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Abstract

The simultaneous occurrence of two or more extreme events, e.g. a heat wave and a drought,

also referred to as a compound extreme event, has a low probability but a possibly higher impact

than a univariate extreme event. Therefore, high resolution regional information about future

changes in their number and temporal succession as well as the uncertainty of these changes are

of high relevance when it comes to planning of climate change related adaptation and mitigation

measures. However, the methods to analyze compound extreme events are by far not as manifold

and established as for their univariate counterparts and regional information about their near

future changes is rare.

This thesis aims to help fill this gap by elaborating high resolution regional information about

the near future changes of compound hot and dry extreme events in summer and compound cold

and wet extreme events in winter for central Europe, including the associated uncertainties. The

data basis is a 12 member ensemble of regional climate simulations at the Karlsruhe Institute

of Technology (KIT). The ensemble was partly generated within this work using the regional

climate model COSMO-CLM at two different resolutions, 50km (including all of Europe, further

referred to as 50km ensemble) which was then downscaled to 7km for central Europe (further

referred to as 7km ensemble) and two time periods, one in the recent past (1971-2000, reference

period) and one in the near future (2021-2050). At the time of writing, the 7km ensemble was the

largest existing ensemble at this high resolution for the aforementioned region and time periods.

The compound extreme events were analyzed by using three different methods, the first one

focusing on absolute extreme events defined by threshold exceedances and the second one

defining extremes as strong deviations relative to the local mean state. A new method was

developed within this work which focuses on the dynamical behavior of compound extremes,

i.e. the temporal succession and ordering of compound extreme episodes, an aspect which has

been mostly neglected up to now but which is highly important for the impact these compound

extremes may have.

For validation purposes, the 7km ensemble statistics were compared to results derived from

observational data for the reference period. Furthermore, the added value of the computationally

more expensive but higher resolved 7km with respect to the 50km ensemble was assessed. In



general, the 7km ensemble is able to reproduce the observed statistics of different aspects of

the two kinds of extreme events. It performs better with respect to hot and dry extreme events

in summer than for cold and wet extremes in winter. In comparison to the 50km ensemble, the

7km ensemble shows added value for mean values and absolute extremes, mostly the spatial

correlation of extreme events is improved (the correlation coefficient increases by up to 0.2). For

extremes relative to the local mean conditions and the dynamical behavior no added value of the

higher resolved ensemble can be found.

The climate change signal between 1971-2000 and 2021-2050 of compound temperature and

precipitation extremes was calculated by comparing the results of the two different time periods

for the 7km ensemble. As additional information, the ensemble consistency and significance of

the change signal as measures of the robustness of the changes were assessed. The change signal

of compound extreme events between the reference period and the near future depends strongly

on the type of extreme, the aspect of the extreme considered (by the three different methods) and

the region.

The number of absolute compound hot and dry extreme events increases in all of the investigation

area (averaged over the whole investigation area the relative increase is higher than 100%), the

absolute changes are strongest in regions which were already most affected during the reference

period like the Rhine Valley (up to 7.5 days per year). Extremes relative to the local mean state

show robust changes in the Alps, Bavaria and the Czech Republic of around 100% . In these

regions, the dynamical behavior also changes and extreme episodes relative to the local mean

state are to be expected more frequently in the near future, the mean time between episodes

decreases by 5 to 15 days.

Compound cold and wet extreme events only show robust changes in small parts of the investiga-

tion area for all three methods. Absolute extremes increase in small parts of the eastern Alps

(by about 20%). The analysis of the dynamic properties yields a robust increase in duration in

northeastern and northwestern Germany and the time between episodes decreases (by up to 200

days) in parts of western investigation area.

Finally, the relation of different weather types and absolute extreme events was studied and its

change signal analyzed. For both kinds of compound extremes, weather types were identified

which favor the occurrence of the respective compound extreme events.
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1 Motivation and objectives

The climate of the region we live in influences our lives in many ways, from agriculture, the

amount of energy we use, to how we build our houses. Among scientists, there is a broad

consensus, that the climate is changing and will change even more in the future. Besides changes

in mean values, e.g. an increase in temperature, the occurrence and intensity of extreme events

like droughts, floods, heat waves or hurricanes is likely to change (IPCC, 2013). These events

have a low probability but a potentially high impact on society. One example is the heat wave of

2003 which highly affected the health of people, agriculture, the ecosystem and infrastructure

(e.g., Ciais et al., 2005; Fink et al., 2004). The severity of this event was partly due to a long

drought preceding the heat wave (Fischer et al., 2007).

In many cases, extreme events which have a large impact do not only depend on one variable,

but are rather of multivariate nature. For example, when heavy precipitation occurs, the flood

risk is higher when the soil water content is high, and health issues are more prominent if it

is not only very hot but also humid at the same time. Wild fires are more likely to occur if

it is hot and dry and their damage potential is enhanced by high wind speeds (Keetch et al.,

1968). In the special report on ”Managing the Risks of Extreme Events and Disasters to Advance

Climate Change Adaptation” by the Intergovernmental Panel on Climate Change, IPCC (IPCC,

2012), these multivariate extremes are referred to as compound extreme events. Three different

definitions are given: 1) “two or more extreme events occurring simultaneously or successively”,

2) “combinations of extreme events with underlying conditions that amplify the impact of the

event”, 3) “combinations of events that are not themselves extremes but lead to an extreme

event or impact when combined”. Although society is highly vulnerable to compound extreme

events, they are largely underrepresented in the published literature and yield an interesting and

important field of research which has only started growing in recent years.

The methodological framework for the analysis of compound extreme events is by far less

developed than for their univariate counterparts; this is however slowly changing. Recent books

on extreme value analysis for climate science usually include an introduction to the framework

of multivariate statistics (e.g., Coles et al., 2001; Beirlant et al., 2006) and approaches from

finance of risk management, where the analysis of compound events is more common, have
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1. Motivation and objectives

been translated to climate science. One possibility of analyzing compound extreme events which

perhaps has been applied most frequently, is to use indices that depend on more than one variable.

Examples are the wildfire index KBDI (Keetch–Byram drought index, Keetch et al., 1968) which

is calculated from temperature, precipitation and wind data or the revised CEI (Climate Extremes

Index, Gallant et al., 2014). It depends on temperature, precipitation and soil moisture and can be

used to analyze different types of extremes connected to these variables. Some studies analyze

joint quantiles of different variables, e.g. Beniston (2009) for temperature and precipitation and

Fischer and Knutti (2013) for temperature and humidity. Another approach, which has been used

for some time in risk management and finance and is now more widely applied in climate science

is the use of copulas (Yan et al., 2007; Gudendorf and Segers, 2012) to construct multivariate

distribution functions. Some examples of this include Renard and Lang (2007), Schoelzel et al.

(2008) and Durante and Salvadori (2010). A series of discussion papers about the use of copulas,

their benefits and shortcomings, has been stimulated by Mikosch (2006). One more example of a

method for the analysis of compound extreme events is using a Bayesian hierarchical framework

to construct joint probability density functions of temperature and precipitation change (Tebaldi

and Sansó, 2009).

For planning climate change related adaptation or mitigation measures with respect to the

occurrence of compound extreme events, knowledge about the climate change signal of these

events is important. This information can be obtained by using climate models which can

generate scenarios of the future evolution of the climate. As these are inherent to a number

of uncertainties (e.g. future emissions or model uncertainty), multiple climate simulations, so

called ensembles, are used (Collins, 2007; IPCC, 2010), which ideally cover the bandwidth of

possible evolutions of the climate system. Through the use of ensembles, an important additional

information about the change signal can be assessed, namely the uncertainty or probability of

these changes. A further advantage of ensembles is the broader statistical data basis which is

especially important when looking at rare events, such as compound extremes.

Extreme events usually take place on different spatial scales. Some, like summer heat waves,

depend mostly on large scale atmospheric circulations. Others, like convection based heavy

precipitation events, are additionally influenced by regional scale climate forcings such as

orography or soil-moisture interactions (Giorgi, 2006). In both cases, the magnitude of climate

change usually depends strongly on the region. Global climate model ensembles, as for example

the Coupled Model Intercomparison Project Phase 5 (CMIP5) ensemble (Taylor et al., 2012) used

in the latest assessment report of the IPCC (IPCC, 2013) have a typical resolution of ≈ 100-300

and are not able to represent relevant small scale climate forcings and processes. Especially in

regions with complex topography, which greatly affects the local climate, the coarsely resolved

2



1. Motivation and objectives

global climate data therefore needs to be translated to the regional scale. This can be done by

using regional climate models which simulate a limited area but at higher resolution and with a

much more detailed representation of regional climate forcings such as orography, soil types and

land-use. This is an additional computational effort, but different studies (e.g., Feldmann et al.,

2008; Feser et al., 2011) have shown that downscaling global climate model data with regional

models can yield better results in comparison to observations depending on the quantity (e.g.

for precipitation). This is also referred to as added value. For Europe, joint efforts such as the

Prudence (Prediction of Regional Scenarios and Uncertainties for Defining European Climate

Change Risks and Effects, Christensen et al., 2007) and ENSEMBLES (Van der Linden and

Mitchell, 2009) projects have led to ensembles of regional climate simulations at a resolution of

≈50km. Within the framework of the Coordinated Regional Climate Downscaling Experiment

(CORDEX, Giorgi et al., 2009), an ensemble of even higher resolutions of ≈12 has been

constructed. These projects have led to a better understanding of the European climate and the

expected change in mean values but also in extremes. Compound extreme events, however, are

largely underrepresented in the analyses. This thesis aims to advance the knowledge in this field

and provide high resolution information about possible near future changes of compound extreme

events. For this goal, a 12- member ensemble of climate simulations at an even higher resolution

than the above mentioned projects of≈ 7km was generated covering central Europe. This permits

an even better representation of the local conditions which influence the climate, especially

for mountainous regions like the Alps or the Black Forest which are included in the model

domain. The simulations cover two time periods, a reference period (1971-2000) for which the

simulations can be compared to observations for validation and a time period in the near future

(2021-2050), which is important for planning purposes of mitigation and adaptation strategies.

The climate change signal can be calculated between these two time periods. Compound events

are defined following the first of the above given definitions :“two or more extreme events

occurring simultaneously” (IPCC, 2012) and the focus is on temperature and precipitation

extremes, namely hot and dry extremes in summer and cold and wet extremes in winter. These

extremes were chosen due to the availability of high resolution gridded observational data for the

two variables for validation purposes. The main objective of this work is to answer 4 questions.

The first three are:

1. Can the ensemble of regional climate simulations correctly simulate the statistical
occurrence of compound extreme events for a reference time period (1971-2000)?

2. How will the statistical occurrence of compound extremes change between this ref-
erence period (1971-2000) and the near future (2021-2050), and how robust are the

3



1. Motivation and objectives

predicted changes? Can regions be identified which are especially susceptible to the
change of extreme events?

3. Is there any added value from regional climate simulations at 0.0625 ◦ (≈ 7km) res-
olution in comparison to regional climate simulations at 0.44 ◦ (≈ 50km) resolution
for the description of compound extreme events?

To answer these questions, three different methods, which investigate different aspects of

compound extreme events, are applied to daily data of the high resolution climate ensemble. To

address the question of added value, the same analysis is applied to a coarser resolved regional

climate ensemble of 50km resolution for the reference period.

The first two methods follow some of the ideas introduced above and describe compound extremes

as concurrent threshold exceedances. The first method (further also referred to as type 1 extremes)

defines compound extreme events by a joint threshold exceedance of maximum/minimum

temperature and precipitation. A fixed threshold for each variable and the respective extreme

is defined which is the same for the reference period and the near future. One sector which

is impacted by type 1 extremes (hot and dry extremes in summer) is the agricultural sector.

Although the positive temperature trend might even be of advantage to the crop yield because it

leads to an increase of the growing season length and overall warmer temperatures, the increase

of absolute compound hot and dry extremes leads to a more erratic climate which can have a

negative effect on the crop yield (Lavalle et al., 2009). If compound extremes occur at critical

stages of the growth cycle, they can cause large damage to the harvest. An example of a sector

which is affected by cold and wet extremes in winter is the infrastructure sector. Cold and wet

extremes in winter, e.g. heavy snowfall or heavy rain and subsequent freezing can be a threat to

traffic, power supply and buildings among others.

The second method (further referred to as type 2 extremes) focuses on relative compound

extreme events. Indices are calculated which describe daily standardized anomalies connected to

temperature and precipitation, relative to the climatological mean state in the respective time

period. A compound extreme event is again defined by a concurrent threshold exceedance of both

indices. These extremes are not necessarily record breaking events but are defined as extreme

deviations from the climatological mean state and as such are a measure for the variability of the

climate system. Relative extremes mostly affect the ecosystem. Species usually have a “climatic

envelope“ which describes physiological thresholds of temperature and precipitation tolerance

(e.g. Walther et al., 2002). If these thresholds are exceeded often, this can lead to a decrease

or migration of certain species or even their extinction. Areas where this plays an important

role are mountainous regions where species are often strongly adapted to the local climatic

4



1. Motivation and objectives

conditions and are highly affected by these change (Thuiller et al., 2005). The variability is also

of importance since different studies imply that changes in variability play an important role for

the frequency of extreme events (Katz and Brown, 1992; Schär et al., 2004).

The third method (further referred to as type 3 extremes), which was developed within this

work, addresses an aspect of compound extreme events which has been largely neglected so

far. It focuses on the dynamical behavior or temporal succession, i.e. not only on how many

events occur but on how they are ordered. If, for example, two different regions show the same

number of compound extreme hot and dry days in summer for a 30 year time period, the impact

depends highly on their temporal succession, i.e., if there are a few days every summer or if

most of the compound extreme events occur consecutively in one summer. Regarding climate

change, this allows to investigate, whether or not a shift to a new climatological mean state

also changes the dynamical behavior of compound extremes, a property which is up to now

unknown and not intuitively accessible. Furthermore, differences between the predictability

of compound extreme events can be assessed that relate to the chaotic behavior of the climate

system. Information about changes in the dynamical behavior can be of importance to all sectors.

Changes in these properties imply that even if an adaptation to a new ”normal” climate state

(with changed mean and variability) is possible (e.g. crops which need less water and can cope

with higher temperatures or species which migrate to other regions), the respective sectors or

species will still be subjected to a different frequency and duration of compound extreme events

relative to the new ”normal” state.

A synopsis of the results of the three methods for compound extremes allows to identify regions

which are possibly more susceptible to changes of compound extreme events in the future and

this knowledge can then be used for the planning of adaptation measures in these regions.

The occurrence of extreme events is largely triggered by certain atmospheric circulation patterns

(e.g., Jacobeit et al., 2009). For a better understanding of these dependencies, weather types can

be classified and their interrelation with extreme events studied (Kapsch et al., 2012; Riediger

and Gratzki, 2014). Therefore, the objective weather type classification scheme developed by the

German Weather Service (Bissolli and Dittmann, 2001) is applied to the ensemble of regional

climate simulations. In a second step,the occurrence of weather patterns as well as their change

signal are analyzed and set into relation to compound extreme events. This leads to the fourth

question:

4. How are the compound extreme events dependent on different weather patterns and
how will these change in the near future?

The thesis is divided into 10 chapters. Chapter 2 gives a general introduction to regional climate

modeling, the regional climate model COSMO-CLM (Consortium for Small Scale Modeling

5



1. Motivation and objectives

in CLimate Mode) used in this work and some information about ensembles. In Chapter 3, the

regional climate ensemble generated in this work is introduced. Before analyzing compound

extreme events, Chapters 4 - 6 give an overview of the mean values of the regional climate

ensemble. Chapter 4 summarizes the performance of the ensemble with respect to temperature

and precipitation imn comparison to observations for a time period in the past, 1971-2000. Due

to biases in both temperature and precipitation time series, the data is bias corrected. The bias

correction methods and their effect on the climate change signal are analyzed in Chapter 5 and

in Chapter 6 the change signal of mean values between this past time period (1971-2000) and

the near future (2021-2050) are presented. Chapters 7 - 9 focus on the analysis of compound

extreme temperature and precipitation events with the above introduced methods, Chapter 7

focuses on absolute threshold exceedances (type 1 extremes) and Chapter 8 on relative threshold

exceedances (type 2 extremes) of temperature and precipitation indices. A special focus lies on

the newly developed method focusing on the dynamical behavior of compound extreme events

(type 3 extremes) presented in Chapter 9. An analysis of influencing factors in the form of

weather patterns is given in Chapter 10. All Chapters include a short summary of the main

findings, a more thorough summary and discussion of the results, especially of Chapters 7 - 10

can be found in Chapter 11.
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2 Background

The following chapter includes the theoretical background of the generation of an ensemble of

regional climate simulations with the COSMO-CLM regional climate model. In Section 2.1, a

short introduction to regional climate modeling is given followed by an overview of the COSMO-

CLM model in Section 2.2. Basic assumptions and statistical methods used for the generation

and evaluation of the ensemble are explained in Section 2.3.

2.1 Regional climate modeling

Climate affects most human and natural systems and therefore information about the present

state and possible changes in climatic variables are of great interest to society. Impacts of climate

change are usually region specific. This calls for high resolution information about possible

change scenarios. Although the resolution of global climate models (further referred to as GCMs)

has been rapidly increasing (Mizielinski et al., 2014), most state of the art GCMs are still run at

resolutions in the order of hundreds of kilometers (Meehl et al., 2007; Taylor et al., 2012). At

this resolution the orography is smoothed and interactions of topography and land surface, which

affect the local scale climate, are not included. Especially in regions with complex topography

high resolution data is therefore important (Giorgi, 2006). The resolution furthermore plays a

great role when considering extreme events, which are smoothened out over a greater area in the

coarser resolved models (Giorgi, 2006).

Generally, there are two different ways of downscaling global climate model data to the regional

scale and, thus, increasing the resolution of the coarse GCM output. One is statistical down-

scaling where relations between large-scale climate variables and regional local features are

derived from observational datasets and then used to statistically estimate local variables from

their global counterparts (for an overview see e.g. Wilby et al., 1998). The main advantage of the

statistical methods is that they are computationally inexpensive and that a potential bias in the

results can be corrected. The availability of good quality observational data can however pose a

problem and limit the variables that can be downscaled. Furthermore, the statistically downscaled

variables are not necessarily a physically consistent set of variables and it is assumed that the
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large-scale - regional-scale relations are stationary over time. The second way to downscale data

from global climate models and the one used in this work, is dynamical downscaling by using a

regional climate model (RCM). This yields a set of variables which is physically consistent in

time and space.

Regional climate models only compute the climate for the region of interest but with a higher

spatial (and usually also temporal) resolution than global climate models. Since the regional

processes are not independent of global circulation patterns, data from global climate models or

reanalysis products is regularly fed to the regional climate model at the lateral domain boundaries

(also called boundary data) and for initialization. The boundary data also contains the response

of the global circulation patterns to large scale radiative forcing prescribed by the emission

scenarios (Nakicenovic and Swart, 2000; Moss et al., 2010). One limitation that regional climate

models have is that they can only be as good as the driving global climate model. This has been

phrased as "garbage in, garbage out" (Giorgi and Mearns, 1999). If for instance, the driving

global climate model cannot capture some important processes and circulation patterns such

as the North Atlantic Oscillation (NAO) which greatly affects the climate in Europe or global

trends of atmospheric variables are not represented well, the regional climate model will not be

able to capture these processes and their effects, either.

First attempts at regional downscaling of climate data, using limited area models, were conducted

in the late 80s and early 90s of the last century (Dickinson et al., 1989; Giorgi, 1990; Jones

et al., 1995). With increasing availability of high performance computing, the time periods and

regions simulated became longer and larger. Today there is a vibrant regional climate modeling

community and different international regional downscaling projects including multiple regional

climate models (e.g. ENSEMBLES, Van der Linden and Mitchell (2009); CORDEX, Giorgi et al.

(2009); NARCCAP, Mearns et al. (2012)). A more thorough introduction to regional climate

modeling can be found in McGregor (1997), Wang et al. (2004), Giorgi (2006) and Laprise

(2008).

Climate projections are usually only statistically evaluated over longer time periods because

the global climate data used as initial and boundary data is generally not synchronized with

observations (exceptions are reanalysis products where a large number of observations have been

processed by a model to output a consistent set of variables) . This is due to the initialization pro-

cess of the GCM. In the first stage, the GCM runs with constant external forcing (corresponding

to the value of preindustrial emissions) for a few hundred years until all the components of the

model (atmosphere, ocean, sea ice, etc.) are approximately in an equilibrium state. In a second

step, one day of this run is taken as initial condition for a historical run externally forced by

observed 20th century emissions. The date of this run is set according to the external forcing
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2.2. The COSMO-CLM regional climate model

and this usually starts in 1850. For climate projections or climate scenarios, a day of one of the

last years of the historical model run (e.g. from 2006 for CMIP5 Taylor et al., 2012) is used as

initial state and emission scenarios describing the possible future developments of emissions

(Nakicenovic and Swart, 2000; Moss et al., 2010) are used as radiative forcing (see also e.g.

http://climate4impact.eu). Even though modelers can try to pick initial states that fit well with

the observed climate for the historical and scenario runs, it will most likely not be the same

as the actual state of the climate system on that day. Therefore, it is not possible to evaluate

climate projections for specific days. Instead, they are evaluated over longer time periods where

variations on yearly timescales are filtered out but long term climatic trends, which are induced

by the changes in external forcing, can still be identified. Following the recommendations by the

World Meteorological Organizations, time periods of 30 years are generally considered for the

analysis (Trewin et al., 2007). Therefore in regional climate modeling often two (or more) 30

years time periods are chosen; one within the time period of the historical GCM run and one (or

more) for the time period of the scenario run. A climate change signal between the different time

periods can then be analyzed.

2.2 The COSMO-CLM regional climate model

COSMO-CLM (Consortium for Small Scale Modeling in CLimate Mode) is the climate version

of the numerical weather prediction model COSMO which has its origins in the Lokal Modell

(LM) of the German Weather Service DWD.

The COSMO-LM community provides a thorough documentation of the model system (Doms

et al., 2011b,a). The following paragraphs give a short summary of this model description. In

Section 2.2.1, the coordinate system of the COSMO model is introduced followed by a description

of the thermo-hydrodynamic equations which form the core of the model (Section 2.2.2) and the

main parametrization used in the model (Section 2.2.3). The numerical solution is explained in

Section 2.2.4 and Section 2.2.5 contains an introduction to the initial and boundary conditions

used to run the model.

2.2.1 Coordinate system

The COSMO-CLM uses spherical coordinates because the curvature of the earth can usually

not be neglected for the typical domain sizes of several thousand square kilometers. To avoid

singularities due to convergence of meridians at the poles, a rotated coordinate system, with

the geographical longitude λ and the geographical latitude ϕ , is used, where the pole is rotated

outside of the model area. The crossing point of the equator and the zero meridian is ideally
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positioned in the center of the model domain as this minimizes the grid distortion. Furthermore,

a terrain following vertical coordinate ξ is used. This highly simplifies the description of the

lower boundary because it corresponds to the earth’s surface. The upper boundary is an even

surface.

2.2.2 Fundamental model equations

The core of the COSMO-CLM model is a set of primitive thermo-hydrodynamic prognostic

equations which are based on the conservation of momentum, total mass and heat. The derivation

of the final set of model equations (eq. 2.1 - 2.8 ) is very well documented in Doms et al. (2011a).

Vertical and horizontal wind components (u,v), temperature (T ), pressure (p), water vapor(qv),

liquid and solid water (ql,q f ) are calculated as prognostic variables. Additionally the total

density of air (ρ) is calculated by a diagnostic equation.

• horizontal wind velocity (u,v)

∂u
∂ t

=−
{

1
acosϕ

∂Eh

∂λ
− vVa

}
− ζ̇

∂u
∂ζ
− 1

ρacosϕ

(
∂ p′

∂λ
− 1
√

γ

∂ p0

∂λ

∂ p′

∂ζ

)
+Mu [2.1]

∂v
∂ t

=−
{

1
a

∂Eh

∂ϕ
−uVa

}
− ζ̇

∂v
∂ζ
− 1

ρa

(
∂ p′

∂ϕ
− 1
√

γ

∂ p0

∂ϕ

∂ p′

∂ζ

)
+Mv [2.2]

• vertical wind velocity (w)

∂w
∂ t

=−
{

1
acosϕ

(
u

∂w
∂λ

+ vcosϕ
∂w
∂ϕ

)}
− ζ̇

∂w
∂ζ

+
g
√

γ

ρ0

ρ

∂ p′

∂ζ
+Mw

+g
ρ0

ρ

{
(T −T0)

T
− T0 p′

T p0
+

(
Rv

Rd
−1
)

qv−ql−q f
} [2.3]

• perturbation pressure (p′ = p− p0(z))

∂ p′

∂ t
=−

{
1

acosϕ

(
u

∂ p′

∂λ
+ vcosϕ

∂ p′

∂ϕ

)}
− ζ̇

∂ p′

∂ζ
+gρ0w−

cpd

cvd
pD [2.4]

• temperature (T )

∂T
∂ t

=−
{

1
acosϕ

(
u

∂T
∂λ

+ vcosϕ
∂T
∂ϕ

)}
− ζ̇

∂T
∂ζ
− 1

ρcvd
pD+QT [2.5]
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• water vapor (qv)

∂qv

∂ t
=−

{
1

acosϕ

(
u

∂qv

∂λ
+ vcosϕ

∂qv

∂ϕ

)}
− ζ̇

∂qv

∂ζ
−
(

Sl +S f
)
+Mqv [2.6]

• liquid and solid forms of water (ql, f ,l:liquid,f:solid)

∂ql, f

∂ t
=−

{
1

acosϕ

(
u

∂ql, f

∂λ
+ vcosϕ

∂ql, f

∂ϕ

)}
− ζ̇

∂ql, f

∂ζ
− g
√

γ

ρ0

ρ

∂Pl, f

∂ζ
+Sl, f +Mql, f

[2.7]

• total density of air (ρ)

ρ = p
{

Rd

(
1+
(

Rv

Rd
−1
)

qv−ql−q f
)

T
}−1

[2.8]

with the following variables:

√
γ = ∂ p0

∂ζ
variation of reference pressure with ζ

Eh =
1
2(u

2 + v2) kinetic energy of horizontal motion

Va =
1

acosϕ

{
v
λ
− ∂

∂φ
(ucosφ)

}
+ f absolute vorticity

qv,ql ,q f specific water vapor/ liquid water/ ice content

To, po, ρo base state values of temperature, pressure and density

f Coriolis parameter

a earth radius

ρ density

ζ terrain following vertical coordinate

ζ̇ contravariant vertical velocity

ϕ , λ rotated latitude, longitude

Mu, Mv, Mw, Mqv , Mql , Mq f sub-grid scale (turbulent) exchange processes

D divergence of the wind field

Qt diabaitc heating term

cvd ,cpd specific heat at constant pressure of water vapor, dry air

Pl ,P f precipitation fluxes

Sl ,S f cloud microphysical sources and sinks due to phase change

Rv, Rd gas constants for dry air and water vapor
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2.2.3 Parametrizations and lower boundary conditions

Atmospheric processes take place on different temporal and spatial scales. Some, like large

scale atmospheric circulations, are orders of magnitude larger than the grid spacing and can be

explicitly calculated. Others, e.g. convection, however, are often sub-grid scale processes and

cannot be explicitly resolved by the model. These processes are described by parametrizations

depending on variables calculated by the model. The lower boundary conditions are obtained

from a land surface model. All parametrizations used in the COSMO-CLM are described in

detail in Doms et al. (2011b). In the following a short summary of the most important of these

parametrizations is given.

