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1 Introduction

Vector boson pair production is an outstandingly important process at high energy hadron

colliders. Its measurement allows precision studies of the electroweak interaction, thereby

testing in detail the SU(2)L×U(1)Y gauge structure and the matter content of the Standard

Model of particle physics. The various combinations of vector boson pairs (ZZ, W+W−,

γγ, ZW±, Zγ, W±γ) lead to spectacular final state signatures (leptons, photons, missing

energy), that are often equally relevant to searches for new physics or studies of the Higgs

boson. The Higgs boson decay into two vector bosons is among the cleanest signatures for

Higgs production, and offers a broad spectrum of observables.

Precision studies of the electroweak interaction often focus on the pair production of on-

shell gauge bosons, while new physics searches and Higgs boson studies precisely veto these
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on-shell contributions, such that the remaining background processes are dominated by off-

shell gauge boson pair production. For both on-shell and off-shell production processes, it is

therefore very important to have a precise prediction of the Standard Model contributions,

in order to match the anticipated experimental accuracy of measurements at the LHC,

which is usually in the per-cent range. At this level of precision, next-to-leading order

(NLO) corrections in the electroweak theory and next-to-next-to-leading order (NNLO)

corrections in QCD are indispensable.

For all vector boson pair production processes, NLO QCD corrections [1–6] as well as

large parts of the NLO electroweak corrections [7–14] are available. These calculations are

fully differential in all kinematical variables, and usually include the leptonic decays of the

vector bosons. The derivation of NNLO QCD corrections to vector boson pair production

can build upon calculational techniques [15, 16] that were originally developed for the

Drell-Yan process [17, 18] or for Higgs boson production in gluon fusion [15, 16], which

have the same QCD structure due to their colour-neutral final state. As a new ingredient,

each vector boson pair production process at NNLO requires the two-loop corrections to

the basic scattering amplitude for quark-antiquark annihilation: qq̄′ → V1V2. These have

been known for a while already for γγ [19, 20] and V γ [21, 22] production, enabling the

calculations of these processes [23, 24] to NNLO accuracy.

Compared to the above, the two-loop matrix elements for the production of a pair

of massive vector bosons require a new class of two-loop Feynman integrals: two-loop

four-point functions with massless internal propagators and two massive external legs.

Recently, very important progress has been made on these. For the case of equal vector

boson mass, these integrals were derived in [25, 26], and used subsequently to compute the

NNLO corrections to the on-shell production of ZZ [27] and W+W− [28]. The integrals

for the most general case of non-equal masses were derived in [29–31], which allowed to

construct the full two-loop helicity amplitude for qq̄′ → V1V2 in [32]. A subset of these

integrals was derived independently in [33, 34] and used in the derivation of the fermionic

NNLO corrections to γ∗γ∗ production [34]. In this paper, we perform an independent

rederivation of these integrals and optimise our solutions for numerical performance. They

are used subsequently for a validation of the two-loop helicity amplitudes of [32], uncovering

an error in their original results. We present a public implementation for the numerical

evaluation of these amplitudes, which in the future will allow the calculation of NNLO

QCD corrections to arbitrary electroweak four-fermion production processes.

The paper is structured as follows: in section 2, we introduce the partonic current

for vector boson pair production and describe its decomposition into Lorentz structures.

Taking into account the vector boson decays into leptons, we present the helicity amplitudes

for four particle final state in section 3. A detailed description of the calculation and the

different contributions to the amplitude is given in section 4. The computation of the

master integrals and their optimisation is presented in 5. In section 6, we describe the

subtraction of UV and IR counter terms, and in section 7 we list the numerous checks

we performed on our results. In section 8 we present our C++ implementation for the

numerical evaluation of the amplitudes and use it to produce numerical results. Finally,

we conclude in section 9. In appendix A, we document the interference of the two-loop and
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tree amplitudes for the production of on-shell vector boson pairs, which was used in the

calculation of the NNLO corrections to pp → ZZ [27] and pp → WW [28]. Appendix B

contains the derivation of Schouten identities for the leptonic amplitudes, and appendix C

describes the conversion of our results between different schemes for the subtraction of

infrared singularities. We provide computer readable files for our analytical results and

our C++ code for the numerical evaluation of the amplitude on our VVamp project page on

HepForge at http://vvamp.hepforge.org.

2 Lorentz structure of the partonic current for qq̄′ → V1V2

Let us consider the production of two massive electroweak vector bosons in qq̄′ annihilation:

q(p1) + q̄′(p2) −→ V1(p3) + V2(p4) (2.1)

with

p2
1 = p2

2 = 0 , p2
3 6= 0 , p2

4 6= 0 , (2.2)

where the two vector bosons are off-shell and V1V2 = ZZ, W+W−, γγ, ZW±, Zγ, W±γ.

We define the usual Mandelstam variables

s = (p1 + p2)2 , t = (p1 − p3)2 , u = (p2 − p3)2 , (2.3)

such that

s+ t+ u = p2
3 + p2

4 .

The physical region of phase space is bounded by tu = p2
3p

2
4 such that

s ≥
(√

p2
3 +

√
p2

4

)2
,

1

2

(
p2

3 + p2
4 − s− κ

)
≤ t ≤ 1

2

(
p2

3 + p2
4 − s+ κ

)
(2.4)

where κ is the Källén function

κ
(
s, p2

3, p
2
4

)
≡
√
s2 + p4

3 + p4
4 − 2(s p2

3 + p2
3 p

2
4 + p2

4 s) . (2.5)

Let us consider the partonic amplitude for the production of the two off-shell vector

bosons V1V2

S(s, t, p2
3, p

2
4) = Sµν(p1, p2, p3) εµ3 (p3)∗ εν4(p4)∗ , (2.6)

where ε3 and ε4 are the two polarisation vectors of V1 and V2 respectively. In this notation,

we keep an overall factor e2 implicit, where e is the positron charge.

In order to calculate the partonic current Sµν(p1, p2, p3), we consider its tensorial

structure. Lorentz invariance restricts it to be a linear combination of 17 independent
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structures

Sµν(p1, p2, p3) = ū(p2) p/3u(p1) [F1 p
µ
1p

ν
1 + F2 p

µ
1p

ν
2 + F3 p

µ
1p

ν
3 ]

+ ū(p2) p/3u(p1) [F4 p
µ
2p

ν
1 + F5 p

µ
2p

ν
2 + F6 p

µ
2p

ν
3 ]

+ ū(p2) p/3u(p1) [F7 p
µ
3p

ν
1 + F8 p

µ
3p

ν
2 + F9 p

µ
3p

ν
3 ]

+ ū(p2) γµu(p1) [F10 p
ν
1 + F11 p

ν
2 + F12 p

ν
3 ]

+ ū(p2) γνu(p1) [F13 p
µ
1 + F14 p

µ
2 + F15 p

µ
3 ]

+ ū(p2) γµp/3γ
νu(p1)F16

+ ū(p2) γνp/3γ
µu(p1)F17 , (2.7)

where the form factors F1, . . . , F17 are scalar functions of the Mandelstam variables s, t,

p2
3, p2

4 and of the number of space-time dimensions d. To further constrain Sµν , we choose

the Landau gauge for the electroweak vector bosons with the transversality condition

ε3 · p3 = ε4 · p4 = 0 , (2.8)

and the sum over polarisations ∑
pol

(εµ3 )∗εν3 = −gµν +
pµ3p

ν
3

p2
3

,

∑
pol

(εµ4 )∗εν4 = −gµν +
pµ4p

ν
4

p2
4

. (2.9)

Imposing condition (2.8) we can reduce the number of independent tensor structures

to ten [35, 36], which can be chosen as

Tµν1 = ū(p2) p/3u(p1) pµ1p
ν
1 , T µν2 = ū(p2) p/3u(p1) pµ1p

ν
2 ,

Tµν3 = ū(p2) p/3u(p1) pµ2p
ν
1 , T µν4 = ū(p2) p/3u(p1) pµ2p

ν
2 ,

Tµν5 = ū(p2) γµu(p1) pν1 , Tµν6 = ū(p2) γµu(p1) pν2 ,

Tµν7 = ū(p2) γνu(p1) pµ1 , Tµν8 = ū(p2) γνu(p1) pµ2 ,

Tµν9 = ū(p2) γµp/3γ
νu(p1) , Tµν10 = ū(p2) γνp/3γ

µu(p1) . (2.10)

Without any loss of generality we can thus write the partonic current as

Sµν(p1, p2, p3) =

10∑
j=1

Aj(s, t, p
2
3, p

2
4)Tµνj , (2.11)

where we introduced the new physical form factors A1, . . . , A10, which are again scalar

functions of the Mandelstam variables s, t, p2
3, p

2
4 and of the dimension d.

Note that in deriving (2.11) no assumption has been made on the dimensionality d,

such that this decomposition is valid for any continuous values of d. Its structure has been

constrained using solely Lorentz and gauge invariance and is therefore true at every order

in perturbation theory. On the other hand, the scalar coefficients Aj(s, t, p
2
3, p

2
4) contain
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the explicit dependence on the perturbative order at which they are computed. These coef-

ficients can be extracted from the amplitude by applying appropriate projecting operators

on the latter. The projectors themselves can be expanded in the same tensorial basis:

Pµνj =
10∑
i=1

Bji (Tµνi )† , j = 1, 10 , (2.12)

where the coefficients Bji are functions of the Mandelstam variables s, t, p2
3, p

2
4 and of the

dimension d. They can be determined imposing that∑
pol

Pµ1µ2j

[
ε3µ1 ε4µ2 ε

∗
3ν1 ε

∗
4 ν2

]
Sν1ν2 = Aj . (2.13)

Note that the contraction is performed in d dimensions and at every stage one should

always recall to use the polarisation sum in (2.9). For later convenience we introduce also

the following scalar quantities:

τi =
∑
pol

(Tµ1µ2i )
† [
ε3µ1 ε4µ2 ε

∗
3ν1 ε

∗
4 ν2

]
Sν1ν2 , (2.14)

which are related to the coefficients Aj according to

Aj =

10∑
i=1

Bji τi , (2.15)

with the same coefficients Bji as in (2.12). These quantities (rather than the coefficients Aj)

are particularly useful in order to build up the contractions of the n-loop amplitudes with

the tree-level ones (see appendix A). We provide explicit expressions for Bji in computer

readable format on HepForge.

