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Abstract

Our society relies on the correct functioning of software systems and their
failures can result in humanitarian and financial damages. Hence, a high
confidence of the reliability of software systems is usually required. Exist-
ing software reliability assessment approaches are either theoretical sound
but time-consuming and labor-intensive (huge number of test cases, proof
conduction, etc.), or practical but based on unrealistic assumptions and usu-
ally deliver overestimation of the reliability. For ultra-high reliable software
systems, like for example flight control systems, a failure rate of 10−9 with
a confidence of at least 99.99% is usually required. This means that at least
9,210,340,628 failure-free test cases should be executed to assess such a
reliability requirement. If we assume that we can execute 10 test cases per
second, this would mean that a total of 10,660 days of testing are required.
This obviously prohibitively impractical and impossible. We think that our
approach is the right direction to make the assessment of ultra-high reliable
software possible.

This thesis developed an automatic approach for the assessment of soft-
ware reliability which is both theoretical sound and practical. The devel-
oped approach extends and combines theoretical sound approaches in a
novel manner to systematically reduce the overhead of reliability assess-
ment.

More precisely, the developed approach formulates software reliability
assessment as an uncertainty reduction approach about the unknown re-
liability of the software. Existing approaches are assessing the software
reliability without making use of the information available from previous
test executions, the software source code or previous proof of correctness
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attempts. The presented approach, however, formulates such available in-
formation as prior knowledge and uses such knowledge to systematically
reduce the overhead of software reliability assessment by reducing the re-
quired number of test cases executions to reach a target confidence on the
reliability estimate.

This thesis makes the following statements: available knowledge about
the failure rate of the software should reduce uncertainty about its future
reliability and hence reduce the required overhead to assess it.

The approach makes use of previous black-box test cases executions to
optimally select the future test cases to execute in order to reach a target
confidence on the reliability estimate with less test cases than state-of-art
approaches. If the source code of the software under study is available,
the approach uses the information provided by the source code to further
reduce the required number of test cases. If a proof of correctness of the
source code or parts of it has been conducted, the approach make use of
the confidence gained by the proof to further reduce the required testing
overhead.

Software reliability assessment based on testing executes test cases with
respect to an operational profile, which is a quantitative approximation of
the software’s operational use. The reliability estimation is usually sensitive
to variations of the operational profile. We show how our approach can
reduce such sensitivity based on variance reduction and systematic software
input domain pruning.

The approach has been validated on several case studies. The valida-
tion shows the efficiency of the approach compared to state-of-the-art tech-
niques to reduce the overhead required for software reliability assessment.
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Kurzfassung

Heutzutage ist unsere Gesellschaft sehr abhängig von der korrekten Funk-
tion von Softwaresystemen. Ein Software-Ausfall könnte zu humanitären
und finanziellen Schäden führen. Daher ist in der Regel ein hohes Maß an
Konfidenz der Zuverlässigkeit von Softwaresystemen erforderlich. Die be-
stehenden Bewertungsansätze der Software-Zuverlässigkeit sind entweder
theoretisch fundiert aber sehr aufwendig oder praxisnah aber basierend auf
unrealistische Annahmen.

Diese Doktorarbeit entwickelt einen automatischen Ansatz für die theo-
retisch fundierte und gleichzeitig praxisnahe Bewertung der Software-Zuv-
erlässigkeit. Der entwickelte Ansatz erweitert und verbindet solide theore-
tische Ansätze in einer Art und Weise, um den Aufwand der Zuverlässig-
keitsbewertung systematisch und sukzessive zu reduzieren.

Diese Dissertation macht die folgende Aussage: jedes Wissen über die
Ausfallrate der Software soll die Unsicherheit bez. der Zuverlässigkeit re-
duzieren, und damit minimiert es den Aufwand sie zu bewerten. Der Ansatz
nutzt frühere Ausfürungen von Black-Box-Testfällen, um die zukünftigen
Testfälle optimal zu wählen. Ziel ist es, die Zuverlässigkeit mit weniger
Testfällen als Stand-der-Technik-Verfahren zu erreichen. Ist der Quellco-
de der Software vorhanden, dann nutzt der Ansatz die Informationen aus
dem Quellcode aus, um die erforderliche Anzahl von Testfällen weiter zu
reduzieren. Falls der Quellcodes oder Teile davon formal verifiziert wur-
den, nutzt der Ansatz die aus dem Beweis erlangte Konfidenz zur weiteren
Reduzierung des erforderlichen Testaufwands.

In der Regel reagiert die Zuverlässigkeitsschätzung empfindlich auf Schwan-
kungen des Benutzungsprofils. Wir zeigen, dass unser Ansatz solch eine
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Empfindlichkeit basierend auf Varianzreduktion und systematischer Redu-
zierung des Eingaberaum reduzieren kann.

Wir haben unseren Ansatz anhand mehrerer Fallstudien validiert.
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1. Introduction

Software reliability assessment is one of the most controversial issues in
software engineering today. Software systems are omnipresent in our daily
life and their failure can result in serious financial and humanitarian dam-
ages. Nevertheless, software development organizations are considering
software reliability assessment as a cost rather than a return. The tar-
get of any company is to create visible benefits with least possible over-
head. However, existing software reliability assessment techniques are
time-consuming and labor-intensive tasks. For any realistic software sys-
tem neither proof of correctness (by applying formal methods) nor existing
testing and assessment techniques can guarantee failure-free software un-
less an unrealistic or at least impractical time and effort is taken into con-
sideration [15]. Since proving the correctness of real software system is in
most of the cases impractical to achieve, quantitative assessment of the soft-
ware system reliability is usually performed. However, existing approaches
for quantitative reliability assessment are controversial. Even if proof of
correctness has been applied to some parts of the software, existing ap-
proaches do not formally and quantitatively account for the contribution of
the confidence gained from partial proofs to the overall software reliability
estimation. Consequently, software development organizations may not see
direct and quantifiable return on investment when applying formal methods
for reliability assessment. Furthermore, current software reliability assess-
ment approaches, which try to be practical from the cost and overhead point
of view, are usually making use of reliability prediction models based on
unrealistic assumptions about the software failure process. Such assump-
tions result in too optimistic reliability estimate compared to real situations
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1. Introduction

[62]. As a consequence, software development organizations loose their
trust on such approaches and do not necessarily see the benefit of apply-
ing them. Additionally, existing software reliability assessment approaches
require special knowledge, training and qualification of the software engi-
neers involved in the reliability assessment, which makes the adoption of
such approaches within a development organization a costly task. There-
fore, credible and cost-effective reliability assessment techniques are ur-
gently needed [60].

In this dissertation, we developed an automated approach for the assess-
ment of the reliability of software systems which, compared to the existing
approaches:

• reduces the cost and time required for reliability assessment given a
target statistical confidence on the reliability estimate

• guarantees a return on investment for any invested testing effort: our
approach guarantees that for a given test budget, the approach re-
turns the best possible reliability estimate with the highest possible
statistical confidence

• avoids possible overestimation of the reliability estimate: our ap-
proach uses theoretical sound models for reliability estimation to
avoid unrealistic assumptions about the software failure process

• guarantees a return on investment when applying formal verification
techniques even when partially applied to parts of the software source
code: our approach integrates formal verification in the quantitative
software reliability assessment, by quantitatively assessing the con-
fidence gained from the qualitative formal verification of the source
code or part of it in the reliability estimate

• reduces possible errors introduced by the software engineer when
parameterizing prediction models: our approach uses non-parametric
models for reliability prediction
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1.1. Motivation

• reduces the qualification and knowledge required from the software
engineers to assess software reliability: our approach is automated
and hides the mathematical and theoretical details used for assessing
the reliability

1.1. Motivation

Software reliability is defined as the probability of failure-free software
operation for a specified period of time and environment [4].

Software systems have become larger and more complex and our depen-
dence on them is growing. Due to the availability of computing resources
at a low cost, software systems are used in a variety of applications where
their failure can result in human life and/or environmental and financial
damages. Software systems are used in a common applications such as mo-
bile phones and navigation systems; in more complex applications such as
banking systems and telecommunication systems; and even in life-critical
applications such as radiation systems in medicine and railway traffic con-
trol systems.

The increasing usage of software systems has resulted in an increased
concern about the reliability of the software systems, which do not only
concern software development organizations but also the users of such soft-
ware systems. Software development organizations are concerned with the
reliability of their software to face the increasing competition and in some
cases to satisfy the requirements of regulatory agencies. The users are in-
creasingly aware of the failure of software systems especially in critical
applications. The media has highlighted the consequences of unreliable
software such as the recent crash of the Airbus A400M in May 9, 2015
because of a software failure [1].

The fact that a software system can lead to operational failures sets a
pressing need to ensure that, when a software system is used, its reliability
is adequate. This means that the reliability of the software system should be

3



1. Introduction

assessed before using it. It must be possible either to demonstrate that the
software system will execute reliably in all expected operational scenarios
or to estimate the unreliability of the software system and make sure that it
is adequate for the application scenario. Software reliability assessment is
needed to certify software systems by regulatory agencies, or to determine
the conditions of service level agreements and warranties.

The increasing complexity and the induced cost of modern software sys-
tems as well as the market competitiveness are forcing software compa-
nies to reuse existing software components whenever possible or purchase
(Commercial Off-The-Shelf components, COTS) components from third-
party providers. The reliability of a component-based software systems
can be determined based on the reliability of the constituent components
and their interaction [13]. Assessing the reliability of a component can be
very important in cases of re-using the component. Furthermore, regula-
tory agencies usually fix reliability requirements for each component con-
stituting a software system [60]. Consequently, it is necessary to assess the
reliability of the components used in a software system.

Therefore, the reliability assessment of a software system can be broken
down into the assessment of the constituent components. Such component
can be (i) black-box, i.e., the source code implementing the component is
not available (e.g., purchased COTS components) or (ii) white-box, i.e.,
the source code is available. Different reliability assessment techniques
has been proposed for the reliability assessment of black-box as well as of
white-box components. In the following section, we will give an overview
about these techniques and their limitations.
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1.1. Motivation

1.1.1. Existing Reliability Assessment Approaches: State of
the Art, Challenges and Limitations

We give a high-level overview of the state-of-the-art, their limitations and
the challenges related to the approach presented in this thesis. A more
detailed description of related techniques is given in Chapter 7.

The novel techniques we present in this thesis are extensions as well as
novel combinations of the two main approaches for the assessment of soft-
ware systems reliability: deductive formal verification of source code and
testing. Deductive formal verification requires the availability of the source
code as well as formal specification of the functionalities implemented by
the source code. Consequently, formal verification can only be used for for-
mally specified white-box components. Testing can be used for white-box
as well as black-box components 1.

1.1.1.1. Deductive Source Code Verification

Deductive source code verification is a technique to prove the correctness
of a software with respect to a formal specification. The specification de-
scribes the expected behavior of the software consumed and provided meth-
ods based on pre-and post-conditions following the design-by-contract [64]
and Hoare-style [53] principles. For instance, state-of-the-art deductive ver-
ification systems include KeY [6], ESC/Java2 [24], VCC [23], as well as
the proof assistants PVS [74] and Isabelle/HOL [93]. Most of these tools
make use of symbolic execution or weakest precondition computation to
transform the source code and the specification into first-order logic formu-
las called proof obligations. Proof obligation are generated by a verification
tool and if theses obligations can be verified (or closed), for example using
theorem provers like KeY or SMT solvers like Z3 [31] then the reliability
of the software is proven, i.e., the software is reliable w.r.t the specification.
The goal of the verification tools is to close all generated proof obligations.

