverse Fourier
transform of bCij

2

Cij
2ðr � r0Þ ¼

Z bCij
2ðkÞeik,ðr�r0Þdk ¼

Z bCij
2ðkÞeik$re�ik$r0dk: (7)

Inserting Eq. (7) in Eq. (6) yields

Aij ¼
Z

ciðrÞ
ZZ bCij

2ðkÞeik$re�ik$r0dkcjðr0Þdr0dr

¼
Z

ciðrÞ
Z bCij

2ðkÞeik$r
Z

cjðr0Þe�ik$r0dr0dkdr

¼
Z

ciðrÞ
Z bCij

2ðkÞbcjðkÞeik$rdkdr;
where bcj is the Fourier transform of cj. For the long-wave limit
consideration, we expand the correlation function in exponential
numbers of k2 at k ¼ 0 by
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v
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������
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bcjðkÞeik$rdkdr:
We further consider the leading terms up to order l ¼ 1 and

approximate the summation expansion by

Aijz

Z
ciðrÞ

Z bCij
2ðkÞjk¼0bcjðkÞeik$rdkdr

þ
Z

ciðrÞ
Z
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bCij
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�
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������
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By introducing the notations

gij :¼ bCij
2ðkÞjk¼0;

kij :¼
vbCij

2ðkÞ
v
�
k2�

������
k¼0

and by applying the inverse Fourier transforms in Eq. (8) leads to

Aij ¼ gij

Z
ciðrÞcjðrÞdr þ kij

Z
ciðrÞ

�
�V2

�
cjðrÞdr

With Gauss's theorem the second integral becomes

�
Z
U

ciðrÞV$VcjðrÞdr¼�
Z
dU

ciðrÞVcjðrÞ$ndSþ
Z
U

VciðrÞ$VcjðrÞdr

with n the outward pointing unit normal field of the boundary dU.
The integral over the boundary vanishes for periodic domains, or U
is chosen large enough. It follows

Aij ¼ gij

Z
ciðrÞcjðrÞdr þ kij

Z
VciðrÞ$VcjðrÞdr: (9)

Similarly to the calculus in Eqs. (6)e(9), the expression with the
coupling of c[i and cj with Cij

2 of Eq. (5) can be simplified, for any
desired i, j by

B ij :¼
Z

c[iðrÞ
Z

Cij
2ðr � r0Þcjðr0Þdr0dr

zgij

Z
c[iðrÞcjðrÞdr þ kij

Z
Vc[iðrÞ$VcjðrÞdr:

Taking into account that c[i is constant, it follows that

B ij ¼ gij

Z
c[icjðrÞdr: (10)

Considering the definition of gij, it can be seen that B ij is of the
same form as the last term in Eq. (5). We insert the simplifications
of Aij (Eq. (9)) and B ij (Eq. (10)) in Eq. (5) and derive
DFex
kBTr[
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Z
Cij
2n

0dr0dr�1
2
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i;j

kij

Z
Vci$Vcjdr
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X
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Z ��ðcinþci�c[iÞc[j�c[icjþcicj
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gij dr

¼
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�1
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n
Z X
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cicjC
ij
2n

0 dr0 �1
2

X
i;j

kijVci$Vcj�
1
2

X
i;j

Gijgij dr;

(11)

with Gij :¼ �ðcinþ ci � c[iÞc[j � c[icj þ cicj.
With this formulation, we summarize the ideal energy in Eq. (3)

and the excess energy in Eq. (11) by

F ¼
Z

n2

2
� h

n3

6
þ c

n4

12
þ uðnþ 1ÞDFmix

� 1
2
n
Z X

i;j

cicjC
ij
2n

0 dr0 � 1
2

X
i;j

kijVci$Vcj dr; (12)

where the constants h, c and u are introduced. These constants are
formally equal to one, but may, however, allow additional degrees
of freedom that can be used to correct the density dependence of
the ideal free energy away from the reference density r0, to match
materials properties, as shown by Ref. [11]. To keep the form of the
free energy compact, OforieOpoku et al. [1] have found that it is
simpler to introduce a parameter u, whichmodifies the mixing free
energy from its ideal form, away from the reference compositions
c0i . So we can combine the last term in Eq. (11) with DFmix. We
introduce the abbreviation F :¼ DF

kBTr[
.

2.1. Effective correlation function

The pairwise correlation functions Cij
2 in Eq. (12) only occur in

the termZ X
i;j

cicjC
ij
2n

0 dr0

and are weighted by cicj. Higher-order correlations are neglected

throughout the derivations, so that e.g. contributions cicjckC
ijk
3 are

not respected. The correlation functions of pure materials (Cii
2) are

much simpler than the cross correlations (Cij
2 , isj), so we define an

effective correlation function Ceff, which is interpolated with the
concentrations ci from the correlation functions for pure materials.
In addition, we define hi(c) to be interpolation functions, so that Ceff
has steady derivatives. Thus, we write

Ceff ðr � r0Þ :¼
X
i

hiðcÞCii
2ðr � r0Þ:

The correlation function is defined directly in the Fourier space.
For each family of symmetrically equivalent crystal planes, a peak,
as defined by Greenwood et al. [17], arises of the form

bCii
2;jðkÞ :¼ e

� s2

s2
Mij e

�ðjkj�kijÞ2
2a2

ij : (13)

The first two planes in a 2D square lattice are the families {10}
and {11}, where l1 ¼ a is the distance of the {10}-planes and
l2 ¼ a=

ffiffiffi
2

p
is the distance of the {11}-planes. For an fcc lattice, the

first planes are {111} and {200} with the distances l1 ¼ a=
ffiffiffi
3

p
and

l2 ¼ a/2.
The first exponential function is a DebyeeWaller factor, which
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sets the effective temperature noted by s. sMij
is an effective tran-

sition temperature, which describes the effects of the crystal plane.

