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1 Introduction

Thanks to a beautiful series of neutrino oscillation experiments [1–15] we have now a

clear picture of the mixing pattern in the lepton sector. Neutrino oscillations depend

on two neutrino mass-squared differences ∆m2
21,∆m

2
32 (with ∆m2

ij ≡ m2
i − m2

j ), three

mixing angles, θ12, θ23, θ13, and one complex phase δCP, where we adopt the standard

parameterization for the leptonic mixing matrix [16]. Out of those six parameters the

three mixing angels and the two mass-squared differences are well determined by global

data [17–19], up to the sign of ∆m2
32 which parametrizes two possible orderings of the

neutrino mass states, normal ordering (NO) versus inverted ordering (IO).

One of the ultimate goals of neutrino oscillation physics is to determine the complex

phase δCP. Values of δCP different from zero and π imply CP violation in the lepton

sector [20–22], see refs. [23, 24] for reviews. Determining δCP and possibly establishing CP

violation with reasonable precision is a formidable task which most likely will require high-

intensity neutrino beams beyond the current generation of experiments. Nevertheless,

already with current experiments, some first hints on a preferred range of δCP may be

obtained at a modest confidence level, see for instance [25–29] for estimates. Indeed,

currently available global data seem to indicate a slight preference for the range π < δCP <

2π compared to 0 < δCP < π [17–19]. This hint emerges mostly from the combination of the

νµ → νe observation from the long-baseline experiments T2K [13] and MINOS [6] with the

determination of the mixing angle θ13 by reactor experiments DayaBay [12], RENO [10],

and DoubleChooz [9].
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Assessing the significance of this hint is a non-trivial task. Standard statistical tools

usually employed in global fits of neutrino oscillation data are likely to fail for the deter-

mination of δCP. The reason is that several conditions for Wilks theorem [30] are violated

in this case: statistics is low, the sensitivity of the data to the parameter is rather poor,

and predictions depend non-linearly on the parameter (via trigonometric functions). In

the context of present data those issues have been commented on in ref. [17], based on

preliminary simulations of the statistical properties of the used ∆χ2 statistics. Similar

considerations for future experiments can be found in refs. [31, 32].

In this work we extend the results of ref. [17] and study in detail the distribution of

the relevant test statistics by generating large samples of pseudo data and constructing

confidence intervals or regions with the correct coverage following the Feldman-Cousins

prescription [33]. We study the behavior as a function of the unknown true values of

δCP, θ23, and the neutrino mass ordering. In refs. [31, 32] the sensitivity to CP violation

has been studied, whereas in this work we concentrate on the related but different problem

of constructing confidence intervals for δCP. In addition to analyzing present data, we also

investigate the behavior of the test statistics assuming an increased exposure of the T2K

experiment, to be expected in the timescale of several years. We attempt to provide an

explanation of our numerical results by considering the non-linear structure of the relevant

oscillation probabilities including parameter degeneracies.

The outline of the paper is as follows. In section 2 we briefly describe the data from the

T2K and MINOS experiments, introduce the relevant test statistics, and discuss the statis-

tical analysis based on the Monte Carlo simulations. In section 3 we consider the relevant

oscillation probabilities and provide a discussion about why deviations from Gaussianity

can be expected. Our results analyzing present data are presented in section 4. We dis-

cuss the distributions of the 1-dimensional ∆χ2 statistics for δCP and θ23, finding large

non-Gaussian behavior, especially for δCP. Then we construct the 2-dimensional regions in

the (δCP, θ23) plane and find them to be much closer to the Gaussian approximation. In

section 5 we investigate how this situation will change, once more data become available.

We study the sensitivity of T2K by increasing the exposure by roughly a factor 12 com-

pared to the present one including also anti-neutrino data. We find even in that situation

deviations from the Gaussian approximation remain significant in certain regions of the

parameter space. We summarize and conclude in section 6. In the appendix we show the

impact of first data on anti-neutrinos from T2K [34], which appeared after the completion

of this work.

2 Description of data and statistical analysis

In this work we use the data from the long-baseline experiments T2K and MINOS, both

from the appearance and disappearance channels, including also a small anti-neutrino data

sample from MINOS, see table 1 for details and references.1 Our code departs from the

re-analysis of the data developed in the context of the NuFit collaboration and used in

1Preliminary results from a T2K anti-neutrino run have been released recently at EPS HEP 2015 [34],

consisting of 3 events in the appearance channel. We comment on the impact of these data in the appendix.
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Experiment Channel Exposure (p.o.t.) Ref. Data points Events

T2K νµ → νµ 6.57× 1020 [14] 16 120

T2K νµ → νe 6.57× 1020 [13] 5 28

MINOS νµ → νµ 10.71× 1020 [7] 39 2782

MINOS νµ → νµ 3.36× 1020 [7] 14 222

MINOS νµ → νe 10.6× 1020 [6] 5 88

MINOS νµ → νe 3.3× 1020 [6] 5 9

Table 1. Summary of used data. The last two columns give the number of bins used to fit the

energy spectrum, and the total number of observed events, respectively. Recent T2K data on the

νµ → νe channel [34] are not used in the main text, but we show some results including them in

the appendix.

ref. [17]. For each of the six data samples shown in table 1 we perform a spectral fit,

where the numbers of spectral bins are given in the table. Our predictions of the event

spectra T ri (Θ) have been calibrated in order to reproduce the expected spectra provided by

the collaborations. Here r runs over the six data samples, i labels the energy bins, and Θ

collectively denotes the oscillation parameters. Each data set is described by a χ2 statistics

appropriate for Poisson distributed data:

χ2
r(Θ, ar) = 2

∑
i

[
ar T

r
i (Θ)−Ori +Ori log

Ori
ar T ri (Θ)

]
, (2.1)

χ2
r(Θ) = min

ar

[
χ2
r(Θ, ar) +

(
1− ar
σrsys

)2
]
, (2.2)

where Ori is the observed number of events, and σrsys is the systematic over-all normalization

error included via the pull parameters ar. Since those data are largely statistics dominated,

this simple treatment of systematic errors suffice. For each experiment our analysis is

validated by checking that when analyzing the data in the same way we can reproduce the

confidence regions in parameter space obtained by the experimental collaborations with

good accuracy. When combining the data samples given in table 1 we simply add the χ2

functions,

χ2(Θ) =
∑
r

χ2
r(Θ) , (2.3)

ignoring possible correlated systematic errors between the data sets. The results from the

reactor experiments [9, 10, 12] are taken into account implicitly by fixing θ13 = 8.5◦.