The partonic current receives contributions from QCD radiative corrections and can

be decomposed perturbatively as

Sµν(p1, p2, p3) = S(0)
µν (p1, p2, p3) +

(αs
2π

)
S(1)
µν (p1, p2, p3) +

(αs
2π

)2
S(2)
µν (p1, p2, p3) +O(α3

s) .

(2.16)

Obviously also the un-renormalised tensor coefficients Aj (or, equivalently the τj) have the

same perturbative expansion of the partonic amplitude

Aj = A
(0)
j +

(αs
2π

)
A

(1)
j +

(αs
2π

)2
A

(2)
j +O(α3

s) , (2.17)

τj = τ
(0)
j +

(αs
2π

)
τ

(1)
j +

(αs
2π

)2
τ

(2)
j +O(α3

s) , (2.18)

where the dependence on the Mandelstam variables is again implicit.

3 Helicity amplitudes for qq̄′ → V1V2 → 4 leptons

In physical applications we are interested in the processes

q(p1) + q̄′(p2)→ V1(p3) + V2(p4)→ l5(p5) + l̄6(p6) + l7(p7) + l̄8(p8) (3.1)

– 5 –
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where each of the two off-shell electroweak vector bosons can decay to pairs of leptons,

such that p3 = p5 + p6 and p4 = p7 + p8. Let us first focus on the general structure of the

helicity amplitudes for this process. Schematically these amplitudes can be written as the

product of the partonic current Sµν , and two leptonic currents Lµ , Lν , mediated by the

propagators of the two off-shell vector bosons P Vµν(q)

M̃(p5, p6, p7, p8; p1, p2) = Sµν(p1, p2, p3)P V1µρ (p3)Lρ(p5, p6)P V2νσ (p4)Lσ(p7, p8) , (3.2)

where we stripped off electroweak couplings not relevant here and postpone their discussion

to the presentation of the full amplitude in (3.18) below. In the Rξ-gauges the propagator

of a vector boson V reads

P Vµν(q) =
i∆V

µν(q, ξ)

DV (q)
, (3.3)

with

∆V
µν(q, ξ) =

(
−gµν + (1− ξ) qµqν

q2 − ξm2
V

)
, (3.4)

Dγ∗(q) = q2 , DZ,W (q) = (q2 −m2
V + iΓVmV ) , (3.5)

where mV is the mass of the gauge boson and ΓV is its decay width. While the Landau

gauge used in the previous section corresponds to ξ → 0, the term proportional to (1 − ξ)
effectively vanishes for any ξ since the electroweak vector bosons are directly coupled to

massless fermion lines.

By fixing the helicities of the incoming partons and of the outgoing leptons one sees

that the left- and right-handed partonic production currents can be written as

SµνL (p−1 , p
+
2 , p3) = v̄+(p2)Γµνu−(p1) = 〈2 |Γµν | 1 ] , (3.6)

SµνR (p+
1 , p

−
2 , p3) = v̄−(p2)Γµνu+(p1) = [2 |Γµν | 1 〉 , (3.7)

where the Γµν are rank two-tensors and contain an odd number of γ-matrices. We note in

passing that, by complex conjugation, one gets[
SµνR (p+

1 , p
−
2 , p3)

]∗
= ( [2 |Γµν | 1 〉 )∗ = 〈2 |Γµν | 1 ] = SµνL (p−1 , p

+
2 , p3) , for all Γµν .

The left- and right-handed leptonic decay currents, on the other hand, can be written as

LµL(p−5 , p
+
6 ) = ū−(p5) γµ v+(p6) = [6 |γµ| 5 〉 = 〈5 |γµ| 6 ] , (3.8)

LµR(p+
5 , p

−
6 ) = ū+(p5) γµ v−(p6) = [5 |γµ| 6 〉 =

(
LµL(p−5 , p

+
6 )
)∗

= LµL(p−6 , p
+
5 ) . (3.9)

Note in particular that, as far as the lepton currents are concerned, a permutation of

the external momenta corresponds to a flip of the helicity. All possible helicity amplitudes

can be therefore obtained from the two basic amplitudes

MLLL(p1, p2; p5, p6, p7, p8) = SµνL (p−1 , p
+
2 , p3)LLµ(p−5 , p

+
6 )LLν(p−7 , p

+
8 ) , (3.10)

MRLL(p1, p2; p5, p6, p7, p8) = SµνR (p+
1 , p

−
2 , p3)LLµ(p−5 , p

+
6 )LLν(p−7 , p

+
8 ) , (3.11)

– 6 –
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by simple permutations of the leptonic momenta. In particular we find

MLLR(p1, p2; p5, p6, p7, p8) = MLLL(p1, p2; p5, p6, p8, p7) ,

MLRL(p1, p2; p5, p6, p7, p8) = MLLL(p1, p2; p6, p5, p7, p8) ,

MLRR(p1, p2; p5, p6, p7, p8) = MLLL(p1, p2; p6, p5, p8, p7) ,

MRLR(p1, p2; p5, p6, p7, p8) = MRLL(p1, p2; p5, p6, p8, p7) ,

MRRL(p1, p2; p5, p6, p7, p8) = MRLL(p1, p2; p6, p5, p7, p8) ,

MRRR(p1, p2; p5, p6, p7, p8) = MRLL(p1, p2; p6, p5, p8, p7) . (3.12)

In order to put together the helicity amplitudes in their final form we need also to take

into account the electroweak couplings of the gauge bosons to the partonic- and leptonic-

currents which we have been kept implicit so far. We follow [37] and parametrise the

coupling of a vector boson V to a fermion pair f1f2 as

VV f1f2µ = i eΓV f1f2µ , where e =
√

4π α is the positron charge , (3.13)

such that all fermion charges are expressed in units of e and

ΓV f1f2µ = LVf1f2 γµ

(
1− γ5

2

)
+RVf1f2 γµ

(
1 + γ5

2

)
. (3.14)

The left- and right-handed interactions are equal for a purely vectorial interaction. De-

pending on the different kinds of gauge bosons we have

Lγf1f2 = −ef1 δf1f2 Rγf1f2 = −ef1 δf1f2 , (3.15)

LZf1f2 =
If13 − sin2 θwef1

sin θw cos θw
δf1f2 , RZf1f2 = −sin θwef1

cos θw
δf1f2 , (3.16)

LWf1f2 =
1√

2 sin θw
εf1f2 , RWf1f2 = 0 , (3.17)

where again the charges ei are measured in terms of the fundamental electric charge e > 0

and εf1f2 is unity for f1 6= f2, but belonging to the same isospin doublet and respecting

charge conservation, and zero otherwise.

Putting everything together we find for the two independent helicity amplitudes for

qq̄′ → V1V2 → l5 l̄6l7 l̄8

MV1V2
λLL (p1, p2; p5, p6, p7, p8) = (4πα)2

LV1l5l6L
V2
l7l8

DV1(p3)DV2(p4)
MλLL(p1, p2; p5, p6, p7, p8) , (3.18)

where λ = L,R and we have bracketed out the tree-level dependence on the electric charge

(4πα)2 and on the leptonic couplings. Obviously the corresponding helicity amplitudes

for right-handed leptonic currents can be obtained by the simple exchange LVfifj ↔ RVfifj
together with pi ↔ pj .

Once the tensor structure (2.10) is given, we can perform the contraction with the

leptonic decay currents and fix the helicities of the incoming and outgoing fermions. This

enables us to cast the two independent helicity amplitudes MLLL and MRLL in the familiar

– 7 –
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spinor-helicity notation [4, 38]. In doing so, one assumes that the external states are 4-

dimensional and this allows to obtain one further Schouten identity between the 10 tensors

structures, such that one ends up with 9 independent form factors. Our derivation is spelled

out in detail in appendix B. As a result, we obtain

MLLL(p1, p2; p5, p6, p7, p8) = [1 p/3 2〉
{
E1 〈15〉〈17〉[16][18]

+ E2 〈15〉〈27〉[16][28] + E3 〈25〉〈17〉[26][18]

+ E4 〈25〉〈27〉[26][28] + E5〈57〉[68]
}

+ E6 〈15〉〈27〉[16][18] + E7 〈25〉〈27〉[26][18]

+ E8 〈25〉〈17〉[16][18] + E9 〈25〉〈27〉[16][28] , (3.19)

MRLL(p1, p2; p5, p6, p7, p8) = [2 p/3 1〉
{
E1 〈15〉〈17〉[16][18]

+ E2 〈15〉〈27〉[16][28] + E3 〈25〉〈17〉[26][18]

+ E4 〈25〉〈27〉[26][28] + E5〈57〉[68]
}

+ E6 〈15〉〈17〉[16][28] + E7 〈25〉〈17〉[26][28]

+ E8 〈15〉〈17〉[26][18] + E9 〈15〉〈27〉[26][28] , (3.20)

where

[1 p/3 2〉 = [15]〈52〉+ [16]〈62〉 , [2 p/3 1〉 = [25]〈51〉+ [26]〈61〉 ,
and the 9 form factors Ej are linear combinations of the form factors Aj

E1 = A1 , E6 = 2A7 +
2 (u− p2

3)

s
(A9 −A10) ,

E2 = A2 +
2

s
(A9 −A10) , E7 = 2A8 −

2 (t− p2
3)

s
(A9 −A10) ,

E3 = A3 −
2

s
(A9 −A10) , E8 = 2A5 −

2

s

[
(u− s− p2

3)A9 + (t− p2
4)A10

]
,

E4 = A4 , E9 = 2A6 −
2

s

[
(t− s− p2

3)A10 + (u− p2
4)A9

]
.