Sub-grid scale turbulence: The sub-grid scale turbulence is parametrized by using a closure

at level 2.5 (Mellor and Yamada, 1982) on the prognostic equation for the turbulent kinetic

energy (TKE) . Alternatively a 2.0 order closure can be applied. The sub-grid scale turbulence

is included in the prognostic equations 2.1 - 2.3 by the sub-grid scale (turbulent) exchange

processes Mu, Mv and Mw.

Turbulent flow near the surface: Turbulent fluxes allow exchange processes of momentum,

heat and humidity between the atmosphere and the earth’s surface. The parametrization is

related to the sub-grid scale turbulence scheme. The surface layer, which is defined as the

layer of air between the earth’s surface and the lowest model level, is divided into three parts, a

laminar-turbulent sublayer, the roughness layer and a Prandtl layer (Heise, 2002).

Clouds and precipitation: The two-category ice scheme used in the COSMO-CLM differen-

tiates four hydrometeor categories in addition to water vapor: cloud water, cloud ice, rain and

snow. The possibility of including graupel is given by an optional three category ice scheme.

The transport of precipitation is three dimensional and microphysical processes are accounted

for. Sub-grid scale clouds are calculated by an empirical function depending on humidity and

height (Heise, 2002).

Parametrization of moist convection: There are three different convection schemes imple-

mented in the COSMO-CLM: the Tiedtke scheme (Tiedtke, 1993), the Kain-Fritsch scheme

(Kain, 1993) and the Bechtold scheme (Bechtold et al., 2001). They differ in the closures they

use as well as the triggering criteria for convection and the processes influencing detrainment

and entrainment (Smodydzin, 2004). The Tiedtke scheme is the standard scheme used.

Radiative processes: The radiation scheme solves the δ two-stream version of the radiative

transfer equation. The effects of scattering, absorption, and emission by cloud droplets, aerosols,

and gases in each part of the spectrum are incorporated (Ritter and Geleyn, 1992). The scheme

uses eight spectral intervals (Heise, 2002).
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2.2. The COSMO-CLM regional climate model

Parametrization of Sub-Grid Scale Orography: External data such as orography, soil type,

vegetation cover and land-sea mask are available from external data sets and are preprocessed to

the desired resolution and rotated grid as described in Smiatek et al. (2008). The orography is

taken from the GLOBE (The Global Land One-km Base Elevation Project) and the land classes

from the GLC2000 dataset (Bartholome and Belward, 2005).

The Soil and Vegetation Model TERRA: The lower boundary conditions are obtained from

the soil vegetation model TERRA (Schrodin and Heise, 2002). It uses prognostic equations for

soil temperature and soil water content. It usually uses 10 vertical soil layers in climate mode.

2.2.4 Numerical solution

To solve equations 2.1 - 2.8, a numerical solution is necessary. For this, the prognostic equations

are discretized in space and time using a finite difference method. A horizontally equidistant,

three dimensional model Arakawa-C/Lorenz grid is used in the COSMO model (see Fig. 2.1).

A grid point (i,j,k) is defined as the center of a grid cell with lengths δλ ,δϕ and δζ . Scalar

model variables, such as temperature T or pressure p, are defined on the grid points, the wind

component vectors are defined on the edges of the grid points (λi±1/2,φi±1/2,ζi±1/2). For the

time discretization, a third order Runge-Kutta time-stepping scheme (Wicker and Skamarock,

2002) is used.

Fig. 2.1.: Exemplary grid box of the COSMO-CLM with Arakawa-C/Lorenz staggering (from Doms et al.,

2011a, p. 52)

2.2.5 Initial and boundary conditions

A regional climate model has lateral and horizontal boundaries. At the start of and during

a simulation, the conditions of the atmosphere and soil at these boundaries is needed. The
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2. Background

atmospheric prognostic variables are obtained by interpolating data from a coarse grid climate

model or reanalysis to the desired resolution. This is done by using the preprocessor program

INT2LM (Schättler and Blahak, 2015). At the lateral boundaries, a one-way interactive nesting

is used. The time evolution of the prognostic variables is taken from the preprocessed global

dataset. The difference in resolution causes numerical problems and can lead to numerical noise

at the boundaries. To prevent a propagation of the noise into the center of the model domain, a

relaxation scheme by Davies (Davies, 1976, 1983) is used. A sponge zone is introduced where

the model variables are modified until they blend in with the variables of the forcing dataset.

This relaxation scheme is applied to all prognostic variables except for the vertical wind velocity

for which a free slip lateral boundary condition is specified. The sponge zone usually consists of

ten grid points at all lateral boundaries. There is no mass transfer across the top boundary, the

surface is treated as rigid. To suppress wave reflections, a Rayleigh damping scheme may be

applied. The lower boundary is described by the soil-atmosphere-vegetation model TERRA.

2.3 Ensembles

Ensembles are a set of comparable model simulations. In the field of climate science, ensembles

are an important tool to quantify the uncertainties of climate simulations and for allowing to

decide how robust a given outcome is (e.g. Collins, 2007; IPCC, 2010). The climate system

is a very complex system including many non-linear effects on different spatial and temporal

scales. Although atmospheric dynamics can be described by a few known differential equations,

models will always be approximations of the reality and inherently include some uncertainty.

External parameters which go into the simulations are a further source of uncertainty. One

single climate model run is therefore just one possible evolution of the climate under certain

assumptions and not a reliable source for climate information. Ensembles of simulations can be

constructed to include the range of uncertainties. In the following, some of the uncertainties of

climate simulations are listed and mentioned how they can be addressed. The link to regional

climate model ensembles is given subsequently.

1. Structural uncertainty
Climate models are always a simplification of the real climate system. To keep the com-

putational effort within reasonable limits, not all processes can be included and each

modeling center needs to decide where to make amends, for example on how complex

the ocean model should be. Furthermore, there are still mechanisms which are not fully

understood and are implemented differently in different models.

→How to address this uncertainty: multiple models
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By using models with different structural components, a so called multi-model ensemble

(Tebaldi and Knutti, 2007), the structural uncertainty can be addressed. This uncertainty

can be reduced to some extent with better knowledge of the climate system and the avail-

ability of higher computational power. This would allow a more sophisticated description

of certain processes or better resolution of the model components such as the ocean model

or a land model.

2. Parameter uncertainty
Processes taking place on time and/or spatial scales smaller than the model resolution

cannot be explicitly resolved by the model. Therefore parametrizations exist which

describe these processes in terms of the resolved model variables. Often, there is more

than one parametrization available for a certain process.

→How to address this uncertainty: perturbed physics

To address the uncertainty of the parametrization, different parameters can be perturbed or

whole parametrization schemes changed.

3. Uncertainty in boundary conditions
The boundary condition which causes the most uncertainty is the radiative forcing which

takes into account the external variability induced by anthropogenic forcing. For time

periods that lie in the future, this radiative forcing can only be estimated. Several emission

scenarios or representative concentration pathways (RCP) corresponding to different

possible future changes of social and economic development are put together by a group

of experts which are supposed to span a range of possible future radiative forcing.

→How to address this uncertainty: different emission scenarios

To address the uncertainty range due to emission scenarios, different emission scenarios

can be used as external forcing data. This uncertainty is hard to reduce since human

development is especially hard to predict.

4. Uncertainty in initial conditions
The climate system underlies a natural variability, natural fluctuations which originate in

the nonlinear interactions between different parts of the climate system. These are quasi

periodically occurring events which take place on different time scales. One example of

fluctuations on shorter time scales are the El Niño-Southern Oscillation (ENSO, Allan

et al., 1996) or the North Atlantic Oscillation (NAO, Hurrell et al., 2001) which take place

on yearly to decadal time scales.

→How to address this uncertainty: different realizations

The internal variability can be addressed by using the same model with fixed parameters
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and external data but using different states of the GCM as initial data, thus varying the

phase of the internal variability (see Section 2.1). Each initialization is then called a

different realization of the same climate simulation. The uncertainty due to the internal

variability cannot be reduced. Deser et al. (2012) have “estimated this internal variability

to account for at least half of the inter-model spread in projected climate trends during

2005-2060 in the CMIP3 multi-model ensemble”.

A regional climate ensemble is generally constructed by downscaling data from a global climate

model or ensemble. The first two uncertainties can also be addressed with a regional model while

the last two uncertainties of the above list cannot be explicitly addressed by the regional climate

model but by downscaling the respective ensemble of global climate simulations. A review of

the uncertainties in regional climate modeling is given in Feser et al. (2011). Using multiple

regional climate models to downscale a global climate model usually requires collaboration

between different climate modeling groups because of the high computational demand. Even

then, the whole matrix of possible GCM-RCM combinations is usually never fully sampled

(e.g. ENSEMBLES (Van der Linden and Mitchell, 2009) or NARCCAP (Mearns et al., 2012)

projects). A further ensemble generation method for regional climate models which was used

in this work is the Atmospheric Forcing Shifting (AFS), introduced by Sasse and Schädler

(2014). In this case, the GCM data interpolated to the RCM model grid is shifted in each cardinal

direction by two grid points and then used as forcing data, thus changing its location with respect

to orographic features. This method accounts for the uncertainty in positioning of synoptic

system when downscaling and mostly affects precipitation.

Most climate ensembles today (e.g. the CMIP global ensembles (Meehl et al., 2007; Taylor et al.,

2012) or the ENSEMBLES (Van der Linden and Mitchell, 2009) and CORDEX (Giorgi et al.,

2009) regional climate ensembles) are so called “ensembles of opportunity” (Tebaldi and Knutti,

2007; Annan and Hargreaves, 2010) and include a mixture of the above mentioned possible

ensemble generation techniques “but are not designed to sample uncertainties in a a systematic

way“ (IPCC, 2010) and most likely do not include the full uncertainty range. The reason for

this is the high computational effort associated with climate modeling, leading to ensembles

that consist of a collection of available simulations. It should be noted that there is always the

possibility of changes outside of the corridors of the ensemble spread.

Besides quantification of uncertainties, a further reason to use an ensemble of climate simulations

is the broadening of the statistical data basis. This is especially important when looking at rare

events such as extremes and compound extreme events. In these cases, considering only one

model might not be sufficient for a statistical analysis of the results.
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Finding the optimal size and composition of climate ensembles is an ongoing research topic and

also depends on the assumptions made for the underlying framework (e.g., Evans et al., 2013;

Haughton et al., 2014). Besides the availability of data, especially on regional scales at high

resolution, the question of ensemble size versus statistics and variables considered are not settled

satisfactorily (Ferro et al., 2012).

The statistical evaluation of an ensemble can have different underlying frameworks. Two common

ones are the following:

1. “truth plus error paradigm” (IPCC, 2010)

In this case, each ensemble member is assumed to be sampled from a distribution centered

around the truth. This implies that, as more models are included in the ensemble, the error

should be reduced and the ensemble mean approaches the value of the observations.

2. “indistinguishable paradigm” (Annan and Hargreaves, 2010)

Here ensemble members and observations are all seen as exchangeable and the ensemble

mean converges to the statistical center of the distribution of all ensemble members which

is generally not equal to the observations. This approach allows a more probabilistic

interpretation of ensembles.

Both approaches assume independent model members. There are different types of independence,

independence of the model input, structural independence and model output independence

(Bishop and Abramowitz, 2013). As measure for input and output independence, correlation is

mostly used. Generally, state of the art ensembles never satisfy all three independence criteria.

Bishop and Abramowitz (2013) have analyzed the CMP3 ensemble for independence and found

it to be not fully independent. Some of these dependencies are hard to eliminate though, because

some models share the same physics through parametrization, some even whole components.

For the analysis, independence is usually assumed.

Another ongoing research topic is the question of whether or not to assign weights to models

when combining the members of an ensemble. A general assumption that needs to be made when

weighting models is that the performance of the models is persistent through time, meaning

that a good model in the verification time period is also a good model in the future. In order

to meet this assumption, the weights have to be deduced with care as not to give a model a

high weight for the wrong reasons (e.g. if errors of the GCM cancel out by errors of the RCM).

Additionally, a model performing well for one variable might not be good for other variables.

There are different approaches for deducing performance-based model weights. Among them

are the bias with respect to observations and weights depending on the models ability to capture

certain processes or trends. Within the ensembles projects, a weighting scheme was developed
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which combines several performance metrics (Van der Linden and Mitchell, 2009; Kjellström

et al., 2010). There are however also critics of model weighting (e.g. Weigel et al., 2010; Déqué

and Somot, 2010) and Bukovsky et al. (2013) found that using metrics as in the ENSEMBLES

project does not yield a clear improvement compared to the unweighted ensemble mean. If a

“family” of model runs is included in an ensemble (e.g. different runs with slightly perturbed

parameters), these are often weighted in the ensemble in order not to violate the assumption of

model independence.

Concluding this section about ensembles, the ensemble measures used throughout this work are

listed:

• Ensemble mean: average of the different ensemble members for a given property. When-

ever statistical parameters (e.g. indices) are calculated, they are calculated for each

ensemble member individually before the ensemble mean is derived. Otherwise the in-

ternal variability would cancel out. A number of studies have shown that the ensemble

mean of a multi-model ensemble is often closer to observations than individual models

(Gleckler et al., 2008; Weigel et al., 2008; Reichler and Kim, 2008).

• Ensemble spread: The ensemble spread is a measure of the uncertainty range that is

spanned by the different ensemble members. Measures for the ensemble spread are

– standard deviation σ =

√
∑(x− x)2/n−1

– interquartile range: this is the difference between the 75th quantile and the 25th

quantile of the distribution over the ensemble values. It is a robust measure for the

ensemble spread.

• Ensemble consistency: The ensemble consistency is a measure of the uncertainty of the

climate change signal, which is important information for planning purposes. In this

work, the consistency of a climate change signal is calculated as proposed by Feldmann

et al. (2012), by subtracting the number of ensemble members with a negative signal

greater than a certain threshold from the number of ensemble members with a positive

signal (greater than the threshold) and normalizing it by the total number of ensemble

members. An ensemble consistency of 100% /-100% therefore signifies that all members

show a positive/negative change, whereas a consistency of 0% implies that the models are

discordant or that the change is smaller than the threshold for all ensemble members. As

threshold, a relative change signal of 10% is used. Throughout this work, a change signal

is referred to as robust or consistent if the ensemble consistency is at least 50%, which

means that if the change signals are all higher than the threshold value (10%), 75% of the
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ensemble members show the same sign of the change signal.

19



2. Background

20



3 The COSMO-CLM ensemble

The ensemble analyzed in this work consists of 12 members. Four ensemble members come from

an ensemble already existing COSMO-CLM ensemble at the Karlsruhe Institute of Technology.

The eight additional members were generated using the regional climate model COSMO-CLM

(described in Chapter 2.2), model version cosmo_090213_4.8_clm17. Three members were

generated within this work and 5 members were partly taken from work by Sasse and Schädler

(2014) and finalized within this work. A double nesting approach was used to downscale GCM

data to a resolution of 0.0625◦ ≈ 7km. This implies a first downscaling step of the global data to

a lateral resolution of 0.44◦ ≈ 50km for a domain covering Europe (108x110 grid points, show

in Fig. 3.1) and then in a second step, using this 0.44◦ COSMO-CLM simulation as initial and

boundary data for a simulation for a smaller domain covering only central Europe (165x200 grid

points, see Fig. 3.1) with a higher resolution of 0.0625◦. All simulations were performed on the

Cray XE6 at the High Performance Computing Center Stuttgart (HLRS).

Fig. 3.1.: COSMO-CLM model domains for 50km and 7km resolutions. Image Source: Hans Schipper
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Tab. 3.1.: Global climate models and reanalysis data used as initial and boundary data for the COSMO-

CLM Ensemble.

Name Atmospheric

model

Institute Emission-

scenario

resolution at-

mosphere

reference

ECHAM 5 ECHAM5/

MPIOM

Max Planck Institute for Meteo-

rology, Germany

A1B 1.8◦ Roeckner et al.

(2003)

ECHAM6 MPI-ESM-

LR

Max Planck Institute for Meteo-

rology, Germany

RCP8.5 1.8◦ Stevens et al.

(2013)

CCCma3 CGCM3.1 Canadian Centre for Climate

Modelling, Canada

A1B 1.8◦ Scinocca et al.

(2008)

EC-

EARTH

EC-EARTH EC-EARTH Consortium, Europe RCP8.5 1.125◦ Hazeleger

et al. (2010)

CNRM-

CM5

CNRM-

CM5

National Centre for Meteorologi-

cal Research, France

RCP8.5 1.4◦ Voldoire et al.

(2013)

Hadley HadGEM2-

ES

Met Office Hadley Centre, UK RCP8.5 1.25◦ ×
1.875◦

Collins et al.

(2011)

ERA40 ECMWF, UK Reanalysis 1.125◦ Uppala et al.

(2005)

Data from 6 different GCMs (one with different realizations) was used for the simulations.

Furthermore, the AFS method (see Section 2.3) was applied. An overview of the GCMs, their

resolution and the emission scenario used are given in Table 3.1. The simulations using the

climate models ECHAM5 (Fifth generation of the ECHAM general circulation model, acronym

for ECMWF and Hamburg) and CCCma3 (third generation atmospheric general circulation

model of the Canadian Centre for Climate Modelling and Analysis ) with emission scenario A1B

and the ERA40 reanalysis as boundary data were all generated within the CEDIM project (Center

for Disaster Management and Risk Reduction Technology, Berg et al., 2013; Wagner et al., 2013).

All simulations with ECHAM6 (including the ones with AFS) were partly simulated within a

project of the Helmholtz-Network REKLIM (Regional Climate Change, see Sasse et al., 2013)

and partly within this work. All other simulations using global climate data with the emission

scenario RCP8.5 were added to the ensemble as part of this work.

Two different time periods were simulated - one, covering the years 1971-2000, which is further

called the reference time period and one, which is referred to as the near future covering the

years 2021-2050. This time period is relevant for planning purposes. The reference period serves

for evaluation of the model results and as a reference against which changes for the near future
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3. The COSMO-CLM ensemble

Fig. 3.2.: Mean linear temperature trends of ensemble members over the HYRAS domain (see Fig. 4.1)

for the near future (2021-2050). Ensemble members are grouped according to the emission

scenario underlying the GMC simulations used as boundary data.

are calculated. The simulations were started three years before the respective time period in

order to achieve an equilibrium between atmosphere and soil components.

This ensemble is clearly an ”ensemble of opportunity” (see Section 2.3), as different ensemble

generation techniques are combined. The boundary data used for the generation of the COSMO-

CLM ensemble uses two different emission scenarios (see Table 3.1), A1B and RCP8.5. periods

considered in this work, For the time the uncertainty of the emission scenario does not play a

temperature precipitation

Fig. 3.3.: Correlation of mean yearly means over the HYRAS domain (see Fig. 4.1) between ensemble

members in the reference period, 1971-2000. Left side: temperature, right side: precipitation.
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3. The COSMO-CLM ensemble

dominant role and the ensemble spread due to different driving GCMs is larger than the spread

caused by the different emission scenarios (see Fig. 3.2). Therefore, simulations with both

emission scenarios are combined. For this work, no performance-based weighting measures

were used. The ensemble members were, however, tested for independence of the model output.

This was done by calculating pairwise correlations of the yearly time series between the different

ensemble members for both temperature and precipitation. The resulting correlation matrices are

pictured in Fig. 3.3. The model run using the GCM ECHAM6 and the AFS-shifted ECHAM6

model runs exhibit a high correlation for both variables. For all of this work, the ECHAM6 runs

were therefore weighted as one, each receiving a weight of 1/5 whereas all other models were

assumed to be independent and assigned a weight of 1, leading to an effective ensemble size of

eight.
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4 Validation of ensemble mean values

This section is meant to give an overview of the performance of the ensemble regarding mean

values of the ensemble with a resolution of 0.0625◦. The ensemble is hereafter referred to as the

7km ensemble. Only mean, minimum and maximum temperature and precipitation sums are

evaluated since those are the variables that are used later for analyzing compound extreme events

(in Chapters 7, 8 and 9). A validation of a larger set of model variables can be found in Sedlmeier

and Schädler (2014) for the state of Baden-Württemberg. As explained in Section 2.1, 30 year

time periods are used for the validation of the ensemble, means over these 30 year time periods

are also referred to as climatological means/maxima/minima/sums. The ensemble spread refers to

the ensemble mean plus/minus one standard deviation σ , unless stated otherwise. All validations

are for gridpoints for which both E-Obs and HYRAS observational data exist, further referred to

as “HYRAS domain” (see Fig. 4.1). The ensemble is validated for mean monthly means/sums

as well as mean summer/winter sums. In this and the following two chapters, summer stands

for the hydrological summer from May to October and winter for the hydrological winter from

November to April.

Fig. 4.1.: Investigation area, further referred to as “HYRAS domain”, elevation [m].
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4. Validation of ensemble mean values

4.1 Observational data for validation

4.1.1 HYRAS dataset

The HYRAS dataset (Rauthe et al., 2013) is a gridded daily dataset for mean daily temperature

and daily precipitation sums covering the river catchements in Germany and the neighboring

countries. The spatial resolution of the dataset is 1 km2 and it is based on 6200 stations. It is

available for the time period 1951-2006. The dataset was generated as part of the KLIWAS

project (http://www.kliwas.de) by applying the REGNIE method (“REGionalisierung der NIEder-

schlagshöhen”, regionalized precipitation amount). This method consists of two steps. First the

background climatological fields are calculated by multiple linear regression, taking geographical

position, orientation and absolute value of wind exposure into account. In a second step, the

quotients of the daily data and the background field are interpolated using inverse distance

weighting and subsequently multiplied by the background field. The main advantage of this

method is that the measured precipitation amounts are conserved (Rauthe et al., 2013). This

is especially useful for extreme events which are found unchanged in the gridded field. The

HYRAS dataset was bilinearly interpolated to the 7km grid for validation of the COSMO-CLM

ensemble.

4.1.2 E-Obs dataset

The E-Obs dataset (Haylock et al., 2008) is a gridded daily observation set for precipitation

sums, minimum, maximum and mean air temperature. The dataset covers land points for Europe

( ≈ 25N-75N, 40W-75E) for the time period 1950-2006. The dataset was generated as part

of the ENSEMBLES project (http://www.ensembles-eu.org) and based on data of up to 2316

stations (depending on the time period). The interpolation of station data was done in a three

stage process. First, the monthly mean precipitation and monthly mean temperatures were

interpolated by using three dimensional thin-plate splines. In a second step, daily anomalies were

interpolated (using the universal Kriging method for precipitation and Kriging with an external

drift for temperature). Finally these monthly and daily interpolated values were combined.

The uncertainty of this dataset depends strongly on the number of stations which went into

the interpolation and therefore, on the region. The station density is highest in Switzerland,

the Netherlands and Ireland and rather low in Spain and the Balkans which leads to an over-

smoothing in these areas. This especially affects extremes of daily temporal resolution and has

to be taken into account when using the E-Obs data for validation purposes. Version 10 of the

dataset was used for all evaluations in this work. For the validation of the results, the E-Obs
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4.2. Mean temperature

dataset was bilinearly interpolated to the 7km grid. For temperature data, a height correction

was applied when remapping to the 7km grid by multiplying the elevation difference between

the remapped E-Obs elevation and the 7km COSMO-CLM grid with a constant lapse rate of 6.5

K/km for each grid point.

4.2 Mean temperature

The yearly cycle of the areal mean climatological monthly temperature means is depicted in

Fig. 4.2 for the HYRAS domain. The ensemble mean can reproduce the yearly cycle of the

observations fairly well but shows an offset (bias) ranging between 0.8◦C in the winter months

and 2.8 ◦C in August. The ensemble spread lies between 0.8 and 1.5 ◦C for the mean monthly

values. Depending on the region and for smaller time scales this might be larger.

As to be expected, the temperature depends strongly on elevation. Fig. 4.3 shows the ensemble

mean of the climatological mean summer and winter temperatures. The mean summer temper-

atures range between -1 and 15◦C, the winter mean temperatures between -11 and -5 ◦C. As

already noted for the areal mean of the monthly mean temperature (Fig. 4.2), the bias is larger in

summer than in winter. This cold bias of the COSMO-CLM in central Europe has already been

observed in previous studies (e.g. Berg et al., 2013, 2012; Sedlmeier and Schädler, 2014). Berg

et al. (2013) interpreted the temperature bias as an interaction between precipitation, cloudiness

and temperature. The CLM community also initiated a working group dedicated to the bias in

Fig. 4.2.: Climatological mean monthly temperature [◦C] in the reference period. Areal mean over the

HYRAS domain (see Fig. 4.1). Temperature means of HYRAS and E-Obs observations are

indistinguishable.
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4. Validation of ensemble mean values

Fig. 4.3.: Climatological mean temperature [◦C] in the reference period. Top row: Ensemble mean

climatological means for a) summer b) winter, bottom row: mean difference between ensemble

mean and HYRAS Observations for c) summer and d) winter.

temperature and precipitation. Currently no clear result regarding the exact mechanisms of this

bias were found.

4.3 Maximum temperature

Since not all model runs had the maximum temperature as output variable, it is calculated as the

maximum of the mean hourly temperature values. The 30 year mean of the monthly temperature

maxima is shown in Fig. 4.5. As for the temperature means, the values follow the yearly cycle
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4.3. Maximum temperature

but show a negative bias compared to the E-Obs observations which is again larger in the summer

months than in the winter. Mean winter and summer maxima are shown in Fig. 4.4. The highest

temperatures occur in the upper Rhine valley (∼31.5◦C), the lowest in the Alps (∼ 12.5◦C). The

areal mean over the HYRAS domain is∼ 27.5◦C. Winter minimum temperatures lie between 0.5

and -21◦C. Compared to the E-Obs mean temperature maxima (Fig. 4.4 c and d), these values

are too low for both seasons - as Fig. 4.5 shows, there is a negative bias for all months.

Fig. 4.4.: Climatological maximum temperature [◦C] in the reference period. Top row: Ensemble for a)

mean summer maxima b) mean winter maxima, bottom row: mean difference between ensemble

mean an HYRAS Observations for c) mean summer maxima and d) mean winter maxima.
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4. Validation of ensemble mean values

Fig. 4.5.: Climatological monthly maximum temperature [◦C] in the reference period. Areal mean over

the HYRAS domain (see Fig. 4.1).

4.4 Minimum temperature

Like the maximum temperature, the daily minimum temperature is calculated from the mean

hourly temperature values. Fig. 4.6 shows the climatological monthly temperature minima. The

ensemble mean matches the E-Obs observations very well, the E-Obs yearly cycle lies within the

ensemble spread for all months and correctly represents the maximum in July and the minimum

in January for the average over the HYRAS domain. However, when looking at the bias on a

Fig. 4.6.: Climatological monthly minimum temperature [◦C] in the reference period. Areal mean over

the HYRAS domain (see Fig. 4.1).
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4.4. Minimum temperature

grid point basis (see Fig. 4.7 c and d), some areas show a negative, some a positive bias which

cancels out in the mean but most parts of the domain have no or only a very small bias. The

mean temperature minima for summer lie between -16.5 and -3◦C and between -27.5 and -7.5 in

winter (see Fig. 4.7 a and b).