Below we are going to focus on the parameters δCP, θ23, and ∆m2
32, which currently

have the largest uncertainties, including the sign of ∆m2
32. The other oscillation parameters

are fixed to θ12 = 33.5◦, θ13 = 8.5◦, ∆m2
21 = 7.5× 10−5 eV2. Those parameters are known

within better than 15% at 3σ,2 and we expect that fixing those parameters has only a small

impact on our results. Hence, in the notation used above we have Θ = {δCP, θ23,∆m
2
32}.

2Here we define the precision by 2(xup−xlow)/(xup +xlow), where xup and xlow are the upper and lower

ends of the 3σ intervals [17], respectively.
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If we are interested in confidence regions of one of the parameters Θ={δCP, θ23,∆m
2
32},

irrespective of the others, we consider the following test statistic. Taking for example δCP,

we define

∆χ2(δCP) = min
θ23,∆m2

32

χ2(Θ)− χ2
min , (2.4)

where χ2
min is the global minimum of the χ2 with respect to all parameters Θ. Note that

when minimizing over ∆m2
32, we always take into account both signs, i.e. we minimize

also over the two mass orderings. Similar definitions apply for the other 1-dimensional

cases, ∆χ2(θ23) and ∆χ2(∆m2
32). The 2-dimensional confidence regions are based on an

analogous definition, e.g.,

∆χ2(δCP, θ23) = min
∆m2

32

χ2(Θ)− χ2
min . (2.5)

This procedure is equivalent to the profile-likelihood method to treat nuisance parameters.

Wilks theorem [30] implies that under certain conditions, the test statistics from

eqs. (2.4) and (2.5) are distributed according to the χ2-distribution with 1 and 2 degrees of

freedom (dof), respectively. This is the basis of the standard method to derive confidence

regions for the parameters, using the condition ∆χ2 ≤ tχ2(CL, dof). We refer to tχ2 as

“cut levels”, and their values can be obtained by integrating the corresponding χ2 distribu-

tion. For instance, the 1-dimensional intervals at 1σ, 2σ, 3σ are derived by ∆χ2 ≤ 1, 4, 9,

respectively.3 We will refer to this situation as the “Gaussian limit” or the “χ2 limit” in

the following.

Wilks theorem applies if the theoretical predictions Ti(Θ) span a linear space when Θ

is varied. For instance, this is the case if Ti(Θ) can be expanded to linear order: Ti(Θ) ≈
Ai + BiΘ. This is trivially fulfilled for a linear model, where this relation is exact. For

non-linear models Ti(Θ), the linear approximation will hold in the vicinity of the best fit

point and will be reliable up to a certain CL, beyond which the non-linear character of

the parameter dependence can lead to deviations from the Gaussian limit. For “powerful”

data, which constrain the parameter efficiently, the linear approximation will hold up to

a high CL, whereas for “weak” data with poor sensitivity to the parameter it will break

down already at low CL. Deviations from Gaussianity are expected for example close to a

physical boundary of a parameter, or when certain values of the predictions Ti(Θ) cannot

be reached due to the parameter dependence of the model, for instance via trigonometric

functions, as we are going to see below.

In order to study deviations from the Gaussian limit we have performed Monte Carlo

(MC) simulations and calculated the distributions of the test statistics numerically. For

assumed true values of the parameters Θtrue we generate artificial pseudo data by assuming

a Poisson distribution for the observables with mean T ri (Θtrue). Those data are multiplied

by a random Gaussian number with mean 1 and standard deviation σrsys in order to take

into account the systematic normalization uncertainty. In this approach the origin of the

systematic uncertainty is related to some auxiliary measurements, determining for instance

3In this paper we use the two-sided Gaussian convention to convert standard deviations into CL, which

implies that 1σ, 2σ, 3σ correspond to 68.27%, 95.45%, 99.73% CL, respectively.
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the fiducial volume of the detector or the beam normalization. The measured values of those

experiments are used to determine the theoretical predictions. Hence, the normalization of

the predictions is subject to statistical fluctuations of the auxiliary measurements. We set

the unknown true value of the normalization constant to 1 and generate random realisations

of this number with standard deviation σrsys, which then enters the “observables” for the

MC generated data. This implies that we consider the auxiliary measurements as part of

the experiment, also hypothetically to be repeated many times. However, we have checked

that our results do not depend on whether we randomize the systematic error or not.

Then the test statistics eqs. (2.4) or (2.5) are calculated at the point Θtrue, e.g.,

∆χ2
MC[Θ](δCP), where the subscript MC[Θ] indicates that the pseudo data from the Monte

Carlo generated at the point Θ are used in the χ2. We perform this calculation 104 times

for each point in the Θtrue space, which provides us the true distribution of the test statis-

tic for each parameter value. From those histograms we can obtain the true cut levels

tMC(CL,Θ) for a given CL α, by demanding that a fraction α of all pseudo experiments

fulfills

∆χ2
MC[Θ](δCP) ≤ tMC(CL,Θ) . (2.6)

Then the correct confidence intervals (or regions) for the parameters are obtained by those

values of the parameters for which the test statistics of the real data fulfills ∆χ2(δCP) ≤
tMC(CL,Θ). Those intervals have the correct coverage by construction and follow the

prescription of Feldman and Cousins [33].

Here we used the test statistic for δCP as an example, but analogous expressions hold

for the other 1-dimensional as well as 2-dimensional test statistics. Note that in the left side

of eq. (2.6), ∆χ2 is evaluated at δCP corresponding to the same value as used to generate the

pseudo data. However, although the test statistic for given data depends only on δCP, the

MC results do depend also on the other parameters θ23 and ∆m2
32. Hence, the confidence

intervals for δCP may depend on the unknown true values of the other parameters, an effect

we will indeed observe in our numerical studies presented in the next section.

3 Discussion of oscillation probabilities

In the case of interest, we are facing a complicated parameter dependence of the predictions.

We review here the relevant oscillation probabilities through which the parameters enter

the event rate predictions. Note that we do not use the approximate expression for the nu-

merical work (which is based on numerical calculations of the full three-flavor probabilities

including the matter effect) but they serve well for a qualitative understanding.

Let us define

∆ ≡ |∆m
2
31|L

4E
, A ≡

∣∣∣∣ 2EV

∆m2
31

∣∣∣∣ , (3.1)

where L is the baseline, E is the neutrino energy, and V is the effective matter potential.