Greenwood et al. [18] use s2Mij
¼ 2rjbj

k2ij
with the atomic density rj, the

number of symmetrical planes bj and the reciprocal lattice spacing
kij ¼ 2p/lij of the jth plane and the ith component.

The second exponential function is a Gaussian bell curve with a
variance a2ij and a smoothed d peak at the position kij. The de-
nominator aij sets the elastic energy and the surface energy, as well
as the anisotropic properties, as shown in Greenwood et al. [17]. For
each family of crystal planes of a material i, a peak is added to the
correlation function, which, represents the envelope of all peaks,
given by

bCii
2ðkÞ :¼ max

j
bCii
2;jðkÞ: (14)

Fig. 1 shows the plot of the rotational invariant correlation

functions bCii
2ðk ¼ jkjÞ in Fourier space used for the solidification

simulations in Sec. 4. In addition, the interpolated correlation

function bCeff for c ¼ (0.3, 0.6, 0.1) is calculated and compared with
three different interpolation functions. As calculated in Appendix A,
the expression hiðcÞ ¼ 3c2i � 2c3i þ 2ci

P
j< k;jsi;ksi

cjck (H1) used by

OforieOpoku et al. [1] depends on the selection of the conditional
variable. Therefore, we employ

hiðcÞ ¼
c2iPK
j¼1 c

2
j

(H2)

by Moelans et al. [19] to conduct the simulations. A further inter-
polation function, published by Floch and Plapp [20], reads

hiðcÞ ¼
c2i
4

�
15ð1� ciÞ

�
1þ ci

�
cj � ck

�2�þ ci
�
9c2i � 5

��
(H3)

with cj and ck as the other two concentrations. This fifth order
polynomial is the lowest order polynomial which satisfies all the
requirements in Appendix A. It is unique at this order. A drawback is
that it only works for three concentrations. As seen in Fig. 1, the
effective correlation function Ceff slightly depends on the used
interpolation. The influence of the various interpolation functions
is discussed in Sec. 4.1.
Fig. 1. The dashed curves correspond to pairwise correlation functions with the peaks at w
values sMij

¼ 0:55, ai1 ¼ 0.8 and ai2 ¼
ffiffiffi
2

p
ai1 i ¼ 1,2,3. The grey and black solid curves display

and (H3), respectively.
2.2. Dynamics of the multi-component PFC model

2.2.1. Onsager reciprocal relations
Onsager [21] postulated that the resulting force and the crossing

forces act on the flow. Bymeans of superposition, the resulting flow
of the ith component becomes

ji ¼ �
X
j

LijVmj;

with Lii for direct mass transport coefficients and Lij for isj cross
coefficients. We use the well known relation, as in Ref. [22],

Lij :¼ Mici

0B@dij �
MjcjP

k
Mkck

1CA
with diffusion coefficients Mi. Applying symmetry conditions, we
obtain Lij ¼ Lji and

P
j
Lij ¼

P
i
Lij ¼ 0.

According to Onsager, the symmetry properties retrieve the
condition

P
i
ci ¼ 1 in the evolution equation of the concentrations

vci
vt

¼ V$
X
j

LijVmj:

Since the chemical potentials mj are the variational derivatives of
the free energy functional F according to cj, the evolution equa-
tions for multiple concentrations result in

vci
vt

¼V$
X
j

LijV
dF
dcj

¼V$

0@X
j

LijV

 
uðnþ1ÞdDFmix

dcj
�1
2
n
dCeff
dcj

�nþkjV
2cj

!1A;

(15)

neglecting the terms for the cross gradients. We write kj :¼ kjj and
use the abbreviated form of the convolutions

Ceff*n ¼
�
Ceff*n

�
ðrÞ ¼

Z
Ceff ðr � r0Þnðr0Þdr0;
ave numbers k11 ¼ 81p/38, k21 ¼ 54p/29, k31 ¼ 2p and ki2 ¼
ffiffiffi
2

p
ki1, i ¼ 1,2,3 for chosen

the effective correlation functions bCeff for c ¼ (0.1, 0.6, 0.3), interpolated with (H1), (H2)
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n
dCeff
dcj

*n ¼ nðrÞ
 
dCeff
dcj

*n

!
ðrÞ ¼ nðrÞ

Z
dCeff
dcj

ðr � r0Þnðr0Þdr0:

Conservation of density yields

vn
vt

vn
vt

¼ V$

�
MnV

dF
dn

�
¼ V$

�
MnV

�
n� h

n2

2
þ c

n3

3
þ uDFmix � Ceff�n

��
: (16)

Since density and concentrations act on different length scales,
the crossing forces between density and concentrations are
neglected.
2.2.2. Operator splitting
We split the evolution equations Eqs. (15) and (16) into a linear

and nonlinear part, as done in Ref. [23] for the binary case. For the
density evolution, we write

vn
vt

¼ ðA1 þ A2Þn

with the suboperators

A1n ¼ V$

�
MnV

�
� h

n2

2
þ c

n3

3
þ uDFmix � Ceff�n

��
;

A2n ¼ V$MnVn:

For the concentrations, we first split the chemical potentials into
a linear and nonlinear part by

mj ¼
dF
dcj

¼ uðnþ 1Þ dDFmix
dcj

� 1
2
n
dCeff
dcj

�n
¼:cnl;j

þ kjV
2cj

¼ cnl;j þ kjV
2cj:

The evolution equations for the concentrations become

vci
vt

vci
vt

¼ V$
X
j

LijVmj

¼ V$
X
j

LijVcnl;j þ
�
Lijkj � Sij

�
V3cj

¼:Bi1c

þ
X
j

SijV
4cj

¼:Bi2c

¼ ðBi1 þ Bi2Þc;

where Sij are constants.
Time discretization takes place in Fourier space according to the

equations

vbn
vt

¼
�bA1 þ bA2

�bn;
vbci
vt

¼
�bBi1 þ bBi2

�bc:
The quantities bA1, bA2, bBi1 and bBi2 are the corresponding

operators,

bA2bn ¼ �Mnk2bn;
bBi2bci ¼X

j

Sijk
4bcj:

In a preliminary iteration step, the nonlinear parts are calculated
in explicit intermediate states (bn�

;bc�i ) and subsequently, the new
time step is calculated implicitly according to the following scheme

bn� ¼ bnt þ DtbA1bnt
;

bntþDt ¼ bn� þ DtbA2bntþDt
;

bc�i ¼ bcti þ DtbBi1bc t ;
bctþDt
i ¼ bc�i þ DtbBi2bc tþDt ¼ bc�i þX

j

DtSijbc tþDt
:

The implicit part for the density field can be resolved into the
expression

bntþDt ¼ bn�.�1� DtbA2

�
:

For the concentration fields, we obtain the linear system of
equations

Abc tþDt ¼ bc�;
with the matrix

A ¼
�
dij � DtSijk

4
�
ij
:

The constants Sij are chosen in such a way, that the contribution
of the V3 term is kept small and so the explicit step is as stable as
possible. We define

Sij :¼
��
LijðxÞkj��x2U

���
max ci; j;

where
��$��max denotes the maximum of the absolute value. The

Fourier transform is used to avoid a discretization term.
The resulting convolutions in the nonlinear relations can be

avoided with further transformations and inverse transformations.
The implicit step remains stable, as long as the denominator is

positive. In order to avoid instabilities, oscillations smaller than the
lattice spacing l are cut. For this, a lcut > l is chosen and the values
in the Fourier space are set to zero, if jkj<2p=lcut. To depress the
occurrence of ringing there are smooth cutting functions available.
For our purpose, a linear function is sufficient

wðjkjÞ :¼

8>>>>><>>>>>:

1; jkj � k1;

1� ðjkj � k1Þ2
ðk2 � k1Þ2

; k1 < jkj< k2;

0; k2 � jkj:

(17)

As described above, the condition
PK

j cj ¼ 1 has to be fulfilled.

Hence the last component can be specified by cK ¼ 1�PK�1
i ci.

However, the error which is caused by the cutting sums up for the
computation of cK. Therefore, all concentration fields have to be
calculated. To avoid a continuous increase of the numerical error, it
has to be ensured that c2CD by normalizing c. Since concentrations
close to zero in Eq. (15) cause instabilities, a lower bound, s:¼ 10�4,
is introduced for the concentrations, i.e. concentrations < s are set
to s. Concentrations adapted in this way do not change during the
normalization of c.

The total memory required for d dimensions and K components,
corresponds to 2 þ K(2 þ 4d) real fields and 3 þ K(4 þ 3d) Fourier
transforms are required.
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3. Analytical solution of the free energy

We aim to formulate the density j(r) of a perfect crystal, i.e. a
crystal with the minimal free energy. We divide the free energy of a
MPFC unit cell (35) for constant concentrations c into a potential
and a correlation part

F ¼ 1
V

Z
U

n2

2
� h

n3

6
þ c

n4

12
þ uDFmixðnþ 1Þ

¼:fpot

�1
2
n
Z

Ceff ðjr � r0jÞn0 dr0

¼:fcorr

dr;
(18)

where V :¼ R
U

dr represents the volume of the unit cell.
The density can be approximated by

jðrÞ ¼
X
j

Aj

X
kj2Kj

exp
�
iqkj$r

�
;

where lattice vectors kj with equal length are combined into shells
Kj, to which an amplitude Aj can be assigned. q is the reciprocal
lattice constant. For the n4 part of the potential, this results in
nðrÞ4 ¼
X
j

Aj

X
kj2Kj

exp
�
iqkj$r

�
$
X
k

Ak

X
kk2Kk

expðiqkk$rÞ $
X
l

Al

X
kj2Kl

expðiqkl$rÞ$
X
m

Am
X

km2Km

expðiqkm$rÞ

¼
X
j;k;l;m

AjAkAlAm
X

kj2Kj;kk2Kk ;kl2Kl;km2Km

exp
�
iq
�
kj þ kk þ kl þ km

�
$r
�

where either v:¼ (kjþ kkþ klþ km)¼ 0 or there is a v0 :¼ ðk0
j þ k0

k þ
k0
l þ k0

m0 Þ with k0
j;k

0
k;k

0
l;k

0
m from the same shells, so that v ¼ �v0

and with this expðiqv$rÞ þ expðiqv0$rÞ ¼ 0 for all r. We introduce
Njklm 2 N the number of contributing combinations. It follows

nðrÞ4 ¼
X
j;k;l;m

AjAkAlAmNjklm:

We further write

1
V

Z
U

a4nðrÞ4dr ¼ a4
X
j;k;l;m

AjAkAlAmNjklm:

A similar expression results for n3(r) as

1
V

Z
V

n3ðrÞdr ¼
X
j;k;l

AjAkAlNjkl;

with Njkl 2 N. For n2(r), either kj þ kl ¼ 0 applies for kj, kl from the
same shells, or a negative contribution yields to a canceling of
exponential functions. We obtain

1
V

Z
V

n2ðrÞdr ¼
X
j

A2
j Nj;

whereby Nj 2 N represents the number of vectors in Kj. We further
derive
1
V

Z
V

nðrÞdr ¼
X
j

Aj

X
kj2Kj

exp
�
iqkj$r

� 1
V

Z
V

dr ¼ A0;

since for j > 0 there is a k02Kj with k ¼ �k0 for each k 2 Kj and so
expðiqk$rÞ þ expðiqk0$rÞ ¼ 0 for all r.

The correlation is calculated numerically. For this purpose, a unit
cell is approximated by means of a finite number, N, of modes ac-
cording to

nðrÞ ¼
XN
j¼0

Aj

X
kj2Kj

exp
�
iqkj$r

�
: (19)

With Fourier transforms, the convolution is avoided and inte-
grated numerically

Fcorr :¼ 1
V

Z
U

nðrÞ$Ceff*nðrÞdr

¼ 1
V

Z
U

nðrÞF�1
�bCeff$FðnðrÞÞ

�
dr:
By inserting the previous equations, the free energy in Eq. (18)
depending on q and A can be reformulated in the form

Fðq;A; cÞ ¼ 1
2

X
j

A2
j Nj �

h

6

X
j;k;l

AjAkAlNjkl

þ c

12

X
j;k;l;m

AjAkAlAmNjklm þ uDFmixðA0 þ 1Þ

� 1
2
Fcorr: (20)

3.1. Phase diagram

We denote CD to be the simplex of the concentrations. For the
construction of a ternary phase diagram, the free energies of the
single phases depending on c2CD are required. The liquid phase
has a constant density, so that Aj ¼ 0 for all j > 0 and hence, Eq. (19)
simplifies to n(r) ¼ A0. Our mean density in particular is A0 ¼ 0.
Inserting this into Eq. (20) results in

F[ðq;A; cÞ ¼ F[ðcÞ ¼ uDFmix:

The single solid phases can not be calculated directly from the
density field or the concentration fields. However, the free energy
potential Fs(c) of the solid phases can be determined on CD and
hence the phase diagrams can be derived, as described in Sec. 3.2.

The calculation of Fs(c) can either be done numerically or
approximately. In the numerical version, a crystal is simulated and
its free energy is integrated numerically. Alternatively, the
approximate free energy of Eq. (20) is minimized in q and the vector
A for N shells. At first, we deal with the numerical solution.



Fig. 2. Free energies for cA ¼ 0 proposed by the approximation method for 1 � 14
shells and 20 attempts (lines) in comparison with minimization results from Sec. 3.1.1
for cA ¼ 0.01 (circles).
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3.1.1. Minimization
For the calculation of the free energy, the simulation of one

single unit cell is sufficient. As initial density, Eq. (19) is placed in a
simulation domain with 16 � 16 grid cells, with the mean density
A0 ¼ 0 for N ¼ 1. In order to initialize the crystal without tensile
stress and pressure load, the lattice spacing Dx ¼ a/16 is chosen
with a ¼ 2p/q. The free energy of a density distribution can be
determined by means of a numerical integration of Eq. (18). The
simulations of the evolution equation Eq. (16) are carried out until
the converged density is reached. We define the density as conver-
gent, if the change of the free energy between two time steps Df is
smaller than 10�7, which is defined as the convergence barrier. We
designate the free energy, calculated from the converged density of
a simulation with the lattice constant q, as f(q). The minimal free
energy fmin is reached for qmin.We remark that f(q) is not dependent
on the selection of A1, as long as the density does not converge
towards a constant density, which happens if A1 is either too large
or too small. We use A1 ¼ 0.23.

Under free boundary conditions, a non-perfect crystal changes
its lattice constant to qmin, to approach a perfect crystal. However,
the lattice constant is fixed during the simulation, so that the
crystal is exposed to tensile stresses and pressure loads.

The minimization of f(q) is equivalent to f 0ðqÞ ¼ 0. For this
purpose, we employ central finite differences

f 0ðqÞ :¼ f ðqþ DqÞ � f ðq� DqÞ
2Dq

;

with Dq ¼ 0.0001. In order to solve f 0ðqÞ ¼ 0, we use the Brent
algorithm [24,25], which is a root finding algorithm working
without derivatives. To initialize the Brent algorithm we use the q
found by a scan for the smallest free energy. Therefor we perform
simulations in a range of around q ¼ 5.5 to 7 by steps of 0.05. A
manual visual view of the simulation checks that the q of the
minimal free energy results in one unit cell, if not there is another
local minimum for this. The Brent algorithm will not leave the
local minimum. In each iteration step, two simulations f(q þ Dq)
and f(q � Dq) are carried out. If

��f 0ðqÞ��<10�6, we accept q as
minimum. The Brent algorithm usually terminates after less than
10 � 15 iterations. However, since we need converged simulations,
the calculation of a free energy takes several minutes. With this
algorithm, a closely meshed scan of CD is very time-consuming
and motivates the necessity of a more efficient algorithm dis-
cussed next.