Fig. 4.7.: Climatological minimum temperature [◦C] in the reference period. Top row: Ensemble mean

for a) mean summer minima b) mean winter minima, bottom row: mean difference between

ensemble mean and HYRAS Observations for c) mean summer minima d) mean winter minima.
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4. Validation of ensemble mean values

4.5 Precipitation

Fig. 4.8 shows the climatological monthly precipitation sums. The ensemble mean can mostly

represent the higher precipitation in summer and follows the annual cycle pretty well but shows

an offset of up to 50mm compared to the observations. The error is slightly higher in the winter

months than in summer. The 30 year mean of the summer and winter sums of total precipitation

is shown in Fig. 4.9. Regions with stronger orographic features show more precipitation, the

maximum lies in the Alps. The precipitation mean for the whole HYRAS domain does not differ

much between summer and winter and lies around 650mm. Most parts of the domain show a

positive bias which is especially high in the Alps and in winter (see Fig. 4.9 c and d). Previous

studies have also shown a positive precipitation bias over central Europe (e.g. Berg et al., 2013,

2012; Sedlmeier and Schädler, 2014). Berg et al. (2013) attributed this bias to a correction of the

mass loss in the cloud ice scheme, “which explains the stronger bias in winter than in summer”.

The bias is accompanied by a bias in shortwave radiation (Schädler et al., 2012; Sedlmeier and

Schädler, 2014) due to an overestimation of the cloud cover in the COSMO-CLM (Will and

Wold, 2009). There has been some effort of the COSMO-CLM community to reduce this bias. A

project group formed to investigate this problem, however, did not gain any understanding as to

the direct source of this error. The HYRAS observational dataset is also not free from biases.

The average error of the HYRAS dataset is stated as being less than 2mm a day but with spatial

and temporal variability (Rauthe et al., 2013).

Fig. 4.8.: Climatological monthly precipitation sums [mm] in the reference period. Areal mean over the

HYRAS domain (see Fig. 4.1).
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4.6. Added value of high resolution data

Fig. 4.9.: Precipitation sums [mm] in the reference period. Top row: ensemble mean climatological means

for a) summer sums b) winter sums, bottom row: mean difference between ensemble mean an

HYRAS Observations for c) summer sums and d) winter sums.

Assuming a systematic error in one direction, monthly error bars could be as high as ∼60mm

and half yearly error bars up to 360mm. Considering these error bars, the ensemble performs

fairly well for most of the region except for the Alps.

4.6 Added value of high resolution data

Downscaling of climate data comes with a higher computational demand and therefore usually

with a reduction of the domain size. The driving idea behind downscaling is to obtain more de-
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4. Validation of ensemble mean values

tailed and better information about the regional climate. For a comparison of the two resolutions,

the data of the 50km ensemble was bilinearly interpolated to the 7km grid and a height correction

applied for temperature. Fig. 4.10 shows a comparison of the mean monthly temperature means

for the reference period. The deviations from the HYRAS observations are slightly lower in

winter and slightly higher in summer for the 7km ensemble, but overall the biases do not differ

much and the ensemble spreads nearly overlap. As a further measure of comparison, the spatial

RMSE (root mean square error) of the mean summer/winter temperature means was calculated

using all gridpoints within the HYRAS domain for four different elevation ranges (as shown

in Fig. 4.11) and the correlation of gridpoints of all heights was assessed. Both measures were

calculated for each ensemble member separately and in Fig. 4.12, 7km and 50km ensembles are

compared by boxplots. They show the median and interquartile range and the whiskers indicate

the minimum and maximum value of the respective ensemble. These results show tendencies

similar to the monthly temperature means. For elevations below 800m the errors are very similar.

For heights between 800m and 1200m the 7km ensemble is slightly better, and above 1200m

vice versa. The mean values for the errors in summer are higher than in winter and the ensemble

spread is smaller. For winter temperature biases the ensemble members exhibit a larger spread.

The correlation is significantly higher for the 7km ensemble for both seasons.

The same analysis was conducted for precipitation means. Here, the 50km ensemble performs

better regarding the biases. The ensemble mean bias for mean monthly precipitation sums (see

Fig. 4.13) is around 10mm higher for the 7km ensemble in all months, although the ensemble

Fig. 4.10.: Difference of mean monthly temperature means between 7km (orange) and 50km (magenta)

ensemble and HYRAS observations for the reference period (1971-2000). Lines: ensemble

means, shaded area: ensemble spread. Areal mean over the HYRAS domain (see Fig. 4.1)
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4.6. Added value of high resolution data

spreads overlap. The RMSE for mean summer and winter sums for 4 different elevation regimes

of the HYRAS domain is shown in Fig. 4.14. For elevations up to 800m, the RMSE is fairly

similar for ensembles of both resolutions. Above 800m the RMSE of the 7km ensemble is much

higher and the second nesting stage seems to significantly increase the ensemble spread. The

correlation is, however, higher for the 7km ensemble for both seasons, although the difference is

only significant in winter. A possible reason for the overestimation of precipitation might be the

Fig. 4.11.: Height classification for the calculation of the RMSE

Fig. 4.12.: Root mean square error (RMSE) and spatial correlation for mean summer/winter temperatures

means of the 7km and 50km ensembles with respect to HYRAS observations for the HYRAS

domain. Gridpoints were grouped according to elevation for calculation of the RMSE (see

Fig. 4.11)
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4. Validation of ensemble mean values

parametrization of convection. For 50km resolution simulations, parametrization of convection

is clearly needed. Starting at resolutions of below about 3km, the convective processes can

be explicitly resolved by the model. At 7km resolution, the parametrization of convection

is still turned on in the model, but it might already be able to resolve some processes which

Fig. 4.13.: Difference of mean monthly precipitation sums between 7km (orange) and 50km (magenta)

ensemble and HYRAS observations for the reference period (1971-2000). Lines: ensemble

means, shaded area: ensemble spread. Areal mean over the HYRAS domain (see Fig. 4.1)

Fig. 4.14.: Root mean square error (RMSE) and spatial correlation for mean summer/winter precipitation

sums of the 7km and 50km ensembles with respect to HYRAS observations for the HYRAS

domain. Gridpoints were grouped according to elevation for calculation of the RMSE (see

Fig. 4.11)
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4.7. Short summary

are then accounted for twice. The parametrization of convection are most probably tuned to

coarser resolutions. A further error source is the observational dataset, which shows the highest

uncertainties in these high elevation regions.

4.7 Short summary

This chapter gave an overview of the performance of the 7km ensemble for the values which

are used later for the calculation of extreme values, namely mean, maximum and minimum

temperature and precipitation sums for the summer and winter season. The 7km ensemble shows

a cold bias in mean and maximum temperature (with a larger bias in maximum than in mean

values) for the HYRAS domain. The minimum temperature has a warm bias, mainly in southern

Germany in Winter, the amplitude of the daily cycle seems to be underestimated here. The Alps

and some other high elevation regions show a cold bias. The ensemble mean precipitation sum

shows a wet bias throughout the year and for the whole domain. Comparing these results to the

first nesting stage, the 50km ensemble, there is an added value in the representation of spatial

patterns of temperature and precipitation. However, the 7km ensemble seems to overestimate the

precipitation more strongly than the 50km ensemble, especially in regions with higher elevation.
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5 Bias correction of ensemble members

No climate model is perfect and model data generally exhibits a bias in comparison to observa-

tional data. This can have different causes, a bias in the GCM data used as boundary condition,

insufficiently high resolution, deficiencies in parametrizations, missing comprehension of the

underlying processes or uncertainties in the observational datasets. Whenever working with

absolute values or when using the output of regional models as driving data for impact models,

this bias becomes problematic and a bias correction is unavoidable. Generally, there are two

different approaches to correct data from RCMs. The first one is the correction of the GCM data

used as initial and boundary condition (e.g. , Colette et al., 2012; Bruyère et al., 2014). This

of course still leads to the bias of the RCM itself but could make a change from ”garbage in

- garbage out” to ”not garbage in - not garbage out”. The second approach is to bias correct

the RCM output itself, for which numerous methods exist (e.g. , Berg et al., 2012; Hoffmann

and Rath, 2012; Teutschbein and Seibert, 2012). The great advantage of the first method is

the physical consistency of the results. When bias correcting model output usually only single

variables or a set of variables are corrected. It is not possible to correct all variables due to the

lack or scarcity of observational data for the required time periods. This could for example lead

to days where the model shows no cloud cover but after correcting the precipitation data it is

raining. The advantage of the correction of the regional output is that it is by far the simpler and

less time-consuming alternative, especially when statistical evaluation of only some variables is

planned. Furthermore, the bias of the RCM is still present when correcting the global climate

data. Depending on the magnitude of the bias, the regional output would still have to be corrected

for some applications. Therefore in this work only the regional output data was bias corrected.

For mean values of temperature and precipitation, the linear single scaling method (Section 5.1)

was used, for maximum and minimum temperature a quantile mapping approach (Section 5.2).

A detailed explanation and discussion can be found in Berg et al. (2012), where different bias

correction methods were applied to two members of the ensemble used in this work. An underly-

ing assumption for all bias correction techniques is the persistence of the bias, meaning that the

bias in future time periods has the same statistical values as in the reference period and can be

corrected using the same correction term. This of course is an assumption which is certainly not
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5. Bias correction of ensemble members

always true and depends largely on the nature of the bias. Furthermore the bias correction affects

the climate change signal of the corrected variables. Examples of this are given in Section 5.3.

5.1 Linear bias correction

With the linear single scaling (LSS) method, the model data is bias corrected by addition or

multiplication of a correction term such that the monthly climatological values match those of

the observations for the reference period, 1971-2000. The correction terms are deduced from

the mean monthly temperature means and mean monthly precipitation sums, respectively. The

values for the reference time period (1971-2000) are applied to the future time period as well.

The correction is performed separately for each gridpoint and each model run and the HYRAS

dataset used for the correction.

5.1.1 Linear correction of temperature

The first step consists of calculating the climatological monthly temperature means for the refer-

ence time period (1971-2000) for the observations T O
m,g and model data T M

m,g (m=months 1-12,

g=gridpoint). The difference in climatological mean values (∆Tm,g =T M
m,g−T O

m,g) constitutes the

climatological monthly correction term for each gridpoint. The bias corrected daily temperature

values are the difference between the model data on a day d of month m and the correction term

for the corresponding month:

T M,BC
m,g,d = T M

m,g,d−∆Tm,g

5.1.2 Linear correction of precipitation

The COSMO-CLM usually shows too few dry days (days with precipitation less than 1 mm/day)

in the investigation area (Feldmann et al., 2008). Therefore, an additional step is inserted before

the linear correction to correct the number of dry days.

1. correction of dry days:

To correct this deviation from the observations, the mean number of dry days per month

is evaluated for each gridpoint for the reference period (1971-2000). In a next step,

the daily precipitation sums of the model data are sorted in ascending order and the

precipitation threshold value identified which leads to the same number of dry days as

for the observations. Then, the actual values are reduced by this threshold value, possible

negative values are set to zero.
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5.2. Quantile mapping

2. In a second step, the climatological monthly precipitation sums are calculated for the refer-

ence period (1971-2000) for the observations PRECB
m,g and the dry day corrected model

data PRECM
m,g (m = months 1-12 ; g = gridpoint). The quotient α of the mean precipitation

sums constitutes the climatological monthly correction factor for each gridpoint. The bias

corrected precipitation values are obtained by multiplying the dry day corrected model

data of every day d with the correction factor α of the corresponding month:

PRECM,BC
m,g,d = α ∗PRECM

m,g,d;α =
PRECB

m,g

PRECM
m,g

5.2 Quantile mapping

The quantile mapping, or histogram equalization method is applied to minimum and maximum

temperature. In addition to the mean, it also corrects the second order moment (the variance) of

the distribution. In the following, the method is shortly summarized, a more detailed description

can be found in Berg et al. (2012). For this bias correction method the lengths of the time series

to be corrected and the observational time series need to be the same. In a first step, both time

series are sorted in ascending order and plotted against each other (in a Q-Q plot). If the model

data were to have no bias at all, that is, if both datasets were exactly the same, they would lie on

the x=y line. Deviations from this line indicate a bias in the results. If the resulting curve lies

under the x=y line, the model results show a positive bias, if they are over the line they exhibit a

negative bias. The bias correction method is based on deriving an empirical transfer function

which projects the curve of observations versus model results onto the x=y line. There are several

methods of estimating this transfer function, in this work a linear fit was used. By this, moments

higher than the second order are not corrected. The method was applied to monthly data for the

30 years of the reference period, i.e. data from the Januaries of each of the 30 years and, thus,

different transfer functions were estimated for each months and gridpoint. Transfer functions

from the reference period were then used to bias correct the data of the future time period. Since

the HYRAS dataset does not include minimum and maximum daily temperature, E-Obs data was

used which was bilinearly interpolated to the model grid and height corrected (see Section 4.1.2).

5.3 Effect of bias correction on the climate change signal

In most cases, bias correction affects the climate change signal of the corrected variables.

Depending on the method and the temporal resolution, the difference between uncorrected and
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corrected climate change signal varies in magnitude. In Fig. 5.1 the climate change signal

for variables corrected as described in the preceding sections is exemplarily compared to the

uncorrected change signal for one ensemble member (COSMO-CLM driven by the GCM

ECHAM6). For temperature means corrected according to Section 5.1.1, the climate change

signal of mean values does not change, since the additive correction factor cancels out (top left

Fig. 5.1.: Climate change signal between reference period (1971-2000) and near future (2021-2050) for

bias corrected versus non bias corrected temperature and precipitation variables for one selected

ensemble member (see text). Solid lines: mean monthly temperature means/minima/maxima and

mean monthly precipitation sums, dotted lines: mean yearly temperature means/minima/maxima

and mean yearly precipitation sums. Area mean over HYRAS domain (see Fig. 4.1)
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figure). This also holds for different temporal resolutions. For a multiplicative correction, the

relative change signal would be the same (as the multiplicative factor would cancel out). For the

linearly corrected precipitation, however (correction described in Section 5.1.2), the number of

dry days was additionally corrected leading to a change in relative and absolute change signal.

When looking at the same temporal resolution as the correction factors (mean monthly sums),

the direction of change is the same, but the magnitude of the change signal differs between the

months, depending on the bias to observations. When calculating the mean yearly sums, however,

corrected and uncorrected climate change signals even have different signs - the corrected

precipitation shows a slight decrease whereas the uncorrected shows an increase. However,

the magnitude of the difference is rather small compared to the total precipitation amount

and generally no significant changes are expected for precipitation (see Chapter 6). For the

temperature minima and maxima corrected with the quantile mapping method (see Section 5.2),

the climate change signal is also altered to a higher value. The maximum temperature shows

a larger cold bias with respect to observations (see Chapter 4) and, therefore, the effect on the

change signal is also greater.

One of the reasons for bias correcting data is related to the calculation of extremes defined as

threshold exceedances. The bias correction does not only affect changes in mean values but also

in statistical parameters calculated from the bias corrected daily time series. As an example the

Fig. 5.2.: Number of hot days per year for a gridpoint in the Rhine Valley for one selcted ensemble member

(see text). Values for reference and future time periods for uncorrected and bias corrected data

as well as for E-Obs Observations.
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number of hot days (days with a maximum temperature above 30◦C) for the ECHAM6 model

and E-Obs observations are shown in Fig. 5.2.

The bias corrected data overestimate the number of hot days per year, but are closer to the

observed values than the uncorrected data. One reason for this overestimation could be an

over-correction because the maximum daily temperature of the ensemble was calculated as

the maximum of hourly means (see Chapter 4.3) and the actual maximum temperature values

could be higher. Another reason for an over-correction is a skewed distribution, where a linear

estimation of the transfer function can lead to an overestimation at the tails of the distribution

(Berg et al., 2012). The climate change signal of hot days between the two time periods is more

than five times as higher for bias corrected maximum temperature series than for the uncorrected

data.

Bias correction of RCM output has an effect on the climate change signal. The magnitude of the

effect depends on the bias correction method, the statistics considered (means, sums or threshold

exceedance) and the temporal resolution of the analysis. This needs to be kept in mind when

working with bias corrected data.

5.4 Short summary

Due to the cold and wet bias of the 7km ensemble mean, temperature and precipitation data

were bias corrected using a linear method (for daily temperature means and precipitation sums)

and quantile mapping (for minimum and maximum temperature). These bias corrected values

are used in Chapters 6 and 7. Whenever using bias corrected data, it needs to be kept in mind

that the bias correction also affects the climate change signal in most cases.
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6 Changes of ensemble mean values

In the following sections, the change signal for mean, minimum and maximum temperature

and precipitation sums between the reference time 1971-2000 and the near future 2021-2050 is

derived for the 7km ensemble. All results are based on data to which a bias correction according

to Chapter 5 has been applied. Shown are the ensemble mean and spread of climatological

monthly means/sums and summer/winter means/sums. As a measure of robustness of the data,

the ensemble consistency (see Section 2.3) and the significance (see Section A) of the change

signal were calculated.

6.1 Mean temperature

The changes in climatological mean temperatures are depicted in Fig. 6.1. Except for one model

in the month of April, all models show an increase for all months, the highest increases being

in August through November. Since the ensemble spread is always above the ”zero line”, the

ensemble shows a significant change in temperature. This is in accordance with findings of

Fig. 6.1.: Changes in climatological mean monthly temperature [◦C] between 1971-2000 and 2021-2050.

Areal mean over the HYRAS domain (see Fig. 4.1).
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6. Changes of ensemble mean values

Fig. 6.2.: Changes in climatological mean temperature [◦C] between 1971-2000 and 2021-2050 for a)

summer b) winter. The ensemble consistency is 100% for the whole investigation area and

therefore not shown.

other studies (Jacob et al., 2014; IPCC, 2013). The mean changes in summer (between 1.1 and

1.7 ◦C) are slightly higher than in winter (between 1.0 and 1.3 ◦C). In summer, the change is

higher in the Alps and Southern and Central Germany whereas winter changes are highest in

the northeastern part of the HYRAS-domain (see Fig. 6.2). The changes are significant at the

5% level for all gridpoints and the ensemble consistency of the change signal is 100 % for all

gridpoints and both half years and is therefore not shown.

6.2 Maximum temperature

The changes in the mean monthly temperature maxima are depicted in Fig. 6.4. As for mean

temperatures, except for one model in April, all models show an increase for all months. The

temperature maxima show a stronger increase than the means with a maximum of 2.2◦C in

August. Changes in summer are stronger than in winter (Fig. 6.3). In winter, the Alpine region

shows particularly high changes. The changes are significant for all but a few gridpoints in

winter (mostly in the western part of the model domain in France) and the ensemble consistency

of the change signal (Fig. 6.3 c and d) is 50% or higher for all regions.
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6.2. Maximum temperature

Fig. 6.3.: Changes in climatological maximum temperature [◦C] between 1971-2000 and 2021-2050. Top

row: Changes of ensemble mean climatological maxima for a) summer b) winter, bottom row:

ensemble consistency of change signal for c) summer d) winter. The change signal is significant

at the 5 % level for more than 99 % of the area.
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6. Changes of ensemble mean values

Fig. 6.4.: Changes in climatological monthly maximum temperature [◦C] between 1971-2000 and 2021-

2050. Areal mean over the HYRAS domain (see Fig. 4.1).

6.3 Minimum temperature

The change signal of the mean monthly temperature minima is depicted in Fig. 6.5. Again, the

ensemble spread of the change signal clearly lies above the ”zero line” and the ensemble projects

a significant increase for all months. The peaks of increase are in February (2.4◦C) and November

(2.1◦C), generally the increase is higher in winter than in summer. The temperature increase

in summer lies between 0.9 and 2.3◦C and between 0.8 and 3.1◦C in winter. The ensemble

Fig. 6.5.: Changes in climatological monthly minimum temperature [◦C] between 1971-2000 and 2021-

2050. Areal mean over the HYRAS domain (see Fig. 4.1).
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6.3. Minimum temperature

consistency (Fig. 6.6 c and d) is above 50% for the whole model domain and the changes are

significant for all but a few gridpoints in the Alps in winter. Minimum temperatures change

slightly stronger than maximum temperatures, this has also been observed for past records of

observational data (e.g. Heino et al., 1999; Beniston et al., 1994).

Fig. 6.6.: Changes in climatological minimum temperature [◦C] between 1971-2000 and 2021-2050. Top

row: Changes of ensemble mean climatological minima for a) summer b) winter, bottom row:

ensemble consistency of change signal for c) summer d) winter, non significant changes are

marked with a cross. The change signal is significant at the 5 % level for more than 99 % of the

area.
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6. Changes of ensemble mean values

6.4 Precipitation

Fig. 6.7.: Changes in climatological monthly precipitation sums [mm] between 1971-2000 and 2021-2050.

Top row: Changes of ensemble mean climatological sums for a) summer b) winter, bottom

row: ensemble consistency of change signal for c) summer d) winter. The change signal is not

significant for all gridpoints in summer and winter.

Precipitation shows a clear change signal only in some regions. The mean of the climatological

monthly sums for the HYRAS-domain (Fig. 6.8) shows an increase of precipitation in most

months with a negative peak and, thus, a decrease in the months of July and August (by

8.8/8.3mm). The ”zero line” goes through the ensemble spread for all months, there is no

clear change signal in the region. Figs. 6.7 a and b show the areal mean winter and summer
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6.5. Short summary

Fig. 6.8.: Changes in climatological precipitation sums [mm] between 1971-2000 and 2021-2050. Areal

mean over the HYRAS domain (see Fig. 4.1).

precipitation sums. In summer, the ensemble predicts a decrease for the Black Forest and western

Germany as well as the Alps (up to 90mm), the rest of the investigation area shows only small

changes with a low ensemble consistency (see Fig. 6.7 c). The change signal is not significant for

the whole investigation area. In winter, there is a slight increase for most of the investigation area

with especially high values in the Black Forest and the Alps. For winter increase, the ensemble

consistency is also fairly high for most part of the region. These findings also agree with the

general tendencies found in other studies (e.g., Jacob et al., 2014; IPCC, 2013).

6.5 Short summary

This chapter gave an overview of the change signal of mean, maximum and minimum temperature

and precipitation sums for the summer and winter season between the recent past (1971-2000)

and the near future (2021-2050). The 7km ensemble used in this work shows a robust increase

in mean, maximum and minimum temperature values for central Europe. Changes in minimum

temperatures are higher than for maximum temperatures. This increase is significant except for

a few gridpoints in the Alps for minimum and maximum temperature. For precipitation, most

ensemble members show a small increase in winter and a decrease in summer. However, these

changes are not significant.
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7 Compound extreme events with thresholds: type 1 ex-

tremes

This chapter contains an analysis of compound extreme events using thresholds, namely com-

pound hot and dry extremes in summer (JJA) and compound cold and heavy precipitation days

in winter (DJF). A compound event is defined by both temperature and precipitation exceeding a

certain threshold on a given day. The following thresholds are used:

Tab. 7.1.: Thresholds for daily temperature and precipitation events.

hot extreme maximum daily temperature > 30◦C

cold day minimum daily temperature < 0◦C

dry day daily precipitation sum < 1mm

wet extreme daily precipitation sum > 25mm

These extremes play a role for agriculture and infrastructure among others. The statistical

parameters considered for the analysis are the number of compound extreme days, the number of

compound extreme episodes and the mean length of episodes. For the latter two, an episode is

defined as at least two consecutive compound extreme days. All measures are given on a mean

yearly basis and calculated from bias corrected data (as described in Chapter 5).

7.1 Hot and dry extremes in summer

Table 7.2 gives an overview of the ensemble mean of the statistical parameters of univariate

hot/dry days and compound hot and dry days in summer (JJA) for the reference period (1971-

2000) and the climate change signal (1971-2000 vs. 2021-2050). The minimum, maximum and

areal mean of the HYRAS domain are listed for the number of extreme days and episodes and

the mean episode length. Note that the minimum/maximum value of the reference period and

the change signal are most likely not at the same grid point. The results for compound extreme

events are depicted graphically in the following two sections. For validation, the E-Obs dataset

was used (see Section 4.1.2), as the HYRAS dataset does not contain values for daily minimum

53



7. Compound extreme events with thresholds

Tab. 7.2.: Mean, minimum and maximum values of all gridpoints of the HYRAS domain of different

statistics for the reference period (1971) and the climate change signal (1971-2000 vs. 2021-

2050). Comparison between univariate hot/dry and compound hot and dry extremes in summer

(JJA).

dry hot hot and dry

statistic reference change reference change reference change

number min 37.9 1.4 0 0 0 0

of max 69.1 5.4 12.7 7.6 11.1 7.7

days mean 58.8 3.2 4.6 4.2 3.9 4.2

number min 8.6 -1.3 0 0 0 0

of max 12.3 0.6 2.9 1.5 2.5 1.7

episodes mean 11.0 -0.4 1.0 0.9 0.9 0.9

mean min 3.5 0.18 0 -0.8 0 -0.7

episode max 6.3 1.13 3.7 2.4 3.8 2.7

length mean 4.8 0.6 2.8 0.4 2.8 0.4

and maximum temperature and for reasons of consistency both variables were taken from the

same observational dataset.

7.1.1 Validation

The statistical parameters for compound hot and dry extremes in summer for the reference period

are shown in Fig. 7.1. The number of compound hot and dry days exhibits a dependence on

elevation; the Alps and the lower mountain ranges show no or only a small number of extreme

days. The highest number of hot and dry type 1 extremes occurs in the Rhine Valley and parts of

Brandenburg, the coastal areas are less affected. The number of episodes and the mean episode

length (Figs. 7.1b , c) roughly match the distribution of the number of days ( Fig. 7.1a), the

highest values are in the Rhine Valley, whereas in the Alps and along the northern coast there

are less than 0.5 episodes per year but with a similar length as in the rest of the area. When

comparing the mean, minimum and mean values of the HYRAS domain for all three statistical

parameters (Table 7.2), it becomes clear that the occurrence of compound extreme hot and dry

days is governed by the occurrence of hot days. The mean number of dry days is approximately

one order of magnitude higher than that of hot days so these are mostly the limiting factor. The

spatial pattern of Figs. 7.1 a-c also matches that of univariate hot days (not shown). A comparison

to E-Obs observations (right side of Fig. 7.1) shows that the ensemble mean does very well in

the northern part of the investigation area. In the southern part there are slightly too many hot
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7.1. Hot and dry extremes in summer

Fig. 7.1.: Compound hot and dry extremes in summer (JJA) in the reference period (1971-2000). Left side:

ensemble mean statistics ; right side: difference ensemble mean - E-Obs observations a)+d)

mean number of days/summer, b)+e) mean number of episodes/summer, c)+f) mean episode

length.

55



7. Compound extreme events with thresholds

and dry extremes and the mean length of the episodes is somewhat too high, but the number of

episodes and the mean episodes length fit very well for almost all of the domain. The bias which

is present for the number of days does not transfer to the other two statistics. The reason for this

is that only episodes of at least 2 days lengths are considered and the deviation is largest for one

day events. Possible reasons for the positive bias in the number of hot days, which leads to the

positive bias in the number of compound hot and dry days, are discussed in Section 5.3.

