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ABSTRACT

This thesis describes the development of a novel superconducting
transversal gradient undulator (TGU) designed to form a compact,
highly brilliant laser-wakefield accelerator-driven radiation source.

Undulators provide monochromatic radiation with high spectral
intensity. The working principle of undulators requires a small rela-
tive energy spread of the electron beam in the order of ∆E/E0 ∼ 0.1 %,
where E0 is the reference electron energy. This is a typical value in for
example storage rings. A laser-wakefield accelerator (LWFA) accelerates
electrons to up to several 100 MeV within a few millimeters accelera-
tion length. However, the energy spread of a LWFA is relatively large
(∆E/E0 & 1 %), spoiling the monochromaticity and the intensity of the
undulator radiation.

A TGU in combination with a dispersive beam transport line can be
employed to produce undulator radiation with natural bandwidth despite
the large energy spread of the LWFA. The flux density amplitude of the
TGU varies with the transverse position and is matched to the spatial
dispersion of the electrons in such a way that particles with different
energies oscillate at the same amplitude and frequency. In this thesis,
a TGU with an acceptance for electron energies of ∆E/E0 = ±10 % is
presented.

The transverse flux density gradient can be achieved by monotonically
increasing the gap width of the undulator. Two possible TGU geometries
are described and an undulator with a cylindrical form is chosen. Then
a design optimization is performed to identify the optimal parameters
of this undulator. With a superconducting cylindrical undulator the
highest transverse field gradient is achievable.

In addition, the technical design and construction details such as shape,
material and winding coil technique are discussed. Special features of
this TGU include a short period length of about 1 cm and iron-free
superconducting coils, which are wound by using NbTi wires. To test
these concepts, a first short model of the magnet was built and charac-
terized. Based on the results a full-scale TGU has been realized.

Magnetic measurements and quench tests were performed with the un-
dulator within a liquid-Helium bath cryostat. The transversal gradient
field measured showed an excellent agreement with the simulations. The
operating current of the full-scale TGU will be at 83.5 % of the mea-
sured quench current (≈ 890 A), providing a sufficient safety margin.
This thesis documents the construction, first tests and characterization,
both of the short model and the full-scale TGU.





ZUSAMMENFASSUNG

Diese Dissertation beschreibt die Entwicklung eines neuartigen
supraleitenden Undulators mit transversalen Feldgradienten (TGU) mit
dem Ziel, eine kompakte, hochbrillante Strahlungsquelle an einem Laser-
Wakefield-Beschleuniger zu realisieren.

Undulatoren produzieren monochromatische Strahlung mit hoher
spektraler Intensität. Das Arbeitsprinzip von Undulatoren erfordert eine
kleine relative Energiebreite des Elektronenstrahls in der Größenordnung
von ∆E/E0 ∼ 0.1 %, wobei E0 ist die Referenzelektronenergie. Dies ist
ein typischer Wert, wie er zum Beispiel in Speicherringen vorkommt.
Ein Laser-Wakefield-Beschleuniger (LWFA) beschleunigt Elektronen auf
Energien bis zu mehreren 100 MeV innerhalb von wenigen Millimetern
Beschleunigungsstrecke. Allerdings ist die Energiebandbreite LWFA-
beschleunigter Elektronen relativ groß (∆E/E0 & 1 %) und beein-
trächtigt die Monochromatizität und die Intensität der Undula-
torstrahlung.

Ein TGU in Kombination mit einer dispersiven Strahltransportlinie kann
eingesetzt werden, um trotz der großen Energiebandbreite der Elektro-
nen Undulatorstrahlung mit einer natürlichen Bandbreite zu erzeugen.
Die Flußdichte-Amplitude des TGU, variiert mit der transversalen Posi-
tion und ist in die räumlichen Dispersion der Elektronen in einer Weise
angepasst, dass die Teilchen mit verschiedenen Energien mit der gleichen
Amplitude und Frequenz schwingen. In Rahmen dieser Arbeit wird ein
TGU mit einer Akzeptanz für Elektronenenergien von ∆E/E0 = ±10 %
vorgestellt.

Die transversalen Flußdichtegradienten sind durch monoton zunehmende
Breite des Undulatorsgap realisierbar. Zuerst werden zwei mögliche TGU
Geometrien beschrieben und die Auswahl der zylindrischen Geometrie
begründet. Daraufhin wird eine Designoptimierung durchgeführt, um
die optimalen Parameter dieses Undulators zu bestimmen. Mit einem
supraleitenden zylindrischen Undulator ist der höchste transversale Feld-
gradient erreichbar, was für eine große Energieakzeptanz wünschenswert
ist.

Nachfolgend wird die technischen Konzeption und die Bau-Details wie
die Form, das Material und die Wicklungstechnik der Spulen diskutiert.
Zu den Besonderheiten dieses TGU gehören eine kurze Periodenlänge von
etwa 1 cm und eisenfreie supraleitende Spulen, die durch die Verwendung
NbTi Drähte gewickelt sind. Um diese Konzepte zu testen, wurde ein
erstes kurzes Modell des Magneten gebaut und charakterisiert. Auf Basis
dieser Ergebnisse wurde der vollständige TGU realisiert.



Magnetische Messungen und Quench-Tests wurden mit dem Undulator
in einem Flüssig-Helium Bad Kryostaten durchgeführt. Das gemessene
transversale Gradient-Feld zeigte eine sehr gute Übereinstimmung
mit den Simulationen. Der Betriebsstrom des Full-Scale-TGU wird
bei 83.5 % des gemessenen Quenchstroms (≈ 890 A) sein, was eine
ausreichende Sicherheitsmarge bietet. Diese Dissertation dokumentiert
die Konstruktion, Prüfung und Charakterisierung, sowohl des kurzen
Modells als auch des vollständigen TGU.
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1. Introduction

1.1 Synchrotron radiation

Synchrotron radiation (SR) is the name given to the electromagnetic radiation or
light generated by an ultra-relativistic electron beam traveling through a magnetic
field. It was discovered in 1946 in a General Electric synchrotron accelerator [1].
Synchrotron radiation sources (SRS) are employed by scientists around the world
in the study of matter. The high intensity of X-rays produced in these sources are
used for experiments in many areas such as physics, materials science, chemistry
and medicine [2].

Electromagnetic waves can be described by the wavelength, the photon energy
or the frequency. X-rays are electromagnetic waves, like visible light but situated at
the short wavelength end of the electromagnetic spectrum, between ultraviolet light
and gamma rays. Figure 1.1 shows the electromagnetic radiation spectrum with its
corresponding wavelength, photon energy and frequency.

frequency
[Hz] 105 106 107 108 109 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021105 106 107 108 109 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021

electron volt
[eV] 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 1 10 102 103 104 105 106
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Figure 1.1: The electromagnetic radiation spectrum.

SR sources are often classified in four different generations [3], which are listed
next:

• The first generation included storage rings partly dedicated as radiation
sources such as the accelerators DORIS in Germany and SPEAR in USA.
These storage rings were designed and used originally for high energy physics
research and were not optimized for maximum photon beam brightness.
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• The second generation was developed in the late 1970s. These sources were
built using bending magnets (see Section 1.1.1) and were fully dedicated to
SR research such as BESSY I in Germany and MAX I in Sweden.

• The third generation are characterized to produce brilliant X-rays by insertion
devices (see Section 1.1.2). Some of X-Ray sources in operation are: SPring-8
in Japan, ESRF in France, APS in USA and DESY’s PETRA III in Germany.

• The fourth generation sources are rather under development all over the world.
This generation will be more focused on linear accelerators than on storage
rings. It will produce greater brightness than the third generation sources and
it will be include the free-electron lasers (FELs) as well as the energy recovery
linacs (ERLs). Some X-ray laser facilities are: LCLS in USA, SACLA in Japan
and the European XFEL in Germany.

The technology of storage ring light sources around the world is developed fur-
ther to design the so-called “ultimate” storage rings, pushing the brightness of third
generation SR several orders of magnitude further [4]. There is nowadays intensive
Research and Development (R&D) on low-emittance rings, for example at MAX IV
in Sweden. In this ring a design relying on a group of seven magnets, known as
multi-bend achromats, will be employed to increase the intensity and brightness of
the synchrotron X-ray light by focusing electron beams more tightly [5].

1.1.1 Bending Magnets

The first sources of synchrotron radiation were based on bending magnets
installed in storage rings. This kind of magnets bend the electron trajectory in
an uniform dipole magnetic field [2]. A schematic diagram of the radiation emitted
by electrons in bending magnets is given in Figure 1.2.

e-
e-

± ∼ 1/γ

electron
beam

synchrotron
radiation

N

S

Figure 1.2: Schematic diagram of bending magnet radiation.

The radiation from these magnets is emitted tangentially from any point along
the curved path. When the electron velocity approaches the velocity of light, the ra-
diation generated along the electron trajectory inside of a bending magnet is emitted
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into a cone of angle ± ∼ 1/γ, where γ is known as the relativistic Lorentz factor.
This factor can be calculated as the ratio of the electron’s energy to its rest mass
energy (γ = E/0.511 MeV) [2].

1.1.2 Insertion Devices: Undulators and Wigglers

Special magnets were built and inserted into the straight sections of the third
generation radiation sources. These Insertion Devices (IDs) produce high levels of
flux in narrow angular cones and are light sources for the UV to X-Ray region [2].
IDs fall into two main categories, undulators and wigglers.

• The undulator is a device that consists of a periodic structure of dipole magnets
that cause the electron beam to follow a sinusoidal trajectory about the axis of
the undulator and this generates Coherent Synchrotron Radiation (CSR). The
radiation wavefronts emitted overlap and interfere with each other. Due to this
interference the undulator emits a line spectrum with significantly increased
intensity at wavelengths with constructive interference. For these wavelengths
at the same time the radiation cone is narrowed by a factor of

√
N as compared

to the bending magnets, where N is the number of periods of the undulator [2].
A schematic diagram of the radiation emitted by electrons in undulators is
given in Figure 1.3.

e-

synchrotron
radiation

electron
beam

± ∼ 1/γ 

N

S

Figure 1.3: Schematic diagram of the undulator radiation.

• A wiggler has stronger magnetic field than an undulator. Thus the particles,
which pass through it, move in the transverse position significantly more than
for undulators and the electron beam trajectory cannot be approximated as
moving along the axis. This prevents the wavefronts from overlapping, no
interference effects are evident and this results in Incoherent Synchrotron Ra-
diation. The advantage of this kind of ID over a bending magnet source is that
each wiggle produces approximately the same number of photons as a bend-
ing magnet of the same field strength, with a opening angle for the emitted
radiation of much greater than 1/γ [2]. A schematic diagram of the radiation
emitted by electrons in wigglers is given in Figure 1.4.
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e-
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Figure 1.4: Schematic diagram of the wiggler radiation.

To distinguish between undulators and wigglers, the dimensionless undulator or
deflection parameter K (1.1) is defined:

K =
eB0

m0c

λu

2π
= 93.36B0[T]λu[m] , (1.1)

where e is the electron charge, B0 is the magnetic field amplitude, λu is the period
length of the device, m0 is the rest mass of the electron and c is the speed of
light [2]. If K . 1 the electron trajectory will overlap with the emitted radiation
and interference effects can occur. This is the case of an undulator. On the other
hand, if K >> 1 there will be little overlap and no interference. This is the case for
a wiggler [2].

The wavelength of radiation from an undulator can be calculated from the un-
dulator equation (1.2):

λ =
λu

2nγ2

(
1 +

K2

2
+ Θ2γ2

)
, (1.2)

where Θ is the observation angle and n is the harmonic number. The wavelength
depends not only on the magnet period and the electron energy but also on the
deflection parameter K, which is a function of the peak on-axis magnetic field and
the undulator period again. So by changing the amplitude of the magnetic field
the output wavelength of the undulator can be varied. For this reason undulators
are almost always built with a smoothly adjustable magnetic field amplitude allow-
ing the output wavelength to be varied continuously over the tuning range of the
undulator [2].

The natural bandwidth ∆λ/λ at the n-th harmonic is set by the number of
periods of the undulator N [2] and is defined by Equation (1.3):

∆λ

λ
≈ 1

nN
(1.3)

The general form of the radiation spectrum for bending magnets, wigglers and
undulators is presented in Figure 1.5.
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Figure 1.5: Comparison of the calculated radiation spectra emitted by a bending
magnet, a 1.8 T wiggler and the SCU14 undulator from the European Synchrotron
Radiation Facility (ESRF) [6].

1.2 Laser Wakefield Accelerators

The idea to accelerate particles in a plasma was proposed by Tajima and Dawson
in 1979 [7]. They suggested that the longitudinal electric fields formed within laser-
driven plasma waves could accelerate charged particles to relativistic high energies.

The plasma wave is excited by an intense femtosecond-laser pulse. This concept
is known as the laser wakefield accelerator (LWFA). The acceleration gradients pro-
vided by this laser-driven plasma accelerators are three orders of magnitude greater
than those generated by conventional accelerators [8]. Electron energies up to 1 GeV
have been achieved in acceleration lengths in the order of a centimeter in laser-driven
wakefield-accelerators [9].

Most experiments with LWFA are operated in the so-called self-injection regime,
where the plasma wave amplitude strongly increases during the highly non-linear in-
teraction until it breaks. During the breaking process, plasma background electrons
are injected into the plasma wave following the exciting laser pulse [10]. A draw-
back of this acceleration process is a relatively large energy spread of the accelerated
electron bunch in the order of 1 − 10 % as compared to conventional accelerators
(∼ 0.1 %).

Undulator light sources driven by LWFA suffer from this energy spread since the
monochromaticity and in turn the spectral intensity of the radiation drop rapidly
with an increasing bandwidth of the electron energy. This is the case, if a conven-
tional planar undulator with a transversely constant magnetic field is used.

In Figure 1.6 the simulated spectrum of a 100 periods planar undulator [11]
is shown. The software WAVE [12] was used to calculated the flux density of the
emitted radiation of a single electron with energies between 108 MeV and 132 MeV
(20 % energy spread). The observation point is on axis and located at 100 m from
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Figure 1.6: Simulated flux density of the emitted emission versus energy of radiation
of a single electron with energies between 108 MeV and 132 MeV through a planar
undulator [11].

the undulator. The calculated energy of radiation is shown on the x-axis and results
a bandwidth of approximately 30 %. The spectrum generated exhibits an even larger
energy bandwidth than the electron beam and the peak intensity drops.

Filtering the electron energies can restore the monochromaticity of the undulator
radiation, but obviously only at the cost of vastly decreasing the number of particles
and thereby again the radiation intensity. The basic feasibility of LWFA-driven light
sources, but also their limitations, were experimentally shown in [13] and [14].

As an alternative approach, an experimental setup with a LWFA and a TGU
will be realized at the Friedrich Schiller University in Jena (see schematic diagram
Figure 1.7). A collaboration with the Laboratory for Applications of Synchrotron
Radiation (LAS) at the Karlsruhe Institute of Technology (KIT) has been performed.

The motivation of the experiment in Jena is to develop a very compact high-
brilliance X-ray radiation source by applying a compensation scheme for the rela-
tively high energy spread according to the following idea: A magnetic chicane ener-
getically disperses the electron beam in the x-z plane (γ → γ(x)) and the electrons
are sent through the TGU with a x-dependent flux density amplitude (B → By(x))
off axis. The magnetic field, and therefore also the deflection parameter K, are

zy

x

TGU

B → By(x)LWFA

chicane

γ → γ(x)

Figure 1.7: Experimental setup planned at the LWFA in Jena [15].
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dependent on the transverse x-position and have to match the spatial energy distri-
bution of the electrons after the chicane to get a constant wavelength [16].

The modified undulator equation (1.4) that defines the constant wavelength for
this design is:

λ =
λu

2γ(x)2

(
1 +

K(x)2

2

)
= constant, (1.4)

where γ(x) = E(x)/0.511 MeV, K(x) = 93.36By(x)[T]λu[m] and λu is the fixed
undulator period length.

The optimization goal, for the TGU designed in this thesis, is to achieve a
bandwidth of the undulator radiation in the order of the natural bandwidth. For
N = 100 periods this results in the condition:

∆λ

λ
≤ 1

N
≈ 1 %

1.3 Superconducting Undulators

Superconductivity was discovered in 1911 by Kamerlingh Onnes, when he in-
vestigated the conductivity of metals at low temperatures. He saw the sudden drop
in resistance of mercury to an immeasurably low value at a temperature just below
4.15 K (the boiling temperature of liquid helium). The temperature at which the
electrical resistivity of a metal drops to zero is called critical temperature Tc [17].
In Table 1.1 the critical temperatures of some superconducting materials are given.

Material Type Critical temperature Critical magnetic field
Tc[K] Bc[T ]

Pb 7.19 0.08
Hg 1 4.15 0.04
Al 1.18 0.01

Tc[K] Bc2[T ]

Nb 8.7 0.2
NbTi 2 9.2 14.5

Nb3Sn 16 24

Table 1.1: Critical temperature and critical field of superconductors [18, 19].

In 1933, Meissner and Ochsenfeld discovered that superconductors expelled a
weak magnetic field from its interior when cooled below Tc. This phenomenon was
called Meissner effect. There are two types of superconductors classified according
to their response to magnetic fields:

• Type I superconductors are pure metals such as lead (Pb), mercury (Hg) and
aluminium (Al). They do not admit a magnetic field in the interior of the
bulk material below their specified Tc. For this reason shielding currents flow
in a very thin layer on the surface of the conductor. The London penetration
depth parameter λL defines the thickness of this layer and is generally quite
small, 20−50 nm. When the strength of the applied magnetic field rises above
a critical value Bc, the superconducting state breaks down (see Figure 1.8).
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The typical values of Bc are usually less than 0.1 T as is shown in Table 1.1.
This type of superconductors is not used for IDs because they are only super-
conducting at low fields [17].

-M

Superconducting Normal

Bc B

(a)

B
c

Meissner Phase

Normal Phase

TTc

B

(b)

Figure 1.8: Type I superconductors [18]: (a) Magnetization (magnetic moment per
unit volume M) versus magnetic field. (b) Magnetic field versus temperature.

• Type II superconductors are alloys like niobium-titanium (NbTi) and niobium-
tin (Nb3Sn) and also the element Niobium (Nb). They are characterized by
two critical fields, Bc1 and Bc2. They exclude magnetic fields below Bc1, in
the Meissner phase. In the range Bc1 < B < Bc2 they are in a mixed-phase,
where the magnetic field is not excluded completely, but is constrained in the
form of flux tubes (see Figure 1.9). They are in the superconducting state up
to much higher fields (10 T or more for the alloys) as is shown in Table 1.1
[17].

-M

Super-

conducting Normal

Bc BBc1 Bc2

Mixed

(a)

B
c
1

Meissner Phase

Normal Phase

TTc

B
c
2

B

Mixed Phase

(b)

Figure 1.9: Type II superconductors [18]: (a) Magnetization versus magnetic field.
(b) Magnetic field versus temperature.

Type II superconductors are characterized by a critical surface (see Figure 1.10)
in temperature (T), magnetic field (B) and current density (J) space. An increase
in any of the properties produces a decrease in the other two. The critical surface
indicates a first order phase transition between the superconducting (region below
the surface) and the normal conducting state (above the surface) of the material. In
practice, the usual operating temperature for superconducting magnets built with
NbTi is 4.2 K [20].
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Figure 1.10: Critical surface for a NbTi cable. In the region below the red curve the
material is in the superconducting state. Above the red curve the material is in its
normal state.

At present the two materials most used for superconducting IDs are NbTi and
Nb3Sn [2]. In this thesis, only NbTi superconductors are considered. This super-
conductor is the preferred material to use because it is ductile and easy to form into
coils. Superconducting wires of NbTi consist of many individual filaments (typically
20µm diameter) held together in a copper matrix that provides mechanical stability,
an electrical bypass when a filament goes normal conducting, and also a heat sink.
A 1 mm diameter wire can contain hundreds or even thousands of filaments [2].

“Quench” is a term used to describe the process which occurs when any part of
a magnet goes from the superconducting to the normal resistive state. The entire
stored energy of the magnet will be dissipated as heat [20]. A reliable detection
of quenches is important because a sudden increase in resistance in a coil that has
very large current densities flowing within it, can easily damage or even destroy that
coil. Protection systems must be included with the power supply so that in the
event of a quench the current is rapidly (< 1 s) reduced to zero [2]. In most cases
the dissipation of the stored energy in shunt resistors connected in parallel to the
superconducting coils.

Interest in superconducting undulators (SCUs) is justified by the fact that they
can reach, for the same gap and period length, higher field amplitudes than cryogenic
permanent magnet undulators (CPMUs) [21]. There are a growing number of R&D
projects worldwide where SCUs have recently been built or are in development, for
example at: National Synchrotron Radiation Research Center (NSRRC) in Taiwan
[22], Advanced Photon Source (APS) in USA [23], Diamond Light Source (DLS) in
UK [24], Shangai Synchrotron Radiation Facility (SSRF) in China [25], European
Synchrotron Radiation Facility (ESRF) in France [26] and Synchrotron Radiation
Facility at KIT (ANKA) in Germany [27].

The idea of realizing extremely compact radiation sources and even table-top
FELs by combining LWFAs with short-period undulators [28, 29, 30] begins with
the advent of LWFAs in the 2000s [31, 32, 33]. Evidently SCUs are, next to CPMUs,
promising candidates for this application. At a period length of λu = 9 mm, NbTi
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SCUs can achieve a flux density on axis 25 % higher when compared with CPMUs
(as discussed in [34]). The fixed-gap-tunability of electromagnets is an additional
advantage.

1.4 Objectives of this thesis

In this thesis, the development of a novel transverse gradient undulator (TGU)
is presented. This superconducting undulator is tailored to the electron beam
properties of the LWFA at the University of Jena. The main targets of this thesis
are summarized below:

• To select the TGU geometry through analytical and numerical methods.

Developing an optimization for finding the optimal parameters of the undu-
lator for the specific electron beam parameters given by the LWFA in Jena.
The undulator magnetic field and the electron beam trajectories through the
undulator will be simulated. The transversal drift of the trajectories will be
analyzed and compensated through a correction field. The selection of a couple
of correction coils inside the undulator will be introduced.

• To design the TGU tailored to the LWFA in Jena.

The material for the construction of the undulator will be selected, after
simulating several undulator models with different pole configurations to an-
alyze the saturation of the magnetic parts. The geometrical parameters of
the full-scale undulator and the correction coils will be specified, including the
coil-pole structure and undulator support structure.

• To manufacture short models and the full model undulator.

This will be included a first half period model and two periods models scaled
to the full-scale TGU with 40 periods. The winding and the test of these short
models will be employed to improve the coil support structure of the full model
and to facilitate the winding of the superconducting coils. Quench tests and a
first magnetic field of the short models will be performed to experimentally test
the coils. The winding of the 40 periods TGU superconducting coils, including
the correction coils, will be carried out at KIT-LAS.

• To characterize the 40 periods TGU.

A first magnetic field measurement and quench tests of the full-scale TGU will
be performed first at KIT, to test the technical concept and to characterize
the undulator before the experiment in Jena. The correction coils will be also
measured.



2. Superconducting Undulator
Fundamentals

2.1 Working principle

Undulators are a periodic magnet structure composed of series of alternating
magnet pairs, which cause the oscillation of the electron beam (see Figure 2.1). The
magnetic fields in an undulator can be produced with either permanent magnets or
electromagnets. In this thesis only superconducting electromagnets undulators are
considered.
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Figure 2.1: Principle layout of an planar undulator: the period length λu, the gap
width g, the electron trajectory (in blue), the magnetic field (arrows in red) and the
magnetic poles (blocks in green) [6].
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A planar undulator with symmetry in the xz-plane produces a sinusoidal mag-
netic field, which is a periodic odd function and can be represented as a Fourier sine
series [35]:

By (z) = −B0 sin

(
2πz

λu

)
= −B0 sin (kuz) (2.1)

By (z) =
∞∑
i=1

(bn sin(nkuz)) (2.2)

whereB0 is the magnetic field amplitude, λu the undulator period length, ku = 2π/λu

and bn the Fourier coefficients.

Superconducting undulators produce the alternating magnetic field by super-
conducting coils powered with alternating polarity and wrapped into the grooves
between the poles, as is shown in Figure 2.2.

X

X

u

y 0B u(z)=-B sin(k z) zg

Figure 2.2: Longitudinal cut of one period of an electromagnetic undulator. Only
the part of the undulator coil close to the beam axis is shown.

2.1.1 Electron trajectories

The magnetic field for a planar undulator on the beam plane (y = 0) is taken
as:

~B = (0, B0 cos(kuz), 0) (2.3)

where B0 is the magnetic field amplitude and ku = 2π/λu. The absolute value of
the electron velocity is constant: v = cβ. It is assumed that the electrons traverses
the origin z = 0 at time t′ = 0. The chosen symmetry field condition results in the
initial conditions [36, 6]:

z(0) = 0, ẋ(0) = 0, ż(0) = βc (2.4)

with no transverse velocity at this moment. The Lorentz force on the electron in
the magnetic undulator field,

~F = meγ

ẍÿ
z̈

 = e(~v × ~B) = eB0

− cos(kuz)ż
0

cos(kuz)ẋ

 (2.5)
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leads to [36, 6]:

ẍ =
d2x

dt′2
= − eB0

γme

cos(kuz)ż (2.6)

z̈ =
d2z

dt′2
=
eB0

γme

cos(kuz)ẋ (2.7)

where e is the elementary electric charge, γ the Lorentz Factor and me the rest mass
of the electron.

The change in x-position along the z-axis corresponds to the integral of Equa-
tion (2.6):

ẋ =
dx

dz
(z) = −

∫
eB0

γme

cos(kuz) dz

= − eB0

γmeku

sin(kuz).

(2.8)

The z-component of the velocity is obtained from the conservation of the
energy [36, 6]:

ẋ2 + ż2 = β2c2, ż = βc

√
1− ẋ2

β2c2
(2.9)

As mentioned in Section 1.1.2 depending on the value of K there are two cases:
wiggler if K >> 1 and undulator if K . 1. In the case of the undulator the radiation
emitted by relativistic electrons is concentrated in a narrow cone around the forward
direction (z-axis). Then the radiation receives contributions from various sections
of the trajectory that overlap in space and interfere with each other [37].

The maximum deflection angle with respect to the z-axis is [2, 36]:

ψ0 =
K

γ
(2.10)

Depending on the magnitude of the deflection angle ψ0 compared with the natural
opening angle 1/γ of the emitted radiation, the undulators can be classified
into [36, 6]:

• Weak-undulator: ψ0 is smaller than 1/γ then K < 1. Undulator in the strict
sense with quasi-monochromatic radiation.

• Strong-undulator: ψ0 is larger than 1/γ then K > 1. Spectrum of undulator
radiation with many harmonics.

In the case of a weak undulator the expression for the longitudinal velocity can
be approximated to ż ≈ βc. The derivative of x with respect to z is [36, 6]:

x′(z) =
dx

dz
=
ẋ

ż
= − eB0

mekucβγ
sin(kuz)

= −K
βγ

sin(kuz)

(2.11)
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K = βγx̂′ = βγψ0 =
eB0

mekuc
(2.12)

A good approximation of the electron trajectory on the xz-plane for the weak
undulator is obtained with one more integration of Equation (2.11) [36]:

x(z) =
K

βγku

cos(kuz) = a cos(kuz). (2.13)

The trajectory as a function of the time t′ written in Cartesian component is given
by:

x(t′) =
K

βγku

cos(Ωut
′) (2.14)

using the frequency of the periodic particle motion in the laboratory frame
Ωu = kuβc. The z-component, z(t′) = βct′, is obtained from the longitudinal motion
ż = βc.

2.1.2 Interference

The constructive interference of wavefronts emitted by the same electron
traveling through an undulator at different points in the magnet is shown in
Figure 2.3 [36, 35].

z

x

electron

A B

u

u

zˆ/

u
co
s

d

Figure 2.3: Constructive interference in an undulator.

If an electron is moving one period length λu between the point A and the point
B, the time for this electron to travel one full period is te = λu/cβ̂z moving with the
drift velocity vz = cβ̂z. The average relative velocity of the electron in the forward
direction β̂z is approximately [2]:

β̂z ≈ β − K2

4βγ2

≈ 1− 1

2γ2
− K2

4βγ2

(2.15)

The radiation wave emitted in the first period from A is propagating with
velocity c at a time tγ = λu/c. This first wave will have advanced a distance
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λu/β̂z when the electron has arrived to the point B. The radiation emitted in the
second period from B is delayed with respect to the first wave by ∆t = te− tγ. The
separation d between the two wavefronts is [2, 36]:

d =
λu

β̂z
− λu cos(Θ) (2.16)

where Θ is the angle of emission with respect to the electron beam axis z, called too
observation angle. For constructive interference to occur this separation must be a
whole number of wavelength of radiation: d = nλ.

With the Taylor series expansion approximation (1 − x)−1 ≈ (1 + x) (valid for
|x| < 1) and inserting the value of β̂z from Equation (2.15), it results:

d = nλ ≈ λu

(
1 +

1

2γ2
+

K2

4βγ2

)
− λu cos(Θ)

≈ λu (1− cos(Θ)) +
λu

2γ2
+
λuK

2

4βγ2

(2.17)

It is necessary to employ the expression 1 − cos(Θ) = 2 sin2(Θ/2) and the
approximation for small angles sin(Θ) ≈ Θ, which leads to the undulator equation
to calculate the wavelength of radiation:

λ =
λu

2nγ2

(
1 +

K2

2
+ Θ2γ2

)
(2.18)

2.2 Magnetic field calculation

Analytical methods allow to calculate undulator magnetic fields and to opti-
mize them with respect to various parameters faster than numerical methods. The
analytical expressions used in this work were introduced in [38, 16] and they are
valid for infinitely long undulators. For the simulation of the magnetic field in an
undulator with finite number of periods Nu, Finite-Element Methods (FEMs) are
employed, specially to simulate the magnetic field at the ends of the undulators. The
employment of FEMs is also justified in the case of iron-pole undulators by the iron
saturation. The field strength parameter B̃ required for the analytical calculation is
found through the FEM. The results of analytical methods are compared with those
obtained from the application of the FEM to validate them.

Analytical expressions for the calculation of the magnetic field of two transverse
gradient undulators (TGUs) designs were employed. In this thesis only TGUs with
tilted and cylindrical geometries, respectively, were considered (see Figure 2.4). In
TGUs the magnetic field increases (or decreases) with the positive transverse x-axis,
while this transverse gradient is zero in a conventional planar undulator.

2.2.1 Analytic expressions

The magnetic field in the gap of the undulator (where ~J = 0) obeys the following
time-independent Maxwell equations in vacuum [38, 39]:

~∇ · ~B = 0 (2.19)

~∇× ~B = 0 (2.20)
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Figure 2.4: Transverse gradient undulator geometries considered in this thesis: tilted
(left) and cylindrical (right).

For a vector field ~V with ~∇× ~V = 0 exists a scalar potential φ with ~V := −~∇φ
and the following vector identity can be applied [38, 39]:

~∇× (~∇φ) = 0. (2.21)

Then Equation (2.20) can be written as:

~B = −~∇φmagn.. (2.22)

Thus, Equation (2.19) becomes Laplace’s equation [40]:

~∇ · ~∇φmagn. = ~∇2φmagn. (2.23)

= 4φmagn. = 0. (2.24)

Laplace’s equation is a linear and homogeneous partial differential equation, which
is treated extensively in the literature. In an arbitrary orthogonal coordinate system
(u1, u2, u3), Laplace’s equation reads [41]:

4φ(u1, u2, u3) =
1

t1t2t3

[
∂

∂u1

(
t2t3
t1

∂φ

∂u1

)
+

∂

∂u2

(
t1t3
t2

∂φ

∂u2

)
+

∂

∂u3

(
t1t2
t3

∂φ

∂u3

)]
(2.25)

where ti are the metric coefficients defined as [41]:

ti =

∣∣∣∣∂~r(u1, u2, u3)

∂ui

∣∣∣∣ (2.26)

with ~r is the position vector as a function of the coordinates ui. Laplace’s equation
cannot be solved in arbitrary three-dimensional coordinate systems [36]. However,
in separable coordinate systems a solution can be found. Separable means that if
boundary conditions on a coordinate plane are given, then φ can be written as:

φ(u1, u2, u3) = Φ̃1(u1)Φ̃2(u2)Φ̃3(u3). (2.27)

Due to the periodic undulator field in the z-direction, the potential has to be
periodic. In the following, u3 is chosen as the beam direction z and a good
approximation for the z-dependent factor of the potential is:

Φ̃3(u3) = Φ̃z(z) = sin(kuz). (2.28)
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If a Fourier series expansion is applied, the simple sine function becomes:

Φ̃z(z) =
∞∑
i=1

(bn sin(nkuz)) . (2.29)

Thus, in a separable coordinate system Laplace’s equation (2.25) becomes:

sin(kuz)

t1t2

[
Φ̃2

∂

∂u1

(
t2
t1

∂Φ̃1

∂u1

)
+ Φ̃1

∂

∂u2

(
t1
t2

∂Φ̃2

∂u2

)]
+ Φ̃1Φ̃2

∂2

∂z2
sin(kuz) = 0

sin(kuz)

t1t2

[
Φ̃2

∂

∂u1

(
t2
t1

∂Φ̃1

∂u1

)
+ Φ̃1

∂

∂u2

(
t1
t2

∂Φ̃2

∂u2

)]
− Φ̃1Φ̃2k

2
u sin(kuz) = 0

1

t1t2

[
Φ̃2

∂

∂u1

(
t2
t1

∂Φ̃1

∂u1

)
+ Φ̃1

∂

∂u2

(
t1
t2

∂Φ̃2

∂u2

)]
− Φ̃1Φ̃2k

2
u = 0

The sine term vanishes and the three-dimensional Laplace’s equation thus reduces
to the two-dimensional Helmholtz’s equation [40]:

1

t1t2

[
Φ̃2

∂

∂u1

(
t2
t1

∂Φ̃1

∂u1

)
+ Φ̃1

∂

∂u2

(
t1
t2

∂Φ̃2

∂u2

)]
= Φ̃1Φ̃2k

2
u. (2.30)

The magnetic field from Equation (2.22) can be obtained from the solutions of
Equation (2.30).

2.2.1.1 Tilted Undulator

As a model for the tilted undulator are assumed two infinitely pole faces, which
are tilted by the angle α′ against each other and intersect at x = 0 and y = 0 [42].
The model and the coordinate system used are shown in Figure 2.5.

Figure 2.5: Model for the tilted undulator: two infinitely pole faces, which are tilted
by an angle α′ against each other and intersect at x = 0 and y = 0.

The magnetic induction of the tilted undulator was approximated by the sum
of the fields of both undulator halves. In this case, after solving the Helmholtz’s
equation as detailed in [38], the induction field in an infinite tilted undulator is:

~B =


2 sin(α)B̃(z) [cosh(kux sin(α)) sinh(kuy cos(α))−

sinh(kux sin(α)) sinh(kuy cos(α))]

2 cos(α)B̃(z) [sinh(kux sin(α)) cosh(kuy cos(α))−
cosh(kux sin(α)) cosh(kuy cos(α))]

2 cos(kuz)B̃(z) [sinh(kux sin(α)) sinh(kuy cos(α))−
cosh(kux sin(α)) sinh(kuy cos(α))]

 , (2.31)



18 2. Superconducting Undulator Fundamentals

where α = α′/2 and the value of B̃ can be calculated as the field on the pole surface
of the undulator through a simulation in 2D with a FEM-Software as is detailed in
Section 3.2.3.

Because the ideal motion of the electrons is restricted to the xz-plane, y = 0
can be assumed and the y-component of the magnetic field from Equation (2.31) is:

By = 2 cos(α)B̃ sin(kuz) [sinh(kux sin(α))− cosh(kux sin(α))]

The hyperbolic functions can be defined in terms of exponentials as:

sinh(x) =
ex − e−x

2

cosh(x) =
ex + e−x

2

Thus, the magnetic field By can be written as:

By = 2 cos(α)B̃ sin(kuz)
[
1/2

(
ekux sin(α) − e−kux sin(α)

)
− 1/2

(
ekux sin(α) + e−kux sin(α)

)]
The analytical expression to calculate the magnetic field By in the infinite tilted

undulator will be approximated by:

By = −2 cos(α)B̃ sin(kuz)e−kux sin(α) (2.32)

2.2.1.2 Cylindrical Undulator

Two infinitely long cylinders are assumed as a model for the cylindrical undu-
lator. These two cylinders have their axis in different coordinate systems, which are
shifted by ∆y = g+2r against each other, where g is the gap width on symmetry axis
and r the external pole radius of the cylindrical undulator. In the Cartesian undu-
lator system the xz-plane is in the beam plane and the origins of the cylinders’ local
coordinate systems are lying at r0,o = (0, (r + g/2), 0) and r0,u = (0,−(r + g/2), 0)
respectively. The model and the Cartesian coordinate system used are shown in
Figure 2.6 (left).

Figure 2.6 (right) shows the upper and lower cylindrical coordinate system
assumed for the cylindrical undulator. The radial coordinate ρo,u and the polar
angle θo,u of the upper and the lower cylindrical coordinate system, respectively, are
added. z-coordinate has the same meaning as in Cartesian coordinates system. In
this way, the magnetic field at point P (x, y, z) can be calculated using the analytical
expressions for the cylindrical undulator (see Equation (2.37)), which employs the
upper and the lower cylindrical coordinates.

The Cartesian coordinates can be transformed to the radial coordinates of the
upper and lower cylindrical coordinate system by making use of the transformation
equations:

ρo =

√
x2 + [y − (r + g/2)]2 (2.33)

ρu =

√
x2 + [y + (r + g/2)]2 (2.34)
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Figure 2.6: Model for the cylindrical undulator: two infinitely long cylinders with
their axis shifted by ∆y = g + 2r against each other and the xz-plane in the beam
plane. Left: Cartesian coordinate system. Right: upper and lower cylindrical coor-
dinate system.

The polar angle of the upper and lower cylindrical coordinate system is given
by:

θo = tan−1

(
y − (r + g/2)

x

)
(2.35)

θu = tan−1

(
y + (r + g/2)

x

)
(2.36)

The magnetic induction of the cylindrical undulator was approximated by the
sum of the fields of both undulator halves. In this case, after solving the Helmholtz’s
equation as detailed in [38], the induction field in an infinite cylindrical undulator
is:

~B = B̃ (sin(kuz) [K1 (kuρo) êρ,o +K1 (kuρu) êρ,u]

+ cos(kuz)êz [K0 (kuρo) +K0 (kuρu)]) (2.37)

where K0 and K1 are the modified Bessel functions and êρ,o/u the radial base vectors
of the the upper and lower cylindrical coordinate systems.

Because the ideal motion of the electrons is restricted to the xz-plane, y = 0
can be assumed and the y-component of the magnetic field from Equation (2.37) is:

By = B̃ sin(kuz) [K1 (kuρo) êρ,o +K1 (kuρu) êρ,u] . (2.38)

In Appendix C the magnetic flux density By is calculated in terms of a series
Fourier expansion and results:

By =
∞∑
n=0

B̃ sin(nkuz) [K1 (nkuρo) êρ,o +K1 (nkuρu) êρ,u] (2.39)

where in this case B̃ is calculated using the Fourier components of the central period
of the magnetic field By(z) on the beam plane. These components are calculated
through a simulation in 3D with a FEM-Software as is detailed in Section 3.2.4.
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2.2.2 Numerical methods

In many different areas of engineering and physics the FEM has been widely
employed, including magnetism, electrostatics, structural mechanics and so on [37].
Its application to electric and magnetic fields together with a comparison of the
various techniques of field computation is given in [19, 43].

A large number of finite element codes are available to perform 2D and 3D field
computations of magnetic fields [18, 37]. The commercially available packages such
as ANSYS [44], ROXIE [45] and OPERA [46] provide more pre- and post-processing
features and a more friendly user interface.

The use of a 3D finite element code is still not trivial and therefore analytical
approaches are preferred whenever possible. FEMs are generally employed to obtain
solutions to partial differential or integral equations that cannot be solved by analytic
methods. Most finite element codes are organized around four main modules, which
are usually run successively [37]. These modules are: pre-processor, mesh generator,
solver and post-processor.

• The pre-processor is the first module to be executed. The magnetic properties
and the geometry of each model component are defined: steel piece, coil, air,
etc. Figure 2.7 shows the geometric model of the two full undulators, tilted
and cylindrical, and the air is omitted.

y

x

z
z

x

y

Figure 2.7: Geometric model of the tilted undulator (left) and the cylindrical un-
dulator (right). Iron pieces are represented in green, coils in red and the air is
omitted.