3.1.2. Simulated annealing algorithm
To avoid computationally intense simulations, we use the

approximated free energy in Eq. (20). For N shells, this is a
N þ 1-dimensional optimization problem, so that we use the
heuristic optimization algorithm simulated annealing. The
advantage of this algorithm is, that a local minimum can remain
with a certain probability in order to find a better approximation
towards the minimum. However, an acceptable minimum is not
reached with every attempt. It happens, that FapproxzF[. Since
the algorithm does find different local minima during different
attempts, the found minimum with 20 attempts is often
acceptably low.

Fig. 2 shows this method for different N-mode approximations,
with 20 attempts each. With increasing N, the approximated free
energy decreases. With N ¼ 10 to 14 an accumulation occurs. A
comparison with the Brent method from Sec. 3.1.1 shows, that this
minimization is already reached approximately with 6 � 7 shells. It
is also shown, however, that a 2-mode approximation is not good
enough.
Fig. 3 compares the errors of the different minimization
methods. We observe that the free energy is subject to fluctuations
that are significantly lower than the fluctuations of the reciprocal
lattice constant. For the Brent method, the inner error bars show
the error, which is caused by the choice of Dq ¼ 0.0001. The sim-
ulations are stopped by the predefined convergence barriers 10�7

and 10�9. Simulation domains with an edge length of 16 and 32 are
used (see Table 1). The free energy determined with the Brent
method is subject to some inaccuracies. Hence, we canwell assume,
that the real free energy is even a bit lower. The runtime of the
Brent method (Table 1) is about six times longer than with the
approximation (Table 2). The calculation for more shells lasts
longer, so we use 12 shells.

For A ¼ 0, Fs becomes F[, whereby the free energy of the crystal
can only be determined at the positions where Fs < F[. A lower
bound swith s< jA1j is introduced, in order to enlarge the area a bit.
Higher amplitudes are restricted with s<2j

��Aj
��. Therefore, the

domain in the algorithm is adapted as D ¼ ½�s; s� � ½�s=2; s=2� �/.
This is not possible with the Brent method from Sec. 3.1.1. The
choice of s ¼ 0.075 ensures, that Fs is not influenced in the area of
Fs< F[, but nevertheless it ensures, that the profile of the free energy
can be extended to this area.
3.1.3. Analytical solution
According to Eq. (20), we see that aminimizationwith respect to

q involves the minimization of Fcorr. In particular, bCeff is only
dependent on q. There, bCeff is an interpolation of the individual
correlation functions

bCeff ¼
X3
i¼1

hiðcÞbCii
2

inwhich each correlation function is the maximum of two peaks, as
defined in Eq. (14). In a pure material, ki1 is defined as reciprocal
lattice constant, so that qmin is determined by the first peak. The
interpolation results in new peaks, whereby the position depends
on the proportion of the single components. If the first peaks of all
correlation functions are positioned on the left side of the point of
discontinuity, which is caused by the maximum, the position of the
first interpolated peak is not influenced. This is given for our



Fig. 3. Error tolerances for c ¼ (0.01, 0.5, 0.49) of the minimal free energy fmin and the reciprocal lattice constant qmin determined with simulated annealing (5 � 20 attempts), Brent/
simulations (162 and 322 cells, as well as convergence barrier 10�7 and 10�9) and numerical solution of the first peak of the correlation function Ceff.
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example, as shown in Fig. 1. In order to find qmin, it is sufficient to
calculate the maximum of the interpolation of the first peaks. SincebCeff from the first peaks is a function which is continuously

differentiable, v
bC eff ðkÞ
vk ¼ 0 can be solved. The solution for c ¼ (0.01,

0.5, 0.49) is plotted as a vertical line in Fig. 3 and lies in the range of
the solutions of the other twomethods. qmin, which is solved in this
way, can be used as initial value for the search for the amplitudes Ai.

Fig. 4 displays the process of approximating qmin as the first
peaks ki1 for different concentrations c, related to the corners of the
ternary phase diagram.

3.2. Common tangent plane construction

For the solid phases, we determine the free energy by means of
the above methods for a particular temperature s. For this purpose,
we scan the domain of the simplex CD with a step width of 0.02 in
cA- and cB-direction. At the corners of the simplex CD, there is Fs < F[
which means, that the single solid phases are the stable phases
in these areas. We approximate the free energy to profiles of
the solid phases i, with the paraboloids Wiðx; yÞ :¼
aiðx� uiÞ2 þ biðy� viÞ2 þ ci. Fig. 5 shows the potential F[, as well as
the calculated points of the Fs potentials in red.
Table 1

Minimal reciprocal lattice constant q and averaged free energy f ðqÞ :¼ f ðq�DqÞþf ðqþDqÞ
2 ,

as well as iteration steps and runtime t of the Brent method for different conver-
gence barriers G and number of cells Nx and c ¼ (0.01, 0.5, 0.49).

G Nx q f ðqÞ iter. t [s]

10�7 16 6.061 �4.910,10�3 13 226
10�9 16 6.062 �4.959,10�3 15 470
10�7 32 6.059 �4.899,10�3 9 220
10�9 32 6.064 �4.948,10�3 13 527

Table 2
Minimal reciprocal lattice constant q and free energy F(q), as well as best (second
best) attempt and runtime t of the simulated annealing algorithm for c ¼ (0.01, 0.5,
0.49) and N ¼ 12 with 20 attempts, respectively.

q F(q) attempt t [s]

6.060 �5.738,10�3 16(9) 37.4
6.061 �5.738,10�3 18(1) 39.3
6.064 �5.738,10�3 8(4) 31.3
6.062 �5.738,10�3 6(3) 33.7
6.059 �5.738,10�3 12(10) 37.3
In the area of the points marked in blue, Fs is fitted byWi. In the
following, the paraboloids Wi are used as free energy of the solid
phase i. They are chosen in such a way, that they are in good
agreement in the regions around the common tangent planes. For
the determination of the equilibria between the solid and liquid
phase, we calculate the common tangent planes between F[ andWi.
Fig. 4. Representation of qmin as color value over the concentration distribution c, from
k21 over k31 to k11.