7.1.2 Climate change signal

The change signal of the number of compound hot and dry episodes between the reference period

and the near future is shown in Figs. 7.2 a - c. A comparison to the statistical parameters of the

reference period (Figs. 7.1 a - c) shows that regions that show a high number of extreme events,

like the Rhine Valley or regions in Brandenburg, are also prone to strong changes in the near

future (up to 7.5 days per year). The coastal areas, which show a low number of extremes in

the reference period, also yield a smaller absolute change signal in the near future (2-3 days

per year). However, the relative changes in these regions are above 100%. Like the values for

the reference period, the change signals of the number of days and the number of episodes are

again correlated, whereas the mean length of episodes is again fairly homogeneous (between

0.25 and 0.5 days) for most of the domain. Just like in the reference period, the change signal

is dominated by the change of hot days (see Table 7.2). Averaged over the whole HYRAS

domain, the number of compound hot and dry days increases by more than 100%. As a measure

of robustness, the ensemble consistency (see Section 2.3) and the significance of the change

signal (see Section A) were calculated. These show a robust change in the number of compound

extreme days and episodes and are therefore not shown; the ensemble consistency is 100%

except for a few grid points in the Alps and the changes are significant for 95% of the HYRAS

domain. The ensemble consistency of the mean episode length (Fig. 7.2 d) is above 50% for

regions with a strong change signal and these changes are mostly also significant. The change

signal of the ensemble for univariate extremes (hot days and dry days) is in rough agreement

with those of other projects for this region (Beniston et al., 2007; Van der Linden and Mitchell,

2009; Jacob et al., 2014; Sedlmeier and Schädler, 2014) and the increase in hot days agrees with

the increasing temperature trend (see Fig. 3.2). Thus, one can have confidence in these findings

for compound extreme events.
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7.2. Cold and wet extremes in winter

Fig. 7.2.: Ensemble mean climate change signal of compound hot and dry extremes in summer (JJA)

between 1971-2000 and 2021-2050. a) mean number of days/summer, b) mean number of

episodes/summer, c) mean episode length d) ensemble consistency of c, grid points where the

change signal is not significant are shaded. EC of a and b is 100% for most of the investigation

area and not shown (see text)

7.2 Cold and wet extremes in winter

Table 7.3 gives an overview of the ensemble mean of the statistical parameters of univariate

cold/wet days and compound cold and wet days in winter (DJF). The minimum, maximum and

areal mean of the HYRAS domain are listed for the number of extreme days. Note that the

minimum/maximum value of the reference period and the change signal are most likely not at

the same grid point (i.e. the minimum change signal of -1.16 compound extreme cold and wet
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7. Compound extreme events with thresholds

Tab. 7.3.: Mean minimum and maximum values of the number of univariate wet/cold and compound wet

and cold extremes in winter (DJF) for the HYRAS domain, reference period (1971) and climate

change signal (1971-2000 vs. 2021-2050).

wet cold wet and cold

statistic reference change reference change reference change

number min 0 1.34 26.42 -14.37 0 -1.16

of max 10.02 -0.12 90.37 -0.20 5.36 0.73

days mean 0.41 0.11 58.3 -10.40 0.20 0.01

days is not for the same grid point which shows the minimum value (0) for the reference period).

The results for compound extreme events are depicted graphically and explained in the following

two sections. Since the number of compound extreme episodes and the mean episode length are

so small and this type of extremes only occurs in higher elevated, mountainous terrain like the

Alps, the Black Forest and the Vosges mountains, only the number of extreme days is shown.

7.2.1 Validation

The occurrence of the combination of cold days and heavy precipitation in winter for the time

period 1971-2000 is shown in Fig. 7.3 a. These compound events are largely dominated by the

occurrence of heavy precipitation days since their number is limited in winter, whereas the

Fig. 7.3.: Ensemble mean compound cold and wet extreme days per year in winter (DJF) in the reference

period (1971-2000).a) number of days/winter, b)difference ensemble mean - E-Obs observations.
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7.2. Cold and wet extremes in winter

number of cold days is about one order of magnitude higher (see Table 7.3). In comparison to the

number of compound extreme days calculated from the E-Obs dataset (Fig. 7.3 b), the number

of compound extreme days calculated from the 7km ensemble shows a positive bias in large

parts of the Alps and the Black Forest. This bias is due to a bias in the heavy precipitation events.

However, in comparison to HYRAS precipitation data, the E-Obs dataset shows too few heavy

precipitation events in mountainous terrain (Rauthe et al., 2013). Therefore, the bias between

the ensemble mean and the E-Obs observations is not only due to a bad representation of the

ensemble values but also caused by a bias in the E-Obs data. Comparison of heavy precipitation

events to HYRAS data also yields a small positive bias but of much lower magnitude than when

compared to E-Obs heavy precipitation events (not shown).

7.2.2 Climate change signal

The 7km ensemble does not show changes in most of the investigation area. Exceptions are

mountainous regions (Fig. 7.4 a). The ensemble mean shows a decrease for parts of the Black

Forest and the Vosges (up to ≈ 32%) and an increase in the Alps (by about 20%). The ensemble

consistency (Fig. 7.4 b) is high in some areas, positive in the southeastern part of the HYRAS

domain and negative in the southwestern part of domain. These areas also show significant

changes but the change signal itself is negligibly small. The increase in the Vosges and the Black

Forest shows a high ensemble consistency but the changes are not significant. These studies are

in agreement with previous studies on univariate extreme events which show a decreasing trend

Fig. 7.4.: Ensemble mean climate change signal of compound cold and wet extreme days in winter (DJF)

between 1971-2000 and 2021-2050. a) mean number of days/winter, b) ensemble consistency

of a, grid points where the change signal is not significant are shaded.
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7. Compound extreme events with thresholds

in cold days (e.g. Heino et al., 1999) and an increase in heavy precipitation days in mountainous

regions in winter (Schmidli and Frei, 2005; Feldmann et al., 2012) for the observed record and

the near future.

7.3 Added value of high resolution

As minimum and maximum temperature are not available as daily output variable for most of the

simulations, they were calculated as daily minimum and maximum values of the hourly mean

temperature for the 7km ensemble. For the 50km ensemble, however, the temperature is only

available every six hours. A comparison of both resolutions with observations would be possible

by using a 6-hour mean of the observational and the 7km data. This would, however, smooth

out all temperature extremes and not really fit the purpose of the comparison. Therefore, this

chapter only compares the added value of precipitation extremes, namely the number of dry days

in summer and the number of heavy precipitation extremes in winter. For better comparison, the

uncorrected model precipitation values were used and compared to the HYRAS precipitation due

to the known problems of E-Obs with heavy precipitation. Fig. 7.5 depicts the root mean square

error and the correlation between the 7km and 50km ensemble and the HYRAS observations for

dry days including all grid points of the HYRAS domain. The measures were calculated for each

ensemble member separately and are displayed as box plots.

Fig. 7.5.: Root mean square error (RMSE) and spatial correlation for the mean number of dry days in

summer (JJA) of the 7km and 50km ensembles with respect to E-Obs observations for the

HYRAS domain (see Fig. 4.1). Gray bars show the RMSE/correlation of the ensemble mean.
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7.4. Short summary

Fig. 7.6.: Root mean square error (RMSE) and correlation for the mean number of wet days in winter

(DJF) of the 7km and 50km ensembles with respect to E-Obs observations for the HYRAS

domain (see Fig. 4.1). Gray bars show the RMSE/correlation of the ensemble mean.

As already noted in chapters 4 and 5, the COSMO-CLM has a drizzle problem and especially

the 7km ensemble greatly underestimates the number of dry days. At coarser resolution, this

problem is slightly smaller but the difference is not significant. The correlations are fairly high

for ensembles of both resolutions but the difference between the values for both ensembles are

again not statistically significant.

When comparing RMSE and the correlation for wet extremes in winter (Fig. 7.6), the 7km

ensemble shows a clear added value for the spatial correlation. The RMSE shows a higher

spread than the coarser resolved 50km ensemble but the difference between the resolutions is

not significant (note: the reason that the absolute value of the RMSE is lower for wet and dry

extremes than for hot and dry extremes is also due to the fact that a large portion of the HYRAS

domain only show very small numbers of wet days per winter, whereas the number of dry days

is around 2 orders of magnitude higher). For elevations below 1000m, the 7km ensemble shows

a significantly lower RMSE, but at higher elevation the RMSE is higher (not shown).

7.4 Short summary

In this chapter, compound extremes were defined as combined threshold exceedance of daily

maximum temperature and precipitation sums (type 1 extremes), namely hot and dry extremes

(Tmax > 30◦ and Prec < 1mm) in summer (JJA) and cold and wet extremes (Tmin < 0 ◦ and Prec >

25mm) in winter (DJF). For the analysis, bias-corrected model data (see Chapter 5) was used.
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7. Compound extreme events with thresholds

Validation (1971-2000): The number of compound hot and dry days in the reference period are

between 0 and 11.1 days per summer in the investigation area with the highest number in the

Rhine Valley and parts of Brandenburg. The ensemble mean is able to represent the statistics of

the observations very well except for a small positive bias in the southern part of the investigation

area. Compound cold and wet extremes mostly occur in the mountainous regions (Alps, Vosges

and Black Forest), with a maximum of 5.4 days per winter. In the rest of the investigation area

there are less than 0.5 days per winter. Including the uncertainties in observational datasets, the

ensemble is able to represents the number of cold and wet extremes for the reference period well.

Climate change signal (1971-2000 vs 2021-2050): The 7km ensemble predicts a robust in-

crease of compound hot and dry episodes in summer, averaged over the whole investigation area,

the relative change is higher than 100%. Especially regions which already exhibit a high number

of compound extreme days, such as the Rhine Valley and parts of Eastern Germany, are likely to

experience the strongest absolute changes (up to 7.5 days per year) and a shift to more frequent

and longer episodes. Near future changes of compound cold and wet extremes in winter are very

small and mostly not significant. Only small parts of the eastern Alps show an increase of about

20%.

Added value of higher resolution (50km vs 7km): A comparison of precipitation extremes

for both the 7km and 50km ensembles results in added value in the spatial distribution of heavy

precipitation by the 7km ensemble.
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8 Compound extreme events with the effective heat-/drought

index: type 2 extremes

In contrast to the absolute compound extremes of the last one (Chapter 7), this chapter focuses

on relative compound extreme events. These were analyzed by using the effective drought index

(EDI; Byun and Wilhite, 1999) and an analogous measure defined for temperature. Relative

compound extremes are defined as days where these indices show high deviations from the

local mean conditions. Therefore, these extremes are not necessarily extreme in the sense of

record breaking events. Nevertheless these relative extremes are of interest for different reasons.

For one, they play an important role for agriculture and forestry, for example when regarding

adaptation of seeding times of species, and they can affect the ecosystem. Furthermore, they

are a measure of the variability of the climate system and the variability is also important when

considering extreme events (e.g. Katz and Brown, 1992; Schär et al., 2004).

The extremes of this chapter are further referred to as type 2 extremes or relative compound

extremes (different to the absolute extremes in the previous chapter). For validation, the HYRAS

dataset (see Section 4.1.1), bilinearly interpolated to the 7km model grid, was used.

8.1 The effective drought/heat index (EDI/EHI)

The effective drought index (EDI) was proposed by Byun and Wilhite (1999) and describes

extremes as deviations from the climatological mean state. As such, it is a measure of the

variability of the climate system. A special feature of this index is the use of effective precipitation

(hence the name), explained below, which takes the memory effect of the soil into account. An

analogous measure was defined for temperature, called the effective heat index (EHI). Compound

events are defined by both EDI and EHI exceeding a certain threshold on a given day.

Effective precipitation (hereafter referred to as EP) and effective temperature (ET) for a given day

are calculated as described by equation 8.1 with EX = EP or ET. They are the weighted summation

of the preceding ds days, thus taking into account the memory effects of soil and atmosphere.

EP correlates highly with soil moisture which is especially important when considering droughts.

The value of ds is different for temperature and precipitation. For the latter, the value suggested by
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8. Compound extreme events with the effective heat-/drought index

Byun and Wilhite (1999) is used (dsEP = 365). For the effective temperature, ds was determined

as the lag where the autocorrelation function equals 0.5. This was calculated for every grid point

of all ensemble members separately and then averaged, leading to a value of ds = 49. To have EP

and ET synchronous, the starting date was set to the 1.1. 1972 using the preceding 365 days to

calculate EP and the preceding 49 days to calculate ET. The same was done for the projection

period where the calculation starts on the 1.1.2022.

EXd =
ds

∑
n=1

(
∑

n
m=1 Xd−m

n

)
[8.1]

From EP and ET, the indices EDI and EHI can be calculated as standard anomalies of the effective

values according to equation 8.2 where (X,Y) = (T,H) or (X,Y) = (P,D). The climatological mean

value EXd is calculated as a running mean over 5 days for precipitation (as suggested in Byun

and Wilhite, 1999) and 31 days for temperature.

EY Id =
EXd−EXd

σ
(
EX−EX

)
d

[8.2]

Besides taking into account the memory effect, EDI and EHI have further advantages. One is the

removal of linear biases. As shown in Chapters 4 and 5, the COSMO-CLM data is subject to

a bias of varying magnitude. By using standardized anomalies, no bias correction needs to be

applied, at least for linear biases. A further advantage of these indices is that they are symmetric

and can thus be used for wet/dry and hot/cold extremes, respectively, and all combinations.

Since the aim of using this method is to capture deviations from the local mean state, detrended

temperature time series are used for the calculation of EP to avoid a trend in the calculated EHI

time series. A positive trend could possibly lead to stronger negative deviations at the beginning

and stronger positive deviations at the end of each time period and prevent distinction between

linear changes and the, in this case more interesting, changes in variability.

In this work, an extreme value of EDI/EHI is defined as a value greater than ± 1.5 which

corresponds to a value greater than 1.5 times the standard deviation (for a normal distribution

this would correspond to the 93th quantile, but note that the values are most likely not normally

distributed). An exemplary time series for EDI and EHI is shown in Fig. 8.1. The “normal” range

is marked by a gray box, all values lying outside of this box are extreme. Relative compound

extremes are defined as both EDI and EHI exceeding± 1.5, as for example the case of the yellow

box.

The following sections show the results of the analysis of compound hot and dry extremes

(EHI > 1.5 and EDI < -1.5) in summer (JJA) and compound cold and wet extremes (EHI < -1.5

and EDI > 1.5) in winter (DJF). Besides the number of extreme days, the mean number of
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8.1. The effective drought/heat index (EDI/EHI)

Fig. 8.1.: Exemplary EDI and EHI time series. All values outside of the gray shaded area show deviations

greater than 1.5 σ and are considered extreme. The yellow box marks a compound extreme,

where both EHI and EDI are greater/smaller than ± 1.5.

episodes and the mean episode length are calculated. In contrast to Chapter 7, one extreme day

is already considered an episode. This is justifiable, since due to the memory effect, a relative

extreme with this method already implies extreme or nearly extreme conditions on the preceding

days. The results are validated against HYRAS observations before a change signal is deduced.

In order to assess the robustness of this change signal, the ensemble consistency (see Section 2.3)

and the significance (see Section A) are calculated. In the chapters before, in most cases a

high ensemble consistency implied significance and vice versa. For example, changes in mean

temperature and temperature extremes are mostly significant and all members agree on the

sign of the change signal due to the temperature trend which all models show. This relation

between ensemble consistency and significance is not always valid, especially when looking at

change signals which are derived from detrended time series, where the trend as strongest change

signal is removed. This is exemplarily shown in Fig. 8.2. The boxplots represent the number of

compound extreme hot and dry days of the eight ensemble members calculated from the EDI and

EHI time series for two selected gridpoints. The boxes mark the interquartile range, whiskers

the minimum/maximum, the black line the ensemble median and the gray line the ensemble

mean. The p-value for the changes of grid point 1 (shown on the left side) is 0.28 (corresponding

to a singificance level of 28%), the change is not significant according to the often used 5%

significance level (p-value=0.05). The ensemble consistency in this case, however, is 100%, all

members show a positive change greater than 10%. The change signal for the second grid point

is significant (the p-value is 0.03) but the ensemble consistency is only 37.5%. Five ensemble

members show a positive change, two a negative change and one a change smaller than the

threshold of 10%. Although the significance is an important measure in this case, it might be

misleading and it is perhaps better to follow the thoughts of von Storch and Zwiers (2013) who
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8. Compound extreme events with the effective heat-/drought index

Fig. 8.2.: Exemplary comparison of ensemble consistency and significance of the change signal for

compound hot and dry extremes for two different gridpoints of the HYRAS domain (see text).

propose to use “a simple descriptive approach for characterizing the information in an ensemble

of scenarios” instead of the ensemble significance. They argue that the fundamental assumptions

for building a null hypothesis are often not true when looking at climate ensembles. In this work,

both measures are used.

8.2 Relative hot and dry extremes in summer

8.2.1 Validation

The statistical parameters of compound relative hot and dry extremes in summer (JJA) are shown

in Fig. 8.3. This graphic also contains information about whether or not the statistical parameters

of the observations lie within the ensemble spread (mean ± standard deviation). Gridpoints for

which this is not the case are shaded in gray. The number of relative compound extreme days

per summer lies between ≈ 0.5 and 2, the mean value for the HYRAS-domain is 1.2. In the

areal mean, less than 2% of summer days are extreme. For comparison, the mean number of

univariate extreme days per summer is 7.1 (hot days) and 4.7 (dry days) respectively, which

amounts to about 8 %/5% of the total number of summer days and is still fairly extreme. The

highest values of type 2 compound hot and dry extreme days are in the Rhine Valley (which

also shows the highest number of absolute extremes, see Chapter 7), but also in the Alps and in

northern Germany, south of Hamburg. These are regions where the number of absolute extremes

is not extremely high or non-existent. For most gridpoints (82% of the HYRAS domain), the

number of relative compound hot and dry days of the observations lie within the ensemble spread

and the 7km ensemble is able to represent the statistical parameters calculated from observations.
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8.2. Relative hot and dry extremes in summer

Fig. 8.3.: Ensemble mean of relative compound hot and dry extremes (EHI > 1.5 and EDI < -1.5) in

summer (JJA) in the reference period (1971-2000). a) number of days/summer, b) number of

episodes/summer, c) mean episode length. Gridpoints where the statistical parameters of the

HYRAS Observations lie outside of the ensemble spread are shaded in gray.

For univariate temperature extremes, this is valid for 99% of the gridpoints (not shown), thus,

the deviating factor is due to precipitation index. The number of episodes is lower than one

episode per year, and the mean length lies between 2.7 and 10.4 days. For these latter two

statistical parameters, the values calculated from observations lie inside of the ensemble spread

for 45% and 32%, respectively, of the gridpoints within the HYRAS domain (non shaded areas

in Figs. 8.3 b and c). For the other gridpoints, the ensemble shows too litte episodes with a higher

mean episode length. Although the models capture the number of compound extremes fairly

well, they seem to have problems to correctly simulate when these extremes occur and with
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Fig. 8.4.: Ensemble mean climate change signal of relative compound hot and dry extremes (EHI > 1.5

and EDI < -1.5) in summer (JJA) between 1971-2000 and 2021-2050. Left side: ensemble mean,

right side: ensemble consistency, gridpoints where changes are not significant at the 5% level

(p-value = 0.05) are shaded in gray. a) + d) mean number of days/summer, b) + e) mean number

of episodes/summer, c) + f) mean episode length
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which temporal succession.

8.2.2 Climate change signal

Fig. 8.4 shows the climate change signal of relative compound hot and dry extremes in summer

for the HYRAS domain. The number of extreme days increases for a large fraction of the

model domain. Especially in the eastern part of the investigation area (eastern Germany, Czech

Republic and bordering parts of Austria) the relative increase is greater than 100% (see Fig. 8.3).

The ensemble consistency is high for regions with a high change signal. The change in number

of episodes is negligibly small (below 0.1 episodes/summer) for most parts of the investigation

area. For gridpoints that show the highest increase of relative compound extreme days (Czech

Republic, parts of eastern and northern Germany), the number of compound extreme episodes

also increases. The direction of change for the mean episode length depends on the region but

for most gridpoints, the change signal does not show a high ensemble consistency and is not

significant according to the 5% level (p-level=0.05). Exceptions are Austria and the parts of the

Czech Republic as well as the bordering region in eastern Germany. Univariate dry days show a

robust increase in most of the investigation area, which is in agreement with other studies (e.g.

Dai, 2013) and increases the confidence of these findings.

8.3 Relative cold and wet extremes in winter

8.3.1 Validation

The statistical parameters for relative cold and wet extremes in winter are depicted in Fig. 8.5.

The highest number of cold and wet days occurs in the eastern part of the model domain on

the boarder between the Czech Republic and Austria (≈ 0.86 days/winter) and the eastern Alps.

The number of episodes is below 0.1 episodes per winter for all regions except the eastern Alps

and areal mean of the mean episode length for the investigation area is 2.7 days. The statistical

parameters of the observations only lie inside of the ensemble spread for less than half of the grid

points (30%/ 48%/ 33%for cold and wet days/ episodes/ mean episode length). The ensemble

underestimates the values for all three parameters. The statistical parameters for univariate

cold and wet extremes are better represented by the ensemble (not shown), the percentage of

gridpoints for which the observations lie within the ensemble spread is between 48 and 76%.

Thus, the models do no correctly represent the combination of both extremes for a large fraction

of the investigation area.
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Fig. 8.5.: Ensemble mean of relative compound cold and wet extremes (EHI < -1.5 and EDI > 1.5) in

winter (DJF) in the reference period (1971-2000). a) mean number of days/winter, b) mean

number of episodes/winter, c) mean episode length. Gridpoints where the statistical parameters

of the HYRAS Observations lie outside of the ensemble spread are shaded in gray.

8.3.2 Climate change signal

The change signal of the statistical parameters of relative cold and wet days are shown in Fig. 8.6.

The number of cold and wet days increases in small parts of northeastern and southeastern

Germany (by up to 0.35 days per year) and decreases in parts of central Germany (by up to 0.3

days per year), the rest of the investigation area only shows changes smaller than 0.2 days per

year (see Fig. 8.6). The change in number of episodes is negligibly small and the mean episode

length shows a decrease in the southern and northeastern parts of the domain and an increase in
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Fig. 8.6.: Ensemble mean climate change signal of relative compound cold and wet extremes (EHI < -1.5

and EDI > 1.5) in winter (DJF) between 1971-2000 and 2021-2050. Left side: ensemble mean,

right side: ensemble consistency, gridpoints where changes are not significant at the 5% level

(p-value = 0.05) are shaded in gray. a) + d) mean number of days/winter, b) + e) mean number

of episodes/winter, c) + f) mean episode length
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the western part and parts of the Czech Republic. However, the ensemble consistency of the

change signal for all three statistical parameters is only high for small regions, only less than

20% of the gridpoints show a consistency higher than 50%, and the results are significant for

less than 5% of the investigation domain.

8.4 Added value of high resolution

For the analysis of added value of the 7km resolution ensemble, the statistical parameters for

compound hot and dry/cold and wet extremes are compared for the reference period. Precipitation

and detrended temperature data of the 50km ensemble were interpolated to the 7km model grid

by bilinear interpolation prior to the calculation of the indices. As a measure of added value, the

root mean square error (RMSE) including all grid points of the HYRAS domain and the spatial

correlation of the respective statistical parameter (number of days, number of episodes and mean

Fig. 8.7.: Root mean square error (RMSE, top row) and spatial correlation (bottom row) for relative

compound hot and dry extremes in summer (JJA) in the reference period (1971-2000) over the

HYRAS domain (see Fig. 4.1). Boxplots for 7km and 50km ensemble (see text).
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Fig. 8.8.: Root mean square error (RMSE, top row) and spatial correlation (bottom row) for relative

compound cold and wet extremes in winter (DJF of 1971-2000) of the 7km and 50km ensemble

members with respect to HYRAS observations for the HYRAS domain in the reference period

(1971-2000) (see text). Gray bars show the RMSE/correlation of the ensemble mean.

episode length) with respect to HYRAS observations were calculated for each ensemble member

separately. The results are shown as box plots where the box marks the interquartile range of

the ensemble and the whiskers the minimum and maximum RMSE and correlation of the eight

ensemble members. The colored bars mark the median and the gray bars the values for the

ensemble mean.

Box plots for 7km and 50km ensemble are pictured next to each other for comparison. Fig. 8.7

shows the RMSE for hot and dry extremes in summer. While the number of compound extreme

days seems to be slightly better represented by the 7km ensemble and the mean episode length

slightly worse, there are no significant differences between the ensembles of different resolutions.

The same can be said for the cold and wet extremes in winter (Fig. 8.8). When looking at relative

extremes, the second nesting stage (7km) does not seem to differ much from the first nesting
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stage at 50km. As these are related to the variability of the extremes, this seems to be mostly

governed by large scale circulations.

8.5 Short summary

The relative (type 2) compound extremes analyzed in this chapter refer to extremes as deviations

from the local mean state (of the respective time period) and are a measure of the variability of

the climate system. Temperature trends were removed prior to the analysis.

Validation (1971-2000): The number of compound hot and dry extreme days lies between 0.5

and 2.0 days per year in the investigation area, the highest number of days occur in the Rhine

Valley, the Alps and northern Germany, south of Hamburg. The statistical parameters of the

ensemble match those of the observations fairly well for the number of compound extreme

days but the number of episodes are under-, the mean episode length overestimated by the

ensemble (percentage of gridpoints where the observational value lies within ensemble spread =

85%/45%/32% for number of days/number of episodes/mean episode length). Type 2 cold and

wet extremes in winter (DJF) occur mostly in the border between the Czech Republic and Austria

and the eastern Alps. Compared to the HYRAS observations, the ensemble represents their

number well in the southern part of the investigation area, in the rest the statistical parameters of

the observations lie outside of the ensemble spread.

Climate change signal (1971-2000 vs 2021-2050): Relative hot and dry compound extremes

in summer (JJA) are likely to increase in most of the investigation area, especially in eastern

Germany and the Czech Republic there are some regions where the 7km ensemble predicts a

significant increase of ≈ 100 % with most model members agreeing on this change. For cold

and wet extremes, there are almost no robust changes in the investigation area.

Added value of higher resolution (50km vs 7km): Significant added value for higher resolu-

tion was not found for the analyzed relative compound extreme events.
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9 Compound extreme events with the Markov Chain method:

type 3 extremes

Most methods used for the analysis of extreme or compound extreme events focus on the absolute

number of events, their return periods or the variability (as for example the results presented

in the two preceding chapters). The method presented in this chapter is a new approach for

the analysis of compound extreme events which concentrates more on how they occur - on the

temporal succession and interplay of different univariate extremes. This will be referred to as

the dynamical behavior of compound extreme events or type 3 extremes. The method yields

supplementary information to the existing methods and enables the analysis of an aspect of

current climate and climate change which is usually neglected. If, for example, two regions show

a similar number of extreme events but different dynamical behavior (i.e. in one region there are

many short extreme episodes, in the other there are few but long ones) this has a huge impact

on how these extremes affect society. In addition to this temporal succession, the method also

yields information about the predictability of the system with regard to the compound extreme

events. Considering changes of extremes, the method can be used to answer the question of

whether or not changes in the mean or variability also induce changes in the dynamical behavior

with respect to the new “normal” state with changed mean and variability and whether or not the

predictability of compound extreme events changes.

9.1 Markov chain analysis

The method presented here for the analysis of the dynamical behavior of compound extreme

events is based on the concept of Markov chains. Descriptors which characterize this dynamical

behavior are calculated from the time series of atmospheric variables which are reduced to a

symbolic sequence of extreme and non-extreme regimes beforehand. This sequence can be

described as a Markov chain. The method is an adaptation of work by Mieruch et al. (2010), who

first introduced it to climate science. They used it for climate classification and a comparative

study of two regions based on temperature and water vapor data. Before that, it has been used in

biology by Hill et al. (2004) to describe dynamics of succession of a rocky subtidal community.
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The following sections give a brief review of Markov chains before introducing the descriptors

used for this work and the application of the method to climate data.