E5 = 2 (A9 +A10) . (3.21)

In the following, we will consider a perturbative expansion of the form factors Ej defined

in a completely analogous manner to that of the coefficients Aj in (2.17). We note that the

expressions (3.19) and (3.20) are formally identical to the corresponding formulas derived

in [32], such that our form factors Ej can be mapped one to one to the Fj defined in [32].

In the next section we will describe how to compute form factors A1, . . . , A10 and

therefore also form factors E1, . . . , E9 at tree-level, one-loop and two-loop order, follow-

ing a straightforward diagrammatic approach. In particular, we will discuss the different

electroweak coupling arrangements C contributing to the functions Aj and Ej ,

Aj = δi1i2
∑
C
Q
λ,V1V2,[C]
q q′ A

[C]
j , j = 1, . . . , 10,

Ej = δi1i2
∑
C
Q
λ,V1V2,[C]
q q′ E

[C]
j , j = 1, . . . , 9, (3.22)

– 8 –
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where Q
λ,V1V2,[j]
q q′ denotes a coupling factor, λ is the helicity of the incoming quark, and i1,

i2 are the colours of the incoming quark and anti-quark, respectively.

We want to stress once more an important point. Reducing the 10 coefficients Aj to

the 9 coefficients Ej required the assumption that the external states can be treated as

4-dimensional. In order to avoid any loss of information, we will work considering the Aj
as fundamental objects (derived in d dimensions throughout) and refer to formulas (3.21)

in order to reconstruct the Ej explicitly.

4 Organisation of the calculation

The calculation of the two-loop helicity amplitudes can be set up in a way that is indepen-

dent on the nature of the vector bosons considered, by organising the Feynman diagrams

contributing to any such process into different classes. We find in particular that, as long

as we limit ourselves to QCD corrections only, at any given number of loops, seven dif-

ferent types of diagrams can contribute, depending on the arrangement of the external

vector bosons.

Class A collects all those diagrams where both vector bosons are attached on the external

fermion line, such that V1 is adjacent to the quark q(p1). In the case of a left-

handed (right-handed) quark amplitude these diagrams are proportional to LV1q q′′ L
V2
q′′q′

(RV1q q′′ R
V2
q′′q′).

Class B collects all those diagrams where both vector bosons are attached on the external

fermion line, such that V1 is adjacent to the antiquark q̄′(p2). Also these diagrams,

in the case of a left-handed (right-handed) quark amplitude, are proportional to

LV1q′q′′ L
V2
q′′q (RV1q′q′′ R

V2
q′′q).

Class C contains instead all diagrams where both vector bosons are attached to a fermion

loop. These diagrams are proportional to the charge weighted sum of the quark

flavours, which we denote as NV1V2 , depending on nature of the final state bosons.

In the general case, these diagrams yield two different contributions. In the first one,

which is proportional to the sum of the vector-vector and the axial-axial couplings,

all dependence on γ5 cancels out. The vector-axial contribution, instead, is linear

in γ5. Nevertheless, this last contribution is expected to always vanish identically

for massless quarks running in the loops, for any choice of V1 and V2, due to charge

parity conservation [32, 39–41]. Taking this into account we find

Nγγ =
1

2

∑
i

[(
Lγqiqi

)2
+
(
Rγqiqi

)2]
, NZγ =

1

2

∑
i

(
LZqiqiL

γ
qiqi +RZqiqiR

γ
qiqi

)
,

NZZ =
1

2

∑
i

[(
LZqiqi

)2
+
(
RZqiqi

)2]
, NWW =

1

2

∑
i, j

(
LWqiqjL

W
qjqi

)
, (4.1)

where the indices i, j run over the flavours of the quarks in the loop and Lγqiqi = Rγqiqi .

Of course, Nγγ =
∑

i e
2
qi and, due to charge conservation, NWγ = NWZ = 0 .
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Class D1 contains all diagrams where V1 is attached to a fermion loop and V2 to the

external fermion line. Up to two loops, the diagrams in this class must sum up to

zero due to Furry’s theorem.

Class D2 contains all diagrams where V2 is attached to a fermion loop and V1 to the

external fermion line. At two loops the diagrams in this class, as for the previous

case, must sum up to zero due to Furry’s theorem.

Class E contains all diagrams there V1 and V2 are attached to two different fermion

loops. These diagrams contribute only starting from three-loop order and we can

ignore them.

Classes FV collect the form-factor diagrams where the production of the two vector

bosons V1, V2 is mediated by the exchange of another vector boson V . Depend-

ing on the type of vector bosons V1, V2 there can be more than one such class due

to different intermediate vector bosons. In the case of a left-handed (right-handed)

quark amplitude these diagrams are proportional to LVq q′ cV V1V2 (RVq q′ cV V1V2), where

cV V1V2 is the electroweak coupling of the triple gauge boson vertex defined for all

particles and momenta outgoing as

VρµνV V1V2
(a, b, c) = i e cV V1V2 [ (a− b)νgµρ + (b− c)ρgµν + (c− a)µgνρ ] (4.2)

with

cγW±W∓ = cW∓γW± = cW±W∓γ = ±1 ,

cZW±W∓ = cW∓ZW± = cW±W∓Z = ∓ cot θw . (4.3)

It is clear that, depending on the nature of the vector bosons V1, V2 and on the loop

order, not all classes above will give non-zero contribution. At tree-level, for example, only

classes A, B and FV can contribute. The same is true also at one loop, provided that

we limit ourselves to QCD corrections only. The situation changes at two loops, where

also diagrams for classes C, D1 and D2 occur. Notice moreover that the form-factor type

diagrams in class FV are relevant only for the production of Wγ, WZ or WW pairs.

Up to two loops, we can thus restrict the summation in (3.22) to C = A,B,C, FV . We

show representative diagrams in figure 1. For the coupling factors we have

Q
L,V1V2,[A]
q q′ = LV1q q′′ L

V2
q′′q′ , Q

R,V1V2,[A]
q q′ = RV1q q′′ R

V2
q′′q′ ,

Q
L,V1V2,[B]
q q′ = LV1q′q′′ L

V2
q′′q , Q

R,V1V2,[B]
q q′ = RV1q′q′′ R

V2
q′′q ,

Q
L,V1V2,[C]
q q′ = NV1V2δq q′ , Q

R,V1V2,[C]
q q′ = NV1V2δq q′ ,

Q
L,V1V2,[FV ]
q q′ =

LVq q′cV V1V2

s−m2
V − iΓV mV

, Q
R,V1V2,[FV ]
q q′ =

RVq q′cV V1V2

s−m2
V − iΓV mV

. (4.4)

With these definitions, the value of the coefficients A
[FV ],(n)
j do not depend on the nature

of the mediating vector boson V , such that in particular

A
[Fγ ],(n)
j = A

[FZ ],(n)
j = A

[FW ],(n)
j = A

[F ],(n)
j . (4.5)
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[A]

[C]

[B]

q

q̄′

V1

V2

[FV ]

q

q̄′

V1

V2

V

q

q̄′

V1

V2

q

q̄

V1

V2

q′′

qj

qi

q′′

Figure 1. Representative Feynman diagrams for classes A, B, C and FV relevant for the production

of two electroweak vector bosons at the two-loop level. All of these classes receive contributions

both from planar and non-planar diagrams.

We have computed the coefficients Aj for the different classes of diagrams contribut-

ing at tree level, one loop and two loops, namely A
[C],(0)
j , A

[C],(1)
j , A

[C],(2)
j , with C =

A,B,C,D1, D2, F .

At tree-level order we find

A
[A],(0)
7 = −2

t
, A

[A],(0)
10 = +

1

t
, A

[A],(0)
j = 0 , j = 1, . . . , 6, 8, 9 ,

A
[B],(0)
8 = +

2

u
, A

[B],(0)
9 = −1

u
, A

[B],(0)
j = 0 , j = 1, . . . , 7, 10 ,

A
[F ],(0)
7 = A

[F ],(0)
8 = +2 , A

[F ],(0)
9 = A

[F ],(0)
10 = −1 , A

[F ],(0)
j = 0 , j = 1, . . . , 6 . (4.6)

We can notice immediately that, as far as the form-factor type diagrams are concerned,

any n-loop QCD corrections will not modify the structure of (4.6), and in particular we have

A
[F ],(n)
j = F (n)(s)A

[F ],(0)
j (4.7)

where F (n)(s) are the n-loop QCD corrections to the quark form-factor.