For the νµ disappearance channel we have

Pdis ≈ sin2 2θ23 sin2 ∆ , (3.2)

– 5 –
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where we show only the leading term and neglect corrections due to ∆21 as well as θ13. An

approximate expression for the νµ → νe oscillation probability, valid for a constant matter

density is given by [35, 36]:

Papp ≈ 4 sin2 θ13 sin2 θ23
sin2 ∆(1− asA)

(1− asA)2

+ s
∆m2

21

|∆m2
31|

sin 2θ13 sin 2θ12 sin 2θ23 cos(s∆ + aδCP)
sin ∆A

A

sin ∆(1− asA)

1− asA
. (3.3)

The signs a and s describe the effects of CP-conjugation and the neutrino mass ordering,

respectively, with a = +1 for neutrinos and a = −1 for anti-neutrinos, and s = sgn(∆m2
31).

The matter effect enters via the parameter A. Numerically one finds for a matter density

of 3 g/cm3

A ' 0.094

(
E

GeV

)(
|∆m2

31|
2.4× 10−3 eV2

)−1

. (3.4)

Hence, for the T2K experiment, with E ' 0.7 GeV, the matter effect is of order 6% and

we can expand eq. (3.3) also in A, keeping only terms up to first order in A. To simplify

the expression further we assume the first oscillation maximum, ∆ ≈ π/2, which is a good

approximation for T2K. Introducing the definitions

sin2 θ23 =
1

2
+ d , C ≡ ∆m2

21L

4E
sin 2θ13 sin 2θ12 sin 2θ23 , (3.5)

eq. (3.3) becomes for neutrinos and anti-neutrinos

Pν ≈ 2 sin2 θ13(1 + 2d)(1 + 2sA)− C sin δCP (1 + sA) , (3.6)

Pν̄ ≈ 2 sin2 θ13(1 + 2d)(1− 2sA) + C sin δCP (1− sA) . (3.7)

Note that the magnitude of d is constrained by the νµ → νµ disappearance channel,

but we are left with the octant degeneracy for θ23, described by a sign ambiguity of d, with

d < 0 (d > 0) corresponding to the first (second) octant for θ23. We are going to consider

values in the range −0.1 ≤ d ≤ 0.1, within the currently 3σ confidence interval. Hence, the

free parameters in the problem are the continuous parameter δCP and the two signs of d

and s, i.e. four discrete sign combinations. Note, however, that especially for current data

this is an over-simplification, since the uncertainty on |d| is large. Numerically we have

sin2 θ13 ≈ 0.022, C ≈ 0.013 (with a very weak dependence on d for |d| . 0.1), and A ≈ 0.06.

Hence, all terms in eqs. (3.6) and (3.7) are of similar order, and both the octant [37] and

the mass ordering [38] degeneracies will lead to changes in the predictions of similar size

as δCP. Recent discussions of the δCP and θ23 interplay can be found in refs. [29, 39, 40].

Given the parameter dependencies from eqs. (3.2) and (3.6), (3.7) we can expect devi-

ations from the Gaussian limit for the following reasons.

1. Present data show only weak sensitivity to δCP, i.e., the full range 0 ≤ δCP < 2π

is allowed at relatively low CL. This implies that the strong non-linearity of the

trigonometric dependence in eq. (3.6) comes into play. In particular, because of the

sine dependence, only a finite change of Ti(δCP) can be achieved by varying δCP, in

– 6 –
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contrast to the unbounded variation of a linear model. This means that δCP effectively

provides less than 1 dof, which implies that the true cut levels for a given CL will be

lower than the ones corresponding to the Gaussian approximation.

For future data with decreased statistical errors the fluctuations of the data may

become of similar size as the compact region spanned in Ti upon varying δCP, which

means that the coverage of Ti is actually more efficient than for the linear model

and δCP thus provides more than 1 dof. If the exposure is further increased the

fluctuations will become even smaller than the compact region in Ti such that the

linear expansion becomes valid and we approach 1 dof.

2. Disappearance data depend on sin2 2θ23, which leads to the octant degeneracy for

θ23. However, due to the sin2 θ23 factor in the appearance probability the degeneracy

is not complete when νµ → νe data are included. The two possible solutions for

sin2 θ23 corresponding to the two signs of d imply more freedom than a single linear

parameter. Hence the presence of the degeneracy leads to an increase of the effective

dofs, which implies increased cut levels.

3. For values of θ23 close to π/4 we are facing a physical boundary in the disappear-

ance channel, since sin2 2θ23 ≤ 1, which implies that predictions corresponding to

sin2 2θ23 > 1 cannot be reached by varying θ23. This leads to a decrease of the

effective dof, and reduces the cut levels.

4. Similarly, for δCP ' π/2 or 3π/2 the sin δCP dependence in the appearance probabil-

ities (3.6) and (3.7) imply a physical boundary due to | sin δCP| ≤ 1. For those values

of δCP the derivatives of the probabilities with respect to δCP vanish. Hence, we

expect decreased cut levels for those values, while for δCP ' 0 or π the dependence

of the appearance channel resembles approximately a linear model. The behavior

around δCP ' π/2 or 3π/2 is further complicated by the octant and mass ordering

degeneracies, see the discussion related to eq. (3.8) below.

In our numerical results presented below we will observe all of those effects, where

some of them may occur simultaneously, leading to a complicated interplay of effects. Nev-

ertheless, some general features can be understood qualitatively. For instance, considering

the δCP dependence of eqs. (3.6) and (3.7) plus the 4-fold degeneracy related to the signs of

d and s, we find that there are minimal and maximal values for the oscillation probabilities

(and hence for the event rates) given by the following combinations of the parameters:

Pmax
ν : d > 0 (2nd oct.) , s = +1 (NO) , δCP = 3π/2

Pmin
ν : d < 0 (1st oct.) , s = −1 (IO) , δCP = π/2

Pmax
ν̄ : d > 0 (2nd oct.) , s = −1 (IO) , δCP = π/2

Pmin
ν̄ : d < 0 (1st oct.) , s = +1 (NO) , δCP = 3π/2

(3.8)

If the true values of d, s, δCP correspond to one of the combinations in eqs. (3.8) then we are

located at a physical boundary for the event rates: there is no point in the parameter space

which can provide a larger (or smaller) value of the probability. Statistical fluctuations

– 7 –



J
H
E
P
0
9
(
2
0
1
5
)
0
1
6

δ
CP

0 π/2 π 3π/2 2π

∆
χ

2

0

2

4

6

8

10
T2K sin

2
θ

23
 =0.4 (NO)