1Note that testing also requires some kind of specification, e.g., test oracles.
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1. Introduction

When the software is correct with respect to its specification, then, expe-
rience shows, that verification tools can usually prove the correctness of the
program automatically. Under the assumption that the specification is cor-
rect (i.e., conform to the expected behavior of the software), source code
verification can be used to induce the software reliability. However, be-
cause of the semi-decidability of first-order logic, if the program contains
faults, the proof search may never terminate (unless a timeout is set). In
such as case the user does not know whether the program is correct or not,
and usually a user interaction may be required to advance the proof. Recent
techniques [41], are making use of the information provided with the open
proof obligations to detect faults and generate counterexamples. However,
none of the existing techniques, as far as we know, is able to quantify the
software reliability in the presence of open proof obligations. Therefore,
the challenge is (i) how to formally and quantitatively account for any veri-
fication effort in the reliability estimate and (ii) how can we give a statement
about the software reliability when not all proof obligations are proved.

In practice, however, it is usually impractical to rigorously apply formal
verification to all relevant components (e.g. compiler, hardware, network)
related to the execution environment of the software. In addition, a software
can use COTS components where usually the source code is not available.
In such as case, verification based test cases [8, 42] are generated. The goal
of testing is to reveal software faults. The benefit of formal verification
in this case is to generate high coverage test cases that are strong at re-
vealing software failures [8]. However, exhaustive testing (verification by
testing) is practically impossible for complex software systems with large
input domains. The challenge is then, how to avoid exhaustive testing when
verification is done.
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1.1. Motivation

1.1.1.2. Testing based on Operational Profiles

Since exhaustive testing is usually impractical for complex real software
systems with large input domains, statistical testing is proposed as a resort
[57]. Statistical testing is random black-box testing where test cases are
randomly drawn from the software input space according to an operational
profile. The operational profile is a quantitative approximation of the soft-
ware’s operational use. Formally, an operational profile can be defined as
OP = {(Di, pi)|i ∈ {1,2, . . . ,L},∑L

i=1 pi = 1} [69]. The OP is a set of pairs
(Di, pi), where Di represents a set of sub-domains of the global input do-
main D to describe a possible operational scenario, and pi is the probability
that an operational input belongs to Di. Usually, a reliability tester has re-
liability targets consisting of the required reliability value of the software
and the required statistical confidence on the reliability estimate. Statistical
testing is then applied to the software and testing stops when (i) the re-
quired reliability value cannot be reached because testing revealed failures,
or (ii) the required reliability value is estimated with the target statistical
confidence.

Given an operational profile, statistical testing estimates the reliability of
the software using the following statistical estimator R̂ = 1−∑L

i=1 piFPi.
The crucial part of the estimation is the approximation of the failure prob-
ability FPi when the software is executed with inputs from Di. Existing
models to approximate FPi can be grouped in three different categories:
(i) fault seeding models, (ii) software reliability growth models and (iii)
sampling models.

Fault seeding models are statistical fault injection models which make
assumptions about the distribution of faults remaining in the program after
testing. Such assumptions cannot be rigorously justified and the represen-
tativeness of the injected faults is questionable [79]. Software reliability
growth models (SRGMs) extrapolate the future failure probability based on
failure data indexed by time. Such models, however, have many shortcom-
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1. Introduction

ings related to their unrealistic assumptions and inaccurate predictability
[98]. Sampling models are theoretically sound [87], but they suffer from
several practical problems. Sampling models require a large number of test
cases [15] to gain high confidence on the reliability estimate.

Consequently, in order to avoid unrealistic assumptions about the soft-
ware failure process, and in order to increase the trust of software reliabil-
ity practitioners on the reliability estimate produced by statistical testing,
sampling models have to be used. The remaining challenge is how to re-
duce the required number of test cases to gain a target confidence on the
reliability estimate. Recently published approaches such as [92] and [37]
present techniques to accelerate statistical testing based on path coverage
criteria. Both techniques assume that a single test case pro program path
is enough for reliability testing. They assume that repeated testing of the
same program path cannot contribute to fault detection. They generate ran-
domly only one input to execute each program path. However, we believe
that their assumption can be very misleading. If a program path does not
contain faults, then all inputs executing that path will execute successfully.
However, when a program path contains faults, some inputs executing that
path may coincidentally produce correct outputs. Consequently, a single
test case selected from the program path input domain may not be able to
detect the faults and this may cause an overestimation of the software reli-
ability. An illustrative example of such faults are domain faults, which are
faults in the control flow that cause wrong program paths to be executed
[96]. Domain faults build shifts in the domain boundaries of the inputs ex-
ecuting the program path. If such shifts are small, then most of the inputs
executing the faulty program path will produce correct outputs. Conse-
quently, there is a very low probability that a single randomly generated
input from the program path input domain can be the fault revealing input.

Furthermore, these approaches usually rely on bounded symbolic exe-
cution to extract the program paths. Bounded symbolic execution is used
to avoid the path explosion problem, in the presence of recursive method
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calls and loops. The bound limits the search depth of the symbolic exe-
cution procedure. However, such a bound is user defined and is arbitrary
set without any connection to the reliability estimation targets (i.e., the re-
quired reliability value of the software as well as the required confidence).
The higher the bound of symbolic execution, the more program paths are
explored, the higher the confidence on the reliability estimate. The chal-
lenge is how to formally define bounds for the symbolic execution which
are related to the reliability estimation targets.

Another approach [27], accelerates testing by applying monotonic trans-
formations to the software program and the execution environment (e.g.,
program slicing, replacing function computation by table lookup, use of
fast process simulation or use of centralized instead of distributed comput-
ing). Such transformations imply the correctness of the original program,
and a failure of the transformed program does not necessary means that the
original program would fail. This would require the invocation and test of
the original version. In addition, the approach presented in [27] is labor-
intensive requiring the formal verification of each transformation by skilled
software engineers, which would limit the applicability of the approach.

All the existing approaches to reduce the number of required test cases
are based on source code information with the exception of one recently
published approach [54], which is adapted for black-box testing and for-
mulates testing as an optimization problem based on the gradient-descent
method. In order to reduce the risk to get stuck in a local minimum when
using the gradient-descent method, the approach in [54] introduces an ar-
tificial bias in the reliability estimate. Furthermore, the approach in [54]
does not generate the test cases according to the distribution of the opera-
tional profile, which would additionally bias the reliability estimate. Thus,
the challenge is how to reduce the number of required test cases to reach
a target statistical confidence on the reliability estimate when we have no
source code available and without biasing the reliability estimate as in [54].
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Reliability assessment based on testing is usually suffering from the high
sensitivity of the reliability estimates to variations of the operational profile.
Indeed, specifying the operational profile is an erroneous and difficult task
[69]. The specified probability pi of a sub-domain Di may be erroneous to
some extent. In order to cope with such difficulties, the reduction of the
input space was proposed in the literature as the promising solution [69].
[26] proposes reducing the input domain using vertical slicing and program
transformation, which can be labor-intensive for realistic programs.

1.1.2. Software Reliability in terms of Probabilities

One can wonder why software reliability is described in terms of proba-
bilities. Indeed, a software does not wear out or break while executing it.
A software execution is deterministic, either it is fault free and will never
fail or it contains faults and any inputs which execute the faults will always
cause the faults. Hardware components, however, can fail randomly during
execution in the same circumstances where they previously have worked
failure-free.

Usually, software failures are distinguished from random hardware fail-
ures by calling them systematic failures [60]. This can be sometimes mis-
leading suggesting that we might handle software failure deterministically.
However, it should be noted that the calling software failures as systematic
failures refers to the mechanism how a fault is revealed as failure and does
not refer to the failure process. The term systematic, refers to the fact that if
a software failures is triggered by a particular input, then the software will
always fail on that input until the responsible software fault is repaired.
Consequently, the term systematic should not be considered as a form of
determinism.

However, a software system is embedded in a stochastic environment
(i.e., the execution environment consisting of the hardware and software
environment as well as the users of the software). Such an environment
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subjects the software program to unpredictable inputs over time. Indeed,
we cannot predict with certainty all the future inputs that will execute the
software. Each input can either execute an existing software fault or not.
Thus, in a system context, the software system fails in a stochastic man-
ner. The software failure process is described by the random execution of
software faults by the uncertain future inputs. Such an uncertainty can only
be described using the theory of probability which is the classical theory
to deal with uncertainty. Describing software reliability by a probabilis-
tic models allows us to express our uncertainty and our confidence on the
reliability estimation of software systems.

Consequently, we can consider software reliability assessment as the pro-
cess to resolve the uncertainty about the software future behavior and gain
knowledge of it. This resembles the famous Schrödinger’s cat problem
[83].

1.2. Problem Statement

Formal verification can prove the correctness of an implementation with
respect to a specification. However, it is usually not practical to rigorously
apply formal verification to all relevant components of the execution envi-
ronment. If formal verification has been applied to only the source code of
the software or part of it, existing reliability assessment approaches do not
quantitatively and formally account for the confidence gained from formal
verification in the reliability estimation.

Statistical testing based on sampling models is theoretical sound but re-
quires a large number of test cases to reach a target confidence on the relia-
bility estimate. Furthermore, the reliability estimate when statistical testing
is used is usually sensitive to variations in the operational profile.

In this thesis, we developed an automated software reliability assessment
approach which is both theoretical sound and practical. We believe that
software reliability assessment is a process to resolve the uncertainty about
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the future behavior of the software under study in analogy to the famous
Schrödinger’s cat problem [83]. We formulated our approach as an un-
certainty reduction technique, which aims to use the available information
about the software in order to efficiently assess and reduce the uncertainty
about the software future behavior. The information can be provided from
(i) previous test cases execution, (ii) the source code of the software (ii)
previous formal verification attempts. Consequently, the more information
we have about the software under study the more our approach gains on
efficiency and the more the uncertainty about the software failure process
is systematically reduced.

Furthermore, we show that our approach is able to reduce the sensitivity
of the reliability estimate to variations of the operational profile based on
variance reduction of the reliability estimate and systematic input domain
pruning of the software.

1.3. Main Idea of the Approach

In the following we illustrate the main idea behind our approach based on
two software assessment scenarios the assessment of software components
with required (i) moderate reliability, and (ii) ultra-high reliability. The
levels of required reliability are defined as [15]:

• Ultra-High reliability: failure rate < 10−7

• Moderate reliability: failure rate between 10−3 and 10−7

• Low reliability: failure rate > 10−3

1.3.1. Moderate Reliability Assessment

Consider the following reliability assessment scenario: a regulatory agency
wants to assess the reliability of a software component. The required relia-
bility is 1−10−5 with a confidence level of 0.9999 (i.e., 99.99%).
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Using hypothesis testing, the required number of failure-free test cases
execution is computed as: n = � log(1−0.9999)

log(1−10−5)
�= 921030 (derivation can be

found in Section 2.2.3).
The test cases are then executed according to an expected operational

profile as shown in Section 2.1.3. When the test execution terminates:

• either no failures are revealed and consequently, the software com-
ponent is reliable as required

• or some failures are revealed, in such a case the reliability of the
software as well as its variance is higher that expected

In the case when testing reveals failures, the responsible faults should
be repaired and 921030 new test cases are executed. Consequently, the
problem causing the huge number of test cases in the case of assessing
moderate reliable software, arises when failures are revealed during testing.