9.1.1 Markov chains

Markov chains are a class of time and state discrete models, or stochastic processes, used to

represent time series of discrete variables (e.g., Norris, 1998; Wilks, 2011). They consist of

m different states (m-state Markov chain) of a model system which are ”mutually exclusive

and collectively exhaustive” (Wilks, 2011) and, thus, make up the sample space of the random

variable considered. For each discrete time step, the system can either stay in the state it is

already in or change to another state. Conditional probabilities, which govern the behavior of the

Markov chain for these transitions, can be calculated. The simplest form of Markov chain is a

first order Markov chain. It fulfills the Markov Property,

P(xt |xt−1,xt−2, ...,xt−n) = P(xt |xt−1) , [9.1]

where the present state xt is only dependent on the preceding state xt−1. An m-state Markov

chain allows m×m different transitions for which conditional transition probabilities can be

organized in a transition probability matrix P of the order m×m (m= number of discrete states

of the Markov chain). The entries for the different transitions of state j = {1, ..,m} and time t to

state i = {1, ..,m} at time t +1 of P can be estimated as follows:

p̂i j =
ni j

∑i ni j
, [9.2]

where ni j is the total number of transitions from state j to state i. Note that the entries of each

column ∑i p̂i j must equal 1 since every transition must be into one of the other states. In this

work, homogeneous first order Markov chains are used for which the transition probability

matrix P is time independent. Additionally none of the entries of the transition probability matrix

should be equal to zero. To test for stationarity, the stationary distribution π and the empirical

distribution π̂ of the Markov chain need to be identical. A stationary distribution is a vector that

fulfills the following equation:

π = Pπ. [9.3]

The stationary distribution π can therefore be obtained by solving the eigenvalue problem of

equation 9.3. π is the eigenvector associated with the dominant eigenvalue of 1. The empirical

distribution can be calculated by counting the different states of the Markov chain:

π̂ j =
n j

∑ j n j
. [9.4]
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9.1.2 Markov descriptors

To characterize the dynamical behavior of compound extreme events, descriptors can be calcu-

lated from the estimated transition probability matrix P of the Markov chain. Following Mieruch

et al. (2010), this work focuses on only three of the descriptors mentioned in Hill et al. (2004):

persistence, recurrence time and entropy. These descriptors can either be calculated for the whole

sample space or for single states. In this work, the focus lies on the single state definition of the

descriptors since this is the one used for the analysis of compound extreme events.

Persistence: The persistence Pj is a measure of duration of the compound extreme event. It is

calculated as the diagonal entry of the transition probability matrix P

Pj = p̂ j j [9.5]

and gives the probability that the system will stay in the same state in the next time step. The

persistence of the extreme state thus gives the probability that the system will reside in this

extreme state. The theoretical limits are 0 (the system will always change to another state and

there will be no two consecutive extreme days in a row) and 1 (if the system is in an extreme

state it will stay there, all extreme states follow each other).

Recurrence time: The recurrence time R j is the mean time the system needs to get back to the

extreme state:

R j =
1− π̂ j(

1− p̂ j j
)

π̂ j
. [9.6]

It is connected to the persistence p̂ j j as well as to the total number of extreme events through the

stationary distribution π̂ j. The theoretical limits are 0 (the system always stays in the same state,

corresponding to a persistence of 1) and ∞ (the system never comes back to the extreme state,

note: this does not correspond to a persistence of 0).

Entropy: The entropy H(p j)is a measure based on the fundamental works on information theory

by Shannon (1948) and is an inverse measure of the predictability of the Markov chain. The

conditional probabilities of transitions from the state of interest j to all possible states i (including

state j) are included in the calculation. The normalized single state entropy can be calculated by:

H
(

p j
)
=−∑i p̂i j log p̂i j

log
( 1

m

) . [9.7]

Therefore, unlike persistence and recurrence time, which depend only on the compound extreme

state of interest, the entropy additionally depends on the transitions to the other states and is
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therefore more susceptible to the way these states are chosen. The theoretical limits of the

entropy are 0 (which means that the system is deterministic and the next state is always known

when in an extreme state) and 1 (the system is random and the next state cannot be predicted).

The entropy can be used to identify and characterize complex dynamics like deterministic chaos,

which is not possible with simple linear methods.

The actual, empirical limits of the descriptors are smaller and will be discussed at the end of the

next section.

9.1.3 Application to climate data

These descriptors can be applied to climate data for different purposes. Since the correct repre-

sentation of the dynamical behavior of compound extreme events in models is a requirement for

deriving their climate change signal, comparison and validation of different climate models, or

climate models with different configuration and at different resolutions are one possible appli-

cation of the method. Furthermore, regional differences can be assessed. A further interesting

application is the comparison of different observational datasets. These are usually validated and

compared with respect to their mean values, variability and extremes as well as cross-correlation

between different variables, but the successional dynamics are usually not part of the validation.

In addition, the assessment of a climate change signal from climate model data is of interest. In

this thesis, the underlying hypothesis for this is that a linear trend induced by external forcing, as

for example the temperature trend, also induces a change in the internal dynamical behavior of

the climate system with respect to the extreme events. While changes in trends and variability

have been thoroughly studied, analyses as with this method are rare and the results cannot always

be intuitively predicted (unlike, e.g., as the connection between a positive temperature trend and

the increase of absolute hot days).

The application of this method to climate data can be divided into the following steps:

1. Preprocessing of data: The main focus of this method is the dynamical behavior of the

climate system. Therefore, daily anomalies are used and all linear trends and annual

cycles removed from the data. In this work the focus lies on compound temperature and

precipitation extremes, and anomalies of detrended temperature time series are used. For

looking at dry conditions, the EDI (see Chapter 8) is used as it is highly correlated to soil

moisture and with that a better measure for describing drought than precipitation itself. In

this chapter, the EDI for the near future is calculated with the standard deviation σ of the

near future, different to Chapter 8. For heavy precipitation events, seasonal anomalies of

precipitation are used.
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Fig. 9.1.: Partitioning of temperature anomalies (ta) and precipitation anomalies (pa) into extreme (gray

areas) and non extreme (white areas) states.

Although the long term trend is removed from the data, the hypothesis is that changes

between different time periods in the descriptors are nonlinear effects of this linear forcing.

2. Construction of a Markov chain: To construct a Markov chain from the anomalies of

atmospheric variables, in a first step the univariate time series are reduced to a symbolic

sequence of extreme and non-extreme regimes. This is exemplarily shown in Fig. 9.1.

The concept of this coarse grained representation of data comes from symbolic dynamics

and is referred to as partitioning (Freund, 1996). These 2-state symbolic sequences, or

2-state Markov chains, are then combined to a multivariate symbolic sequence of m = 2ν

different states (ν number of variables). For the case of compound temperature and

precipitation extremes, 4 states are possible, listed in Table 9.1. Because the method

is sensitive to the absolute number of extreme events, percentiles are used to partition

the data. This way, the number of univariate states remains the same for all ensemble

members, different grid-points/regions and different time periods thus enabling a regional

comparison of the descriptors or the analysis of a climate change signal. The thresholds

used for the two extremes analyzed in this work, namely hot and dry extremes in summer

Tab. 9.1.: Partitioning for compound hot and dry and compound cold and wet extremes

state no partitions
symbols

T,P

compound hot and

dry extremes

compound cold and

wet extremes

1 T < tht1,P<thp1 1,1 normal and dry cold and normal

2 T < tht1,P≥ thp1 1,2 normal state cold and wet

3 T ≥ tht2,P<thp2 2,1 hot and dry normal state

4 T ≥ tht2,P≥ thp2 2,2 hot and normal normal and wet

79



9. Compound extreme events with the Markov Chain method

Tab. 9.2.: Thresholds for daily temperature and precipitation extremes.

hot extreme T anomaly > 90th quantile

cold extreme T anomaly < 10th quantile

dry extreme EDI < 25th quantile

wet extreme Seasonal precipitation anomaly > 75th quantile

and cold and wet extremes in winter, are summarized in Table 9.2. It needs to be kept in

mind that only the number of univariate extreme events is kept constant. The temporal

correlation of these univariate events can be different for another region or time period and

thereby the absolute number of compound extreme events. For example the total number

of compound hot and dry extremes is higher than the number of cold and wet extremes

although the number of univariate extremes is the same in both cases. Furthermore,

different regions show a different number of compound extreme events (compare, e.g.,

Figs. 9.4 a and 9.10 a).

The thresholds were chosen to obtain a balance between meeting the requirements of

stationarity (non-zero entries of the column j of the transition probability matrix) and

still being in an extreme state. When calculating a climate change signal between the

descriptors of the reference period and the near future, the extreme state for both time

periods are in relation to the mean climate for that respective time period. In addition to

a change of the mean values, the threshold with respect to the changed mean can also

change. This is equivalent to a change in variability. The changes of threshold values

Fig. 9.2.: Changes in temperature and precipitation thresholds between summers (JJA) of 1971-2000 and

2021-2050: 90th percentile of temperature (left) and 25th percentile of the EDI (right).
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Fig. 9.3.: Changes in temperature and precipitation thresholds between winters (DJF) of 1971-2000 and

2021-2050: 10th percentile of temperature (left) and 75th percentile of precipitation (right).

between the two time periods are shown in Figs 9.2 and 9.3. The temperature threshold

increases for both cold and hot extremes between the two time periods which means

that the deviations are larger in the future and the magnitude of the variability increases.

Changes in precipitation thresholds show an increase for winter high precipitation events

and a decrease for summer dry events but only in some regions. These changes are all

excluded from the analysis as they can be assessed with other methods (e.g. the ones

described in Chapters 8 and 9). The state in the future with changed mean and variability

is taken as the new “normal” state when calculating a climate change signal.

3. Calculation of transition probabilities: Transition probabilities are calculated as ex-

plained in Section 9.1.1. For the stationarity test, a deviation smaller than max (π̂∗0.1,

0.001) between the empirical distribution π̂ and stationary distribution π is allowed. Addi-

tionally, the entries pi j, with j = compound extreme state of interest, have to be non-zero.

4. Calculation of descriptors: Persistence, recurrence time and entropy are calculated

according to Section 9.1.2.

A great advantage of this method is that it can in theory be applied to compound extremes

of as many variables as wanted, although the computational efforts increase with the number

of variables. Furthermore, all linear biases are removed due to the use of anomalies and the

partitioning.

To better understand the descriptors, their dependencies and limits and to get an idea on how to
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interpret their climate change signal, an exemplary case is explained below.

Understanding the descriptors:

Persistence only depends on the extreme state. It counts the number of transitions n j j from

one compound extreme state to another compound extreme state. The lowest persistence, 0,

is reached when no two extreme states succeed each other, whereas the highest persistence is

reached when all states are in a row. In this latter case, persistence is calculated by the maximum

number of possible transitions (which is one less than the total number of extreme states) divided

by the total number of extreme states: (∑ ie−1)/ ∑ ie. With growing sample size, this equals

nearly one (e.g. for 100 compound extreme states it is 99/100 = 0.99). The actual limits of the

persistence depend strongly on the type of the compound extreme considered. In the case of

temperature and precipitation extremes, a persistence of Pj ≈1 is nearly impossible under current

climate conditions. If, for example, daily data of 30 summers are analyzed, this amounts to a

total of 2700 days (states). With the partitioning used in this work (see Table 9.2), about 3% or

90 days are compound hot and dry extremes. A persistence of ≈1 in this case would mean that

all of these compound hot and dry states occur consecutively. This would correspond to all days

in one whole summer (JJA) of one year having stronger deviations from the mean state than any

day in all other summers. In central Europe this is not very likely or would indicate an extreme

shift in our climate as even the 2003 heat wave did not fulfill this criteria. For compound events

including heavy precipitation, a persistence of 1 is even more unlikely as precipitation shows a

higher temporal variability. The theoretical lower limit of 0 is possible for compound extremes

which are few in number and have a high variability. It is more likely for events related to heavy

precipitation than for temperature or drought as these variables exhibit a higher autocorrelation

and are usually grouped in some way. However, for a persistence of 0 the stationarity criteria

are not met. Since the limits depend strongly on the partitions chosen and the type of extreme

considered, no general empirical limits can be given, but when comparing the descriptors the

data should be chosen in the same way (e.g. same number of time steps, same partitions ≡ same

number of univariate extremes) and additional information (like the total number of compound

extremes) has to be be consulted for the analysis.

The recurrence time is connected to the persistence. A high persistence implies a long recurrence

time since the mean time between the compound extreme events will be high. A low persistence

implies a shorter recurrence time as the extremes occur more frequently. Additionally the

recurrence time depends on the total number of compound extreme states, it is shorter for a high

number of states and longer for a low number of states.

The descriptor which is perhaps hardest to intuitively understand is the entropy. The entropy
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does not only depend on the extreme states but also on the transitions from the extreme state to

other states. By this, it is also strongly dependent on the partitioning. If, as for example, in a two

state Markov chain there is only one other possible state to change to, the entropy will generally

be lower than if there are two, three or more possible other states. The entropy is lowest if there

is one favored transition, therefore the lowest entropies come along with very high or very low

persistences with most extreme state to non-extreme transitions into the same non-extreme state

(no matter which one). In order to better understand this, some examples are shown for a Markov

chain of which 100 states are compound extreme states, corresponding to partition 1 (the total

number of states is irrelevant for this example). With these 100 extreme states, 100 transitions

are possible. To calculate the entropy, only the column pi1 of the transition matrix P, holding

the probabilities for transitions from the extreme state 1, is needed. Some examples (which not

necessarily make sense for climate data but are helpful to understand the concept) are shown

in Table 9.3. Multiplying the entries of pi1 by the number of states (100) gives the number of

transitions between the respective states. The first entry of pi1,p11, is the persistence of state 1

(compound extreme state). Example Table 9.3 a shows an equal distribution of transitions. No

state is favored over the other and the entropy is 1, the system is completely random. Example

Table 9.3 b1 shows the highest possible persistence in the case of 100 extreme states without

violating the stability criteria (no non-zero entries, 1 transition of 100 possible transitions yields

0.01), and the entropy is 0.12. Case Table 9.3 b2 has the same entropy, but the persistence is now

Pj=0.01. For the entropy, the order in the column does not matter, only the effective numbers.

The entropy is small for very unequal distributions as these are more predictable. Thus, for

larger sample sizes, smaller entropies are possible without violating the stability criteria. Case

Table 9.3 c and Table 9.3 d show the upper and lower limit of the entropy with a persistence of

Pj=0.4 and, thus, 40 extreme to extreme transitions (note: only for this given example). Example

Table 9.3 c is the most equally distributed, the remaining 60 transitions are equally divided

between the three non-extreme states thus the entropy is high because it is not very predictable.

Example Table 9.3 d is the most unequal distribution possible for 100 compound extreme states

and a persistence of 1 and, thus, the easiest to predict (lowest possible entropy in this case). The

distribution of the other states plays a role inasmuch the number of transitions to the other states

are of course also more probable if there is a higher total number of that state. The total number

of compound extreme events changes the lower limit, since with more states, a more unequal

distribution which is more predictable is possible, leading to a lower entropy.

The descriptors are calculated for each ensemble member separately. The time series of all grid

points are partitioned separately and then the symbolic sequences merged over a running window
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9. Compound extreme events with the Markov Chain method

Tab. 9.3.: Entries pi1 of the column of the transition probability matrix corresponding to transitions from

the extreme state to the other states from a total of 100 extreme states (thus pi1 ∗100 give the

number of transitions). The bold entry marks the persistence, below the entropy is denoted.

a) b1) b2) c) d)

pi1 =


.25

.25

.25

.25

 pi1 =


.97

.01

.01

.01

 pi1 =


.01

.01

.97

.01

 pi1=


.40

.20

.20

.20

 pi1 =


.40

.58

.01

.01


H j=1 H j = 0.12 H j = 0.12 H j=0.96 H j=0.56

of 3 × 3 grid points to increase the data length and smoothen the results. Descriptors are then

assigned to the center grid point.

9.2 Hot and dry extremes in summer

9.2.1 Validation

For most evaluations of observational datasets, mean values, trends and spatial correlation are

compared, sometimes the occurrence of extreme events assessed but a comparison of dynamical

aspects of the extremes is not a standard procedure. Therefore, the descriptors of the two

observational datasets (E-Obs and HYRAS) are compared prior to the validation of the ensemble.

Fig. 9.4 shows the total number of compound hot and dry extreme events (note these are relative

extremes partitioned by percentiles from temperature anomalies and the effective drought index,

see last section) in the reference period for the HYRAS dataset (left side) and by how much the

E-Obs dataset differs (right side). The number of events is highest in the south and southwestern

part of the model domain and along the coast in the northeast. The E-Obs dataset differs in some

regions, mostly in the southern and southeastern part of the investigation area where it yields a

higher number of events (blue colors in Fig. 9.4, right side). Reasons for these deviations might

be the different density of stations and the method of interpolation. In Fig. 9.5 the descriptors for

the two observational datasets for the reference period, 1971-2000, are shown. The results for

the HYRAS dataset are shown on the left and the deviation of E-Obs descriptors on the right.

Regions with a high persistence and a low recurrence time show the most extreme behavior since

they yield long and frequent episodes. The persistence for the investigation area lies between

0.37 and 0.71 with a mean of 0.57 for the HYRAS domain. This means that the probability for

an extreme-extreme transition lies between 37 and 71%. The highest persistence is calculated in
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9.2. Hot and dry extremes in summer

eastern France and northern Germany, the lowest ones in the eastern Alps. The E-Obs dataset

shows strong deviations of the persistence, in some parts it is higher than the HYRAS persistence

by 0.17, which is equivalent to the probability of an extreme-extreme transition being 17% more

likely. The spatial correlation between the two persistences for the HYRAS domain is 77%. The

recurrence time is lowest in the southeastern part of the model domain, where the persistence

is also comparatively low, but the events occur more frequently. This is also the region with

the highest number of compound extreme events (see Fig. 9.4). The entropy lies between 0.19

and 0.25 and is lowest (highest predictability) in regions with high persistence. As discussed

before, the entropy is lower if there is one favored transition and as such is correlated to high

persistences. From the E-Obs dataset, compound extreme events are slightly less predictable

(higher entropy) in most of the HYRAS domain. The spatial correlation between of E-Obs and

HYRAS is 85% for the recurrence time and 80% for the entropy. Although the two datasets

exhibit a relatively high correlation they do show striking differences in the descriptors. These

could at least in part be linked to the difference in the absolute number of compound extreme

events (see Fig. 9.4). But even in places where the number of compound extremes are the same

or only show small deviations for both datasets (e.g. in regions along the boarder of Germany

and the Netherlands), a difference in the dynamical behavior is visible. The Markov method can

therefore be a helpful tool for comparing different observational datasets when one is interested

in dynamical properties or in any form of succession of compound extreme events. Possible

reasons of these differences are the different density of stations and method of interpolation.

Fig. 9.4.: Number of compound hot and dry days in summer (JJA), 1971-2000. a) HYRAS, b) HYRAS-E-

Obs.
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9. Compound extreme events with the Markov Chain method

Fig. 9.5.: Descriptors from observations for compound hot and dry extremes in summer (JJA) for the

reference period, 1971-2000. a) persistence, b) recurrence time, c) entropy. 1) HYRAS

descriptors, 2) HYRAS-E-Obs
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9.2. Hot and dry extremes in summer

Fig. 9.6.: Descriptors from the 7km ensemble for compound hot and dry extremes in summer (JJA) for

the reference period, 1971-2000. a) persistence, b) recurrence time, c) entropy. 1: ensemble

mean, 2: 1st quantile, 3: 2nd quantile, 4: grid points where HYRAS descriptors are within the

ensemble spread (blue).
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For further comparison, the descriptors from the HYRAS dataset are used as this dataset has

a resolution closer to the model resolution, is based on a higher number of stations and the

gridding method preserves the occurrence of extreme events (see Chapter 4). The descriptors for

the 7km ensemble are shown in Fig. 9.6. The top row (Fig. 9.6 a, 1-4) shows the results for the

persistence, the second row (b, 1-4) for the recurrence time and the bottom row (c, 1-4) for the

entropy. In addition to the ensemble mean (1) , the interquartile range (2:first quartile and 3:third

quartile) of the ensemble is depicted. The color scale for the respective descriptors is the same as

for the HYRAS results (Fig. 9.5). Figures marked with a 4 in Fig. 9.6 mark grid points where the

descriptors calculated from the HYRAS dataset lie within the ensemble spread (mean± σ ) . The

ensemble mean shows much less pronounced regional differences than the observations although

the individual ensemble members do show noticeable regional structures. The minimum and

maximum values of the persistence for the HYRAS domain are smaller than for the observations,

but for a large part of the investigation area, the descriptors of the HYRAS observations are

within the ensemble spread. The ensemble captures the higher persistences in the southwestern

part of the model domain but not in the northeast. The ensemble mean of the recurrence time

is lower than that of the observations. For most grid points, the HYRAS recurrence time lies

within the ensemble spread, but the spatial correlation between observations and ensemble mean

descriptor shows an anti-correlation. These discrepancies can partly originate from the different

number of compound extreme events (compare Fig. 9.4 a and 9.7 a) but also from the difference

in persistence. The entropy is of similar magnitude as the HYRAS entropy and can capture the

regional differences found in the HYRAS entropy, except for the northeastern part of the domain,

where the persistence is also too low.

9.2.2 Climate change signal

The change in the number of compound extreme events between the reference period and the

near future is shown in Fig. 9.7 b. There is a decrease in the combined occurrence of hot and

dry conditions between 1971-2000 and 2021-2050 in the western part of the investigation area,

and an increase which is especially high in the north and around the southern and southeastern

borders of Germany.

The change signal of the descriptors is pictured in Fig. 9.8. As for the reference period, the

ensemble mean change signal (1) and the first and third quartile (2+3) are shown for the

persistence (first row, Fig. 9.8 a), the recurrence time (second row, Fig. 9.8 b) and the entropy

(bottom row, Fig. 9.8 c). The ensemble consistency (1) and the p-level of the significance of the

change signal (2) can be found as additional information in Fig. 9.9. The letters correspond to

the ones in Fig 9.8 (a = persistence, b= recurrence time, c = entropy). As noted in the last chapter

88



9.2. Hot and dry extremes in summer

Fig. 9.7.: Ensemble mean number of compound hot and dry days: a) reference period 1971-2000, b) near

future changes, 1971-2000 vs 2021-2050.

(Chapter 8), the significance may not always be a good measure for change signals of ensembles

and a high ensemble consistency is a good indicator of a robust change.

The change signal of the descriptors for compound hot and dry extremes depends strongly on

the region and the different ensemble members show different spatial signals of change. The

change signal of the persistence depends strongly on the ensemble member. The 25th quantile

shows a decrease for the whole investigation area, the 75th quantile an increase for most regions.

There are only very few regions where the ensemble consistency is high and the changes are

significant at the 5% or 10% significance level (p-value = 0.05/0.10). The recurrence time shows

a decrease which is correlated to the decrease in number of events (Fig. 9.7 b). The changes are

robust in the Alps, where the ensemble consistency is high (both the 25th and the 75th quantile

show this decrease) and changes are mostly significant at the 5%,10% or 20% significance level.

The change signal of the entropy is negligibly small for all of the investigation area. Regions

where the persistence shows an increase and the recurrence time a decrease (e.g. some regions

in central and northern Germany and small parts of Baden-Wuerttemberg) are the ones where

the change signal plays the greatest role as this means that the extreme episodes with respect to

the new “normal” state become longer and more frequent in addition to a change in mean and

variability.
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9. Compound extreme events with the Markov Chain method

Fig. 9.8.: Climate change signal of descriptors for compound hot and dry extremes in summer (JJA)

between 1971-2000 and 2021-2050. a) persistence, b) recurrence time, c) entropy. 1: ensemble

mean change signal, 2: 1st quantile, 3: 2nd quantile.
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9.2. Hot and dry extremes in summer

Fig. 9.9.: Ensemble consistency (left side) and p-level of Wilcoxon test (right side) of the change signal

(see Fig. 9.8) of compound hot and dry extremes in summer (JJA). a) persistence, b) recurrence

time, c) entropy.
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9. Compound extreme events with the Markov Chain method

9.3 Cold and wet extremes in winter

9.3.1 Validation

As for compound hot and dry extremes described in the last section, the total number of compound

cold and wet extremes in winter (DJF) and the descriptors for the reference period of the two

observational datasets are compared before validating the dynamical behavior of the ensemble.

The number of compound cold and wet extreme events in winter (DJF) calculated from the

HYRAS dataset ranges between 6 and 80 (see Fig. 9.10). Although the number of univariate

events are the same for both compound extremes considered in this work (90th vs 10th quantile

and 25th vs 75th), as one would expect, cold and wet extremes exhibit a different temporal

correlation than heat and drought. The number of compound events is much smaller for cold

and wet events in winter. The highest number of events occur in the eastern Alps where the

number of absolute compound extremes is also high (see Fig. 7.3). Northeastern Germany shows

the lowest number of extremes. Both observational datasets mostly agree on the number of

events, only in the Alpine region and in parts of western Germany the E-Obs dataset shows less

compound extreme events. This was already noted for absolute extremes - the E-Obs dataset

shows less heavy precipitation events in mountainous regions compared to the HYRAS dataset

(see Chapter 7). In Fig. 9.11, the descriptors for the two different observational datasets are

compared. For compound cold and dry extremes, the criteria for a stationary transition probability

matrix are not met for some of the grid points since the persistence of the compound extreme

Fig. 9.10.: Number of compound cold and wet days in winter (DJF), 1971-2000. a) HYRAS, b) HYRAS-

E-Obs.
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9.3. Cold and wet extremes in winter

Fig. 9.11.: Descriptors from Observations for compound cold and wet extremes in winter (DJF) for

the reference period, 1971-2000. a) persistence, b) recurrence time, c) entropy. 1) HYRAS

descriptors, 2) HYRAS-E-Obs. Grid points where the persistence is 0 and the stationarity

criteria violated are marked in black.
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state is 0. This means that in these regions, which are mostly located in the northwestern part of

the investigation area (black colored areas in Fig. 9.11), there is zero probability of an extreme

to extreme transition. This is due to the comparably low number of events in this area (5-15

compound extreme days per 30 winters which is equivalent to 1 event every 2 to 6 years). Since

the number of days is not very high for all of the investigation area (the maximum value in the

HYRAS domain of the ensemble mean is 50 days for the 30-year time period), the persistence is

partly correlated to the number of days. Regions with a high number of events also show a higher

persistence and a lower recurrence time. The entropy is similar to that of compound hot and dry

extremes in summer. It is between 0.22 and 0.24 for most of the domain except for areas with

very low persistence (northwestern Germany) where the entropy is very low and the dynamical

behavior more predictable. The descriptors of the E-Obs dataset (right side in Fig. 9.11) differ

strongly in some regions. In central Eastern Germany the probability of a extreme-extreme

transition is about 20% more likely in the HYRAS than in the E-Obs dataset (persistence of

0.32 vs 0.12), the recurrence time is slightly lower for the E-Obs dataset and the entropy only

shows small deviations except for the regions in the northwest with 0 persistence. But here,

the stationarity conditions are not met. These discrepancies again show that an evaluation of

observational datasets with this method can yield valuable additional information if one is not

only interested in the number of compound extreme days but also in their succession. For

validation purposes, the HYRAS dataset is again used because of the higher resolution and

station density.

Fig. 9.12.: Ensemble mean number of compound cold and wet days: a) reference period 1971-2000,

winter (DJF), b) near future changes, 1971-2000 vs 2021-2050, winter (DJF).
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Fig. 9.13.: Descriptors from the 7km ensemble for compound cold and wet extremes in winter (DJF) for

the reference period, 1971-2000. a) persistence, b) recurrence time, c) entropy. 1: ensemble

mean, 2: 1st quantile, 3: 2nd quantile, 4: grid points where HYRAS descriptors are within the

ensemble spread (blue). 5: number of ensemble members for which persistence equals zero.
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The number of compound cold and wet extremes in winter (DJF) for the ensemble mean are

shown in Fig. 9.12 a. The color scale is the same as for the HYRAS dataset (Fig. 9.10) for

better comparison. As for the HYRAS dataset, the highest number of compound extreme events

occur in the Alps, and the ensemble mean is able to capture the regional differences exhibited by

the observations, however, the overall number of compound cold and wet extremes is slightly

underestimated.