Let us discuss the features of our Ej set of coefficients, which is relevant for the four-

dimensional helicity amplitudes for the full 2 → 4 process. We consider crossings of external

legs described by the permutations

π12 := p1 ↔ p2 ⇒ { t↔ u }
π34 := p3 ↔ p4 ⇒ { t↔ u , p2

3 ↔ p2
4 } , (4.8)

and focus on the behaviour of the E
[C]
j for the non-trivial cases C = A,B,C. From the

exchange of quark and anti-quark, π12 we find for the amplitudes

M
[A]
LLL = −M

[B]
RLL(p1 ↔ p2) , M

[C]
LLL = −M

[C]
RLL(p1 ↔ p2) , (4.9)
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from which one can directly obtain

E
[A]
1 (s, t, p2

3, p
2
4) = −E[B]

4 (s, u, p2
3, p

2
4) , E

[A]
8 (s, t, p2

3, p
2
4) = −E[B]

9 (s, u, p2
3, p

2
4) ,

E
[A]
2 (s, t, p2

3, p
2
4) = −E[B]

3 (s, u, p2
3, p

2
4) , E

[A]
9 (s, t, p2

3, p
2
4) = −E[B]

8 (s, u, p2
3, p

2
4) ,

E
[A]
3 (s, t, p2

3, p
2
4) = −E[B]

2 (s, u, p2
3, p

2
4) , E

[C]
1 (s, t, p2

3, p
2
4) = −E[C]

4 (s, u, p2
3, p

2
4) ,

E
[A]
4 (s, t, p2

3, p
2
4) = −E[B]

1 (s, u, p2
3, p

2
4) , E

[C]
2 (s, t, p2

3, p
2
4) = −E[C]

3 (s, u, p2
3, p

2
4) ,

E
[A]
5 (s, t, p2

3, p
2
4) = −E[B]

5 (s, u, p2
3, p

2
4) , E

[C]
5 (s, t, p2

3, p
2
4) = −E[C]

5 (s, u, p2
3, p

2
4) ,

E
[A]
6 (s, t, p2

3, p
2
4) = −E[B]

7 (s, u, p2
3, p

2
4) , E

[C]
6 (s, t, p2

3, p
2
4) = −E[C]

7 (s, u, p2
3, p

2
4) ,

E
[A]
7 (s, t, p2

3, p
2
4) = −E[B]

6 (s, u, p2
3, p

2
4) , E

[C]
8 (s, t, p2

3, p
2
4) = −E[C]

9 (s, u, p2
3, p

2
4) , (4.10)

From exchange of the external vector bosons, π34, we have

M
[A]
λLL = M

[B]
λLL(p3 ↔ p4) , M

[C]
λLL = M

[C]
λLL(p3 ↔ p4) , with λ = L,R , (4.11)

which implies

E
[A]
1 (s, t, p2

3, p
2
4) = −E[B]

1 (s, u, p2
4, p

2
3) , E

[A]
9 (s, t, p2

3, p
2
4) = +E

[B]
7 (s, u, p2

4, p
2
3) ,

E
[A]
2 (s, t, p2

3, p
2
4) = −E[B]

3 (s, u, p2
4, p

2
3) , E

[C]
1 (s, t, p2

3, p
2
4) = −E[C]

1 (s, u, p2
4, p

2
3) ,

E
[A]
3 (s, t, p2

3, p
2
4) = −E[B]

2 (s, u, p2
4, p

2
3) , E

[C]
2 (s, t, p2

3, p
2
4) = −E[C]

3 (s, u, p2
4, p

2
3) ,

E
[A]
4 (s, t, p2

3, p
2
4) = −E[B]

4 (s, u, p2
4, p

2
3) , E

[C]
4 (s, t, p2

3, p
2
4) = −E[C]

4 (s, u, p2
4, p

2
3) ,

E
[A]
5 (s, t, p2

3, p
2
4) = −E[B]

5 (s, u, p2
4, p

2
3) , E

[C]
5 (s, t, p2

3, p
2
4) = −E[C]

5 (s, u, p2
4, p

2
3) ,

E
[A]
6 (s, t, p2

3, p
2
4) = +E

[B]
8 (s, u, p2

4, p
2
3) , E

[C]
6 (s, t, p2

3, p
2
4) = +E

[C]
8 (s, u, p2

4, p
2
3) ,

E
[A]
7 (s, t, p2

3, p
2
4) = +E

[B]
9 (s, u, p2

4, p
2
3) , E

[C]
7 (s, t, p2

3, p
2
4) = +E

[C]
9 (s, u, p2

4, p
2
3) ,

E
[A]
8 (s, t, p2

3, p
2
4) = +E

[B]
6 (s, u, p2

4, p
2
3) , (4.12)

Similar but slightly more involved relations can be derived for the primary set of coef-

ficients, Aj , but we don’t list them here for brevity. We have explicitly verified that

relations (4.10), (4.12) for the Ej and the corresponding relations for the Aj hold for our

results at tree level, one loop and two loops.

While most of the coefficients Aj are zero at tree level, fewer of the Ej have this

property. We find for class A

E
[A],(0)
1 = 0, E

[A],(0)
2 = − 2

st
, E

[A],(0)
3 =

2

st
,

E
[A],(0)
4 = 0, E

[A],(0)
5 =

2

t
, E

[A],(0)
6 = −2

(s− t+ p2
4)

st
,

E
[A],(0)
7 = 2

(t− p2
3)

st
, E

[A],(0)
8 = −2

(t− p2
4)

st
, E

[A],(0)
9 = 2

(s− t+ p2
3)

st
, (4.13)
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for class B

E
[B],(0)
1 = 0, E

[B],(0)
2 = − 2

su
, E

[B],(0)
3 =

2

su
,

E
[B],(0)
4 = 0, E

[B],(0)
5 = −2

u
, E

[B],(0)
6 = −2

(u− p2
3)

su
,

E
[B],(0)
7 = 2

(s− u+ p2
4)

su
, E

[B],(0)
8 = −2

(s− u+ p2
3)

su
, E

[B],(0)
9 = 2

(u− p2
4)

su
, (4.14)

and for class F

E
[F ],(0)
1 = 0, E

[F ],(0)
2 = 0, E

[F ],(0)
3 = 0,

E
[F ],(0)
4 = 0, E

[F ],(0)
5 = −4, E

[F ],(0)
6 = +4,

E
[F ],(0)
7 = +4, E

[F ],(0)
8 = −4, E

[F ],(0)
9 = −4. (4.15)

As discussed above, class C contributions enter only at the two-loop level.

The calculation of the coefficients Aj and thus Ej proceeds as follows. The diagrams

belonging to class FV are known [42]. They do not have to be recomputed and we will

not refer to them anymore here. As far as the other classes are concerned, we produced

all the tree-level, one-loop and two-loop Feynman diagrams with Qgraf [43]. The scalar

coefficients Aj are evaluated analytically diagram by diagram by applying the projectors

defined in (2.12) and summing over the polarisations of the external vector bosons as

in (2.9). For the gluons we employ the Feynman-’t Hooft gauge. All these manipulations

are consistently performed in d dimensions. Upon doing this we obtain the coefficients in

terms of a large number of scalar two-loop Feynman integrals. The latter are classified into

three integral families, two planar and one non-planar. We have made use of Reduze 2 [44–

47] in order to map all integrals to these integral families and to perform a full integration-

by-parts reduction [48–51] of the latter to a set of master integrals. All intermediate

algebraic manipulations on the Feynman diagrams have been performed using Form [52].

Once the coefficients Aj for the different classes of diagrams are known at the different

loop orders, one can calculate the form factors Ej using (3.21). Since the expressions for

the coefficients Aj (and equivalently those for the Ej) at two loops are very lengthy we

decided not to include them explicitly in the text. Analytical expressions for the Aj , prior

to UV renormalisation and IR subtraction, expressed as linear combinations of masters

integrals and retaining full dependence on the dimensions d are available on our project

page at HepForge.

5 Master integrals

5.1 Computation via differential equations

We computed all two-loop master integrals needed for our process with the method of

differential equations [50, 53–55] and optimised the solutions for fast and precise numerical

evaluations [26, 56, 57]. The master integrals for the case p2
3 = p2

4 have first been calculated

in [25, 26]. Here, we consider the case p2
3 6= p2

4, for which the master integrals have been
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computed in [29, 30] for the first time. Our calculation provides an independent check of

these results and improves them for numerical applications. In this section we present our

calculation and discuss qualitative aspects of the results. We provide the explicit solutions

in computer readable format on HepForge.

We find that all master integrals are described by the integral families presented in [26]

for the case p2
3 6= p2

4 and crossings thereof. We start by determining a set of linearly inde-

pendent master integrals for all relevant topologies using Reduze 2 [44]. For convenience,

we stick to the normal form definitions for the master integrals given in [29, 30]. We

supplement these definitions by new normal form definitions for eight factorisable topolo-

gies corresponding to products of one-loop integrals. All our definitions are supplied in

computer readable form on HepForge.

We consider the master integrals of all integral families at the same time and eliminate

multiple variants of equivalent master integrals using the shift-finder of Reduze 2. For this

purpose we also identify crossed topologies and work out relations between crossed and

uncrossed master integrals. Ignoring crossed variants and counting product topologies as

two-loop topologies we find a total number of 84 independent master integrals. To apply the

method of differential equations, we include also crossed versions for a couple of integrals,

which appear in sub-topologies of non-planar topologies. In this way we assemble a minimal

set of 111 master integrals suitable for the construction of a system of differential equations.

We compute the partial derivatives of the master integrals with respect to all indepen-

dent external invariants s, t, p2
3, p2

4 in terms of master integrals with the help of Reduze.

The coefficients contain rational functions of the invariants and the Källén function κ, (2.5),

associated to the two-body phase space.