Existing approaches would start new testing after repairing software
faults, without taking into consideration the previous effort invested in test-
ing and the distribution of the revealed failures across the operational profile
sub-domains. However, such information is very valuable. Sub-domains
where no failures are revealed should not receive the same importance as
the ones where failures are revealed. The intensity of the failures in each
sub-domain should be an indicator of where testing should be focused. Our
approach makes use of the information provided by previous test runs, to
optimally allocate future test cases across the operational sub-domains in
order to reduce the required number of test cases to reach a target confi-
dence on the reliability estimate.

1.3.2. Ultra-High Reliability Assessment

Now, let’s consider the case of assessing ultra-high reliable software com-
ponents. Assume that the required reliability is 1−10−9 with a confidence
of at least 99.99%. This would require the execution of 9,210,340,628
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failure-free test cases. If we assume that we can execute 10 test cases per
second, this would mean that a total of 10,660 days of testing are required.
This is obviously impossible to realize.

In the case of ultra-high reliable software, we assume that some effort
of formal verification has been done during the development of such soft-
ware. Even, if the formal verification of such a software has been done only
to some parts of it, it would delivers us some confidence that such parts will
execute failure-free. Our approach proposes a method to quantitatively ac-
count for the confidence gained from applying formal verification. We use
such information to systematically reduce the required number of test cases
execution.

Even if a formal verification attempt terminates without closing all proof
obligations as illustrated in 1.1.1.1, we believe that we can benefit from it as
follows. Closed proof branches should make us more confident that parts of
the software will perform correctly. On the other side, open proof branches
should reduce the user confidence on the software reliability.

We present a novel approach to quantitatively assess the contribution of
the closed proof obligations to the software reliability and the contribution
of the open proof obligations to the confidence (or uncertainty) about the
software reliability. The approach we present is able to make a quantitative
statement about the software reliability even when the proof attempt fails.

1.4. Contributions

The contributions of this thesis can be arranged in three groups:
Black-box Reliability Assessment: we developed an adaptive black-

box reliability assessment approach based on sampling models. The ap-
proach learns from previous test cases executions and computes in an it-
erative manner the required number of test cases to be executed based on
user required confidence level. The approach, compared to state-of-the-art
approaches, reduces the required number of test cases to reach a target sta-
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tistical confidence on the reliability estimate. Furthermore, the approach
allows to predict the failure rate for future test cases executions based on
a non-parametric reliability model. This allows to reduce the overhead of
testing. The prediction model makes effective use of previous test exe-
cutions during model inference. Based on the uncertainty on the predic-
tion and confidence goals on the reliability estimate, the approach decides
whether to execute the test cases or not.

White-box Reliability Assessment: If in addition to the operational
profile, the source code if available, our approach benefits from the white-
box information available to further enhance the efficiency of the black-box
approach. We developed an automated probabilistic analysis approach of
source code based on symbolic execution. The white-box approach prop-
agates the uncertain information provided by the operational profile while
executing the source code symbolically. Compared to the black-box ap-
proach, the white-box approach makes use of the source code information
to further reduce the number of required test cases to reach a target statisti-
cal confidence on the reliability estimate. More importantly, we show that
the white-box approach is able to systematically reduce the sensitivity of
variations of the operational profile on the reliability estimate.

Verification-Based Reliability Assessment: Traditionally, formal veri-
fication techniques and statistical testing were studied in separate research
communities. However, when used separately, none of them is sufficiently
powerful and practical to provide high confidence in reliability assessment.
If in addition to the source code, a formal specification of the software
component is also available, we propose a software reliability assessment
approach which combines the strengths of formal verification and statistical
testing in a unified and coherent form. The reliability estimate is derived
from the proof tree. If the reliability goal cannot be reached by symbolic
computation of the reliability, the approach complements the reliability es-
timate by test cases derived from the open proof branches. The test cases
are derived using the white-box reliability assessment approach. The devel-
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oped approach analyzes the reliability of a program in a runtime environ-
ment without explicitly modeling the environment in the verification logic.

1.5. Outline

This dissertation is structured as follows: In Chapter 2, we will present the
foundations and current practices related to our approach. The first con-
tribution of this dissertation will be the black-box reliability assessment
approach, which is presented in Chapter 3. The concepts of the white-box
reliability assessment approach are described in Chapter 4. Chapter 5, de-
scribes the verification-based reliability assessment approach, and related
work is discussed in Chapter 7. We will discuss case studies for the valida-
tion of our approach in Chapter 6. The thesis closes with a look at future
work the conclusion in Chapter 8.
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2. Foundations and Current Practices

2.1. Software Reliability Assessment

This section presents basic definition and principles related to software re-
liability assessment.

2.1.1. Software Reliability Definition and Key Concepts

Software reliability is defined by ANSI/IEEE standards as "the probabil-
ity of failure-free operation of a software in a specified environment for
a specified time" [4]. Here, we should differentiate between the software

implementation or the program, and the software system or shortly the soft-

ware, which consists of the program as well as the execution environment.
In the context of reliability assessment, the subject of study is the program
together with its execution environment (i.e., software system), since soft-
ware reliability is assessed when the program is executed or in operation.

Software unlike hardware do not wear out. Software failures are caused
by faults that are present at the beginning of the software lifetime. The
presence of such faults can cause the software to fail occasionally. Hence, it
is useful, and sometimes because of regulatory issues necessary, to estimate
the likelihood of a software failure.

Usually a program behaves deterministically. Consequently, a software
failure is not a random process. However, when the program is executed
in a concrete runtime environment it will be subject to stochastic random
events which can compromise the correct execution. For each event, the
program either operates failure-free or not. Such stochastic random events
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are produced by the user inputs to the software. The user inputs are usually
specified with some uncertainty, and probability theory is the calculus of
reasoning with uncertainty. In fact, assumptions about the inputs which
will be supplied to the software are usually modeled as a stochastic process
to describe such uncertainty. Consequently, software reliability is defined
as the probability that an input supplied to the software would lead to a
failure-free execution of the software.

It may be argued that it should be possible to deterministically detect
which inputs to the software would lead to a failure. This can be achieved
by proving the correctness of the implementation and the execution envi-
ronment with respect to a specification using formal verification techniques.
However, it is usually not practical to rigorously apply formal verification
to all relevant components (e.g. compiler, hardware, network) related to
the execution environment of the program. Another possible solution to
the reliability problem would be to test all admissible inputs of the soft-
ware. However, this would generally not be possible since the number of
admissible inputs is usually prohibitively large for real world programs. As
an illustration, consider the portion of code in Listing 2.1. The FLAG ar-
ray will generate 2100 = 1.2676506×1030 possible inputs and testing all of
them will be very challenging.

if(FLAG[0] == false) {

M0();

}

5 if(FLAG[1] == false) {

M1();

}

if(FLAG[2] == false) {

M2();

10 }
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if(FLAG[3] == false) {

M3();

}

.

15 .

.

if(FLAG[100] == false) {

M100();

}

Listing 2.1: A sample portion of code

Consequently, software reliability is not a quality of the software alone
but a function of the software’s quality together with the way how the soft-
ware is used. therefore, it does not make sense to talk about software re-
liability estimate without associating the estimate with assumptions about
how the software will be used.

In the following section, we describe how such assumptions are formu-
lated in form of operational profiles which quantify the likelihood that an
input is supplied to the software.

2.1.2. Operational Profile

The idea of an operational profile and its relation to the reliability estimate
can be illustrated by the following standard example taken from [85]. Con-
sider we have a program which uses a stack data structure with the three
operations (i) PUSH(a), which puts the value a on top of the stack, (ii)
POP(), which removes the value on the top of the stack and (iii) TOP(),
which returns the value on the top of the stack.

Suppose that the implementation of the operation TOP() contains the
following fault: two successive calls to the operation TOP() will return
different values, with the second one being wrong.
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Now if we would test the three operations randomly with the assumption
that all operations are equally likely to be invoked, we would then get a
low reliability estimate for the studied program. However, it is generally
rare to call the operation TOP() twice successively because the user knows
that TOP() does not change the top value of the stack. Additionally, the
probability to call the operation TOP() after calling PUSH(a) is very low,
because the caller knows that the actual top value of the stack is the value a
just put on top of the stack. If we would test the program with a probability
distribution that reflects such facts, we expect the reliability of the program
under study to be high because the situations which would execute the fault
in the operation TOP() would rarely arise.

Consequently, in order to make a software reliability assessment which is
relevant to the expected users of the software, the software should be tested
while taking into account the patterns of usage specific to the expected
users. The way how the users interact with the software is usually a non-
deterministic process. Therefore, probabilistic models are used to describe
the interaction of the users with the software. Such patterns are quantita-
tively captured by the operation profile specific to the expected users.

The operational profile is composed by two parts:

• the set of all possible executions of the software, to be denoted by E

• a probability distribution over E

Following [85], E describes all sequences of executions the user can per-
form on the software:

E = {EV i,EV j,EV iEV j,EV iEV jEVk, . . .}

Each execution consists of one or more events EV . Each event consists
of one or more method or operation calls which are implemented by the
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software under study. Each execution is also assigned a probability which
indicate the frequencies with which the user would issue the execution.

For each execution Ii ∈ E , the corresponding probability is denoted by
P(Ii). In order to have a proper probability distribution, the following two
conditions should hold:

• 0 ≤ P(Ii)≤ 1 ∀Ii ∈ E

• ∑Ii∈E P(Ii) = 1

An input oriented presentation of the operational profile, as proposed by
[69], is to represent each execution Ii with the possible inputs that would
lead to its execution. Assume that the operational profile describes L pos-
sible executions and that the input domain of the software under study is
denoted by D. Following [69], the operational profile divides then the input
domain D of the software to test in L sub-domains: D1,D2, . . . ,DL. Each
sub-domain represents a possible operational use or a possible execution of
the software and has a probability of occurrence according the operational
profile. Let pi be the probability of occurrence of sub-domain Di. The OP
can therefore represented as OP = {(Di, pi)|i = {1,2, . . . ,L},∑L

i=1 pi = 1}.

2.1.3. Statistical Testing

Statistical testing is a special form of random testing where test cases are
selected based on the input distributions specified by a given operational
profile. Statistical testing is a treatment of the software testing process as a
statistical inference task. In such a statistical inference task, the input do-
main D as specified by the operational profile is the population of study, the
sub-domains Di are the strata, the test cases are the samples and the prob-
ability pi of sub-domain Di is the sampling distribution. The inference is
then the process of estimating the reliability of the software when executed
with inputs from the population based on the distribution specified by the
operational profile.
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Statistical Testing as proposed by Musa [69] generates by random sam-
pling test cases according to the operational profile.