1σ
2σ
3σ

δ
CP

0 π/2 π 3π/2 2π

∆
χ

2

0

2

4

6

8

10
T2K sin

2
θ

23
 =0.5 (NO)

1σ
2σ
3σ

δ
CP

0 π/2 π 3π/2 2π

∆
χ

2

0

2

4

6

8

10
T2K sin

2
θ

23
 =0.6 (NO)

1σ
2σ
3σ

δ
CP

0 π/2 π 3π/2 2π

∆
χ

2

0

2

4

6

8

10
T2K sin

2
θ

23
 =0.4 (IO)

1σ
2σ
3σ

δ
CP

0 π/2 π 3π/2 2π

∆
χ

2

0

2

4

6

8

10
T2K sin

2
θ

23
 =0.5 (IO)

1σ
2σ
3σ

δ
CP

0 π/2 π 3π/2 2π

∆
χ

2

0

2

4

6

8

10
T2K sin

2
θ

23
 =0.6 (IO)

1σ
2σ
3σ

Figure 1. The cut levels tMC(CL,Θ) for ∆χ2(δCP) from T2K data for 1σ (red), 2σ (blue), 3σ

(green). Dashed lines indicate the Gaussian approximation tχ2 . Left, middle, right panels corre-

spond to sin2 θtrue23 = 0.4, 0.5, 0.6, respectively. We take |∆m2
32

true| = 2.4 × 10−3 eV2 and for the

upper (lower) row we have assumed a true normal (inverted) mass ordering. The black solid curve

shows ∆χ2(δCP) using the observed data (same curve in all panels).

leading to even larger (or smaller) event rates than predicted for those extreme parameter

values cannot be accommodated by adjusting the model. This implies that the effective

number of dof of the ∆χ2 is reduced, i.e. lower cut levels. A related discussion can also be

found in ref. [32].

4 Results for present data

4.1 One-dimensional intervals for δCP

We start presenting the results of our simulations for the 1-dimensional ∆χ2 distributions

defined in eq. (2.4). In figures 1 and 2 we consider ∆χ2(δCP) for the CP phase δCP and

show the cut levels tMC for 1σ, 2σ, 3σ. Figure 1 uses T2K data only whereas figure 2

uses all data given in table 1, showing qualitatively similar results to the T2K-only case.

We have checked that our T2K results are consistent with the ones shown by the T2K

collaboration [15], in cases where comparison is possible.

By comparing the curves for tMC to the χ2 approximation tχ2 indicated by the dashed

curves, we observe significant deviations for the Gaussian limit, with tMC(2σ) and tMC(3σ)
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Figure 2. Same as figure 1 but using combined T2K and MINOS data.

being much lower than the corresponding tχ2 [17]. Furthermore we find large variations

of the ∆χ2(δCP) distribution depending on δCP itself, and on the assumed true values

for sin2 θ23 [17] and to a lesser extent also depending on the mass ordering. The various

panels in figures 1 and 2 correspond to different assumptions about θtrue
23 and the true mass

ordering. Note that those are the “true” values assumed for generating the pseudo data,

while when fitting to the data we leave θ23 and ∆m2
32 free. Comparing figures 1 and 2, we

find that the addition of MINOS data makes some of the “dips” in the cut levels less sever,

e.g. the ones for sin2 θ23 ' 0.4 and δ ' π/2 for both orderings.

The behavior of the tMC curves can be understood from the discussion given in sec-

tion 3. The reduction of tMC compared to the Gaussian limit follows from the poor sensitiv-

ity of the data to δCP, which implies that the full range 0 ≤ δCP < 2π becomes accessible.

Hence the trigonometric dependence becomes relevant, changing δCP provides less freedom

than a linear parameter, and the effective number of dof becomes reduced.

The appearance of the bumps, for instance for normal ordering and (sin2 θtrue
23 =

0.4, δCP ' 3π/2) and (sin2 θtrue
23 = 0.6, δCP ' π/2) can be understood by considering the θ23

octant degeneracy. We show in figure 3 the sensitivity of T2K in the (sin2 θ23, δCP) plane.

We calculate so-called Asimov data, using the theoretical prediction for certain assumed

true values without statistical fluctuations as “data”. This indicates the expected sensitiv-

ity for that particular set of true values for an average experiment. Regions in figure 3 are

derived based on the Gaussian approximation for ∆χ2(δCP, θ23).
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Figure 3. Sensitivity of T2K data in the (sin2 θ23, δCP) plane based on Asimov data at 1σ, 2σ,

3σ assuming sin2 θtrue23 = 0.4 (upper row) and 0.6 (lower row) for different values of δtrueCP as marked

by the dots in the plots. We assume ∆m2
32

true
= 2.4 × 10−3 eV2 (NO). Colored areas correspond

to the current exposure, whereas the black contour curves correspond to an exposure of 7.8×1021

p.o.t. neutrino data (about 12 times the current exposure). Regions are derived by assuming the

Gaussian approximation.

By comparing those results with the upper row of panels in figure 1 we find a correlation

with the ability to resolve the degeneracy: in cases with improved sensitivity to the octant

(panels (b) and (h) in figure 3) the cut levels are low (upper left panel for δCP ' π/2 and

upper right panel for δCP ' 3π/2 in figure 1), whereas for cases where the degeneracy is

strong for all values of δCP (panels (d) and (f) in figure 3) the cut levels are high (upper left

panel for δCP ' 3π/2 and upper right panel for δCP ' π/2 in figure 1). This shows that the

presence of the degeneracy increases the effective number of dof for the ∆χ2 distribution.