The ensemble mean as well as the ensemble interquartile range of the descriptors are shown

in Fig. 9.13. The color scales are the same as in Fig. 9.11 to enable a direct comparison to

the HYRAS descriptors. The ensemble mean persistence has a similar spatial signal as that of

the HYRAS observations but with lower maximum values and a non-zero persistence in the

northeastern part of Germany, at least for some ensemble members. The HYRAS descriptors

are within the ensemble spread for most grid points. The same can be said for the recurrence

time. The correlations between HYRAS descriptors and ensemble mean are 0.42 (persistence)

and (recurrence time) respectively. The entropy is also in a similar order of magnitude as for the

observations (except for the northeastern part where some of the ensemble members also do not

meet the stationarity criteria), and the HYRAS entropy is within the ensemble spread for most

grid points but the spatial pattern differs from that of the observations.

9.3.2 Climate change signal

The change signal of the ensemble for the descriptors of compound cold and wet extremes in

winter (ensemble mean and first and third quantile) is shown in Fig. 9.14, and the corresponding

ensemble consistency and the p-level of significance of the change signal can be found in

Fig. 9.15. The first row in both Figs. shows the results for the persistence (a), the middle one for

the recurrence time (b) and the bottom row for the entropy (c). The most pronounced changes

in persistence are an increase in the northwestern and northeastern part of the model domain

where the change is around 0.15, and a decrease in the Czech Republic and southern Germany.

These changes are also significant at the 5 % level (p-value = 0.05) and show a high ensemble

consistency. In the rest of the investigation area, there are small patches with a consistent and

significant change signal, but also large areas where the ensemble members disagree on the sign

of the change. The recurrence time mostly shows a decrease which is significant with a high

consistency in parts of the south eastern, central and northwestern investigation area. This is

correlated with the increase in the number of days as shown in Fig. 9.12b. The highest impact

of the changes in dynamical behavior can be found in the southwestern and northwestern parts

(consistent and significant increase of persistence and decrease of recurrence time); in these
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Fig. 9.14.: Climate change signal of descriptors for compound cold and wet extremes in winter (DJF)

between 1971-2000 and 2021-2050. a) persistence, b) recurrence time, c) entropy. 1: ensemble

mean change signal, 2: 1st quantile, 3: 2nd quantile.
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9. Compound extreme events with the Markov Chain method

Fig. 9.15.: Ensemble consistency (left side) and p-level of Wilcoxon test (right side) of the change signal

(see Fig. 9.14) for cold and wet extremes in winter (DJF). a) persistence, b) recurrence time, c)

entropy.
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regions the ensemble mean projects longer and more frequent episodes. The entropy shows

small changes in the north and the south of which some are significant but not always with a

high ensemble consistency.

9.4 Added value of high resolution

For the analysis of added value, the descriptors of the 7km and 50km ensemble members

were compared to HYRAS observations. The root mean square error (RMSE) of all gridpoints

within the HYRAS domain and the spatial correlation between the 7km and 50km ensemble

members and HYRAS observations are depicted in Fig. 9.16 for hot and dry extremes in summer

(JJA) and in Fig. 9.17 for cold and wet extremes in winter (DJF). Boxes show the median and

interquartile range of the ensemble, whiskers the ensemble minimum/maximum. Gray bars show

Fig. 9.16.: Root mean square error (RMSE, top row) and spatial correlation (bottom row) of the 7km and

50km ensemble members with respect to HYRAS observations for the HYRAS domain for

descriptors of compound for hot and dry extremes in summer (JJA) in the reference period

(1971-2000) (see text).
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Fig. 9.17.: Root mean square error (RMSE, top row) and spatial correlation (bottom row) of the 7km and

50km ensemble members with respect to HYRAS observations for the HYRAS domain for

descriptors of compound for hot and dry extremes in summer (JJA) in the reference period

(1971-2000) (see text).

the RMSE/correlation of the ensemble mean. The differences between data with 7km and 50km

resolution are not significant. This fits to the results of the relative extremes (Chapter 8), where

no added value was found either. Typically, the ensemble mean (gray bar) mostly has a smaller

RMSE than the individual ensemble members and a better spatial correlation for cold and wet

extremes in winter. This underlines that the ensemble mean is a good measure to use.

9.5 Short summary

In this chapter, the dynamical behavior (in terms of persistence, recurrence time and entropy) of

hot and dry extremes in summer (JJA) and cold and wet extremes in winter (DJF) was analyzed

using a method based on Markov chains which was developed within this work.

An interesting finding are the large discrepancies in some regions between both observational

datasets for both kinds of compound extreme events. The difference in persistence is as high as
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0.2, which means the probability of the system staying in a compound extreme state differs by

up to 20%.

Validation (1971-2000): Compound hot and dry extremes in summer show the highest observed

persistence in eastern France and a small area in northeastern Germany (up to 0.7). In these

regions, the recurrence times are also high (up to 130 days). Thus, compound hot and dry

episodes have a long duration, but do not occur very frequently. The lowest recurrence times (as

low as 45 days, which amounts to two episodes per summer) are found in southeastern Germany

and the Czech Republic. The entropy is roughly inversely proportional to the persistence, and

with values between 0.19 and 0.25 the occurrence of compound hot and dry extremes shows

predictability. Compared to the HYRAS dataset, the 7km ensemble is able to reproduce the

dynamical behavior well in most regions. Compound cold and wet extremes generally yield a

lower persistence than cold and wet extremes (all values are below 0.35) and higher recurrence

times, which means they do not occur as frequently and the episode lengths are shorter. In

northwestern Germany, the persistence is 0. The highest persistences are in Rhineland-Palatinate,

Saxony and the Czech Republic, these are paired with comparatively low recurrence times. Thus,

these regions yield the highest frequency and duration of compound extreme episodes in the

investigation area. The entropy is in a similar range as for hot and dry extremes (except for the

areas with zero persistence). The ensemble is able to reproduce the dynamical behavior of the

HYRAS observations well for most regions.

Climate change signal (1971-2000 vs 2021-2050): The change signal between the reference

period and the near future largely depends on the region. Significant changes for compound hot

and dry extremes with a high ensemble consistency can be found in the Alps and Czech Republic

where the recurrence time shows a decrease by up to 15 days (thus, compound extreme episodes

occur more frequently). In the area of Luxemburg, the persistence shows a robust decrease of

up to -0.05. In this region, compound hot and dry episodes relative to the new “normal” state

will be shorter in the future. Changes in entropy are negligible. For compound cold and wet

extremes in winter, the ensemble mean shows a decrease of the recurrence time by up to 200

days in the northern and western part of the investigation area, which is robust in most of the

western part leading to a large increase in frequency of cold and wet episodes (in some areas the

frequency almost doubles). The persistence shows robust increases by up to 0.09 in the western

and northeastern parts of Germany and, thus, episodes of longer duration can be expected in the

future. In the Czech Republic, the persistence decreases by up to 0.1 leading to a shortening

of episodes relative to the new “normal” state. Changes in entropy (increases and decreases)

are found for small patches within the investigation area, some of which are robust but small in

magnitude (the highest changes are ≈ 0.03).
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Added value of higher resolution (50km vs 7km): A comparison between 7km and 50km

ensemble yielded no added value for the high resolution simulations.
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10 Relation between compound extremes and weather

patterns

The occurrence of extreme events is largely related to certain atmospheric circulation patterns

(e.g. Fink et al., 2004, 2009; Kunz et al., 2009; Jacobeit et al., 2009). For a better understanding

of these dependencies, weather types can be classified and their relation to extreme events studied.

In this chapter, this is done for absolute compound extreme events as defined in Chapter 7, since

these extremes (at least the hot and dry extremes in summer) show a robust and significant

change signal for the near future time period for the whole investigation area. Besides identifying

the weather types which lead to (compound) extreme events, the question of whether the change

in frequency of extreme events (e.g. the increase of hot and dry events found in Chapter 7) can

be attributed to a change in the occurrence of the relevant weather types and whether or not the

same weather types are linked to these extremes in the future is investigated. There are numerous

methods of weather classification for the European Region (see e.g. Philipp et al., 2010; Schädler

and Sasse, 2006). The one used in this work, the objective weather type classification of the

German Weather Service (Bissolli and Dittmann, 2001), has the advantage that is was designed

for an area that corresponds to the investigation area in this work and it is not dependent on

expert judgment, but rather is an algorithm that can be applied to the different climate models of

the ensemble. The weather type classification depends on three factors: advection of air masses,

cyclonality and humidity of the troposphere. It has been used in the past to study the relationship

between extreme events and weather types, e.g. for tornadoes by Bissolli et al. (2007), for hail

events by Kapsch et al. (2012) or temperature and precipitation (and their extremes) by Riediger

and Gratzki (2014), or for analyzing the variability of the atmospheric water budget components

(Sasse et al., 2013). In the following, the weather type classification scheme is introduced before

the above mentioned questions are analyzed for compound hot and dry extremes in summer and

cold and wet extremes in winter.
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10.1 Objective weather type classification

The objective weather type classification differentiates between 40 possible weather types which

are derived by the combination of three meteorological criteria (Bissolli and Dittmann, 2001): the

advection of air masses (AA), the cyclonality (near the surface, C1000, and in the mid-troposphere,

C500) and the humidity at several levels of the troposphere (H). The weather types depending on

these four classes are defined as follows:

AAC1000C500H

In the following, a short review of the method is given and changes to the original version of

Bissolli and Dittmann (2001) are mentioned. The original classification is defined for an area

covering the investigation area of this work and, thus, can be easily applied. For the calculation

of the different criteria of classification explained below, the grid points are weighted according

to Fig. 10.1 when calculating the mean value for the region. The center points (red) are weighed

by a factor of three, the grid points around the borders of Germany by a factor of two (blue) and

the remaining points by a factor of 1 (yellow). The whole area comprises 21 × 24 gridpoints.

Fig. 10.1.: Classification area. Colors mark different weights of the grid points: red=3, blue=2,yellow=1.
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The grid types of the CLM 50km model domain, which was used for the classification in this

work (shown in Fig. 10.1), and the model used in the original classification scheme differ, but

the weighting was chosen to be as close to the original weighting scheme as possible.

Different to the original scheme, for which data on 5 pressure levels is used (950, 850, 700, 500

and 300hPa levels), only 1000, 850, 700 and 500hPa levels were taken into account in this work

due to availability. Other modifications of the classification are mentioned below. The weather

types are classified daily at 12 UTC. The three main classification criteria are:

• AA index - advection in 700hPa: XX,NE,SE,SW,NW

This is based on the zonal and meridional wind components at 700hPa and identifies the

origin and advection of air masses. The large-scale flow direction is derived by dividing

the wind rose into four main directions: NE ([0◦-90◦)), SE ([90◦-180◦)), SW ([180◦-270◦))

and NW ([270◦-360◦)). If more than 2/3 of the grid points show a wind direction in the

same sector (note: grid points are weighed according to Fig. 10.1), this is considered as the

predominant wind direction, otherwise the wind direction is defined as XX (no prevailing

wind direction). This is a slightly modified classification in comparison to Bissolli and

Dittmann (2001), where the wind rose is first split into 36 sectors of each 90◦ extension,

for which the number of grid points falling into each sector are counted. If more than 2/3

of the grid points lie within one of these 36 sectors, the center value defines the main wind

direction (for more details see Bissolli and Dittmann (2001)). Kapsch et al. (2012) state

that a comparison of both calculation methods for single days yielded more realistic results

for the modified classification, which is therefore also used in this work.

• C1000,C500 indices: cyclonality in 1000hPa and 500hPa: C:cyclonic, A: anticyclonic

The cyclonality is calculated from the Laplacian of the geopotential φ , ∇2φ for each grid

point. To derive the cyclonality index, the weighted areal mean is computed, cyclonic

conditions show positive values, anticyclonic conditions negative values. The index is

calculated for both 1000hPa and 500hPa.

• H index - humidity between 1000hPa and 500hPa: W:wet, D:dry

The humidity index is calculated from the specific humidity at the 1000, 850, 700 and

500hPa levels. Wet or dry conditions are classified by checking whether the weighted areal

mean of the precipitable water (PW) is above (wet) or below (dry) a long term average for

a certain month. PW is calculated as the vertically integrated mixing ratio r = qv− qv
0.6222

(qv = specific humidity) for each gridpoint:
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PW =−1
g

∫ 500hPa

1000hPa
rd p =−1

g

4

∑
i=1

1
2
(ri+1 + ri)(pi+1− pi) [10.1]

A monthly long term mean is calculated separately from the reanalysis data and each

model for the respective time periods.

For validation purposes, the weather types were calculated from ERA20C reanalysis. This is a re-

analysis product of the ECMWF (http://www.ecmwf.int/en/research/climate-reanalysis/era-20c),

which was an outcome of the ERA-CLIM project (http://www.era-clim.eu/) with a horizontal

resolution of ≈ 125km. In addition, weather types for all 12 models of the COSMO-CLM en-

semble (see Chapter 3) were calculated for the reference period (1971-2000) and the near future

(2021-2050). For the calculation, pressure level data from the 50km ensemble was used as the

weather patterns should not change by further dynamical downscaling since they are determined

by the general circulation prescribed by the forcing global climate model. The ERA20C data

was bilinearly interpolated to the COSMO-CLM 50km model grid before calculation of the

weather types. This way the weighting scheme is exactly the same.

10.2 Weather patterns and compound extreme events

The analysis of weather types concentrates on their interrelation with extreme events since these

are the main focus of this work. General dependencies of mean temperature and precipitation

patterns on the different weather types can be found in Riediger and Gratzki (2014), who used a

slightly simplified version of the objective weather type classification. They also analyzed the

dependence of univariate temperature and precipitation extremes on the weather type. In the

following, it is assessed which weather types lead to type 1 (compound) extreme events (extreme

events defined by exceedance of an absolute threshold) as defined in Chapter 7, Table 9.2. This

is done by analyzing E-Obs extremes and compound extremes and their relation to weather types

derived from the ERA20C reanalysis data for the reference period, 1971-2000. In a second

step, the weather types, for which more than 5% of the compound extremes occur, are compared

between reanalysis data and model output, and the change of the dependencies is analyzed for

the near future. All extremes are calculated for 7km model data and E-Obs data bilinearly

interpolated to the 7km grid.

10.2.1 Hot and dry extremes in summer

In Fig. 10.2, the percentage of (compound) hot and dry extreme days related to the respective

weather types is shown for extremes calculated from the E-Obs dataset (as in Chapter 7) and
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10.2. Weather patterns and compound extreme events

Fig. 10.2.: Fraction of (compound) hot and dry E-Obs extreme days as defined in Chapter 7 for the

different ERA20C weather types in relation to the total number of extreme days in the HYRAS

domain (see Fig. 4.1) for summer (JJA) in the reference period, 1971-2000. Weather types

are grouped by advection type (XX, NE, SE, SW, NW), humidity (D/W) and cyclonality in

1000hPa and 500hPa (A/C).
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10. Relation between compound extremes and weather patterns

Fig. 10.3.: Most relevant weather types for (compound) hot and dry extremes in summer (JJA) calculated

from the E-Obs dataset and ERA20C weather types.

weather types calculated from the ERA20C reanalysis. The values are means over the HYRAS

domain - the number of respective weather types prevailing on (compound) extreme days were

added up for all grid points and then divided by the sum of all extreme days for all gridpoints

in the HYRAS domain. The weather types are ordered by wind direction (XX, NE, SE, SW,

NW) and then divided into dry and wet conditions. The third category, the cyclonality (A/C=

anticyclonic/cyclonic), is noted below the bars where the first letter marks the cyclonality at

1000hPa, the second at 500hPa.

The top graph shows the fraction of hot days for all 40 weather types. The predominant weather

types for these extremes are for XX (44%) and SW (43%) advection types with a negative

cyclonality index in 500hPa (94%) and wet conditions (88%), namely SWCAW, SCAAW,

XXCAW and XXAAW. Southwesterly flow direction is connected to advection of warm air

masses from the lower lattitudes and, thus, induces higher temperatures, while for XX weather

types the wind can be very weak and the air masses do not move much which can lead to blocking

situations. Anticyclonic conditions in the middle troposphere (500hPa) related to high pressure

systems are known for sunny days. In 1000hPa, weather types with positive cyclonality index

show a slightly higher number of hot days (55%) than those with anticyclonic behavior (45%).

This could be due to convective processes induced from the surface due to high radiation, which

may induce local low pressure areas near the surface leading to an overall cyclonic behavior for

the mean of the investigation area.

Dry days (shown in the middle panel of Fig. 10.2) occur for XX (41%), NW (29%) and SW

(22%) advection types. In 66% of the cases these are accompanied by a negative cyclonality

index in the middle troposphere (500hPa) and in 80% of cases the index is negative in the lower

troposphere (1000hPa). As noted above, a negative cyclonality index is a sign of a high pressure

system which leads to sunny cloudless skies and therefore low precipitation. The influence of
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10.2. Weather patterns and compound extreme events

the humidity of the atmosphere is not very high for these extremes, in 55% the air masses are

wet and in 45% dry.

The results for hot and dry days fit well to those found by Riediger and Gratzki (2014) for days

with mean temperatures above 25◦C and days with no precipitation, the same weather types were

identified as relevant for those extremes.

The weather types responsible for compound hot and dry days are the same as those for hot days

(see lower panel in Fig. 10.2). This is largely due to the fact that the mean number of hot days

(≈ 5 per year, see Table 7.2) is about one order of magnitude lower than the number of dry days

( ≈ 59 per year, see Table 7.2) for the HYRAS domain.

Fig. 10.3 shows the weather types for which the maximum number of extremes occur for each

gridpoint for extremes from the E-Obs dataset and weather types from the ERA20C reanalysis.

The dependence on the weather type is very homogeneous for the HYRAS domain. For hot

days, SW weather types dominate in the southern and eastern part of the investigation area,

whereas in the north and west XX weather types lead to the highest number of hot days, in both

cases with a positive cyclonality index for 1000hPa and a negative one for 500hPa. In the Alps,

most extremes occur under NWCCW weather types, but the number of hot extremes here is low,

therefore they do not play an important role in the overall statistics (see Fig 10.2).

The weather type for which the most dry days occur (middle figure) is XXAAD for most of

the region followed by anticyclonic NW and XX weather types (not shown in Fig. 10.3). In

the western part of the model domain, NWAC weather types additionally play a dominant role.

As for the number of compound hot and dry extreme events, the dominant weather types of

compound extreme events are largely determined by the occurrence of hot extreme events. Most

of the southern and western parts of the investigation area are dominated by SW types, whereas

the northern and western parts are dominated by XX weather types. In the Alps, the prevailing

weather type is again the NWCCW type but the number of compound hot and dry days here lies

below one day per year (see Fig. 7.1).

For analyzing the dependence of the change signal of compound hot and dry days on the change

of weather types, all weather types for which at least 5% of compound extreme days occur for

E-Obs/ERA20C or the ensemble (reference and future) are assessed. This yields six weather

types, namely XXAAD, XXAAW, XXCAW, SWAAW, SWCAW and NWAAW. Fig.10.4 shows

the fraction of compound hot and dry days for the respective weather type in relation to the total

number of compound hot and dry extreme days. The first bar for each weather type (o) shows

the values for E-Obs/ERA20C (same values as in Fig. 10.2, bottom pabel), the second and third

bar the ensemble mean and ensemble spread (sd ± σ ) for the reference period (r) and near future

(f), respectively.
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10. Relation between compound extremes and weather patterns

The ensemble is able to capture the influence of the different weather types fairly well. The

number of compound extremes occurring for XXCAW weather types is underestimated by the

ensemble, whereas the number of extremes occurring for SWCAW weather types is overestimated.

The absolute number of days with XXCAW/SWCAW weather types (for extreme and non

extreme days) is also over-/underestimated (not shown) leading to the conclusion that the model

is not always able to differentiate between XX and SW wind directions. One reason for this

could be that on those days, the number of gridpoints for the ERA20C reanalysis showing a SW

advection type lies slightly below the threshold of 2/3 over which a prevailing wind direction

is determined. Another reason could be the different resolution of the weather types. However,

Kapsch et al. (2012) have shown that the resolution of the respective grids does not play a

dominant role, but can be of importance when the cyclonality parameter is close to zero or the

humidity close to the reference value.

The changes between reference period and near future (r and f bars) are all below 7%. In general,

AA weather types show a higher percentage of compound extreme days in the near future,

whereas for CA days there is a decrease. The changes in the distribution between the reference

period and the near future are, however, not very large and not significant except for the SWCAW

weather type where a significant decrease of -7% is shown by the ensemble mean. This can be

explained by a stronger increase of compound extremes in the western part of the model domain,

especially in the Rhine Valley and western France, than in the eastern part (see Fig. 7.2). In

Fig. 10.4.: Fraction of compound hot and dry extreme days for relevant weather types in relation to the

total number of compound extreme days in the HYRAS domain (see Fig. 4.1). Comparison

between ERA20C weather types and ensemble mean for summer (JJA) of reference period

(1971-2000) and near future (2021-2050). Line segments denote the standard deviation of the

ensemble mean.
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the western part of the model domain, the fraction of compound extremes for SW advection

types is relatively low and XX weather types are the dominant weather types responsible for

compound extremes (see Fig. 10.3). The absolute number of weather types in summer show a

similar tendency as the fraction of hot days - the number of days with AA increases and with CA

weather types decreases (not shown), but the changes are not significant. Significant changes

in the absolute frequency of weather types in summer are only found for weather types which

were found not to be relevant for the occurrence of compound hot and dry days (not shown).

Therefore, changes in extreme events neither can be clearly attributed to a change in the total

number of days of the relevant weather types nor to a change in dependence. The change in

dependence is caused by the magnitude of the change signal of compound extreme events by

which the weather types which are predominant in the regions with the biggest change are

responsible for a higher fraction of days. A reason for the change in extreme events could be a

change in the properties of the air masses that are related to the weather types. With a general

increasing temperature trend projected for the near future (e.g. IPCC, 2013), the temperature of

the air masses transported by the different advection types is most likely higher in the near future

leading to more hot extremes. E.g., a temperature increase in Northern Africa or the Atlantic

leads to a higher temperature of air masses advected by SW and NW weather types. As the hot

extremes are the main prerequisite for the occurrence of compound hot and dry extremes, these

would most likely also increase. If air temperatures in the mid troposphere are higher, this could

also lead to higher near surface temperatures. This would mean that the properties of the air

masses transported by certain weather types could be responsible for the climate change signal

rather than the change in frequency of the respective weather types.

10.2.2 Cold and wet extremes in winter

The percentage of (compound) cold and wet extremes related to different weather types for

E-Obs extremes and weather types derived from the ERA20C reanalysis is shown in Fig. 10.5.

The procedure is the same as for hot and dry extremes. The top figure shows the results for cold

extremes. The highest percentage of these extremes occurs on days with no prevailing wind

direction (XX, 43%). NW and SW advection types also show cold days (24/19%), whereas for

NE and SE direction, the percentage is very low. As for hot days, cold days mostly occur for a

negative cyclonality index in the middle and lower troposphere (500hPa and 1000hPa).

The combination of XX advection types and negative cyclonality is known for meridional flow

which causes the advection of polar air masses, lower cloudiness and night cooling (Riediger

and Gratzki, 2014). NE and SE advection types are also known for severe cold conditions, but

their overall number of occurrence is low (8/6%). For more severe cold extremes than the ones
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10. Relation between compound extremes and weather patterns

Fig. 10.5.: Fraction of (compound) cold and wet E-Obs extreme days as defined in Chapter 7 for the

different ERA20C weather types in relation to the total number of extreme days in the HYRAS

domain (see Fig. 4.1) for winter (DJF) in the reference period, 1971-2000. Weather types

are grouped by advection type (XX, NE, SE, SW, NW), humidity (D/W) and cyclonality in

1000hPa and 500hPa (A/C).
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10.2. Weather patterns and compound extreme events

defined in this chapter (minimum temperature below 0◦C), NE and SE weather types play a more

dominant role (Riediger and Gratzki, 2014).There are slightly more cold days for wet than for

dry conditions (66% vs. 34%).

The figure in the middle of Fig. 10.5 shows the percentage of wet days attributed to the 40

different weather types. Most wet days occur for NW advection types (50%), followed by SW

(30%) and XX (20%) types, the number of extremes for NE and SE advection types is again

negligibly small. In general, wet days occur more frequently for weather types with a positive

cyclonality index in the mid-troposphere (500hPa) and for wet conditions. NW advection leads

to moisture transport from the North Atlantic, SW advection brings warm wet air from the

lower latitudes. For the whole HYRAS domain, the mean number of wet days in winter is very

low (≈0.4 days per year), and most of these extremes occur where this moist warm air meets

orographical barriers like in the Alps, the Vosges or the Black Forest.

The weather types for which compound cold and wet extremes occur are shown in the lower

panel of Fig. 10.5. These events are largely dominated by the occurrence of wet days (see

Section 7.2) and the weather types, for which most compound extremes occur, are also similar.

The lower percentage of compound extremes for SWCC and SWAC weather types in comparison

to wet extremes (middle panel) is due to the difference in the spatial pattern of the univariate

cold and wet extremes occurring for these different weather types. Cold extremes during SWCC

and SWAC weather types mostly occur in the Alps and the eastern part of the model domain,

whereas the maximum of wet extremes for SWCC and SWAC types is in the Vosges and the

Black Forest (not shown).

The weather types for which the highest number of (compound) cold and wet extremes occur for

each grid point are depicted in the top row of Fig. 10.6. Only the southern part of the HYRAS

domain is shown as this is the only region where these compound events can be found. As a

guide to the eye the absolute number of cold days, wet days and compound cold and wet days

are also shown in the bottom row.

The weather type which yields the most cold extreme events for all grid points is the XXAAD

type. For this weather type however, no wet extremes occur in the investigation area. NWAA,

and AC conditions combined with NW and XX advection types also show a high number of cold

extremes in the part of the investigation area shown in Fig. 10.6 (not shown). For wet extremes,

the weather types for which the number of extremes is highest, show a high spatial variability.

One reason for this is the high spatial variability of precipitation itself. As its occurrence is

influenced by orographic features, it depends strongly on the local wind system, and especially in

terrain with complex orography this changes for the different advection types. Another reason is

the low total number of heavy precipitation events (see middle figure in bottom row in Fig. 10.6).
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In some areas, less than 5 extremes occur for the whole 30-year time period, making a statistical

analysis of the dependencies between weather types and extremes difficult. For those regions

which show a higher number of extreme events, two weather types dominate, the NWACW type

in the western part of the Alps, the Vosges and the Black Forest and the NWAAW type in the

Eastern Alps. These are also the weather types which dominate the occurrence of compound

cold and wet extreme events.