To rationalise the root κ, we employ the parametrisation

s = m̄2(1 + x̄)2, p2
3 = m̄2x̄2(1− ȳ2),

t = −m̄2x̄((1 + ȳ)(1 + x̄ȳ)− 2z̄ȳ(1 + x̄)), p2
4 = m̄2(1− x̄2ȳ2) , (5.1)

(see eq. (2.9) of [30]). In this parametrisation, we define the vector of master integrals
~M = (Mi), i = 1, . . . , 111, using the integral measure(

Cε
16π2

)−2

(m̄2)2ε

∫
ddk

(2π)d
ddl

(2π)d
(5.2)

which absorbs the overall mass dimension m̄. Here, d = 4− 2ε and

Cε = (4π)ε
Γ(1 + ε) Γ2(1− ε)

Γ(1− 2ε)
. (5.3)

In the following, we will work directly in the physical region of phase space. Due to the

specific choice of the master integrals [58, 59], the partial differential equations combine

into the simple total differential,

d ~M(ε; x̄, ȳ, z̄) = ε

20∑
k=1

Akd ln(l̄k) ~M(ε; x̄, ȳ, z̄) (5.4)

– 14 –



J
H
E
P
0
9
(
2
0
1
5
)
1
2
8

where the matrices Ak contain just rational numbers and the alphabet is

{l̄1, . . . , l̄20} =
{

2, x̄, 1 + x̄, 1− ȳ, ȳ, 1 + ȳ, 1− x̄ȳ, 1 + x̄ȳ, 1− z̄, z̄,
1 + ȳ − 2ȳz̄, 1− ȳ + 2ȳz̄, 1 + x̄ȳ − 2x̄ȳz̄, 1− x̄ȳ + 2x̄ȳz̄,

1 + ȳ + x̄ȳ + x̄ȳ2 − 2ȳz̄ − 2x̄ȳz̄, 1 + ȳ − x̄ȳ − x̄ȳ2 − 2ȳz̄ + 2x̄ȳz̄,

1− ȳ − x̄ȳ + x̄ȳ2 + 2ȳz̄ + 2x̄ȳz̄, 1− ȳ + x̄ȳ − x̄ȳ2 + 2ȳz̄ − 2x̄ȳz̄,

1− 2ȳ − x̄ȳ + ȳ2 + 2x̄ȳ2 − x̄ȳ3 + 4ȳz̄ + 2x̄ȳz̄ + 2x̄ȳ3z̄,

1− ȳ − 2x̄ȳ + 2x̄ȳ2 + x̄2ȳ2 − x̄2ȳ3 + 2ȳz̄ + 4x̄ȳz̄ + 2x̄2ȳ3z̄
}
. (5.5)

Anticipating the solution, we included the letter 2 already, which is of course arbitrary

at the level of the differential equations. While we found that it is possible to reduce

the number of letters by forming appropriate ratios, a reduction of the alphabet is best

performed using a different parametrisation, as we will see below.

After expansion in ε it is straight-forward to integrate the differential equations in

terms of multiple polylogarithms

G(w1, . . . , wn; z) =

∫ z

0

dt

t− w1
G(w2, . . . , wn; t), (5.6)

with G(0, . . . , 0; z) = 1
n! lnn(z) for n zero weights and G(; z) = 1. For each order in ε, we

integrate the partial derivatives in z̄. This gives the solution up to a function of x̄ and ȳ.

We employ the partial derivatives in x̄ to determine this function, this time up to a function

of ȳ. Subsequent usage of the derivative in ȳ fixes the boundary terms up to one constant

per master integral for the given order in ε. Despite the presence of nonlinearities in (5.5),

the specific order of our integrations ensures that in fact only linear denominators occur in

the respective integration variable. We integrate the master integrals through to weight 4,

which corresponds to ε4 terms in the chosen normalisation. The necessary argument-change

transformations for the multiple polylogarithms were derived using an in-house package,

which employs fitting of constants using high precision samples obtained with [60].

In order to fix the integration constants, we consider the equal mass limit p2
4 → p2

3

which implies x̄ → 1. This limit is smooth and our master integrals become simple linear

combinations of the normal form integrals defined in [26], where the coefficients in this

map are just rational numbers. We compute the limit at the level of our solutions and

equate them to the real-valued solutions of [26]. Using the coproduct-augmented symbol

calculus [56, 61–65], we find perfect agreement for all non-constant terms and easily fix the

boundary constants of the present integrals. We also compared our results to the solutions

of [29, 30] and find perfect agreement at the analytical level.

The solutions we obtained in this way are not ideal for our purposes yet, since their

numerical evaluation is rather slow. Moreover, they contain spurious structures: the indi-

vidual multiple polylogarithms contribute letters {1− x̄, 1+ x̄ȳ2, 2+ x̄+ x̄ȳ2, 1+2x̄+ x̄2ȳ2}
which cancel for the master integral itself. In particular, the equal-virtuality limit x̄ → 1

is completely smooth as can be seen from (5.5), but the representation does not allow for

an evaluation exactly in the equal-virtuality point.
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5.2 Optimisation of the functional basis

We wish to cast our solutions to a new representation which allows for fast and stable

numerical evaluations and is free of spurious letters. In order to achieve that goal we select

a new basis of multiple polylogarithms where we do not force individual variables into

the argument of G functions anymore. As a side effect, this gives us more freedom for a

rational parametrisation, since we avoid problems due to non-linear denominators in the

integration variable. It is convenient to choose new variables x, y, z and m2 according to

s = m2(1 + x)(1 + xy), t = −m2xz, p2
3 = m2, p2

4 = m2x2y (5.7)

(see eq. (2.7) of [30]), which again rationalises the root κ. We select the branch for which

in the physical domain

x > 0, 0 < y < z < 1, m2 > 0. (5.8)

This reparametrisation is actually not crucial for what will follow, but it decreases the num-

ber of irreducible polynomial letters which will be convenient for our mapping procedure.

Under crossings of external legs the parameters transform as

π12 : z → 1 + y − z (5.9)

π34 : z → 1 + y − z, x→ 1/(xy), m2 → m2x2y . (5.10)

In this parametrisation we factor out a normalisation of the form (5.2) but with m̄ replaced

by m. We find the alphabet

{l1, . . . , l17} =
{
x, 1 + x, y, 1− y, z, 1− z,−y + z, 1 + y − z, 1 + xy, 1 + xz, xy + z,

1 + y + xy − z, 1 + x+ xy − xz, 1 + y + 2xy − z + x2yz,

2xy + x2y + x2y2 + z − x2yz, 1 + x+ y + xy + xy2 − z − xz − xyz,
1 + y + xy + y2 + xy2 − z − yz − xyz

}
(5.11)

at the level of the differential equations and also of the solutions through to weight 4. This

alphabet is shorter than the previous one and can not be reduced further by forming ratios.

We construct a new functional basis consisting of Li2,2 functions, classical polyloga-

rithms Lin (n = 2, 3, 4) and logarithms, similar to the approach taken in [26, 57]. The Li2,2
function can be written in G-function notation according to

Li2,2(x1, x2) = G

(
0,

1

x1
, 0,

1

x1x2
; 1

)
. (5.12)

Following the algorithm of [64] we generate functional arguments which are rational func-

tions of x, y, z and do not lead to new spurious letters. This implies that the arguments

factorise into the letters of our alphabet and their inverses. We can therefore systematically

scan for admissable Lin arguments by constructing power products of letters, their inverses

and −1. A candidate argument x1 is admissable exactly if 1−x1 factorises into the letters

of our alphabet and −1, since only in that case the introduction of new letters is avoided.

Admissable arguments for Li2,2 functions are determined by forming pairs of admissable
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Lin arguments and requiring for any such pair (x1, x2) that the difference x1−x2 factorises

into the original letters and −1.

For the amplitude we need to evaluate also independent master integrals with crossed

kinematics, and we chose to implement these expressions explicitly for evaluation time

optimisation purposes. We therefore directly construct a shared set of basis functions for

uncrossed and crossed variants of the master integrals and consequently close our alpha-

bet (5.11) under π12 and π34 by adding the letters

{l18, l19} = {−xy + z + xz + xyz,−y + z + yz + xyz}. (5.13)

We require all functions to be single valued and real over the entire physical region of

phase space. As in [26], we further tighten this constraint and select only those Li2,2(x1, x2)

functions, for which their power series representation

Li2,2(x1, x2) =
∞∑
j1=1

∞∑
j2=1

xj11
(j1 + j2)2

(x1x2)j2

j2
2

(5.14)

is convergent, that is, their arguments fulfil

|x1| < 1 , |x1x2| < 1 . (5.15)

We wish to express our master integrals in terms of these new functions and employ

the coproduct-augmented symbol calculus for that mapping, see [56, 64, 65]. This step

is computationally demanding due to the large number of possible candidate functions.

Here, we profit from the reduction of the number of letters described above which leads

to a smaller set of candidate integrals for a given maximal total degree of the arguments.

Furthermore, we employ a particularly efficient technique for the symbol calculus, where

we identify and match individual factors of products directly at the level of the symbol [66].

In particular, this means we never need to construct products of polylogarithms for our

candidate functions which avoids a severe combinatorial blowup for the linear algebra

routines. Using the coproduct we were able to express all master integrals in terms of

our new set of functions described above. We stress that the success of this matching is

not a priori obvious. The explicit solutions for all of the master integrals are provided

on HepForge.

Concerning our primary motivation for changing the functional basis, we observe that

the new representation indeed allows for significantly faster numerical evaluations. For the

numerical evaluation of the multiple polylogarithms we employ the implementation [60]

in the GiNaC library [46]. The exact evaluation time and the speedup due to the new

functional basis depend on the chosen point in phase space and on the required precision

of the result. We tested some samples and observed speedup-factors between 8 and 85

when evaluating the 111 master integrals in the system of differential equations. For the

benchmark point of [32], the numerical evaluation with default precision takes 2250 ms for

the “traditional” G-functions (section 5.1) and 120 ms for the “optimised” functions (this

section) on a single core of a standard desktop computer.
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6 UV renormalisation and IR subtraction

Let us go back to the calculation of the helicity amplitude coefficients Aj (or equivalently

the Ej). In order to simplify the notation for what follows we pick one of the form factors:

Ω = Aj (or Ej) , for some j = 1, . . . , 10 (9) , (6.1)

in order to suppress the index j. The following discussions applies to any of the chosen

form factors in the same way.