Let A a sequence defined as follows: A= {A0,A1, . . . ,AL}, |A|= L+1,
where Ai = ∑i

k=1 pi for i = 1, . . . ,L, and A0 = 0.
The generation of the test cases is then as follows:

1. Generate a uniformly distributed random number ζ ∈ (0,1), if ζ ∈
[Ai,Ai+1], then the sub-domain Di+1 will be randomly sampled since
Ai+1 −Ai = pi+1, where pi+1 the probability of occurrence of sub-
domain Di+1.

2. Generate input variables from the sub-domain Di+1 based on the pro-
vided input distributions, and execute the test case.

3. Repeat the above steps until a stopping criteria is reached (e.g, target
reliability value reached, target confidence on the estimated reliabil-
ity reached, required test time reached, etc,...)

The test selection approach proposed by Musa [69] is based on propor-
tional stratified sampling. The selection is controlled by the uniformly dis-
tributed random variable ζ ∈ (0,1).

Since testing cannot guarantee the absence of faults, exposing the soft-
ware to the inputs expected to be the most frequently used should detect
the failures most likely to appear during operational use. The outcome of
testing is used to estimate the reliability of the software system. Statistical
testing as an inference task requires the definition of a statistical estimator
which will be used to estimate the population statistic which is the soft-
ware reliability in our case. The software reliability estimate is modeled
as a random variable and a statistical estimator is defined to approximate
the reliability estimate. Given the operational profile OP = {(Di, pi)|i =
{1,2, . . . ,L},∑L

i=1 pi = 1}, the reliability can be estimated through the fol-
lowing general statistical estimator R̂ = 1−∑L

i=1 piFPi, where R̂ is a ran-
dom variable representing the reliability estimate and FPi is a random vari-
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able representing the failure probability of the software when executed with
inputs from the sub-domain Di. The variance of the statistical estimator de-
fines the statistical confidence on the computed estimate. Greater levels of
variance yield larger confidence intervals, and hence less precise estimates
of the software reliability.

Consequently, the goal of statistical testing as a statistical inference task
is to make a precise inference about the failure probability of the software
which will be used to quantify the software reliability.

In the following sections we will introduce different current practices and
approaches for the estimation of the failure probability of software based
on testing.

2.2. Software Reliability Models

In the following subsections we present different approaches to quantify
the failure rate of software in order to estimate its reliability.

2.2.1. Software Reliability Growth Models

Software reliability growth models are time-based reliability models be-
cause they aim at predicting the evolution of the software reliability in the
future. Software reliability growth models use failure data obtained after
testing or operational use to extrapolate the future failure rate of the soft-
ware.

A software reliability growth model is usually build in three steps. The
first step is to select the mathematical model structure based on prelimi-
nary assumptions about the software system characteristics and the testing
environment. Such models are usually parametric regression models. The
second step is to parameterize the model by fitting the available failure data
to the model. The last step is to deduce rules for the fitted model to be used
to predict the future failure rate of the software under study.
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Generally, software reliability growth models can be grouped in two cat-
egories: (i) time between failure models and (ii) failure count models.

2.2.1.1. Time Between Failure models

Our investigation in this model class will include the time as variable which
occurs between failures. Ti is a random variable specified as time between
the (i− 1)st and the ith failures. Let us assume that Ti convert to a known
distribution and its parameters depends on the amount of errors remaining
in the program after the (i− 1)st failure. The observation of the time be-
tween failures during the testing phase will give us those parameters. The
fitted model can then be used to estimate the software reliability, mean
time to failure, etc. [43] The most known model in this study is the Jelin-
ski/Moranda (JM) De-eutrophication Model ([38]). According to the JM
model t1, t2, ... are independent and random variables that have exponential
probability density functions and is described through the following equa-
tion:

P(ti/z(ti)) = z(ti)e−z(ti)ti), ti > 0 (2.1)

z(ti) is defined as the failure rate at time ti and ti stand for the time between
the (i−1)st and the ith failures:

z(ti) = Φ[N − (i−1)], (2.2)

Φ and N are both model parameters. Φ is a proportional constant and N is
the total number of faults that exists originally in the program.

Those several faults depends on each other and the probability causing
a system breakdown is the same. To avoid this from happening a fault is
detected and deleted in each intervals between the (i−1)st and ith failures
so that no new faults occurs.

Both models parameters N and Φ can be estimated using the maximum
likelihood method. If t1, , t2, ..ti−1 are the observed data, then we can predict
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the reliability through the following equation:

R̂i(t) = e−(N̂−(i−1)Φ̂) (2.3)

R̂i(t) is a predication of Ri(t) = P(ti < t).
The problem of using this model is the ideal debugging process and that

all faults create the same failure rate.
There are also other models that works on the basics of the JM model

but with some extensions and small modification. For instance the Schick-
/Wolverton model [82] is basically the same as the JM model except that
the failure rate function depend on the current fault content of the program
and the time elapsed since the last failure:

z(ti) = Φ[N − (i−1)]ti (2.4)

Another revised model based on the JM model is the Goel/Okumoto im-
perfect debugging model [45]. The Goel/Okumoto model treats the amount
of faults occurring in this system at time t, X(t) through the Markov pro-
cess. The software here has the ability to change its own failure randomly
and conduct its transition probability by imperfect debugging. In this pro-
cess the time X(t) is assumed to be distributed exponentially, where its rates
depends on the amount of the fault content in the system. Such a failure can
be described through the following function:

z(ti) = [N − p(i−1)]λ (2.5)

where (p) the probability of imperfect debugging and λ is the failure rate
per fault.

Another model which approaches the problem differently to the JM
model is the Littlewood/Verrall Bayesian Model [59]. The time between
the failures in this model is exponentially distributed. The main difference
here lies in the distribution z(ti) which is a random variable and depends on
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a gamma distribution and given by the following relationship:

f (z(ti)|α,Ψ(i)) =
[Ψ(i)]α z(ti)α−1e−Ψ(i)z(ti)

Γα
(2.6)

where α and Ψ(i) are model parameters.

2.2.1.2. Failure Count Models

The failure count models investigate the variable which is the number of
failures detected during the testing intervals. We consider in this models
the time intervals to be fixed and the failures or faults between the intervals
as random variable which are independent and have Poisson distribution.

The Goel/Okumoto Nonhomogenous Poisson Process (NHPP) Model
[46] is one of the earliest and simplest Poisson model. The model assumes
that software is subject to failures at random times caused by faults present
in the system. Let N(t) be the number of failures monitored at any given
time t. This model describes N(t) as a nonhomogeneous Poisson process
with a failure rate that depends on time:

P(N(t) = y) =
(m(t))y

y!
e−m(t),y = 0,1,2, ... (2.7)

where m(t) is the mean value function and gives the expected number of
failures monitored by time t as:

m(t) = a(1− e−bt) (2.8)

The following mathematical equation describes the failure rate:

z(t)≡ m′(t) = abe−bt (2.9)

where a describes the number of failures that can be observed and b the
occurrence rate of an individual fault.

26



2.2. Software Reliability Models

This model is identical to the JM model. It assume a direct proportion-
ality between the failure rates and the number of remaining fault. However
the difference lies in the modeling process which is continuously and not
discrete. The model permits imperfect debugging in which the new faults
are introduced during the debugging process.

The experiments shows that the failure rate first increase and then de-
creases. To describe this behavior, Goel [44] proposed a generalization of
Goel/Okumoto Nonhomogeneous Poisson Process Model. The model uses
the mean value function form:

m(t) = a(1− e−bt) (2.10)

where a is the same parameter as in the Goel/Okumoto Nonhomogeneous
Model and b, c are constants that describe the quality of testing. In this case
the failure rate function z(t) is described as follows:

z(t)≡ m′(t) = abce−bttc−t (2.11)

According to the equation, a delay exists between the fault detection and the
fault removal. So the testing consist of two phases. The first phase is fault
detection and the second phase is fault removal. S-shaped NHPP model is
supposed to reflect this proposal([71], [47]). The mean value function m(t)

is described through the following relationship

m(t) = a(1− (1+bt)e−bt) (2.12)

a, b are the same parameter from the NHHP model. The failure rate is
represented through the following equation:

z(t)≡ m′(t) = b2te−bt (2.13)
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2.2.1.3. Limitations and Advantages of Software Reliability
Growth Models

The advantage in such a software is modeling any kind of behavior during
the test phase by choosing the right an appropriate model. Thus, they are
easy to implement, applied and automated on all kinds of software from the
simple ones to the most complex modules such as a flight control system.
However, the growth models also have some limitations. First, the assump-
tion that all the faults resulting in a software crash are probably equal. This
assumption is however unrealistic because the probability that the faults
appear may vary significantly. Another problem is that the capacity of the
model depends on an operational profile which is considered to be avail-
able and thus all the testings runs on it. However, the profile may have big
errors and changes in the operational profile which will may not produce
good results. Many research has been done to analyze the sensitivity of the
model predictions to error ([25], [18]). Also the predictions of the growth
models are not very accurate.

We can summarize that expanded models treat the software as a black
box and it doesn’t take the architecture of the target software into consid-
eration. We have also seen that there are many kinds of expanded models
which have different assumption methods are used to catch the different
target system architecture and their testing processes. Though some ex-
periments have shown that such methods are not reliable and trustworthy
enough to be used.

2.2.2. Fault Seeding Models

The base knowledge in this class is to implement known faults in a program
that contains already a various amounts of unknown native faults. After
seeding the faults in the program, the system will be tested and after that
the implemented and native faults are recorded. According to the recorded
data a prediction is made to estimate the software reliability.
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Some models in this class include the Lipow Model and the Basin Model
are economical and easy to implement. However, they are build upon an
assumption that the implemented and seeded faults don’t depend on each
other and both have the same probability to be detected. Another disadvan-
tage of such a model is the unreliability to find and calculate the failure rate
function. Thus this limits the usage of such a model.

2.2.3. Sampling Models

The stack of all relevant inputs of a program is known as an input domain.
The input domain itself exists through several input sub domain and it is
uniform only if all its member causes together the system to fail or succeed.
So this means in other words that every member is equally important and
represent the whole sub domain. The path describes the path in a program
through its sub domain.

The idea behind this model is to indicate specific amount of test cases
from the input domain which represent the operation of the program. Thus
the program reliability can be predicted from monitoring the failures during
the execution of the test cases. The input distribution is often impossible
to achieve, to simplify this complexity we split the input domain into sub
domain and run the test in those layers upon a uniform distribution. be An
estimate of the program reliability is obtained from the failures observed
during the execution of the test cases. Since the input distribution is very
difficult to obtain, the input domain is often divided into sub domains and
test cases are generated randomly in each sub domain based upon a uni-
form distribution. There are two kinds of testing: random testing and sub
domain/partition testing.

2.2.3.1. Random Testing

This random testing method select multiple test cases from the whole input
domain. The oldest model that describes the Random Testing is the Nelson
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Model. A program P can be defined through the input domain D and it
is size is given as d (> 0). We describe m (0 � m � d) as the number of
failure-causing inputs that produce incorrect output in D. In this way the
failure rate of the program, θ , can be described as follows:

θ =
m
d

(2.14)

The total number of inputs selected for testing is defined as n which is
the number of failure monitored during the execution process on the inputs.
θ is estimated through the following mathematical relationship:

θ̂ =
ne

n
(2.15)

We assume that the program is being tested for along time using certain
input distribution, this will increase the failure rate of a program to the
probability that it will fail to execute upon the chosen input distribution.
Therefore an equitable estimation of the software reliability per execution
R̂is described as follows:

R̂ = 1− θ̂ = 1− ne

n
(2.16)

To evaluate the strength of the random testing principal in comparison to
other testing methods, we define Pr as the probability of finding at least one
error in n tests.