Fig. 5. Plot of the free energy potential of the liquid phase F[ (gold) and of the
approximated potential Fs of the solid phases (red points) with paraboloids Wi of the
solid phases Fi. The potentials are fitted over the points marked in blue in the simplex
corners. The diagram illustrates the Cartesian projection of CD .
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For this purpose, we first calculate the chemical potentials in cA-
and cB-direction by

msa :¼ vFsðcA; cBÞ
vcA

;msb :¼ vFsðcA; cBÞ
vcB

;

m[a :¼ vF[ðcA; cBÞ
vcA

;m[b :¼ vF[ðcA; cBÞ
vcB

;

where, $a denotes the cA-direction, $b designates the cB-direction, ,s

represents the solid phase and $[ is the liquid phase.
The equilibrium planes have the same slopes in the point of

equilibrium of the solid phase cs ¼ ðcsA; csB; csCÞ and the liquid phase
c[ ¼ ðc[A; c[B; c[CÞ, such that we get

msa
�
csA; c

s
B
� ¼ m[a

�
c[A; c

[
B
�
; msb

�
csA; c

s
B
� ¼ m[b

�
c[A; c

[
B
�
:

The grand potentials, too, must be equal, reading

Fs
�
csA; c

s
B
�� msa

�
csA; c

s
B
�
csA � msb

�
csA; c

s
B
�
csB

¼ F[
�
c[A; c

[
B
�� msa

�
c[A; c

[
B
�
c[A � msb

�
c[A; c

[
B
�
c[B:

We obtain the solution of these equations for the concentrations
csA, c

[
A, c

s
B and c[B, by retaining either the parameter c[A or c[B and by

calculating the remaining parameters. To get the equilibrium lines,
Fig. 6. Ternary phase diagrams with 12 shells calculated for (a)e(c) s ¼ 0.215, 0.2235
the retained parameter is varied in 0.01 steps.
Fig. 6 displays the calculated phase diagrams for s between

0.215 and 0.23. The intersection points of the three liquidus curves
meet at one point s ¼ 0.2235, representing the eutectic tempera-
ture according to these calculations. As a comparison, we show the
calculated phase diagrams for this eutectic temperature and 4
shells in Fig. 6, which emphasizes that the approximation is
strongly dependent on the number of approximated shells.

4. Applications

For the application of the multi-component PFC model, we use
the system AleCueMg, as proposed by OforieOpoku et al. [1]. The
three correlation functions (Cu, Mg, Al) are each composed of two
peaks in the form of Eq. (13), with k11 ¼ 81p/38, k21 ¼ 54p/29,
k31 ¼ 2p and ki2 ¼

ffiffiffi
2

p
ki1, as well as sMij ¼ 0.55, ai1 ¼ 0.8 and ai2 ¼ffiffiffi

2
p

ai1 ci; j. The free simulation parameters are c ¼ 1, h ¼ 1.4 and
u ¼ 0.005. The reference densities are chosen as c01 ¼ c02 ¼ 0:333
and the mobilities are all equal with Mn ¼ Mj ¼ 1.

4.1. Influence of the interpolated correlation function

For the three interpolation functions of the effective correlation
function, we perform simulations of planar growth of an Al-rich
phase in an undercooled melt. 16 unit cells of a crystal phase are
and 0.23. With the eutectic temperature at around sE ¼ 0.2235. (d) 4 shells at sE.



Fig. 7. Velocity of the interface of a 2D planar front for various interpolation functions.

M. Berghoff, B. Nestler / Computational Condensed Matter 4 (2015) 46e58 55
set in a melt inside a domain with 4096 � 16 cells or 256 � 1 unit
cells. The initial concentration is chosen as
c ¼ ðcCu; cMg; cAlÞ ¼ ð0:1;0:1;0:8Þ. The lattice width is calculated by
an energy minimization for the given parameter such that the
crystal is set without stress influences from the boundary. We get
the reciprocal lattice constants qH1 ¼ 6.282807, qH2 ¼ 6.280986 and
qH3 ¼ 6.280985. The time step width is Dt ¼ 0.001 to hold stable
simulations for each interpolation function. The effective temper-
ature reads s ¼ 0.17 and the gradient terms are chosen as kj ¼ 1.

The simulations run until the growth rate reaches a steady-state
growth. The interface between crystal and melt is detected and the
velocity of its movement is shown in Fig. 7.

After the relaxation of the one mode filling (at tz1) the inter-
face velocity increases until it reaches the steady-state growth (at
tz2). The steady-state velocities for the interpolation function (H2)
and (H3) are very similar and, in dimensional units, read
vðH2Þ ¼ 0:37 and vðH3Þ ¼ 0:36 unit cells per time. Only (H1) shows a
deviation from these velocities with vðH1Þ ¼ 0:33. These results
show the influence of the growth kinetics by the interpolation
function. As shown in Fig.1, the correlation function depends on the
interpolation function and the velocity of the growth depends on
the correlation function. The effective temperature s changes the
width of the peaks. On the other hand, if the interpolation of the
correlation function changes the width of the peaks, the effective
temperature is changed and hence the undercooling is changed as
Fig. 8. Al concentration field after 37,000 time steps. The enlarged part shows the
density field.
well. Thus, it is expected that it also changes the growth rate.
In the further applications, we use the interpolation function

(H2).