We perform renormalisation of the UV divergences in the standard MS scheme which,

in massless QCD, amounts to simply replacing the bare coupling α0 with the renormalised

one αs = αs(µ
2), where µ2 is the renormalisation scale. Since in our case the tree-

level amplitudes do not contain any power of αs we require only the one-loop relation

for the coupling

α0 µ
2ε
0 Sε = αs µ

2ε

[
1− β0

ε

(αs
2π

)
+O(α2

s)

]
(6.2)

where

Sε = (4π)ε e−εγ , with the Euler-Mascheroni constant γ = 0.5772 . . . , (6.3)

µ2
0 is the mass-parameter introduced in dimensional regularisation to maintain a dimen-

sionless coupling in the bare QCD Lagrangian density, and finally β0 is the first order of

the QCD β-function

β0 =
11CA − 4TF Nf

6
, with CA = N , CF =

N2 − 1

2N
, TF =

1

2
. (6.4)

We perform UV renormalisation at the scale µ2 = s, the invariant mass of the vector boson

pair. Values of the helicity coefficients at different renormalisation scales can be recovered

by using the renormalisation group equation. Since at a given loop order n the form

factors are defined with all powers of the strong coupling factored out, the renormalised

form factors Ω(n) are expressed in terms of the un-renormalised ones Ω(n),un according to

Ω(0) = Ω(0),un ,

Ω(1) = S−1
ε Ω(1),un ,

Ω(2) = S−2
ε Ω(2),un − β0

ε
S−1
ε Ω(1),un . (6.5)

After performing UV renormalisation, the amplitude contains residual IR singularities

which will be cancelled analytically by those occurring in radiative processes at the same

order. Catani was the first to show how to organise the IR-pole structure up to two-loop in

QCD [67]. In subtracting the poles from the one- and two-loop amplitudes we will follow

a slightly modified scheme described in [68], which is better suited for the qT -subtraction

formalism. The two schemes are of course equivalent and we provide formulae to convert

the results between the two schemes in appendix C. We define the IR finite amplitudes at
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renormalisation scale µ2 in terms of the UV renormalised ones as follows

Ω(1),finite = Ω(1) − I1(ε) Ω(0) ,

Ω(2),finite = Ω(2) − I1(ε) Ω(1) − I2(ε) Ω(0) , (6.6)

with

I1(ε) = Isoft
1 (ε) + Icoll

1 (ε) , (6.7)

Isoft
1 (ε) = − eεγ

Γ(1− ε)

(
µ2

s

)ε (
1

ε2
+
iπ

ε
+ δ(0)

qT

)
CF , Icoll

1 (ε) = −3

2
CF

1

ε

(
µ2

s

)ε
, (6.8)

I2(ε) = −1

2
I1(ε)2 +

β0

ε
[I1(2ε)− I1(ε)] +K Isoft

1 (2ε) +H2(ε) , (6.9)

H2(ε) =
1

4ε

(
µ2

s

)2 ε
(
γ

(1)
q

4
+ CF d1 + εCF δ

(1)
qT

)
, (6.10)

and the constants are defined as

δ(0)
qT

= 0 , K =

(
67

18
− π2

6

)
CA −

5

9
NF , (6.11)

d1 =

(
28

27
− 1

3
ζ2

)
NF +

(
−202

27
+

11

6
ζ2 + 7 ζ3

)
CA ,

δ(1)
qT

=
10

3
ζ3 β0 +

(
−1214

81
+

67

18
ζ2

)
CA +

(
164

81
− 5

9
ζ2

)
NF ,

γ(1)
q = (−3 + 24 ζ2 − 48ζ3)C2

F +

(
−17

3
− 88

3
ζ2 + 24 ζ3

)
CF CA +

(
2

3
+

16

3
ζ2

)
CF NF .

Note that in these equations all imaginary parts are already explicit prior to expansion in ε.

Setting µ2 = s, we calculated the finite remainder of the Aj for ε→ 0 in the qT -subtraction

scheme. We provide the explicit analytical results on our project page at HepForge. It is

straight-forward to convert our finite results obtained in the qT -scheme to Catani’s original

scheme, see appendix C.

7 Checks on the amplitudes

We performed different checks on our amplitude, which we enumerate here.

1. First of all, we started off by computing the 10 form factors Aj of (2.11) for the

different classes of diagrams C = A,B,C,D1, D2, and we explicitly verified that,

according to Furry’s theorem, the diagrams in classes D1 and D2 independently sum

up to zero.

2. From the Aj we computed the 9 form factors Ej in (3.19) and (3.20), and we verified

that, both prior to as well as after subtraction of UV and IR poles, all symmetry rela-

tions described in (4.10), (4.12) and the corresponding ones for the Aj , are identically

satisfied.
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3. We verified that the poles of the one-loop and two-loop amplitudes are correctly

reproduced by Catani’s formula [67], which provides a strong check on the calculation.

4. For the NNLO computation of on-shell ZZ and W+W− production [27, 28] we per-

formed a dedicated calculation, directly for the squared amplitude, employing our

equal-mass master integrals [25]. The tree and one-loop contributions have been

found to agree with the analytical results of [69, 70] and with numerical samples

obtained with OpenLoops [71]. Starting from our general results for the amplitude

in the off-shell case, we re-derived the squared amplitudes for on-shell ZZ and WW

production as described in appendix A and found full agreement through to two-loops.

5. We performed a thorough comparison of our results with an earlier calculation of

the two-loop amplitudes for on-shell W+W− production in the small-mass limit [72].

Starting from our results for the squared amplitude for W+W− production (see

appendix A), we take the small-mass limit, namely m2
W /s→ 0 for fixed (t−m2

W )/s.

Adjusting for overall conventions we found agreement with the results obtained in [72]

in all contributions, except for F
[C],(2)
i (s, t) arising from the interference of two-loop

diagrams in class C with the tree-level diagram in class A. From the discussion

in [72], we could trace back this discrepancy to a different treatment of the vector-

axial contributions in the fermionic loop in class C, resulting in a non-vanishing

remainder even for zero-mass quarks. Since this appears to be inconsistent with

charge parity conservation, we have good reasons to believe that the prescription

used here as well as in [32] is the correct one (see our discussion in section 4).

6. Finally, we have compared numerically results both for the individual form factors

Ej and for the full amplitudes MLLL and MRLL at tree-level, one-loop and two-loop

order, with reference [32]. For the numerical evaluations of the helicity amplitudes

we employed the package S@M [73]. We find full agreement with the results reported

in [32], after a mistake in the calculation of one of the form factors was corrected in

that reference.

8 Numerical code and results

We provide a C++ code for the numerical evaluation of the 9 finite form factors Ej for

classes A, B and C. The implementation supports both, evaluation in the qT -scheme and

in Catani’s original scheme. Further, it also provides the (alternative) 10 form factors Aj .

The code is set up in form of a C++ library, which is supplemented by a simple command

line interface.

The code was optimised for speed and stability of the numerical evaluations, in par-

ticular, by employing an appropriate functional basis for the multiple polylogarithms, see

section 5.2. We employ C++ templates to support evaluations with three different data

types: double precision, quad precision and arbitrary precision using the CLN library [74].

The multiple polylogarithms are evaluated via their implementation [60] in the GiNaC li-

brary [46], which also employs the CLN arbitrary precision capabilities.
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Figure 2. Real parts of the two-loop form factors E
[A],(2)
j for the process qq̄′ → V1V2 in dependence

of the relativistic velocity, β3, and the cosine of the scattering angle, cos θ3, of the vector boson V1.

The virtualities of the vector bosons are set to p24 = 2p23.

For the benchmark point of [32] no severe cancelations due to asymptotic kinematics

take place. In this case our double precision implementation is accurate and gives at least

10 significant digits for each of the Ej at the two-loop level. The evaluation of all Ej incl.

crossed variants, as needed for the physical amplitude, takes 150 ms on a single core of a

standard desktop computer. Close to the phase space boundaries or in the high energy

region, numerical cancelations lead to a significant loss of precision. In order to detect and

cure a possible instability, we compare the results obtained from evaluations with different

precision settings and adaptively increase the precision until the target precision is met. We

find the method to converge even in highly collinear configurations, where one needs to allow

for a significant increase in the evaluation time though. Of course, also for unproblematic

points in the bulk of the phase space, where the double precision results are actually

accurate enough, our precision check requires additional run-time. For the aforementioned

benchmark point we find an increase in the evaluation time to approximately 0.8 s on a

single core.
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Figure 3. Real parts of the two-loop form factors E
[C],(2)
j for the process qq̄′ → V1V2 in dependence

of the relativistic velocity, β3, and the cosine of the scattering angle, cos θ3, of the vector boson V1.

The virtualities of the vector bosons are set to p24 = 2p23.

In figures 2 and 3 we show numerical results for the class A and class C contributions

to our 9 form factors Ej at the two-loop level. Note that these results were obtained with

our C++ code and thus demonstrate the high numerical reliability of our implementation.

We vary the relativistic velocity, β3 = κ/(s+p2
3−p2

4), and the cosine of the scattering angle,

cos θ3 = (2t+s−p2
3−p2

4)/κ, of the vector boson V . For the virtualities of the vector bosons

we have set p2
4 = 2p2

3. All results are for Nf = 5 and given in the qT -scheme. The class A

contributions in figure 2 show pronounced structures in the collinear regions (see (4.13) for

the corresponding tree level coefficients). In contrast, the class C contributions in figure 3

show no such features and are rather smooth functions in the full β3-cos θ3 plane.

9 Conclusions

In this paper, we presented the derivation of the two-loop massless QCD corrections to the

helicity amplitudes for massive vector boson pair production in quark-antiquark annihila-

tion. The combination with leptonic decay currents allows to construct the two-loop QCD
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matrix elements relevant to four-lepton production. In this course, we computed all master

integrals and optimised their representation for numerical performance. Our results ob-

tained for the amplitudes provide a fully independent validation of a recent calculation [32].

We implemented our amplitudes in a C++ code for the fast and stable numerical evaluation

of the amplitudes, which we provide together with our analytical results for public access

at http://vvamp.hepforge.org. This opens up the path towards precision phenomenology

in gauge boson pair production and improvements of the background predictions for Higgs

boson studies and searches for physics beyond the Standard Model.
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A Squared amplitudes for the on-shell production of vector-boson pairs

In this section we show how the general results described in this article can be used to obtain

the squared amplitude for the process qq̄′ → V1V2 summed over spins and colours. For the

calculations of the NNLO QCD corrections to on-shell ZZ [27] and W+W− production [28]

production, we directly computed the squared amplitudes using a dedicated setup based

on our solutions for the equal-mass master integrals [25, 26]. We compared the results

obtained in the two approaches and find full agreement.