Pr = 1− (1−θ)n (2.17)

2.2.3.2. Subdomain/Partition Testing

Both testing classes (sub domain testing and partition testing) splits the in-
put domain into sub domains. So that different test cases can be selected
from each sub domain to test the program. We use the description sub
domain testing when the sub domains may or may not be separated. How-
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ever in comparison the term partition testing is used if all sub domains are
disjoint ([19]).

The partition testing method is used to separate the input domain and
select at least one test case from each sub domain. Let us partition the
domain D in k sub domains and are described by Di„ where i = 1,2, ..k.
Each sub domain Di is characterized by di and the failure inputs m, (0 �
mi � di). Now we can describe the failure rate as follows:

θi =
mi

di
(2.18)

By describing pi as a probability in which the random selected input
comes from the sub domain Di, the failure rate of the whole program can
be interrupted through the following equation:

θ =
k

∑
i=1

piθi (2.19)

ni (� 1) denote the number of test cases and nei denote the number of
test cases selected from the subdomain Di which result in program fail-
ures. All the random selections are also assumed to be independent, with
replacement, and based upon a uniform distribution. This means that when
a test case is selected from Di, the probability will be exactly θi. Using
equation (2.15) we can obtain an estimate of the overall failure rate of the
program. Another estimate of θ is given as follow:

θ̂2 = ∑
i=1

piθ̂i =
k

∑
i=1

pi(
nei

ni
) (2.20)

To estimate software reliability the equation equation (2.16) can be used.
The probability of finding at least one error in n tests is Pp:

Pp = 1−
k

∏
i=1

(1−θi)
ni (2.21)
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2.2.3.3. Discussion

Input domain sampling models unlike reliability growth models do not de-
pend upon unrealistic assumptions such as the assumption that all the fail-
ures have the same contribution to the unreliability of the software. Sam-
pling models implicitly weigh the contribution of each failure rate of each
sub-domain to the unreliability based on the probabilities pi of the sub-
domains.

2.2.4. Palladio Component Model for Reliability Assessment

The reliability of a full PCM instance is be predicted in terms of the prob-
ability of successful execution PSE = 1−POFOD (Probability of Failure
on Demands). The prediction part starts with a PCM instance as input and
outputs a system reliability value. The process requires in between solv-
ing parameters dependencies. It turns all parameters in the model into their
system-usage implied probability distributions, and joins possible sources
of failure into an analytical approach which quantify system-level reliabil-
ity [13].

A system failure may occur if an unavailable hardware is accessed dur-
ing its unavailability state. In PCM, system deployers annotate hardware
resources with Mean Time To Failure (MT T F) and Mean Time To Repair
(MT T R) values.

2.2.4.1. Solving Parameter Dependencies

We reuse the existing PCM Dependency Solver to solve all the parameter
dependencies across a PCM instance. The behavior of each software com-
ponent in PCM is abstractly modeled by so-called SEFFs (Service Effect
Specification). SEFFs may contain parameter dependencies that reflect the
influence of input parameter values on the control and data flow. The De-
pendency Solver traverses recursively the specified SEFFs and resolves all
parameter dependencies in its way. The dependency solver is only able to
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solve linear parameter dependencies. For the case of non-linear parameter
dependencies, we use Monte-Carlo Integration to approximate such depen-
dencies by simulation.

2.2.4.2. Determining Probabilities of Physical System State

The next step after solving the parameters dependencies is determining ev-
ery possible physical system states and their probability of occurrence. The
physical system state is built through all individual states of the system’s
hardware resources. Those are defined in the PCM resource environment
and allocated to resource containers.
We define R = r1,r2, ...,rn the set of resources in the system. Each resource
ri is defined by its MT T Ri and MT T Fi and has two possible states OK and
NA. For the reliability prediction we are not going to use in our approach
the specified MT T Ri and MT T Fi values directly. Therefore, we calculate
the steady-state availability Av of resource ri:

Av(ri) = MT T Fi/(MT T Ri +MT T Fi)

So Av(ri) can be interpreted as a probability that the resource is available
when required through an internal action during service execution. We set
t as an arbitrary point in time and s(ri, t) the state for the resource ri at time
t. Consequently, we have:

P(s(qi, t) = OK) = Av(qi)

P(s(qi, t) = NA) = 1−Av(qi)
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This equation ignores the arbitrary point in time t and act as if the system
is in its steady-state. We will go further and define S that includes a set of
possible physical system states, where each state s j ∈ S is a combination of
possible states for all n resources at time t.

s j = (s j(r1, t),s j(r2, t)fl
√√

∂ ...,s j(rn, t)) ∈ {OK,NA}n

As each resource has two states OK and NA, there are 2n physical system
state. Let P(s j, t) be the probability of a system that can exist in a state s j

at time t. The probability of each physical system state is the product of the
individual resource-state probabilities

∀ j ∈ {1, ...,m} : P(s j, t) =
n

∏
i=1

P(s(ri, t) = s j(ri, t))

2.2.4.3. Generating and Evaluating the Markov Model

In order to predict the reliably of a system in a recursive way, we have
to generate and evaluate the Discrete-Time Markov Chains. (DTMCs).
DTMCs is based on PCM dependencies parameter solver and a known
physical system state with probability of happening. The DTMCs algo-
rithm consist of two section. The first section is generation and evaluation
which exist in a physical system state. In the second section the final result
is obtained through gathering all the individual results. The behavioral ac-
tion of the PCM instance are continually transformed into Markov chains
as shown in figure section 2.2.4.3.
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Figure 2.1.: Markov chain generation [13]

2.3. Statistical Inference and Sampling

Mathematical statistics is the science of dealing with uncertain phenomenon
and events. Two basic concepts of statistics are population and sample. The
definitions in this section are taken from [40] and [97].

Definition 1

Population is the collection of all individuals or items under considera-
tion in a statistical study.

The features of the population under investigation can be usually summa-
rized by numerical parameters.

Definition 2

Sample is that part of the population from which information is collected.

Definition 3

A probability space over a finite set is a triple (Ω,F ,P) consisting of
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1. a sample space Ω which is a non-empty finite set,

2. the set F of all subsets of Ω,

3. a probability measure on (Ω,F), that is, a map P : F →R which
is

• positive: P(A)≥ 0 for all A ∈ F ,

• normed: P(Ω) = 1, and

• additive: if A1,A2, ...,An ∈ F are mutually disjoint, then

P(
n⋃

i=1

Ai) =
n

∑
i=1

P(Ai)

The elements of Ω are called outcomes, the elements of F
are called events.

Definition 4

For any events A and B of the probability space (Ω,F ,P) we have

1. P(A)+P(Ac) = 1.

2. P(∅) = 0.

3. if A ⊆ B,then P(B A) = P(B)−P(A)and hence P(A) ≤ P(B) (and
so P is increasing).

4. P(A∪B) = P(A)+P(B)−P(A∩B).

Point distribution

Definition 5

Let (Ω,F ,P) be a probability space over a finite set Ω. The function

P : Ω → [0;1]

ω �→ P(ω)36
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is the point probability function (or the probability mass function) of P .
Point probabilities are often visualized as "probability bars".

Definition 6

Let (Ω,F ,P) be a probability space, let A and B be events, and suppose
that P(B)> 0. The number

P(A|B) = P(A∩B)
P(B)

is called the conditional probability of A given B.

Definition 7

Let (Ω,F ,P) be a probability space, let A and B be events, and suppose
that P(B)> 0. The function

P(.|B) : F → [0;1]

A �→ P(A|B)

is called the conditional distribution given B.

Bayes’ formula: shows how to calculate the posterior probabilities
P(B j|A) from the prior probabilities P(B j) and the conditional probabilities
P(A|B j).

Definition 8

Let A = ∪k
i=1A∩Bi where the sets A∩Bi are disjoint, we have

P(A) =
k

∑
i=1

P(A∩Bi) =
k

∑
i=1

P(A|Bi)P(Bi)
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and since P(B j|A) = P(A∩B j)/P(A) = P(A|B j)P(B j)/P(A),we obtain

P(B j|A) =
P(A|B j)P(B j)

∑k
i=1 P(A|Bi)P(Bi)

Definition 9

The events A1,A2, ...,Ak are said to be independent, if it is true that for
any subset Ai1 ,Ai2 , ...,Aim of these events,

P(
m⋂

j=1

Ai j) =
m

∏
j=1

P(Ai j)

Random Variable: random variables are most frequently denoted by
capital letters (such as X ,Y,Z).

Definition 10

Let (Ω,F ,P) be a probability space over a finite set. A random variable
((Ω,F ,P) is a map X from Ω to R, the set of reals. More general, an
n-dimensional random variable on (Ω,F ,P) is a map X from Ω to R\.

Distribution Function

Definition 11

The distribution function F of a random variable X is the function

F → [0;1]

x �→ P(X � x)

A distribution function has certain properties:
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Definition 12

If the random variable X has distribution function F , then

P(X � x) = F(x)

P(X > x) = 1−F(x)

P(a < X � b) = F(b)−F(a)

for any real numbers x and a < b.

The distribution function is not the best way to give an informative visu-
alisation of the distribution of a random variable. The probability function

is a far better tool. The probability function for the random variable X is
considered as a function defined on the range of X :

f : x �→ P(X = x)

Definition 13

The probability function of a random variable X is the function

f : x �→ P(X = x)

Definition 14

For a given distribution the distribution function F and the probability
function f are related as follows:

f (x) = F(x)−F(x−)
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F(x) = ∑
z:z≤x

f (z)

Independent random variables Let X1,X2, ...,Xn be random vari-
ables on the same finite probability space. Their joint probability function
is the function

f (x1,x2, ...,xn) = P(X1 = x1,X2 = x2, ...,Xn = xn).

For each j the function

f j(x j) = P(Xj = x j)

is called the marginal probability function of Xj. If we have a non-trivial
set of indices i1, i2, ..., ik ⊂ 1,2, ...,n, then

fi1,i2,...,ik(xi1 ,xi2 , ...,xik) = P(Xi1 = xi1 ,Xi2 = xi2 , ...,Xik = xik)

is the marginal probability function of Xi1 ,Xi2 , ...,Xik . The independence of
random variables:

Definition 15

Let (Ω,F ,P) be a probability space over a finite set. Then the random
variables X1,X2, ...,Xn on (Ω,F ,P) are said to be independent, if for
any choice of subsets B1,B2, ...,Bn of R, the events X1 ∈ B1, X2 ∈ B2,...,
Xn ∈ Bn are independent.

Definition 16

The random variables X1,X2, ...,Xn are independent, if and only if

P(X1 = x1,X2 = x2, ...,Xn = xn) =
n

∏
i=1

P(Xi = xi)
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for all n-tuples x1,x2, ...,xn of real numbers such that xi belongs to the
range of Xi, i = 1,2, ...,n.

Definition 17

The random variables X1,X2, ...,Xn are independent, if and only if their
joint probability function equals the product of the marginal probability
functions:

f12...n(x1,x2, ...,xn) = f1(x1) f2(x2)... fn(xn).