Making use of the periodicity and the symmetries, the volume of computation
can be restricted. The smaller the volume the shorter the time for solving and
the less memory is required. In the case of the tilted and cylindrical undulators
is sufficient to analyze one period. This can be done by creating a background
body, which encloses the central period. Employing symmetries, the cylindrical
undulator background can be reduced to a quarter and the tilted undulator
background to the half as is shown in Figure 2.8. The boundary conditions
applied to the background faces are: normal magnetic in the xz-plane (B is
perpendicular to this plane), tangential magnetic in the yz-plane (B is parallel
to this plane) and periodicity in z-direction.
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Figure 2.8: Background of both undulators: tilted (left) and cylindrical (right).
Boundary conditions are applied to the background faces. Only the coils of the
central period are displayed to see the background better.

• Mesh generator: In this module the volume of interest is divided into a number
of smaller sub-volumes. The operation of partitioning is also called mesh
generation. In the 3D Modeller the mesh generation is realized in two stages:
the cells (surface of volumes) are first discretized into triangles or quadrangles.
After this the volume mesh is done, starting from the surface mesh, each cell
is subdivided into tetrahedra, hexahedra or prismatic elements. Figure 2.9
shows the model body with the mesh of both undulators:

y

x

z

y

z

x

Figure 2.9: Model body with the mesh of both undulators: tilted (left) and cylin-
drical (right). Only the coils of the central period are displayed to see better the
mesh.
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The magnetic field is calculated later at each vertex point of each sub-volume.
These vertex points are called nodes. It is necessary to adopt an optimal
compromise between the precision and accuracy of the field computation on
the one hand and the computing time on the other. Having to many elements
results in an excessive time for solving. However, having too few elements
gives poor precision [37].

A parametrization of both undulator models, tilted and cylindrical, was per-
formed. This allows more rapidly to adjust the mesh element size in different
parts of the model. It is common practice to vary the mesh size from one
region to another and to use the smallest mesh size at places where a high
precision in the field is required.

• Solver: This is a process, which may take from a few minutes to a few hours
of CPU time depending on the number of nodes. In this thesis the software
OPERA [46] was employed. The included package TOSCA-3D solves non-
linear magnetostatic or electrostatic field and current flow models in three
dimensions. TOSCA uses a formulation based on scalar potentials, solved
using finite element discretization. Equations of Section 2.2.1 and the respec-
tive equations for material with finite, non-linear magnetic susceptibility are
solved for each node. The solution for each node depends on the solutions for
its neighbours, therefore the solution has to be iterated. When the output of
two successive nonlinear solutions are similar (within a predefined tolerance),
the nonlinear solution has converged. TOSCA solves numerically non-linear
analysis using either Newton-Raphson which are fast or simple iterations which
are very robust. When the solver terminates execution, the field is known at
each node [46].

• Post-processor: It provides facilities to make linear plots, graphs, contour plots,
etc. of the electromagnetic fields inside the computation volume. The field at
any point is determined by a suitable interpolation of the potential computed
at each node by the solver. Other important quantities can be computed
by the post-processor such as the field integrals, magnetic forces or particle
trajectories through the calculated fields.

All the model bodies included in this thesis are made at least ten full periods
long in order to avoid field distortions due to finite length effects. In OPERA-3D
the conductor fields are always calculated from all conductors even if they are not
included in the model body [46].

2.2.2.1 BH curve

The TOSCA program uses material characteristics to relate flux density B and
field intensity H of all materials (except air). The graph between B and H is known
as the magnetization curve or BH curve of the material [47]. For soft magnetic
materials the BH curve should be defined in the first quadrant, with the first values
of B and H both zero. For magnetic materials, la relation between B and H is given
by:

B

H
= µ = µ0µr (2.40)
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where µ is the permeability of a specific material, µ0 = 4π × 10−7 Tm/A is the
vacuum permeability and µr is the relative permeability and is not constant but
varies with H.

From the BH curve it can be seen that, as the flux density H is increased from
zero, the flux B increases up to a certain maximum value of flux. The magnetic
material is said to be saturated. Above saturation, B increases at a much smaller
rate with respect to increasing H. This means that µr gets effectively smaller as B
increases. In saturation, the slope dB/dH is approximately equal to µ0.

OPERA has a library of materials containing BH curve data specific for use
in a magnetic analysis. It is possible to create new BH curves saving in a datafile
a table of pairs of values with at least five points that define the curve and the
program extrapolates the data. The BH curve of OPERA called “tenten.bh”, which
is equivalent to low carbon steel AISI 1010, was used for the simulations of the iron
models of both undulators. For this material, full saturation would be reached at
Bmin = 2.13 T, marked with a red point in Figure 2.10.
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Figure 2.10: BH curve of the OPERA “tenten.bh” datafile equivalent to low carbon
steel AISI 1010 [48].

2.2.2.2 Conductors

In TOSCA magnetostatic analysis conductors of different pre-defined shapes
with a finite cross-section are used as the sources for the magnetic field. The current
density J is uniform over the cross-section of the conductors. Used in this way,
conductors are referred to as Biot-Savart conductors. Biot-Savart conductors are
not part of the finite element mesh [48]. They are defined separately from the
mesh and the magnetic fields created by a current circulating in a conductor can be
computed using the Biot-Savart law:

~B
(
~r′
)

= µ0

∫ ∫ ∫
J
d~l ×

(
~r − ~r′

)
∣∣∣~r − ~r′∣∣∣3 dS (2.41)
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where ~r is a point running along the conductor,
∫
d~l is a longitudinal integration

along the direction of the current and
∫ ∫

dS is a 2D transverse integration made
over the cross section of the conductor [37].

Equation (2.41) shows that for iron-free undulators the field on axis is propor-
tional to the current density. If iron is involved, the field in undulators can not be
calculated by using only the Biot-Savart law and the use of FEM is necessary [18]. In
the case of iron-free undulator models, the magnetic fields can be evaluated by direct
integration of the defined Biot-Savart conductors in the OPERA-3D post-processor.
In this case any mesh is necessary, so the steps of building a Finite Element mesh
and solving are omitted.

In this thesis only two pre-defined conductor geometries, solenoid and racetrack,
are used. To enable conductors to be oriented in space correctly, local coordinate
systems in OPERA-3D can be defined. The local coordinate system 1 (LCS1) is
formed by displacing the origin with respect to the global origin to coordinates and
rotating by Euler angles.

• Solenoid-coil: it shows rotational symmetry and can only be orientated with
LCS1 without the Euler angles (see Figure 2.11). The quadrilateral cross
section of the solenoids in the local xy-plane is defined by the coordinates of
the 4 corners (XP1, Y P1, ...., XP4, Y P4). Positive currents flow in the positive
z-direction across the positive x-half of the xy-plane, assuming that the ver-
tices of the cross section have been defined in a clock-wise sense, as shown in
Figure 2.11; otherwise the direction of current flow is reversed.
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Z
X

I
XP4,YP4

XP3,YP3

XP2,YP2
XP1,YP1

Figure 2.11: A solenoid in OPERA-3D [48].

• Racetrack-coil: it has a restricted set of symmetries can only be orientated
with LCS1 without the Euler angles (see Figure 2.12). The racetrack is made
up of four straight sections and four 90 degrees arcs. The cross section is
rectangular, defined by its width in local x-direction and thickness in local
y-direction. The coordinates of the bottom inside edge as it crosses the xy-
plane are given by (XP1, Y P1). The half-length of the z-directed straight is
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H1 and the inside radius of the corners is R1, which must be greater than zero.
Positive currents flow in the positive z-direction across the positive x-half of
the xy-plane.

I
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Z X

widthXP1,YP1

thickness

H1R1

Figure 2.12: A racetrack in OPERA-3D [48].





3. TGU optimization

3.1 Magnetic chicane for beam dispersion

The idea to develop a very compact high-brilliance X-ray radiation source by
applying a compensation scheme to the relatively high energy spread of the LWFA
was introduced in Section 1.2. The parameters of the electron bunches generated
by this laser vary with the operation parameters. For the design optimization of
both TGU designs particularly for the LWFA at the University of Jena, a reference
electron energy of E0 = 120 MeV with an energy spread of ∆E/E0 = ±10 % was
assumed. The latter assumption is rather conservative taking into account not only
the single bunch properties but also a reasonable range for shot-to-shot fluctuations.

The electron beam spatially dispersed (γ → γ(x)) by a magnetic chicane is
sent into the TGU with a x-dependent flux density amplitude (B0 → By(x)). The
magnetic field By(x) has to match the spatial energy distribution of the electrons
after the chicane γ(x) to get a constant wavelength [16]. The matching is achieved
if the modified undulator equation (3.1)

λ =
λu

2γ(x)2

(
1 +

(93.36By(x)[T]λu[m])2

2

)
= constant (3.1)

is satisfied. The electron with different energies oscillate at the same amplitude and
frequency. The optimization goal in this thesis is to match the TGU design and the
electron beam dispersion such that the relative deviation of wavelengths emitted by
the reference electrons of different energies is lower than the natural bandwidth:

∆λ/λ0 = (λmax − λmin) /λ0 ≤ 1/N ≈ 1 % (3.2)

with N = 100 undulator periods.

In this thesis the dispersion of the electron beam γ(x) is generated by a simplified
model of a dogleg chicane consisting of two dipole magnets (see Figure 3.1). This
assumption is sufficient as long as only the trajectories of the reference particles to
different energies are considered. In contrast to that, the chicane that takes into
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account the finite emittance of the electron beam is subject to a dedicated research
project (which will not be covered by this thesis) [WAB+11, WAB+13b].

A particle with a momentum deviation δ = 4p/p0 ≈ 4E/E0 has a different
bending angle in a dipole magnet [36]. The function D is called the dispersion
function and xδ = δD determines in linear approximation the offset of the ideal
path from the reference trajectory for particles with a relative energy deviation δ
from the ideal momentum cp0 [51]. The beamlet has a finite transversal extension
or width σx (see Figure 3.1).
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Figure 3.1: Schematic view of the simplified magnetic chicane consisting in two
dipole magnets in gray. This setup separates the different electron energies, which
are represented in blue and the beamlet width in pink.

The electrons describe a circular path with the Larmor radius for relativistic
electrons (see Equation (3.3)) after traversing the first dipole magnet. Electrons
with different energy show a different exit angle. The bending radius in the dipole
is proportional to γ and is given by:

rL(γ) =
mec

eBd

γ (3.3)

where all the terms are constant except γ. The constant terms are: me is the rest
mass of the electron, c is the speed of light, e is the elementary electric charge and
Bd is the homogeneous flux density in the dipoles.

After the second dipole magnet all electrons are brought again parallel to the
z-axis, but beamlets with different energies are now separated. The two dipole
magnets have the same field strength ( ~Bd), but reverse field direction. After the
second dipole magnet (z ≥ 2l1 + l2) the trajectories are displaced by:

x̂ = 2rL(γ)− 2
√
r2
L(γ)− l21 +

l1l2√
r2
L(γ)− l21

, (3.4)

where l1 is the pole length and l2 is the distance between the two dipoles. The
dispersion is greater for the electron which has a lower energy. The total dispersive
beam splitting is given by:

∆xδ=±10 % = x̂(E0−10 %E0) − x̂(E0+10 %E0) ≈ Dδ1 −Dδ2 (3.5)
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in the fixed reference system (x̂, ẑ) and in the moving reference system (x, s) respec-
tively. It should not exceed the value of ∆xδ=±10 % ≈ ±2 mm at the entrance of the
undulator by the beam optics.

Figure 3.2 shows the calculation of the maximum value of ∆xδ through the ex-
treme energies (E1 and E2), which produce undulator radiation at different locations
(xE1 and xE2). The radiation cone of these extreme energies should overlap at a fixed
observation point. The half-angle of the “central radiation cone” is given by [52]:

Θ0 ≈
1

γ
√

N
. (3.6)

The radiation cone of each electron energy produces at the observation point a
radiation spot with a width:

∆xE = d tan (Θ0) = d tan

(
1

γ
√

N

)
, (3.7)

where d is the distance to the observation point.

Figure 3.2: Maximum value of the total dispersive beam splitting ∆xδ for the
energies between E1 and E2, which is calculated through the overlap of the radi-
ation cones at a distance d to the observation point.

Therefore the maximum value of the total dispersive beam splitting for the
energies between E1 and E2 should not exceed ∆xδ = ∆xE1 + ∆xE2, since then the
radiation cones of both energies just have an overlap. It applies:

∆xδ = d

[
tan

(
1

γE1

√
N

)
+ tan

(
1

γE2

√
N

)]
. (3.8)

The goal is the development of a very compact radiation source. For this reason a
distance to the observation point of d = 5 m is selected. For a 100 periods undulator
and extreme energies of E1 = 108 MeV and E2 = 132 MeV, the maximum value of
the total dispersive beam splitting is ∆xδ = 4.3 mm.

The dipole parameters used in the calculations above are taken from the real
dipole parameters magnets (see Figure 3.3) foreseen to be used in the experiment
in Jena. The complete characterization of these dipole magnets can be seen in [53].
The fixed dipole parameters used in the analytical calculation of this thesis were
the width of the pole l1 and the homogeneous flux density Bd. Table 3.1 shows the
values of these parameters.
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Figure 3.3: GMW Electromagnetic Dipole used in the chicane.

Description Parameter Value

Pole width l1 50 mm
Extra square poles - 50× 50 mm
Pole gap - 20 mm
Max. continuous power (water) - 5 A, 44 V, 0.22 kW
Homogeneous flux density Bd 0.46 T

Table 3.1: Dipole parameters.

Using Equation (3.4) the displacement of the trajectories x̂ for the energies
between E = 120 MeV ± 10 % is calculated and it is shown in Figure 3.4. In these
calculations the chicane parameters are kept constant except the distance between
the two dipoles l2, which can vary between 0 and 1.2 m (maximum space assumed
for the chicane in the laboratory). In the experiment with the real chicane, there is
only limited space to vary l2 because of additional magnets placed in between the
dipoles. Therefore one would rather vary Bd.
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Figure 3.4: Displacement of the electron trajectories after the second dipole (x̂) for
the energies 108 MeV, 120 MeV and 132 MeV versus the distance between the two
dipoles (l2).
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The total dispersive beam splitting ∆xδ=±10 % is calculated using Equation (3.5),
which result is shown in Figure 3.5. By the optimization of l2 the total dispersive
beam splitting and thereby the position of each electron energy xE at the entrance
of the undulator are optimized.
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Figure 3.5: Total dispersive beam splitting (∆xδ=±10 %) versus the distance between
the two dipoles (l2).

3.2 Downhill simplex optimization method

In this thesis the downhill simplex algorithm was employed to optimize the
geometry of the TGU. The description of this algorithm and the source code in
C++ from [54] employed in this thesis is shown in Appendix A.1.

3.2.1 Selection of the parameters to optimize

Figure 3.6 shows a schematic view of the tilted undulator and its main pa-
rameters. The alternating magnetic field with a period length λu is produced by
superconducting coils powered with alternate polarity. The coils are wound into
grooves between the steel poles. In this kind of undulator the two coils are tilted
against each other about the z-axis by the angle α′ = 2α.

As discussed in Section 3.1, the parameter l2 (distance between the two dipoles
in the chicane) is optimized and with it the total dispersive beam splitting ∆xδ=±10 %

and the transverse electron position x(E).

From Equation (2.32) it can be seen that the transverse field gradient of the
tilted undulator depends on the parameter α and B̃ for a fixed period length λu. B̃ is
calculated with a FEM-Software and it depends on λu, the operating current density
and the material of the undulator. Hence the second parameter to be optimized in
the case of the tilted parameter is the angle α.

The transverse position of the beam center xE0 depends on the gap width gE0

and the value of α. It is calculated through the expression

xE0 =
gE0/2

tan(α)
. (3.9)
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Figure 3.6: Schematic view of the tilted undulator and its parameters.

The desirable minimum gap width is gE0 = 2 mm. It is recommended that the
transverse position of the beam center xE0 >> gE0 , to avoid undesired magnetic
fields produced at the edges of the tilted undulator (in x = 0) [38]. Therefore the
minimum xE0 = 20 mm is selected. For the minimum gE0 and minimum xE0 , the
value of the angle is α = 2.86 degrees.

The value of α is obtained by the optimization of the tilted undulator. If this
value is α < 2.86 degrees, then gE0 = 2 mm is taken to calculate the value of xE0 ,
which results > 20 mm. Else for values of α ≥ 2.86 degrees, the value of xE0 is fixed
to the minimum 20 mm and the value of gE0 is > 2 mm.

The schematic view of the cylindrical undulator is shown in Figure 3.7. The
geometric parameters of this kind of undulators with a fixed period length λu are:
the external pole radius (r) and the gap on symmetry axis (g).

Like in the case of the tilted undulator, the parameter l2 (distance between
the two dipoles in the chicane) is optimized and with it the total dispersive beam
splitting ∆xδ=±10 % and the transverse electron position x(E).

From Equation (2.38) it can be seen that the transverse field gradient of the
cylindrical undulator depends on the parameters g, r and B̃ for a fixed period
length λu. The maximal flux density in the beam plane B0 = Bmax

y = By(x = 0, y =
0, z = λu/4) modifies the field gradient of the cylindrical undulator and its value
depends on the values of g, r and B̃. For this reason Bmax

y is selected as the second
parameter to be optimized.
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Figure 3.7: Schematic view of the cylindrical undulator and its parameters.
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In summary, the two parameters selected to optimize the tilted undulator are l2
and α and in the case of the cylindrical undulator l2 and Bmax

y .

3.2.2 Function to minimize

As introduced in Section 3.1, the optimization goal is to get a constant wave-
length of the undulator radiation despite the ±10 % energy spread. The magnetic
field By(x) has to match the spatial energy distribution of the electrons after the
chicane γ(x) to get a constant wavelength equal to the wavelength emitted for the
central energy λ0. The objective function selected to be minimized is:

f(x) =
∆λ

λ0

=
(λmax − λmin)

λ0

, (3.10)

where the wavelength for each beamlet is calculated using directly the undulator
equation.

3.2.3 Field on the pole surface of the tilted undulator

It is necessary to know the value of the magnetic field B̃, before performing
the optimization of the tilted undulator. B̃ is the field on the pole surface of the
undulator, which is required to calculate By by using Equation (2.32). The value
of B̃ is calculated using the FEM-software OPERA-2D. Figure 3.8 (left) shows the
tilted undulator and a plane perpendicular to its surface. The cut produced by this
perpendicular plane in one central period of the undulator is the view represented
in OPERA-2D (see Figure 3.8 (right)). It is necessary to assume a large gap to
simulate only one half of the undulator.

The value of B̃ depends on the undulator design parameters. Table 3.2 summa-
rizes the main parameters assumed to calculate B̃ in three tilted undulator models
with different period lengths and pole widths. After solving the model in OPERA-
2D, the B̃ is obtained in the post-processor by calculating the field on a point at
the center of the surface of one pole.

Figure 3.8: Left: plane perpendicular to the surface of the tilted undulator pole.
Right: longitudinal view of half tilted undulator. It is shown only the central period
of the undulator to calculate B̃ in OPERA-2D.
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Common design parameters:
Gap (perpendicular surface): g⊥ = 20 mm
Current density: J = 1000 A/mm2

Wire cross-section (insulated): 0.77 mm× 0.51 mm
Coil winding package: 5 layers× 4 turns
Material: steel AISI 1010

λu [mm] pole width [mm] B̃ [T]
8 0.92 1.768
10 1.92 1.689
15 4.42 1.231

Table 3.2: Calculation of B̃ with OPERA-2D for different tilted undulator models.

3.2.4 Fourier expansion of the cylindrical undulator field

Before starting the optimization process of a cylindrical undulator, it is necessary
to calculate the value of B̃, which is employed to calculate analytically the magnetic
field through Equation (2.38). In the case of the cylindrical undulator, B̃ is cal-
culated through the maximal field on axis Bmax

y , which depends on the undulator
design parameters. Table 3.3 summarizes the main parameters assumed to simulate
an example of a cylindrical undulator model. After solving this model in OPERA-
3D, Bmax

y is obtained in the post-processor by calculating the magnetic field on a
point at (x, y, z) = (0, 0, λu/4).

Design parameters:
Period length: λu = 10 mm
Gap width on axis: g = 1.5 mm
Pole radius: r = 30 mm
Current density: J = 1200 A/mm2

Wire cross-section (insulated): 1.0 mm× 0.6 mm
Coil winding package: 6 layers× 4 turns
Material: steel AISI 1010

Bmax
y = 2.438 T

Table 3.3: Calculation of Bmax
y with OPERA-3D for a cylindrical undulator model.

The value of B̃ is cleared from Equation (2.38) and results:

B̃(0, 0, λu/4) =
Bmax
y

sin(kuz) [K1 (kuρo) êρ,o +K1 (kuρu) êρ,u]
.

Figure 3.9 shows the difference between the transverse field gradient By(x) cal-
culated analytically with Equation (2.38) and the field exported directly from the
FEM-software OPERA-3D.
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Figure 3.9: Top: By as function of x-position as calculated by OPERA-3D (red line)
and by Equation (2.38) (blue points). Bottom: absolute difference between both
magnetic fields (black line-points).

The reason of this difference is that the z-dependence of the field is not purely
sinusoidal as assumed in the analytical model but exhibits higher harmonics. There-
fore a Fourier series expansion (see Appendix C) has to be applied in the separation
ansatz for the Laplace Equation (2.29) instead of the simple sine function (Equa-
tion (2.28)). This results in a series expansion also for the magnetic flux density
calculated by Equation (2.39). To correct this difference, a modification of the ana-
lytical Equation (2.38) is done to add the Fourier coefficients of the magnetic field.

The field By(z) (see Figure 3.10) on a line at x = 0 y = 0 and z-values between
−λu/2 and +λu/2 is calculated in OPERA-3D for the same cylindrical undulator
model. Then the Fourier coefficients bn of By(z) are exported and employed in the
analytical calculations of the magnetic field through Equation (2.39).

Figure 3.11 compares the transverse field gradient By(x) calculated with the
analytical expressions with Fourier coefficients and the field exported directly from
the FEM-software OPERA-3D. The difference is reduced 10 times compared to the
first analytical approach that takes into account only the Bmax

y . For this reason
Equation (2.39) considering the Fourier coefficients of By(z) is selected as a better
approximation for the analytical calculation of the magnetic field of the cylindrical
undulator.
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3.3 TGU geometry selection

3.3.1 Undulator optimization for several electron energies

The optimization of several tilted and cylindrical undulator models was per-
formed for different central electron energies E0: 100 MeV, 120 MeV, 200 MeV and
500 MeV. In all the cases the energy spread employed was δ = ±10 % and models
with period lengths of 10 mm and 15 mm were simulated. Table 3.2 (in Section 3.2.3)
and Table 3.4 show the main parameters of the tilted and cylindrical undulator
models respectively.

Design parameters:
Gap width on axis: g = 2.5 mm
Pole radius: r = 30 mm
Current density: J = 1000 A/mm2

Wire cross-section (insulated): 0.77 mm× 0.51 mm
Coil winding package: 5 layers× 4 turns
Material: steel AISI 1010

Table 3.4: Main parameters of the simulated cylindrical undulator models, which
were employed in the optimization for different values of E0.

The simplex with a size of [2×3] includes three initial iterations of the parameters
to optimize. l2 and α have to be optimized for the tilted undulators and l2 and Bmax

y

for the cylindrical undulators. The three vertices of the triangle are formed with
these values, as explained in Appendix A.1. Table 3.5 and Table 3.6 summarize the
optimization results for the tilted and cylindrical undulator models respectively.

Table 3.5 shows that the relative deviation of wavelengths ∆λ/λ0 emitted for
the tilted undulator models after their optimization is lower than 1 %. The value
of ∆λ/λ0 for the models with 15 mm period length is about ten times lower than

Simplex Simplex f(x) optimal optimal

E0[MeV] λu[mm] l2[m] α[degrees] Iter. ∆λ/λ0[%] l2[mm] α[degrees]

100
10 [1.20, 0.80, 0.40] [3.5, 1.0, 5.0] 147 0.457 741 2.86

15 [1.25, 0.75, 0.35] [3.5, 1.2, 5.0] 124 0.050 756 3.63

120
10 [0.50, 0.80, 1.50] [2.3, 5.0, 4.0] 111 0.460 902 2.86

15 [1.35, 0.50, 0.80] [5.5, 2.0, 3.0] 94 0.050 922 3.65

200
10 [1.00, 2.00, 0.70] [3.8, 5.0, 2.0] 140 0.467 1541 2.86

15 [1.25, 2.00, 0.65] [4.2, 6.5, 5.5] 120 0.050 1581 3.63

500
10 [2.30, 1.20, 1.75] [5.0, 3.5, 2.5] 93 0.470 3933 2.86

15 [0.30, 1.50, 2.70] [1.5, 5.0, 2.1] 116 0.050 4041 3.62

Table 3.5: Optimization results of tilted undulator models with 10 mm and 15 mm
period lengths. The tilted undulator parameter α and the chicane parameter l2 are
optimized to get the minimum ∆λ/λ0. Several central electron energies are taken
in consideration.
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Simplex Simplex f(x) optimal optimal

E0[MeV] λu[mm] l2[m] Bmax
y [T] Iter. ∆λ/λ0[%] l2[mm] Bmax

y [T]

100
10 [0.4, 1.0, 1.6] [1.5, 1.7, 2.2] 103 0.482 242 1.830

15 [0.4, 0.3, 0.1] [1.9, 2.1, 1.3] 118 0.473 298 1.251

120
10 [0.4, 0.3, 0.1] [1.9, 2.1, 1.3] 87 0.481 300 1.831

15 [0.4, 1.2, 0.7] [1.5, 1.7, 2.0] 98 0.472 368 1.252

200
10 [0.3, 0.5, 1.0] [1.4, 1.7, 2.0] 91 0.480 535 1.833

15 [2.6, 1.5, 0.2] [1.0, 2.2, 0.8] 114 0.470 648 1.253

500
10 [0.7, 0.2, 0.5] [1.5, 2.1, 1.8] 102 0.479 1413 1.834

15 [2.6, 1.5, 0.2] [1.0, 2.2, 0.8] 101 0.469 1696 1.254

Table 3.6: Optimization results of cylindrical undulator models with 10 mm and
15 mm period lengths. The maximal field on axis Bmax

y and the chicane parameter
l2 are optimized to get the minimum ∆λ/λ0. Several central electron energies are
taken in consideration.

the models with 10 mm period length, independent of E0. The optimal values of l2
are lower than 1.2 m for E0 ≤ 120 MeV. The optimal value of the half inclination
angle α is independent of E0 and is slightly higher for the models with 15 mm period
length.

In the case of the optimized cylindrical models the value ∆λ/λ0 < 1 % is also
achieved independent of E0, as shown in Table 3.6. For the models with 15 mm
period length ∆λ/λ0 is slightly lower than with 10 mm period length. Only in the
case of E0 = 500 MeV the optimal value of l2 is greater than 1.2 m. The optimal
value of Bmax

y is independent of the central energy value and its value is 1.83 T for
the 10 mm period length and 1.25 T for the 15 mm period length.

3.3.2 Total dispersive beam splitting and beamlet width

Once the optimization of the parameters was realized, the calculation of the
total dispersive beam splitting ∆xδ and the minimum beamlet width σx for each
case was performed. The value of σx indicates the limit value of the beamlet width
in x-direction, where ∆λ/λ0 = 1 % is achieved. This means, that if the electron
is drifted from its trajectory more than this value, then ∆λ/λ0 > 1 %. Table 3.7
and Table 3.8 summarizes the results for the tilted and cylindrical undulator models
respectively. The x-position and the emitted wavelength λ0 by the central electron
energy are included. The C++ code used to perform these calculations is shown in
Appendix A.2.

The total dispersive beam splitting for tilted undulator models (see Table 3.7)
is always ∆xδ > 11 mm. This value is independent of the value of E0 and should
not exceed ±2 mm. For cylindrical models (see Table 3.8) however, the values of
∆xδ are always lower than 5 mm. The value of the beamlet width (σx) is larger than
0.2 mm for the tilted models and around 0.1 mm for the cylindrical models.

Figure 3.12 and Figure 3.13 compare the results of λ(x) for both the tilted and
the cylindrical undulator models. In all the graphs the results are calculated for
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opt. opt. Min.

E0[MeV] λu[mm] l2[mm] α[degrees] x0[mm] λ0[nm] ∆λ/λ0[%] ∆xδ[mm] σx[mm]

100
10 741 2.86 20.02 315 0.465 11.10 0.240

15 756 3.63 20.00 593 0.050 11.31 0.256

120
10 902 2.86 20.02 219 0.469 11.10 0.240

15 922 3.65 20.00 413 0.050 11.34 0.256

200
10 1541 2.86 20.02 79 0.469 11.10 0.240

15 1581 3.63 20.00 149 0.050 11.38 0.258

500
10 3933 2.86 20.02 13 0.478 11.10 0.240

15 4041 3.62 20.00 24 0.050 11.40 0.258

Table 3.7: Calculations of the relative deviation of wavelengths emitted (∆λ/λ0), the
total dispersive beam splitting (∆xδ) and the beamlet width (σx) for the optimized
tilted undulator at different central energies.

opt. opt. Min.

E0[MeV] λu[mm] l2[mm] Bmax
y [T] x0[mm] λ0[nm] ∆λ/λ0[%] ∆xδ[mm] σx[mm]

100
10 242 1.830 6.56 204 0.482 4.10 0.096

15 298 1.251 8.50 307 0.473 4.88 0.114

120
10 300 1.831 6.56 142 0.481 4.09 0.096

15 368 1.252 8.50 214 0.472 4.88 0.114

200
10 535 1.833 6.56 51 0.480 4.08 0.096

15 648 1.253 8.50 77 0.470 4.87 0.114

500
10 1413 1.835 6.56 8 0.479 4.08 0.096

15 1696 1.254 8.50 12 0.470 4.87 0.114

Table 3.8: Calculation of the relative deviation of wavelengths emitted ∆λ/λ0, total
dispersive beam splitting ∆xδ and beamlet width σx of the optimized cylindrical
undulator for different central energies.

different E0 values. The results of the models with a period length of 10 mm are
shown in the graphs on the left and with a period length of 15 mm on the right. For
the same period lengths and central energies the wavelengths emitted for the tilted
models are much larger than for the cylindrical models.

3.3.3 Final selection of the undulator geometry

The central energy of 120 MeV was finally assumed. The period length of 10 mm
was selected, because of resulting the lowest emitted wavelength values. Table 3.9
summarizes the results of the total dispersive beam splitting for several tilted un-
dulator models with different α values. Cylindrical undulator models with different
g values (gap width on axis) were simulated, which results are summarized in Ta-
ble 3.10.
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Figure 3.12: Simulated resulting wavelength of the radiation emitted as a function of
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(in color points), for the tilted undulator models with period lengths of 10 mm (left)
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Figure 3.13: Simulated resulting wavelength of the radiation emitted as a function of
x-position (black lines). The wavelengths are optimized for different central energies
(in color points), for the cylindrical undulator models with period lengths of 10 mm
(left) and 15 mm (right).

Table 3.9 shows that for tilted undulator models with angles α ≤ 2.5 degrees
the optimized parameter l2 > 1.2 m. However, for α ≤ 3.5 degrees the value of
∆λ/λ0 remains lower than 1 %. ∆xδ and σx values increase with decreasing α.
With α = 2.86 degrees, the minimum value of ∆λ/λ0 as well as the lowest value of
∆xδ are obtained. Figure 3.14 shows the results of the magnetic field and emitted
wavelength for all the simulated tilted undulator models with different tilted angles.

Table 3.10 shows that the variation of the g values (gap width on axis) in the
cylindrical undulator models does not affect the values obtained of ∆λ/λ0, ∆xδ and
σx. For this reason the simulated magnetic field By(x) and the emitted wavelength
of only the cylindrical undulator model with g = 1.5 mm is shown in Figure 3.15.

Figure 3.16 shows the variation of ∆λ/λ0 and ∆xδ for different tilted angles α
between 0.5 degrees and 4 degrees with a step size of 0.01 degrees. The ∆xδ values
are always larger than 10 mm. The xE0 is limited to a minimum value of 20 mm, as
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opt. Min.

α[degrees] l2[mm] x0[mm] λ0[nm] ∆λ/λ0[%] ∆xδ[mm] σx[mm]

1.50 1764 38.19 219 0.461 21.16 0.460

2.00 1311 28.64 219 0.462 15.87 0.344

2.50 1039 22.90 219 0.462 12.70 0.276

2.86 902 20.02 219 0.463 11.10 0.240

3.50 836 20.00 188 0.937 10.33 0.214

4.00 820 20.00 168 1.412 10.15 -

Table 3.9: Calculation of the relative deviation of wavelengths emitted (∆λ/λ0), the
total dispersive beam splitting (∆xδ) and the beamlet width (σx) for tilted undulator
models with 10 mm period length and different tilted angles α. The central energy
is 120 MeV.

opt. opt. Min.

g[mm] l2[mm] Bmax
y [T] x0[mm] λ0[nm] ∆λ/λ0[%] ∆xδ[mm] σx[mm]

0.9 294 1.803 6.258 142 0.511 4.01 0.094

1.1 295 1.808 6.306 142 0.504 4.02 0.094

1.3 297 1.810 6.338 142 0.499 4.04 0.094

1.5 298 1.813 6.374 142 0.495 4.06 0.094

1.7 298 1.817 6.421 142 0.492 4.06 0.094

2.5 300 1.831 6.559 142 0.481 4.09 0.096

Table 3.10: Calculation of the relative deviation of wavelengths emitted (∆λ/λ0),
the total dispersive beam splitting (∆xδ) and the beamlet width (σx) for several
cylindrical undulator models with pole radius r = 30 mm and with different gap
widths. The central energy is 120 MeV.
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Figure 3.14: Tilted undulator models simulations with 10 mm period length and
with different tilted angles α (in color points). Left: calculated magnetic field By(x)
(black lines). Right: resulting emitted wavelength λ(x) (black lines).
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explained in Section 3.2.1. Therefore the lowest ∆λ/λ0 with a value almost constant
of 0.462 % occurs from α = 0.5 degrees to α = 2.86 degrees. The minimum value of
∆λ/λ0 as well as the lowest ∆xδ are obtained for α = 2.86 degrees.

Although with the tilted undulator geometry and technically realistic parame-
ters it is possible to decrease the effect of the energy spread on the relative deviation
of wavelengths emitted ∆λ/λ0, the required total dispersive beam splitting ∆xδ be-
came too large (> 10 mm), as shown in Figure 3.16. The tilted model should not be
completely ruled in other electron beam condition, that means with a lower energy
spread. In this thesis, however, the energy spread remains δ = ±10 % and the tilted
geometry was discarded. From the results obtained there are several undulator cylin-
drical models, which met all design criteria: the relative deviation of wavelengths
emitted by the reference electrons of different energies is required to be lower than
the natural bandwidth ∆λ/λ0 < 1 % and the total dispersive beam splitting value
around ∆xδ = ±2 mm. For these reasons, the cylindrical geometry was selected.
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3.4 Iron cylindrical undulator

3.4.1 Coil winding package configuration

Several cylindrical undulator models with different period lengths and coil wind-
ing package configurations were taken into consideration. Figure 3.17 shows the coil
winding package configurations used for the cylindrical undulator models with period
lengths of 5 mm, 7 mm and 10 mm.

Figure 3.17: Different coil winding package configurations employed for the cylin-
drical undulator models with several period lengths (λu).

For each period length, two different models with gap width on axis (0.1 mm
and 1.5 mm) were simulated to obtain the range of achievable Bmax

y for each model.
Table 3.11 shows the common parameters of all these models.

Design parameters:

Pole radius: r = 30 mm

Current density: J = 1200 A/mm2

Wire cross-section (insulated): 1.08 mm× 0.68 mm

Material: steel AISI 1010

Table 3.11: Common design parameters for the simulated cylindrical undulator mod-
els with different coil winding package configurations.

The central energy of E0 = 120 MeV and an energy spread of δ = ±10 % are
assumed in all these calculations. Table 3.12 summarizes the optimization results of
all these cylindrical models. These results show that the optimal magnetic field Bmax

y

can be only reached by the undulator models with λu = 10 mm. In these models
with the gap widths on axis between 0.1 mm and 1.5 mm, the magnetic fields Bmax

y

simulated in OPERA are greater than the optimal values.

Table 3.13 shows the calculation of ∆λ/λ0, ∆xδ and σx for all the cylindrical
models. The best results were obtained with the 10 mm period length undulator and
the coil winding package configuration of 6 layers×4 turns. The values of ∆λ/λ0, ∆xδ
and σx also depend on the geometrical undulator parameters, the current density
and the wire parameters. Therefore a database to select the optimal cylindrical
model was generated (see next Section 3.4.2).
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Gap width on axis: g = 0.1 mm

OPERA Simplex Simplex f(x) optimal optimal

λu[mm] Bmax
y [T] l2[m] Bmax

y [T] Iter. ∆λ/λ0[%] l2[mm] Bmax
y [T]

5 2.658 [0.8, 1.0, 0.6] [2.0, 1.5, 1.7] 113 0.468 179 3.849

7 3.350 [0.7, 1.1, 0.4] [2.1, 1.4, 1.7] 102 0.504 224 2.681

10 4.699 [0.7, 1.9, 1.3] [1.1, 1.8, 2.4] 99 0.443 258 2.169

Gap width on axis: g = 1.5 mm

OPERA Simplex Simplex f(x) optimal optimal

λu[mm] Bmax
y [T] l2[m] Bmax

y [T] Iter. ∆λ/λ0[%] l2[mm] Bmax
y [T]

5 0.943 [1.2, 0.4, 0.8] [2.3, 1.7, 3.0] 97 0.454 190 3.811

7 1.588 [1.7, 0.5, 1.2] [1.1, 0.4, 0.7] 120 0.475 240 2.637

10 2.439 [0.4, 1.6, 1.0] [0.9, 1.6, 2.2] 120 0.518 310 1.748

Table 3.12: Optimization results of the simulated cylindrical undulator models with
different gap widths on axis and period lengths.

Gap width on axis: g = 0.1 mm

opt. opt. Min.

λu[mm] l2[mm] Bmax
y [T] x0[mm] λ0[nm] ∆λ/λ0[%] ∆xδ[mm] σx[mm]

5 179 3.849 5.20 071 0.468 2.67 0.062

7 224 2.682 5.41 100 0.504 3.19 0.074

10 258 2.169 8.62 143 0.443 3.59 0.084

Gap width on axis: g = 1.5 mm

opt. opt. Min.

λu[mm] l2[mm] Bmax
y [T] x0[mm] λ0[nm] ∆λ/λ0[%] ∆xδ[mm] σx[mm]

5 190 3.811 5.05 071 0.454 2.80 0.066

7 240 2.637 5.58 099 0.475 3.38 0.078

10 310 1.748 5.88 141 0.518 4.19 0.098

Table 3.13: Calculation of ∆λ/λ0, ∆xδ and σx for the simulated cylindrical undulator
models with different gap widths on axis and period lengths.

3.4.2 Iron cylindrical undulator database information.

A database with the optimized results for 81 iron cylindrical undulator mod-
els was made. The number of models came from a combination of the following
parameters:

• Pole radius (r), ranging from 25 mm to 35 mm in steps of 5 mm.

• Gap width on axis (g), ranging from 1.1 mm to 1.5 mm in steps of 0.2 mm.
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• Period length (λu), ranging from 8 mm to 12 mm in steps of 2 mm.

• Current density (J), ranging from 800 A/mm2 and 1200 A/mm2 in steps of
200 A/mm2.

Table 3.14 shows the common parameters of all these models. Again, the central
energy of E0 = 120 MeV and an energy spread of δ = ±10 % are assumed in all
these calculations. The magnetic field By(z) and the Fourier components bn were
calculated with the software OPERA-3D. The mesh size of the undulator models
was selected as small as affordable without increasing the calculation time per model
above two hours. After that, the parameter l2 (distance between the two dipoles)
was optimized to obtain the minimum ∆λ/λ0 for each model. The total dispersive
beam splitting ∆xδ for each undulator model was also calculated. In Appendix B
the results of each model are summarized.

Design parameters:

Wire cross-section (insulated): 1.08 mm× 0.68 mm

Coil winding package:

8 layers× 3 turns with λu = 8 mm

6 layers× 4 turns with λu = 10 mm

8 layers× 5 turns with λu = 12 mm

Material: steel AISI 1010

Table 3.14: Common design parameters for the cylindrical undulators simulated for
the database.