We denote the squared amplitude as

〈M|M〉 = T (s, t, p2
3, p

2
4) =

∑
pol,colour

|Sµν(p1, p2, p3)εµ3 (p3)εν4(p4)|2 , (A.1)

which of course can be perturbatively expanded in powers of αs as

T (s, t, p2
3, p

2
4) = (4πα)2

[
T (0)(s, t, p2

3, p
2
4) +

(αs
2π

)
T (1)(s, t, p2

3, p
2
4)

+
(αs

2π

)2
T (2)(s, t, p2

3, p
2
4) +O(α3

s)

]
, (A.2)

where we have

T (0)(s, t, p2
3, p

2
4) = 〈M(0)|M(0)〉 , (A.3)

T (1)(s, t, p2
3, p

2
4) = 2<

(
〈M(0)|M(1)〉

)
, (A.4)

T (2)(s, t, p2
3, p

2
4) = 2<

(
〈M(0)|M(2)〉

)
+ 〈M(1)|M(1)〉 . (A.5)
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It is easy to write a general expression of 〈M(n)|M(m)〉 in terms of the coefficients A
(n)
j

and A
(m)
j or, equivalently, in terms of the τ

(n)
j and τ

(m)
j , simply by contracting the general

decomposition (2.11) with itself and summing over colours and external polarisations us-

ing (2.9). The result is quite involved and not particularly illuminating and we decided not

to include it here explicitly. This general formula, in fact, is needed explicitly only in order

to derive the 1-loop×1-loop corrections 〈M(1)|M(1)〉, which can however also be easily ex-

tracted from automated codes, and therefore we will not consider them here. On the other

hand, if we limit ourselves to considering the contraction of the generic n-loop amplitude

with the tree-level, i.e. m = 0, the results are much more compact. In the following two

sections we will discuss the two explicit cases of on-shell ZZ and WW production, which

were used for the calculations in [27, 28].

A.1 The two-loop corrections to ZZ production

In the case of qq̄ → ZZ the tree-level is given by the two diagrams belonging to classes

C = A,B. As far as two-loop corrections are concerned, the classes of diagrams that can

contribute to ZZ production are C = A,B,C, see section 4. By contracting the tree-level

diagrams with the general amplitude (2.11) one easily finds

〈M(0)|M(n)〉ZZ =
N

2

[
(LZqq)

4 + (RZqq)
4
] (2 τ

(ZZ,(n))
8 − τ (ZZ,(n))

9

u
− 2 τ

(ZZ,(n))
7 − τ (ZZ,(n))

10

t

)
,

(A.6)

where N is the number of colours, while LZqq and RZqq are defined in (3.16). Each of the

τ
(ZZ,(n))
j can be obtained summing over the relevant classes of diagrams, re-weighted by

appropriate coupling factors

τ
(ZZ,(n))
j = τ

[A],(n)
j + τ

[B],(n)
j + ÑZZ τ

[C],(2)
j , (A.7)

where the τ
[C]
j components of the τj are defined by a decomposition completely analogous

to that for the Aj in (3.22),

ÑZZ =

[
(LZqq)

2 + (RZqq)
2
][

(LZqq)
4 + (RZqq)

4
] NZZ (A.8)

and NZZ is defined in (4.1) . We have verified explicitly that as far at the tree-level and

one-loop corrections are concerned, we have full agreement with the results in [69]. Similar

but much more lengthy formulas can be derived for 〈M(1)|M(1)〉ZZ , and we do not report

them here for brevity.

A.2 The two-loop corrections to W+W− production

Let us consider now the case of qiq̄i →W+W−, where the index i labels the flavour of the

initial state quarks, qi = (u, d). At the tree-level, this process receives contributions from

three diagrams, one in class A and the other two in class FV , with V = Z, γ. Let us start

from the tree-level and one-loop corrections, where only diagrams in classes C = A,FV can
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contribute. Following the notation of [70], we separate the contributions to the squared

amplitude into three different form factors

〈M(0)|M(0)〉i,WW = N
[
ctti F

(0)
i (s, t)− ctsi J (0)

i (s, t) + cssi K
(0)
i (s, t)

]
, (A.9)

2<
(
〈M(0)|M(1)〉i,WW

)
= N

[
ctti F

(1)
i (s, t)− ctsi J (1)

i (s, t) + cssi K
(1)
i (s, t)

]
. (A.10)

F
(n)
i contains the squared contribution of diagrams in class C = A (i.e. diagrams where

the production of the W+W− pair is not mediated through a γ or a Z boson). J
(n)
i

encapsulates instead the interference of the FV -type diagrams (i.e. those where the W+W−

pair is produced via a γ or a Z virtual boson) with diagrams in class C = A. Finally K
(n)
i

is given by the interference of the FV -type diagrams with themselves. Again, following

closely [70] we define then

ctti =
1

16 sin4 θw
, (A.11)

ctsi =
1

4 s sin2 θw

(
eqi − cZW+W− L

Z
qiqi

s

s−m2
Z

)
,

cssi =
1

s2

(eqi− cZW+W−(LZqiqi+R
Z
qiqi)

2

s

s−m2
Z

)2

+

(
cZW+W−(LZqiqi−RZqiqi)

2

s

s−m2
Z

)2


where, as always, eqi is the quark charge in units of e, with e > 0, and the electroweak

couplings LZqiqi , R
Z
qiqi and cZW+W− are defined in (3.16) and (4.3).

At two loops the decomposition (A.10) must be enlarged since also diagrams belonging

to class C = C start contributing to the amplitude. We therefore write the two-loop

contribution as follows

2<
(
〈M(0)|M(2)〉i,WW

)
= N

[
ctti F

(2)
i (s, t) + c

[C],tt
i F

[C],(2)
i (s, t)

− ctsi J (2)
i (s, t)− c[C],ts

i J
[C],(2)
i (s, t) + cssi K

(2)
i (s, t)

]
, (A.12)

where we introduced the new couplings

c
[C],tt
i =

1

32 sin4 θw
Ng ,

c
[C],ts
i =

1

4 s sin2 θw

(
eqi −

cZW+W−
(
LZqiqi +RZqiqi

)
2

s

s−m2
Z

)
Ng . (A.13)

Here, the new form factors F
[C],(2)
i (s, t) and J

[C],(2)
i (s, t) contain the contribution from the

two-loop diagrams in class C = C. In deriving (A.13) we used the fact that for a fermion

loop with an attached W -pair we have

NWW =
1

2

∑
q q′

(
LWqq′L

W
q′q

)
=

1

4 sin2 θw
Ng , (A.14)

where Ng = Nf/2 is the number of generations of massless quarks running in the loop.

Note that because of the flavour-change induced by the W± bosons, we limit ourselves to
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consider at most Nf = 4 massless quarks (u, d, c, s), i.e. two generations Ng = 2. Finally,

the form factor K
(2)
i (s, t) receives contributions only from one class of diagrams, C = FV .

At tree level we find that the different form factors can be obtained from

F
(0)
i (s, t) =

(
2 τ

[A],(0)
10 − 4 τ

[A],(0)
7

t

)
, (A.15)

J
(0)
i (s, t) = 4

(
τ

[A],(0)
7 + τ

[A],(0)
8

)
− 2

(
τ

[A],(0)
9 + τ

[A],(0)
10

)
, (A.16)

K
(0)
i (s, t) = 2

(
τ

[F ],(0)
7 + τ

[F ],(0)
8

)
−
(
τ

[F ],(0)
9 + τ

[F ],(0)
10

)
. (A.17)

At one loop and two loops we find instead

F
(n)
i (s, t) = 2<

(
2 τ

[A],(n)
10 − 4 τ

[A],(n)
7

t

)
,

J
(n)
i (s, t) = 2<

[
2
(
τ

[A],(n)
7 + τ

[A],(n)
8

)
−
(
τ

[A],(n)
9 + τ

[A],(n)
10

)
+

1

2
J

(0)
i (s, t)F (n)(s)

]
,

K
(n)
i (s, t) = 2<

(
K

(0)
i (s, t)F (n)(s)

)
, (A.18)

and the two new form factors read

F
[C],(2)
i (s, t) = 2<

(
2 τ

[C],(2)
10 − 4 τ

[C],(2)
7

t

)
, (A.19)

J
[C],(2)
i (s, t) = 2<

[
2
(
τ

[C],(2)
7 + τ

[C],(2)
8

)
−
(
τ

[C],(2)
9 + τ

[C],(2)
10

)]
, (A.20)

where F (n)(s) are the n-loop QCD corrections to the quark form factor. We have verified

that the tree-level and one-loop corrections, in the limit of equal virtualities of the massive

vector bosons, agree with [70].

B Schouten identities for the amplitude

In this appendix, we show how to reduce the number of independent form factors entering

our helicity amplitudes by exploiting the 4-dimensionality of external states via Schouten

identities. We document here a general way to derive such Schouten identities for the

MRLL case. The LLL case proceeds in exactly the same way.

We start off by fixing the helicities for a right-handed incoming quark current in the

spinor helicity notation and we get

SµνR (p−1 , p
+
2 , p3) = [2 p/3 1〉 (A1 p

µ
1 p

ν
1 +A2 p

µ
1p

ν
2 +A3 p

ν
1p
µ
2 +A4 p

µ
2 p

ν
2)

+ [2 γµ 1〉 (A5 p
ν
1 +A6p

ν
2) + [2 γν 1〉 (A7 p

µ
1 +A8p

µ
2 )

+A9 [2 γνp/3γ
µ 1〉+A10 [2 γµp/3γ

ν 1〉 .