We have confirmed a similar correspondence also for the inverted ordering. Note that

the overall sensitivity to the octant is very poor even in the cases shown in panels (d)

and (f) in figure 3, corresponding to ∆χ2 ≈ 0.5 for the wrong octant solution. However,

for the distribution of ∆χ2(δCP) it is relevant that the degeneracy can be resolved for a

significant range of δCP values, while for the the cases corresponding to panels (d) and

(f) in figure 3 the degeneracy is present at below 1σ for all values of δCP. Those results

can also be understood from the discussion related to the maximal and minimal values of

the oscillation probability given in the first 2 lines of eq. (3.8). Figure 1 shows low cut

levels for those combinations of parameters, following from the physical boundary of the

event rates.4

4The reduced cut levels for NO, sin2 θ23 = 0.4, δCP ' π/2 seen in the left upper panel of figure 1 do not

follow from this argument. While d < 0 and δCP ' π/2 does correspond to a minimum of the oscillation

probability, apparently in that case changing the mass ordering from NO to IH does not provide enough
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true sin2 θ23 true MO 1σ 2σ 3σ

0.4 normal [3.20, 6.00] [0, 0.42] ∪ [2.65, 2π] [0, 2π]

0.5 normal [3.21, 5.94] [0, 0.70] ∪ [2.48, 2π] [0, 2π]

0.6 normal [3.16, 5.90] [0, 2π] [0, 2π]

0.4 inverted [3.11, 6.14] [0, 0.44] ∪ [2.63, 2π] [0, 1.08] ∪ [2.35, 2π]

0.5 inverted [3.15, 6.07] [0, 0.45] ∪ [2.61, 2π] [0, 2π]

0.6 inverted [3.23, 5.92] [0, 0.55] ∪ [2.59, 2π] [0, 2π]

Gaussian limit [3.09, 6.20] [0, 2π] [0, 2π]

Table 2. Confidence intervals at 1σ, 2σ, 3σ for the CP phase δCP from combined T2K and MINOS

data for different assumptions about the true values of θ23 and the neutrino mass ordering. The

last row shows the confidence intervals in the Gaussian approximation.

For the cut levels in figures 1 and 2, we have always minimized with respect to both

mass orderings. However, we have checked that assuming that the mass ordering was known

(i.e., restricting to the true ordering in the fit) does not change the results qualitatively.

This is different from the cut levels for increased exposure discussed in section 5, where we

will find a significant effect of restricting the mass ordering.

The exact confidence intervals for δCP can be obtained by comparing the ∆χ2(δCP)

from the observed data (shown as black curves in figures 1 and 2) to the curves for the cut

levels. The confidence interval at a given CL is obtained by those values of δCP for which

∆χ2(δCP) ≤ tMC(CL). We show the confidence intervals for δCP at 1σ, 2σ, 3σ in table 2

and figure 4 for different assumptions about the true values of θ23 and the mass ordering,

and we compare them to the Gaussian approximation. Because of the dependence of tMC

on the values of the other parameters the confidence intervals for δCP depend on those

unknown true values. From figure 4 we see that the 1σ intervals are relatively stable and

agree well with the Gaussian approximation. The variations are relatively large for the 2σ

interval. There is a large parameter dependence on the CL of rejection of δCP ' π/2. Using

combined T2K+MINOS data this rejection ranges from around 3σ for sin2 θ23 = 0.4 (both

mass orderings) to only 2σ for sin2 θ23 = 0.6 (NO), see figure 2. We obtain ∆χ2 = 3.37

at δCP = π/2. Hence, the Gaussian approximation gives a rejection of δCP = π/2 at

1.8σ. The dependence of the MC results on the true values of other parameters is even

more pronounced for T2K data only, see figure 1. Note that the rejection of δCP ' π/2

is stronger for T2K data-only and the significance decreases somewhat when MINOS data

are included. The reason for the slight decrease of ∆χ2(δCP) when MINOS data are added

to T2K is that MINOS appearance data prefer a somewhat smaller value of θ13 than T2K

and hence the combination with the reactor result for θ13 becomes somewhat less effective

in constraining δCP when MINOS is included.

Within the frequentist framework there is no way to marginalize or average over the

true values of nuisance parameters, since those are considered to be fixed constants of

Nature. Hence the dependence of the results for δCP on the unknown true values of other

freedom to overcome the physical boundary.
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Figure 4. Graphical representation of the confidence intervals for δCP at 1σ (red), 2σ (blue), 3σ

(green), see table 2. The labels on the left side indicate the true value of sin2 θ23 and the mass

ordering. The bottom three bars correspond to the Gaussian approximation.

parameters (especially θ23) introduces an unpleasant ambiguity. One possibility to deal

with this situation could be to present for each CL the largest confidence interval for δCP.

Then the CL would be a lower bound on the true coverage of the interval, i.e., such an

interval at the α CL will cover the true value with a probability of at least α. A problem

with this approach is that one has to maximize the confidence interval of δCP with respect

to the true value of θ23, and within a frequentist framework it is not possible to decide which

range for θ23 has to be considered.5 This problem is solved by considering 2-dimensional

confidence regions in both parameters. Before presenting those in section 4.3 below, we

proceed now by discussing the 1-dimensional intervals for θ23.

4.2 One-dimensional intervals for θ23

The cut levels for ∆χ2(θ23) obtained from our MC simulation are shown in figure 5 for T2K

disappearance data only (top row), for T2K disappearance and appearance data (middle

row), and T2K and MINOS combined (bottom row). The columns of panels correspond

to different values of the CP phase δCP used to generate the pseudo data. We make the

following observations:

1. For non-maximal values | sin2 θ23 − 0.5| & 0.05, the test statistic ∆χ2(θ23) is dis-

tributed approximately as a χ2 with 1 dof, according to the Gaussian approximation.

2. For maximal values sin2 θ23 ' 0.5 the cut levels are somewhat reduced compared to

the Gaussian case. This is the manifestation of the physical boundary sin2 2θ23 ≤ 1,

which reduces the freedom provided by the parameter θ23.

3. Disappearance data only (top row) is insensitive to the true value of the phase δCP.

5A similar discussion in the context of the mass ordering determination can be found in ref. [41].
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4. When appearance data are included we observe a slight increase of the cut levels

compared to the Gaussian limit for certain combinations of θ23 and δtrue
CP , namely for

δtrue
CP = π/2, sin2 θ23 & 0.6 and for δtrue

CP = 3π/2, sin2 θ23 . 0.4. These are the same

regions where we have noted also an increase in the cut levels for ∆χ2(δCP) in the

previous section, corresponding to the cases of strong octant degeneracy, see panels

(d) and (f) in figure 3.

5. The behavior of the cut levels is basically unchanged by adding MINOS data to

T2K. However, the ∆χ2(sin2 θ23) from the observed data (black curves in the plots)

is slightly disfavoring maximal mixing. While the confidence intervals for sin2 θ23

based on the MC from T2K happen to be very similar to the χ2 approximation,

some deviations from the Gaussian limit occur when MINOS data are added, since

the observed ∆χ2 is pushed somewhat into regions where tMC differs from tχ2 .

Figure 5 corresponds to assuming a normal ordering for generating the MC data.

Very similar results are obtained also for inverted ordering. We have also investigated the

distribution of the 1-dimensional ∆χ2 for ∆m2
23 and we have found very good agreement

with the Gaussian limit, independent of any other parameters for any combination of T2K

and/or MINOS data. This reflects the very robust determination of ∆m2
32 by the νµ

disappearance spectral data.