The lowest ∆λ/λ0 values and therefore the best results among all the simulated
cylindrical undulator models, were obtained with r = 30 mm (see Figure 3.18).
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Figure 3.18: Calculation of ∆λ/λ0 for several cylindrical undulator models with
external pole radius r = 30 mm. On the x-axis is λu and on the y-axis is J. The
values of ∆λ/λ0 are displayed with a color scale between 0 and 1 % and each colored
square represents the result of an undulator model. Left: models with g = 1.1 mm.
Center: models with g = 1.3 mm. Right: models with g = 1.5 mm. The best results
(with minimum ∆λ/λ0) are marked with a black dot.
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The minimum ∆λ/λ0 = 0.544 % was found for the model with r = 30 mm,
g = 1.5 mm, λu = 10 mm and J = 800 A/mm2. The results of the models with
λu = 12 mm were not shown because only values of ∆λ/λ0 > 1 % were obtained.
The results for the other external radius values are quite similar, as can be seen in
Appendix B.

3.4.3 Selection of the optimal model

Table 3.15 summarizes the parameters of the selected iron cylindrical undulator
and Table 3.16 collects in more detail all the calculated values.

Design parameters:

Period length: λu = 10 mm

Pole radius: r = 30 mm

Gap width on axis: g = 1.5 mm

Current density: J = 800 A/mm2

Wire cross-section (insulated): 1.08 mm× 0.68 mm

Coil winding package: 6 layers× 4 turns

Material: steel AISI 1010

Table 3.15: Design parameters for the selected iron cylindrical undulator.

E[MeV] γ(x) x(E)[mm] By(x)[T] K(x) λ(x)[nm] σx[mm]

132.0 258.32 3.779 1.43 1.34 141.82 0.106

129.6 253.62 4.127 1.38 1.29 142.30 0.102

127.2 248.92 4.489 1.33 1.24 142.54 0.100

124.8 244.23 4.864 1.27 1.18 142.59 0.098

122.4 239.53 5.255 1.21 1.13 142.49 0.098

120.0 234.83 5.661 1.14 1.07 142.29 0.098

117.6 230.14 6.084 1.08 1.00 142.06 0.100

115.2 225.44 6.524 1.01 0.94 141.87 0.104

112.8 220.74 6.984 0.94 0.87 141.82 0.110

110.4 216.05 7.463 0.86 0.81 142.00 0.118

108.0 211.35 7.964 0.79 0.74 142.50 0.128

Table 3.16: Summary of results for the optimized iron cylindrical TGU.

The magnetic field By(x) produced for the optimized iron cylindrical TGU was
calculated by Equation (2.39). The x-dependent undulator parameter was deter-
mined by K(x) = 93.36By(x)[T]λu[m]. Using the modified undulator Equation (3.1)
the wavelength of the emitted undulator radiation λ(x) for each energy E(x) was
calculated. The maximum beamlet width σx for each energy was also determined
and is shown in the last column of this table.
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Table 3.17 summarizes the results, including the x-position and the emitted
wavelength by the central energy, the total dispersive beam splitting ∆xδ and the
minimum beamlet width σx. The goal was to obtain an optimized bandwidth of
the undulator radiation smaller than 1 %. The bandwidth for the optimized iron
cylindrical undulator resulted in ∆λ/λ0 = (λmax − λmin) /λ0 = 0.54 %. The total
dispersive beam splitting ∆xδ ≈ 4 mm is necessary.

opt. opt. Min.

Bmax
y [T] l2[mm] x0[mm] λ0[nm] ∆λ/λ0[%] ∆xδ[mm] σx[mm]

1.741 309 5.661 142 0.540 4.185 0.098

Table 3.17: Calculation of the relative deviation of wavelengths emitted (∆λ/λ0),
the total dispersive beam splitting (∆xδ) and the beamlet width (σx) of the selected
iron cylindrical undulator model.

The values of γ(x) required from the chicane after the optimization for the
energies values 120 MeV±10 % is shown in Figure 3.19-left. In Figure 3.19-right the
calculated By(x) for the selected iron cylindrical model is shown and the required
x-position of the electron beam x(E) given from the chicane.

Figure 3.20-left shows the λ(x) values and the almost constant emitted wave-
length for the electron energy interval of interest. Figure 3.20-right is a zoom of the
emitted wavelength λ(x) for the energy values 120 MeV ± 10 %.

3.4.4 Electron trajectories, drift and its correction

For analyzing the motion of a single electron through the cylindrical undula-
tor, equations in [55] were used. The program written in [38] with some minor
modifications was employed and the C++ source code is shown in Appendix A.3.

The transverse gradient of the magnetic flux density causes a ponderomotive
drift of the electron trajectories in the x-direction. The reason can be seen in Fig-
ure 3.21. The electron moves in the xz-plane. When the electron moves towards
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Figure 3.19: Calculation of the magnetic flux density produced for the selected iron
cylindrical TGU. Left: required γ(x) from chicane after the optimization. Right:
calculated By(x) for this undulator model (black line) and field required from chicane
(blue points).
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x-values smaller than the central x-value, the electron sees more flux density than
when the electron moves in the other direction with x-values larger than the central
x-value. The x-values after one period x(zi + λu) are larger as the initial x-value
x(zi) produces a positive drift.

The relative electron trajectories in the xz-plane with the starting points of the
trajectories shifted at x = 0 were calculated. These relative trajectories for the
electron energies 108 MeV, 120 MeV and 132 MeV are shown in Figure 3.22. The
trajectories amplitudes and the drifts were smaller than 10µm. After ten periods,
the value of the drifts was as large as the amplitude of the trajectories and therefore
these drifts have to be corrected as will be explained below.

Additionally, the drift after one period has a different value for each energy
due to the field gradient, as can be seen in Figure 3.23-left. These values increase
100 times after ten periods as shown in Figure 3.23-right. Such a drift could be
problematic for some reasons [38]:

• The wavelength of the emitted radiation changes when the x-position of the
electrons vary.
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• If there are trajectory drifts, the trajectory angles are different from zero.
These trajectory angles also modify the period length projected to the mean
trajectory and therefore the emitted wavelengths.

• If the drift is too large, the radiation wavefronts emitted will not overlap with
each other and the desired interference effects will not take place.

The trajectory drifts can be corrected adding a correction field to the undulator
field, to compensate the undulator field gradient. It is necessary to correct the
electron drift after the first period to cancel the total drift through the undulator.
The drift for a single electron energy can be corrected by a dipole field. Therefore a
correction field for different electron energies, which represents a “local dipole field”,
can be used. Because the electron are moving through the undulator in xz-plane at
different x-positions, the correction field has to vary also in the x-direction but can
be constant in the z-direction. The correction field Bcorr

y (x) for each energy is given
by Equation (3.11):

Bcorr
y (x) =

mec

e

γ(x)

rL(x)
(3.11)

where rL(x) is the bending radius, which varies in x-direction.
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The required bending radius can be determined by Equation (3.12):

rL(x) =
λ2

u + (∆x1(x))2

2∆x1(x)
(3.12)

All values used to calculate the correction field Bcorr
y (x) are collected in Ta-

ble 3.18, including the bending radius and the drift values after one period, for the
optimized iron cylindrical TGU. The correction field is a weak field, compared with
the undulator field.

E[MeV] x(E)[mm] ∆x1[nm] rL(x)[m] Bcorr
y (x)[mT ]

132.0 3.779 45.89 1090 -0.404

129.6 4.127 48.84 1024 -0.422

127.2 4.489 51.51 971 -0.437

124.8 4.864 53.54 934 -0.446

122.4 5.255 55.05 908 -0.450

120.0 5.661 55.92 894 -0.448

117.6 6.084 56.06 892 -0.440

115.2 6.524 55.39 903 -0.426

112.8 6.984 53.94 927 -0.406

110.4 7.463 51.73 967 -0.381

108.0 7.964 48.63 1028 -0.350

Table 3.18: Summary of values used to calculate the correction field Bcorr
y (x) for the

optimized iron cylindrical TGU.

Figure 3.24 shows the calculated correction field Bcorr
y (x), which fits very well to

a quadratic function or parabola f1(x) [38]. The quadratic function can be rewritten
as:

Bcorr
y (x) = f1(x) = ax2 + bx+ c

= gx2 + (2eg)x+ (e2 + d)

= g(x+ e)2 + d

= Bsextupole
y +Bdipole

y

(3.13)

However the required correction field in this thesis is calculated using the fit to
a cubic function f2(x) = kx3 + mx2 + nx + o with the data Bcorr

y (x) of Table 3.18.
The coefficients values are given by:

k =− 1339.94± 62.97 T/m3

m = + 38.94± 1.11 T/m2

n =− 0.300± 0.006 T/m

o = + 0.246± 0.012 mT

and in Figure 3.24 can be seen that the cubic function f2(x) is the best fit through
the required set of correction field points.
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Figure 3.25: Correction coils placed inside the undulator coil former to produce the
correction coil.

This correction field can be generated by coils placed inside the undulator coil
former as shown in Figure 3.25 (for more details, see Section 4.2.2).

In order to verify the efficiency of the correction field previously calculated, the
electron trajectories were again simulated but this time adding the correction field
to the field produced by the undulator. The relative trajectories for the electron
energies 108 MeV, 120 MeV and 132 MeV after adding the correction field are shown
in Figure 3.26.

After the correction field was added, the resulting drift after ten periods is
lower than ± 7 nm for all the energy values between 120 MeV±10 %. The drift after
100 periods for the electron energies 108 MeV, 120 MeV and 132 MeV are shown in
Table 3.19. To achieve the optimization goal ∆λ/λ0 ≤ 1 %, these drifts have to be
smaller than the beamlet width σx of each energy.
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Figure 3.26: Corrected relative electron trajectories after ten periods with energies
108 MeV, 120 MeV and 132 MeV for the optimized iron cylindrical TGU.

E[MeV] ∆x100[µm] σx[mm]

132 0.3890 0.106

120 0.2943 0.098

108 0.5431 0.128

Table 3.19: Summary of values used to calculate the correction field Bcorr
y (x) for the

optimized iron cylindrical TGU.

3.4.5 Iron saturation

As mentioned in Section 3.4.4, a weak correction field has to be superimposed to
the undulator field in order to correct the electron trajectories inside the undulator.
Therefore it has to be ensured that the correction field source is not screened by
unsaturated soft magnetic material, which is usually employed in superconducting
undulators in order to increase the flux density. Thus, all soft magnetic parts of the
undulator are required to be completely saturated or, as an alternative, the undulator
has to be iron-free. The material employed in the cylindrical undulator, low carbon
steel AISI 1010, reaches the full saturation at Bmin = 2.13 T (see Section 2.2.2.1).

Several undulator models with different pole configurations were simulated. The
modulus of the magnetic field was calculated by the software OPERA-3D [48]. The
models are presented in the sequence of increasing difficulty of technical realization:

• The undulator model showed in Figure 3.27 (a) has the coil former completely
manufactured of magnetic material. This model shows large, completely un-
magnetized regions. The minimum flux density inside the magnetic material
is Bmin = 0 T.

• Figure 3.27 (b) shows a coil former with a central cylindrical hole of non
magnetic material, and around a tube with poles of magnetic material. In this
case the Bmin = 1.39 T and therefore the saturation was not achieved.

• A last model, where only the pole insets were made of magnetic material, is
shown in Figure 3.27 (c). The Bmin = 2.11 T calculated for this model is close
to the saturation point Bmin = 2.13 T.
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(a) Model with coil former completely of magnetic material.
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(b) Model with part of coil former and poles of magnetic material.
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(c) Model with only pole insets of magnetic material.

Figure 3.27: Modulus of the magnetic field for three cylindrical undulator models.

Only with the last undulator model (Figure 3.27 (c)) the full saturation appears
achievable, because Bmin is near to the saturation point. Such an arrangement is
technically very challenging in terms of thermally induced stress and mechanical
accuracy particularly at the poles, which strongly influence the field quality. There-
fore an iron-free design was finally chosen for the implementation of the cylindrical
undulator. The material selected to manufacture the coil former and the support
was copper. The optimized copper cylindrical TGU will be presented in Section 3.5.
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3.5 Copper cylindrical undulator

Figure 3.28 compares two cylindrical undulator models simulated in OPERA-
3D: left shows the iron model (the magnetic parts of iron, cores and poles, are
represented in green) and right shows the model of copper, where it is only nec-
essary simulate the coils (in red). The time required to perform the copper model
simulations is greatly reduced by the fact that it is not necessary to solve the meshed
models, like in the case of the iron undulators. The magnetic field produced by the
coils is directly calculated in the post-processor, which saves the step of creating the
database and the magnetostatic solver. Then the Fourier coefficients of the magnetic
field produced by each undulator model are exported from OPERA and used in the
optimization and analytical calculations. Both cylindrical undulator models were
simulated using the same design parameters, which are summarized in Table 3.20.

The geometrical parameters (λu, r and g) are the same parameters as the selected
for the iron model, which were selected in Section 3.4.3. The critical current density

Figure 3.28: Comparison both cylindrical undulator models simulated in OPERA-
3D. Left: iron model, with cores and poles in green. Right: copper model, only coils
in red.

Design parameters:

Period length: λu = 10 mm

Pole radius: r = 30 mm

Gap width on axis: g = 1.5 mm

Current density: J = 1020 A/mm2

Wire cross-section (insulated): 1.08 mm× 0.68 mm

Coil winding package: 6 layers× 4 turns

Table 3.20: Cylindrical undulator parameters for both iron and copper undulator
models.
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of the NbTi superconductor wire with a cross section (insulated) of 1.08 mm ×
0.68 mm used for the construction of the undulator coils was assumed to be around
Jc = 1200 A/mm2. The current density used in the simulations of both models was
limited to be 85% of the critical current to avoid undulator quenching in normal
operations.

The magnetic field produced for an iron-core undulator is much stronger than
the strength of the field produced for the coils alone or copper-core undulator. The
iron core increases the magnetic field due to the high magnetic permeability µ of the
material. The simulation in OPERA shows that the maximal field on axis produced
for the iron model is around 2 T, whereas the copper model produces a smaller
magnetic field of about 1.5 T. Table 3.21 shows the optimization results of both
models using a reference electron energy of E0 = 120 MeV with an energy spread of
δ = ±10 %.

OPERA opt. opt. Min.

Material Bmax
y [T] Bmax

y [T] l2[mm] x0[mm] λ0[nm] ∆λ/λ0[%] ∆xδ[mm] σx[mm]

iron 2.075 1.735 313 5.77 141.22 0.521 4.23 0.098

copper 1.470 1.812 301 6.36 141.92 0.486 4.10 0.096

Table 3.21: Optimization and calculation of ∆λ/λ0, ∆xδ and σx for both iron and
copper cylindrical undulator models.

The optimal Bmax
y obtained for the iron model is lower than the Bmax

y ≈ 2 T pro-
duced for the simulated undulator in OPERA. That means, that with a lower current
density (around 800 A/mm2) the iron model can achieve the optimal Bmax

y = 1.735 T.
This was already shown in Section 3.4.3, where the optimized iron cylindrical undu-
lator was selected.

In the case of the copper model, the optimal Bmax
y obtained is greater than

the Bmax
y ≈ 1.5 T produced for the simulated undulator in OPERA. To achieve

the optimal Bmax
y value, the current density of the simulated undulator should be

increased and greater than 85% of the critical current, which is not desired. Other
option is to search other undulator model, changing slightly the geometric parameter
values of the copper model until that the optimal Bmax

y achieves the Bmax
y simulated,

as is shown in Section 3.5.1.

3.5.1 Selection of the optimal model

(a) In this case, models with different external pole radius r are simulated and their
optimization is performed. The period length value is kept at λu = 10 mm and
the gap width on axis, g = 1.3 mm, is slightly lower to increase the produced
Bmax
y . The optimal Bmax

y and the Bmax
y produced for all these models are

compared in Figure 3.29 (a). Any of these models produce Bmax
y lower than

the optimal. Results are summarized in Table 3.22.

(b) The next models are simulated for different g (gap-width on axis) values, fixed
r = 30 mm and λu = 10 mm. The optimal Bmax

y and the Bmax
y produced

for all these models are compared in Figure 3.29 (b). Only the model with
g = 0.9 mm can produce Bmax

y slightly greater than the optimal Bmax
y . Their

optimized results are summarized in Table 3.23.
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(c) Next models with different period lengths, λu, fixed r = 30 mm and g = 1.3 mm
are simulated. The optimal Bmax

y and the Bmax
y produced for all these models

are compared in Figure 3.29 (c). It can be clearly seen that the produced
Bmax
y increases with increasing the period length. In contrast the optimal

Bmax
y decreases. The models with λu ≥ 11 mm produce a Bmax

y greater than
the optimal Bmax

y . The optimized results are summarized in Table 3.24.

(d) To finish, several models with different gap width on axis and with fixed λu =
10.5 mm and r = 30 mm are simulated. Their optimization is performed and
the results are summarized in Table 3.25. The optimal Bmax

y and the Bmax
y

produced for all these models are compared in Figure 3.29 (d). The final
selected copper model with g = 1.1 mm is shaded in gray in Table 3.25. This
cylindrical model satisfies the desired condition that Bmax

y produced is slightly
higher than the optimal Bmax

y .
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OPERA opt. opt. Min.

r[mm] Bmax
y [T] Bmax

y [T] l2[mm] x0[mm] λ0[nm] ∆λ/λ0[%] ∆xδ[mm] σx[mm]

30 1.572 1.806 301 6.30 141.87 0.489 4.10 0.096

40 1.586 1.812 355 7.34 141.87 0.484 4.72 0.110

50 1.593 1.816 402 8.25 141.88 0.481 5.28 0.124

60 1.598 1.819 445 9.07 141.88 0.479 5.78 0.136

Table 3.22: Optimization results for several cylindrical undulator models with dif-
ferent external pole radius and with fixed g = 1.3 mm and λu = 10 mm.

OPERA opt. opt. Min.

g[mm] Bmax
y [T] Bmax

y [T] l2[mm] x0[mm] λ0[nm] ∆λ/λ0[%] ∆xδ[mm] σx[mm]

0.9 1.815 1.792 301.78 6.18 141.75 0.496 4.10 0.096

1.0 1.750 1.795 301.65 6.21 141.78 0.494 4.10 0.096

1.1 1.689 1.799 301.45 6.24 141.82 0.492 4.10 0.096

1.2 1.629 1.802 301.35 6.27 141.84 0.490 4.10 0.096

1.3 1.572 1.806 301.19 6.30 141.87 0.489 4.10 0.096

Table 3.23: Optimization results for several cylindrical undulator models with dif-
ferent gap widths on axis and fixed r = 30 mm and λu = 10 mm.

OPERA opt. opt. Min.

λu[mm] Bmax
y [T] Bmax

y [T] l2[mm] x0[mm] λ0[nm] ∆λ/λ0[%] ∆xδ[mm] σx[mm]

10.0 1.572 1.806 301 6.30 141.87 0.489 4.10 0.096

10.5 1.624 1.725 308 6.51 149.01 0.488 4.18 0.098

11.0 1.664 1.654 315 6.73 156.16 0.487 4.26 0.100

11.5 1.692 1.590 321 6.96 163.34 0.486 4.33 0.102

12.0 1.712 1.531 327 7.19 170.51 0.484 4.40 0.104

Table 3.24: Optimization results for several cylindrical undulator models with dif-
ferent period lengths and fixed r = 30 mm and g = 1.3 mm.

OPERA opt. opt. Min.

g[mm] Bmax
y [T] Bmax

y [T] l2[mm] x0[mm] λ0[nm] ∆λ/λ0[%] ∆xδ[mm] σx[mm]

0.9 1.854 1.716 307.89 6.42 148.92 0.495 4.17 0.098

1.0 1.794 1.718 308.09 6.45 148.93 0.493 4.18 0.098

1.1 1.735 1.721 308.11 6.47 148.97 0.491 4.18 0.098

1.2 1.679 1.723 308.25 6.49 148.99 0.490 4.18 0.098

1.3 1.624 1.725 308.32 6.51 149.01 0.488 4.18 0.098

Table 3.25: Optimization results for several cylindrical undulator models with dif-
ferent gap widths on axis and with fixed r = 30 mm and λu = 10.5 mm. Best result:
copper model with g = 1.1 mm (shaded in gray).
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Table 3.26 shows in detail the results obtained for all the energy values after
optimizing the selected copper model with g = 1.1 mm, r = 30 mm and λu =
10.5 mm. In this case the optimal values of the optimized parameters are: Bmax

y =
1.721 T and l2 = 308.11 mm.

Figure 3.30-left shows the calculated By(x) for the selected copper cylindrical
model. The required x-position of the electron beam x(E) is given from the chi-
cane. The reference electron energy is E0 = 120 MeV with an energy spread of
∆E/E0 = ±10 %. Figure 3.30-right shows the total λ(x) values and the almost con-
stant emitted wavelength for the selected copper cylindrical undulator. The total
dispersive beam splitting ∆xδ and the relative deviation of wavelengths emitted by
the reference electrons of the different energies ∆λ/λ0 is slightly lower than with the
iron model.

E[MeV] γ(x) x(E)[mm] By(x)[T] K(x) λ(x)[nm] σx[mm]

132.0 258.32 4.589 1.36 1.33 148.53 0.104

129.6 253.62 4.937 1.31 1.28 148.98 0.100

127.2 248.92 5.297 1.26 1.23 149.22 0.098

124.8 244.23 5.672 1.20 1.18 149.27 0.098

122.4 239.53 6.062 1.15 1.12 149.16 0.098

120.0 234.83 6.467 1.08 1.06 148.97 0.098

117.6 230.14 6.889 1.02 1.00 148.75 0.100

115.2 225.44 7.328 0.96 0.94 148.57 0.104

112.8 220.74 7.787 0.89 0.87 148.53 0.110

110.4 216.05 8.265 0.82 0.80 148.73 0.118

108.0 211.35 8.765 0.75 0.73 149.27 0.128

Table 3.26: Summary of results for the optimized copper cylindrical TGU.

0.0

0.5

1.0

1.5

2.0

 0  5  10  15  20  25  30

B
y
 [
T

]

x [mm] 

120 MeV

108 MeV

132 MeV

∆xδ
4.18 mm

 100

 200

 300

 400

 500

 0  5  10  15  20  25  30

λ
 [
n
m

]

x [mm] 

108 MeV

120 MeV
132 MeV

∆λ/λ0 = 0.49 %

Figure 3.30: Selected copper cylindrical TGU. Left: calculated By(x) for this un-
dulator model (black line) and field required from chicane (blue points). Right:
resulting total wavelength λ(x) (black line) and emitted for the electron beam (red
points).
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3.5.2 Electron trajectories, drift and correction

The relatives trajectories for the electron energies 108 MeV, 120 MeV and
132 MeV are shown in Figure 3.31. After ten periods, the value of the drifts are
almost as large as the amplitude of the trajectories, therefore these drifts have to be
corrected as will be explained below. Additionally the drift has different values for
each energy after one period due to the field gradient, as shown in Figure 3.32-left.
Figure 3.32-right shows how the drift values increase by 100 times after ten periods.

All values used to calculate the correction field Bcorr
y (x) are collected in Ta-

ble 3.27, including the bending radius and the drift values, for the optimized copper
cylindrical TGU after one period. Figure 3.33 shows the calculated correction field
Bcorr
y (x), which fits were performed with a quadratic function or parabola and with

a cubic function. The coefficients of the quadratic function f1(x) = ax2 + bx + c,
which fit the data of Table 3.27, are given by:

a = + 14.62± 0.76 T/m2

b =− 0.16± 0.01 T/m

c =− 0.116± 0.033µT
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Figure 3.31: Electron trajectories after ten periods with energies between 120 MeV±
10 % for the optimized copper cylindrical TGU.
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As for the case of the iron undulator, the correction field in this thesis is calcu-
lated using the fit to a cubic function f2(x) = kx3 +mx2 + nx+ o. For the copper
undulator the function fits with the data Bcorr

y (x) of Table 3.27. The coefficients
values are given by:

k =− 1928.23± 41.34 T/m3

m = + 53.19± 0.83 T/m2

n =− 0.408± 0.005 T/m

o = + 0.416± 0.012 mT

Figure 3.33 demonstrates that the cubic function f2(x) is the best fit through the
required set of correction field points.

E[MeV] x(E)[mm] ∆x1[nm] rL(x)[m] Bcorr
y (x)[mT ]

132.0 4.589 65.67 839 -0.525

129.6 4.937 68.29 807 -0.536

127.2 5.297 70.31 784 -0.541

124.8 5.672 71.64 770 -0.541

122.4 6.062 72.20 763 -0.534

120.0 6.467 71.94 766 -0.522

117.6 6.889 70.79 779 -0.504

115.2 7.328 68.75 802 -0.479

112.8 7.787 65.82 837 -0.449

110.4 8.265 62.05 888 -0.414

108.0 8.765 57.53 958 -0.376

Table 3.27: Summary of values used to calculate the correction field Bcorr
y (x) for the

optimized copper cylindrical TGU.
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In order to verify the efficiency of the correction field, the electron trajectories
were again simulated by adding the correction field to the field produced by the
undulator. The relative trajectories for the electron energies 108 MeV, 120 MeV and
132 MeV after adding the correction field are shown in Figure 3.34.
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Figure 3.34: Corrected relative electron trajectories after ten periods with energies
108 MeV, 120 MeV and 132 MeV for the optimized copper cylindrical TGU.

After the correction field was added, the drift value after ten periods is found to
be between 60 nm and 80 nm for all the energy values between 120 MeV±10 %. The
drift after 100 periods for the electron energies 108 MeV, 120 MeV and 132 MeV are
shown in Table 3.28. To achieve the optimization goal ∆λ/λ0 ≤ 1 %, these drifts
have to be smaller than the beamlet width σx of each energy.

E[MeV] ∆x100[µm] σx[mm]

132 8.0041 0.104

120 7.3708 0.098

108 6.3489 0.128

Table 3.28: Summary of values used to calculate the correction field Bcorr
y (x) for the

optimized copper cylindrical TGU.





4. TGU technical design
considerations

In this chapter, the technical design for the transversal gradient undulator and the
correction coils are discussed. Furthermore, mechanical tolerances are simulated and
the TGU coil formers, the support structure and the cryostat are presented.

4.1 Superconducting undulator coils

4.1.1 Superconducting wire specifications

A commercially available NbTi superconducting (sc) wire has been chosen for
the fabrication of the copper undulator with λu = 10.5 mm, r = 30 mm, g = 1.1 mm
and the selected coil winding package of 6 layers × 4 turns (see Section 3.4.1). The
main parameters of the commercial sc wire are listed in Table 4.1.

Supplier: OST

Composition: NbTi/Cu

Cu/SC ratio: 1.3:1

Shape: rectangular

Insulated cross-section: 1.08 mm× 0.68 mm

Number of filaments: 54

Critical current @ 4.2 K and 6 T: 443 A

Table 4.1: Specification of the NbTi sc wire employed for the undulator coils.

This sc wire has a rectangular shape with bare dimension of 1.00 mm×0.60 mm.
By choosing a rectangular wire instead of a round wire, a higher packing factor can
be achieved and better control of the wire positioning in the grooves is possible.
The necessary average current density in the coil is around 1 kA/mm2 to achieve the
optimal magnetic field on axis of about 1.7 T. A pole width of approximately 1 mm
is required.
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4.1.2 Fit function for the critical current density

As discussed in Section 1.3, the critical surface of NbTi alloy material is defined
by the critical temperature Tc, the upper critical magnetic field Bc2 and the critical
current density Jc. The critical field dependence on temperature and the critical
temperature dependence on field is obtained from Lubell’s equations [56]:

Bc2(T) = Bc20

[
1−

(
T

Tc0

)1.7
]

(4.1)

Tc(B) = Tc0

[
1−

(
B

Bc20

)1/1.7
]

(4.2)

where:
Bc0 = 14.4 T is the maximum upper critical field at T = 0,
Tc0 = 9.2 K is the maximum critical temperature at B = 0,
T = 4.2 K is the operating temperature.

A fit function, which gives the critical surface for NbTi superconductors as
function of applied magnetic flux density and temperature, was published in [57] by
L. Bottura and is given by:

Jc(B,T) = Jc,ref
C0

B

[
B

Bc2(T)

]α [
1− B

Bc2(T)

]β [
1−

(
T

Tc0

)1.7
]γ

(4.3)

where Jc,ref = Jc(5 T, 4.2 K) and C0, α, β and γ are free fit parameters. C0 is a
normalization constant, the two parameters α and β describe the dependence on the
reduced field and γ is a parameter which describes the dependence on the reduced
temperature. The range of variation of the fit parameters α, β and γ is restricted
and given by Bottura as: α is of the order of 0.5 to 0.8, β close to 1 and γ in the
range of 2.

The critical current density versus magnetic field curve Jc(B) at the operating
temperature 4.2 K for the undulator NbTi wire is given in Figure 4.1. A total of
seven data points have been fitted with Equation (4.3), where the data at high field
in the range 6 T to 9 T are given by the wire manufacturer and the data at low
field have been measured by [58]. The values for the fit parameters are shown in
Table 4.2.

Jc,ref [A/mm2] C0 α β γ

800 32.9 0.88 1.13 1.7

Table 4.2: Parameters of the Bottura’s fit function for the undulator sc wire.

The straight line, usually known as the load line (see Figure 4.1), represents the
peak field experienced by the undulator winding as a function of the current flowing
in it. The predicted load line of the undulator was calculated using OPERA-3D.
The simulations show a peak field at the conductor of 1.18 T with a current density
of 500 A/mm2 and 2.37 T with 1000 A/mm2. The undulator will go resistive or
“quench” when the load line crosses the fitted curve at Jc = 1214 A/mm2.
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Figure 4.1: Critical current density versus magnetic field curve at 4.2 K. Data wire
fitted with a curve (in blue) using Bottura’s Equation. The predicted load line (in
red) of the copper undulator and expected quench.

4.1.3 Matching coils

The undulator should have the least possible net effect on the electron beam. It
is critical that the electron trajectories through the undulator are straight: the angle
under which the beam enters the undulator, the exit angle and the exit x-position
should ideally equal zero [2]. The design of the field terminations for the undulator
at the entrance and exit of the device has to be adapted to keep the trajectories
straight. That can be done modifying the winding packages of the first and second
end coils, which are named matching coils. Several combinations of winding packages
were tested. In this thesis only two of these combinations are shown because the best
results were obtained with them (see Figure 4.2). They are called in the following
MC8&16 and MC6&18. These matching coils have in common that the sum of turns
of the first and second coil is 24 turns. That is the total of the selected undulator
coils turns (4 single turns × 6 layers).

Figure 4.2: Matching coils with two different combinations of winding packages.
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Undulator models with these two different matching coils were modeled in
OPERA-3D and the trajectories for the central energy E0 = 120 MeV were sim-
ulated. Figure 4.3 shows the results and compares them with the trajectory without
matching coils. The best trajectories are achieved with the first and second match-
ing coils with 6 and 18 turns respectively. This combination of winding packages
produces a sinusoidal magnetic function By(z) with the peak amplitudes of −1/4,
3/4, −1, 1, ... as shown in Figure 4.4.
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Figure 4.3: Comparison of the trajectories for E0 = 120 MeV through two undulators
with different matching coils (MC8&16 and MC6&18) and an undulator without
them (noMC).
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Figure 4.4: Magnetic field By(z) for a 30 period undulator with the matching coils
MC6&18 illustrated in Figure 4.2.

4.1.4 Undulator coil geometry selection

The ideal cylindrical undulator consists only of solenoid coils. For the selected
superconducting wire (1.08 mm×0.68 mm) and the winding package with 4 turns ×
6 layers, the space between two adjacent packages is lower than 1 mm for a 10.5 mm
period length undulator. This space is smaller than the dimension of the supercon-
ducting wire. Therefore it is required to lay out every second winding package as an
upright racetrack coil. Two possible coil geometries result of this solution:

a) Symmetrical form: a mirror symmetrical coil geometry with respect to the
undulator center (xz-plane). The same type of coil, solenoid or racetrack, is
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located on both sides of the undulator. All winding packages with a current
flow in one direction have a different shape than those with a current flow in
the other direction.

b) Antisymmetrical form: an antisymmetrical coil geometry with respect to the
undulator center. A solenoid winding package in the top coils is facing a
racetrack winding package in the bottom coils and vice versa.

Figure 4.5 shows the cross-section of two central periods of both undulator coils
for the ideal cylindrical, symmetrical and antisymmetrical coil forms. Solenoid coils
are marked with the letter S and racetracks with R, followed by the number of the
coils.

Figure 4.5: Coil geometry forms: cylindrical (only solenoid coils), symmetrical (same
type of coil in both sides) and antisymmetrical (solenoids in front of racetracks and
vice versa).

The absolute value of the y-component of the magnetic flux density |By| pro-
duced by the cylindrical and antisymetrical undulator is exactly the same, as is
shown in Figure 4.6. In contrast, it can be also observed in this figure that the sym-
metrical undulator produces a net field |By| superimposed to the ideal cylindrical
undulator magnetic field. With the antisymmetrical configuration the unwanted net
fields of top and bottom coil cancel each other out.

The simulated electron trajectories in the xz-plane through the antisymmetrical
and cylindrical undulator coincide and show an insignificant deviation from the ideal
straight path after the first undulator periods. However, the net field superimposed
to the ideal field in the symmetrical undulator significantly deflects the electron
trajectories from the ideal straight path, as it is shown in Figure 4.7.
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Figure 4.7: Comparison of the electron trajectories in the xz-plane after the first
five undulator periods with E0 = 120 MeV through undulators with cylindrical (cyan
points), symmetrical (red points) and antisymmetrical (blue points) forms. The high
drift produced after the first periods with the symmetrical undulator is shown.

Figure 4.8 shows the comparison of the simulated magnetic flux density com-
ponent Bx through a patch in xy-plane placed just before entering the different
undulator models. In the case of the cylindrical and symmetrical undulators, Bx

is compensated and vanishes on the x-axis, where the electrons travel through the
undulator in the xz-plane. In contrast, Bx is not compensated in case of the anti-
symmetrical undulator (see Figure 4.9).

The Bx peak value varies also with the x-position as is shown in Figure 4.9.
Taking into account the spectral dispersion of the electrons, x(E), it turns out that
the low energy electrons (108 MeV) experience a larger vertically deflecting field Bx

than the high energy electrons (see Figure 4.9). Figure 4.10 shows the resulting
drift of the electron trajectories in the yz-plane appearing in the antisymmetrical
undulator model.

The drift of the electron trajectories in both xz- and yz-planes has to be
corrected. It is easier compensate Bx than By and minimize the drift through
the antisymmetrical undulator, as it is shown in Section 4.4.2. This is achieved
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Figure 4.10: Electron trajectories in the yz-plane through undulators with antisym-
metrical form.

optimizing an offset in the start y-position and the start angle Θyz of the electron
trajectories together with the current density of the correction coils.

The antisymmetrical model was finally chosen for the construction of the undu-
lator coil formers. Figure 4.11 shows schematically the cross-section of the matching
period and two periods of both undulator coils and indicates the winding scheme
for the antisymmetrical undulator. The undulator coils are junction free and wound
with a single wire. The winding packages consist of 4 turns×6 layers and are wound
in the order 1...n. The wire is fed through to the next winding package above or
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below the neighboring groove (red line connecting the coil packs in Figure 4.11).
Since the number of layers is even, the winding has to start at the back side of the
winding package.

Figure 4.11: Winding scheme of the selected antisymmetrical undulator, cross-
section of the 1/4 and 3/4 matching coils at the undulator entrance and two full
periods.

4.2 Superconducting correction coils

4.2.1 Superconducting wire specification

As mentioned in Section 3.4.4, a weak field of about −50 mT has to be super-
imposed to the undulator field in order to correct the electron trajectories inside
the undulator. This correction field is generated by correction coils and the main
parameters of the commercial superconducting wire used in their construction are
given in Table 4.3.

Supplier: EAS

Composition: NbTi/Cu

Cu/SC ratio: 1.5:1

Shape: round

Insulated cross-section: ∅ 0.232 mm

Number of filaments: 1

Critical current @ 4.2 K and 5 T: 26 A

Table 4.3: Specification of the NbTi wire employed for the correction coils.

This superconducting wire consists of one NbTi filament in a Cu matrix with
a copper-to-superconductor area ratio of 1.5. The wire has a circular cross section
with a diameter of 0.2 mm (bare). In the following a winding cross section of the
correction coils of 1×1 mm2 is assumed, which corresponds to 14 turns of the wire
employed.
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4.2.2 Correction coil geometry selection

The required correction field Bcorr
y (x) for the cylindrical copper undulator was

calculated in Section 3.5.2. This correction field can be produced by a group of coils
around and/or inside the undulator. Several correction coil models with different
geometries were simulated [59] and the correction field produced for them was cal-
culated by the software OPERA-3D. The boundary conditions taken into account
in the design of the correction coils are:

• The correction field Bcorr
y (x) has to be close to the ideal curve of the required

correction field.

• The correction field Bcorr
x (x, y) << Bcorr

y (x) in the area of the beam to avoid
perturbations in the electron trajectories.

• The correction magnet must not overlap with the electron beam ( x = 4.5 mm
to 9.5 mm and y = ± 0.55 mm).

• The current of the correction coils should not be too high to avoid thermal
load.

During the design of the correction coils four cases have been studied:

a) Two symmetrical dipole-bedstead coils placed around the undulator coil
formers (see Figure 4.12 (a)). Using this type of coils has the advantage that
the area where the electron beam passes remains completely free. With an
average current density of about 32 A/mm2 the correction field produced by
these coils in comparison with the ideal correction field is shown in Figure 4.13.

b) Two racetrack coils simulated by four long straight wires on the undulator
surface. The position of both coils is not parallel but inclined to the xz-plane,
as shown in Figure 4.12 (b). The correction field produced by this kind of coils
was very similar to the bedsteads coils (see Figure 4.13), but with a higher
current density of about 40 A/mm2.

c) Three racetrack coils simulated by six long straight wires are shown in
Figure 4.12 (c). It is the same configuration as case (b) built with an ad-
ditional coil between the undulator coil formers (on the xz-plane). In this
case an additional power supply is necessary. The current density is about
64 A/mm2 for the coils on the undulator surface and about 4.5 A/mm2 for the
central coil. The correction field produced by these three coils is very close to
the ideal correction field as shown in Figure 4.13. The disadvantage is that
the electron beam must travel between the straight parts of the central coil
and therefore this configuration is very difficult to realize.

d) Two racetracks coils simulated by four long straight wires inside the coil
formers (see Figure 4.12 (d)). These coils are parallel to the xz-plane.
The correction field produced by these coils with a current density of about
38 A/mm2 matches very well with the ideal curve (see Figure 4.13). This
correction coil configuration was selected because the best results were ob-
tained with it and it meets all the boundary conditions.



72 4. TGU technical design considerations

x

zy

y

x

COIL 1COIL 1
COIL 1

COIL 2COIL 2

(a) Two dipole-bedstead coils around the undulator.

x

zy

y

x

C
O

IL
 2

C
O

IL
 1

C
O

IL
 1

C
O
IL 2

(b) Two racetrack coils (four long straight wires ) on the undulator surface.

x

zy

C
O

IL
 2

C
O

IL
 1y

x

C
O

IL
 1

C
O
IL 2

COIL 3 COIL 3

(c) Three racetrack coils (six long straight wires): one coil between the undulator and
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(d) Two racetrack coils (four long straight wires) inside the undulator coil formers.

Figure 4.12: Several correction coil geometries (red lines) for the cylindrical copper
undulator (in grey).
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Figure 4.13 compares the required correction field By as function of the trans-
verse position x with the correction field produced for the four simulated correction
coil geometries. The best results were obtained with the two racetracks-coils in-
side the undulator coil formers, where the correction field matches with the ideal
curve. This correction coil configuration was selected for the construction inside the
undulator.

-0.60

-0.55

-0.50

-0.45

-0.40

-0.35

-0.30

 4  5  6  7  8  9

B
c
o

rr
y
  
  
[m

T
]

x [mm]

132 MeV 120 MeV

108 MeV

Required / Ideal

2 beadsteads-coils

2 racetracks on TGU surface

3 racetracks

2 racetracks inside TGU

Figure 4.13: Comparison of Bcorr
y (x): required or ideal (black points) and produced

with different correction coil geometries: two beadsteads-coils (green line), two race-
tracks on TGU surface (pink line), three racetracks (red line) and two racetracks
inside TGU (blue line).