Expectation The expectation or mean value of a real-valued function is
a weighted average of the values that the function takes.

Definition 18

The expectation, or expected value, or mean value, of a real random
variable X on a finite probability space (Ω,F ,P) is the real number

E(x) = ∑
ω∈Ω

X(ω)P(ω)

Definition 19

If X and Y are independent random variables on the probability space
(Ω,F ,P), then E(XY ) = E(X)E(Y ).

Definition 20

If A is an event and 1A its indicator function, then E(1A) = P(A).

Variance and covariance

Definition 21

The variance of the random variable X is the real number

Var(X) = E
(
(X −EX)2)= E(X2)− (EX)2. 41
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The standard deviation of X is the real number
√

Var(X)

Definition 22

The covariance between two random variables X and Y on the same prob-
ability space is the real number

Cov(X ,Y ) = E ((X −EX)(Y −EY )) .

The following rules are easily shown:

Definition 23

For any random variables X , Y , U , V and any real numbers a, b, c, d

Cov(X ,X) =Var(X)

Cov(X ,Y ) =Cov(Y,X)

Cov(X ,a) = 0

Cov(aX +bY,cU +dV ) = ac ·Cov(X ,U)+ad ·Cov(X ,V )

+bc ·Cov(Y,U)+bd ·Cov(Y,V )

If X and Y are independent random variables, then Cov(X ,Y ) = 0.

2.4. Useful Probability Distributions

The definitions in this section are taken from [40] and [97].

2.4.1. Gamma Distribution

The gamma distribution has special importance in probability and statistics.

Definition 24

The gamma function is defined as follow

Γ(k) =
∫ ∞

0
xk−1e−xdx,k ∈ (0,∞)
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The function is well defined, that is, the integral converges for any k > 0.
On the other hand, the integral diverges to ∞ for k � 0. Two of its key
properties are

Γ(k) = (k−1)Γ(k−1)

and

Γ(k)Γ(1− k) =
π

sin(πk)

Definition 25

A random variable X has the standard gamma distribution with shape
parameter k ∈ (0,∞) if it has the probability density function f given by

f (x) =
1

Γ(k)
xk−1e−xdx,0 < x < ∞

2.4.2. Beta Distribution

Definition 26

The beta function B is defined as follows:

B(a,b) =
∫ 1

0
ua−1(1−u)b−1du,a > 0,b > 0

The beta function is well-defined, that is, B(a,b)< ∞ for any a > 0 and
b > 0.

Definition 27

The beta function can be written in terms of the gamma function as fol-
lows:

B(a,b) =
Γ(a)Γ(b)
Γ(a+b)

;a,b ∈ (0,∞)
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Definition 28

The (standard) beta distribution with left parameter a ∈ (0,∞) and right
parameter b ∈ (0,∞) is the continuous distribution on (0,1) with proba-
bility density function f given by

f (x) =
1

B(a,b)
xa−1(1− x)b−1,0 < x < 1

2.4.3. Normal approximation to the Beta posterior distribution

The results for the Binomial distributions are both modeling randomness.
A Bayesian analysis gives the conveniently simple result s successes in n

random trials:

p = Beta(s+a,n− s+b)

where a Beta(a,b) prior is assumed. The posterior density has the function:

f (θ) ∝ θ 5(1−θ)(n−5)

Taking logs gives:

L(θ) = k+ s loge[θ ]+ (n− s)loge[1−θ ]

and

dL(θ)
dθ

=
s
θ
− n− s

1−θ

d2L(θ)
dθ 2 =− s

θ 2 − n− s
(1−θ)2
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The best estimate q0 of q will be find:

dL(θ)
dθ

|θ0=
s

θ0
− n− s

1−θ0

which gives:

θ0 = s/n

The standard deviation s for the Normal approximation to this Beta dis-
tribution is:

d2L(θ)
dθ 2 |θ0=− s

θ 2 − n− s
(1−θ)2

which gives:

σ =

[
d2L(θ)

dθ 2 |θ0

]1/2

=

[
θ0(1−θ0)

n

]1/2

and then the approximation is:

θ ≈ Normal

(
θ0,

[
θ0(1−θ0)

n

]1/2
)

= Normal

(
s
n
,

[
s(n− s)

n3

]1/2
)

2.5. Stratified Sampling

Stratified sampling is based on the idea of iterated expectations [22]. Let Y

be a discrete random variable taking values y1,y2, ...,yL with probabilities
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p1, p2, ..., pL. Then,

E[X ] = E[E[X |Y ]] =
L

∑
l=1

E[X |Y = yl ]pl

Suppose that the population can be divided into L > 1 groups, known as
strata. Suppose then that a stratum l contains Nl units from the population
(∑L

l=1 NL = N), and the value for the units in stratum l are x1l ,x2l , ...,xNl l .
Let Wl =

Nl
N and μl =

1
Nl

∑Nl
i=1 xil , then it follows that the population mean

is:

μ =
1
N

L

∑
l=1

Nl

∑
i=1

xil =
1
N

L

∑
l=1

Nl μl =
L

∑
l=1

Wl μl

Then, instead of taking a simple random sample (SRS) of n units from the
total population, we can take a SRS of size nl from each stratum (∑L

l=1 nl =

n). Here,

μl = E[X |stratum l]

Wl = P[Stratum ł]

so the overall mean satisfies the setup of an iterated expectation.
Let X1l ,X2l , ...,Xnl l be a sequence of independent and identically dis-

tributed random variables samples from stratum l, the sample mean is de-
fined as:

X̄l =
1
nl

nl

∑
i=1

Xil

and the sample variance:

Sl
2 =

1
nl −1

nl

∑
i=1

(Xil − X̄l)
2
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Then, an estimate of the population mean μ is:

X̄S =
L

∑
l=1

Nl

N
X̄l

=
L

∑
l=1

WlX̄l

=
L

∑
l=1

Wl
1
nl

nl

∑
i=1

Xil

Since, the random variables Xl are independent, then it follows:

var(X̄S) =
L

∑
l=1

Wl
2Var(X̄l)

=
L

∑
l=1

Wl
2 1

nl
(1− nl −1

Nl −1
)σl

2

where σ2
l = 1

Nl
∑Nl

i=1(xil −μl)
2 is the variance of stratum l.

If we assume that nl � Nl for each stratum l so that the finite population
factor FPC = 1− nl−1

Nl−1 ≈ 1 can be ignored, then

var(X̄S) =
L

∑
l=1

Wl
2 1

nl
σl

2 =
1
N

L

∑
l=1

Wl
2 σl

2

al

where al = nl/N indicates the fraction of samples drawn from the stratum
l.

This variance is controllable through the allocation ratio al . For example,
the proportional allocation, where al = Wl .N/N = Wl , yields the variance
var( ¯XSP) =

1
N ∑L

l=1 Wlσl
2, where X̄SP denotes the sampling mean when pro-

portional sampling is used.
By Lagrange multiplier method, the optimal allocation a∗ := (a∗1, . . . ,a

∗
L)

is derived in closed form [22]:
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a∗k =
Wk.σk

∑L
l=1 Wl .σl

(2.22)

achieving the minimal variance var( ¯XSO)= 1
N ∑L

l=1 Wl
2 σl

2

a∗l
= 1

N (∑
L
l=1 Wlσl)

2

[22]. Here, X̄SO denotes the sampling mean when optimal sampling is used.
Moreover, due to the mutual independence of samples across the strata,

the empirical mean X̄S is asymptotically normal [22].
Before, we show which stratified sampling scheme (i.e., random, propor-

tional or optimal) works better, we recall the population variance:

var(X) = E[var(X |Stratum)]+var[E(X |Stratum)]

=
L

∑
l=1

Wlσl
2 +

L

∑
l=1

Wl(μ −μl)
2

=
1
N

L

∑
l=1

Nl

∑
i=1

(xil −μ)2 = σ2

Theorem 1

var(X̄SP)≤ var(X̄S)

That is, proportional stratified sampling is never worse than single simple
random sample of the same total sample size N

Proof :

var(X̄)−var(X̄SP) =
1
N
(

L

∑
i=1

Wlσl
2 +

L

∑
i=1

Wl(μ −μl)
2)− 1

N

L

∑
l=1

Wlσl
2

=
1
N

L

∑
i=1

Wl(μ −μl)
2

=
1
N

var(E[X |Stratum])≥ 0
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The result of theorem 1 means that the more separated the strata means
the better is proportional sampling.

Theorem 2

var(X̄SO)≤ var(X̄SP)

That is, optimal stratified sampling is never worse than proportional strat-
ified sample of the same total sample size N

Proof :

var(X̄SP)−var(X̄SO) =
1
N

L

∑
i=1

Wlσl
2 − 1

N
(

L

∑
l=1

Wlσl)
2

=
1
N

L

∑
i=1

Wl(σl − σ̄)2

=
1
N

var(SD[X |Stratum])≥ 0

where SD denotes the standard deviation.

2.6. Active Learning and Uncertainty Sampling

Supervised Learning is an important Machine Learning technique. A Learner
learns a predictor or a model by observing value for samples. These sam-
ples are provided by the Environment. The input samples and their corre-
sponding values represents the training data.

The choice of a sample is not influenced by the previously observed sam-
ples. Learning a predictor is to request the value for a sample drawn at
random from a pre-determined distribution.
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Furthermore in Active Learning the learner utilizes the information gained
from previous observation. Then the learner choose which sample to ob-
serve next. The Learner has the flexibility to sample any point form the
input domain.

The goal of the Learner is to minimize the number of observed samples
required to achieve a certain level of accuracy. Based on the values for sam-
ples, the learner decide which samples it should request a value for. Then
the learner decide from the environment which samples it should request a
value for.

2.7. Bayesian Statistics

Bayesian statistics is a system for describing uncertainty using the mathe-
matical language of probability.

2.7.1. Probability as a Measure of Conditional Uncertainty

The probability P(E|C) is a measure of belief in the occurrence of the
event E under conditions C. E is the event whose uncertainty is being
measured, and C the conditions under which the measurement takes place.
P(E|D,A,K) is to be interpreted as a measure of belief in the occurrence of
the event E, given data D, assumptions A and any other available knowledge
K.

A survey is conducted to estimate the proportion θ of individuals in a
population. Interesting is to use the results from the sample to establish
regions of [0,1] where the unknown value of θ may plausibly be expected
to lie. This information is provided by probabilities of the form

P(a < θ < b|r,n,A,K)

An experiment is made to count the number r of times that an event E

takes place in each of n replications of a well defined situation. E take
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place ri times in replication i, and it is desired to forecast the number of
times r and E will take place in a future. This is a prediction problem
on the value of an observable (discrete) quantity r, given the information
provided by data D. Hence, simply the computation of the probabilities
P(r|r1, ...,rn,A,K), for r = 0,1, ..., is required.

2.7.2. Statistical Inference and Decision Theory

Let A be the class of possible actions. Moreover, for each a ∈ A, let Θa be
the set of relevant events which may affect the result of choosing a, and let
c(a,θ) ∈ Ca, θ ∈ Θa, be the consequence of having chosen action a when
event θ takes place. (Θa,Ca),a ∈ A describes the structure of the decision
problem.