As a first step we notice that we can collect [2 p/3 1〉 as an overall factor:

[2 p/3 1〉[1 p/3 2〉 = Tr

[
p/2 p/3 p/1 p/3

1 + γ5

2

]
= t u− p2

3 p
2
4 .
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Multiplying and dividing by this allows to write the partonic amplitude as

SµνR (p−1 , p
+
2 , p3) = [2 p/3 1〉

{
(A1 p

µ
1 p

ν
1 +A2 p

µ
1p

ν
2 +A3 p

ν
1p
µ
2 +A4 p

µ
2 p

ν
2)

+
[1 p/3 2〉 [2 γµ 1〉
t u− p2

3p
2
4

(A5 p
ν
1 +A6p

ν
2) +

[1 p/3 2〉 [2 γν 1〉
t u− p2

3p
2
4

(A7 p
µ
1 +A8p

µ
2 )

+
A9

t u−p2
3p

2
4

[1 p/3 2〉[2 γνp/3γ
µ 1〉+

A10

t u−p2
3p

2
4

[1 p/3 2〉[2 γµp/3γ
ν 1〉
}
, (B.1)

such that every spinor structure is a trace. We can then perform the traces recalling that

the transversality of the leptonic decay currents allows to discard contributions proportional

to pµ3 or pν4 . In this way we get

[1 p/3 2〉 [2 γµ 1〉 = 2 εp1,p3,p2,µ − (u− p2
3)pµ1 − (t− p2

3)pµ2 (B.2)

and

[1 p/3 2〉 [2 γµp/3γ
ν 1〉 = 2 (u− p2

3) εp1,p3,µ,ν + 2 p2
3 ε
p1,p2,µ,ν − (t u− p2

3p
2
4)gµν

− 2u pµ1p
ν
2 + 2 p2

3 p
ν
1p
µ
2 − 2 (u− p2

3) pµ1p
ν
1 (B.3)

[1 p/3 2〉 [2 γνp/3γ
µ 1〉 = −2 (u− p2

3) εp1,p3,µ,ν − 2 p2
3 ε
p1,p2,µ,ν + 4 εp1,p3,p2,µ (pν1 + pν2)

− (t u− p2
3p

2
4)gµν − 2 t pν1p

µ
2 + 2 p2

3 p
µ
1p

ν
2 − 2 (t− p2

3) pµ2p
ν
2 , (B.4)

where we introduced the Levi-Civita ε tensor, with the following notation

εp,q,r,s = εµ,ν,ρ,σpµqνrρsσ .

Moreover, note that the asymmetry between (B.3) and (B.4) is due to the transversality

condition which effectively replaces pµ3 → 0 and pν3 → pν1 + pν2 .

Using (B.2), (B.3) and (B.4) we see that all 10 spinor structures can be written in

terms of the following 11 structures:

gµν , pµ1p
ν
1 , pµ1p

ν
2 , pµ2p

ν
1 , pµ2p

ν
2 ,

εp1,p3,p2,µ pν1 , εp1,p3,p2,µ pν2 , εp1,p3,p2,ν pµ1 , εp1,p3,p2,ν pµ2

εp1,p3,µ,ν , εp1,p2,µ,ν .

This does not appear to be any improvement with respect to the 10 structured we had

before. It is nevertheless very easy to show that 2 out of these 11 structures can indeed be

expressed as linear combinations of the remaining 9 by means of an anti-symmetrisation

of the εµνρσ tensors.

In order to see how this works in practice, we start off by considering εp1,p3,µ,ν p2 · p1.

By anti-symmetrising εµ,ν,ρ,σpτ2 in 4 dimensions one easily finds

εp1,p3,µ,ν p2 · p1 = −εp3,µ,ν,p2 p1 · p1 − εµ,ν,p2,p1 p3 · p1 − εν,p2,p1,p3 pµ1 − εp2,p1,p3,µ pν1 (B.5)
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which implies that εp1,p3,µ,ν can be eliminated by

εp1,p3,µ,ν =
2

s

(
p2

3 − t
2

εp1,p2,µ,ν + εp1,p3,p1,ν pµ1 − εp1,p3,p2,µ pν1
)
, (B.6)

leaving us again with 10 structures. One more anti-symmetrisation can be used, namely

consider εp1,p2,µ,ν p3 · r, where the momentum rµ is defined as

rµ =

(
u− p2

3

s

)
pµ1 +

(
t− p2

3

s

)
pµ2 + pµ3 ,

such that r · p1 = 0 , r · p2 = 0. Proceeding as before we find

εp1,p2,µ,ν =
εp1,p3,p2,µ

t u−p2
3p

2
4

[
(u−p2

4) pν2 +(t−p2
4) pν1

]
+
εp1,p3,p2,ν

t u−p2
3p

2
4

[
(u−p2

3) pµ1 +(t−p2
3) pµ2

]
. (B.7)

It becomes clear that using these two relations we can eliminate completely εp1,p2,µ,ν

and εp1,p3,µ,ν in favour of the remaining 9 structures. In particular these relations can be

rephrased in terms of the original spinors in (B.1) giving two Schouten identities for the

spinor lines:

[1 p/3 2〉 [2 γµp/3γ
ν 1〉 = (t u− p2

3p
2
4)

[
2

s
(pµ1p

ν
2 − pν1pµ2 )− gµν

]
+

1

s

[
(u− p2

3) pµ1 − (t− p2
3) pµ2

]
[1 p/3 2〉 [2 γν 1〉

− 1

s

[
(u− s− p2

3) pν1 + (u− p2
4) pν2

]
[1 p/3 2〉 [2 γµ 1〉 , (B.8)

[1 p/3 2〉 [2 γνp/3γ
µ 1〉 = (t u− p2

3p
2
4)

[
2

s
(pν1p

µ
2 − pµ1pν2)− gµν

]
+

1

s

[
(t− p2

3) pµ2 − (u− p2
3) pµ1

]
[1 p/3 2〉 [2 γν 1〉

− 1

s

[
(t− p2

4) pν1 + (t− s− p2
3) pν2

]
[1 p/3 2〉 [2 γµ 1〉 . (B.9)

The corresponding relations for the spinors of the left-handed partonic currents can

be found by simply permuting p1 ↔ p2. Using (B.8), (B.9), and the corresponding ones

for the left-handed partonic current, we eliminate 2 of the structures in (B.1) in favour of

gµν , plus the remaining 8 structures, and then proceed by contracting with the left-handed

leptonic decay currents (3.8). As a result one easily arrives at formulae (3.19) and (3.20).

C Conversion to Catani’s original IR subtraction scheme

In section 6 we derived the finite remainder of the one- and two-loop helicity amplitude

coefficients Ω in a subtraction scheme which is particularly well-suited for qT subtrac-

tion [68]. In this appendix we show how these results can be converted to Catani’s original

scheme [67]. Starting from the UV-renormalised coefficients defined in (6.5) at renormali-

sation scale µ2, we write the finite remainders in Catani’s scheme as

Ω
(1),finite
Catani = Ω(1) − IC

1 (ε) Ω(0) ,

Ω
(2),finite
Catani = Ω(2) − IC

1 (ε) Ω(1) − IC
2 (ε) Ω(0) , (C.1)
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where Catani’s subtraction operators are defined as

IC
1 (ε) = −CF

eεγ

Γ(1− ε)

(
1

ε2
+

3

2ε

)(
−µ

2

s

)ε
IC

2 (ε) = −1

2
IC1 (ε)

(
IC1 (ε) +

2β0

ε

)
+
e−εγΓ(1− 2ε)

Γ(1− ε)

(
β0

ε
+K

)
IC1 (2ε) +H(2)(ε) (C.2)

with

K =

(
67

18
− π2

6

)
CA −

10

9
TFNf , (C.3)

and since a qq̄ pair is the only coloured state we have

H(2)(ε) =
eεγ

4εΓ(1− ε)

(
−µ

2

s

)2ε

(C.4)

× 2CF

[(
π2

2
− 6 ζ3 −

3

8

)
CF +

(
13

2
ζ3+

245

216
− 23

48
π2

)
CA+

(
π2

12
− 25

54

)
TFNf

]
.

In this article, we present our results for µ2 = s. Note that upon expansion in ε both IC1 (ε)

and IC2 (ε) generate imaginary parts whose sign is fixed by the prescription s→ s+ i 0+ .

By comparing (6.6) with (C.1) one can show that the ε0 parts of the finite, complex form

factors in Catani’s original scheme [67], can be obtained from those in the qT -scheme [68]

according to

Ω
(1),finite
Catani = Ω(1),finite

qT
+ ∆I1 Ω(0),finite

qT
,

Ω
(2),finite
Catani = Ω(2),finite

qT
+ ∆I1 Ω(1),finite

qT
+ ∆I2 Ω(0),finite

qT
, (C.5)

with the finite scheme conversion coefficients given by

∆I1 = CF

(
−1

2
π2 + iπ

3

2

)
, (C.6)

∆I2 = CACF

(
−607

162
− 1181

432
π2 +

187

72
ζ3 +

7

96
π4 + iπ

(
961

216
+

11

72
π2 − 13

2
ζ3

))
+ C2

F

(
−9

8
π2 +

1

8
π4 + iπ

(
3

8
− 5

4
π2 + 6ζ3

))
+NfCF

(
41

81
+

97

216
π2 − 17

36
ζ3 + iπ

(
− 65

108
− 1

36
π2

))
, (C.7)

where we have set µ2 = s to match the convention for our final results. Notice that, in order

to obtain the finite remainders of the two-loop amplitudes in the two different schemes, only

the finite pieces of the latter are required, and in particular the O(ε) terms of the one-loop

amplitudes are not needed, as expected. Note, moreover, that the conversion coefficients

are complex, due to the fact that the original formulation of IR subtraction [67] factored

out a phase for time-like pairs of partons from both the collinear and soft contributions,

while in the qT -scheme [68] this phase factor is associated only with the soft contributions,

in line with the structure of IR factorisation [77, 78] at higher loop order.
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