4.2.3 Optimization of the correction coil parameters

Figure 4.14 shows the correction coils inside the undulator. The correction
coil winding package width and thickness are assumed to be 1 mm × 1 mm. Both
racetracks-coils are parallel to the xz-plane and the distance to this plane is fixed
and equal to yp1 = 8.5 mm. Their position inside the undulator coil formers is
also restricted by the undulator coil position, which is defined for their external
and internal pole radius. The internal pole radius ri = 25.92 mm can be calculated
through the undulator wire specifications (see Section 4.1.1) and the coil winding
package of 6 layers× 4 turns.

Figure 4.14: Correction coil design parameters.
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Some parameters of the correction coil can be optimized to correct the exit angle
of the trajectories. The parameters to optimize are: the distance xc2 from the center
of the racetrack-coil to the yz-plane, the half-internal width of the racetrack coil xp1,
the current density of the correction coils and an offset in the start x-position of the
electron trajectories. This offset affects by equal to all the electron energies and it
is achieved with a vertical displacement of the TGU.

The maximal values of x for each undulator period (xmaxN ) are calculated and
compared with the ideal maximal values of x for the straight trajectories (xmaxideal) for
each energy. The goal of this optimization using the simplex method is to minimize
the electron trajectories drift in the xz-plane.

The design and optimized parameters employed to perform the correction coil
optimization are summarized in Table 4.4. Figure 4.15 shows the relative trajectories
before and after the optimization with the electron energies of 108 MeV, 120 MeV
and 132 MeV.

Design parameters:

Winding package width: width 1 mm

Winding package thickness: thickness 1 mm

Distance to xz-plane: yp1 8.5 mm

TGU external pole radius: r 30 mm

TGU internal pole radius: ri 25.92 mm

Optimized parameters:

Correction current density: Jcorr 32.69 A/mm2

Half-internal width: xp1 1.455 mm

Distance to yz-plane: xc2 5.719 mm

Trajectories offset: xoffset 0.727µm

Table 4.4: Design and optimized correction coils parameters.
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The parameters of the correction coil before the optimization are:
Jcorr = 38 A/mm2, xp1 = 1.5 mm, xc2 = 5.5 mm and xoffset = 0. The magnetic
field produced with this parameters fits with the ideal correction field shows in
Figure 4.13. The highest drift after 100 undulator periods was obtained with an
electron energy of 108 MeV. After the optimization this drift was reduced around
four times. With 120 MeV the drift was reduced by around half from its original
value.

The optimization depends on the number of undulator periods. A final opti-
mization of the real model TGU is shown in Section 4.4.2 to correct the trajectories
also in the yz-plane. Therefore two new parameters are optimized: yoffset and Θyz.

4.3 Mechanical tolerances

4.3.1 Types of mechanical deviations

The finite tolerances in the construction of the coil formers lead to field errors,
which produce changes and unexpected drifts in the electron trajectories. Figure 4.16
shows a longitudinal cut of an electromagnetic copper undulator and the two me-
chanical deviations considered in this thesis. Both deviations are deliberately shown
in an exaggerated way to illustrate the idea. A more detailed analysis can be found
in [Kar13].

The first deviation shown is the deviation of half period length (λu/2 ±
tolerance), measured from the axes of two adjacent superconducting coils. This
deviation varies the width of the poles along the undulator and with it the posi-
tion of the coil in z direction. The second deviation is the variation of the internal
pole radius (ri ± tolerance), which varies the position of the superconducting coils
in y-direction.

(>r )i

Figure 4.16: Longitudinal cut of an electromagnetic undulator to show the
mechanical deviation of the half period length and the deviation of the internal
pole radius. Only the part of the undulator coil close to the beam axis is shown.
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The influences of these two different mechanical deviations on the electron tra-
jectories along a 100 period antisymmetrical undulator were simulated with OPERA-
3D. This undulator has a period length λu = 10.5 mm, an external pole radius
r = 30 mm, a gap on axis g = 1.1 mm and a current density J = 1020 A/mm2. The
correction coil employed in the simulations are optimized in Section 4.2.3 with a
correction current density of Jcorr = 32.69 A/mm2 and the optimal offset in the x-
position xoffset = 0.727µm. Table 4.5 summarizes the x start position and the peak
amplitudes of the energies used to perform the simulations. The peak amplitudes
are calculated analytically for ideal trajectories excluding the effect produced by the
matching coil.

E [MeV] xE [mm] Peak-amplitude [µm]

108 8.738 5.85

120 6.471 7.51

132 4.618 8.47

Table 4.5: Parameters for the simulation of the electron trajectories through 100
periods asymmetrical undulator with mechanical deviations.

4.3.2 Statistically distributed deviations

Simulations with statistically distributed mechanical errors have been performed
to quantify the effects on the electron trajectories. Both mechanical deviations are
considered separately. Each simulation consists of one undulator without devia-
tion and ten undulators with deviations to compare the results between them and
calculate the standard deviation produced for each energy and the total deviation.

Figure 4.17(a) shows a general example to explain how the standard deviation
is calculated. The electron trajectories for one energy are shown: in red without a
mechanical deviation and in blue with it. The maximal values of x for each undulator
period (xmaxN ) are calculated for both cases separately. The ideal maximal values
of x for the straight trajectories (xmaxideal) can be calculated adding xstart to the peak-
amplitude. These both values depends on the electron energy (see Table 4.5). The
absolute difference of the x values (|∆x|) for the both trajectories of this example is
shown in green in Figure 4.17(b).

The standard deviation of the electron trajectories for each energy (σx̂(E)) is
given by Equation 4.4.

σx̂(E) =

√√√√√ N∑
i=0

(xmaxideal − xmaxN )2

N
(4.4)

where N is the number of undulator periods.

4.3.3 Deviation results

The selection criteria of the tolerance for the two mechanical deviations consid-
ered in this thesis is that the deviations are smaller than the beamlet width (see
Table 3.26). Therefore is ensured that ∆λ/λ0 ≤ 1 % for a 100 periods undulator.
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(b) Absolute difference of the x values between the trajectories through an undulator
with a mechanical deviation and without deviation.

Figure 4.17: Example of the variation of the electron trajectories produced for a
mechanical deviation.

a) For the construction of the undulator coil formers, two different tolerances of
the internal pole radius were considered: ±0.008 mm and ± 0.01 mm. De-
viation number 0 represents the values of the undulator without mechanical
deviation. The deviation numbers between 1 and 10 shows the results for the
ten undulators simulated with a statistically distributed error in the internal
pole radius. Each superconducting coil has a different error limited for the
tolerance values. Figure 4.18 (a) shows the deviation results with a tolerance
of ± 0.008 mm. For the ten cases considered the values of the total deviation
remains below 14µm. In the case with a tolerance of ± 0.01 mm, the total
deviation remains below 18µm, as shown in Figure 4.18 (b). If the tolerance
of ± 0.008 mm is selected, the undulator price is considerably more expensive
than with a higher tolerance. For this reason, the tolerance of ± 0.01 mm is
selected for the internal pole radius.

b) In the case of the mechanical deviation on the half period length, two different
tolerance values ± 0.01 mm and ± 0.05 mm were considered. Figure 4.19
(a) shows the deviations with tolerances of ± 0.01 mm. They are practically
constant and the value of the total deviation remains below 10µm, as the
value of the deviation number 0 without mechanical deviation. However with
a tolerance of ± 0.05 mm the total deviation reaches 20µm (see Figure 4.19
(b)). The tolerance of ± 0.01 mm is selected for the half pole length deviation.
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Figure 4.18: Standard deviations of simulated undulators with internal pole radius
mechanical errors.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

−1  0  1  2  3  4  5  6  7  8  9  10  11

σ
E
 [

µ
m

] 

Deviation number

108 Mev
120 Mev
132 Mev

(a) With ± 0.01 mm tolerance

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

−1  0  1  2  3  4  5  6  7  8  9  10  11

σ
E
 [

µ
m

] 

Deviation number

108 Mev
120 Mev
132 Mev

(b) With ± 0.05 mm tolerance.

Figure 4.19: Standard deviations of simulated undulators with half period length
mechanical errors.
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4.4 TGU coil formers and support structure

4.4.1 Mechanical layout

Although the design optimization described in this thesis was performed for a
100 periods undulator, the full-scale prototype built at KIT for the proof-of-principle
experiment has 40 periods (called TGU40). Each coil former is composed of three
modules (see Figure 4.20 (left)), which are assembled before winding the supercon-
ducting coils. This assembly is in principle extendable to 100 periods by four times
repeating the inner coil modules. The superconducting coils are wound on a copper
former in order to ensure good heat conduction and to minimize thermally induced
mechanical stress. The coil assembly is supported by a bolted clamping structure,
which is made of copper for the same reasons (see Figure 4.20 (right)).

Figure 4.20: Schematic mechanical layout of the TGU. Exploded View (left): coil
former (green) and coil support structure (brown). Undulator coil assembly sup-
ported by a bolted clamping structure (right) [61].

The support structure defines the magnetic gap of the undulator, applies com-
pressive prestress to the outer parts of the racetrack winding packages (see Fig-
ure 4.21) and takes up the magnetic forces acting on the undulator coils as a whole.
Since the electron beam travels about 6.5 mm off axis through the undulator, it is
possible to fill one half of the gap with the spacer precisely defining the position of
the coils with respect to each other. Furthermore in this configuration no net torque
due to magnetic forces acts on the coils. The forces on the coils with a maximal
current density of 1348 A/mm2 were calculated with OPERA-3D [46] and applied
in the mechanical analysis.

Simulations of the structural mechanics of a ten periods antisymetrical undu-
lator (with matching coils) were calculated [62]. The analysis was performed with
Autodesk Inventor Stress Analysis [63], which is based on the FEM (finite element
method) and on the von Mises failure theory. The static analysis determines the
stress in materials and structures subjected to static or dynamic forces or loads.
The aim of this analysis is to determine whether the element or structure can safely
withstand the specified forces and loads. This is achieved when the determined
stress from the applied force(s) is less than the yield strength of the material.
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Figure 4.21: Force distribution in the central racetrack and solenoid TGU-coils.

This stress relationship is referred to as factor of safety (FOS) and is used as an
indicator of success or failure in analysis of the mechanical structure [64]:

FOS =
Yield strength

Calculated stress
=

Ultimate strength

Calculated stress
(4.5)

where the yield strength Sy is defined as the stress at which a material begins to
deform plastically. The FOS can be also based on the ultimate tensile strength of the
material, which is defined as the maximum stress that the material can withstand
while being stretched or pulled before failing or breaking. If the minimum value of
the calculated FOS is larger than 1.0 indicates that the material is safe. If not, the
material has failed.

It is a requirement that the elastic deformations remain within the allowable me-
chanical tolerances. The displacement of the coil former affects directly the quality
of the magnetic field. Therefore it has to stay within the mechanical tolerance of
± 0.01 mm, which was selected in Section 4.3. Undulator quenches caused by the
forces acting on the superconducting wire were experimentally determined.

Table 4.6 summarizes the properties of the material used in the design of the
undulator coil formers. The material chosen for the production was finally Cu-ETP,
which is cheaper than Cu-OF. The material characteristic values ”Yield Strength”
and ”Ultimate tensile strength”of Cu-OF were adopted very conservative, this affects
the factor of safety FOS negatively. The elastic deformation of Cu-ETP will be
smaller and the safety factor of this material will be greater.

Young’s modulus E describes the stiffness of the material (where a higher value
produce a stronger material (e.g. copper or titanium) and a lower value a weaker
material (e.g. glass)). It can be calculated by:

E =
σ

ε
(4.6)

where σ is the tensile stress and ε is the extensional strain in the elastic (initial,
linear) portion of the strain curve. Strain is a normalized measure of deformation
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Name Copper (2.0040 - Cu-OF)

General

Mass Density 8.94 g/cm3

Yield strength 70 MPa

Ultimate tensile strength 230 MPa

Stress
Young’s Modulus 127 GPa

Poisson’s Ratio 0.345

Table 4.6: Properties of the material used for the FEM stress analysis of the TGU
coil formers.

and is defined as the ratio of elongation with respect to the original length. When
a material is compressed in one direction, it usually tends to expand in the other
two directions perpendicular to the direction of compression. This effect is defined
by Poisson’s Ratio ν.

The different stresses are classified into two groups for the analysis: normal
stresses and shear stresses. The normal stress is perpendicular to the area under
consideration, while the shear stress acts parallel to the area. The normal stresses
are represented by σx, σy and σz in the x, y and z directions. Tensile stresses are
considered to be positive, while compressive stresses are negative. The shear stresses
are denoted by τ with two subscripts. The first subscript denotes the normal to the
plane on which the force acts, and the second subscript identifies the direction of
the force [64]. The principal normal stresses are:

σ1 =
σx + σy

2
+

√(
σx − σy

2

)2

+ τ 2
xy (4.7)

σ2 =
σx + σy

2
−

√(
σx − σy

2

)2

+ τ 2
xy (4.8)

and the principal shear stress is:

τmax = ±

√(
σx − σy

2

)2

+ τ 2
xy (4.9)

The von Mises criterion postulates that failure is caused by the elastic energy
associated with shear deformation. This theory is valid for ductile materials and
predicts yielding under combined loading with greater accuracy than any other
recognized theory [65]. The von Mises stress σe for a triaxial stress state is cal-
culated by:

σe =

√(
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ1 − σ3)2

2

)
(4.10)

If the nomenclature σ1 ≥ σ2 ≥ σ3 is used for the principal stresses, the shear stress
says that yielding will occur when:

σ1 − σ3 =
Sy

FOS
(4.11)
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For a biaxial stress state, assuming σ3 = 0,

σe =
√
σ2

1 + σ2
2 − σ1σ2 (4.12)

Thus, the von Mises criterion predicts failure if:

σe ≥
Sy

FOS
(4.13)

For the stress analysis in Autodesk Inventor, a part of the undulator was simu-
lated. The antisymetrical undulator model has two different coil formers. Both can
be distinguished by the shape of the central groove, which is designed for winding
either a solenoid or a racetrack coil. The coil former with a central groove for the
solenoid coil was selected for the stress analysis.

Some boundary conditions were applied. A contact force is created by the screw
rod and nuts, which compress the coil modules. A value of 5 kN was assumed for
this force. Other boundary condition are the total external magnetic forces. These
forces are part of the forces on the adjacent coil modules, which do not go directly
into the coil formers and where a magnitude of 312.5 N was estimated. The sum of
the forces on the coils was calculated in OPERA-3D and it was Fz = +26.25 kN on
the solenoids and Fz = −24.75 kN on the racetracks.

These forces will cause a maximum displacement of the coil former shown in
Figure 4.22 (a) with 3µm maximum. This value is acceptable because it is less than
the mechanical tolerance of ± 10µm. The safety factor (FOS) obtained is shown in
Figure 4.22 (b) with a minimum value of 1.61. Because the minimum FOS is greater
than 1.0, it indicates that the material is safe.

Table 4.7 summarizes the results obtained for the stress analysis of the undulator
coil former:

Name Minimum Maximum

Von Mises stress 0.01 MPa 43.61 MPa

1st principal stress −28.74 MPa 49.46 MPa

3rd principal stress −56.17 MPa 22.12 MPa

Displacement 0 mm 3.02µm

Factor of safety (FOS) 1.61 15

Volume 358893 mm3

Mass 3.21 kg

Table 4.7: Summary of the stress analysis results.
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Figure 4.22: Stress analysis result of the coil former with central groove for the
solenoid-coil. Boundary conditions on the coil former: a contact force (arrow in
yellow), which compress the coils modules in x direction. Total external magnetic
forces (arrow in yellow), part of the forces on the adjacent coil modules in z direction.
Sum of the forces on the solenoid coils in z direction (arrows in blue).
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4.4.2 Optimization of the simulated electron trajectories
through the TGU40

All optimizations performed in the previous sections were performed for a 100
periods undulator. Because the magnetic field components are not the same in the
real 40 periods undulator, the optimization must be recalculated.

Table 4.8 collects in detail all the values calculated analytically for the
TGU40, including the start x-position (x(E)[mm]) and the maximum beamlet width
(σx[mm]) for each energy.

Table 4.9 summarizes the results, including the x-position and the emitted wave-
length by the central energy, the total dispersive beam splitting ∆xδ and the mini-
mum beamlet width σx.

By optimizing the current in the correction coils, an offset in the start y-position
and an angle Θyz of the reference trajectories, it is possible to keep the overall drift
within a tolerable range. For achieving the targeted radiation bandwidth in the
order of the natural bandwidth (∆λ/λ0 ≤ 1/40 = 2.5 %), the trajectory drifts have
to be smaller than the minimum beamlet width. The results of the optimization
using the simplex method are summarized in Table 4.10. Figure 4.23 shows the
relative trajectories on the xz-plane after the optimization and with the electron
energies of 108 MeV, 120 MeV and 132 MeV. The optimization corrected the drift
of the trajectories but not the angle at the undulator end, which should be zero.

E[MeV] γ(x) x(E)[mm] By(x)[T] K(x) λ(x)[nm] σx[mm]

132.0 258.32 4.618 1.37 1.34 149.63 0.258

129.6 253.62 4.961 1.32 1.30 150.09 0.250

127.2 248.92 5.317 1.27 1.24 150.33 0.246

124.8 244.23 5.687 1.21 1.19 150.38 0.242

122.4 239.53 6.071 1.16 1.13 150.29 0.242

120.0 234.83 6.471 1.10 1.07 150.10 0.244

117.6 230.14 6.887 1.03 1.01 149.87 0.250

115.2 225.44 7.321 0.97 0.95 149.69 0.258

112.8 220.74 7.773 0.90 0.88 149.63 0.272

110.4 216.05 8.245 0.83 0.81 149.80 0.290

108.0 211.35 8.738 0.76 0.75 150.30 0.316

Table 4.8: Summary of results for the TGU40.

opt. opt. Min.

Bmax
y [T] l2[mm] x0[mm] λ0[nm] ∆λ/λ0[%] ∆xδ[mm] σx[mm]

1.740 303 6.471 150 0.501 4.120 0.242

Table 4.9: Calculation of the relative deviation of wavelengths emitted (∆λ/λ0), the
total dispersive beam splitting (∆xδ) and the beamlet width (σx) of the TGU40.
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Jcorr : 32.084 A/mm2

Θyz: 0.0579°

yoffset: −0.109 mm

Table 4.10: Optimized parameters employed to perform the optimization of the
electron trajectories through the TGU40.
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Figure 4.23: Simulated relative electron trajectories on the xz-plane through the
TGU40 after optimization of the start parameters.
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Figure 4.24: Simulated electron trajectories on the yz-plane through the TGU40
after optimization of the start parameters.

The trajectories on the yz-plane are shown in Figure 4.24. With the optimized
current density in the correction coils and the optimized start parameters of the
trajectories (yoffset ≈ −110µm and Θyz ≈ 1 mrad), it is possible to keep the drift
within ± 250µm.

Figure 4.25 shows By(y) at z = 200 mm, where the maximum drift of the tra-
jectories on the yz-plane through the TGU40 occurs (see Figure 4.24). It is ob-
served that the field amplitude By is practically constant over the y-range between
y = −200µm and y = 250µm.
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Figure 4.25: Flux density component By as function of y-position calculated at
z = 200 mm produced for the TGU40.

4.5 The TGU40 cryostat

A cryostat capable of accommodating a (full-length) TGU of 100 periods was
designed and built by the company CryoVac (Troisdorf, Germany). Inside the cryo-
stat the undulator is placed in vacuum and conduction-cooled. Figure 4.26 shows a
front view of the horizontal cryostat assembly. A plate heat exchanger will be bolted
to the bottom of the support structure. The cryostat has a shell-like structure, to
facilitate the installation of the undulator inside the cryostat.

3
0
0
 K

7
7
 K

Support Frame

4
0
 K

4.2 K

Undulator coils

Plate Heat Exchanger
with LHe-channels

Electron BeamLHe-Tank

LN2-Tank

YZ

X

Support Structure

Figure 4.26: Front view of the horizontal cryostat assembly with the TGU installed
on the support frame [61]. Different temperature regions are marked.

The structure consists of an external recipient at 300 K and three plates at 77 K,
40 K and 4.2 K with respective shields. Cooling to 77 K is done with liquid nitrogen
reservoir place on the second plate. The 40 K plate is cooled with the He gas from
the LHe reservoir. The cooling channels of the heat exchanger are connected to a
50 liter liquid helium reservoir placed above the coils, constituting a thermosiphon
cooling scheme. The bottom of this reservoir is the 4.2 K plate and is cooled directly
with liquid helium. Figure 4.27 shows a 3D-view of the cryostat.
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z
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Figure 4.27: 3D-view of the horizontal cryostat assembly with a 1/4 cut off for
visibility [61].

DT-670 silicon diodes temperature sensors are mounted at several positions on
the undulator in the 4.2 K shield to measure at the low temperature more precisely
than the PT100 temperature sensors, which are placed in the external shields. The
operation temperature of the undulator in this cryostat is expected not to exceed
5 K.





5. TGU construction and winding

In the following, the construction of several short models and the full-scale TGU
are described. The winding of the superconducting undulator and correction coils
are discussed in detail. Moreover, the support structure of the undulator coils and
the support assembly to mount the TGU inside the own horizontal cryostat are
presented.

5.1 Short Prototypes

5.1.1 Half period TGU

A first short prototype with a single groove was built (see Figure 5.1). The
purpose of this half period TGU was to verify the groove dimensions and the winding
process with the superconducting (sc) wire described in Section 4.1.1. This first
model has a cylindrical form with an external pole radius of 30 mm and the material
selected for the coil former is copper.

The height and width of the single groove are given by the dimensions of a
winding package of 6 layers × 4 turns. In the geometry of a single groove, it is
important for the bending of the superconducting wire after each turn to begin the
next turn in the correct position next to the preceding turn. The wire properties
showed that once the wire is bent, it is difficult to recover its original shape and its
insulation can be damaged. If the coil is wound correctly, the last layer is flush with
the winding area of the coil former.

The test proved the feasibility of the winding geometry and allowed some im-
provements in the design of the following prototype, which were:

• The modification of the superconducting wire clamp was made. In this first
prototype, the end of the superconducting wire was soldered to the side of the
coil former (see Figure 5.1 (a)). An improvement was designed increasing the
width of the end of the coil former to install an insulated plate and a pair
of small screws and washers (of non-magnetic material). This enables both
terminals of the coil end to be clamped together.
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Figure 5.1: Coil winding of the first short prototype: (a) solder sc wire, (b) start of
the winding, (c) end of the fifth layer and (d) sharp edges at the winding end.

• All sharp edges, where the superconducting wire passed through, were rounded
(see Figure 5.1 (b) and (d)). This prevents damaging the insulation of the wire,
which will cause short-circuit or quenches.

• The width of the groove was enlarged taking into account the tolerance of
the superconducting cable of 6µm. In this prototype the help of a hammer
was necessary to align the four turns of wire into the groove. This can cause
damage to the superconducting wire and should be avoided. If the turns
are not aligned, a vertical displacement of the layers occurs and thereby the
center-of-mass position of the coil moves relative to the center of the groove.

For the next prototypes with more than one groove, a couple of extra tools were
designed to change the direction of the wire. A minimum internal bending radius of
the superconducting wire of ≈ 7 mm was obeyed, which is approximately ten times
the wire width.

5.1.2 Two periods TGU

A second prototype with four grooves was designed and built (see Figure 5.2).
This prototype is not only an ideal cylindrical undulator coil former with grooves for
solenoid coil packages. In addition every second groove has a groove for containing
a racetrack coil package (see Figure 5.2 (a)). All the coils are aligned on one side of
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the coil former. This prototype with two undulator periods is called TGU2. Before
starting the winding of the solenoid coil on the first groove, the superconducting
wire is fixed between the insulate plate and the screws (see Figure 5.2 (a)).

Two aluminum rings, which fill the grooves of the racetrack coils, are used to
maintain the shape of the empty grooves (see Figure 5.2 (b)). After the second
solenoid coil is wound on the third groove, the superconducting wire is turned by
means of two small pieces mounted on the side of the coil former (see Figure 5.2 (c)).
Thus, the racetrack coils are wound in the other direction as shown in Figure 5.2 (d).
Once the last racetrack coil is wound, the two ends of the coil have to be fixed to
maintain its tension before cutting the superconducting wire (see Figure 5.2 (e)). In
Figure 5.2 (e) is shown that the superconducting wire is not mechanically supported
at the wire-jumps over the solenoid coils. Special half-bridge pieces were built to
hold the superconducting wires in these positions and avoid their movement, which
can cause quenchs during the operation of the undulator.

A second coil was wound, but this time the installation of the half-bridges as
shown in Figure 5.3 was included. The half-bridges feature a narrow groove where
the superconducting wire passes from one racetrack coil to the next one. The half-
bridges are made of copper and as many of them as solenoid coils are employed.
Their width must be slightly smaller than the groove width.

Figure 5.2: Short prototype coil former with two undulator periods: (a) clamping
sc wire, (b) aluminium rings, (c) turn of the sc wire, (d) racetrack coil winding and
(e) TGU2 without half-bridges.
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Figure 5.3: Modification of the short prototype coil former adding half-bridges on
the solenoid coils: (a) 3D-view of the half-bridge and (b) TGU2 with half-bridges.

Figure 5.4: TGU2 setup assembly to perform the magnetic measurements inside
the cryostat: (a) structure to hold the TGU2, (b) TGU2 coils and (c) coil support
structure.

Both prototypes, without and with half-bridges, were employed to perform mag-
netic measurements (see Section 6.2.1). Also quench test were performed and as
expected the best results were obtained with the second prototype, the undulator
coil with half-bridges.

Figure 5.4 (a) shows the structure designed to hold both coils together during
the measurements inside a cryostat at 4.2 K. Also a coil support structure was
designed and tested (see Figure 5.4 (c)). This coil support is the same as for the
full-scale TGU but scaled down to the two periods. More details about the final
structure and the measurements of the TGU2 are found in [66].
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5.2 Full scale TGU40

5.2.1 Coil former modules

The full-scale 40 periods undulator is called TGU40. Each coil former is com-
posed of three modules (see Figure 5.5), which are assembled before winding the
superconducting coils. The total number of grooves of each coil former for the
TGU40 is 85. The central modules have 30 grooves each, equivalent to 15 undulator
periods. Both lateral modules of each coil former have a total of 55 grooves. This
assembly is in principle extendable to 100 periods by four times repeating the inner
coils modules.

Figure 5.5: 3D-view of the TGU40 coil formers composed for three modules each.
The coil on the top with 1/2 is cut off for better visibility [61].

The six coil former modules and a total of 210 half-bridges were manufactured
by KIT-TEC (Technik-Haus). Improvements over the model TGU2 were taken into
account in the manufacture of the model TGU40. Figure 5.6 shows photographs
taking during the production of the coil formers. The material selected is CU-OF.
The weight of each coil former after the assembly of the three modules and before
winding is about 10 kg. The manufacturing drawings of each coil former module and
the whole TGU40 assembly are presented in Appendix D [61].

The modules that compose each coil former must be precisely aligned. Mea-
surements of the relative deviation of the height of each groove base were made at
KIT [67]. The deviations were smaller than 25µm over the length of the two coil
formers. The zero point was determined for each coil former separately. Figure 5.7
shows a photograph during the measurement performed with a digital 3D-Sensor.
The results measured in the center of each coil former module are summarized in
Appendix D.
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Figure 5.6: Production steps of the coil former modules for the TGU40 by KIT-TEC.

Figure 5.7: Measurement of the relative deviation of the height of each groove base
to determine the total deviation of the coil former modules.

The tension on the superconducting wire must be controlled during the winding
process. The maximum recommended tensile stress that the superconducting wire
can stand before breaking is 100 N/mm2. The superconducting wire selected for the
winding of the TGU40 has a bare surface of 0.6 mm2 (see Section 4.1.1). Therefore
the maximal tension on the wire must not exceed 60 N, which is equivalent to ≈ 6 kg.
If higher tension levels are employed during the winding process, there is a potential
to induce mechanical defects in the superconducting wire, which will results in a
degraded critical current density Jc.

A simulation of the tension on the wire on the center of the coil former was
performed [62] using Autodesk Inventor [63]. The result shows that the main body
is elastically deformed by ≈ 0.0013 mm for a tension on the wire of 60 N. The tension
on the superconducting wire was measured with an analog balance before starting
the winding process and its value was 3.4 kg.
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5.2.2 Winding of the undulator coils

The TGU coils were wound on a semi-automatic winding machine in the
Laboratory for Applications of Synchrotron Radiation (LAS) at KIT. Before start-
ing the winding of the undulator coils, both coil formers were cleaned thoroughly
and manually with isopropanol (see Figure 5.8 (a)). Four small brass tools were
designed to guide the superconducting wire into the groove and to align the single
turns one next to the other, as shown in Figure 5.8 (b). A winding package consists
in 24 turns (4 single turns × 6 layers).

Figure 5.8 (c) shows an aluminium support to hold the long coil former. This
piece can be moved horizontally and is composed of a ring surrounding the coil
former, a profile and four rolling bearings. The two aluminum rings employed in the
TGU2 winding are also shown in Figure 5.8 (c). They are placed beside the groove
where a solenoid coil is being wound. These rings are used to maintain the shape of
the empty grooves, which are later filled with racetrack coils. A miniature vice was
employed in order to bend the superconducting wire at the end of each turn with
the same bending radius, as shown in Figure 5.8 (d). The position of each layer
jump was marked on the surface of the coil former.

Both undulator coil formers can be distinguished by the shape of the central
groove, which is designed for winding either a solenoid or a racetrack coil package.
Figure 5.9 shows photographs of the first undulator coil wound, which central groove
was for a solenoid coil.

Figure 5.8: Accessories to facilitate the winding process of the undulator coils:
(a) cleaning of the coil former, (b) brass tools, (c) aluminium support and rings
and (d) miniature vice.
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The winding in this coil former was started with the matching coil 1/4 in the
first groove. The next solenoid coils were wound in the same direction (see Figure 5.9
(a)), leaving free the grooves for the racetrack coils to wind the wire in the other
direction. After winding all the solenoid coils, a loop of superconducting wire with
a length of 185 mm was left over and clamped by two small brass screws on the
surface of the coil former, as shown in Figure 5.9 (b). This loop of wire enables the
rotation of the wire once the two coils are mounted on the support structure (see
Section 5.2.4).

The winding process was continued with the racetrack coils in the opposite
direction. The first coil wound on this side was the matching coil 3/4. Before
winding each racetrack coil package, a half-bridge piece was placed over each previous
solenoid coil, to hold the superconducting wire (see Figure 5.9 (c)). Figure 5.9 (c)
shows also how the superconducting wire was clamped with a vice between two
pieces of red plastic at the end of the work day. This prevents the loss of the tension
on the wire, if the winding machine is accidentally turned off.

It took about one hour per groove to wind each winding package with 24 turns
and about four weeks to complete the first undulator coil. This time winding is
acceptable based on experience in the LAS at KIT. Figure 5.9 (d) shows the first
undulator coil at the end of the winding process, when the last racetrack coils were
being wound. One meter of superconducting wire was left in each undulator coil
terminal.

Figure 5.9: Winding of the first undulator coil with the central groove designed for
winding a solenoid coil package: (a) start of the winding in the first groove, (b) loop
of the sc wire, (c) half-bridges and racetrack coils and (d) end of the first undulator
coil.
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Photographs of the second undulator coil, which central groove was a racetrack
coil package, are shown in Figure 5.10. The winding in this coil former was started
with the matching coil 3/4 in the second groove (see Figure 5.10 (a)). After that, the
other solenoid coils were wound in same direction, like with the first undulator coil.
In this case, a loop of superconducting wire of 340 mm was left over and clamped
on the surface at the end of the coil former (see Figure 5.10 (b)).

As with the first undulator coil, the winding process was continued with the
racetrack coils on the other side. The superconducting wire of the last two turns
in the matching coil 1/4 moved out (see Figure 5.10 (c)). For fixing its position,
a ring tailored for each matching coil 1/4 was designed for filling the groove and
preventing the movement of the superconducting wire. Figure 5.10 (d) shows the
ring that holds the superconducting wire at the end of the winding. These rings
were installed before cutting the superconducting wire. In addition the bottom of
each matching coil 3/4 was filled using a half ring with a width of two times the
width of the superconducting cable. The top of these matching coils was already
covered with half-bridges. For the first undulator coil, only the half rings over the
bottom of the matching coils were employed.

Although the sharp edges of the coil former were filed off, the insulation of the
superconducting wire was slightly damaged and produced short circuits to ground
and between turns of the coils. The first short circuits to ground were detected when
the solenoid coil number 21 of the first undulator coil and the solenoid coil number 10

Figure 5.10: Winding of the second undulator coil with the central groove designed
for winding a racetrack coil package: (a) start of the winding in the second groove,
(b) loop of the sc wire, (c) matching coil detail and (d) end of the second undulator
coil.
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of the second undulator coil were being wound. The short circuits produce transient
effects on the Hall voltages (see Section 6.2.4).

Electromagnetic forces try to force the superconducting wires within the un-
dulator to move. This movement must be completely restrained because even the
smallest wire movement will generate heat due to friction and can quench the un-
dulator. Most superconducting magnets are potted using epoxy, ceramic, or some
other material to restrain wire movements. The potting method is tedious and ex-
pensive and for this reason, the superconducting coils of the TGU40 described in
this thesis were not potted. The superconducting wire movements were completely
restrained with the coil winding configuration detailed in this Section and with the
installation of pieces as the half-bridges over the solenoids coils and the rings on the
matching coils.

5.2.3 Winding of the correction coils

Figure 5.11 shows the beginning steps of the correction coil winding. One screw
is employed to guide the superconducting wire together with a small screw clamp
to hold the wire during the winding. The lateral edge of the coil former structure is
manually rounded and covered with Kapton adhesive tape to prevent damaging the
superconducting wire.

The superconducting wire selected for the winding of the correction coils has a
bare diameter of 0.2 mm (see Section 4.2.1). For a surface 0.0314 mm2, the maximal
tension on the wire must not be exceed 3.14 N, which is equivalent to ≈ 0.314 kg.
Before starting the winding process of the correction coils, the tension on the wire
was measured and its value was 0.2 kg.

Figure 5.12 left shows a circular support of aluminium with three screws, which
is designed to hold the center of the correction coil former to the winding machine.
The coil former of the correction coils is about 44 cm long. In Appendix D is given
the manufacturing drawing of the correction coil former. Figure 5.12 right shows
a picture made during the winding of the first correction coil, where the winding
package is composed of a total of 14 turns over 4 layers.

Figure 5.11: Clamping of the superconducting cable through a small screw clamp,
before starting the winding process of the correction coil.
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Figure 5.12: Winding of one correction coil: circular support holds the center of
the correction coil former to the winding machine (left) and detail of the winding
(right).

Figure 5.13: Detail of the end of the superconducting correction coil winding: (a)
dab of glue to fix the sc wire, (b) sc wire outside of the coil former, (c) braided
fiberglass sleeve and (d) correction coil finished.

Figure 5.13 (a) shows how the winding was fixed. A dab of a thermal conducting
glue on the end of the winding was employed: Stycast 2850FT epoxy with hardener
24LV [68], whose color is black. After three days the glue had completely dried and
then the superconducting wire was cut, leaving one meter wire in each correction
coil terminal. In Figure 5.13 (b) can be observed how the superconducting wire
comes outside of the coil former in the center of the correction coil. This problem
was solved by filling the gap between the superconducting wires and the covers with
a braided fiberglass sleeve (see Figure 5.13 (c)). A cover plate on each side of the
coil former was screwed to restrain the wire movements (see Figure 5.13 (d)). The
correction coils were also not potted.
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5.2.4 Support structure

Figure 5.14 (left) shows the bolted clamping structure, which supports the coil
assembly. The support structure not only defines the magnetic gap of the undulator
of 1.1 mm, but also applies compressive prestressing to the outer parts of the race-
track coils and takes up the magnetic forces acting on the undulator coils as a whole
(see more details in Section 4.3.1).

The support structure is made of copper as the coil formers in order to en-
sure good heat conduction and to minimize thermally induced mechanical stress.
The support structure is cooled to 4.2 K inside the cryostat (see Section 4.5). To
achieve this temperature in the superconducting undulator coils, the gaps between
the support structure and the coils are filled with 50µm thick indium foils. This
material is a good interface and is used to reduce thermal contact resistance. The
manufacturing drawings of the support structure are shown in Appendix D [61].

Each correction coil was inserted in an undulator coil as shown in Figure 5.14
(right), once the respective undulator coil was wound. The position in its interior is
fixed by two screws at the end of the coil former.

As explained in Section 5.2.2, during the winding of the undulator coils a loop
of superconducting wire was left over after winding all the solenoid coils in one
direction and preliminary fixed to the side of its coil former. Then the alternate
racetrack coils were wound in the opposite direction. Once both coils are wound,
the loops are fixed to the support structure. These loops were used to reverse the
winding direction between the winding packages. The magnetic flux produced by
these loops is compensated by attaching both loops to the support structure as
shown in Figure 5.15.

Figure 5.14: Support structure to hold the undulator coils (left) and insertion of the
correction coil inside the undulator coil (right).
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Figure 5.15: Superconducting wire loops of each undulator coil attached to the
support structure. The arrows indicate the direction of the current flow in each coil.

5.3 Cryostat support assembly

The superconducting undulator coils will be conduction-cooled in its custom
horizontal TGU cryostat in future measurements, as introduced in Section 4.5.
Figure 5.16 (a) shows a 3D-view of the two plate heat exchangers bolted to the
bottom of the TGU40 support structure. The cooling channels of both heat ex-
changer plates are connected through flexible stainless steel bellow hoses to the
liquid helium reservoir. Furthermore the LHe-reservoir bottom is in direct contact
with the top of the TGU40 support structure.

Figure 5.16 (b) shows the support frame, which was designed to mount the
undulator assembly inside the 4.2 K shield. This support frame is clamped to the
bottom of the LHe-reservoir through eigth threaded shafts and double nuts (see
Figure 5.16 (c)). Both the support frame and the plate heat exchangers may be
reused in the future with the 100 periods undulator.

Figure 5.16: 3D-view of the cryostat support assembly for the TGU40 [61]: (a) plate
heat exchangers, (b) TGU40 support structure and (c) support structure inside the
cryostat.





6. Undulator measurements

An experiment has been performed at KIT to measure for the first time the trans-
verse field gradient of the full-scale TGU. In the following the experimental setup is
described and the measurement results are presented and discussed.

6.1 Hall probe

Hall probes are magnetic field sensors based on the Hall effect: when a current
is run through a conductor in a magnetic field, a voltage is induced perpendicular
to the current direction. This voltage is proportional to the applied field, so Hall
probes are very easy to use as direct and quantitative magnetic field sensors with
high precision.

6.1.1 The Hall effect

Figure 6.1 describes the Hall effect. The control current I flows through the plate
in the y direction while the sense contact, S1 and S2, are used for the measurement
of the Hall voltage VH. The magnetic field ~B is perpendicular to the plate [69].

Figure 6.1: Sketch of a Hall generator, which consists of a thin semiconductor plate
of length l, width w and thickness t.
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The electrons with a velocity ~vn move under the action of the Lorentz force ~FL

in response to the magnetic field ~B and the external electric field ~Ee. The Lorentz
force is given by:

~FL = q
(
~Ee + ~vn × ~B

)
(6.1)

where q = −e for electrons.

The electrons are moving by the magnetic force towards one edge of the plate.
Consequently, the concentration of the electrons at the other edge is decreasing. An
electric field ~EH called Hall field is created between the two edges and is given by:

~EH = −
(
~vn × ~B

)
(6.2)

The Hall voltage VH is a measurable transverse voltage, which appears across
the two sense electrodes (S1 and S2) and is calculated along the width of the plate
by:

VH =

∫ S2

S1

~EH
~dw = − J

ne
Bw (6.3)

where n is the density of electrons and the current density is J = I/wt. The Hall
voltage is expressed as a function of the current and the magnetic field by:

VH =
RH

t
IB (6.4)

where RH = −1/ne is called the Hall coefficient [70].

6.1.2 Hall probe array

For the magnetic field measurements of the undulator, a Hall probe array of the
manufacturer Arepoc was employed [71]. The array consists of seven independent
Hall probes, which lie in a single line of 0.85 mm length equidistantly spaced, as
shown in Figure 6.2.

0.85

1.1

2
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1.1

0.852

4.5

9

active areas

Figure 6.2: Dimensions of the Hall probe array (M7-TH5) with seven Hall probes
(all units mm).
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The probes are connected in series to a common supply current circuit with a
control current of 10 mA. The Hall voltage of each individual probe is picked up
by a twisted wire pair. The abbreviation used in this thesis for Hall probe is “HP”
followed for the number of the probe from 1 to 7.