4.3 Two-dimensional confidence regions

As we have seen above, the distribution of the test statistic for δCP depends significantly

on the unknown true value of θ23. Hence, treating θ23 as nuisance parameter leads to the

unpleasant result that the confidence intervals for δCP cannot be stated independently of

the true value of θ23. One way to deal with such a situation in a frequentist framework is

to consider two-dimensional confidence regions of both parameters, keeping in mind that

the interpretation of the results is different.

We consider the test statistic ∆χ2(δCP, θ23) defined in eq. (2.5) and simulate the distri-

bution of this statistic for a grid of true values in the (δCP, θ23) plane. Then in each point

in this plane the observed value of ∆χ2(δCP, θ23) can be compared to the distribution from

the MC to decide whether this point is included in the confidence region at a given CL. The

results of such an analysis are shown in figure 6 for T2K only (left panel) and the T2K +

MINOS combination (right panel). The thick solid curves indicate the confidence regions

in the space of δCP and sin2 θ23 at 1σ, 2σ, and 3σ CL based on the MC simulation. They

can be compared to the thin dotted curves, which indicate the regions obtained under the

Gaussian approximation, i.e. using the cut levels tχ2 obtained from the χ2 distribution for

2 dof. We observe that regions obtained from the MC are relatively close to the Gaussian

limit. We conclude that the 2-dimensional test statistic has “better” statistical properties

than the 1-dimensional one, where the θ23 dependence is profiled out.

This result is further illustrated in figure 7, which shows sections through the 2-

dimensional distribution. Those results should not be confused with the ones shown in

figures 1 and 2, where the χ2 is minimised with respect to θ23, whereas here we keep it

fixed at the assumed true value (eq. (2.4) versus (2.5)). The MC curves in figure 7 should
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Figure 5. The cut levels tMC(CL,Θ) for ∆χ2(θ23) for 1σ (red), 2σ (blue), 3σ (green). Dashed

lines indicate the Gaussian approximation tχ2 . Top row: T2K disappearance only, middle row:

T2K disappearance and appearance, bottom row: combined T2K and MINOS data. The columns

correspond to δtrueCP = 0, π/2, π, 3π/2 from left to right, and we always assume a true normal mass

ordering with ∆m2
32 = 2.4 × 10−3 eV2. The black solid curve shows ∆χ2(θ23) using the observed

data (same curve in the 4 panels in each row).

be compared to the corresponding cut values tχ2 for a χ2 distribution with 2 dof, indicated

by the dashed lines in the figure. We observe that the MC cut levels are close to the

Gaussian limit. For sin2 θ23 ' 0.5 we observe somewhat smaller tMC values compared to

the Gaussian ones, due to the physical boundary sin2 2θ23 ≤ 1 (visible in the right panel in

figure 7). In all cases the variation of the MC cut levels with δCP as well as with θ23 is sig-

nificantly reduced compared to the 1-dimensional case. We conclude that for present data,

the Gaussian approximation to derive confidence regions is more reliable in the (δCP, θ23)

plane, whereas 1-dimensional confidence intervals for the CP phase δCP suffer from large

deviations from Gaussianity.
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Figure 6. Two-dimensional confidence regions at 1σ (red), 2σ (blue), 3σ (green) in the

(sin2 θ23, δCP) plane for T2K (left panel) and T2K + MINOS (right panel). Solid curves corre-

spond to the MC simulation, whereas dotted curves correspond to the Gaussian approximation.

For the MC we assume a true normal mass ordering with ∆m2
32

true
= 2.4× 10−3 eV2, while for the

fit we minimize with respect to ∆m2
32 including its sign.
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Figure 7. Sections through the two-dimensional ∆χ2(δCP, θ23) distribution for combined T2K and

MINOS data at constant θ23 with sin2 θ23 = 0.4 (left panel) and sin2 θ23 = 0.6 (middle panel), and

at constant δCP = π/2 (right panel). Solid curves correspond to tMC for 1σ (red), 2σ (blue), 3σ

(green). Dashed lines indicate tχ2 for a χ2 distribution with 2 dof. The black solid curves show

∆χ2(δCP, θ23) using the observed data.

For figures 6 and 7 we have assumed a true normal mass ordering to generate the

MC data. The corresponding plots for a true inverted ordering are very similar. We can

use the 2-dimensional confidence regions also to quantify the rejection of δCP = π/2 by

looking for the largest CL for which the (δCP, sin
2 θ23) confidence regions do not contain

δCP = π/2. In this way we find from the MC calculation that combined T2K and MINOS

data allow to reject δCP = π/2 at the 81.8% (83.9%) CL assuming a true normal (inverted)

mass ordering. We have ∆χ2(δCP = π/2) = 3.37, which in the Gaussian approximation for
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Figure 8. Two-dimensional confidence regions at 1σ (red), 2σ (blue), 3σ (green) in the (θ23,∆m
2
32)

plane for T2K + MINOS data. Solid curves correspond to the MC simulation, whereas dotted curves

correspond to the Gaussian approximation. For the MC we assume a true value of δCP = 3π/2,

while for the fit we minimize with respect to δCP.

2 dof corresponds to the 81.5% CL. We note that the MC results for NO and IO are very

similar and close to the one obtained in the Gaussian limit. In contrast, the corresponding

rejection confidence levels based on 1-dimensional confidence intervals for δCP vary strongly

with the true mass ordering and true θ23 and differ significantly from the Gaussian limit

(see discussion in section 4.1). Note that the interpretation of the rejection confidence

levels based on 1-dimensional or 2-dimensional confidence regions is different.

In figure 8 we show the 2-dimensional Feldman-Cousins confidence regions in the plane

of sin2 θ23 and ∆m2
32 for the combined T2K and MINOS data. We observe that they agree

quite well with the standard Gaussian approximation. For generating the MC data we have

assumed here δCP = 3π/2, but the results are very similar for other true values of δCP.