4.2. Dendritic growth in 2D

An Al-rich nucleus is simulated in an undercooled melt. The
nucleus with the size of 10 � 10 atoms, is placed as a square sq
crystal in the center of a domain with 20,480 � 20,480 cells. The
initial concentration of the melt and the nucleus is
c ¼ ðcCu; cMg; cAlÞ ¼ ð0:1;0:1;0:8Þ. The lattice width is Dx ¼ 0.125
and the time step width is Dt ¼ 3. The effective temperature reads
s ¼ 0.182 and the gradient terms are chosen as kj ¼ 1. Fig. 8 shows
the grown dendrite after 37,000 time steps after a computing time
of 23 days on a computer node with two AMD Opteron 6344 with
12 cores each, at 2.9 GHz and 32 GB of random access memory.

4.3. Dendritic growth in 3D

The application in 3D requires different correlation functions
since the sq lattice turns into the fcc lattice formed from aluminum.
We continue to consider a model type system, although we adapt
the correlation functions to the atomic properties of the elements.
The mass is defined as m ¼ n$A with the number of atoms per unit
cell n and the relative atomic mass A. The volume of a unit cell is
given by V ¼ a3, where a is the lattice constant. The density is
r ¼ m/V ¼ nA/a3. The atomic unit of mass is
1 u ¼ 1:660538921,10�27 kg. Table 3 composes the relative atomic
mass, the density, the lattice constant a and the plane distance ~l,
which is normalized to Al.

The plane distances are scaled with ~l and yield l1 ¼ a=
ffiffiffi
3

p
and

l2 ¼ 1/2. With k ¼ 2p/l, the peaks of the correlation functions (Mg,
Cu, Al) result in k11 ¼ 0:893

ffiffiffi
3

p
2p, k21 ¼ 1:119

ffiffiffi
3

p
2p, k31 ¼

ffiffiffi
3

p
2p

and ki2 accordingly. The quantities sMij, aij and kj remain as for 2D.
We apply the cutting function in Eq. (17) with k1 ¼1 and k2 ¼ 1.25.
The simulation domain contains 640 � 640 � 640 cells with
Dx ¼ 0.0894521496 and Dt ¼ 0.002. The initial concentration is
c ¼ (0.7, 0.15, 0.15). A spherical atomic cluster with an fcc lattice
structure and an inner radius of 35 cells is constructed. The density
field decreases linearly until a radius of up to 47 cells is reached. The
effective temperature is s ¼ 0.18. Fig. 9 visualizes the dendrite after
2300 time steps after a computing time of 3 days on a computer
with 2 Intel Xeon E5649 processors with 6 cores each, at 2.53 GHz
and 96 GB of random access memory.

For the dendritic structure to be recognized, the simulation area
has to be much larger. As described above, the simulations require
the memory of 44 real fields which is 86 GB for an edge length of
640 cells. Doubling thememory leads to an edge length of 806 cells.
Themethods of FFTWused for the parallelization are performant in
the shared memory parallelization, which prevents a simple switch
to cluster systems.

4.4. Lamellar eutectic growth

At conditions close to the eutectic temperature se ¼ 0.2235 (see
Fig. 6), the growth of ternary eutectic lamellae with three distinct
Table 3
Atomic properties of the ternary system.

Atom A[u] r[u/m3] a[nm] ~l

Al 26.982 2.7 40.49 1
Cu 63.546 8.92 36.17 0.893
Mg 24.305 1.738 45.29 1.119



Fig. 9. Isosurfaces of the density field (a) at the beginning and (b) after t ¼ 2300 time steps of the PFC simulation. The simulation box with 640 � 640 � 640 cells covers 140,000
atoms.

M. Berghoff, B. Nestler / Computational Condensed Matter 4 (2015) 46e5856
solid phases (a, b, g) evolving from undercooled meld is retrieved
with the multi-component PFC simulations. The 2D model system
is used to arrange lamellae with the crystal structure of one
component each with high concentration next to each other. The
melt is consists of the same proportions of the three components
Al, Ag and Mg. The simulation is performed at the effective tem-
perature s ¼ 0.2, which is below the ternary eutectic temperature.
The three kinds of atoms have different interatomic distances. Since
the simulation domain is periodically continued, the lamellae are
placed in a stress-free environment by setting an equal number of
30 atoms for each component and by adapting the lattice width
accordingly. This results in Dx ¼ 0.091874015 for a domain of
Fig. 10. Lamellar growth for s ¼ 0.2 below the eutectic temperature. The peaks of the density
Al (blue) and mixtures correspond to the RGB values.
1365 � 1024 cells. Between the single lamellae, an interface is
formed, similar as in the solideliquid system, with the difference,
that the width is not known from the simulations, due to the
different lattice constants. Hence, the solid phases cannot be
initialized completely stress-free. In order to prevent the stress
from being too large, several atoms are set next to each other, so
that the error spreads across all atoms. The maximum is, that one
defect can be made by half of an atom. With 30 atoms, this corre-
sponds to an average maximum error of <1.7%. In addition, the
lamellae are arranged in the sequence beaegea where a, b, g
correspond to the Al-, Cu-, Mg rich solid phases. A symmetrical
structure is formed due to the periodicity of the phase ordering. The
field are marked in black. The concentration coloring refers to Cu (red), Mg (green) and
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single lamellae have a height of around 18 atomic layers, as shown
in Fig. 10(a). The concentration field evolves much slower than the
density field. It restricts the time step severely, because of the larger
nonlinear part, so that the time step width is Dt ¼ 0.0004. The
frequencies are roughly cut at 1.0 and we chose kj ¼ 5.