One advantage of this array design is that seven measurements at different
locations can be done simultaneously for each magnetic field measurement. Another
advantage is the small size of the entire Hall probe array of 9× 6× 1.1 mm (height,
width, thickness). The active area dimension is 100× 100µm.

As shown in Figure 6.3, the Hall probe array was glued on a MACOR piece
(white machinable glass ceramic [72]), which allows to reuse it easily in different
magnetic measurement setups. The thermal expansion of MACOR matches that
of the Hall probe array aluminium oxide substrate so that no thermally induced
stress occurs [71]. In addition, MACOR is non-conducting, i.e. no eddy currents are
induced when the array is moved in an alternating field. A good thermal conducting
glue, Stycast 2850FT epoxy with hardener 24LV [68], was used to join the Hall probe
array to the MACOR ceramic piece. Stycast 2850FT can be used in low temperature
applications and has a low thermal expansion close to that of MACOR. Thermal
stresses are caused by the mismatch of coefficients of thermal expansion between
materials when cooling down, which can produce irreversible damage to the Hall
probe array [66].

Figure 6.3: The Hall probe array glued to the MACOR ceramic piece and installed
on a support. The wires are attached to the support with Kapton tape.

The sensitivity of the Hall probes depends on many factors such as the material
of the sensor, sensor dimensions but also on sensor technology. The absolute sensi-
tivity S = VH/B is determined for the nominal control current. The sensitivity data
at 77 K of each Hall probe are shown in Table 6.1. The sensitivity data, the mean
linearity error < 0.5 % and the mean sensitivity error < 0.5 % are provided by the
manufacturer.
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HP Number 1 2 3 4 5 6 7

S77K [mV/T] 53.6 54.4 56.7 55.5 58.3 57.2 58.1

S4.2K [mV/T] 51.6 52.3 54.5 53.4 56.1 55.0 55.9

Table 6.1: Sensitivity at In = 10 mA of the Hall probe array (M7-TH5).

The calibration data of six single Hall probes at 4.2 K provided by the manufac-
turer Arepoc were employed to calculate a calibration factor between the sensitivity
at 4.2 K and 77 K for the Hall probe array (M7-HP5). The calculated calibration fac-
tor is 0.9618± 0.0016. The calibration error is added to the sensitivity and linearity
errors to calculate the total systematic error (see Section 6.2.2).

6.1.3 Experimental setup

The test of the TGU40 was performed in a bath cryostat of KIT called CASPER
(Characterization Setup for Field Error Reduction) [73] in liquid Helium at 4.2 K.
Figure 6.4 shows a cut of the inside of this cryostat, where the TGU40 is installed. Its
dimensions are: external diameter of 550 mm, height of 1825 mm and inner diameter
of 370 mm. Two pairs of vapor-cooled current leads for maximum 1500 A and 500 A
provide the most efficient way to transfer current from 300 K to 4.2 K. The current
leads consist of copper rods in the room temperature section and high temperature
superconductors in between 60 K and the 4.2 K section.

Heating plate

Vacuum chamber

Hall probe array

TGU40

Liquid nitrogen chamber

Liquid helium chamber

Supporting plate

Temperature shields

Figure 6.4: Cut through the CASPER-cryostat assembly together with the TGU40
and the Hall probe array [61].



6.1. Hall probe 107

Figure 6.5 (left) shows the entire setup to install the TGU40 within CASPER.
A plate on the back and another on the bottom together with four profiles and
four small plates are used for attaching the coil support to the supporting plate
in the cryostat. All these pieces are made of aluminium because this material is
non-magnetic, low cost and easy to machine. Figure 6.5 (right) shows a zoom to
see better the Hall probe array support. This is is located between the undulator
coils in the center of the TGU40 and made of brass because this material is also
non-magnetic and has similar thermal properties to copper at low temperatures.
The top of the CASPER-cryostat with the TGU40 is introduced into the cryostat
(see Figure 6.6).

Figure 6.5: Setup to install the TGU40 inside CASPER-cryostat (left) and a zoom
of the Hall probe array brass support (right).

Figure 6.6: Top of the cryostat with the TGU40 is moved by a crane (left). View of
the TGU40 when is introduced in the CASPER-cryostat (right).
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With this setup it was possible to measure the vertical component of the mag-
netic flux density as a function of transverse position By(xi) with (i = 1, ..., 7) at
one fixed longitudinal position z. For the measurement z = −2.625 mm (position of
the pole neighbouring the central coil) and xi in the range between 4 mm and 10 mm
were chosen. Figure 6.7 shows the position of the Hall probe array and of each Hall
probe with respect to the center of undulator.

(a) 2D-view on the x-z plane

(b) 2D-view on the x-y plane

x

y

z

x

TGU40 Center

TGU40 Center

Figure 6.7: Position of the Hall probe array and each Hall probe with respect to the
center of the undulator (all units mm) [61].



6.2. TGU40 coils characterization 109

6.2 TGU40 coils characterization

6.2.1 Introduction to the magnetic field measurement

Before manufacturing the coils of the full-scale undulator TGU40, a magnetic
field measurement of the two periods short model TGU2 was performed at KIT
in the cryostat CASPER (see details in [66]). Figure 6.8 shows the measurement
system designed for this purpose. The Hall probe array was installed between the
two coils and allowed a longitudinal magnetic measurement and also a rotation about
the z-axis. A coil support structure, which is the same as for the full-scale TGU but
scaled down to the two periods, was also tested.

Figure 6.8: Field measurement system for the two periods short undulator model
TGU2. The Hall probe array support is installed between the two coils.

This design allowed to measure the magnetic flux densities By along the lon-
gitudinal position z and provides a range of measurement of ∆z = 50 mm from
z = −10 mm up to z = 40 mm. The magnetic field was measured with an array of
7 Hall probes (see Section 6.1.2) arranged along the x-axis between x = 4 mm and
x = 10 mm. Figure 6.9 shows a side view of the Hall probe array support with one
of the coils behind.

x

z

Figure 6.9: Detail side view of the Hall probe array support.
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Figure 6.10 shows measured data of the magnetic field By with the the Hall
probe (HP) 1, 4 and 7 along the longitudinal position z compared with the simulated
field for I = 750 A [66]. The measurement shows an excellent agreement with the
theoretical expectations.
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Figure 6.10: Magnetic field By measured along the longitudinal position z (points
in colors) for I = 750 A in comparison with the simulated values (black lines), for
the short model TGU2. Only the values obtained with the Hall probes 1, 4 and 7
are shown for better visibility.

As already mentioned above for this thesis a similar measurement for the TGU40
was performed for one fixed z-position (see Section 6.2.4). In a future experiment the
magnetic field along the longitudinal position z will be measured within its custom
cryostat designed for the full-scale TGU (see Section 6.4).

6.2.2 Error analysis for the magnetic field measurement

It is assumed that a set of data obtained by repeated analysis in the same sample
under the same conditions has a normal or Gaussian distribution. The perpendicular
field measured with each Hall probe is given by:

B̄⊥[T] =
V̄H[mV]− V̄off [mV]

S4.2K[mV/T]
(6.5)

where V̄H is the measured Hall voltage mean, V̄off is the offset voltage mean and
S4.2K is the sensitivity of the Hall probe at 4.2 K (see Table 6.1). The offset voltage
is the Hall voltage that is measured before each field measurement at zero current
(see Section 6.2.3).

The propagation of error of an experimental measurement is the combination
of different statistical errors due to measurement limitations. The standard devia-
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tion of the perpendicular magnetic field σB̄⊥ measured with the Hall probe array is
calculated as:

σB̄⊥ =

√(
∂B⊥
∂VH

)2 (
σV̄H

)2
+

(
∂B⊥
∂Voff

)2 (
σV̄off

)2

=
1

S4.2K

√(
σV̄H

)2
+
(
σV̄off

)2

(6.6)

where:

• σV̄H
is the standard deviation of the Hall voltage measurements.

• σV̄off
is the standard deviation of the offset voltage measurements.

• ∂B⊥/∂VH and ∂B⊥/∂Voff are the partial derivative of the function B⊥ with
respect to VH and with respect to Voff respectively and are given by:

∂B⊥
∂VH

=
∂

∂VH

(
V̄H

S4.2K

− V̄off

S4.2K

)
=

1

S4.2K

∂B⊥
∂Voff

=
∂

∂Voff

(
V̄H

S4.2K

− V̄off

S4.2K

)
=
−1

S4.2K

The total systematic error in the magnetic measurement ∆B⊥ performed with
the Hall probe array is given by:

∆B⊥ =
∂B⊥
∂S

(∆S + ∆L + ∆T ) =

(
V̄off − V̄H

S4.2K
2

)
(0.0116 S4.2K) (6.7)

where:

• ∆S is the systematic sensitivity error, ∆S = 0.005 S4.2K.

• ∆L is the systematic linearity error, ∆L = 0.005 S4.2K.

• ∆T is the systematic calibration temperature error between the sensitivity data
at 4.2 K and 77 K, ∆T = 0.0016 S4.2K (see Section 6.1.2).

• ∂B⊥/∂S is the partial derivative of the function B⊥ with respect to S and is
given by:

∂B⊥
∂S

=
∂

∂S

(
V̄H

S4.2K

− V̄off

S4.2K

)
=
V̄off − V̄H

S4.2K
2

The systematic error ∆T can be compensate in future measurements with the
calibration field of the Hall probe array at 4.2 K using an electromagnetic dipole and
reading the field with a nuclear magnetic resonance (NMR) probe.

The measured Hall voltage V̄H±σV̄H
, the calculated perpendicular field B̄⊥±σB̄⊥

and ∆B⊥ are shown in Section 6.2.4 for the undulator coils and in Section 6.2.5 for
the correction coils respectively.
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6.2.3 Calibration of the Hall probe

Before starting a new measurement at 4.2 K, a number of samples were taken to
determine the offset voltage Voff of each Hall probe at zero current in the undulator
and correction coils. The offset voltage is generally due to imperfections of the
manufacturing process, inhomogeneity of materials, misalignment and asymmetry
of the Hall probe contacts [71]. This explains that the offset voltages of the seven
probes are different.

Figure 6.11 shows the (Voff− V̄off) of each Hall probe with an offset voltage error
σV̄off

< ±0.22µV for all the probes. The magnetic measurements were performed
over three consecutive days. The correction coils were measured the first day and
the undulator coils the second and third day.
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Figure 6.11: Experimentally measured offset voltage minus the mean offset voltage
(Voff − V̄off) of each Hall probe over three consecutive days at 4.2 K.

6.2.4 Magnetic measurement of the undulator coils

To perform the magnetic measurement, the two superconducting undulator coils
were connected in series as shown in Figure 6.12. Both coils can be distinguished by
the shape of the central groove, which is designed for winding either a solenoid or a
racetrack coil. The coil former with a central groove for the solenoid coil is called in
this thesis USZ and for the racetrack coil URZ.

A regulated current supply that provides currents up to 1000 A is connected to
the coils in series. In addition two current lead connections supporting 500 A are
connected to the center tap between the coils. Therefore, the undulator coils could
be tested each one separately as single coils and finally in series.

Figure 6.13 shows the Hall voltages VH, which were measured with the Hall probe
array, for the single coils and the coils in series. The current is linearly ramped from



6.2. TGU40 coils characterization 113

+ --/+

+ - + -

USZ URZ

1000 A 2 x 500 A 1000 A

Q1 Q2 Q3

Figure 6.12: Schematic of current lead connections and quench detectors Q1-Q3 of
the undulator coils inside the cryostat CASPER stand.

zero to the operating current of 750 A with a current ramp of 50 A/min. Once the
operating current is reached, the measurement continues over a long period of time
of around one hour. Within one hour after ramping, the Hall voltage showed a
transient behavior similar to that observed in [74] and [75] with relatively long time
constants. The transients are due to short-circuits to ground and between turns of
the superconducting undulator coils (see Section 5.2.2).

The VH values for each Hall probe after the operating current of 750 A has
been reached are shown in Figure 6.14. To calculate the perpendicular magnetic
field measured for each Hall probe using Equation 6.6, it is first necessary to know
through a fit function the VH values of each Hall probe at infinite times. The Hall
probe array measures the transverse field gradient By(x) at one fixed longitudinal
position z and at the x-range between 4 mm and 10 mm. Therefore the VH values
are so different for each Hall probe. The Hall probe array is not completely centered
at y = 0 between the undulator coils, but closer to the undulator coil USZ. This
explains that the VH values measured with the undulator coil USZ (see Figure 6.14
(a)) are larger than with the undulator coil URZ (see Figure 6.14 (b)).

The VH values were fitted using a best fit double exponential (see Equation 6.8).
The data set of Hall voltage at 750 A shown in Figure 6.14 are used to calculate
the best fit of each measurement. The curve rises rapidly for a short period of time
and then flattens out to a limiting final value. A two-phase model is used when
the measured outcome is the result of the sum of a fast and slow exponential decay.
This is also called a double exponential decay.

VH(t) = K0 + K1e
−t/τ1 + K2e

−t/τ2 (6.8)

where: K0 is the VH value at infinite times, τ1 and τ2 are the decay time constants
and K1 and K2 are their respective amplitudes. Table 6.2 compiles the fitted pa-
rameters and standard deviations obtained using Equation 6.8 and the data of the
measurements shown in Figure 6.14.

The parameters were fit using gnuplot [76], which contains an implementation of
the nonlinear least-squares (NLLS) Marquardt-Levenberg algorithm and calculates
the standard deviations of each parameter. The perpendicular field measured with
each Hall probe is calculated with the values V̄H ≈ K0 and σV̄H

= ±σK0 from
Table 6.2.
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Figure 6.13: Hall voltage VH measured over long periods of time including the current
ramp from zero to the operating current of 750 A. A measurement is taken every 5
seconds. The error bars are smaller than the data point size.
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Figure 6.14: Hall voltages VH measured with the Hall probe array at the operating
current of 750 A (color points-lines). The VH values at infinite times (K0 values in
Table 6.2) are superimposed in each graph (gray lines).
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Undulator coil USZ

#HP K0[mV] K1[mV] τ1[s−1] K2[mV] τ2[s−1]

1 19.5672± 0.0002 −1.4737± 0.0002 1509.8± 0.7 −0.246± 0.001 12.7± 0.1

2 23.0887± 0.0003 −1.7897± 0.0002 1519.8± 0.7 −0.292± 0.001 13.0± 0.1

3 28.8783± 0.0003 −2.2308± 0.0003 1526.9± 0.7 −0.357± 0.002 13.2± 0.1

4 31.9278± 0.0004 −2.5376± 0.0004 1532.7± 0.7 −0.399± 0.002 13.3± 0.1

5 38.1719± 0.0005 −3.0560± 0.0004 1538.5± 0.7 −0.472± 0.003 13.3± 0.1

6 42.0771± 0.0006 −3.4307± 0.0005 1543.2± 0.8 −0.518± 0.003 13.4± 0.1

7 47.6516± 0.0007 −3.9117± 0.0006 1548.2± 0.8 −0.581± 0.004 13.2± 0.1

Undulator coil URZ

#HP K0[mV] K1[mV] τ1[s−1] K2[mV] τ2[s−1]

1 12.1904± 0.0001 −0.0188± 0.0003 849.6± 23.3 −0.4884± 0.0006 52.9± 0.1

2 14.0241± 0.0001 −0.0374± 0.0005 722.4± 13.4 −0.5685± 0.0009 53.5± 0.2

3 17.4257± 0.0001 −0.0611± 0.0006 708.3± 10.6 −0.6827± 0.0012 54.1± 0.2

4 18.7134± 0.0002 −0.0817± 0.0008 719.7± 10.3 −0.7532± 0.0015 54.8± 0.2

5 22.0404± 0.0002 −0.1103± 0.0010 709.4± 9.3 −0.8794± 0.0018 55.3± 0.2

6 23.7315± 0.0002 −0.1302± 0.0011 710.2± 9.1 −0.9582± 0.0021 55.5± 0.2

7 26.5373± 0.0002 −0.1519± 0.0013 684.6± 8.2 −1.0613± 0.0023 55.5± 0.2

Undulator coils in series

#HP K0[mV] K1[mV] τ1[s−1] K2[mV] τ2[s−1]

1 31.7098± 0.0006 −1.5359± 0.0006 1509.5± 1.9 −1.280± 0.002 52.8± 0.2

2 37.4714± 0.0007 −1.8710± 0.0008 1506.0± 2.0 −1.512± 0.003 53.5± 0.2

3 46.4324± 0.0009 −2.3414± 0.0010 1504.1± 2.0 −1.512± 0.003 54.1± 0.2

4 51.4996± 0.0010 −2.6671± 0.0011 1503.9± 2.0 −2.054± 0.004 54.5± 0.2

5 61.2349± 0.0012 −2.6671± 0.0011 1502.0± 2.0 −2.418± 0.004 54.7± 0.2

6 67.161± 0.017 −3.960± 0.025 1121.6± 18.7 - -

7 75.521± 0.019 −4.488± 0.028 1127.7± 18.5 - -

Table 6.2: Compilation of the fitted parameters using Equation 6.8. Double-
exponential fit of the VH values obtained from the undulator coil measurements
at 750 A (data are shown in Figure 6.14).

The time constants for the undulator coil USZ and URZ are quite different.
Therefore, the undulator coil in series represents a more complex behavior over the
time than the undulator single coils. The calculated values for K0 (VH value at
infinite times) employed to calculate the measured B⊥ are eventually subject to
systematic errors. To investigate this, it should be considered in future to perform
the magnetic measurements over a longer period of time.

Table 6.3 shows a summary of the resulting perpendicular magnetic field mea-
surements and the simulated values. The magnetic field values are calculated us-
ing Equation 6.5. The position of the Hall probe array employed to simulate the
magnetic field produced for the undulator coils is not the ideal position shown in
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Figure 6.7, but the reconstructed position calculated in Section 6.2.6. The transver-
sal perpendicular field B⊥ measured for the Hall probe array is shown in Figure 6.15
and compared with the simulated values obtained in OPERA-3D.

Table 6.4 summarizes the systematic errors in the magnetic measurements of
the undulator coils using Equation 6.7. The systematic errors can be compensated
in future magnetic measurements with the calibration of the Hall probe array at
4.2 K. The single coil measurements show an excellent agreement of the measured
vs. the simulated perpendicular fields. However a small deviation is observed in
the measurement of the undulator coils in series, which can be produced for the
calculated K0 values.

The targeted radiation bandwidth produced for the TGU40 has to be in the
order of the natural bandwidth: ∆λ/λ0 < 2.5 %. It is possible to compare the
errors produced for the measured magnetic field of the undulator coils in series with

Measurement Simulation

USZ URZ In series USZ URZ In series

#HP B⊥[mT] B⊥[mT] B⊥[mT] B⊥[mT] B⊥[mT] B⊥[mT]

1 373.895 ± 0.004 230.797 ± 0.002 609.433 ± 0.012 372.181 229.965 602.146

2 441.715 ± 0.006 268.465 ± 0.002 716.604 ± 0.013 441.715 268.465 710.180

3 521.325 ± 0.006 311.319 ± 0.002 843.217 ± 0.017 517.667 309.290 826.957

4 599.962 ± 0.008 352.404 ± 0.004 966.613 ± 0.019 598.837 351.524 950.361

5 680.739 ± 0.009 393.047 ± 0.004 1092.042 ± 0.021 683.434 394.040 1077.474

6 768.956 ± 0.011 435.489 ± 0.004 1224.903 ± 0.309 768.956 435.489 1204.445

7 853.340 ± 0.013 475.496 ± 0.004 1352.072 ± 0.340 852.175 474.381 1326.556

Table 6.3: Summary of the resulting perpendicular magnetic field measurements vs
simulations at 750 A for the undulator single coils and coils in series.
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Figure 6.15: Results of the transversal perpendicular field B⊥ at at 750 A measured
using the Hall probe array and compared with the simulated values. The error is
estimated to be less than ± 0.3 mT. The error bars are smaller than the data point
size.
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USZ URZ In series

#HP ∆B⊥ [mT] ∆B⊥ [mT] ∆B⊥ [mT]

1 ± 4.337 ± 2.677 ± 7.069

2 ± 5.124 ± 3.114 ± 8.313

3 ± 6.047 ± 3.611 ± 9.781

4 ± 6.960 ± 4.088 ± 11.213

5 ± 7.897 ± 4.559 ± 12.668

6 ± 8.920 ± 5.052 ± 14.209

7 ± 9.899 ± 5.516 ± 15.684

Table 6.4: Systematic errors in the magnetic measurements of the undulator coils
performed with the Hall probe array.

the desired maximum relative deviation of wavelengths (∆λ/λ0). Therefore the
statistical and systematic errors of the wavelength are calculated using the measured
magnetic fields and the undulator equation as following:

λ =
λu
2γ2

(1 +
K2

2
)

=
λu
2γ2

+
λu
4γ2

(93.36 By[T] λu[m])2

=
λu
2γ2

+ a B2
⊥

=
λu
2γ2

+
a

S2
(V̄ 2

H − 2 V̄HV̄off + V̄ 2
off)

(6.9)

where By ≈ B⊥ and the parameter a is given by:

a =
93.362 λ3

u

4γ2
(6.10)

The statistical and systematic errors of the wavelength are calculated as:

σλstat =

√(
∂λ

∂VH

)2 (
σV̄H

)2
+

(
∂λ

∂Voff

)2 (
σV̄off

)2
(6.11)

∆λsyst =
∂λ

∂S
σS̄ (6.12)

where ∂λ/∂VH, ∂λ/∂Voff and ∂λ/∂VS are the partial derivative of the wavelength λ
with respect to VH, Voff and S respectively and are given by:

∂λ

∂VH

=
2a

S2

(
V̄H − V̄off

)
∂λ

∂Voff

=
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(
V̄off − V̄H

)
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∂λ

∂S
=
−2a

S3

(
V̄off − V̄H

)2

Table 6.5 summarizes the results of wavelengths and errors calculated with the
data of the measured magnetic fields produced for the undulator coils in series at
750 A (see Table 6.3). The values of the x position and gamma are approximate.

The maximum systematic error of the wavelength obtained is about 1.6 nm. In
Section 4.4.2 the optimal wavelength by the central energy λ0 = 150 nm and the
relative deviation of wavelengths emitted ∆λ/λ0 = 0.5 % were calculated. Due to
the small deviations in the magnetic measurement of the undulator coils in series
the accuracy of the measurement is ≈ 1.1 % = 100 ∗ 1.6 nm/150 nm. That is efficient
to show that the relative deviation of wavelengths is lower than 2.5 %. In order to
proof the design value of ∆λ/λ0 = 0.5 % in future measurements, it is necessary to
calibrate the Hall probe array at 4.2 K.

With the first magnetic measurement of the undulator coils, a lists of statistical
and systematic errors are identified. The results show that the position of the
Hall probe has to be reconstructed for matching the results with the Hall probe
array data. The TGU40 magnetic measurements shows excellent agreement with
the simulation results obtained with OPERA-3D. The small deviations observed
could be attributed to the systematic errors, which should be compensate in future
measurements. This includes the calibration of the Hall probe array at 4.2 K and
measurements over a longer period of time to find the K0 parameter (VH value at
infinite times) with a lower uncertainty.

#HP ≈ x[mm] ≈ γ B⊥[T] λ[nm] σλstat [nm] ∆λsyst [nm]

1 9.70 200 0.61 154 0.0009 0.5413

2 8.85 210 0.72 148 0.0011 0.6810

3 8.00 220 0.84 146 0.0015 0.8616

4 7.15 229 0.97 144 0.0017 1.0386

5 6.30 239 1.09 144 0.0021 1.2203

6 5.45 249 1.22 146 0.0308 1.4181

7 4.60 259 1.35 148 0.0347 1.6007

Table 6.5: Summary of the results of the wavelengths and errors calculated with the
measured magnetic fields.

6.2.5 Magnetic measurement of the correction coils

The electric circuits to perform the magnetic measurements of the two supercon-
ducting correction coils is shown in Figure 6.16. In this case, the correction coil KSZ

is located inside the undulator coil former with the central groove for the solenoid
coil, and the correction coil KRZ is inside the undulator coil former with the central
groove for the racetrack coil. The correction coils can be tested as single coils and
in series.
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+ --/+

+ - + -

KSZ KRZ

Q4 Q5 Q6

Figure 6.16: Schematic of current lead connections and quench detectors Q4-Q6 of
the correction coils inside the cryostat CASPER stand.

Figure 6.17 shows the relative Hall voltages produced by the correction coils. It
was measured every 0.2 A during current ramp-up, from 0 to 2.8 A. After waiting
a few seconds it was measured also every 0.2 A during current ramp-down, from
2.8 A to 0. The measurements show a difference between the VH values at each
current during current ramp-up and ramp-down especially with the correction coils
in series. These differences can be due to a transient behavior, which was not taken
into account during measurement. Table 6.6 summarizes the values of the Hall
voltages measured at 2.8 A calculated as the average of the 20 samples.

A summary of the resulting correction field measurements and the simulated
values is shown in Table 6.7. The magnetic field values are calculated using Equa-
tion 6.5 where the VH values are shown in Table 6.6. The position of the Hall probe
array employed to simulate the magnetic field produced for the correction coils is
not the ideal position shown in Figure 6.7, but the reconstructed position calculated
in Section 6.2.6.

The correction field B⊥ measured for the Hall probe array is shown in
Figure 6.19 and compared with the simulated values obtained in OPERA-3D.
Table 6.8 summarizes the systematic errors in the magnetic measurements of the
correction coils using Equation 6.7.

KSZ KRZ In series

#HP VH[µV] VH[µV] VH[µV]

1 277.179 ± 0.116 278.217 ± 0.119 269.675 ± 0.103

2 -36.154 ± 0.084 -34.726 ± 0.106 -45.258 ± 0.079

3 439.470 ± 0.086 442.127 ± 0.101 427.913 ± 0.118

4 -113.472 ± 0.106 -110.426 ± 0.073 -126.399 ± 0.090

5 -18.073 ± 0.097 -14.510 ± 0.111 -33.028 ± 0.108

6 -245.886 ± 0.118 -242.043 ± 0.100 -261.535 ± 0.105

7 -51.556 ± 0.113 -47.116 ± 0.086 -67.723 ± 0.084

Table 6.6: Compilation of the Hall voltages VH measured at 2.8 A.
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Figure 6.17: Relative Hall voltages VH measured with the Hall probe array during
current ramp-up and ramp-down from zero to 2.8 A and vice versa. The current
ramp was 5 A/min and at each current were measured ten samples. The error bars
are smaller than the data point size. Only the values obtained with the Hall probes
1, 4 and 7 are shown for better visibility.
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Measurement Simulation

KSZ KRZ In series KSZ KRZ In series

#HP B⊥[mT] B⊥[mT] B⊥[mT] B⊥[mT] B⊥[mT] B⊥[mT]

1 -0.169 ± 0.004 -0.150 ± 0.004 -0.311 ± 0.003 -0.202 -0.190 -0.392

2 -0.206 ± 0.004 -0.182 ± 0.003 -0.384 ± 0.003 -0.252 -0.227 -0.480

3 -0.263 ± 0.003 -0.206 ± 0.003 -0.472 ± 0.003 -0.299 -0.260 -0.560

4 -0.300 ± 0.002 -0.247 ± 0.003 -0.538 ± 0.003 -0.337 -0.286 -0.622

5 -0.331 ± 0.003 -0.272 ± 0.004 -0.598 ± 0.002 -0.360 -0.300 -0.660

6 -0.353 ± 0.004 -0.282 ± 0.003 -0.638 ± 0.003 -0.365 -0.301 -0.666

7 -0.370 ± 0.003 -0.294 ± 0.002 -0.655 ± 0.003 -0.352 -0.289 -0.640

Table 6.7: Summary of the resulting perpendicular magnetic field measurements vs
simulations at 2.8 A for the correction single coils and coils in series.

KSZ KRZ In series

#HP ∆B⊥ [mT] ∆B⊥ [mT] ∆B⊥ [mT]

1 ± 0.002 ± 0.002 ± 0.004

2 ± 0.002 ± 0.002 ± 0.004

3 ± 0.003 ± 0.002 ± 0.005

4 ± 0.003 ± 0.003 ± 0.006

5 ± 0.004 ± 0.003 ± 0.007

6 ± 0.004 ± 0.003 ± 0.007

7 ± 0.004 ± 0.003 ± 0.008

Table 6.8: Systematic errors in the magnetic measurements of the correction coils
performed with the Hall probe array.
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Figure 6.18: Comparison of the ideal (in gray) and rotated (in red) correction coils.
The drawing is not drawn to scale.

The differences between the magnetic field measured and simulated showed in
Figure 6.19 can be due to a mechanical deviation, an error in the position of the
correction coils. These long racetrack coils must be placed inside the undulator coils
parallel to the xz-plane (see Figure 4.14). Such a small displacement is imperceptible
to the naked eye, but can be detected with the magnetic measurements.
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The two correction coils are tilted against each other about the z-axis by an
angle of ≈ 11.5 degrees. Figure 6.18 shows the ideal position and the approximated
position of the correction coils, which is found through simulations in OPERA-3D.
Figure 6.20 compares the magnetic measurements with the simulations where the
correction coils are tilted by an angle. This mechanical deviations produces an error
in the correction field and therefore an undesirable drift of the electron trajectories,
which were optimized in Section 4.2.3. For achieving the targeted radiation band-
width in the order of the natural bandwidth (∆λ/λ0 < 2.5 %), the trajectory drifts
have to be smaller than the minimum beamlet width (242µm). It is necessary to
correct their alignment before performing the next magnetic measurements.
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Figure 6.19: Results of the perpendicular field B⊥ at at 2.8 A measured using the
Hall probe array and compared with the simulated values. The error is estimated
to be less than ±4µT. The error bars are smaller than the data point size.
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Figure 6.20: Perpendicular magnetic field 2.8 A measured and compared with the
simulated values with the corrections coils rotated ≈ 11.5 degrees about the z-axis.
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6.2.6 Self-consistent reconstruction of the Hall probe array
position

The Hall probe array position with respect to the TGU40 center was measured
before introducing the undulator in the cryostat and before starting the magnetic
measurement. A displacement of the Hall probe array of approximately +0.5 mm in
x direction relative to the ideal positions was measured. The ideal positions of each
Hall probe are shown in Figure 6.7.

Figure 6.21 compares the measured perpendicular magnetic field of the undula-
tor coils (a) and correction coils (b) with the simulations calculated with the ideal
position of the Hall probe array. Only the measurement of the single undulator
coil URZ shows a good agreement with the simulation data. This is due to the dis-
placement of the Hall probe array. Before comparing measurements with simulation
results, it is necessary look for the reconstructed position.
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Figure 6.21: Comparison of the transversal perpendicular field B⊥ measured with
the simulated values, which are calculated using the ideal position of the Hall probe
array (see Figure 6.7).

The Hall probe array position is searched through the Simplex method [77],
which requires a function evaluation to find a minimum (at least a local minimum).
The function compares the measurements of the perpendicular magnetic field with
the simulated data of the single undulator coils at 750 A (see Table 6.3) and of the
single correction coils at 2.8 A (see Table 6.7). In each iteration the values of the
optimized parameters are slightly varied and the function is evaluated to find the
minimum. The optimization ends when the values of the simulated magnetic field
matches with the measured values within a tolerance.

The seven parameters employed to search the position of the Hall probe array
are:

• The coordinates of the Hall probe HP7 (HP7x,HP7y,HP7z).

• The coordinates of the vector perpendicular to the Hall probe plane ~N =
(Nx,Ny,Nz).

• The angle Θ. The vector ~Mp is defined to be perpendicular to ~N, at an angle

Θ from the vector ~M.
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Figure 6.22 shows the plane, vectors and angle Θ used to calculate the position
of the Hall probes. It is further assumed that the distance between probes is d =
0.85 mm and that they are aligned on the same plane (the surface of the Hall probe
array).
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Figure 6.22: Plane, vectors and angle used to search the Hall probe array position.
For reasons of clarity, only the Hall probes HP6 and HP7 are shown.

The coordinates of HP6 and the other Hall probes can be calculated with the
data of the coordinates HP7, the vector ~N and the angle Θ obtained through the
optimization. The unit vector n̂ is given by:

n̂ =


nx

ny

nz

 =
~N

N
(6.13)

where the magnitude of vector is N =
√

Nx
2 + Ny

2 + Nz
2.

The unit vector m̂ is perpendicular to the unit vector n̂ and is calculated by:

m̂ =


mx

my

mz

 =


+ny

−nx

0

 (6.14)

The unit vector p̂ is orthogonal to the vectors n̂ and m̂ and is calculated through
the cross product of these two vectors as:

p̂ = n̂× m̂ =

∣∣∣∣∣∣∣∣∣
~i ~j ~k

nx ny nz

mx my mz

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣ny nz

my mz

∣∣∣∣∣∣~i−
∣∣∣∣∣∣nx nz

mx mz

∣∣∣∣∣∣~j +

∣∣∣∣∣∣nx ny

mx my

∣∣∣∣∣∣~k (6.15)
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where ~i, ~j and ~k are the standard unit vectors in three dimensions. Then the unit
vector p̂ is:

p̂ =


px

py

pz

 =


+(nymz − nzmy)

−(nxmz − nzmx)

+(nxmy − nymx)

 (6.16)

The unit vector ~e1 and ~e2 are given by:

~e1 =


e1x

e1y

e1z

 =
m̂

m
(6.17)

~e2 =


e2x

e2y

e2z

 =
p̂

p
(6.18)

The last step is to calculate the vector ~Mp between the probes HP7 and HP6.
This vector is calculated as:

~Mp =


Mpx

Mpy

Mpz

 = M cos(Θ) ~e1 + M sin(Θ) ~e2 (6.19)

where the vector ~M is:

~M =


Mx

My

Mz

 = d(7− n)~e1 (6.20)

with n = 6 (the number of the Hall probe) and the magnitude of vector is M =√
Mx

2 + My
2 + Mz

2.

The coordinates of the Hall probe HP6 are given by:

HP6 (HP6x,HP6y,HP6z) = ~Mp + HP7

= (Mpx + HP7x,Mpy + HP7y,Mpz + HP7z)
(6.21)

The problem with the Simplex method is that it does not calculate the
parameters’ standard deviations directly. It is possible to estimate how widely dis-
tributed are the parameters before finding the optimized values. Figure 6.23 shows
an example: the values of the parameter HP7x in the last 100 iterations.

Table 6.9 summarizes the optimization parameter results obtained from three
different starting points and the standard deviations calculated from these three
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Figure 6.23: Last 100 iterations of the parameter HP7x optimized through the Sim-
plex Method.

Optimized parameters:

Coordinates of the Hall probe HP7: HP7x = (4.62± 0.02) mm

HP7y = (0.459± 0.001) mm

HP7z = (−2.626± 0.002) mm

Vector normal to the plane ~N: Nx = (0.009± 0.001) mm

Ny = (0.81± 0.06) mm

Nz) = (−0.33± 0.03) mm

Angle between vectors ~M and ~Mp Θ = (−3.8± 0.3) mrad

Table 6.9: Summary of the results of the Simplex optimization to search the Hall
probe positions.

results. The Hall probe array shows an inclination and a displacement of ≈ 0.5 mm
in +x direction respect to the ideal position (see data in Figure 6.7). This coincides
approximately with the measurement of the position, which was performed manually
before inserting the undulator inside the cryostat.

For the other Hall probes position the vector ~M of Equation 6.20 has to be
recalculated with a value of n between 1 and 5 to get the new value of the vector
~Mp. The coordinates of their positions are calculated then by:

HPn (HPx,HPy,HPz) = ~Mp(n) + HP7 (6.22)

The position of rest of the Hall probes was calculated from Equation 6.22 and
the optimized values of the coordinates of the Hall probe HP7, the vector normal ~N
and the angle Θ. Table 6.10 shows the coordinates of all the Hall probes.

In this thesis, the magnetic measurements were taken only at one fixed longi-
tudinal position z. These measurements were employed to reconstruct the position
of the Hall probe array (see Table 6.10), which differs from the ideal position (see
Figure 6.7). The reconstructed position is used to simulate in OPERA-3D the mag-
netic fields produced for the undulator and correction coils, in order to compare
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#HP x[mm] y[mm] z[mm]

1 9.72 0.410 -2.608

2 8.87 0.418 -2.611

3 8.02 0.426 -2.614

4 7.17 0.434 -2.617

5 6.32 0.443 -2.620

6 5.47 0.451 -2.623

7 4.62 0.459 -2.626

Table 6.10: Position of the Hall probes after the optimization.

the simulated values with the measured ones. In future measurements in its cus-
tom TGU40 cryostat (see Section 6.4) the magnetic field will be measured along
the z-axis. In that case different z-positions of the Hall probes can be determined
independently (namely at the zero-crossings of the undulator field) and therefore

the ambiguity in determining the reconstructed Hall probe position, the vector ~N
and angle Θ can be very much reduced.

6.3 TGU40 quench test

As already mentioned, a quench is the transition from the superconducting to
the normal-conducting state. Figure 6.12 shows the quench detection wires (Q1-
Q3), which are connected to the undulator coils to measure the voltage drop during
the undulator coils operation. During the superconducting state this voltage should
be close to zero. Only the voltage drops across the non-superconducting solder
joints should be measurable. However, after breakdown of the superconductivity,
the measurable voltage increases a few millivolts and triggers the quench detector
circuit which immediately turns off the power supply and so minimizes the risk of
damaging the coils.

In the quench tests performed for this thesis the quench detection system IPE-
3420 manufactured by KIT’s Institute for Data Processing and Electronics was em-
ployed. A threshold voltage between the undulator coils of ±50 mV was set and the
rise time (without filtering) of < 500µs was selected.

Half-bridges are inserted in the holes on the solenoid coils, between the racetrack
coils, to support the otherwise free superconducting wire. The half-bridges allow the
stabilization of the wires, avoiding that the superconducting wire moves and causes
a quench. It was shown in a previous experiment with the TGU2 coils [66] that the
coil without half-bridges showed a less stable behavior against quench.

The results of the quench tests of the undulator coils in series are shown in
Figure 6.24. The Bottura’s fit function (see Section 4.1.2) predicts that a quench
of the undulator coils in series should occur when the critical current density of
1214 A/mm2 is reached, which corresponds to a critical current of 891.6 A.

A factor that cause a superconducting coil to quench is for example a mechanical
disturbance (wire motion caused by the electromagnetic force), which can occurs
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when the current increases rapidly. The first quench tests with the undulator coils
in series were made with high ramp rates and therefore the quench currents were
lower than expected. In contrast, with a low ramp rates of 20 A/min after 800 A,
quench currents of ≈ 898 A were achieved. The time when the quench tests started
and ended and the ramp rates for all the quench tests are given in Table 6.11.
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Figure 6.24: Critical current achieved for the TGU40 during the quench tests at
4.2 K.

Quench Start to end LHe level Ic Ramp rate

number time [cm] [A]

1 10:34 to 10:44 90 to 86.9 824.00 0 to 700 A at 100 A/min

700 to 1000 A at 50 A/min

2 10:45 to 10:50 85.9 to 85.4 308.00 0 to 750 A at 200 A/min

3 10:52 to 11:06 84.9 to 80.6 833.82 0 to 700 A at 100 A/min

700 to 1000 A at 20 A/min

4 11:07 to 11:12 79.9 to 79.4 522.31 0 to 800 A at 150 A/min

5 11:13 to 11:23 79.3 to 76 861.13 0 to 800 A at 100 A/min

800 to 1000 A at 20 A/min

6 11:25 to 11:40 75.2 to 71.7 894.74 0 to 800 A at 100 A/min

800 to 1000 A at 20 A/min

7 12:05 to 12:13 97.4 to 94.5 708.92 0 to 800 A at 100 A/min

8 12:15 to 12:28 94.5 to 88.7 898.09 0 to 800 A at 100 A/min

800 to 1000 A at 20 A/min

9 12:30 to 12:38 88 to 86.4 771.18 0 to 800 A at 100 A/min

10 12:47 to 13:00 84.5 to 80.5 898.64 0 to 800 A at 100 A/min

800 to 1000 A at 20 A/min

Table 6.11: Summary of the results of the quench tests of the TGU40 at 4.2 K.
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If there are not sufficient helium in the cryostat, the undulator can warm and
this make a quench more likely. Furthermore, a quench in the absence of sufficient
cooling by the helium can heat the undulator and cause severe damage to it. The
helium level during the quench tests was above 70 cm. Table 6.11 gives also the
helium level for each quench test.

The operating current will be at 83.5 % of the maximum quench current reached,
providing a sufficient safety margin. The maximum quench current value could not
be reproduced stably. The instability can be produced because the undulator coils
are not impregnated. In future measurements, it is recommended to perform more
number of quenchs to study the dependence of the quench current level on the
current ramp rates, the helium level and also the time between quenchs.