Different options for the set of acceptable principles:

1. a real-valued bounded utility function u(c) = u(a,θ) measures the
preferences

2. a set of probability distributions (p(θ |C,a),θ ∈ Θa),a ∈ A measures
the uncertainty of relevant events.

3. the expected utility of the available actions measures the desirability

u(a|C) =
∫

Θa

u(a,θ)p(θ |C,a)dθ ,a ∈ A

It is often convenient to work in terms of the non-negative loss function
defined by

l(a,θ) = sup
a∈A

u(a,θ)−u(a,θ),
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which directly measures, as a function of θ . The relative undesirability of
available actions a ∈ A is then measured by their expected loss

l(a|C) =
∫

Θa

l(a,θ)p(θ |C,a)dθ ,a ∈ A

2.8. Symbolic Execution

The white-box reliability assessment approach we present in this thesis
bases mainly on the ability to symbolically execute the code under consider-
ation. Algorithm 1 shows an abstract procedure of our symbolic execution.
For a given program starting with statement s and an initial update U0, the
call of symExe(U0,s, true, /0) will return the path conditions of all feasible
paths of the program. Until a branching condition is found the procedure
accumulates the state changes in form of update expressions (lines 5-7). In
the case of a branching statement a new path condition is constructed for
each branch outcome based of the current path condition Φ and the branch
conditions (cond(s) and ¬cond(s)). Only if a constructed path condition is
satisfiable, the corresponding branch code is further proceeded (lines 8-11).

Here, we give an abstract formalism for what is meant with symbolic ex-
ecution. For simplicity, we abstract from real programming languages and
categorize program statements s to branching statements, if branch(s) =

true and non branching statements, otherwise. The next scheduled state-
ment after a statement s is denoted by next(s) and is possibly empty. For a
branching statement s we further define its branching condition as cond(s)

and the first statement of its body as first(s). The state updates cause during
the symbolic execution are captured using update expressions U . The state
update causes by a single statement s is denoted by update(s). Updates
concatenations are denoted by “◦”. The evaluation of a formula Φ with
respect to an update U is denoted by {U}Φ .

For example, the constraint solver can decide that the following con-
straint is satisfiable: (x ≥ 10)∧ ((x < 5)∨ (x > 90)). The constraint solver
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Algorithm 1: An abstract symbolic execution procedure – symExe
Data: U : Update, s : Statement, Φ : Formula, PCs : Set<Formula>
Result: PCs : Set<Formula>

1 begin

2 if s = /0 then

3 PCs ← PCs∪Φ
4 else

5 while ¬branch(s) do

6 U ← U ◦update(s)
7 s ← next(s)

8 if SAT(Φ ∧{U}cond(s)) then

9 symExe(U ,first(s),Φ ∧{U}cond(s),PCs)

10 if SAT(Φ ∧{U}¬cond(s)) then

11 symExe(U ,next(s),Φ ∧{U}¬cond(s),PCs)

12 return PCs

can found a solution, e.g., x = 95. The found solution can serve as an input
value in a test case. When the program path is executable, i.e., the corre-
sponding path condition is satisfiable, one can ask how many possible input
values satisfy the path condition. Generally, the more inputs satisfy the path
condition, the more probable the path can be executed. We discuss this in-
tuition in the next section. Note that the symbolic execution description in
Algo. 1, does not address performance issues. Especially the incremental
call of the solver on incrementally extended conjunctions (lines 8 and 10)
can make use of the incremental solving ability supported by most solvers,
e.g., Z3 [31].

2.9. KeY Verification Approach

KeY [7] is an interactive software verification system which can verify se-
quential Java programs specified with the Java Modeling Language. It uses
a sequent calculus for JavaDL [7], a dynamic logic for Java. JavaDL ex-
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tends first-order logic with modal operators such as 〈p〉 for every program
p. The formula 〈p〉ϕ means that the formula ϕ is true in the state after exe-
cuting p, hence ϕ is the postcondition of p. During the verification process,
KeY creates a proof tree, with sequents as nodes. A sequent typical has the
form Γ ⇒ 〈p〉ϕ , where Γ is a comma-separated conjunction of conditions
which constitute a path condition. As part of the verification process, KeY
symbolically executes the program, thus taking all possible execution paths
into consideration. Besides formal verification, KeY also provides a basis
for complementary approaches like testing, and can generate test cases with
high coverage from a proof.
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In this chapter we consider the case where the only information we have
about the software under study is the operational profile OP = {(Di, pi)|i =
{1,2, . . . ,L},∑L

i=1 pi = 1}. In this case, we treat the software as a black-
box. Our goal in this chapter is to create a test selection approach which
should outperform existing current practices in the sense that it reduces
the number of required test cases to be executed in order to reach a target
statistical confidence on the reliability estimate. The approach we present
here makes use of novel mathematical sampling models and information
theoretic principles to efficiently select the test cases to be executed while
the only information provided to the approach is the operational profile of
the software under study.

Before we discuss our approach, it is necessary to introduce some related
terms. The input domain of a software represents all relevant inputs to the
execution of the software. The operational profile sub-domains represents
subsets of the input domain. A sub-domain is homogeneous if either all
of its elements cause the software to succeed or all cause it to fail. Conse-
quently, any input from a homogeneous sub-domain is a good representa-
tion of the entire sub-domain. A sub-domain is heterogeneous if some (but
not all) of its elements cause the software to fail.

3.1. Problem Definition

Statistical testing based on sampling models is theoretical sound but re-
quires a huge number of test cases to reach a target statistical confidence
on the unknown reliability estimate, if testing reveals failures. Existing ap-
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proaches for sampling based statistical testing are formulating testing as
proportional stratified sampling process (see Section 2.1.3), and are not
making use of the information provided by previous testing effort.

The main idea behind standard statistical testing approaches is to ensure
that when the testing process is terminated because of (for example) im-
perative software project constraints, then the most used operations will
have received the most testing effort. Musa also claims that "the reliabil-
ity level will be the maximum that is practically achievable for the given
test time" [69]. However, the reliability estimate of such approaches may
be inaccurate, when testing reveals failures. Indeed, the reliability estimate
across the operational profile sub-domains may have different statistical
properties (i.e., mean and variance). This means that the operational pro-
file sub-domains may be heterogeneous in regard to the failure rate. Using
conventional proportional random sampling to select test cases from het-
erogeneous sub-domains does not guarantee that a statistically sufficient
number of test cases will be selected from every sub-domain (see theorem
2). Hence, the statistical quality of the samples may be compromised for
some sub-domains. This may lead to inaccurate statistical estimate. The ac-
curacy of the reliability estimate, since it is a random variable, is measured
by its variance. In order to increase the accuracy of the reliability estimate,
further test cases are needed to be executed to reduce the variance.

It would be ideal if we could separate successful program execution from
the failing ones. However, this is not likely, because failures are often
caused by faults in a large program. A software fault is a hidden program-
ming error in one or more program statements. A program consists of a set
of statements. A program execution is a program path executed with an in-
put value from the program’s input domain. A program path is a sequence
of statements. Each program path has an input and an executed output
which usually depends on the input. Consequently, a program execution is
considered as a failure if the corresponding executed program path deviates
from the expected output. Two similar software executions may differ only
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whether a fault is reached or not. Two program execution are similar if
they execute the same program path with different input value, if the same
input value is used then the two executions are equal. Two similar program
executions may differ only in regard to executing a particular fault, with
the result that one execution fails while the other does not. Conversely, two
dissimilar program execution may both fail because they execute the same
faulty program statement. Consequently. we may not group if the fail-
ing program executions together even if they have the same causing fault.
Hence, it is realistic to assume that the reliability estimate across the test
sub-domains have different statistical properties (i.e., mean and variance).

For a given test budget, optimal stratified sampling as shown in theorem
2, can estimate the reliability with less variance than proportional stratified
sampling, especially when the variability between the sub-domains is high.
In this chapter, we formulate statistical testing as an optimal stratified sam-
pling process. In order, to learn from previous testing effort, we formulate
testing as an active learning problem.

3.2. Idea of the Approach

Software reliability assessment based on testing formulates software testing
as a statistical inference task as explained in Section 2.1.3. The goal of
the inference task is to estimate the reliability of the software by using a
statistical estimator specific to the inference task. Main focus when doing
statistical inference is to reduce the variance of the estimate as possible.

The variance of an estimator describes the closeness of the future esti-
mate to the previous estimate when rerunning the estimation with the same
setting. An estimator with low variance increases the confidence on the pre-
dicted estimate. In fact, a low variance usually implies tighter confidence
interval for the estimate. Consequently, we can improve the accuracy of the
reliability estimation by minimizing the variance of the estimator.
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The result of an estimation is a sum of the true value to be estimated and
a random error. The lower the variance is, the more likely the error will be
close to zero. Therefore, the variance of the estimator should be lowered as
possible to restrict the error to an enough tight interval in order to provide
an accurate enough estimate. It is also important to note that the more tests
are executed the more will the variance of the estimator decrease. Con-
sequently, an estimator with low variance can find an accurate estimation
with fewer test cases.

Stratified sampling is a statistical technique to reduce the variance of an
estimator. Optimal stratified sampling is shown to reduce the variance of
the estimator more than proportional sampling, especially when the vari-
ability between the strata (sub-domains in our case) is high. Consequently,
by choosing the proportional stratified sampling to sample the operational
profile, we may sacrifice a possible efficiency we could obtain when using
optimal stratified sampling.

We developed a test selection approach which is based on active learning
toward optimal stratified sampling. For a required statistical confidence on
the reliability estimate, our approach computes the number of test cases to
execute from each sub-domain. If the selected test cases revealed failures,
the responsible faults are repaired, and the approach recomputes the number
of test cases to execute. The number of test cases to execute from each
sub-domain of the operational profile is computed based on the uncertainty
reduction principle of active learning.

We proved in theorem 4, that our approach asymptotically converges to
optimal sampling. Consequently, for a given test time, our approach deliv-
ers a reliability estimate with lower variance than state-of-the-art existing
approaches, which are based on proportional sampling. This also means,
for a required statistical confidence on the reliability estimate, our approach
can estimate the true unknown reliability with less test cases than standard
approaches.
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3.3. Research Goals and Challenges

Software reliability testing is a continuous process: the software is frozen
and tested based on the given operational profile to estimate its current reli-
ability. Usually, the reliability tester wants to estimate the reliability of the
software with a required confidence and up to a maximal allowed margin of
estimation error. The number of required test cases to reach the target confi-
dence and margin of error are not known in advance. Statistical hypothesis
testing can be used to estimate the number of test cases that should be exe-
cuted failure-free to reach the target reliability with the required confidence.
However, when testing revealed failures, than the responsible faults should
be repaired and testing should be re-executed with same number of test
cases initially computed using hypothesis testing. This process should be
iterated until the required confidence on the estimated reliability is reached.

The continuous nature of testing possibly heterogeneous software exe-
cutions for reliability estimation introduces the following additional chal-
lenges. First, the number of of required test cases executions from each
sub-domain as well as the statistical properties (i.e., mean and variance
of the failure rate) of the software when executed with inputs from each
sub-domain are not known in advance. Consequently, it is not possible to
optimally allocate a stratified sample of test cases to the operational pro-
file sub-domains prior sampling. Second, the statistical properties of the
sub-domains may change over testing time. Hence, the allocation should
be able to adapt to such changes.