5 Increased exposure and T2K anti-neutrino data

Next we are going to discuss how this situation will change in the near future, for increased

exposure in T2K or when data on anti-neutrinos become available. Following the T2K

collaboration [42] we consider an exposure of 7.8× 1021 protons-on-target (p.o.t.), approx-

imately a factor 12 larger than the current exposure. We consider two cases, either using

all of this exposure for neutrino data or equally sharing the exposure between neutrino and

anti-neutrino running. We depart from the code used for our present-data T2K analysis

(see section 2), and scale the spectrum normalization such that we can reproduce the ex-

pected number of events given in tables 4 and 5 in [42]. This is a rough approximation,

especially for the anti-neutrino case, where we ignore the (rather substantial) contribution

from the neutrino component in the beam. Despite those simplifications we can reproduce
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Figure 9. The cut levels tMC(CL,Θ) for ∆χ2(δCP) for future T2K data of 7.8 × 1021 p.o.t. for

1σ (red), 2σ (blue), 3σ (green). Solid curves assume 100% neutrino running, dashed curves are for

50% neutrino and anti-neutrino data, each. Left, middle, right panels correspond to sin2 θtrue23 =

0.4, 0.5, 0.6, respectively. We take |∆m2
32

true| = 2.4 × 10−3 eV2 and for the upper (lower) row we

have assumed a true normal (inverted) mass ordering. The mass ordering ambiguity is included in

the minimisation.

accurately the event spectra from figure 2 in [42], as well as the sensitivity plots based on

Asimov data given in ref. [42]. Note that total event numbers are still relatively small,

210 (260) events for neutrinos and 49 (35) events for antineutrinos for δCP = 0 (3π/2),

implying large statistical errors. Our approximate implementation suffices to study the

expected statistical properties of the test statistics. A detailed and accurate sensitivity

calculation is beyond the scope of this work.

In figure 9 we show the cut levels for ∆χ2(δCP) for different assumptions about the true

θ23 and mass ordering, both for neutrino-only data and for combining neutrino and anti-

neutrino data. We find that in both cases a significant dependence on the unknown true

values of θ23 and the mass ordering remains. In particular, the significance of excluding

values of δCP ' π/2 or 3π/2 will vary quite strongly. The locations of the dips in the

cut levels follow the pattern discussed in section 3. The regions of low cut levels for

neutrino data-only visible for NO, sin2 θ23 = 0.6, δCP ' 3π/2 (upper right panel) and IO,

sin2 θ23 = 0.4, δCP ' π/2 (lower left panel) correspond to the regions of maximal and

minimal oscillation probability indicated in the first two lines of eq. (3.8). Also the dips in

the middle panels of figure 9 (for sin2 θ23 = 0.5) follow this argument.
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Figure 10. Same as figure 9, but assuming that the mass ordering is known, i.e. restricting the fit

to the assumed true ordering.

We also observe from the figure that in many cases using anti-neutrino data has only

a small impact on the distribution of the test statistics. The only exceptions are sin2 θ23 =

0.4, NO (upper left) and sin2 θ23 = 0.6, IO (lower right). In those cases cut levels are

raised close to the Gaussian limit for 0 ≤ δCP ≤ π or π ≤ δCP ≤ 2π, respectively. In

the opposite regions of δCP for those cases cut levels remain low also when anti-neutrino

data are added. For those regions, there is an octant degenerate solution which basically

destroys any sensitivity to δCP, see panel (d) in figure 3, while adding information from

anti-neutrinos significantly helps in resolving this degeneracy which increases the sensitivity

to δCP. Those regions correspond to the minimal and maximal values for the anti-neutrino

oscillation probability indicated in the last two lines of eq. (3.8), explaining the good

sensitivity of anti-neutrino data for those cases.

In figure 10 we show the same analysis as in figure 9, except that we assume that the

mass ordering is known (determined independently by some other experiment). Hence, we

do not minimize with respect to the mass ordering, but restrict the fit to the assumed true

ordering. We observe that the sign(∆m2
32) degeneracy has a large impact on the distribution

of the test statistics and cut levels become much closer to the Gaussian approximation.6

This is different to the situation we find for current data discussed in section 4, where the

6This is an example where the presence of the degeneracy decreases the effective number of dof, contrary

to the cases discussed previously, where the presence of a degeneracy increases the number of dof.
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mass ordering degeneracy has only a small impact on the distribution of the test statistics.

For neutrino-only data, there are still a few cases of large deviations from Gaussianity,

whereas the combined neutrino and anti-neutrino data lead to cut levels close to the χ2

limit (see dashed curves in figure 10). We still observe small dips for δCP ' π/2 and

3π/2 (now pretty symmetric around δCP = π), which can be traced back to the sin δCP

dependence of the probabilities, leading to a reduction of the dof for those values of δCP.

Note also that in some cases we find now cut levels which are even higher than the Gaussian

ones. A possible explanation for this behavior can be found in the discussion in section 3,

see item 1.

6 Discussion and conclusions

We have studied in detail the information we can obtain on the leptonic CP phase δCP from

current data, focusing on the robustness of frequentist confidence regions, by performing a

Monte Carlo simulation of the data from the T2K and MINOS experiments. We attempt

to quantify the current preference for δCP ' 3π/2 over δCP ' π/2. We have focused on

the interplay of the main unknown parameters, namely δCP, θ23, and the neutrino mass

ordering. Our findings can be summarized as follows.

The distribution of the ∆χ2 test statistic used for 1-dimensional confidence intervals

for δCP shows large deviations from the Gaussian limit. In particular, it strongly depends

on the unknown true value of θ23. This introduces an ambiguity in the confidence intervals

for δCP, see figure 4. While the 1σ interval for δCP is relatively stable and close to the

Gaussian approximation, at higher confidence level large variations occur. In particular,

the CL with which values of δCP ' π/2 are disfavored ranges from 2σ to 3σ, depending on

θ23 and the mass ordering. We can trace back the origin of those results to the complicated

non-linear parameter dependence of the relevant oscillation probabilities (trigonometric

dependence of δCP and θ23-octant and mass ordering degeneracies), combined with the

rather poor sensitivity of current data to δCP.

We conclude that one should not use the Gaussian approximation when making state-

ments about δCP based on the 1-dimensional ∆χ2 test statistic. Typically the “true” confi-

dence levels obtained from the Monte Carlo simulation lead to more restrictive confidence

intervals and to stronger rejections of values of δCP around π/2. In this sense the use of the

Gaussian approximation is conservative. We have shown that the Gaussian approximation

is better justified for 2-dimensional confidence regions in the plane of δCP and sin2 θ23, see

figure 6. In particular, the dependence of the ∆χ2 distribution on the true values of δCP

and θ23 is much less severe in the 2-dimensional case. The 2-dimensional confidence region

in the (δCP, θ23) plane for combined T2K and MINOS data does not include δCP = π/2 up

to the 81.8% (83.9%) CL assuming a true normal (inverted) mass ordering.7 Those values

are close to the CL of 81.5% obtained under the Gaussian approximation.