6.4 Future measurements

In this thesis, the first magnetic measurements of the full-scale undulator TGU40
were performed in the CASPER cryostat (a bad cryostat of KIT). It was measured
the vertical component of the magnetic flux density as function of the transverse
position at one fixed longitudinal position z in the center of the undulator. The
undulator magnetic measurement showed an excellent agreement with the theoretical
expectations.

In the near future it is already planned to measure the magnetic field of the
TGU40 in its own cryostat (see Section 4.5). This cryostat was not yet available
to perform the measurements for this thesis. The magnetic measurement has to be
done, before performing the proof-of-principle experiment at the LWFA in Jena with
the whole setup, chicane and TGU40. The magnetic measurement system must be
removed in order to perform the experiment with the beam passing the undulator.

The measurement will be performed within the horizontal cryostat as is shown
in Figure 6.25, at liquid Helium temperature and in high vacuum. The same Hall
probe array as described in this thesis will measure the magnetic field, but this time
not in a fixed longitudinal position, in the center of the undulator, but scanned along
the z-direction.

The Hall probe array will be fixed to the shaft of a transfer rod (VACOM). This
shaft will allow a translation without rotation of the Hall probe along the z-axis
(see detail in Figure 6.26). The movement of the probe will be controlled with a
side mounted stepper motor with a resolution of the probe position of 2µm. The
maximal z-stroke of the linear movement is 609 mm.

With these measurements along the z-direction will be detect field errors due to
mechanical deviations or failures in the construction of the undulator coil formers
(see Section 4.3), which can not be detect at one fixed longitudinal position z.
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Figure 6.25: Magnetic measurement system tailored for the horizontal cryostat
and with an external stepper motor, which moves the Hall probe array along the
TGU40 [61].
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Figure 6.26: Detail of the Hall probe array and the shaft for the magnetic measure-
ment system through the TGU40 with a 1/2 is cut off for better visibility [61].





7. Conclusion

This thesis includes the design, optimization, part of the construction and the
characterization of a novel transverse gradient undulator (TGU). The TGU design
proposed in this thesis is optimized for an electron energy of E0 = 120 MeV and an
energy spread of δ = ±10 %. These electron beam properties of the laser wakefield
accelerator (LWFA) at the University in Jena were conservatively assumed. The
relatively high energy spread has to be compensated to achieve a very compact X-
ray radiation source combining the LWFA with the short-period TGU. Compact
radiation sources based on LWFA have a number of advantages over conventional
X-ray sources. Laser-based accelerators imply a large reduction in infrastructure,
particularly in size and cost.

A way to perform the compensation of the high energy spread is through a
magnetic chicane which spectrally disperses the electron beam in the deflection
plane (xz-plane). The electrons with spatial energy distribution travel in z-direction
through the TGU which offers a x-dependent flux density amplitude. A constant
wavelength of the emitted undulator radiation is achieved when the transversal field
gradient matches the spatial energy distribution. Therefore, optimizations were
conducted on the TGU and the chicane parameters to achieve a bandwidth of the
undulator radiation in the order of the natural bandwidth. For a 100 periods TGU,
this condition is ∆λ/λ ≈ 1 %.

A summary of the achievements performed during the course of this thesis are
the following:

• A TGU with cylindrical pole face geometry was identified using analytical and
numerical methods.

The selection was made by comparing the results between two different TGU
geometries, tilted and cylindrical. With the optimization of both TGU models,
the main objective of getting a constant wavelength of the undulator radiation
∆λ/λ < 1 % was highly achieved. In this study different values of the reference
electron energy and period length were taken into account. The tilted TGU
was discarded because of the total dispersive beam splitting being too large
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(> 10 mm). In contrast, the total dispersive beam splitting for the different
optimized cylindrical TGU models was around ± 2 mm.

• Simulations of the TGU magnetic field and the electron trajectories were per-
formed.

The simulated magnetic field was employed to calculate the undulator radia-
tion and the electron trajectories through the undulator. The results showed
that the transversal field gradient of the undulator produces a net deflection of
the electrons moving along the axis of the undulator. The resulting transverse
drift in the electron position compared with the position before moving into
the device was compensated in the simulations by a superposed weak correc-
tion field (≈ −0.5 mT). A couple of long racetrack superconducting (SC) coils
installed inside and along the TGU were selected to compensate the electron
trajectories drifts.

• Simulations of the iron saturation were performed and the material for the
TGU construction was chosen.

The modulus of the magnetic field of several TGU iron (low carbon steel AISI
1010) models with different pole configurations were simulated. It is necessary
to ensure that the weak correction field is not screened by unsaturated soft
magnetic material. Only the case of the model with iron pole insets showed
the full saturation at Bmin = 2.13 T. But this configuration was technically
very challenging and therefore an iron-free design was chosen for the cylindri-
cal TGU. The coil formers and their support structure were made of copper
(CU OF - DIN 2.0040). Simulations of the copper cylindrical TGUs were per-
formed to obtain the geometrical parameters of the optimized model, including
the coil-pole structure and the coil support structure. The main undulator pa-
rameters were selected: period length λu = 10.5 mm, pole radius r = 30 mm
and gap on axis g = 1.1 mm.

• The short TGU models were investigated, including their manufacture, the
winding coils and prototypes were characterized.

Before the construction of the full-scale TGU coil former, a short model
with one half period and two short models with two periods (TGU2) were
constructed. The short models were employed to prove the undulator geometry
and the winding technique that could be scaled up for the longer TGU. The
magnetic fields at the TGU2 models along the longitudinal position z and
along the transversal position x were measured by a Hall-probe-array of 7 Hall-
probes. The measurement showed an excellent agreement with the theoretical
expectations. The test of the short models was performed at KIT in a verti-
cal cryostat at KIT called CASPER (Characterization Setup for Field Error
Reduction) at 4.2 K.

• The full-scale TGU was described, including its manufacture, the undulator
coils winding and its support structure.

For the proof-of-principle experiment a full-scale prototype of the TGU with
40 periods (TGU40) was built at KIT. A task of this thesis was to perform
the winding of the NbTi SC coils of both the TGU40 and the correction coils.
This was made in the Laboratory for Application of Synchrotron Radiation
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(LAS) at KIT. A bolted clamping structure was selected to support the coil
assembly. This structure defines the magnetic gap of the TGU40, applies
compressive prestressing to the outer parts of the racetrack coils and takes up
the magnetic forces acting on the undulator coils as a whole.

• Characterization of the full-scale TGU.

A first magnetic field measurement of the full-scale TGU40 was performed.
The same Hall-probe-array as used in the short models measurements was
employed. This test was also implemented in the liquid helium bath cryostat
CASPER at KIT. Therefore, for technical reasons, only the transversal field
gradient was measured in the center of the undulator in a fixed z position.
The measuring range was adapted within the area of x between 4 mm and
10 mm, which defines the electron beam positions dispersed by the chicane.
Both the undulator and the correction coils were tested, first together, then
each one separately and finally in series. In the case of the undulator coils, the
magnetic field was measured over long periods of time at the operating current
750 A. The magnetic measurements showed an excellent agreement with the
simulations. The operating current is 83 % of the measured quench current
(≈ 890 A), providing a sufficient safety margin.

In conclusion, the work done in this thesis not only provides simulations and
the optimization of a undulator with a transversal magnetic field. Furthermore, it
is the first time that a full-scale TGU with a cylindrical geometry and with a short
period length of about 1 cm is constructed with the aim to create in a future a very
compact high-brilliance radiation source with a laser wakefield accelerator. The first
tests with the short models and the full-scale TGU show that the concept is feasible
and the designs goals have been reached.

During the technical design of the TGU, the coil geometry form chosen was
the antisymmetrical shape with an undesired magnetic flux density component Bx.
This results in an extra drift of the electron trajectories in the yz-plane, which did
not occur with the cylindrical form. In a future TGU design it might nevertheless
be better to avoid these unwanted uncompensated fields, i.e. alternative winding
schemes should be evaluated.

The first measurements of the magnetic field exhibit transients with relatively
long time constants due to short circuits to ground and between turns of the su-
perconducting coils. The deviation of the measurements of the undulator coils in
series are eventually subject to systematic errors. To investigate this, the future
measurements should be performed over a longer period of time.

Not all the aspects of the characterization of the TGU40 could be treated in this
thesis, mainly because of limited funding and scheduling constraints. It is already
planned in the near future some improvements in the next measurements. That
includes 2D spatially resolved magnetic measurements as soon as the TGU’s own
cryostat is available and eventually a proof-of-principle experiment at the LWFA in
Jena once all components (particularly beam transport system) are realized.
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A. Cylindrical undulator C++
code files

A.1 Optimization: Downhill Simplex Method

The downhill simplex algorithm was invented by Nelder and Mead [77]. This
algorithm is a method to find the minimum of a function with more than one inde-
pendent variable. This method only requires function evaluations, no derivatives.

A simplex is a geometrical figure in n-dimensional space with n + 1 vertices
connected by straight lines and bounded by polygonal faces. The number of inde-
pendent parameters that need to be optimized in order to minimize the value of a
function is represented for the dimension of the space. The simplex is a n by n+ 1
matrix, where each column is a vector of size n in n-dimensional space [78].

In this thesis the algorithm is used to minimize the function ∆λ/λ0. Section 3.2.1
shows the parameters that need to be optimized according to the geometry of TGU,
either tilted or cylindrical. In both cases the final number of the selected parameters
was n = 2 and the simplex was a triangle. In this case the simplex algorithm was
based on the idea of comparing the values of the objective function at the 3 vertices
of the triangle in 2-dimensional space. The goal was to minimize the target function
f(X1) < f(X2) < f(Xn+1), where Xn+1 = Xw was the worst point with the highest
value and X1 was the best point with the lowest value. The algorithm iteratively
updates the worst point Xw moving the triangle towards the minimum point X1 [78].

The movement of the triangle towards the minimum point is achieved through
four different operations (see Figure A.1), which are listed next:

• Reflection: a reflected point Xr is obtained when the point Xw reflects through
the centroid X̄. The reflection distance is controlled by the parameter A.

• Expansion: the simplex expands toward the newly found reflected point Xr,
if this Xr is better than the existing best point X1. This expanded point is
called Xe and the distance expansion is controlled by the parameter G.
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• Contraction: if the reflected point Xr is no better than the existing best point
X1, then the simplex contracts from the worst point Xw towards the centroid
X̄. This contracted point is called Xc and the distance expansion is controlled
by the parameter B.

• Multiple contraction: if the newly found reflected point Xr is worse than
the existing worst point Xw, then the simplex contracts along all dimensions
toward the existing best pointX1 whose distance is controlled by the parameter
H.

X1

Figure A.1: Allowed moves of a simplex in the 2-dimensional space.

The optimal solution of X1, and with it the optimal value of the parameters, is
found by iterating the above four actions. Figure A.2 shows the simplex algorithm
flowchart. The algorithm terminates when it is within a given tolerance ε [77].
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Figure A.2: Simplex algorithm flowchart.
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• Main code file: SCU tamoeba optparam l2 Bymax vDec2014.cpp

1 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 ∗ Mult id imens iona l minimizat ion o f a func t i on FUNC(X) ∗
3 ∗ where X i s an NDIM−dimens iona l vector , by the downhi l l ∗
4 ∗ s implex method o f Nelder and Mead . ∗
5 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗
6 ∗ REFERENCE: ”Numerical Recipes , The Art o f S c i e n t i f i c ∗
7 ∗ Computing By W.H. Press , B.P. Flannery , ∗
8 ∗ S .A. Teukolsky and W.T. Vet t e r l i ng , ∗
9 ∗ Cambridge Un ive r s i ty Press , 1986” ∗

10 ∗ [ BIBLI 0 8 ] . ∗
11 ∗ ∗
12 ∗ C++ Release By J−P Moreau , Par i s . ∗
13 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
14 #inc lude <iostream>
15 #inc lude <fstream>
16 #inc lude <c s t r i ng>
17 #inc lude <sstream>
18 #inc lude <iomanip>
19 #inc lude <c s td io>
20 #inc lude <cmath>
21 #inc lude <g s l / g s l s f b e s s e l . h>
22 #inc lude ”templates . cpp ”
23 #inc lude ”SCU parameter . cpp ”
24 #inc lude ”B cy l func . cpp ”
25 #inc lude ”B cy l pro to . cpp ”
26 //Maximum value f o r NDIM=20
27 #d e f i n e MP 22
28 #d e f i n e NP 21
29 us ing namespace std ;
30 typede f double MAT[MP] [NP ] ;
31 MAT P;
32 double Y[MP] , PT[MP] , Pmin [MP] , Pmax [MP] ;
33 // Function propotypes :
34 double FUNC1( double ∗P, ofstream &dataout ) ;
35 double FUNC2( double ∗P, ofstream &dataout ) ;
36 double getx0 ( f l o a t rad , f l o a t lund , f l o a t kund , f l o a t g 2 ) ;
37 double g e tde l t ax ( f l o a t energy , double l1 , double l2 , double Bch ) ;
38 void AMOEBA(MAT P, double ∗Pmin , double ∗Pmax, double ∗Y, i n t NDIM, double

FTOL, i n t ∗ITER, ofstream &dataout ) ;
39 double getA ( double B max , f l o a t lund , f l o a t rad , f l o a t kund , f l o a t g 2 ) ;
40 void getan ( i n t ncoef , s t r i n g f i l ename , double ∗an ) ;
41 void getbn ( i n t ncoef , s t r i n g f i l ename , double ∗bn) ;
42 double FSR getx0 ( f l o a t rad , f l o a t lund , f l o a t kund , f l o a t g 2 , double ∗an , i n t

ncoef , double Bmax0 rel ) ;
43

44 i n t main ( void ) {
45 Pmin [1 ]= Pmin1 ;
46 Pmax[1 ]= Pmax1 ;
47 Pmin [2 ]= Pmin2 ;
48 Pmax[2 ]= Pmax2 ;
49 // d e f i n e NDIM+1 i n i t i a l v e r t i c e s ( one by row )
50 P[ 1 ] [ 1 ] = P1 1 ;P [ 1 ] [ 2 ] = P1 2 ; //V1
51 P[ 2 ] [ 1 ] = P2 1 ;P [ 2 ] [ 2 ] = P2 2 ; //V2
52 P[ 3 ] [ 1 ] = P3 1 ;P [ 3 ] [ 2 ] = P3 2 ; //V3
53 ofstream dataout ( f i l ename dataopt . c s t r ( ) ) ;
54 i f ( ! dataout ) {
55 cout << ”The f i l e could not open . ” << endl ;
56 r e turn 1 ;
57 }
58 dataout <<”#################################################”<< endl ;
59 dataout <<”# Data from SCU tamoeba optparam l2 Bymax vDec2014 . cpp ”<< endl ;
60 dataout <<”# Period l ength [mm] : ”<< lund ∗1 e3 << endl ;
61 dataout <<”# Hal f gap width [mm] : ”<< g 2 ∗1 e3 << endl ;
62 dataout <<”# External po l e rad iu s [mm] : ”<< rad ∗1 e3 << endl ;
63 dataout <<”# Centra l energy [MeV] : ”<< energy0 /1 e6 << endl ;
64 dataout <<”#################################################”<< endl ;
65 dataout <<”# 1 . l 2 [m] ”<< endl ;
66 dataout <<”# 2 . Bymax [T] ”<< endl ;
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67 i f (FUNCx==1){dataout <<”# 3 . Min F1(X) :
sum( By real−By idea l ) ˆ2/( nep+1) ”<< endl ;}

68 i f (FUNCx==2){dataout <<”# 3 . Min F2(X) : ∆ λ / λ 0 ”<< endl ; }
69 // I n i t i a l i z e Y to the va lue s o f FUNC evaluated
70 // at the NDIM+1 v e r t i c e s ( rows ] o f P
71 f o r ( I =1; I<=NDIM+1; I++) {
72 PT[1]=P[ I ] [ 1 ] ; PT[2 ]=P[ I ] [ 2 ] ;
73 i f (FUNCx==1){Y[ I ]=FUNC1(PT, dataout ) ;}
74 i f (FUNCx==2){Y[ I ]=FUNC2(PT, dataout ) ;}
75 }
76 // c a l l main func t i on
77 AMOEBA(P, Pmin ,Pmax,Y,NDIM,FTOL,&ITER, dataout ) ;
78 // p r in t r e s u l t s
79 p r i n t f ( ”\n Number o f i t e r a t i o n s : %d\n\n” , ITER) ;
80 p r i n t f ( ” Best NDIM+1 po in t s :\n”) ;
81 f o r ( I=1 ; I<=NDIM+1; I++) {
82 f o r ( J=1; J<=NDIM; J++) p r i n t f ( ” %f ” , P[ I ] [ J ] ) ;
83 p r i n t f ( ”\n”) ;
84 }
85 p r i n t f ( ”\n Best NDIM+1 mimimum va lues :\n”) ;
86 f o r ( I =1; I<=NDIM+1; I++) p r i n t f ( ” %14.10 f \n” , Y[ I ] ) ;
87 p r i n t f ( ”\n”) ;
88

89 dataout<<”# Number o f i t e r a t i o n s : ”<< ITER<<endl ;
90 dataout<<”# Best NDIM+1 po in t s : ”<< endl ;
91 f o r ( I=1 ; I<=NDIM+1; I++) {
92 f o r ( J=1; J<=NDIM; J++) dataout<<”# ”<<P[ I ] [ J]<< endl ;
93 }
94 dataout<<”# Best NDIM+1 mimimum va lues : ”<< endl ;
95 f o r ( I =1; I<=NDIM+1; I++) dataout<<”# ”<<Y[ I ]<< endl ;
96 dataout . c l o s e ( ) ;
97 }
98 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
99 // user de f ined func t i on to minimize

100 double FUNC1( double ∗P, ofstream &dataout ) {
101 double datach i [ ( nep+1) ] ;
102 x0=getx0 ( rad , lund , kund , g 2 ) ;
103 de l tax0=ge tde l t ax ( energy0 , l1 ,P [ 1 ] , Bch) ;
104 r [0 ]= x0 , r [1 ]=0 , r [2]=−z ;
105 A=getA (P [ 2 ] , lund , rad , kund , g 2 ) ;
106 B E0=By( rad , kund , g 2 ,A, r ) ;
107 K0=B E0∗abs ( e ) /(m0∗c ) /kund ;
108 lambda0=(lund /(2∗ square (gamma0) ) ) ∗(1+( square (K0) /2) ) ;
109

110 f o r ( i n t i =0; i <=nep ; i++){
111 energy = energy0 +(delE − i ∗2∗ delE/nep ) ;
112 gammaE=energy /511 e3 ;
113 de l tax=ge tde l t ax ( energy , l1 ,P [ 1 ] , Bch) ;
114 xund=de l tax +(x0−de l tax0 ) ;
115 K idea l=s q r t ( 2∗ ( ( lambda0∗2∗ square (gammaE) / lund )−1) ) ;
116 B idea l =(K idea l ∗m0∗c ∗2∗ pi ) /( abs ( e ) ∗ lund ) ;
117 r [0 ]= xund , r [1 ]=0 , r [2]=−z ;
118 B rea l=By( rad , kund , g 2 , A, r ) ;
119 datach i [ i ]= square ( B real−B idea l ) ;
120 }// end f o r energy
121

122 double sum =0;
123 f o r ( i n t i =0; i<=nep ; i++){
124 sum=sum+datach i [ i ] ;
125 }
126 cout <<”sum : ”<< sum<<endl ;
127 double ch i square=sum/( nep+1) ;
128

129 dataout<<f i x e d << s e t p r e c i s i o n (6 ) << P[1]<< ”\ t ” << P[2]<< ”\ t ” ;
130 dataout<<f i x e d << s e t p r e c i s i o n (10) <<ch i square<< endl ;
131 r e turn ch i square ;
132 }
133

134 double FUNC2( double ∗P, ofstream &dataout ) {
135 double lambda array [ ( nep+1) ] ;
136 double an [ ncoe f ] ;
137 double bn [ ncoe f ] ;
138 getan ( ncoef , f i l e n a m e f o u r i e r , an ) ;
139 getbn ( ncoef , f i l e n a m e f o u r i e r , bn ) ;
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140 r [0 ]=0 , r [1 ]=0 , r [2]=−z ;
141 Bmax0=FSR By( rad , kund , g 2 , r , an , ncoe f ) ;
142 Byrel=FSR Byrel ( rad , kund , g 2 , r , an , ncoef , Bmax0) ;
143 Bmax0 rel=P[ 2 ] ∗ Byrel ;
144 x0=FSR getx0 ( rad , lund , kund , g 2 , an , ncoef , Bmax0 rel ) ;
145 de l tax0=ge tde l t ax ( energy0 , l1 ,P [ 1 ] , Bch) ;
146 r [0 ]= x0 , r [1 ]=0 , r [2]=−z ;
147 B E0=P[ 2 ] ∗ FSR Byrel ( rad , kund , g 2 , r , an , ncoef , Bmax0) ;
148 K0=B E0∗abs ( e ) /(m0∗c ) /kund ;
149 lambda0=(lund /(2∗ square (gamma0) ) ) ∗(1+( square (K0) /2) ) ;
150

151 f o r ( i n t i =0; i <=nep ; i++){
152 energy = energy0 +(delE − i ∗2∗ delE/nep ) ;
153 gammaE=energy /511 e3 ;
154 de l tax=ge tde l t ax ( energy , l1 ,P [ 1 ] , Bch) ;
155 xund=de l tax +(x0−de l tax0 ) ;
156 r [0 ]= xund , r [1 ]=0 , r [2]=−z ;
157 B rea l=P[ 2 ] ∗ FSR Byrel ( rad , kund , g 2 , r , an , ncoef , Bmax0) ;
158 K rea l=B rea l ∗abs ( e ) /(m0∗c ) /kund ;
159 lambreal=(lund /(2∗ square (gammaE) ) ) ∗(1+( square ( K rea l ) /2) ) ;
160 lambda array [ i ]= lambreal ∗1 e9 ;
161 }// end f o r energy
162

163 minL = maxL = lambda array [ 0 ] ;
164 f o r ( i n t i =0; i<=nep ; i++) {
165 i f ( lambda array [ i ] < minL ) minL = lambda array [ i ] ;
166 i f ( lambda array [ i ] > maxL ) maxL = lambda array [ i ] ;
167 }
168

169 dataout<<f i x e d << s e t p r e c i s i o n (10) << P[1]<< ”\ t ” << P[2]<< ”\ t ” ;
170 dataout<<f i x e d << s e t p r e c i s i o n (10) <<((maxL−minL) /( lambda0∗1 e9 ) )∗100<<

endl ;
171 r e turn ( (maxL−minL) /( lambda0∗1 e9 ) ) ∗100 ;
172 }
173

174 double getx0 ( f l o a t rad , f l o a t lund , f l o a t kund , f l o a t g 2 ) {
175 double A i =1;
176 double r0 [3 ]={0 ,0 , z } ;
177 const double B0=By( rad , kund , g 2 , A i , r0 ) ;
178 i n t nix (0 ) ;
179 double nextxu (0) , nextBy (0) , nextdBy (0) ;
180 double x0 (0 ) ;
181 double By xu (0) , dBy dxu (0) ;
182

183 f o r ( double ix =0; i x <= rad ∗1000 ; i x +=0.000001 ) {
184

185 r0 [0 ]= ix /1000 ; // in Meter
186 By xu=By( rad , kund , g 2 , A i , r0 ) /B0 ; // normiert By xu
187

188 i f ( nix>0){
189 dBy dxu=(By xu−nextBy ) /( r0 [0]− nextxu ) ;
190 i f ( nix>1){
191 i f ( dBy dxu < nextdBy ) x0 = r0 [ 0 ] ;
192 }
193 nextdBy=dBy dxu ;
194 }
195 nextxu=ix /1000 ;
196 nextBy=By xu ;
197 nix++;
198 }
199 r e turn x0 ;
200 }
201

202 double getA ( double B max , f l o a t lund , f l o a t rad , f l o a t kund , f l o a t g 2 ) {
203 double A i = 1 ; // f i r s t va lue
204 double t e s t r [ 3 ] = { 0 .0000001 , 0 , z} ;
205 double A = B max / By( rad , kund , g 2 , A i , t e s t r ) ;
206 r e turn A ;
207 }
208

209 double g e tde l t ax ( f l o a t energy , double l1 , double l2 , double Bch ) {
210 double gamma = energy /511 e3 ;
211 double rhoL = abs (m0∗c /( e∗Bch) ) ;
212 double rL = gamma∗rhoL ;
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213 double de l tax=
2∗rL−(2∗ s q r t (pow( rL , 2 )−pow( l1 , 2 ) ) )+( l 1 ∗ l 2 / s q r t (pow( rL , 2 )−pow( l1 , 2 ) ) ) ;

214 r e turn de l tax ;
215 }
216

217 void getan ( i n t ncoef , s t r i n g f i l ename , double ∗an ) {
218 i n t row=ncoe f ;
219 i n t c o l =3;
220 double mat four i e r [ row ] [ c o l ] ;
221 shor t loop =0;
222 char co l 0 [ 2 5 0 ] , c o l 1 [ 2 5 0 ] , c o l 2 [ 2 5 0 ] ; // read data from the f i l e
223 s t r i n g header ;
224 i f s t r e a m myf i l e ( f i l ename . c s t r ( ) ) ; // opening the f i l e
225 i f ( my f i l e . i s open ( ) ) {
226 g e t l i n e ( myf i l e , header ) ; // get f i r s t l i n e from the f i l e=header
227 whi le ( ! my f i l e . e o f ( ) && loop != ncoe f ) {
228 myf i l e . g e t l i n e ( co l0 , 256 , ’ ’ ) ; // get one l i n e from the f i l e
229 myf i l e . g e t l i n e ( co l1 , 256 , ’ ’ ) ;
230 myf i l e . g e t l i n e ( co l2 , 25 6 ) ;
231 mat four i e r [ loop ] [ 0 ] = s t r t o d ( co l0 ,NULL) ;
232 mat four i e r [ loop ] [ 1 ] = s t r t o d ( co l1 ,NULL) ;
233 mat four i e r [ loop ] [ 2 ] = s t r t o d ( co l2 ,NULL) ;
234 loop++;
235 }
236 myf i l e . c l o s e ( ) ; // c l o s i n g the f i l e
237 } e l s e cout << ”Unable to open f i l e ” ;
238

239 f o r ( i n t ian =0; ian<row ; ian++){
240 an [ ian ]= mat four i e r [ ian ] [ 1 ] ;
241 }
242 }
243

244 void getbn ( i n t ncoef , s t r i n g f i l ename , double ∗bn) {
245 i n t row=ncoe f ;
246 i n t c o l =3;
247 double mat four i e r [ row ] [ c o l ] ;
248 shor t loop =0;
249 char co l 0 [ 2 5 0 ] , c o l 1 [ 2 5 0 ] , c o l 2 [ 2 5 0 ] ;
250 s t r i n g header ;
251 i f s t r e a m myf i l e ( f i l ename . c s t r ( ) ) ;
252 i f ( my f i l e . i s open ( ) ) {
253 g e t l i n e ( myf i l e , header ) ;
254

255 whi le ( ! my f i l e . e o f ( ) && loop != ncoe f ) {
256 myf i l e . g e t l i n e ( co l0 , 256 , ’ ’ ) ;
257 myf i l e . g e t l i n e ( co l1 , 256 , ’ ’ ) ;
258 myf i l e . g e t l i n e ( co l2 , 25 6 ) ;
259 mat four i e r [ loop ] [ 0 ] = s t r t o d ( co l0 ,NULL) ;
260 mat four i e r [ loop ] [ 1 ] = s t r t o d ( co l1 ,NULL) ;
261 mat four i e r [ loop ] [ 2 ] = s t r t o d ( co l2 ,NULL) ;
262 loop++;
263 }
264 myf i l e . c l o s e ( ) ; // c l o s i n g the f i l e
265 } e l s e cout << ”Unable to open f i l e ” ;
266

267 f o r ( i n t ibn =0; ibn<row ; ibn++){
268 bn [ ibn ]= mat four i e r [ ibn ] [ 2 ] ;
269 }
270 }
271

272 double FSR getx0 ( f l o a t rad , f l o a t lund , f l o a t kund , f l o a t g 2 , double ∗an , i n t
ncoef , double Bmax0 rel ) {

273 const double B0=Bmax0 rel ;
274 double r0 [3]={0 ,0 ,− lund /4} ;
275 i n t nix (0 ) ;
276 double nextxu (0) , nextBy (0) , nextdBy (0) ;
277 double x0 (0 ) ;
278 double By xu (0) , dBy dxu (0) ;
279

280 f o r ( double ix =0; i x <= rad ; i x +=0.000001 ) {
281 r0 [0 ]= ix ; // in Meter
282 By xu=FSR By( rad , kund , g 2 , r0 , an , ncoe f ) /B0 ;
283 i f ( nix>0){
284 dBy dxu=(By xu−nextBy ) /( r0 [0]− nextxu ) ;
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285 i f ( nix>1){
286 i f ( dBy dxu < nextdBy ) x0 = r0 [ 0 ] ;
287 }
288 nextdBy=dBy dxu ;
289 }
290 nextxu=ix ;
291 nextBy=By xu ;
292 nix++;
293 }
294 r e turn x0 ;
295 }
296

297 void AMOEBA(MAT P, double ∗Pmin , double ∗Pmax, double ∗Y, i n t NDIM, double
FTOL, i n t ∗ITER, ofstream &dataout ) {

298 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
299 ! Mult id imens iona l minimizat ion o f the func t i on FUNC(X) where X i s
300 ! an NDIM−dimens iona l vector , by the downhi l l s implex method o f
301 ! Nelder and Mead . Input i s a matrix P whose NDIM+1 rows are NDIM−
302 ! d imens iona l v e c t o r s which are the v e r t i c e s o f the s t a r t i n g s implex
303 ! ( Log i ca l dimensions o f P are P(NDIM+1,NDIM) ; p h y s i c a l dimensions
304 ! are input as P(NP,NP) ) . Also input i s the vec to r Y o f l ength NDIM
305 ! +1, whose components must be pre− i n i t i a l i z e d to the va lue s o f FUNC
306 ! eva luated at the NDIM+1 v e r t i c e s ( rows ) o f P; and FTOL the f r a c t i o−
307 ! na l convergence t o l e r a n c e to be achieved in the func t i on value . On
308 ! output , P and Y w i l l have been r e s e t to NDIM+1 new po in t s a l l with in
309 ! FTOL of a minimum func t i on value , and ITER g i v e s the number o f i t e−
310 ! r a t i o n s taken .
311 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
312 // Label : e1
313 const i n t NMAX=20, ITMAX=5000;
314 // Expected maximum number o f dimensions , th ree parameters which d e f i n e
315 // the expans ions and cont rac t i ons , and maximum al lowed number o f
316 // i t e r a t i o n s .
317 double PR[MP] , PRR[MP] , PBAR[MP] ;
318 double ALPHA=1.0 , BETA=0.5 , GAMMA=2.0; //H=0.5 f o r mu l t ip l e con t ra c t i on
319 i n t I , IHI , ILO , INHI , J ,MPTS;
320 double RTOL,YPR,YPRR;
321 MPTS=NDIM+1;
322 ∗ITER=0;
323 e1 : ILO=1;
324 i f (Y[ 1 ] > Y[ 2 ] ) {
325 IHI =1;
326 INHI=2;
327 } e l s e {
328 IHI =2;
329 INHI=1;
330 }
331 f o r ( I =1; I<=MPTS; I++) {
332 i f (Y[ I ] < Y[ ILO ] ) ILO=I ;
333 i f (Y[ I ] > Y[ IHI ] ) {
334 INHI=IHI ;
335 IHI=I ;
336 } e l s e i f (Y[ I ] > Y[ INHI ] )
337 i f ( I != IHI ) INHI=I ;
338 }
339 //Compute the f r a c t i o n a l range from h ighe s t to lowest and return i f
340 // s a t i s f a c t o r y .
341 RTOL=2.0∗ f abs (Y[ IHI ]−Y[ ILO ] ) /( fabs (Y[ IHI ] )+fabs (Y[ ILO ] ) ) ;
342 i f (RTOL < FTOL) return ; // normal e x i t
343 i f (∗ITER == ITMAX) {
344 p r i n t f ( ” Amoeba exceed ing maximum i t e r a t i o n s .\n”) ;
345 r e turn ;
346 }
347 ∗ITER= (∗ITER) + 1 ;
348 // 1.−R e f l e c t i o n :
349 f o r ( J=1; J<=NDIM; J++) PBAR[ J ] = 0 . 0 ;
350 f o r ( I =1; I<=MPTS; I++)
351 i f ( I != IHI )
352 f o r ( J=1; J<=NDIM; J++)
353 PBAR[ J ] += P[ I ] [ J ] ;
354 f o r ( J=1; J<=NDIM; J++) {
355 PBAR[ J ] /= 1.0∗NDIM;
356 PR[ J ]=(1.0+ALPHA) ∗PBAR[ J ] − ALPHA∗P[ IHI ] [ J ] ;
357 }
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358 whi le (PR[1]<Pmin [ 1 ] ) { f o r ( J=1;J<=NDIM; J++) PR[ J]=BETA∗PR[ J ] +
(1.0−BETA) ∗PBAR[ J ] ; }

359 whi le (PR[2]<Pmin [ 2 ] ) { f o r ( J=1;J<=NDIM; J++) PR[ J]=BETA∗PR[ J ] +
(1.0−BETA) ∗PBAR[ J ] ; }

360 whi le (PR[1]>Pmax [ 1 ] ) { f o r ( J=1;J<=NDIM; J++) PR[ J]=BETA∗PR[ J ] +
(1.0−BETA) ∗PBAR[ J ] ; }

361 whi le (PR[2]>Pmax [ 2 ] ) { f o r ( J=1;J<=NDIM; J++) PR[ J]=BETA∗PR[ J ] +
(1.0−BETA) ∗PBAR[ J ] ; }

362 i f (FUNCx==1){YPR=FUNC1(PR, dataout ) ;}
363 i f (FUNCx==2){YPR=FUNC2(PR, dataout ) ;}
364 //end o f r e f l e x i o n
365 // 2.−Expansion :
366 i f (YPR <= Y[ ILO ] ) {// I s Yr < Ymin ?
367 f o r ( J=1; J<=NDIM; J++)
368 PRR[ J]=GAMMA∗PR[ J ] + (1.0−GAMMA) ∗PBAR[ J ] ; // Ca l cu la te Expansion Xe
369 whi le (PRR[1]<Pmin [ 1 ] ) { f o r ( J=1;J<=NDIM; J++) PRR[ J]=PR[ J ] ; }
370 whi le (PRR[2]<Pmin [ 2 ] ) { f o r ( J=1;J<=NDIM; J++) PRR[ J]=PR[ J ] ; }
371 whi le (PRR[1]>Pmax [ 1 ] ) { f o r ( J=1;J<=NDIM; J++) PRR[ J]=PR[ J ] ; }
372 whi le (PRR[2]>Pmax [ 2 ] ) { f o r ( J=1;J<=NDIM; J++) PRR[ J]=PR[ J ] ; }
373 i f (FUNCx==1){YPRR=FUNC1(PRR, dataout ) ;}
374 i f (FUNCx==2){YPRR=FUNC2(PRR, dataout ) ;}
375 // end o f expansion
376 i f (YPRR < Y[ ILO ] ) {
377 f o r ( J=1; J<=NDIM; J++) P[ IHI ] [ J]=PRR[ J ] ; // Accept Expansion : Xmax = Xe
378 Y[ IHI ]=YPRR;
379 } e l s e {
380 f o r ( J=1; J<=NDIM; J++) P[ IHI ] [ J]=PR[ J ] ; // Accept R e f l e c t i o n : Xmax = Xr
381 Y[ IHI ]=YPR;
382 }
383 }//end i f not Yr < Ymin
384 e l s e i f (YPR >= Y[ INHI ] ) {// I s Yr >=Yi? yes
385 i f (YPR < Y[ IHI ] ) {// I s Yr < Ymax? yes
386 f o r ( J=1; J<=NDIM; J++) P[ IHI ] [ J]=PR[ J ] ; // Xmax ( temp )= Xr
387 Y[ IHI ]=YPR;
388 }
389 // 3.−Contract ion :
390 f o r ( J=1; J<=NDIM; J++) PRR[ J]=BETA∗P[ IHI ] [ J ] + (1.0−BETA) ∗PBAR[ J ] ;

// Ca l cu la te con t ra c t i on Xc
391 i f (FUNCx==1){YPRR=FUNC1(PRR, dataout ) ;} // Ca lcu la te Yc
392 i f (FUNCx==2){YPRR=FUNC2(PRR, dataout ) ;}
393 i f (YPRR < Y[ IHI ] ) { // I s Yc < Ymax? yes
394 f o r ( J=1; J<=NDIM; J++) P[ IHI ] [ J]=PRR[ J ] ; // Accept con t ra c t i on : Xmax = Xc
395 Y[ IHI ]=YPRR;
396 }
397 // end o f Contract ion
398 // 4.−Mult ip l e con t r a c t i on :
399 e l s e //no
400 f o r ( I =1; I<=MPTS; I++)
401 i f ( I != ILO) { cout << ”4.−Mult ip l e con t r a c t i on without bounded

v a r i a b l e s : ”<< endl ;
402 f o r ( J=1; J<=NDIM; J++) {PR[ J ]=0.5∗ (P[ I ] [ J ] + P[ ILO ] [ J ] ) ; }
403 f o r ( I =1; I<=MPTS; I++)
404 f o r ( J=1; J<=NDIM; J++) { P[ I ] [ J]=PR[ J ] ; }// c o r r e c t e d
405 i f (FUNCx==1){Y[ I ]=FUNC1(PR, dataout ) ;} // Ca lcu la te Yc
406 i f (FUNCx==2){Y[ I ]=FUNC2(PR, dataout ) ;} // Ca lcu la te Yc
407 }
408 // end o f Mult ip l e con t ra c t i on
409 } e l s e {// I s Yr >=Yi? No
410 f o r ( J=1; J<=NDIM; J++) P[ IHI ] [ J]=PR[ J ] ; // Accept Re f l ex i on : Xmax=Xr
411 Y[ IHI ]=YPR;
412 }
413 goto e1 ;
414 }

• Templates file: templates.cpp

1 template <c l a s s T> T square ( const T& x ) { r e turn x∗x ; }
2 template <c l a s s T> T abs (T x ) { x= x<0 ? −x : x ; r e turn x ; }
3 template <typename T> i n t sgn (T va l ) { r e turn ( va l > T(0) ) − ( va l < T(0) ) ;}
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• Declaration of global variables: SCU parameter.cpp

1 // d e c l a r a t i o n o f va lue s ( Global v a r i a b l e s )
2 #inc lude ”SCU parameter . h”
3 #inc lude <c s t r i ng>
4 us ing namespace std ;
5 //Tamoeba v a r i a b l e s :
6 i n t I ;
7 i n t ITER=0;
8 i n t J ;
9 i n t NDIM=2;//number o f parameters to opt imize : P[1 ]= l 2 and P[2 ]= ang .