The formation of the three eutectic solid phases is recorded in
Fig. 10. For the 2,107 time steps in total, the simulation ran for
around 16 weeks on a computer node with two AMD Opteron 6344
with 12 cores each, at 2.9 GHz and 24 GB of random access memory.
Each concentration field is assigned to a basic color and is consid-
ered as a single RGB color channel. According to this, the liquid
phase, which is an equally proportional mixture of the 3 concen-
trations, is gray. The respective complementary colors can be
recognized in front of the lamellae resulting from the lack of the
respective concentration. In the subsequent course of the simula-
tions, the concentration field extends, so that the periodic bound-
ary conditions influence the lamellar growth mode. The Al lamellae
(blue) are the fastest growing leading to an additional depletion of
the concentration in front of the other lamellae. This is reflected in
the enrichment of Mg (green) in the liquid phase, in front of the Cu
lamella (red) and vice versa. Since the crystal lattices of the
different lamellae do not match, lattice defects occur at the inter-
face between the lamellae. These defects rearrange during the
simulation. Fig. 10(d) shows the Al lamellae with a rotated orien-
tation. The lattice structure of the density field is recovered in re-
gions where a single component has a high concentration. The
density field evolves much faster than the concentration field. For
fixed concentrations, the crystal evolves within 5000 time steps
(Dt ¼ 0.002) across the whole area.

5. Conclusion

In this workwe discuss, that the free energy calculation depends
on the number of shells. The common usage of two shells is not
sufficient. Six to seven shells archive good results in comparison
with the free energy from a simulated crystal. At approximately 12
shells, the free energy is bounded. For a ternary phase diagram we
exemplarily demonstrate high derivations for different number of
shells. For 12 shells an eutectic point is established, whereas the
phase diagram for the same temperature with only 4 shells has a
large area of liquid phase.

The simplification of the correlation functions into one effective
expression Ceff, defined as an interpolation of the pairwise corre-
lation functions of the single components leads to the fact, that only
these have to be known. The numerics of the semi-implicit spectral
method shows that the last concentration field cannot be omitted.
From the Onsager reciprocal relations it follows that a system of
equations depending only on the number of components has to be
solved for each implicit step. Since Ceff is dependent on the inter-
polation, it is essential to employ an efficient interpolation function
for the effective correlation function. During a permutation of the
components, for instance, Eq. (H1) provides different results. The
interpolation presented in Eq. (H2) avoids this deficiency. However,
we show that the velocity of growth depends on the chosen
interpolation function. This must be taken into account in further
studies.

As shown in the simulations, the concentration fields evolve
much slower than the density field. In the semi-implicit spectral
solution, the non linearity of the concentration equations requires
3 þ K(4 þ 3d) Fourier transforms and the memory of 2 þ K(2 þ 4d)
fields for d dimensions and K concentrations. Dendritic growth for
Al-rich melts is reported in 2D and 3D. Due to the huge computa-
tional effort associated with the 3D simulations, the formation of
side arms is not resolved in the considered time interval. Lamellar
growth of three solid phases in a ternary system close to the
eutectic temperature is simulated in 2D. The equally distributed
concentrations of the melt clearly demonstrate the slow evolution
of the concentration fields.
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Appendix A. Weighted interpolation

In this appendix we describe the weighted interpolation used
for the effective correlation function. We list the properties and
prerequisites for different interpolation functions.

We consider L2Rn to be any value which is weighted by c

Leff ¼
Xn
i¼1

ciLi;

and assume (hi) to be a partition of unity,
Pn

i¼1hiðcÞ ¼ 1 with a

monotonic increase of hi, hiðcÞ
���
ci¼0

¼ 0 and hiðcÞ
���
ci¼1

¼ 1. Then we

can define

~Leff ¼
Xn
i¼1

hiðcÞLi

to be also a weight function of L. Normally, Leffs~Leff .
Possible weights to fulfill the above equation, are the identity

hiðcÞ ¼ ci; (H0)

the polynomial expression (cf. [26])

hiðcÞ ¼ 3c2i � 2c3i þ 2ci
X
j< k
jsi
ksi

cjck; (H1)

or the function (cf. [19])

hiðcÞ ¼
c2iPn
j¼1 c

2
j

; (H2)

which are partially derived. A weighted value

v~Leff
vcj

¼
Xn
i¼1

vhiðcÞ
vcj

Li

is supposed to be continuous, so that vhiðcÞ
vcj

���
ci¼0

¼ vhiðcÞ
vcj

���
ci¼1

¼ 0 and

the sum of the changes is supposed to disappear.
The trivial weight in Eq. (H0) does not fulfill these conditions.
The partial derivatives of Eq. (H1) are continuous, in consider-

ation of cn ¼ 1�Pn�1
i¼1 ci. However, the weight is dependent on the

selection of the conditional variable. Without the conditional var-

iable, vhiðcÞ
vcj

¼ 0 is no longer fulfilled.

The partial derivatives of Eq. (H2) fulfill both,
P
i

vhiðcÞ
vcj

¼ 0 as well

as vhiðcÞ
vcj

���
ci¼0

¼ vhiðcÞ
vcj

���
ci¼1

¼ 0.
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