For the analysis of the dependence of the change signal of compound cold and wet days on the

change of weather types, all weather types for which at least 5% of compound extreme days

occur for E-Obs/ERA20C or the ensemble (reference and future) are assessed. This yields eight

weather types, namely XXCCW, SWCCW, NWACD, NWCCD, NWAAW, NWACW, NWCAW

and NWCCW. Fig.10.7 shows the fraction of days with the respective weather types in relation

to the total number of compound cold and wet extreme days. The first bar for each weather type

(o) shows the values for E-Obs/ERA20C (same values as in Fig. 10.5), the second and third bar

the ensemble mean and ensemble spread (sd ± σ ) for the reference period (r) and near future (f),

respectively. The ensemble attributes too many extreme events to the NWCAW weather type,

the fraction for all other wet NW types are overestimated. In sum, the wet NW days match fairly

well when omitting the differentiation between the cyclonality. Therefore, a possible reason for

the discrepancy could be low cyclonality values, which are thus grouped differently because they

are slightly above/below zero even though their absolute values do not differ by much. In this

case, the difference in resolution of the ERA20C data and the 50km ensemble could be a reason

for these discrepancies. Furthermore, the total number of extreme events exhibits a bias between

Fig. 10.6.: Top row: Most relevant weather types for (compound) cold and wet extremes in winter (DJF)

calculated from the E-Obs dataset and ERA20C weather types. Bottom row: total number

of (compound) cold and wet extremes in the reference period for the E-Obs data (note the

different scale of cold days).
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Fig. 10.7.: Fraction of compound cold and wet extreme days for relevant weather types in relation to the

total number of compound extreme days in the HYRAS domain (see Fig. 4.1). Comparison

between ERA20C weather types and ensemble mean for winter (DJF) of reference period

(1971-2000) and near future (2021-2050). Line segments denote the standard deviation of the

ensemble mean.

ensemble mean and E-Obs observations (see Fig. 7.3 and Section 7.2). Since the dependence on

the weather type varies by region (see Fig. 10.6) and the overall number of extreme events is low,

a bias in one region could lead to a significant lower/higher fraction of days with the weather

type that is dominant in that region.

In the near future, compound cold and wet extremes occur more likely under NWAC weather

types; the increase of these weather types is significant at the 5% level, and the total increase

(dry and wet humidity index) is ≈ 5%. The occurrence of compound extremes for NWAAW

weather types decreases by about 3.5%. All other changes are not significant. The changes in the

absolute number of days with these weather types are also not significant (not shown). As these

extremes do not show any significant changes between the reference period and the near future

(see Fig. 7.4), it cannot be clearly stated whether or not strong changes in weather types would

also induce a change in the number of extreme events. However, there seems to be a change in

the dependence of compound extremes on different weather types which is most probably due to

a change in the spatial pattern of the extreme events in the future.
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10.3 Short summary

In this chapter, the weather types influencing the absolute compound extremes defined in Chap-

ter 7 were analyzed using the objective weather type classification of the German weather

service by Bissolli and Dittmann (2001). Clear dependencies between certain weather types and

compound extreme events were found for extremes from E-Obs observations and weather types

from ERA20C reanalysis and the ensemble data. About 80% of hot and dry extremes in summer

occur on days with south-west or undefined advection types paired with anticyclonic conditions

in the mid troposphere and a high precipitable water content. Cold and wet extremes in winter

largely depend on northwest advection types with a high precipitable water content with respect

to the long term mean. The ensemble is able to reproduce this dependence between weather

types and extreme events fairly well. No significant change signal between the absolute number

of occurrence of weather types relevant for either type of compound extreme event was found,

nor is there a clear change in the dependence of the respective extremes on certain weather types.

A possible reason for the increase of hot and dry compound extreme events found in Chapter 7

could be a change in the properties of the air masses transported by the identified advection

types, which may be responsible for the change in extremes.
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Summary

Compound extremes related to temperature and precipitation, e.g. hot and dry days, bare a

high risk potential for society. However, the methods for analyzing these compound extreme

events are by far not as manifold and established as for univariate extreme events and in the

published literature about extreme events, compound extreme events only male up a small parts.

Hence information about these compound events and their future climate change signal is rare.

Therefore, in this work, temperature and precipitation extremes, namely hot and dry extremes

in summer (JJA) and cold and wet extremes in winter (DJF) were analyzed by three different

methods which focus on different aspects of climate change. The first method (type 1 extremes)

focuses on absolute extreme events. These are defined by the simultaneous exceedance of

temperature and precipitation thresholds on a given day. One sector which is greatly affected by

these extremes is agriculture. The second type of extremes are relative extreme events (type 2

extremes) which are derived from indices calculated as standardized anomalies of precipitation

and temperature time series while additionally taking the memory effect (the behavior of the

preceding days) into account. Extremes by this definition are not necessarily record breaking

events but rather a measure of the variability of the climate system. They play an important role

especially in regions which are not affected by absolute extremes, but where the ecosystem is

nevertheless susceptible to changes in deviations from the mean temperature (e.g. phenology and

distribution of species). In addition, the information about the change of variability is relevant

as supplementary information to that of absolute extremes. The third method used in this work

(type 3 extremes) is a novel method for the assessment of compound extreme events and focuses

on the dynamical behavior, i.e. the interplay and succession of extremes. In addition to frequency,

duration and intensity, differences in temporal succession between regions and different time

periods can be assessed. The method allows to answer the question whether there are changes in

this dynamical behavior on top of the changes assessed by the other methods. Thus, the mean

and variability of the near future define the new “normal state” and extremes are defined as

deviations relative to this and changes in linear trends and variability (assessed by the first two
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methods) are omitted in the analysis. In addition, the analysis of the predictability of the new

state (by calculation of the entropy), enables the detection of differences/changes of the ordering

of the system, i.e. if it is more regular or chaotic in different regions/time periods.

For the analysis, an existing high resolution 4-member climate ensemble at 7km resolution gen-

erated with the regional climate model COSMO-CLM was enlarged by dynamically downscaling

data of eight global climate models at two nesting stages (50km and 7km). These additional

members were mostly generated within this work (see Chapter 3). The ensemble data covers

the time periods 1971-2000 (reference period) and 2021-2050 (near future). Analysis of the

consistency and significance of the change signal are measures for the robustness of changes

between these two time periods. The investigation area is central Europe (see Fig.11.1).

Climatological means for the reference period were compared to observational data (see Chap-

ter 4). The comparison yielded a cold and wet bias of the ensemble members which were

therefore bias corrected (see Chapter 5). An analysis of the changes in the ensemble mean values

of the bias corrected time series between the two time periods showed a significant increase in

minimum, maximum and mean temperatures, but no significant changes in precipitation (the

majority of ensemble members show a slight decrease in summer and a increase in winter).

The aim of the work was to answer four main questions formulated in the introduction to this

work. These focus on compound extreme events, namely their representation by the regional

climate model ensemble, their changes in the near future and how the compound extremes

depend on different weather patterns. Additionally, the added value of using the high resolution

7km ensemble compared to the first nesting stage at 50km was assessed. In the following, these

questions are answered, and the results discussed. The corresponding chapters are denoted in

brackets.

1. Can the ensemble of regional climate simulations correctly simulate the statistical oc-
currence of compound extreme events for a reference time period (1971-2000)?

In general the ensemble is able to reproduce the statistical occurrence of compound
extremes for the reference period fairly well for most types and aspects of extremes
and regions. The ensemble performs better for hot and dry extremes in summer than
for cold and wet extremes in winter. (Chapters 7-9)

With all three methods, the region which yields the most compound hot and dry extreme

events in the reference period is the Rhine Valley, where the ensemble mean shows a high

number of absolute threshold exceedances (type 1) and relative (type 2) extremes and the

persistence is found to be high. A high number of relative (type 2) extremes are also found

in the northern part south of Hamburg and in the Alps. The Rhine Valley and the Alps also
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show a high persistence and, thus, long episodes compared to other regions. In comparison

to the observations, the number of hot and dry compound hot and dry type 1 extreme events

(absolute extremes) is slightly too high in the southern half of the investigation area, but the

deviations are not very large (1-2 days per year). Relative extremes calculated by EDI and

EHI (type2) are within the ensemble spread for all but a few grid points in the Northwest and

the Markov descriptors (type 3) are also within the ensemble spread for a large fraction of

gridpoints.

Cold and wet extremes in winter generally occur less frequently than hot and wet extremes in

summer. Besides showing a lower number of absolute (type 1) and relative (type 2) extremes ,

their persistence is lower and the recurrence time higher (type 3). Both absolute and relative

extremes occur in the Alps, the Black Forest and the Vosges. Relative extremes additionally

occur in the southern and eastern part of the model domain and in central Germany, where their

number, however, shows deviations from the observations. The Markov persistence shows

the highest values in the south-eastern part of the model domain, including the Alps, Bavaria,

the Czech Republic and parts of Saxony and Brandenburg. In these regions, the recurrence

time is also low compared to other regions, which means that type 3 compound episodes

events occur often and the episodes are of longer duration. In comparison to observations,

cold and wet extremes in winter are represented fairly well for absolute extremes (type 1)

and the descriptors of the Markov analysis (type 3), only the observational values for relative

extreme events (type 2) lie outside of the ensemble spread for most of the model domain,

except for the southern part (Baden-Wuerttemberg and the area around the Alps).

Further investigations and comparisons to multimodel regional climate ensembles (such as

e.g. the CORDEX-ensemble) as well as the investigation of the whole model chain (GCM and

2 RCM nesting stages) are necessary to evaluate the source of the respective biases, especially

for relative biases.

2. How will the statistical occurrence of compound extremes change between this refer-
ence period (1971-2000) and the near future (2021-2050) and how robust are the pre-
dicted changes? Can regions be identified which are especially susceptible to the change
of extreme events?

Regions affected by climate change of compound extreme events are summarized in
Fig. 11.1. All of the investigation area is susceptible to changes in compound hot and dry
events which show an increase of absolute (type 1) extremes for the whole investigation
area and changes in relative (type 2) extreme events and dynamical behavior (type 3)
in the Alps and the eastern part of the model domain. Compound cold and wet events
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Fig. 11.1.: Regions where a change occurs between reference period (1971-2000) and the near future

(2021-2050) for compound extremes assessed by three different methods . Type1: absolute

extreme events (Chapter 7), type 2: relative extreme events (Chapter 8) and type 3: Markov

extremes (Chapter 9). Only changes with an ensemble consistency greater than 50% are

considered. Changes can be both negative and positive, gray areas show no changes.

only show robust changes in some regions which are located mostly in the Alps and
eastern part as well. These regions are likely to experience an increase in both winter
and summer extremes. (Chapters 7-9)

How the occurrence of compound extreme events changes in the near future depends on

the region, the kind of compound extreme (hot and dry or cold and wet) and the type of

the extreme considered (absolute or relative extremes and extremes assessed by the Markov

method). If robust changes for all three methods are predicted for a certain area, it is most

likely highly susceptible to climate change in the future because the extremes are likely to

happen more often, the variability increases and the dynamical behavior changes. Regions

which show changes derived by the three methods described in Chapters 7-9 are summarized

in Fig. 11.1. The images show for which grid points robust changes (shown by more than

75 % of the ensemble members) in the number of absolute compound extreme days (type 1,

Chapter 7), relative compound extreme days (type 2, Chapter 8) and/or changes in dynamics

properties (type 3, Chapter 9) are predicted by the ensemble.

A change in all three types of hot and dry extremes (black colored areas in Fig. 11.1, left

side) is visible in the eastern part of Bavaria, the Czech Republic and its borders with Saxony.

These regions can be identified as being highly susceptible to climate change in the future.
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For the absolute (type 1) number of compound hot extremes, a robust and significant change

is projected for all grid points which is highest in the Rhine Valley and Brandenburg (up to 7.5

days). This is in agreement with other studies for univariate extreme events (see Chapter 7).

These extremes are dominated by the occurrence of hot extremes and the increase is most

likely due to an increasing temperature trend which yields more hot extremes and, thus, also

an increase in compound events. In the eastern part of the investigation area, most regions are

additionally affected by relative extremes and, thus, a higher variability, i.e., the Alpine region

and mountainous regions in the Czech Republic. On top of these changes, the dynamics

of succession additionally change in parts of the southern (Alps) and eastern parts of the

investigation area. In these regions, the time between compound extreme episodes relative to

the new “normal” state decreases by up to 15 days.

The change signal for compound cold and wet extremes is of smaller magnitude than for hot

and dry extremes and for some regions the change signal is negligibly small. The number of

absolute (type 1) and relative (type 2) compound cold and wet extremes only show robust

changes in small regions. However, the dynamic properties of these extremes change. The

time beweeen episodes relative to the new “normal” state decreases for regions in the western

part of the investigation area (for some it is halved) and the episodes area likely to be of

longer duration in the northwestern and northeastern parts while in the Czech Republic the

results show a shortening of the episode length.

3. Is there any added value from regional climate simulations at 0.0625 ◦ (≈ 7km) reso-
lution in comparison to regional climate simulations at 0.44 ◦ (≈ 50km) resolution for
the description of compound extreme events?

The higher resolution shows an added value for mean values and absolute extremes,
mostly by a better spatial correlation of extreme events. For relative extremes, there is
no added value. (Chapters 4 , 7-9)

The added value of the different simulations was assessed by comparing mean values and

results from the different methods of compound extremes to those of observations. For this,

the root mean square error (RMSE) and the spatial correlation were assessed. A summary of

the results can be found in Table 11.1. For mean values of temperature and precipitation the

7km ensemble shows an added value for the spatial correlation. For the temperature means,

this is significant for both summer and winter, for the precipitation total, only for winter. The

RMSE, however, does not show any added value, but even a small worsening. For compound

extreme events, the only added value is found for absolute (type 1) extreme events. Due to lack

of availability of temperature maxima/minima data for the 50km ensemble, only the number
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of dry and wet days, respectively, were compared. These also show a significantly higher

correlation between ensemble values and observations. Mean values show no significant

difference. For all relative extremes (type 2 and type 3), no significant added value can be

found for either extreme.

Tab. 11.1.: Summary of added value of 7km resolution simulations in comparison to 50km simulations for

mean temperature and precipitation and the three types of compound extreme events. Check

marks denote added value. * Added value for type 1 extreme events was only calculated for

dry/wet days as temperature data at 50km was not available.

JJA DJF

temperature X X

precipitation X X

hot and dry cold and wet

type1 - * X*

type2 - -

type3 - -

A downscaling to the higher resolution of 7km is mostly important when absolute (type 1)

extremes are considered on small spatial scales. The relative behavior seems to be governed

mostly by the first nesting stage at 50km, therefore, if one is interested in these extremes

(type 2 and 3), further downscaling is not necessarily required.

4. How are the compound extreme events dependent on different weather patterns and
how will these change in the near future?

There is a clear dependence of extreme events on certain weather patterns. However,
these patterns will not significantly change in the near future. (Chapter 10)

To study the relation between weather patterns and compound extreme events, the objective

weather type classification scheme by Bissolli and Dittmann (2001) was applied to the model

data and ERA 20C reanalysis products to derive weather types based on the advection in

700hPa, the cyclonality in 1000 and 500hPa and the humidity of the troposphere between

1000 and 5000hPa. The occurrence of absolute (type 1) compound extremes was set into

relation to these weather types. For hot and dry extremes, a clear dependency could be found

between Southwest advection type for the south and east of the domain and undefined flow for

the western part of the domain with anticyclonic conditions in 500hPa and a high precipitable

water content. Cold and wet extremes in winter largely depend on northwest advection types
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with a high precipitable water content. However, no significant changes in the occurrence of

the relevant weather types could be found and the relevant weather types remain the same

in the future. Therefore, the change in extreme events could be induced by a change in the

properties of the air masses transported by the different weather types, rather than a change in

absolute occurrence.

By answering the questions 1.-4. above, the present work has contributed to the understanding

of compound temperature and precipitation extreme events and their occurrence in the future

in central Europe. Especially the newly developed analysis of the dynamical behavior reveals

information about an aspect which is new to the climate change debate.

Outlook

Possible applications
One possibility of applying the results of this work is the use of the data from the high resolution

regional climate simulations as input for impact models, e.g. agricultural models, projections of

species development or hydrological models, among others, where regional information, which

cannot be provided by the coarsely resolved global climate models, is needed. Through the use

of an ensemble of regional climate simulations, the uncertainty of the climate change signal

can be included in the impact studies and can be used to identify regions which are most likely

impacted by climate change. In addition, the results of Chapters 7-9 can be directly used to

identify regions vulnerable to changes in compound extreme events by combining the the climate

change signal derived in this work with information about the likely impacts of these changes to

the different regions and sectors. For example, the increase in hot and dry extremes in summer

for all of Germany will not affect all regions equally, even though the magnitude of the change

signal might be the same. Regions, where agriculture is the dominant economic sector, are

most probably more affected, although this depends on the crop and its resistance to heat stress

and drought. Other examples are health related problems, which are more likely to occur in

regions with a high population density or the effects on the ecosystem which depend on the

”climatic envelope” of the species living in the respective region (e.g. Walther et al., 2002) and

their possibility of migrating to more suitable habitats. For regions identified as vulnerable to

compound extreme events, more detailed impact studies using the data of the high resolution

study of this work could be conducted.
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Further research

Studies of univariate extreme events (e.g. Beniston et al., 2007; Sillmann and Roeckner, 2008;

IPCC, 2013) show that other regions of Europe are even more strongly affected by climate

change. These regions are most likely also susceptible to compound extreme events. However,

information about the regional change signal of compound extreme events with a high spatial

resolution is scarce, although it would be of high relevance for designing adaptation measures.

Thus, the extension of the analysis to a different/greater region should be a next step. This

is underlined by a study accompanying this work (Sedlmeier et al., 2015), which includes an

analysis of the 50km ensemble of this work and focuses on six regions in different parts of

Europe. By a Markov Analysis (as in Chapter 9), significant differences between the dynamical

behavior of different regions, but also robust changes for some areas (but not the one within the

investigation area) were found. A further extension of the study to time periods further in the

future would be of high interest in order to answer the question how the dynamical behavior

changes for a stronger increase in temperature trend as it is projected for the end of the century

(IPCC, 2013).

By further increasing the ensemble size (e.g. by downscaling additional global climate models

or using an alternative soil-vegetation-atmosphere model), a broader statistical data basis could

be created, which is important for the analysis of such rare events as compound extremes.

This work only includes two types of a large variety of compound extreme events that are relevant

to society. The methods used here are generally applicable to compound extremes of two or more

variables, although for the relative (type 2) extremes, indices would have to be derived to fit with

the meteorological variables of interest. Just as important as the further development of methods

to analyze compound extreme events is the information about which compound extreme events

are likely to affect society in the future. Not all compounding of extreme events necessarily

have a big impact: their potential impact is determined by when, where and how they occur,

and a collaboration among different disciplines is necessary. Only if different disciplines work

together, the planning of adaptation and mitigation measures can be facilitated to reduce our

vulnerability to climate change.
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A Appendix

Wilcoxon test

The Wilcoxon test is a non-parametric statistical test for a difference in location of two samples

of data. Given two samples, x1,...,xn with n values of distribution A and y1,...ym with m values

of distribution B, the null hypothesis of the Wilcoxon test is:

Ho : A = B

and the alternative hypothesis:

H1 : A 6= B

Under the null hypothesis, the n observations of sample 1 and the m observations of sample 2

are exchangeable, and all come from the same empirical distribution. This test does not depend

on absolute values, but rather on the ranks of the samples withing the total number of k=n+m

observations. The ranks are assigned by combining the k=n+m observations of both samples

and then assigning ranks in ascending order (1 to the smallest, and k to the highest). The rank

numbers of the two samples are then summed up where Rn = ∑
n
i=1 R(xi) are the sums of sample

1 and Rm = ∑
m
i=1 R(yi) of sample 2. From the rank sum Rn, the U-statistic

U = Rn−
n
2
(n+1)

can be calculated. For small sample sizes, tables exist with the critical values of U for rejecting

the null-hypothesis for different significance levels (e.g. Conover, 1999). For larger samples

sizes (n and m greater than 10), the critical distributions can be approximated by a normal

distribution (Wilks, 2011). The wilcox.stat function of the statistical software package R (R

Development Core Team, 2008) returns the U-statistic and the null-distribution probability.

Throughout this work, differences are referred to as significant when this probability is lower

than 5%, corresponding to a p-level of 0.05, unless stated otherwise.

125



126



B List of Figures

2.1 Exemplary grid box of the Arakawa-C/Lorenz grid . . . . . . . . . . . . . . . . . 13

3.1 50km and 7km model domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Temperature trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Correlation of ensemble members . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 Investigation area: HYRAS domain . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Mean monthly temperature means in the reference period (1971-2000) . . . . . . . 27

4.3 Mean summer/winter temperature means in the reference period (1971-2000) . . . 28

4.4 Mean summer/winter maximum temperature in the reference period (1971-2000) . 29

4.5 Mean monthly maximum temperature in the reference period (1971-2000) . . . . . 30

4.6 Mean monthly minimum temperature in the reference period (1971-2000) . . . . . 30

4.7 Mean summer/winter minimum temperature in the reference period (1971-2000) . 31

4.8 Mean monthly precipitation sums in the reference period (1971-2000) . . . . . . . 32

4.9 Mean summer/winter precipitation sums in the reference period (1971-2000) . . . . 33

4.10 Comparison of the bias of mean monthly temperature means of 50km and 7km

ensemble for the reference period (1971-2000) . . . . . . . . . . . . . . . . . . . . 34

4.11 Height classification for the calculation of the RMSE . . . . . . . . . . . . . . . . 35

4.12 RMSE and correlation of 7km and 50km ensemble members and HYRAS observa-

tions for mean summer/winter temperatures for the reference period (1971-2000) . 35

4.13 Comparison of the bias of mean monthly precipitation sums of 50km and 7km

ensemble for the reference period (1971-2000) . . . . . . . . . . . . . . . . . . . . 36

4.14 RMSE and correlation of 7km and 50km ensemble members and HYRAS observa-

tions for mean summer/winter precipitation sums for the reference period (1971-2000) 36

5.1 Comparison of the climate change signal for bias-corrected and uncorrected daily

temperature means and precipitation sums . . . . . . . . . . . . . . . . . . . . . . 42

5.2 Comparison of the climate change signal for the number of hot days from bias-

corrected and uncorrected temperature data . . . . . . . . . . . . . . . . . . . . . 43

127



6.1 Changes in mean monthly temperature means between 1971-2000 and 2021-2050 . 45

6.2 Changes in mean summer/winter temperature means between 1971-2000 and 2021-

2050 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.3 Changes in mean summer/winter maximum temperature between 1971-2000 and

2021-2050 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.4 Changes in mean monthly maximum temperature between 1971-2000 and 2021-2050 48

6.5 Changes in mean monthly minimum temperature between 1971-2000 and 2021-2050 48

6.6 Changes in mean summer/winter minimum temperature between 1971-2000 and

2021-2050 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.7 Changes in mean monthly precipitation sums between 1971-2000 and 2021-2050 . 50

6.8 Changes in mean summer/winter precipitation sums between 1971-2000 and 2021-2050 51

7.1 Compound type 1 hot and dry extremes in summer (JJA) in the reference period

(1971-2000) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.2 Climate change signal of compound type 1 hot and dry extremes in summer (JJA)

between 1971-2000 and 2021-2050 . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.3 Compound type 1 cold and wet extremes in winter (DJF) in the reference period

(1971-2000) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.4 Climate change signal of compound type 1 cold and wet extremes in winter (DJF)

between 1971-2000 and 2021-2050 . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.5 RMSE and correlation of 7km and 50km ensemble members and HYRAS observa-

tions for the mean number of dry days in the reference period (1971-2000) . . . . . 60

7.6 RMSE and correlation of 7km and 50km ensemble members and HYRAS observa-

tions for the mean number of wet days in the reference period (1971-2000) . . . . . 61

8.1 Exemplary EDI and EHI time series . . . . . . . . . . . . . . . . . . . . . . . . . 65

8.2 Exemplary comparison of the ensemble consistency and significance of the change

signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

8.3 Relative compound type 2 hot and dry extremes in summer (JJA) in the reference

period (1971-2000) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

8.4 Climate change signal of relative compound type 2 hot and dry extremes in summer

(JJA) between 1971-2000 and 2021-2050 . . . . . . . . . . . . . . . . . . . . . . 68

8.5 Relative compound type 2 cold and wet extremes in winter (DJF) in the reference

period (1971-2000) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

8.6 Climate change signal of relative compound type 2 cold and wet extremes in winter

(DJF) between 1971-2000 and 2021-2050 . . . . . . . . . . . . . . . . . . . . . . 71

128



8.7 RMSE and correlation of 7km and 50km ensemble members and HYRAS observa-

tions for compound hot and dry extremes in the reference period (1971-2000) . . . 72

8.8 RMSE and correlation of 7km and 50km ensemble members and HYRAS observa-

tions for compound cold and wet extremes in the reference period (1971-2000) . . 73

9.1 Partitioning of temperature and precipitation . . . . . . . . . . . . . . . . . . . . . 79

9.2 Changes in temperature and precipitation thresholds between summers (JJA) of

1971-2000 and 2021-2050 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

9.3 Changes in temperature and precipitation thresholds between winters (DJF) of 1971-

2000 and 2021-2050 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

9.4 Number of compound type 3 hot and dry days in summer from observations in the

reference period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

9.5 Descriptors for compound type 3 hot and dry extremes in summer from observations

in the reference period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

9.6 Descriptors for compound type 3 hot and dry extremes in summer from the 7km

ensemble in the reference period . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

9.7 Number of compound type 3 hot and dry days in summer from the 7km ensemble,

reference period and climate change signal . . . . . . . . . . . . . . . . . . . . . . 89

9.8 Climate change signal of descriptors for compound type 3 hot and dry extremes in

summer from the 7km ensemble between 1971-2000 and 2021-2050 . . . . . . . . 90

9.9 Ensemble consistency and significance of climate change signal of descriptors for

compound type 3 hot and dry extremes in summer from the 7km ensemble between

1971-2000 and 2021-2050 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

9.10 Number of compound type 3 cold and wet days in winter from observations in the

reference period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

9.11 Descriptors for compound type 3 cold and wet extremes in winter from observations

in the reference period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

9.12 Number of compound type 3 cold and wet days in summer from the 7km ensemble,

reference period and climate change signal . . . . . . . . . . . . . . . . . . . . . . 94

9.13 Descriptors for compound type 3 cold and wet extremes in winter from the 7km

ensemble in the reference period . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

9.14 Climate change signal of descriptors for compound type 3 cold and wet extremes in

winter from the 7km ensemble between 1971-2000 and 2021-2050 . . . . . . . . . 97

129



9.15 Ensemble consistency and significance of climate change signal of descriptors for

compound type 3 cold and wet extremes in winter from the 7km ensemble between

1971-2000 and 2021-2050 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

9.16 RMSE and correlation of 7km and 50km ensemble members and HYRAS obser-

vations for descriptors of compound type 3 hot and dry extremes in the reference

period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

9.17 RMSE and correlation of 7km and 50km ensemble members and HYRAS obser-

vations for descriptors of compound type 3 cold and wet extremes in the reference

period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

10.1 Classification area and weighting scheme . . . . . . . . . . . . . . . . . . . . . . 104

10.2 Fraction of (compound) hot and dry E-Obs extreme days for the different ERA20C

weather types in relation to the total number of extreme days, summer, 1971-2000 . 107

10.3 Most relevant weather types for (compound) hot and dry extremes in summer (JJA) 108

10.4 Fraction of compound hot and dry extreme days for relevant weather types in relation

to the total number of compound extreme days in the HYRAS domain. Comparison

between ERA20C weather types and ensemble mean for summer (JJA) of reference

period (1971-2000) and near future (2021-2050). . . . . . . . . . . . . . . . . . . 110

10.5 Same as Fig.10.2 for cold and wet extremes in winter (DJF) . . . . . . . . . . . . . 112

10.6 Same as Fig.10.3 for cold and wet extremes in winter (DJF) . . . . . . . . . . . . . 114

10.7 Same as Fig.10.4 for cold and wet extremes in winter (DJF) . . . . . . . . . . . . . 115

11.1 Regions susceptible to a change in compound extreme events . . . . . . . . . . . . 120

130



C Bibliography

Allan, R., J. Lindesay, D. Parker, et al., 1996: El Nino: Southern oscillation and climatic

variability. CSIRO, 416 pp.