We have considered also the 1-dimensional confidence intervals for θ23 and ∆m2
32.

For θ23 we find approximately Gaussian behavior, with some deviations around maximal

7When first data [34] from T2K on νµ → νe are included, the corresponding numbers are 86.3%

(89.2%) CL, see appendix.
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mixing, see figure 5. This is a manifestation of the boundary sin2 2θ23 ≤ 1, which implies

that the derivative of the event rates predicted for the disappearance channel with respect

to θ23 is zero for θ23 = 45◦. The test statistic for ∆m2
32 has a distribution very close to the

Gaussian limit, as well as the 2-dimensional confidence regions in the (sin2 θ23,∆m
2
32) plane.

In section 5 we have studied the distribution of the 1-dimensional ∆χ2 test statistic

for δCP assuming an increased exposure for T2K of 7.8× 1021 protons-on-target, roughly a

factor 12 larger than current exposure, where we consider also the possibility of using half

of this exposure for anti-neutrino running. We find that even in this case large deviations

from the Gaussian behavior can be expected. Typically reduced cut levels for the ∆χ2

are obtained around either δCP ' π/2 or 3π/2, depending on the unknown true value of

θ23 and the mass ordering. Close to Gaussian behavior is only obtained for neutrino plus

anti-neutrino running and assuming that the neutrino mass ordering is known.

Let us mention that in the global fit of all oscillation data also SuperKamiokande

atmospheric neutrino data contribute to the determination of θ23 and to a small extent

also of δCP, see ref. [17] for a discussion. Ideally a combined MC simulation of long-baseline

and atmospheric neutrino data should be performed, which however, is not feasible due to

the numerical complexity of the atmospheric neutrino fit. Since atmospheric neutrino data

play only a subleading role for δCP we expect that the results presented here would not be

modified substantially by including atmospheric neutrinos.

For the investigation of near term future data in section 5 we have not considered the

NOvA experiment [43, 44], from which data will become available during the next years. In

general we expect improved behaviour of the relevant test statistics, since complementary

data from NOvA may help to resolve some of the degeneracies (see, e.g. refs. [28, 29]

for recent studies), which — as we have shown — play a crucial role for the deviations

from Gaussianity. The same is true also for experiments aiming to determine the neutrino

mass ordering, see ref. [41] for a discussion and references. An exhaustive investigation of

the expected statistical properties of future data is beyond the scope of this work. Some

discussion along those lines in the context of CP violation can be found in ref. [32]. It

will be an interesting topic for future work to study sensitivities to δCP of combined data

from NOvA, T2K, and other upcoming experiments based on the true distributions of the

relevant test statistics.
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A Impact of first anti-neutrino data from T2K

After completion and submission of this paper, the first anti-neutrino results from T2K

were presented at the EPS HEP 2015 conference [34]. In this appendix we show the impact

of those data on the determination of δCP.
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Figure 11. The cut levels tMC(CL,Θ) for ∆χ2(δCP) from combined T2K and MINOS data for

1σ (red), 2σ (blue), 3σ (green). Left, middle, right panels correspond to sin2 θtrue23 = 0.4, 0.5, 0.6,

respectively. We take |∆m2
32

true| = 2.4× 10−3 eV2 and for the upper (lower) row we have assumed

a true normal (inverted) mass ordering. The black curves show ∆χ2(δCP) using the observed data

(same curves in all panels). Solid curves correspond to the data given in table 1 (no T2K anti-

neutrinos, same as in figure 2), dashed curves include T2K anti-neutrino data.

The results presented in [34] corresponds to about 4× 1020 p.o.t. in the anti-neutrino

mode with 3 observed events in the appearance channel.8 The expected background (NC

and other) is 1.17 events, while the predicted signal from νµ → νe (νµ → νe) induced events

ranges from 2 to 4 (0.3 to 0.6) events, depending on δCP and the mass ordering. We could

reproduce the predicted number of events given in [34] with good accuracy, which allows

us to include those data and combine it with the other data used in this work. We use a

χ2 as given in eq. (2.2) with just one bin (only the total number of events is fitted), taking

into account the background expectation, as well as oscillated anti-neutrino and neutrino

event predictions.

Clearly the statistical significance of those results is poor, since 3 observed events are

even consistent with the background only hypothesis of about 1.17 events (no oscillation

induced events at all) at slightly more than 1σ. Therefore we expect that those data will

change ∆χ2 by about 1 unit. Nevertheless, anti-neutrinos carry complementary informa-

tion to the neutrino data and therefore it may be interesting to investigate the impact of

those results.

8We do not consider the disappearance channel here.
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Figure 12. Two-dimensional confidence regions at 1σ (red), 2σ (blue), 3σ (green) in the

(sin2 θ23, δCP) plane for T2K (left panel) and T2K + MINOS (right panel), including T2K anti-

neutrino data in both cases. Solid curves correspond to the MC simulation, whereas dotted curves

correspond to the Gaussian approximation. For the MC we assume a true normal mass ordering

with ∆m2
32

true
=2.4×10−3 eV2, while for the fit we minimize with respect to ∆m2

32 including its sign.

Figure 11 shows the impact of the anti-neutrino data on the 1-dimensional confidence

interval for δCP. The solid curves, both for the cut levels as well as for ∆χ2(δCP) are

without T2K anti-neutrinos and are identical to figure 2, while the dashed curves include

the information from the T2K anti-neutrino events. Comparing the black solid and dashed

curve we find that ∆χ2 for δCP = π/2 is increased by about 0.75. However, also the cut

levels are increased by a similar amount and hence the significance of rejecting δCP = π/2

is hardly affected. For sin2 θ23 = 0.4 the effect is most pronounced and in those cases the

significance actually decreases, despite the increased ∆χ2.

In figure 12 we show the 2-dimensional confidence region in the (δCP, θ23) plane for T2K

as well as T2K+MINOS data, including the T2K anti-neutrino events in both cases. This

figure should be compared with figure 6, which shows the corresponding regions without

T2K anti-neutrinos. As expected the difference is small, with the size of the confidence

region being slightly decreased due to the new data. Including T2K anti-neutrinos we find

that combined T2K and MINOS data allow to reject δCP = π/2 at the 86.3% (89.2%) CL

assuming a true normal (inverted) mass ordering, to be compared with 81.8% (83.9%) CL

without T2K anti-neutrinos. For ∆χ2(δCP = π/2) we find now a value of 4.27, which in

the Gaussian approximation for 2 dof corresponds to the 88.2% CL.
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