10 double FTOL=1e−8;// t o l e r a n c e
11 // Constants :
12 const f l o a t p i =3.141592653;
13 const f l o a t m0=9.11e−31;
14 const f l o a t e=−1.602e−19;
15 const f l o a t c =299792458; // in m/ s
16 // Choose func t i on to minimize :
17 // FUNCx=1 ; Min F(X)=sum( By real−By idea l ) ˆ2/( nep+1)
18 // FUNCx=2 ; Min F(X)=Deltalambda/lambda0
19 i n t FUNCx=2;
20 // Parameter 1 : l 2 [m]
21 double Pmin1= 0 ;
22 double Pmax1= 5 ;
23 double P1 1 =0.2;
24 double P2 1 =1.2;
25 double P3 1 =0.6;
26 // Parameter 2 : Bymax [T]
27 double Pmin2=0.5;
28 double Pmax2=4.0;
29 double P1 2= 1 . 8 ;
30 double P2 2= 1 . 2 ;
31 double P3 2= 0 . 6 ;
32 f l o a t energy0 = 120 e6 ; // Centra l energy [ eV ]
33 double gamma0 = energy0 /511 e3 ;
34 f l o a t delE = energy0 ∗10/100; //Energy spread [%]
35 s t r i n g f i l ename dataopt=

”SCU 120MeV lper10mm gap1p5 optparam l2 Bymax vDec2014 fmin2 . dat ” ;
36 f l o a t energy =0;
37 double gammaE=0;
38 i n t nep=10; // energy po in t s to c a l c u l a t e
39 // Undulator geometry
40 f l o a t lund = 0 . 0 1 0 ; // per iod l ength [m]
41 f l o a t kund=2∗pi / lund ;
42 f l o a t g 2 =0.0015/2; // h a l f gap−width on a x i s
43 f l o a t rad =0.030; // e x t e r n a l pole−rad iu s
44 double l 1 =0.050; // ch icane d i p o l e : po l e width [m]
45 double Bch=0.46; // ch icane d i p o l e : homogeneous f i e l d [T]
46 double r [ 3 ]={0 , 0 , 0} ;
47 double z = lund /4 ; // cente r o f the po le in z−d i r e c t i o n
48 //For the c e n t r a l energy :
49 double x0=0;
50 double A=0;
51 double de l tax0 =0;
52 double B E0=0;
53 double K0=0;
54 double lambda0=0;
55 //For the other e n e r g i e s :
56 double de l tax =0;
57 double xund=0;
58 double K idea l =0;
59 double B idea l =0;
60 double B rea l =0;
61 // Function F2(X)
62 i n t ncoe f =15;
63 s t r i n g f i l e n a m e f o u r i e r = ”FSR rad30 gap1and5 lund10 J800 . txt ” ;
64 double Bmax0=0;
65 double Byrel =0;
66 double Bmax0 rel =0;
67 double minL=0;
68 double maxL=0;
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69 double K rea l =0;
70 double lambreal =0;
71 //End Optimizat ion
72 s t r i n g f i l ename ;
73 // Model DataBank Eisen : rad30 , g1p5 , lper10 , Jca800 , FSRJ1200
74 // So lu t i on OPtimization : f 2 (X)=∆ λ / λ 0 = 0.5155089%
75 double l 2 o p t =0.311675;
76 double Bymax opt =1.743912;
77 s t r i n g filename summary =

”SCU By Lambda vDec2014 120MeV lper10mm gap1p5 rad30 summary . dat ” ;
78 s t r i n g f i lename Esigmax =

”SCU By Lambda vDec2014 120MeV lper10mm gap1p5 rad30 Esigmax . dat ” ;
79 s t r i n g f i l ename xBya l l =

”SCU By Lambda vDec2014 120MeV lper10mm gap1p5 rad30 xByall . dat ” ;
80 s t r i n g f i l e n a m e z B y a l l =

”SCU By Lambda vDec2014 120MeV lper10mm gap1p5 rad30 zByall . dat ” ;
81 s t r i n g filename xELambda =

”SCU By Lambda vDec2014 120MeV lper10mm gap1p5 rad30 xELambda . dat ” ;
82 double dDxarray [ 3 ]={0 , 0 , 0} ;
83 const i n t n=nep+1;
84 double lambda array [ 1 1 ] ;
85 double s igma array [ 1 1 ] ;
86 double sigmax E =0;
87 //Sigma
88 double minsg ;
89 double de l t x c =0;
90 double xundmin=0;
91 double B realmin =0;
92 double Krealmin =0;
93 double lambrealmin =0;
94 double xundmax=0;
95 double B realmax =0;
96 double Krealmax=0;
97 double lambrealmax =0;
98 double xmax=30;
99 double zmax=lund ∗1 e3 ;

100 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
101 // T r a j e c t o r i e s : comment f i r s t a l l the parameters above
102 double l 1 =50; // in mm
103 double l 2 =0;
104 double Bch=0.46;
105 // Undulator Geometry :
106 f l o a t rad =30; // in mm
107 f l o a t g 2 = 1 . 5 / 2 ; // in mm
108 f l o a t lund = 10 ; // in mm
109 f l o a t kund=(2∗ pi / lund ) ;
110 // Undulator Period :
111 i n t Nper=100; //number o f undulator pe r i od s
112 // Cyl Eisen Databank r30 g1p5 lu10 J800
113 double B max =1.74128007955;
114 i n t ncoe f =15; // Four i e r c o e f f i c i e n t s :
115 double an [ 1 5 ] ;
116 double bn [ 1 5 ] ;
117 s t r i n g f i l e n a m e f o u r i e r= ”FSR rad30 gap1and5 lund10 J800 . txt ” ;
118 // Ca lcu la te x0 :
119 double x0 (0 ) ;
120 // Ca lcu la te l 2 optimal :
121 i n t l2min =0; //Minimum value in mm
122 i n t l2max=1200; //Maximum value in mm
123 double l 2opt (0 ) ;
124 // Ca lcu la te lambda E0
125 f l o a t energy0 = 120 e6 ; // Elect ron energy [ eV ]
126 double gamma0 ( energy0 /511 e3 ) ;
127 double de l tax0 (0 ) ;
128 double B E0 (0) ;
129 double K0(0) ;
130 double lambdal0 (0 ) ;
131 // Tra jec tory parameters :
132 i n t nep=10;// Anzahl der berechneten Energiepunkte
133 f l o a t energy (0 ) ;
134 double gammaE(0) ;
135 // Ca lcu la te x E :
136 double de l tax (0 ) ;
137 double xund (0) ;
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138 const i n t n=nep+1; // number o f e lements in the array
139 double x array [ 1 1 ] ;
140 double dDxarray [ 3 ]={0 , 0 , 0} ;
141 // Ca lcu la te lambda E :
142 double B rea l (0 ) ;
143 double Kreal (0 ) ;
144 double lambreal (0 ) ;
145 double lambda array [ 1 1 ] ;
146 double min (0 ) , max(0 ) ;
147 double minsg ;
148 // Ca lcu la te sigma
149 double s igma array [ 1 1 ] ;
150 double de l t x c (0 ) ;
151 double xundmin (0) ;
152 double B realmin (0 ) ;
153 double Krealmin (0 ) ;
154 double lambrealmin (0 ) ;
155 double xundmax (0) ;
156 double B realmax (0 ) ;
157 double Krealmax (0 ) ;
158 double lambrealmax (0) ;
159 f l o a t delE = energy0 ∗10/100; //Energy spread [%]
160 f l o a t t o f =1e−16; // time step [ s ]
161 double r [ 3 ]={0 , 0 , 0} ; // Point to c a l c u l a t e the f i e l d
162 double v [ 3 ]={0 , 0 , 0} ;
163 double B[3 ]={0 , 0 , 0} ;
164 double unitvecB [3 ]={0 , 0 , 0} ;
165 double F l [ 3 ]={0 , 0 , 0} ;
166 double v tmax (0) , v p (0 ) ;
167 double vec v perp [ 3 ]={0 , 0 , 0} ;
168 double vec v par [ 3 ]={0 , 0 , 0} ;
169 double v perp (0 ) , v par (0 ) ;
170 double omega c (0 ) , r l ( 0 ) ; // Cyc lot ron f requenz und Larmorradius
171 double g u i d i n g c e n t e r [ 3 ]={0 , 0 , 0} ;
172 double a u x i l i a r y c a l c u l a t i o n [ 3 ]={0 , 0 , 0} ;
173 double e1 [ 3 ]={0 , 0 , 0} ;
174 double e2 [ 3 ]={0 , 0 , 0} ;
175 double e3 [ 3 ]={0 , 0 , 0} ;
176 double r p t [ 3 ]={0 , 0 , 0} ;
177 double v p t [ 3 ]={0 , 0 , 0} ;
178 double d e l r [ 3 ]={0 , 0 , 0} ;
179 f l o a t m e (0) ;
180 double Bykorr (0 ) ;
181 // C y l i n d r i c a l I ron N10 , databank , r30 g1p5 , lu10 J800 , f i t curve : Korrektur

(mm/T) f r t rack in c++
182 double c o e f a= −1.33994e−06 ; // [T/ mm ] +/− 6 .297 e−08 (4.7%)
183 double co e f b= 3.8944 e−05 ; // [T/ mm ] +/− 1 .11 e−06 (2.849%)
184 double c o e f c= −0.000300096 ; // [T/mm] +/− 6 .349 e−06 (2.116%)
185 double co e f d= 0.000246456 ; // [T] +/− 1 .177 e−05 (4.776%)
186 double x1c (0 ) , x2c (0 ) , Dxc1 (0 ) , x2r (0 ) , x2 l (0 ) , z2r (0 ) , z 2 l (0 ) ;
187 i n t non (0) ;
188 double Dxc100 (0 ) ; // in mm
189 double Rlc (0 ) ; // in m
190 double BRlc (0 ) ; // in T
191 // Amplitude :
192 double xamp(0) ;
193 double aon (0 ) ;
194 // F i l e s :
195 s t r i n g extens i on = ” . dat ” ;
196 s t r i n g f i l ename ;
197 s t r i n g e n e r p r i n t ;
198 // x , y , z , By and dBy in getx0 subrout ine
199 s t r i n g f i l ename getx0 ohne= ”ohne Korrektur / getx0 ” ;
200 s t r i n g f i l ename ge tx0 mi t= ”mit Korrektur / getx0 ” ;
201 ofstream dataout getx0 ;
202 //x , energy , Byreal
203 s t r i n g fi lename xEBy ohne = ”ohne Korrektur / By FSRanalytic ” ;
204 s t r i n g f i lename xEBy mit = ”mit Korrektur / By FSRanalytic ” ;
205 ofstream dataout xEBy ;
206 // E, x1c , x2c , Dx1c , Rlc , Brlc , Dxc10 oder Dxc100
207 s t r i n g f i lename Dx ohne = ”ohne Korrektur / FSRanalyt ic Dxcorrectedno ” ;
208 s t r i n g f i l ename Dx mit = ”mit Korrektur / FSRanalyt ic Dxcorrectedsd ” ;
209 ofstream dataout Dx ;
210 // l2 , Dlambda/lambda [%]
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211 s t r i n g f i l ename l2op t ohne = ”ohne Korrektur / l2opt ima l ” ;
212 s t r i n g f i l e n a m e l 2 o p t m i t = ”mit Korrektur / l2opt ima l ” ;
213 ofstream dataout l2opt ;
214 //Summary
215 s t r i n g filename summ ohne = ”ohne Korrektur /FSRsummary” ;
216 s t r i n g fi lename summ mit = ”mit Korrektur /FSRsummary” ;
217 ofstream dataout summ ;
218 //x ,E, lambda
219 s t r i n g fi lename xElambda ohne = ”ohne Korrektur /FSR lambda ” ;
220 s t r i n g f i lename xElambda mit = ”mit Korrektur /FSR lambda ” ;
221 ofstream dataout xElambda ;
222 // sigmax
223 s t r i n g f i l ename s igmax ohne = ”ohne Korrektur /sigmax ” ;
224 s t r i n g f i l ename s igmax mit = ”mit Korrektur / sigmax ” ;
225 ofstream dataout s igmax ;
226 // g loba l s i gmax
227 s t r i n g f i l ename g loba l s i gmax ohne = ”ohne Korrektur / g loba l s i gmax ” ;
228 s t r i n g f i l ename g loba l s i gmax mi t = ”mit Korrektur / g loba l s i gmax ” ;
229 ofstream dataout g loba l s igmax ;
230 //Energy−x−xamplitude ( nach der Korrektur )
231 s t r i n g f i lename xEampl ohne = ”ohne Korrektur /Energy x . txt ” ;
232 s t r i n g f i lename xEampl mit = ”mit Korrektur / Energy x sd . txt ” ;
233 ofstream dataout xEampl ;
234 //x , y , z , By f o r every energy
235 s t r i n g f i l ename t rack ohne = ”ohne Korrektur / FSRtrack correctedno EMeV ” ;
236 s t r i n g f i l e n a m e t r a c k m i t = ”mit Korrektur / FSRtrack correctedsd EMeV ” ;
237 ofstream dataout t rack ;
238 //Graph Byreal x von 0 b i s 30mm
239 s t r i n g f i l ename xBya l l ohne = ”ohne Korrektur / FSR Byrea l x ana lyt i c ” ;
240 s t r i n g f i l ename xBya l l m i t = ”mit Korrektur / FSR Byrea l x ana lyt i c ” ;
241 ofstream dataout xByal l ;
242 //Graph Byreal z von 0 b i s 100mm
243 s t r i n g f i l ename zBya l l ohne = ”ohne Korrektur / FSR Byrea l z ana lyt i c ” ;
244 s t r i n g f i l ename zBya l l m i t = ”mit Korrektur / FSR Byrea l z ana lyt i c ” ;
245 ofstream dataout zBya l l ;
246 // Others :
247 double lamb0 (0) , lambplus (0 ) , lambminus (0 ) ;
248 double de l tx0 (0 ) , d e l t x p l u s (0 ) , deltxminus (0 ) ;
249 double B0 ku (0) ; // I n t e g r a l s i n ( nkuz )

• Magnetic field function propotypes: B cyl proto.cpp

1 double Bx ( f l o a t rad , f l o a t kund , f l o a t g 2 , double A, double ∗ r ) ;
2 double By ( f l o a t rad , f l o a t kund , f l o a t g 2 , double A, double ∗ r ) ;
3 double Bz ( f l o a t rad , f l o a t kund , f l o a t g 2 , double A, double ∗ r ) ;
4 double FSR By ( f l o a t rad , f l o a t kund , f l o a t g 2 , double ∗ r , double ∗an , i n t

ncoe f ) ;
5 double FSR Byrel ( f l o a t rad , f l o a t kund , f l o a t g 2 , double ∗ r , double

∗an , i n t ncoef , double Bmax0 ) ;
6 double getB0 ( f l o a t rad , f l o a t kund , f l o a t g 2 , double ∗ r , double ∗an , i n t

ncoe f ) ;

• Magnetic field functions: B cyl func.cpp

1 double By ( f l o a t rad , f l o a t kund , f l o a t g 2 , double A, double ∗ r ) {
2 double &x = r [ 0 ] ;
3 double &y = r [ 1 ] ;
4 double &z = r [ 2 ] ;
5 // o−Fie ld
6 double rhoo = s q r t ( square ( x ) + square (y−(g 2+rad ) ) ) ;
7 double phio = atan2 ( (y−(g 2+rad ) ) , x ) ;
8 // Vector o f d i r e c t i o n
9 double rox = cos ( phio ) ;

10 double roy = s i n ( phio ) ;
11 // u−Fie ld
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12 double rhou = s q r t ( square ( x ) + square ( y + ( g 2 + rad ) ) ) ;
13 double phiu = atan2 ( ( y+(g 2+rad ) ) , x ) ;
14 // Vector o f d i r e c t i o n
15 double rux = cos ( phiu ) ;
16 double ruy = s i n ( phiu ) ;
17 // o−Fie ld
18 double Brhoo= −A∗kund∗ g s l s f b e s s e l K n (1 , kund∗ rhoo ) ∗ s i n ( kund∗z ) ;
19 double Byo = Brhoo∗ roy ;
20 // u−Fie ld
21 double Brhou= A∗kund∗ g s l s f b e s s e l K n (1 , kund∗ rhou ) ∗ s i n ( kund∗z ) ;
22 double Byu = Brhou∗ ruy ;
23 double By = Byu + Byo ;
24 r e turn By ;
25 }
26

27 double FSR By ( f l o a t rad , f l o a t kund , f l o a t g 2 , double ∗ r , double ∗an , i n t
ncoe f ) {

28 double &x = r [ 0 ] ;
29 double &y = r [ 1 ] ;
30 double &z = r [ 2 ] ;
31 double xn = 0 ;
32 double yn = 0 ;
33 // o−Fie ld
34 double rhoo = s q r t ( square ( x ) + square (y−(g 2+rad ) ) ) ;
35 double phio = atan2 ( (y−(g 2+rad ) ) , x ) ;
36 // Vector o f d i r e c t i o n
37 double rox = cos ( phio ) ;
38 double roy = s i n ( phio ) ;
39 // Four i e r :
40 double rhoo n = s q r t ( square ( xn ) + square (yn−(g 2+rad ) ) ) ;
41 double phio n = atan2 ( (yn−(g 2+rad ) ) , xn ) ;
42 double roy n = s i n ( phio n ) ;
43 // u−Fie ld
44 double rhou = s q r t ( square ( x ) + square ( y + ( g 2+rad ) ) ) ;
45 double phiu = atan2 ( ( y+(g 2+rad ) ) , x ) ;
46 // Vector o f d i r e c t i o n
47 double rux = cos ( phiu ) ;
48 double ruy = s i n ( phiu ) ;
49 // Four i e r :
50 double rhou n = s q r t ( square ( xn ) + square ( yn+(g 2+rad ) ) ) ;
51 double phiu n = atan2 ( ( yn+(g 2+rad ) ) , xn ) ;
52 double ruy n = s i n ( phiu n ) ;
53

54 double Byt i lde n [ ncoe f ] ;
55 double By n [ ncoe f ] ;
56 double By=0;
57 f o r ( i n t ian =1; ian<ncoe f ; ian++){
58 Byt i lde n [ ian ]=an [ ian ] / ( g s l s f b e s s e l K n (1 , ian ∗kund∗ rhoo n ) ∗
59 roy n−g s l s f b e s s e l K n (1 , ian ∗kund∗ rhou n ) ∗ ruy n ) ;
60 By n [ ian ]= Byt i lde n [ ian ] ∗ ( g s l s f b e s s e l K n (1 , ian ∗kund∗ rhoo ) ∗
61 roy−g s l s f b e s s e l K n (1 , ian ∗kund∗ rhou ) ∗ ruy ) ∗ s i n ( ian ∗kund∗z ) ;
62 }
63 f o r ( i n t ian =1; ian<ncoe f ; ian++){
64 By=By+By n [ ian ] ;
65 }
66 r e turn −By ; //Minus because Four i e r Ca lcu lated from − l p e r /2 and +l p e r /2
67 }
68

69 double FSR Byrel ( f l o a t rad , f l o a t kund , f l o a t g 2 , double ∗ r , double
∗an , i n t ncoef , double Bmax0 ) {

70 double &x = r [ 0 ] ;
71 double &y = r [ 1 ] ;
72 double &z = r [ 2 ] ;
73 double xn = 0 ;
74 double yn = 0 ;
75 // o−Fie ld
76 double rhoo = s q r t ( square ( x ) + square (y−(g 2+rad ) ) ) ;
77 double phio = atan2 ( (y−(g 2+rad ) ) , x ) ;
78 // Vector o f d i r e c t i o n
79 double rox = cos ( phio ) ;
80 double roy = s i n ( phio ) ;
81 // Four i e r :
82 double rhoo n = s q r t ( square ( xn ) + square (yn−(g 2+rad ) ) ) ;
83 double phio n = atan2 ( (yn−(g 2+rad ) ) , xn ) ;



A.1. Optimization: Downhill Simplex Method 153

84 double roy n = s i n ( phio n ) ;
85 // u−Fie ld
86 double rhou = s q r t ( square ( x ) + square ( y + ( g 2+rad ) ) ) ;
87 double phiu = atan2 ( ( y+(g 2+rad ) ) , x ) ;
88 // Vector o f d i r e c t i o n
89 double rux = cos ( phiu ) ;
90 double ruy = s i n ( phiu ) ;
91 // Four i e r :
92 double rhou n = s q r t ( square ( xn ) + square ( yn+(g 2+rad ) ) ) ;
93 double phiu n = atan2 ( ( yn+(g 2+rad ) ) , xn ) ;
94 double ruy n = s i n ( phiu n ) ;
95 double Bt i lde0 n [ ncoe f ] ;
96 double B0 n [ ncoe f ] ;
97 double Byrel =0;
98 f o r ( i n t ian =1; ian<ncoe f ; ian++){
99 Bt i lde0 n [ ian ]=an [ ian ] / ( g s l s f b e s s e l K n (1 , ian ∗kund∗ rhoo n ) ∗

100 roy n−g s l s f b e s s e l K n (1 , ian ∗kund∗ rhou n ) ∗ ruy n ) ;
101 B0 n [ ian ]=( Bt i lde0 n [ ian ] /Bmax0) ∗( g s l s f b e s s e l K n (1 , ian ∗kund∗ rhoo ) ∗
102 roy−g s l s f b e s s e l K n (1 , ian ∗kund∗ rhou ) ∗ ruy ) ∗ s i n ( ian ∗kund∗z ) ;
103 }
104 f o r ( i n t ian =1; ian<ncoe f ; ian++){
105 Byrel=Byrel+B0 n [ ian ] ;
106 }
107 r e turn −Byrel ; // in m
108 }
109

110

111 double getB0 ( f l o a t rad , f l o a t kund , f l o a t g 2 , double ∗ r , double ∗an , i n t
ncoe f ) {

112 // I n t e g r a l By( z )=−B0 s i n (2∗ pi ∗z/ lund ) to c a l c u l a t e with f o u r i e r the v e l o c i t y
p a r a l l e l , Clarke S .42

113 double &x = r [ 0 ] ;
114 double &y = r [ 1 ] ;
115 double &z = r [ 2 ] ;
116 double xn = 0 ;
117 double yn = 0 ;
118 // o−Fie ld
119 double rhoo = s q r t ( square ( x ) + square (y−(g 2+rad ) ) ) ;
120 double phio = atan2 ( (y−(g 2+rad ) ) , x ) ;
121 // Vector o f d i r e c t i o n
122 double rox = cos ( phio ) ;
123 double roy = s i n ( phio ) ;
124 // Four i e r :
125 double rhoo n = s q r t ( square ( xn ) + square (yn−(g 2+rad ) ) ) ;
126 double phio n = atan2 ( (yn−(g 2+rad ) ) , xn ) ;
127 double roy n = s i n ( phio n ) ;
128 // u−Fie ld
129 double rhou = s q r t ( square ( x ) + square ( y + ( g 2+rad ) ) ) ;
130 double phiu = atan2 ( ( y+(g 2+rad ) ) , x ) ;
131 // Vector o f d i r e c t i o n
132 double rux = cos ( phiu ) ;
133 double ruy = s i n ( phiu ) ;
134 // Four i e r :
135 double rhou n = s q r t ( square ( xn ) + square ( yn+(g 2+rad ) ) ) ;
136 double phiu n = atan2 ( ( yn+(g 2+rad ) ) , xn ) ;
137 double ruy n = s i n ( phiu n ) ;
138

139 double Bt i lde0 n [ ncoe f ] ;
140 double B0 n [ ncoe f ] ;
141 double B0 ku=0;
142 f o r ( i n t ian =1; ian<ncoe f ; ian++){
143 Bt i lde0 n [ ian ]=an [ ian ] / ( g s l s f b e s s e l K n (1 , ian ∗kund∗ rhoo n ) ∗
144 roy n−g s l s f b e s s e l K n (1 , ian ∗kund∗ rhou n ) ∗ ruy n ) ;
145 B0 n [ ian ]= Bt i lde0 n [ ian ] ∗ ( g s l s f b e s s e l K n (1 , ian ∗kund∗ rhoo ) ∗
146 roy−g s l s f b e s s e l K n (1 , ian ∗kund∗ rhou ) ∗ ruy ) ∗ (1/( ian ∗kund ) ) ;
147 }
148 f o r ( i n t ian =1; ian<ncoe f ; ian++){
149 B0 ku=B0 ku+B0 n [ ian ] ;
150 }
151 r e turn −B0 ku/1 e3 ; // in m
152 }
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A.2 Calculation of ∆λ/λ0, ∆xδ and σx
• Main code file: SCU FieldBy RadiationLambda vDec2014.cpp

1 #inc lude <iostream>
2 #inc lude <fstream>
3 #inc lude <c s t r i ng>
4 #inc lude <sstream>
5 #inc lude <iomanip>
6 #inc lude <c s td io>
7 #inc lude <cmath>
8 #inc lude <g s l / g s l s f b e s s e l . h>
9 #inc lude ”templates . cpp ”

10 #inc lude ”SCU parameter . cpp ”
11 #inc lude ”B cy l func . cpp ”
12 #inc lude ”B cy l pro to . cpp ”
13 us ing namespace std ;
14 // Function propotypes :
15 void getan ( i n t ncoef , s t r i n g f i l ename , double ∗an ) ;
16 void getbn ( i n t ncoef , s t r i n g f i l ename , double ∗bn) ;
17 double FSR getx0 ( f l o a t rad , f l o a t lund , f l o a t kund , f l o a t g 2 , double ∗an , i n t

ncoef , double Bmax0 rel ) ;
18 double g e tde l t ax ( f l o a t energy , double l1 , double l2 , double Bch) ;
19 double get s igmax ( double ∗an , i n t ncoe f ) ;
20 double ge t xBya l l ( double ∗an , i n t ncoe f ) ;
21 double g e t z B y a l l ( double ∗an , i n t ncoe f ) ;
22 double get xElambda ( double ∗an , i n t ncoe f ) ;
23

24 i n t main ( void ) {
25 //Summary :
26 f i l ename = filename summary ;
27 ofstream dataout summ ( f i l ename . c s t r ( ) ) ;
28 i f ( ! dataout summ ) {
29 cout << ”The f i l e ”<< f i lename summary << ” could not be opened . ” << endl ;
30 r e turn 1 ;
31 }
32 dataout summ <<”#################################################”<< endl ;
33 dataout summ <<”# Data from SCU FieldBy RadiationLambda vDec2014 . cpp ”<<

endl ;
34 dataout summ <<”# Period l ength [mm] : ”<< lund ∗1 e3 << endl ;
35 dataout summ <<”# Centra l energy E0 [MeV] : ”<< energy0 /1 e6 << endl ;
36 dataout summ <<”#################################################”<< endl ;
37 dataout summ <<”# optimal l 2 [mm] : ”<< l 2 o p t ∗1 e3 << endl ;
38 dataout summ <<”# optimal Bymax [T ] : ”<< Bymax opt << endl ;
39 dataout summ <<”#################################################”<< endl ;
40 dataout summ <<”# 1 . Energy [MeV] ”<< endl ;
41 dataout summ <<”# 2 . Dx [mm] ”<< endl ;
42 dataout summ <<”# 3 . xund [mm] ”<< endl ;
43 dataout summ <<”# 4 . Byreal [T] ”<< endl ;
44 dataout summ <<”# 5 . Kreal ”<< endl ;
45 dataout summ <<”# 6 . λ r e a l [nm] ”<< endl ;
46 dataout summ <<”# 7 . σ x [mm] ”<< endl ;
47

48 f i l ename = fi lename Esigmax ;
49 i f ( remove ( f i l ename . c s t r ( ) ) != 0 )
50 cout << ”Error d e l e t i n g f i l e ”<< f i l ename Esigmax << endl ;
51 e l s e
52 cout << ” F i l e ”<< f i l ename Esigmax << ” s u c c e s s f u l l y de l e t ed ” << endl ;
53 ofstream dataout Esigmax ( f i l ename . c s t r ( ) , s td : : i o s b a s e : : out |
54 std : : i o s b a s e : : app ) ;
55 i f ( ! dataout Esigmax ) {
56 cout << ”The f i l e ”<< f i l ename Esigmax << ” could not be opened . ” << endl ;
57 r e turn 1 ;
58 }
59

60 dataout Esigmax <<”###########################################”<< endl ;
61 dataout Esigmax <<”# Data from SCU FieldBy RadiationLambda vDec2014 . cpp ”<<

endl ;
62 dataout Esigmax <<”# Period l ength [mm] : ”<< lund ∗1 e3 << endl ;
63 dataout Esigmax <<”# Centra l energy E0 [MeV] : ”<< energy0 /1 e6 << endl ;
64 dataout Esigmax <<”###########################################”<< endl ;



A.2. Calculation of ∆λ/λ0, ∆xδ and σx 155

65 dataout Esigmax <<”# optimal l 2 [mm] : ”<< l 2 o p t ∗1 e3 << endl ;
66 dataout Esigmax <<”# optimal Bymax [T ] : ”<< Bymax opt << endl ;
67 dataout Esigmax <<”##########################################”<< endl ;
68

69 double an [ ncoe f ] ;
70 double bn [ ncoe f ] ;
71 getan ( ncoef , f i l e n a m e f o u r i e r , an ) ;
72 getbn ( ncoef , f i l e n a m e f o u r i e r , bn ) ;
73

74 r [0 ]=0 , r [1 ]=0 , r [2]=−z ;
75 Bmax0=FSR By( rad , kund , g 2 , r , an , ncoe f ) ;
76 Byrel=FSR Byrel ( rad , kund , g 2 , r , an , ncoef , Bmax0) ;
77 Bmax0 rel=Bymax opt∗ Byrel ;
78 x0=FSR getx0 ( rad , lund , kund , g 2 , an , ncoef , Bmax0 rel ) ;
79 de l tax0=ge tde l t ax ( energy0 , l1 , l 2 opt , Bch) ;
80

81 r [0 ]= x0 , r [1 ]=0 , r [2]=−z ;
82 B E0=Bymax opt∗FSR Byrel ( rad , kund , g 2 , r , an , ncoef , Bmax0) ;
83 K0=B E0∗abs ( e ) /(m0∗c ) /kund ;
84 lambda0=(lund /(2∗ square (gamma0) ) ) ∗(1+( square (K0) /2) ) ;
85

86 f o r ( i n t i ene rgy = 0 ; i ene rgy <= nep ; i ene rgy++ ) {
87

88 energy = energy0 +(delE − i ene rgy ∗2∗ delE/nep ) ;
89 gammaE=energy /511 e3 ;
90 de l tax=ge tde l t ax ( energy , l1 , l 2 opt , Bch) ;
91

92 i f ( energy==energy0 ) {dDxarray [0 ]= de l tax ;}
93 i f ( energy==energy0+delE ) {dDxarray [1 ]= de l tax ; }
94 i f ( energy==energy0−delE ) {dDxarray [2 ]= de l tax ; }
95

96 xund=de l tax +(x0−de l tax0 ) ;
97 r [0 ]= xund , r [1 ]=0 , r [2]=−z ;
98 B rea l=Bymax opt∗FSR Byrel ( rad , kund , g 2 , r , an , ncoef , Bmax0) ;
99 K rea l=B rea l ∗abs ( e ) /(m0∗c ) /kund ;

100 lambreal=(lund /(2∗ square (gammaE) ) ) ∗(1+( square ( K rea l ) /2) ) ;
101 lambda array [ i ene rgy ]= lambreal ∗1 e9 ;
102 sigmax E=get s igmax ( an , ncoe f ) ;
103 s igma array [ i ene rgy ]=sigmax E ;
104 dataout summ << f i x e d << s e t p r e c i s i o n (2 )<<energy /1 e6 << ”\ t ” ;
105 dataout summ << f i x e d << s e t p r e c i s i o n (6 ) ;
106 dataout summ << de l tax ∗1 e3 << ”\ t ”<< xund∗1 e3 << ”\ t ” ;
107 dataout summ << B rea l << ”\ t ”<< K rea l << ”\ t ” << lambreal ∗1e9<< ”\ t ”

<< sigmax E<<endl ;
108 }// end f o r energy
109

110 minL = maxL = lambda array [ 0 ] ;
111 f o r ( i n t i =0; i<=nep ; i++) {
112 i f ( lambda array [ i ] < minL ) minL = lambda array [ i ] ;
113 i f ( lambda array [ i ] > maxL ) maxL = lambda array [ i ] ;
114 }// c in . get ( ) ; // Pause
115

116 dataout summ << f i x e d << s e t p r e c i s i o n (3 ) ;
117 dataout summ << ”#############################################”<< endl ;
118 dataout summ << ”# λ min [nm] = ” << minL << endl ;
119 dataout summ << ”# λ max [nm] = ” << maxL << endl ;
120 dataout summ << ”# λ 0 [nm] = ” << lambda0∗1 e9 << endl ;
121 dataout summ << ”# ∆ λ / λ 0 = ( λ max− λ min ) / λ 0 [%] = ” << ( (

maxL−minL) /( lambda0∗1 e9 ) ) ∗100 << endl ;
122 dataout summ << ”############################################”<< endl ;
123 dataout summ << ”# Dx(E0+delE ) [mm] = ”<< dDxarray [ 1 ] ∗ 1 e3<<endl ;
124 dataout summ << ”# Dx(E0−delE ) [mm] = ”<< dDxarray [ 2 ] ∗ 1 e3<<endl ;
125 dataout summ << ”# Dx0(E0) [mm] = ”<< dDxarray [ 0 ] ∗ 1 e3<<endl ;
126 dataout summ << ”# Dx σ [mm] = ”<< ( dDxarray [2]−dDxarray [ 1 ] ) ∗1e3<<endl ;
127 dataout summ << ”############################################”<< endl ;
128

129 minsg = sigma array [ 0 ] ;
130 f o r ( i n t i s g =0; i sg<=nep ; i s g++) {
131 dataout Esigmax << f i x e d << s e t p r e c i s i o n (3 )<< s igma array [ i s g ]<< endl ;
132 i f ( s igma array [ i s g ] < minsg ) minsg = sigma array [ i s g ] ;
133 }
134

135 i f ( ( ( maxL−minL) /( lambda0∗1 e9 ) ) ∗100 <= 1) {
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136 dataout Esigmax << f i x e d << s e t p r e c i s i o n (3 )<< ”# Minimum σ x [mm] : ”<<
minsg << endl ;

137 dataout summ << f i x e d << s e t p r e c i s i o n (3 )<< ”# Minimum σ x [mm] :
”<<minsg << endl ;

138 } e l s e {
139 dataout Esigmax << ”# σ x : −, ∆ λ / λ E > 1 % ” <<endl ;
140 dataout summ << ”# σ x : −, ∆ λ / λ E > 1 % ”<< endl ;
141 }
142

143 dataout Esigmax . c l o s e ( ) ;
144 dataout summ . c l o s e ( ) ;
145 ge t xBya l l ( an , ncoe f ) ;
146 g e t z B y a l l ( an , ncoe f ) ;
147 get xElambda ( an , ncoe f ) ;
148 } // c in . get ( ) ; // Pause
149 //
150 // new user de f ined f u n c t i o n s
151 double ge t xBya l l ( double ∗an , i n t ncoe f ) {
152 f i l ename = f i l ename xBya l l ;
153 ofstream dataout xByal l ( f i l ename . c s t r ( ) ) ;
154 i f ( ! dataout xByal l ) {
155 cout << ”The f i l e ”<< f i l ename xBya l l << ” could not be opened . ” << endl ;
156 r e turn 1 ;
157 }
158 dataout xByal l <<”##########################################”<< endl ;
159 dataout xByal l <<”# Data from SCU FieldBy RadiationLambda vDec2014 . cpp ”<<

endl ;
160 dataout xByal l <<”# Period l ength [mm] : ”<< lund ∗1 e3 << endl ;
161 dataout xByal l <<”# Centra l energy E0 [MeV] : ”<< energy0 /1 e6 << endl ;
162 dataout xByal l <<”############################################”<< endl ;
163 dataout xByal l <<”# optimal l 2 [mm] : ”<< l 2 o p t ∗1 e3 << endl ;
164 dataout xByal l <<”# optimal Bymax [T ] : ”<< Bymax opt << endl ;
165 dataout xByal l <<”##########################################”<< endl ;
166 dataout xByal l <<”# 1 . x [mm] ”<< endl ;
167 dataout xByal l <<”# 2 . Byreal [T] ”<< endl ;
168

169 r [0 ]=0 , r [1 ]=0 , r [2]=−z ;
170 Bmax0=FSR By( rad , kund , g 2 , r , an , ncoe f ) ;
171 f o r ( double ix =0; i x <= xmax ; ix +=0.1){
172 double xund2=ix /1 e3 ;
173 r [0 ]= xund2 , r [1 ]=0 , r [2]=−z ;
174 double B rea lx=Bymax opt∗FSR Byrel ( rad , kund , g 2 , r , an , ncoef , Bmax0) ;
175 dataout xByal l << f i x e d << s e t p r e c i s i o n (6 ) << xund2∗1 e3 << ”\ t ” ;
176 dataout xByal l << f i x e d << s e t p r e c i s i o n (6 ) << B rea lx << endl ;
177 }
178 dataout xByal l . c l o s e ( ) ;
179 }
180

181 double g e t z B y a l l ( double ∗an , i n t ncoe f ) {
182 f i l ename = f i l e n a m e z B y a l l ;
183 ofstream dataout zBya l l ( f i l ename . c s t r ( ) ) ;
184 i f ( ! dataout zBya l l ) {
185 cout << ”The f i l e ”<< f i l e n a m e z B y a l l << ” could not be opened . ” << endl ;
186 r e turn 1 ;
187 }
188 dataout zBya l l <<”###########################################”<< endl ;
189 dataout zBya l l <<”# Data from SCU FieldBy RadiationLambda vDec2014 . cpp ”<<

endl ;
190 dataout zBya l l <<”# Period l ength [mm] : ”<< lund ∗1 e3 << endl ;
191 dataout zBya l l <<”# Centra l energy E0 [MeV] : ”<< energy0 /1 e6 << endl ;
192 dataout zBya l l <<”###########################################”<< endl ;
193 dataout zBya l l <<”# optimal l 2 [mm] : ”<< l 2 o p t ∗1 e3 << endl ;
194 dataout zBya l l <<”# optimal Bymax [T ] : ”<< Bymax opt << endl ;
195 dataout zBya l l <<”##########################################”<< endl ;
196 dataout zBya l l <<”# 1 . z [mm] ”<< endl ;
197 dataout zBya l l <<”# 2 . Byreal [T] ”<< endl ;
198

199 r [0 ]=0 , r [1 ]=0 , r [2]=−z ;
200 Bmax0=FSR By( rad , kund , g 2 , r , an , ncoe f ) ;
201 f o r ( double i z =0; i z <= zmax ; i z +=0.1){
202 double zund2=i z /1 e3 ;
203 r [0 ]=0 , r [1 ]=0 , r [2]=−zund2 ;
204 double B rea l z=Bymax opt∗FSR Byrel ( rad , kund , g 2 , r , an , ncoef , Bmax0) ;
205 dataout zByal l<< f i x e d << s e t p r e c i s i o n (6 ) << zund2∗1 e3 << ”\ t ” ;



A.2. Calculation of ∆λ/λ0, ∆xδ and σx 157

206 dataout zByal l<< f i x e d << s e t p r e c i s i o n (6 ) << B rea l z << endl ;
207 }
208 dataout zBya l l . c l o s e ( ) ;
209 }
210

211

212 double get xElambda ( double ∗an , i n t ncoe f ) {
213 f i l ename =filename xELambda ;
214 ofstream dataout xElambda ( f i l ename . c s t r ( ) ) ;
215 i f ( ! dataout xElambda ) {
216 cout << ”The f i l e ”<< filename xELambda << ” could not be opened . ” <<

endl ;
217 r e turn 1 ;
218 }
219 dataout xElambda <<”###########################################”<< endl ;
220 dataout xElambda <<”# Data from

SCU FieldBy RadiationLambda vDec2014 . cpp ”<< endl ;
221 dataout xElambda <<”# Period l ength [mm] : ”<< lund ∗1 e3 << endl ;
222 dataout xElambda <<”# Centra l energy E0 [MeV] : ”<< energy0 /1 e6 << endl ;
223 dataout xElambda <<”##########################################”<< endl ;
224 dataout xElambda <<”# optimal l 2 [mm] : ”<< l 2 o p t ∗1 e3 << endl ;
225 dataout xElambda <<”# optimal Bymax [T ] : ”<< Bymax opt << endl ;
226 dataout xElambda <<”###########################################”<< endl ;
227 dataout xElambda <<”# 1 . x [mm] ”<< endl ;
228 dataout xElambda <<”# 2 . Energy [MeV] ”<< endl ;
229 dataout xElambda <<”# 3 . λ [nm] ”<< endl ;
230

231 r [0 ]=0 , r [1 ]=0 , r [2]=−z ;
232 Bmax0=FSR By( rad , kund , g 2 , r , an , ncoe f ) ;
233

234 f o r ( double i en =600; i en >=0; ien−−){
235 double energy = ien ∗1 e6 ;
236 double gammaE=energy /511 e3 ;
237 double de l tax=ge tde l t ax ( energy , l1 , l 2 opt , Bch) ;
238 double xund=de l tax +(x0−de l tax0 ) ;
239 r [0 ]= xund , r [1 ]=0 , r [2]=−z ;
240 double B r e a l l=Bymax opt∗FSR Byrel ( rad , kund , g 2 , r , an , ncoef , Bmax0) ;
241 double K rea l=B r e a l l ∗abs ( e ) /(m0∗c ) /kund ;
242 double lambreal=(lund /(2∗ square (gammaE) ) ) ∗(1+( square ( K rea l ) /2) ) ;
243 dataout xElambda << f i x e d << s e t p r e c i s i o n (6 ) << xund∗1 e3 << ”\ t ” ;
244 dataout xElambda << f i x e d << s e t p r e c i s i o n (2 ) << energy /1 e6 <<”\ t ” ;
245 dataout xElambda << f i x e d << s e t p r e c i s i o n (6 )<<(lambreal ∗1 e9 )<< endl ;
246 }
247 dataout xElambda . c l o s e ( ) ;
248 }
249