Annan, J. and J. Hargreaves, 2010: Reliability of the CMIP3 ensemble. Geophys. Res. Lett.,

37 (2), L02 703, doi:10.1029/2009GL041994.

Bartholome, E. and A. Belward, 2005: GLC2000: a new approach to global land cover mapping

from Earth observation data. Int. J. Remote Sens., 26 (9), 1959–1977.

Bechtold, P., E. Bazile, F. Guichard, P. Mascart, and E. Richard, 2001: A mass-flux convection

scheme for regional and global models. Quart. J. Roy. Meteor. Soc., 127 (573), 869–886.

Beirlant, J., Y. Goegebeur, J. Segers, and J. Teugels, 2006: Statistics of extremes: theory and

applications. John Wiley & Sons, 514 pp.

Beniston, M., 2009: Trends in joint quantiles of temperature and precipitation in eu-

rope since 1901 and projected for 2100. Geophys. Res. Lett., 36 (7), L07 707, doi:

10.1029/2008GL037119.

Beniston, M., M. Rebetez, F. Giorgi, and M. Marinucci, 1994: An analysis of regional climate

change in switzerland. Theor. Appl. Climatol., 49 (3), 135–159.

Beniston, M., et al., 2007: Future extreme events in European climate: an exploration of regional

climate model projections. Clim. Change, 81 (1), 71–95.

Berg, P., H. Feldmann, and H. J. Panitz, 2012: Bias correction of high resolution regional climate

model data. J. Hydrol., 448, 80–92, doi:10.1016/j.jhydrol.2012.04.026.

Berg, P., S. Wagner, H. Kunstmann, and G. Schädler, 2013: High resolution regional climate

model simulations for Germany: part I - validation. Clim. Dyn., 40 (1-2), 401–414.

Bishop, C. H. and G. Abramowitz, 2013: Climate model dependence and the replicate earth

paradigm. Climate dynamics, 41 (3-4), 885–900.

131



Bissolli, P. and E. Dittmann, 2001: The objective weather type classification of the German

Weather Service and its possibilities of application to environmental and meteorological

investigations. Meteor. Z., 10 (4), 253–260, doi:10.1127/0941-2948/2001/0010-0253.

Bissolli, P., J. Grieser, N. Dotzek, and M. Welsch, 2007: Tornadoes in germany 1950–2003 and

their relation to particular weather conditions. Glob. Planet. Change, 57 (1), 124–138.

Bruyère, C. L., J. M. Done, G. J. Holland, and S. Fredrick, 2014: Bias corrections of global

models for regional climate simulations of high-impact weather. Clim. Dyn., 43 (7-8), 1847–

1856.

Bukovsky, M., J. Thompson, and L. Mearns, 2013: The Effect of Weighting on the NARCCAP

Ensemble Mean. EGU General Assembly Conference Abstracts, EGU General Assembly

Conference Abstracts, Vol. 15, 2125.

Byun, H.-R. and D. A. Wilhite, 1999: Objective quantification of drought severity and duration.

J. Climate, 12 (9), 2747–2756.

Christensen, J. H., T. R. Carter, M. Rummukainen, and G. Amanatidis, 2007: Evaluating the

performance and utility of regional climate models: the prudence project. Clim. Change,

81 (1), 1–6.

Ciais, P., et al., 2005: Europe-wide reduction in primary productivity caused by the heat and

drought in 2003. Nature, 437 (7058), 529–533.

Coles, S., J. Bawa, L. Trenner, and P. Dorazio, 2001: An introduction to statistical modeling of

extreme values. Springer, 209 pp.

Colette, A., R. Vautard, and M. Vrac, 2012: Regional climate downscaling with prior statistical

correction of the global climate forcing. Geophys. Res. Lett., 39 (13).

Collins, M., 2007: Ensembles and probabilities: a new era in the prediction of climate change.

Philos. Trans. Roy. Soc. London, 365 (1857), 1957–1970, doi:10.1098/rsta.2007.2068.

Collins, W., et al., 2011: Development and evaluation of an Earth-system model–HadGEM2.

Geosc. Model Devel. Disc., 4 (2), 997–1062.

Conover, W., 1999: Practical Nonparametric Statistics. Wiley, New York/Weinheim, 584 pp.

Dai, A., 2013: Increasing drought under global warming in observations and models. Nature

Clim. Change, 33 (1).

132



Davies, H., 1976: A lateral boundary formulation for multi-level prediction models. Quart. J.

Roy. Meteor. Soc., 102 (432), 405–418.

Davies, H. C., 1983: Limitations of some common lateral boundary schemes used in regional

NWP models. Mon. Wea. Rev., 111 (5), 1002–1012.

Déqué, M. and S. Somot, 2010: Weighted frequency distributions express modelling uncertainties

in the ensembles regional climate experiments. Clim. Res., 44, 195209, doi:10.3354/cr00866.

Deser, C., A. Phillips, V. Bourdette, and H. Teng, 2012: Uncertainty in climate change projections:

the role of internal variability. Clim. Dyn., 38 (3-4), 527–546.

Dickinson, R. E., R. M. Errico, F. Giorgi, and G. T. Bates, 1989: A regional climate model for

the western united states. Clim. Change, 15 (3), 383–422.

Doms, G., et al., 2011a: A description of the nonhydrostatic regional COSMO model, Part I:

Dynamics and Numerics. Deutscher Wetterdienst, Offenbach, Germany.

Doms, G., et al., 2011b: A description of the nonhydrostatic regional COSMO model, Part II:

Physical Parameterization. Deutscher Wetterdienst, Offenbach, Germany.

Durante, F. and G. Salvadori, 2010: On the construction of multivariate extreme value models

via copulas. Environmetrics, 21 (2), 143–161, doi:10.1002/env.988.

Evans, J. P., F. Ji, G. Abramowitz, and M. Ekström, 2013: Optimally choosing small ensemble

members to produce robust climate simulations. Environ. Res. Lett., 8 (4), 044 050.

Feldmann, H., B. Frueh, G. Schaedler, H.-J. Panitz, K. Keuler, D. Jacob, and P. Lorenz, 2008:

Evaluation of the precipitation for South-western Germany from high resolution simulations

with regional climate models. Meteor. Z., 17 (4), 455–465, doi:10.1127/0941-2948/2008/0295.

Feldmann, H., G. Scher, H.-J. Panitz, and C. Kottmeier, 2012: Near future changes of extreme

precipitation over complex terrain in Central Europe derived from high resolution RCM

ensemble simulations. Int. J. of Climatol., doi:10.1002/joc.3564.

Ferro, C. A., T. E. Jupp, F. H. Lambert, C. Huntingford, and P. M. Cox, 2012: Model complexity

versus ensemble size: allocating resources for climate prediction. Phil. Trans. R. Soc. A,

370 (1962), 1087–1099, doi:10.1098/rsta.2011.0307.

Feser, F., B. Rockel, H. von Storch, J. Winterfeldt, and M. Zahn, 2011: Regional climate models

add value to global model data: a review and selected examples. Bull. Amer. Meteor. Soc.,

92 (9), 1181–1192.

133



Fink, A. H., T. Brücher, V. Ermert, A. Krüger, and J. G. Pinto, 2009: The european storm kyrill

in january 2007: synoptic evolution, meteorological impacts and some considerations with

respect to climate change. Nat. Hazards Earth Syst. Sci., 9 (2), 405–423.

Fink, A. H., T. Brücher, A. Krüger, G. C. Leckebusch, J. G. Pinto, and U. Ulbrich, 2004: The

2003 european summer heatwaves and drought–synoptic diagnosis and impacts. Weather,

59 (8), 209–216.

Fischer, E. and R. Knutti, 2013: Robust projections of combined humidity and temperature

extremes. Nature Climate Change, 3 (2), 126–130.

Fischer, E. M., S. Seneviratne, P. Vidale, D. Lüthi, and C. Schär, 2007: Soil moisture-atmosphere

interactions during the 2003 european summer heat wave. J. Climate, 20 (20), 5081–5099.

Freund, J. A., 1996: Dynamische Entropien und nichtlineare Prozesse mit langreichweitigen

Korrelationen. Ph.D. thesis, Humboldt Universität Berlin.

Gallant, A. J., D. J. Karoly, and K. L. Gleason, 2014: Consistent trends in a modified climate

extremes index in the united states, europe, and australia. J. Climate, 27 (4), 1379–1394.

Giorgi, F., 1990: Simulation of regional climate using a limited area model nested in a general

circulation model. J. Climate, 3 (9), 941–963.

Giorgi, F., 2006: Regional climate modeling: Status and perspectives. Journal de Physique IV

(Proceedings), EDP sciences, Vol. 139, 101–118.

Giorgi, F., C. Jones, G. R. Asrar, et al., 2009: Addressing climate information needs at the

regional level: the cordex framework. WMO Bull., 58 (3), 175–183.

Giorgi, F. and L. O. Mearns, 1999: Introduction to special section: Regional climate modeling

revisited. J. Geophys. Res., 104, 6335–6352.

Gleckler, P. J., K. E. Taylor, and C. Doutriaux, 2008: Performance metrics for climate models. J.

Geophys. Res., 113, D06 104„ doi:10.1029/2007JD008972.

Gudendorf, G. and J. Segers, 2012: Nonparametric estimation of multivariate extreme-value

copulas. J. Statist. Plann. Inference, 142 (12), 3073–3085, doi:10.1016/j.jspi.2012.05.007.

Haughton, N., G. Abramowitz, A. Pitman, and S. J. Phipps, 2014: On the generation of climate

model ensembles. Clim. Dyn., 43 (7-8), 2297–2308.

134



Haylock, M. R., N. Hofstra, A. M. G. K. Tank, E. J. Klok, P. D. Jones, and M. New, 2008: A

European daily high-resolution gridded data set of surface temperature and precipitation for

1950-2006. J. Geophys. Res., 113 (D20), doi:10.1029/2008JD010201.

Hazeleger, W., et al., 2010: EC-earth: a seamless earth-system prediction approach in action.

Bull. Amer. Meteor. Soc., 91 (10), 1357–1363.

Heino, R., et al., 1999: Progress in the study of climatic extremes in northern and central europe.

Weather and Climate Extremes, Springer, 151–181.

Heise, E., 2002: Parametrisierungen. promet, Meteorologische Fortbildung: Die neue Modellkette

des DWD I, 27, 130–141.

Hill, M., J. Witman, and H. Caswell, 2004: Markov chain analysis of succession in a rocky

subtidal community. Am. Nat., 164 (2), E46–E61, doi:10.1086/422340.

Hoffmann, H. and T. Rath, 2012: Meteorologically consistent bias correction of climate time

series for agricultural models. Theor. Appl. Climatol., 110 (1/2), 129 – 141.

Hurrell, J. W., Y. Kushnir, and M. Visbeck, 2001: The north atlantic oscillation. Science,

291 (5504), 603–605.

IPCC, 2010: Meeting Report of the Intergovernmental Panel on Climate Change Expert Meeting

on Assessing and Combining Multi Model Climate Projections. IPCC Working Group I

Technical Support Unit, University of Bern, Bern, Switzerland, 117 pp.

IPCC, 2012: Managing the Risks of Extreme Events and Disasters to Advance Climate Change

Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on

Climate Change. Cambridge University Press,Cambridge, UK, and New York, NY, USA, 582

pp.

IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group

I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 2013.

Cambridge University Press, Cambridge, UK, and New York, NY, USA, 1535 pp.

Jacob, D., et al., 2014: EURO-CORDEX: new high-resolution climate change projections for

European impact research. Reg. Environ. Change, 14 (2), 563–578.

Jacobeit, J., J. Rathmann, A. Philipp, and P. D. Jones, 2009: Central european precipitation

and temperature extremes in relation to large-scale atmospheric circulation types. Meteor. Z.,

18 (4), 397–410.

135



Jones, R., J. Murphy, and M. Noguer, 1995: Simulation of climate change over europe using

a nested regional-climate model. i: Assessment of control climate, including sensitivity to

location of lateral boundaries. Quart. J. Roy. Meteor. Soc., 121 (526), 1413–1449.

Kain, J. S., 1993: Convective parameterization for mesoscale models: The Kain-Fritsch scheme.

The representation of cumulus convection in numerical models, Meteor. Monogr, 24 (46),
165–170.

Kapsch, M.-L., M. Kunz, R. Vitolo, and T. Economou, 2012: Long-term trends of hail-related

weather types in an ensemble of regional climate models using a bayesian approach. J. Geophys.

Res, 117, D15 107, doi:10.1029/2011JD017185.

Katz, R. W. and B. G. Brown, 1992: Extreme events in a changing climate: variability is more

important than averages. Climatic change, 21 (3), 289–302.

Keetch, J. J., G. M. Byram, et al., 1968: A drought index for forest fire control,USDA Forest

Service Research Paper SE-38, Southeastern Forest Experiment Sta- tion, Asheville, NC. 33.

Kjellström, E., F. Boberg, M. Castro, J. H. Christensen, G. Nikulin, and E. Sánchez, 2010: Daily

and monthly temperature and precipitation statistics as performance indicators for regional

climate models. Clim. Res., 44 (2), 135–150, doi:10.3354/cr00932.

Kunz, M., J. Sander, and C. Kottmeier, 2009: Recent trends of thunderstorm and hailstorm

frequency and their relation to atmospheric characteristics in southwest germany. Int. J. of

Climatol., 29 (15), 2283–2297.

Laprise, R., 2008: Regional climate modelling. J. Comput. Phys., 227 (7), 3641–3666.

Lavalle, C., et al., 2009: Climate change in europe. 3. impact on agriculture and forestry. a

review. Agron. Sustainable Dev., 29 (3), 433–446.

McGregor, J., 1997: Regional climate modelling. Meteor. Atmos. Phys., 63 (1-2), 105–117.

Mearns, L. O., et al., 2012: The North American regional climate change assessment program:

overview of phase I results. Bull. Amer. Meteor. Soc., 93 (9), 1337–1362.

Meehl, G. A., C. Covey, K. E. Taylor, T. Delworth, R. J. Stouffer, M. Latif, B. McAvaney, and

J. F. Mitchell, 2007: The WCRP CMIP3 multimodel dataset: A new era in climate change

research. Bull. Amer. Meteor. Soc., 88 (9), 1383–1394.

Mellor, G. L. and T. Yamada, 1982: Development of a turbulence closure model for geophysical

fluid problems. Rev. Geophys., 20 (4), 851–875.

136



Mieruch, S., S. Noel, H. Bovensmann, J. P. Burrows, and J. A. Freund, 2010: Markov chain

analysis of regional climates. Nonlin. Proc. Geoph., 17 (6), 651–661, doi:10.5194/npg-17-

651-2010.

Mikosch, T., 2006: Copulas: Tales and facts. Extremes, 9 (1), 3–20.

Mizielinski, M., et al., 2014: High-resolution global climate modelling: the upscale project, a

large-simulation campaign. Geoscientific Model Development, 7 (4), 1629–1640.

Moss, R. H., et al., 2010: The next generation of scenarios for climate change research and

assessment. Nature, 463 (7282), 747–756.

Nakicenovic, N. and R. Swart, 2000: Special report on emissions scenarios. Special Report

on Emissions Scenarios, Edited by Nebojsa Nakicenovic and Robert Swart, pp. 612. ISBN

0521804930. Cambridge, UK: Cambridge University Press, July 2000.

Norris, J. R., 1998: Markov chains. 2008, Cambridge university press.

Philipp, A., et al., 2010: Cost733cat–a database of weather and circulation type classifications.

Phys. Chem. Earth, 35 (9), 360–373.

R Development Core Team, 2008: R: A Language and Environment for Statistical Computing.

Vienna, Austria, R Foundation for Statistical Computing, URL http://www.R-project.org,

ISBN 3-900051-07-0.

Rauthe, M., H. Steiner, U. Riediger, A. Mazurkiewicz, and A. Gratzki, 2013: A Central European

precipitation climatology–Part I: Generation and validation of a high-resolution gridded daily

data set (HYRAS). Meteor. Z., 22 (3), 235–256.

Reichler, T. and J. Kim, 2008: How well do coupled models simulate today’s climate? Bull.

Amer. Meteor. Soc., 89 (3), 303–311.

Renard, B. and M. Lang, 2007: Use of a gaussian copula for multivariate extreme value analysis:

some case studies in hydrology. Adv. Water Resour., 30 (4), 897–912.

Riediger, U. and A. Gratzki, 2014: Future weather types and their influence on mean and extreme

climate indices for precipitation and temperature in central europe. Meteor. Z.

Ritter, B. and J.-F. Geleyn, 1992: A comprehensive radiation scheme for numerical weather

prediction models with potential applications in climate simulations. Mon. Wea. Rev., 120 (2),
303–325.

137



Roeckner, E., et al., 2003: The atmospheric general circulation model ECHAM 5. PART I:

Model description. Tech. rep., Max-Planck-Institut für Meteorologie, Hamburg, Germany.

Sasse, R. and G. Schädler, 2014: Generation of regional climate ensembles using Atmospheric

Forcing Shifting. Int. J. Climatol., 34 (7), 2205–2217, doi:10.1002/joc.3831.

Sasse, R., G. Schädler, and C. Kottmeier, 2013: The regional atmospheric water budget over

southwestern Germany under different synoptic conditions. J. Hydrometeorol., 14 (1), 69–84.

Schädler, G. and R. Sasse, 2006: Analysis of the connection between precipitation and synoptic

scale processes in the eastern mediterranean using self-organizing maps. Meteor. Z., 15 (3),
273–278.

Schädler, G., et al., 2012: Flood hazard in a changing climate. Tech. Rep.

http://www.cedim.de/download/Flood_Hazards_in_a_Changing_Climate.pdf, Center for Dis-

aster Management and Risk Reduction Technology (CEDIM).

Schär, C., P. L. Vidale, D. Lüthi, C. Frei, C. Häberli, M. A. Liniger, and C. Appenzeller,

2004: The role of increasing temperature variability in european summer heatwaves. Nature,

427 (6972), 332–336.

Schättler, U. and U. Blahak, 2015: A description of the nonhydrostatic regional COSMO

model, Part IV: Preprocessing: Initial and Boundary Data for the COSMO-Model. Deutscher

Wetterdienst, Offenbach, Germany.

Schmidli, J. and C. Frei, 2005: Trends of heavy precipitation and wet and dry spells in switzerland

during the 20th century. Int. J. of Climatol., 25 (6), 753–771.

Schoelzel, C., P. Friederichs, et al., 2008: Multivariate non-normally distributed random variables

in climate research–introduction to the copula approach. Nonlin. Proc. Geoph., 15 (5), 761–

772.

Schrodin, E. and E. Heise, 2002: A new multi-layer soil model. COSMO newsletter, 2, 149–151.

Scinocca, J., N. McFarlane, M. Lazare, J. Li, D. Plummer, et al., 2008: The CCCma third

generation AGCM and its extension into the middle atmosphere. Atmos. Chem. Phys. Discuss,

8 (2), 7883–7930.

Sedlmeier, K., S. Mieruch, and G. Schädler, 2015: Compound extremes in a changing climate -

a markov chain approach. to be submitted.

138



Sedlmeier, K. and G. Schädler, 2014: Ensembles hoch aufgelöster regionaler Klimasimulationen

zur Analyse regionaler Klimaänderungen in BaWü und ihre Auswirkungen. Tech. rep., LUBW

Landesanstalt für Umwelt, Messungen und Naturschutz Baden - Württemberg.

Shannon, C., 1948: A mathematical theory of communication. Syst. Tech. J., 27, 623–656.

Sillmann, J. and E. Roeckner, 2008: Indices for extreme events in projections of anthropogenic

climate change. Clim. Change, 86 (1-2), 83–104.

Smiatek, G., B. Rockel, and U. Schättler, 2008: Time invariant data preprocessor for the climate

version of the cosmo model (cosmo-clm). Meteor. Z., 17 (4), 395–405.

Smodydzin, L., 2004: Theoretische und numerische Untersuchungen zur Konvektion-

sparametrisierung in einem Wettervorhersagemodell. M.S. thesis, Universität Bonn.

Stevens, B., et al., 2013: Atmospheric component of the MPI-M Earth System Model: ECHAM6.

J. Adv. Model. Earth Syst., 5 (2), 146–172.

Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of cmip5 and the experiment

design. Bull. Amer. Meteor. Soc., 93 (4), 485–498.

Tebaldi, C. and R. Knutti, 2007: The use of the multi-model ensemble in probabilistic climate

projections. Phil. Trans. R. Soc. A, 365 (1857), 2053–2075, doi:10.1098/rsta.2007.2076.

Tebaldi, C. and B. Sansó, 2009: Joint projections of temperature and precipitation change from

multiple climate models: a hierarchical bayesian approach. J. Roy. Stat. Soc., 172 (1), 83–106.

Teutschbein, C. and J. Seibert, 2012: Bias correction of regional climate model simulations for

hydrological climate-change impact studies: Review and evaluation of different methods. J.

Hydrol., 456, 12–29.

Thuiller, W., S. Lavorel, M. B. Araújo, M. T. Sykes, and I. C. Prentice, 2005: Climate change

threats to plant diversity in europe. Proc. Natl. Acad. Sci. U. S. A., 102 (23), 8245–8250.

Tiedtke, M., 1993: Representation of clouds in large-scale models. Mon. Wea. Rev., 121 (11),
3040–3061.

Trewin, B., O. Baddour, and H. Kontongomde, 2007: The role of climatological normals in a

changing climate. World Meteorological Organization.

Uppala, S. M., et al., 2005: The ERA-40 re-analysis. Quart. J. Roy. Meteor. Soc., 131 (612),
2961–3012.

139



Van der Linden, P. and J. Mitchell, (Eds.) , 2009: ENSEMBLES: Climate Change and its Impacts:

Summary of research and results from the ENSEMBLES project. Met Office Hadley Centre,

Exeter, UK.

Voldoire, A., et al., 2013: The CNRM-CM5.1 global climate model: description and basic

evaluation. Clim. Dyn., 40 (9-10), 2091–2121.

von Storch, H. and F. Zwiers, 2013: Testing ensembles of climate change scenarios for statistical

significance. Clim. Change, 117 (1-2), 1–9.

Wagner, S., P. Berg, G. Schädler, and H. Kunstmann, 2013: High resolution regional climate

model simulations for Germany: Part II - projected climate changes. Clim. Dyn., 40 (1-2),
415–427.

Walther, G.-R., et al., 2002: Ecological responses to recent climate change. Nature, 416 (6879),
389–395.

Wang, Y., L. R. Leung, J. L. McGREGOR, D.-K. Lee, W.-C. Wang, Y. Ding, and F. Kimura,

2004: Regional climate modeling: progress, challenges, and prospects. J. Meteor. Soc. Japan,

82 (6), 1599–1628.

Weigel, A. P., R. Knutti, M. A. Liniger, and C. Appenzeller, 2010: Risks of model weighting in

multimodel climate projections. J. Climate, 23 (15), 4175 – 4191.

Weigel, A. P., M. A. Liniger, and C. Appenzeller, 2008: Can multi-model combination really

enhance the prediction skill of probabilistic ensemble forecasts? Quart. J. Roy. Meteor. Soc.,

134 (630), 241–260, doi:10.1002/qj.210.

Wicker, L. J. and W. C. Skamarock, 2002: Time-splitting methods for elastic models using

forward time schemes. Mon. Wea. Rev., 130 (8), 2088–2097.

Wilby, R. L., T. Wigley, D. Conway, P. Jones, B. Hewitson, J. Main, and D. Wilks, 1998:

Statistical downscaling of general circulation model output: a comparison of methods. Water

Resour. Res., 34 (11), 2995–3008.

Wilks, D. S., 2011: Statistical methods in the atmospheric sciences, 3rd ed. Academic press, San

Diego, CA, 676 pp.

Will, A. and M. Wold, 2009: Comparison of COSMO-CLM results with CM-SAF products:

radiation components ToA, at the surface and cloud properties IOP VS Study 16. Tech. rep.,

Climate Monitoring Satellite Application Facility (CMSAF) at DWD, Offenbach.

140



Yan, J. et al., 2007: Enjoy the joy of copulas: with a package copula. J. Stat. Softw., 21 (4), 1–21.

141



142



Danksagung

An dieser Stelle möchte ich allen danken, die zum Gelingen dieser Arbeit beigetragen haben.

Zunächst möchte ich mich bei der Landesanstalt für Umwelt, Messungen und Naturschutz,

Baden-Württemberg (LUBW) für die finanzielle Unterstützung dieser Arbeit im Rahmen des

KLIMOPASS Projektes “Ensembles hoch aufgelöster regionaler Klimasimulationen zur Analyse

regionaler Klimaänderungen in BaWü und ihre Auswirkungen” bedanken.

Mein besonderer Dank richtet sich an Prof. Dr. Kottmeier für die Betreuung meiner Arbeit

und an PD Dr. Michael Kunz für die Übernahme des Korreferates sowie für die Weitergabe der

Programmbausteine für die Berechnung der objektiven Wetterlagenklassifikation.

Einen großen Dank möchte ich auch Gerd Schädler aussprechen. Zum einen dafür, dass er

mir die Chance gegeben hat mich fachlich neu zu orientieren und dann für die gute Betreuung

und Unterstützung, während der letzten 3 Jahre, die maßgeblich zum Gelingen dieser Arbeit

beigetragen hat. Auch für das kritische und schnelle Korrekturlesen und die (vergeblichen)

Bemühungen mir Kommaregeln näher zu bringen möchte ich mich bedanken.

Des Weiteren möchte ich allen Mitgliedern der Arbeitsgruppe "Regionales Klima und Wasserkreis-

lauf" und des Süddeutschen Klimabüros für die nette Arbeitsatmosphäre und die Hilfe bei allen

technischen und meteorologischen Fragen danken. Inbesondere Sebastian Mieruch, der durch

die vielen anregenden fachlichen Diskussionen meine Arbeit zu Markov-Deskriptoren weiter

gebracht hat, Hans-Jürgen Panitz der bei allen COSMO-Modell Problemen immer helfend zur

Seite stand und Hendrik Feldmann für diverse Skripte. Und ohne die netten Bürokollegen/-innen

Marianne Uhlig, Natalie Laube und Marcus Breil wären die letzten Jahre bestimmt nicht so

angenehm gewesen.

Gabi Klink und Gerhard Brückel möchte ich für Hilfe für die Unterstützung für Computerprob-

leme danken.

Ein großes Dankeschön geht auch an GRACE, das mir meinen Auslandsaufenthalt finanziert

hat und an Linda Mearns und die gesamte IMAGE Gruppe am NCAR für die spannenden und

schönen 3 Monate, die ich dort verbringen durfte.

Natürlich darf hier auch ein großes Dankeschön an alle Freunde nicht fehlen, die mich während

den letzten Jahren unterstützt haben, vor allem Jana und meiner WG, Henrike und Tobi, die

143



immer ein paar aufbauende Worte für mich hatten und mir vor allem in der letzten Phase geholfen

haben zwischendurch mal abzuschalten und neue Energie zu sammeln.

Zum Schluß möchte ich mich bei meinen Eltern bedanken, die mir den Weg bis hierhin ermöglicht

haben und mich immer unterstützt haben bei all meinen Entscheidungen und bei David, der mir

während der ganzen Zeit zur Seite stand.

144