250 double get s igmax ( double ∗an , i n t ncoe f ) {
251

252 double sigmaxEnd=0;
253 f i l ename = fi lename Esigmax ;
254 ofstream dataout Esigmax ( f i l ename . c s t r ( ) , s td : : i o s b a s e : : out |
255 std : : i o s b a s e : : app ) ;
256 i f ( ! dataout Esigmax ) {
257 cout << ”The f i l e ”<< f i l ename Esigmax << ” could not be opened . ” <<

endl ;
258 r e turn 1 ;
259 }
260 dataout Esigmax <<”# Calcu la te sigmax f o r : ”<< endl ;
261 dataout Esigmax <<”# Energy E [MeV] : ”<< energy /1 e6 << endl ;
262 dataout Esigmax <<”# xE [mm] : ”<< xund∗1 e3 << endl ;
263 dataout Esigmax <<”# λ E [nm ] : ”<< lambreal ∗1 e9 << endl ;
264 dataout Esigmax <<”############################################”<< endl ;
265 dataout Esigmax <<”# 1 . σ x [mm] ”<< endl ;
266 dataout Esigmax <<”# 2 . ∆ λ / λ E [%] ”<< endl ;
267 // sigmax :
268 f o r ( i n t idx =1; idx<=1000; idx++){
269 de l tx c=idx /1 e6 ;
270 xundmin=xund−de l tx c ;
271 r [0 ]= xundmin , r [1 ]=0 , r [2]=−z ;
272 B realmin=Bymax opt∗FSR Byrel ( rad , kund , g 2 , r , an , ncoef , Bmax0) ;
273 Krealmin=B realmin ∗abs ( e ) /(m0∗c ) /kund ;
274 lambrealmin=(lund /(2∗ square (gammaE) ) ) ∗(1+( square ( Krealmin ) /2) ) ;
275

276 xundmax=xund+de l tx c ;
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277 r [0 ]=xundmax , r [1 ]=0 , r [2]=−z ;
278 B realmax=Bymax opt∗FSR Byrel ( rad , kund , g 2 , r , an , ncoef , Bmax0) ;
279 Krealmax=B realmax∗abs ( e ) /(m0∗c ) /kund ;
280 lambrealmax=(lund /(2∗ square (gammaE) ) ) ∗(1+( square ( Krealmax ) /2) ) ;
281

282 i f ( ( abs ( lambrealmax−lambrealmin ) / lambreal ) ∗100 >= 1) {
283 break ;
284 } e l s e {
285 dataout Esigmax << f i x e d << s e t p r e c i s i o n (3 ) << 2∗ de l tx c ∗1 e3 << ”\ t ” ;
286 dataout Esigmax << f i x e d << s e t p r e c i s i o n (6 ) <<

( abs ( lambrealmax−lambrealmin ) / lambreal )∗100<< endl ;
287 sigmaxEnd=2∗de l tx c ∗1 e3 ;
288 }
289 }
290 dataout Esigmax <<”#######################################”<< endl ;
291 r e turn sigmaxEnd ;
292 }

A.3 Calculation of electron trajectories

• Main code file: SCU FSR tracks.cpp

1 #inc lude <iostream>
2 #inc lude <fstream>
3 #inc lude <c s t r i ng>
4 #inc lude <cmath>
5 #inc lude <sstream>
6 #inc lude <iomanip>
7 #inc lude <c s t d l i b>
8 #inc lude <algor ithm>
9 #inc lude ”templates . cpp ”

10 #inc lude ”FSR B cyl proto . cpp ”
11 #inc lude ”FSR B cyl func . cpp ”
12 #inc lude ”vector3d . cpp ”
13 #inc lude ”SCU parameter . cpp ”
14 us ing namespace std ;
15 // Function propotypes :
16 void getan ( s t r i n g f i l ename , double ∗an ) ;
17 void getbn ( s t r i n g f i l ename , double ∗bn) ;
18 double writehead ( ) ;
19 double getx0 ( double ∗an ) ;
20 double g e tde l t ax ( f l o a t energy , double l 2 ) ;
21 double g e t l 2 o p t ( double x0 , double ∗an ) ;
22 double writehead2 ( ) ;
23 i n t t r a j e c t o r y ( f l o a t energy , i n t i ene rgy ) ;
24 void t rans fo rm r ( double r l , double omega c , double v par , f l o a t t , double

∗ r p t ) ;
25 void trans form v ( double r l , double omega c , double v par , f l o a t t , double

∗ v p t ) ;
26 void update r ( double ∗ gu id ing cente r , double ∗ r p t , double ∗e1 , double

∗e2 , double ∗e3 , double ∗ r ) ;
27 void update v ( double ∗ gu id ing cente r , double ∗ v p t , double ∗e1 , double

∗e2 , double ∗e3 , double ∗v ) ;
28 void wr i t eout ( double ∗ r , o f s tream &dataout ) ;
29 double get s igmax ( i n t i ene rgy ) ;
30 double ge t xBya l l ( ) ;
31 double g e t z B y a l l ( ) ;
32 double get xElambda ( ) ;
33 double ge t s i gmag loba l ( ) ;
34

35 i n t main ( void ) {
36 //1.− Import an und bn c o e f f i c i e n t s :
37 getan ( f i l e n a m e f o u r i e r , an ) ;
38 getbn ( f i l e n a m e f o u r i e r , bn ) ;
39 //2.−Write Header in the f i l e s :
40 writehead ( ) ;
41 //3.−Calcu la te x0 f o r E0 :
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42 x0=getx0 ( an ) ;
43 //4.− Calcu la te l2Optimal :
44 l 2opt=g e t l 2 o p t ( x0 , an ) ;
45 //5.− Calcu la te lambda0 :
46 de l tax0=ge tde l t ax ( energy0 , l 2opt ) ;
47 r [0 ]= x0 , r [ 1 ] = 0 , r [ 2 ] = lund /4 ;
48 B E0=By( rad , kund , g 2 , r , an , ncoe f ) ;
49 K0 = (B E0∗abs ( e ) ∗( lund /1 e3 ) ) /(m0∗c ∗2∗ pi ) ;
50 lambdal0 = ( ( lund /1 e3 ) / (2∗ square (gamma0) ) ) ∗(1+ square (K0) /2) ;
51 writehead2 ( ) ;
52 //6.−Calcu la te the t r a j e c t o r y f o r every energy :
53 f o r ( i n t i ene rgy = 0 ; i ene rgy <= nep ; i ene rgy++ ) {
54 i f ( i ene rgy==0 | | i ene rgy ==5 | | i ene rgy ==10){//Only 132 ,120 und 108MeV
55 energy = energy0 +(delE − i ene rgy ∗2∗ delE/nep ) ;
56 t r a j e c t o r y ( energy , i ene rgy ) ; // equat ion f o r the t r a j e c t o r y in mm
57 }
58 //7.− Calcu la te sigmax :
59 get s igmax ( i ene rgy ) ;
60 } //end f o r energy
61 //8.− Calcu la te Breal x
62 ge t xBya l l ( ) ;
63 //9.− Calcu la te Breal z
64 g e t z B y a l l ( ) ;
65 //10.−Calcu la te lambdareal x
66 get xElambda ( ) ;
67 //11.−Calcu la te S igma globa l
68 ge t s i gmag loba l ( ) ;
69 r e turn 0 ;
70 } //end
71 //
72 // new user de f ined f u n c t i o n s
73 double g e t l 2 o p t ( double x0 , double ∗an ) {
74 i f ( kor rektur==0){
75 f i l ename = f i l ename l2op t ohne ; // without c o r r e c t i o n
76 } e l s e i f ( kor r ektur==1){
77 f i l ename =f i l e n a m e l 2 o p t m i t ; // with c o r r e c t i o n
78 }
79 f i l ename . append ( extens i on ) ;
80 ofstream dataout l2opt ( f i l ename . c s t r ( ) , s td : : i o s b a s e : : out |
81 std : : i o s b a s e : : app ) ;
82 i f ( ! da taout l2opt ) {
83 cout << ”The f i l e ”<< f i l ename << ” could not be opened . ” << endl ;
84 r e turn 1 ;
85 }
86 i f ( kor rektur==0){
87 f i l ename = filename summ ohne ; // without c o r r e c t i o n
88 } e l s e i f ( kor r ektur==1){
89 f i l ename = filename summ mit ; // with c o r r e c t i o n
90 }
91 f i l ename . append ( extens i on ) ;
92 ofstream dataout summ ( f i l ename . c s t r ( ) , s td : : i o s b a s e : : out |
93 std : : i o s b a s e : : app ) ;
94 i f ( ! dataout summ ) {
95 cout << ”The f i l e ”<< f i l ename << ” could not be opened . ” << endl ;
96 r e turn 1 ;
97 }
98 i n t i l 2min=l2min ∗100 ;
99 i n t i l2max=l2max ∗100 ; //2 dec imals

100 i n t n i=(il2max−i l 2min ) +1;
101 double l 2 t a r r a y [ n i ] ;
102 double dlam array [ n i ] ;
103 double mindlam , minl2t ;
104 double r [ 3 ] ;
105 f o r ( i n t i l 2=i l2min ; i l 2<=il2max ; i l 2 ++){
106 double l 2 t=i l 2 /1 e2 ;
107 double lamb0 (0) ;
108 double de l t ax0 t=ge tde l t ax ( energy0 , l 2 t ) ;
109 const i n t n=nep+1; // number o f e lements in the array
110 double lambda array [ n ] ;
111 double min , max ;
112 f o r ( i n t i = 0 ; i <= nep ; i++ ) {
113 double energy = energy0 +(delE − i ∗2∗ delE/nep ) ;
114 double gammaE=energy /511 e3 ;
115 double de l tax=ge tde l t ax ( energy , l 2 t ) ;
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116 double xund=de l tax +(x0−de l t ax0 t ) ;
117 r [0 ]= xund , r [ 1 ] = 0 , r [ 2 ] = lund /4 ;
118 double B rea l=By( rad , kund , g 2 , r , an , ncoe f ) ;
119 double Kreal= ( B rea l ∗abs ( e ) ∗( lund /1 e3 ) ) /(m0∗c ∗2∗ pi ) ;
120 double lambreal= ( ( lund /1 e3 ) / (2∗ square (gammaE) ) ) ∗(1+ square ( Kreal ) /2) ;
121 lambda array [ i ]= lambreal ∗1 e9 ; // in nm
122 i f ( energy==energy0 ) {
123 lamb0=lambreal ;
124 }
125 } //end f o r energy
126 min = max = lambda array [ 0 ] ;
127 f o r ( i n t i =0; i<n ; i++) {
128 i f ( lambda array [ i ] < min ) min = lambda array [ i ] ;
129 i f ( lambda array [ i ] > max ) max = lambda array [ i ] ;
130 }
131 dataout l2opt << f i x e d << s e t p r e c i s i o n (6 ) << l 2 t << ”\ t ” ;
132 dataout l2opt <<f i x e d << s e t p r e c i s i o n (6 )<<((max−min) /( lamb0∗1 e9 ) ) ∗100

<< endl ;
133

134 l 2 t a r r a y [ i l 2−i l 2min ]= l 2 t ; // in mm
135 dlam array [ i l 2−i l 2min ]=((max−min) /( lamb0∗1 e9 ) ) ∗100 ; // in%
136 }//end f o r i l 2
137 // search minimum deltalambda /lambda0 und l 2 optimal
138 mindlam = dlam array [ 0 ] ;
139 minl2t=l 2 t a r r a y [ 0 ] ;
140 f o r ( i n t i =0; i<ni ; i++) {
141 i f ( dlam array [ i ] < mindlam )
142 {
143 mindlam = dlam array [ i ] ;
144 minl2t=l 2 t a r r a y [ i ] ;
145 }
146 }
147 dataout l2opt << ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”<<endl ;
148 dataout l2opt << ”So lu t i on : ”<<endl ;
149 dataout l2opt <<f i x e d << s e t p r e c i s i o n (6 )<<”Minimum ∆ λ

/ λ =( λ max− λ min ) / λ 0 [ % ] : ” <<mindlam<< endl ;
150 dataout l2opt <<f i x e d << s e t p r e c i s i o n (6 )<<” l 2 optimal [mm] : ” <<minl2t<<

endl ;
151 dataout l2opt . c l o s e ( ) ;
152 double l 2opt=minl2t ;
153 dataout summ <<”# C o e f f i c i e n t s an : ”<< endl ;
154 f o r ( i n t ian =0; ian<=ncoe f ; ian++){
155 dataout summ <<f i x e d << s e t p r e c i s i o n (16) <<”#

a [ ”<<ian<<” ] : ”<<an [ ian]<<endl ;
156 }
157 dataout summ <<f i x e d << s e t p r e c i s i o n (16) <<”# und B max [T ] : ”<<B max<<

endl ;
158 dataout summ<<”# Optimal l 2 [mm] : ”<<l2opt<< endl ;
159

160 r e turn l2opt ;
161 }
162 i n t t r a j e c t o r y ( f l o a t energy , i n t i ene rgy ) {
163 gammaE=energy /511 e3 ; // cout <<f i x e d << s e t p r e c i s i o n (16)<<”gammaE:

”<<gammaE<<endl ;
164 m e=m0∗gammaE;
165 i f ( kor rektur==0){
166 f i l ename = fi lename Dx ohne ; // without c o r r e c t i o n
167 } e l s e i f ( kor r ektur==1){
168 f i l ename = fi lename Dx mit ; // with c o r r e c t i o n
169 }
170 f i l ename . append ( extens i on ) ;
171 ofstream dataout Dx ( f i l ename . c s t r ( ) , s td : : i o s b a s e : : out |
172 std : : i o s b a s e : : app ) ;
173 i f ( ! dataout Dx ) {
174 cout << ”The f i l e ”<< f i l ename << ” could not be opened . ” << endl ;
175 r e turn 1 ;
176 }
177 dataout Dx << f i x e d << s e t p r e c i s i o n (2 )<< energy /1 e6 << ”\ t ” ;
178 dataout Dx << f i x e d << s e t p r e c i s i o n (16) ;
179 //summary :
180 i f ( kor rektur==0){
181 f i l ename = filename summ ohne ; // without c o r r e c t i o n
182 } e l s e i f ( kor r ektur==1){
183 f i l ename = filename summ mit ; // with c o r r e c t i o n
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184 }
185 f i l ename . append ( extens i on ) ;
186 ofstream dataout summ ( f i l ename . c s t r ( ) , s td : : i o s b a s e : : out |
187 std : : i o s b a s e : : app ) ;
188 i f ( ! dataout summ ) {
189 cout << ”The f i l e ”<< f i l ename << ” could not be opened . ” << endl ;
190 r e turn 1 ;
191 }
192 dataout summ << f i x e d << s e t p r e c i s i o n (2 )<<energy /1 e6 << ”\ t ” ;
193 dataout summ << f i x e d << s e t p r e c i s i o n (16) ;
194 i f ( kor rektur==0){
195 f i l ename = fi lename xEampl ohne ; // without c o r r e c t i o n
196 } e l s e i f ( kor r ektur==1){
197 f i l ename = fi lename xEampl mit ; // with c o r r e c t i o n
198 }
199 ofstream dataout xEampl ( f i l ename . c s t r ( ) , s td : : i o s b a s e : : out |
200 std : : i o s b a s e : : app ) ;
201 i f ( ! dataout xEampl ) {
202 cout << ”The f i l e ”<< f i l ename << ” could not be opened . ” << endl ;
203 r e turn 1 ;
204 }
205 i f ( kor rektur==1){
206 dataout xEampl << f i x e d << s e t p r e c i s i o n (2 ) << energy /1 e6 << ” ” ;
207 dataout xEampl << f i x e d << s e t p r e c i s i o n (16) ;
208 }
209 i f ( kor rektur==0){
210 f i l ename = fi lename xEBy ohne ; // without c o r r e c t i o n
211 } e l s e i f ( kor r ektur==1){
212 f i l ename = fi lename xEBy mit ; // with c o r r e c t i o n
213 }
214 f i l ename . append ( extens i on ) ;
215 ofstream dataout xEBy ( f i l ename . c s t r ( ) , s td : : i o s b a s e : : out |
216 std : : i o s b a s e : : app ) ;
217 i f ( ! dataout xEBy ) {
218 cout << ”The f i l e ”<< f i l ename << ” could not be opened . ” << endl ;
219 r e turn 1 ;
220 }
221 s t r i ng s t r eam eout ; // nece s sa ry f o r the name o f the energy
222 eout << energy /1 e6 ;
223 i n t d e l f i l e=energy /1 e6 ;
224 e n e r p r i n t = eout . s t r ( ) ;
225 r e p l a c e ( e n e r p r i n t . begin ( ) , e n e r p r i n t . end ( ) , ’ . ’ , ’ p ’ ) ;
226 i f ( kor rektur==0){
227 f i l ename = f i l ename t rack ohne ; // without c o r r e c t i o n
228 } e l s e i f ( kor r ektur==1){
229 f i l ename = f i l e n a m e t r a c k m i t ; // with c o r r e c t i o n
230 }
231 f i l ename . append ( e n e r p r i n t ) ;
232 f i l ename . append ( extens i on ) ;
233 const char ∗ f i l e n a m e t e s t = f i l ename . c s t r ( ) ;
234 ofstream dataout t rack ( f i l ename . c s t r ( ) ) ;
235 i f ( ! dataout t rack ) {
236 cout << ”The f i l e ”<< f i l ename << ” could not be opened . ” << endl ;
237 r e turn 1 ;
238 }
239 dataout t rack <<”# 1 . : x [mm] ”<< endl ;
240 dataout t rack <<”# 2 . : y [mm] ”<< endl ;
241 dataout t rack <<”# 3 . : z [mm] ”<< endl ;
242 dataout t rack <<”# 4 . : By [T] ”<< endl ;
243 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
244 de l tax=ge tde l t ax ( energy , l 2opt ) ;
245 xund=de l tax +(x0−de l tax0 ) ;
246 dataout summ << de l tax << ”\ t ”<< xund << ”\ t ” ;
247 //Energy , x , amplitude :
248 i f ( kor rektur==1){dataout xEampl << xund << ” ” ;}
249 i f ( energy==energy0 ) { dDxarray [0 ]= de l tax ; cout <<”de l tx0 : ”<<dDxarray [ 0 ]

<<endl ;}
250 i f ( energy==energy0+delE ) { dDxarray [1 ]= de l tax ; cout <<”d e l t x p l u s : ”<<

dDxarray [ 1 ] <<endl ;}
251 i f ( energy==energy0−delE ) { dDxarray [2 ]= de l tax ; cout <<”deltxminus :

”<<dDxarray [ 2 ] <<endl ;}
252 r [0 ]= xund , r [ 1 ] = 0 , r [ 2 ] = lund /4 ;
253 B rea l=By( rad , kund , g 2 , r , an , ncoe f ) ;
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254 dataout xEBy << f i x e d << s e t p r e c i s i o n (16) << xund << ”\ t ” << energy /1 e6
<< ”\ t ” << B rea l <<endl ;

255 Kreal= ( B rea l ∗abs ( e ) ∗( lund /1 e3 ) ) /(m0∗c ∗2∗ pi ) ;
256 lambreal= ( ( lund /1 e3 ) / (2∗ square (gammaE) ) ) ∗(1+ square ( Kreal ) /2) ;
257 dataout summ << B rea l << ”\ t ”<<Kreal << ”\ t ” << lambreal ∗1e9<<endl ;
258 lambda array [ i ene rgy ]= lambreal ∗1 e9 ; // in nm
259 x array [ i ene rgy ]=xund ;
260 r [0 ]= xund , r [ 1 ] = 0 , r [ 2 ] = 0 ;
261 B0 ku=getB0 ( rad , kund , g 2 , r , an , ncoe f ) ;
262 // v tmax = ( B t∗e ∗( lund /1 e3 ) ) /(2∗ pi ∗m e ) ; // m/s , c l a r k e : 42
263 // I t i s the I n t e g r a l s i n ( nkuz )
264 v tmax= ( e∗B0 ku ) /( m e ) ;
265 v p = s q r t ( square ( c ) − square ( v tmax ) ) ; // m/ s
266 v [ 0 ] = v tmax , v [ 1 ] = 0 , v [ 2 ] = v p ; // in m/ s
267 r [ 0 ] =xund , r [ 1 ] = 0 , r [ 2 ] = 0 ; // in mm
268 double &x = r [ 0 ] , &y = r [ 1 ] , &z = r [ 2 ] ; // in mm
269 wr i teout ( r , dataout t rack ) ; // r in mm
270 x1c=r [ 0 ] ;
271 non=0;
272 aon=0;
273 whi le ( z<=Nper∗ lund ) {
274 i f ( kor rektur==0){ // cout <<”Ohne Korrektur . . . . . . . . . . . . . . ” < < endl ;
275 B[ 0 ] = Bx( rad , kund , g 2 , 1 , r , an , ncoe f ) , B[1 ]=By( rad , kund , g 2 ,

r , an , ncoe f ) , B[2 ]=Bz( rad , kund , g 2 , 1 , r , bn , ncoe f ) ;
276 } e l s e i f ( kor r ektur==1){// cout <<”Mit Korrektur . . . . . . . . . . . . . . ” < < endl ;
277 Bykorr=c o e f a ∗pow(x , 3 )+co e f b ∗pow(x , 2 )+c o e f c ∗x+c oe f d ;
278 B[1]=By( rad , kund , g 2 , r , an , ncoe f )+Bykorr ;
279 }
280 dataout t rack << f i x e d << s e t p r e c i s i o n (16) << B[ 1 ] << endl ;
281 i f ( z< lund ) {
282 i f ( z> 3∗ lund /4 ) {
283 i f (x>=x2l ) {
284 x2 l=x ;
285 z 2 l=z ;
286 }}}
287 i f ( non==0){
288 i f ( z>lund ) {
289 x2r=x ;
290 z2r=z ;
291 non=1;
292 }}
293 // Amplitude :
294 i f ( kor rektur==1){
295 i f ( aon==0){
296 i f ( z>lund /4) {
297 xamp=x ;
298 dataout xEampl << x1c−xamp<< endl ;
299 aon=1;
300 }}}
301 i f ( modulo3d (B) != 0) {
302 sca larmult3d ( r ,1/1 e3 , r ) ; //added r in m
303 unitvec3d ( unitvecB ,B) ;
304 outerproduct3d ( F l , v ,B) ; // c o r r e c t e d v in m/ s
305 sca larmult3d ( F l , e , F l ) ;
306 vec v par [ 0 ] = unitvecB [ 0 ] ,

vec v par [1 ]= unitvecB [ 1 ] , vec v par [2 ]= unitvecB [ 2 ] ;
307 sca larmult3d ( vec v par , innerproduct3d (v , unitvecB ) , vec v par ) ;
308 v par = modulo3d ( vec v par ) ;
309 subs t rac t3d ( vec v perp , v , vec v par ) ;
310 v perp = modulo3d ( vec v perp ) ;
311 omega c = abs ( e∗modulo3d (B) /m e ) ;
312 r l = v perp / omega c ; // Larmor rad iu s
313 sca larmult3d ( a u x i l i a r y c a l c u l a t i o n , r l /modulo3d ( F l ) , F l ) ;
314 add3d ( gu id ing cente r , r , a u x i l i a r y c a l c u l a t i o n ) ;
315 sca larmult3d ( e1 ,−1/modulo3d ( F l ) , F l ) ; // F , the minus compensate the

charge o f an e l e c t r o n
316 sca larmult3d ( e2 , 1/ v perp , vec v perp ) ; // v perp
317 unitvec3d ( e3 , B) ;
318 t rans fo rm r ( r l , omega c , v par , to f , r p t ) ;
319 t rans form v ( r l , omega c , v par , to f , v p t ) ;
320 update r ( gu id ing cente r , r p t , e1 , e2 , e3 , r ) ; // in m
321 update v ( gu id ing cente r , v p t , e1 , e2 , e3 , v ) ; // in m/ s
322 sca larmult3d ( r , 1 e3 , r ) ; //added r in mm
323 wr i teout ( r , dataout t rack ) ;
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324 } e l s e {
325 sca larmult3d ( r ,1/1 e3 , r ) ; //added r in m
326 d e l r [ 0 ] = t o f ∗v [ 0 ] , d e l r [1 ]= t o f ∗v [ 1 ] , d e l r [2 ]= t o f ∗v [ 2 ] ;
327 add3d ( r , r , d e l r ) ;
328 sca larmult3d ( r , 1 e3 , r ) ; //added r in mm
329 wr i teout ( r , dataout t rack ) ;
330 }
331 } //end whi le z
332 dataout t rack . c l o s e ( ) ;
333 dataout xEBy . c l o s e ( ) ;
334 dataout xEampl . c l o s e ( ) ;
335 //Dx−data :
336 x2c=x2r ;
337 Dxc1=x2c−x1c ; // in mm
338 Dxc100=x−x1c ; // in mm
339 Rlc =((( square ( lund ) )+(square (Dxc1 ) ) ) /(2∗Dxc1 ) ) /1 e3 ; // in m
340 BRlc=(m0∗c∗gammaE) /( e∗Rlc ) ; // in T
341 dataout Dx << x1c<< ”\ t ”<< x2c<< ”\ t ” ;
342 dataout Dx << Dxc1<< ”\ t ” << Rlc<< ”\ t ”<< BRlc<< ”\ t ”<<Dxc100<<endl ;
343 dataout Dx . c l o s e ( ) ;
344 }
345 void t rans fo rm r ( double r l , double omega c , double v par , f l o a t t , double

∗ r p t ) {
346 r p t [ 0 ] = r l ∗ cos ( omega c∗ t ) , r p t [ 1 ] = r l ∗ s i n ( omega c∗ t ) ,

r p t [ 2 ] = v par ∗ t ;
347 }
348 void trans form v ( double r l , double omega c , double v par , f l o a t t , double

∗ v p t ) {
349 v p t [ 0 ] = −omega c∗ r l ∗ s i n ( omega c∗ t ) , v p t [ 1 ] =

omega c∗ r l ∗ cos ( omega c∗ t ) , v p t [2 ]= v par ;
350 }
351 void update r ( double ∗ gu id ing cente r , double ∗ r p t , double ∗e1 , double

∗e2 , double ∗e3 , double ∗ r ) {
352 double r1 [ 3 ] , r2 [ 3 ] , r3 [ 3 ] ;
353 sca larmult3d ( r1 , r p t [ 0 ] , e1 ) ;
354 sca larmult3d ( r2 , r p t [ 1 ] , e2 ) ;
355 sca larmult3d ( r3 , r p t [ 2 ] , e3 ) ;
356

357 r [0 ]= g u i d i n g c e n t e r [0 ]+ r1 [0 ]+ r2 [0 ]+ r3 [ 0 ] ;
358 r [1 ]= g u i d i n g c e n t e r [1 ]+ r1 [1 ]+ r2 [1 ]+ r3 [ 1 ] ;
359 r [2 ]= g u i d i n g c e n t e r [2 ]+ r1 [2 ]+ r2 [2 ]+ r3 [ 2 ] ;
360 }
361 void update v ( double ∗ gu id ing cente r , double ∗ v p t , double ∗e1 , double

∗e2 , double ∗e3 , double ∗v ) {
362 double v1 [ 3 ] , v2 [ 3 ] , v3 [ 3 ] ;
363 sca larmult3d ( v1 , v p t [ 0 ] , e1 ) ;
364 sca larmult3d ( v2 , v p t [ 1 ] , e2 ) ;
365 sca larmult3d ( v3 , v p t [ 2 ] , e3 ) ;
366

367 v [0 ]= v1 [0 ]+ v2 [0 ]+ v3 [ 0 ] ;
368 v [1 ]= v1 [1 ]+ v2 [1 ]+ v3 [ 1 ] ;
369 v [2 ]= v1 [2 ]+ v2 [2 ]+ v3 [ 2 ] ;
370 }
371 void wr i t eout ( double ∗ r , o f s tream &dataout ) {
372 dataout << f i x e d << s e t p r e c i s i o n (16) << r [ 0 ] << ”\ t ” << r [ 1 ] << ”\ t ” <<

r [ 2 ] << ”\ t ” ;
373 }

• Vector functions: vector3d.cpp

1 double modulo3d ( double ∗ r ) ;
2 void unitvec3d ( double ∗ erg , double ∗ r ) ;
3 void outerproduct3d ( double ∗ erg , double ∗a , double ∗b) ;
4 void sca larmult3d ( double ∗ erg , double s ca l a r , double ∗ r ) ;
5 double innerproduct ( double ∗a , double ∗b) ;
6 void add3d ( double ∗ erg , double ∗a , double ∗b) ;
7 void subst rac t3d ( double ∗ erg , double ∗a , double ∗b) ;
8 double modulo3d ( double ∗ r ) {
9 double modulo = s q r t ( square ( r [ 0 ] ) + square ( r [ 1 ] ) + square ( r [ 2 ] ) ) ;

10 r e turn modulo ;
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11 }
12 void unitvec3d ( double ∗ erg , double ∗ r ) {
13 double modulo = modulo3d ( r ) ;
14 f o r ( i n t i = 0 ; i < 3 ; i++ ) {
15 erg [ i ] = r [ i ] / modulo ;
16 }
17 }
18 void outerproduct3d ( double ∗ erg , double ∗a , double ∗b) {
19 erg [ 0 ] = a [ 1 ] ∗ b[2]−a [ 2 ] ∗ b [ 1 ] ;
20 erg [ 1 ] = a [ 2 ] ∗ b[0]−a [ 0 ] ∗ b [ 2 ] ;
21 erg [ 2 ] = a [ 0 ] ∗ b[1]−a [ 1 ] ∗ b [ 0 ] ;
22 }
23 void sca larmult3d ( double ∗ erg , double s ca l a r , double ∗ r ) {
24 f o r ( i n t i =0; i <3; ++i ) {
25 erg [ i ]= r [ i ]∗ s c a l a r ;
26 }
27 }
28 double innerproduct3d ( double ∗a , double ∗b) {
29 double r e s u l t ;
30 f o r ( i n t i =0; i <3; i++){
31 r e s u l t+=a [ i ]∗ b [ i ] ;
32 }
33 r e turn r e s u l t ;
34 }
35 void add3d ( double ∗ erg , double ∗a , double ∗b) {
36 f o r ( i n t i =0; i <3; i++){
37 erg [ i ] = a [ i ]+b [ i ] ;
38 }
39 }
40 void subst rac t3d ( double ∗ erg , double ∗a , double ∗b) {
41 f o r ( i n t i =0; i <3; i++){
42 erg [ i ] = a [ i ]−b [ i ] ;
43 }
44 }



B. Iron cylindrical undulator
database information

As explained in Section 3.4.2 a database with the optimized results for 81 iron
cylindrical undulator models was made. The results are summarized in 3 tables
according to the external radius values. Cells shaded in light gray show ∆λ/λ0[%] <
1 %, and the cell shaded in dark gray shows the minimum ∆λ/λ0[%] value of the
table.
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Cylindrical undulator models with r = 25 mm.

OPERA opt.

g[mm] λu[mm] J[A/mm2] Bmaxy [T] l2[mm] λ0[nm] ∆λ/λ0[%] ∆xδ[mm]

1.1

08

0800 1.705 385 102 1.507 5.07

1000 1.958 299 111 1.274 4.07

1200 2.209 244 120 1.250 3.43

10

0800 2.079 206 168 0.852 2.99

1000 2.426 168 195 1.101 2.54

1200 2.769 143 225 1.316 2.25

12

0800 2.443 161 326 2.124 2.46

1000 2.892 138 404 2.099. 2.19

1200 3.337 123 492 2.103 2.02

1.3

08

0800 1.531 488 095 1.982 6.27

1000 1.763 361 102 1.101 4.79

1200 1.993 291 110 0.986 3.98

10

0800 1.891 241 153 0.659 3.39

1000 2.214 192 175 0.907 2.82

1200 2.534 161 200 1.131 2.46

12

0800 2.250 172 283 1.835 2.59

1000 2.672 145 348 1.874 2.27

1200 3.091 128 422 1.917 2.08

1.5

08

0800 1.379 659 090 3.773 8.27

1000 1.592 458 096 1.991 5.92

1200 1.804 351 102 1.070 4.68

10

0800 1.730 280 142 0.561 3.85

1000 2.031 221 160 0.707 3.16

1200 2.328 182 181 0.963 2.71

12

0800 2.079 188 251 1.598 2.78

1000 2.476 155 305 1.699 2.39

1200 2.869 135 368 1.792 2.16

Table B.1: Summary of the optimization results for several iron cylindrical undulator
models with r = 25 mm and different values of gap width on axis (g), period length
(λu) and current density (J).
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Cylindrical undulator models with r = 30 mm.

OPERA opt.

g[mm] λu[mm] J[A/mm2] Bmaxy [T] l2[mm] λ0[nm] ∆λ/λ0[%] ∆xδ[mm]

1.1

08

0800 1.716 422 102 1.479 5.50

1000 1.970 330 111 1.258 4.43

1200 2.224 270 121 1.248 3.73

10

0800 2.091 229 169 0.840 3.25

1000 2.441 188 196 1.097 2.78

1200 2.787 161 226 1.315 2.46

12

0800 2.461 180 329 2.129 2.68

1000 2.914 155 408 2.116. 2.39

1200 3.363 140 497 2.123 2.22

1.3

08

0800 1.539 536 095 1.989 6.83

1000 1.772 397 102 1.056 5.21

1200 2.005 321 110 0.954 4.33

10

0800 1.903 267 154 0.651 3.70

1000 2.229 214 176 0.912 3.08

1200 2.551 180 201 1.156 2.68

12

0800 2.267 193 285 1.852 2.83

1000 2.693 163 350 1.874 2.48

1200 3.115 144 425 1.958 2.26

1.5

08

0800 1.387 718 090 3.733 8.96

1000 1.602 502 096 1.964 6.44

1200 1.816 386 102 1.051 5.09

10

0800 1.741 309 142 0.544 4.19

1000 2.045 245 161 0.710 3.44

1200 2.345 202 182 0.990 2.94

12

0800 2.097 209 253 1.587 3.02

1000 2.497 173 308 1.736 2.60

1200 2.894 152 372 1.810 2.36

Table B.2: Summary of the optimization results for several iron cylindrical undulator
models with r = 30 mm and different values of gap width on axis (g), period length
(λu) and current density (J).
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Cylindrical undulator models with r = 35 mm.

OPERA opt.

g[mm] λu[mm] J[A/mm2] Bmaxy [T] l2[mm] λ0[nm] ∆λ/λ0[%] ∆xδ[mm]

1.1

08

0800 1.722 457 102 1.451 5.91

1000 1.977 358 111 1.236 4.76

1200 2.232 294 121 1.231 4.01

10

0800 2.098 251 169 0.844 3.51

1000 2.451 206 196 1.121 2.99

1200 2.799 178 227 1.290 2.66

12

0800 2.474 198 331 2.144 2.89

1000 2.930 172 410 2.117. 2.59

1200 3.383 155 500 2.115 2.39

1.3

08

0800 1.544 576 096 1.900 7.30

1000 1.779 430 103 1.089 5.60

1200 2.013 349 110 0.972 4.65

10

0800 1.912 291 154 0.658 3.98

1000 2.241 234 177 0.927 3.31

1200 2.565 198 202 1.141 2.89

12

0800 2.279 211 287 1.860 3.04

1000 2.708 180 353 1.909 2.68

1200 3.133 160 428 1.932 2.45

1.5

08

0800 1.394 771 090 3.677 9.58

1000 1.610 542 096 1.936 6.90

1200 1.824 418 102 1.030 5.46

10

0800 1.751 336 143 0.553 4.50

1000 2.057 267 162 0.716 3.70

1200 2.359 221 183 0.995 3.16

12

0800 2.110 228 254 1.610 3.24

1000 2.513 191 310 1.738 2.81

1200 2.913 167 374 1.799 2.53

Table B.3: Summary of the optimization results for several iron cylindrical undulator
models with r = 35 mm and different values of gap width on axis (g), period length
(λu) and current density (J).



C. Magnetic field Fourier-series
expansion of a cylindrical
undulator

In cylindrical coordinates, Laplace’s equation for a periodic potential in z-direction
is given by

∆Φ =
1

ρ

∂

∂ρ

(
ρ
∂Φ

∂ρ

)
+

1

ρ2

∂2Φ

∂φ2
+
∂2Φ

∂z2
= 0. (C.1)

The general solution of Equation (C.1) is [40]

Φ (ρ, φ, z) = Φ̃ρ(ρ)Φ̃φ(φ)Φ̃z(z), (C.2)

where Φ̃z(z) = sin(kuz) and for symmetry reasons it applies to a cylindrical coil
former Φ̃φ(φ) = constant and then ∂Φ̃φ(φ)/∂φ = 0.

Equation (C.2) can be written in terms of a series Fourier expansion as:

Φ (ρ, φ, z) =
∞∑
n=0

Φ̃ρn(ρ)Φ̃φn(φ) sin(nkuz). (C.3)

Substituting Equation (C.3) into Equation (C.1) yields [38]:
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∞∑
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(
∂2Φ̃ρn

∂ρ2
+

1

ρ
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∂ρ2
+

1

ρ
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∂ρ
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(C.4)

Equation (C.4) looks like the modified Bessel differential equation of second
order:

x2 ∂
2y

∂x2
+ x

∂y

∂x
−
(
x2 −m2

)
y = 0 (C.5)
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where if m = 0, x = ρ and y = Φ̃ρn, we have:

∞∑
n=0

(
ρ2∂

2Φ̃ρn

∂ρ2
+ ρ

∂Φ̃ρn

∂ρ
− ρ2Φ̃ρn

)
= 0
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∂ρ2
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1
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∂ρ
− Φ̃ρn

)
= 0

(C.6)

and doing the transformation of the variable ρ to nkuρ yields:

∞∑
n=0

(
∂2Φ̃ρn(nkuρ)

∂(nkuρ)2
+

1

(nkuρ)

∂Φ̃ρn(nkuρ)

∂(nkuρ)
− Φ̃ρn(nkuρ)

)
= 0. (C.7)

The solutions of Equation (C.7) are the modified Bessel functions of the first and
second kind: I0(nkuρ) and K0(nkuρ).

The following conditions are applied to the potential Φ̃ρn:

lim
ρ→∞

Φ̃ρn = 0 (C.8)

∂Φ̃ρn

∂ρ
< 0 ∀ρ. (C.9)

Both conditions are met only with K0(nkuρ) and therefore it applies:

Φ̃ρn(nkuρ) = K0(nkuρ). (C.10)

and the total potential is then:

Φ (ρ, φ, z) = Φ (ρ, z) =
∞∑
n=0

B̃∗K0(nkuρ) sin(nkuz), (C.11)

where B̃∗ is a constant, which has to be still determined.

The magnetic field is obtained by:

~B = −~∇Φ(ρ, z) = −~∇
∞∑
n=0

(
B̃∗K0(nkuρ) sin(nkuz)

)
=
∞∑
n=0

−
(
∂

∂ρ
êρ +

1

ρ

∂

∂φ
êφ +

∂

∂z
êz

)
B̃∗K0(nkuρ) sin(nkuz) (C.12)

=
∞∑
n=0

[
−B̃∗

(
∂

∂ρ
K0(nkuρ)

)
sin(nkuz)êρ − B̃∗nkuK0(nkuρ) cos(nkuz)êz

]
.

Using the following recurrence formula [38]:

∂

∂ρ
K0(nkuρ) = −nkuK1(nkuρ) (C.13)
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then the magnetic field in a cylindrical undulator is:

~B =
∞∑
n=0

B̃ [sin(nkuz)K1(nkuρ)êρ + cos(nkuz)K0(nkuρ)êz] (C.14)

where B̃ = −B̃∗nku.

The y-component of the magnetic field Fourier-series expansion for the cylindri-
cal undulator results:

By =
∞∑
n=0

B̃ sin(nkuz)K1 (nkuρ) êρ (C.15)
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A B C D E F

Für diese Zeichnung behalten wir uns alle Rechte vor, auch für
den Fall der Patenterteilung oder Gebrauchsmustereintragung.
Ohne unsere vorherige Zustimmung darf diese Zeichnung weder
vervielfältigt noch Dritten zugänglich gemacht werden; sie darf
durch den Empfänger oder Dritte auch nicht in anderer Weise
missbräuchlich verwertet werden. Zuwiderhandlungen verpflich-
ten zu Schadenersatz und können strafrechtliche Folgen haben.
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Für diese Zeichnung behalten wir uns alle Rechte vor, auch für
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