The approach we present here addresses the problem of allocating a
stratified sample of test cases over heterogeneous operational profile sub-
domains to deliver an unbiased low variance reliability estimator. There
are four challenges in this problem. The first challenge is to allocate the
test cases optimally among the sub-domains while not knowing the total
number of test cases in advance. The optimality criteria is the estimator
quality (i.e., mean and variance). We solve this issue by adopting the Ney-
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man method [97] for optimal allocation in stratified sampling. This method
method assumes, however, that the sample size is fix. We present an adap-
tive version of this method to account for the unknown sample size. The
second issue is to account for the probability of occurrence of each sub-
domain while allocating the test cases optimally over the sub-domains. The
intuition behind software statistical testing is that the higher the probabil-
ity of occurrence of a sub-domain, the larger the number of test cases will
be executed from that sub-domain. We solve this issue by constraining the
adaptive optimal allocation with a utility cost function. The cost for select-
ing a test case from a sub-domain is defined as the inverse probability of
the probability of occurrence of the sub-domain. The third issue is to quan-
tify the similarity of the selected test cases over the sub-domains to the
operational profile. Test cases executions simulate the expected software
behavior according to the operational profile. We define a similarity confi-
dence metric and we provide an approach to adjust the test cases allocation
toward 100% similarity confidence. The fourth issue is to determine when
to stop testing. We present a test stopping criteria based on the software
tester required (i) confidence on the reliability estimate, and (ii) the max-
imal margin of estimation error. We call the algorithm solving this issues
adaptive constrained statistical testing.

We have published part of the following results in [72].

3.4. Assumptions

In order to formulate the concerned research goal, some assumptions on the
software are presented.

1. The software is frozen when estimating the reliability, since reliabil-
ity estimation aims at testing the current status of the software. The
software will not be modified during the estimation process. The
software can be modified after the estimation process.
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2. The output of each test is independent of the testing history. In some
cases, it is possible that a test case is judged to be failure free al-
though it actually leads to some faults which cannot be observed due
to limited test oracles. We consider such test cases to be failure free.
However, such unobserved faulty program states can cause the fail-
ure of some following test cases. Consequently, the latter test cases
can be mistakenly considered as faulty test cases. This leads to an
error in the reliability estimation. However, this is not a reliability
estimation approach concern rather is a test oracle problem.

3. Each test case either fails or succeeds. A test oracle is used to verify
the behavior of the software under test.

4. We assume that a proper test oracle is available, since this work fo-
cuses on the effectiveness and efficiency of reliability estimation.

5. We assume that failures are uniformly distributed over the sub-domains.
This assumption is inherited from the principle of stratified sampling
and random sampling as presented in Section 2.5.

6. In each operational use represented by a sub-domain Di, all possible
software operations and possible inputs are equally likely to arise.

7. We assume that an operational profile is provided for the tested soft-
ware.

3.5. The Statistical Model for Reliability Estimation

The OP = {(Di, pi)|i ∈ {1, ...,L},∑L
i=1 pi = 1} defines the expected input

domain of the program’s input variables. Each partition (Dl , pl) is a subset
of the OP, and pl ≥ 0 is the probability that a program input belongs to
sub-domain Dl . The OP is a natural definition of the strata for stratified
random sampling. Each stratum l corresponds to the sub-domain Dl and
has a weight Wl = pl .
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Based on assumption 3, each test case execution is a Bernoulli trial. Let
Xi,l be the outcome of test case ti from sub-domain Dl , then:

Xi,l =

⎧⎨⎩1, if test case ti fails

0, if test case ti not fails
.

Let μi = P(test cases from sub-domain Di fail) be the probability of fail-
ure on demand when the software system is executed with inputs from Di,
where i = {1,2, . . . ,L} and μi ∈ [0,1].

Based on assumption 2, {Xi,l} are independent random variables, and
since ∑L

i=1 pi = 1, then it can inferred that P(Xi,l = 1) = μi (i.e., the prob-
ability that test case i from sub-domain Dl fails). Each test case will lead
the software under test to failure or success. And in each sub-domain the
probability of failure of each test case is equal for all test cases in the sub-
domain. Hence the distribution of Xil is Binomial with μi. Thus, the number
of failures in n demands executed with inputs from sub-domain Dl , has a
Binomial distribution:

P(Xl = k) =
(

n
k

)
μk

l (1−μl)
n−k (3.1)

and in particular

P(Xl = 0) = (1−μl)
n (3.2)

Consequently, the sample mean of the failure on demand when using
inputs from sub-domain Dl ,

X̄l =
1
nl

nl

∑
i=1

Xil (3.3)

is an unbiased point estimator of μi. Thus, μi is Binomial distributed.
The reliability of the tested software can be defined as the weighted

sum of the reliability of the sampled OP sub-domains Di, {i∈{1,...,L}} : R =
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∑L
i=1 pi(1−μi). An unbiased estimator of the reliability is then defined as:

R̂ = 1−
L

∑
i=1

piX̄i = 1−
L

∑
l=1

1
nl
.pl

nl

∑
i=1

Xil (3.4)

Since the distribution of Xil is a binomial distribution with μi it follows:

E[R̂] = 1−
L

∑
i=1

piμ̂i (3.5a)

var[R̂] =
L

∑
i=1

pi
2 μ̂i.(1− μ̂i)

ni
=

L

∑
i=1

pi
2 σi

2

ni
(3.5b)

where μ̂i an estimation of the true failure rate μi and σi
2 its variance. The

goal of the next sections is to show how μ̂i and σi
2 are iteratively computed

to actively compute the required number of test cases to select from each
sub-domain Di at each iteration.

3.6. Optimal Test Cases Selection

The Problem of selecting the test cases optimally from the OP sub-domains
is an adaptive optimization problem formulated as follows. Given the OP,
we want to select a total number n of test cases, where (i) ni test cases
are selected from each sub-domains Dii∈{1,...,L} and (ii) ∑L

i=1 ni = n, with
the goal to minimize var[R̂]. For mathematical tractability, we assume in
this section that the total number of required test case n as well as the sub-
domains failure rates σi and consequently their variances are known. In
the next sections, we will show how n and σi are computed actively in an
adaptive manner. According to Section 2.5:

ni = n
piσi

∑L
k=1 pkσk

(3.6)
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Note that the larger the variance σi
2 of the failure rate of the software

when executed with inputs from the sub-domain Di, the more test cases
should be selected from that sub-domain. This makes sense, since the sub-
domain with higher estimated/observed failure rate variability should re-
quire more testing to attain the same degree of precision as those with lower
variability. If the variances of all sub-domains are all equal, the optimal al-
location is proportional allocation.

Consequently, by sampling the OP proportionally to their probabilities of
occurrence, we assume implicitly that the failure rate (i.e, their variances)
are all equal. This a hart-to-justify assumption, since we do not know the
failure rates of the software in advance, neither can we realistically find a
partition of the software input domain that guarantees equal or quasi-equal
failure rate across the partitions. In contrary, we may know from previ-
ous software testing experience that some operations in the software are
expected to have a bigger failure rate than other operations. In addition,
when using Commercial Off-the-Shelf (COTS) software for example, we
usually do not know the level of quality of the integrated COTS software
and consequently we usually assume that the operations implementing the
integration logic with the COTS software are likely to have a big failure
rate. Intuitively, a software tester would focus his test cases on the parts of
the software where the most failures are observed. This intuition is incar-
nated in the principle of optimal stratified sampling.

3.7. Constrained Optimal Selection

The intuition behind statistical testing is that the highest the probability of
occurrence of a sub-domain, the larger the number of test cases executed
from that sub-domain.

To account for this, the optimal allocation introduced in the previous
section is formulated as a constrained optimization to a utility cost function
c∗ defined as follows. Let ci = 1− pi the cost of selecting a test case from a
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sub-domain Di that has a probability of occurrence pi, and the overall cost
of testing defined as:

c∗ =
L

∑
i=1

cini (3.7)

The goal is to minimize the variance of the reliability estimate defined in
equation (3.5b) as:

var[R̂] =
L

∑
i=1

pi
2 μi.(1−μi)

ni
=

L

∑
i=1

pi
2 σi

2

ni
(3.8)

by selecting appropriate number of test cases ni with respect to the cost
function defined in equation (3.7).

We derive the appropriate number of test cases ni using a Lagrange mul-
tiplier technique.

Based on equations (3.5b, 3.7) we form the following Lagrangian:

L=
L

∑
i=1

pi
2 σi

2

ni
−λ (

L

∑
i=1

cini − c∗) (3.9)

By taking the first derivate to ni and λ and setting them to 0 we obtain:

−pi
2σi

2

ni2
+λci = 0, i = 1 . . . ,L (3.10a)

c∗ =
L

∑
i=1

cini (3.10b)

Rearranging equation (3.10a) gives:

ni =
1√
λ

piσi√
ci

i = 1 . . . ,L (3.11)
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Now we use the cost function in equation (3.7) to solve for 1√
λ

:

c∗ =
L

∑
i=1

cini =
1√
λ

L

∑
i=1

ci
piσi√

ci
(3.12a)

=
1√
λ

L

∑
i=1

√
ci piσi (3.12b)

Consequently, it follows:

1√
λ

=
c∗

∑L
i=1

√
ci piσi

(3.13)

Substituting equation (3.13) in equation (3.11) leads to:

ni = c∗.
piσi/

√
ci

∑L
k=1 pkσk/

√
ck

(3.14)

Note, that the higher the cost ci of selecting a test case from sub-domain
Di, the smaller the sub-domain sample size ni.

Since the cost function ci is defined as ci = 1− pi then equation 3.14
means: the smaller the probability of occurrence of a sub-domain Di, the
less test cases ni will be selected from Di.

3.8. Similarity Confidence

When testing a software according to an operational profile, the goal is to
simulate the expected software execution as described by the operational
profile. Consequently, it is interesting to quantify the similarity of the to-
tal set of selected test cases to the expected operational profile. It is also
interesting to control the testing process toward a 100% similarity to the
operational profile.

Let TDi be the set of test cases selected from the sub-domain Di{i∈1,...,L}.
Let |TDi | = ni, i.e., the set TDi contains ni different test cases selected
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from the sub-domain Di{i∈1,...,L}. Let TOP = {T(Di,pi)|(Di, pi) ∈ OP =

{(Di, pi)|i ∈ {1, ...,L},∑L
i=1 pi = 1}} the set of selected test cases from the

operational profile. The similarity of T(Di,pi) to the OP when a total num-
ber n = |⋃Di∈OPTDi |= |TOP| of test cases is selected from the operational
profile sub-domains, is defined as follows:

SC(TDi) =

⎧⎨⎩
ni

�pi.n� , if ni ≤ �pi.n�

− ni
�pi.n� , if ni > �pi.n�

(3.15)

The similarity confidence of the total selected test cases is consequently
defined as follows:

SC(
⋃

Di∈OP

TDi) =
∑L

i=1SC(TDi)

L
(3.16)

Let SCmin = min{SC(TDi)|i ∈ {1, ...,L}}= SC(TDk)k∈{1,...,L}, the mini-
mum computed similarity to the operational profile.

Algorithm 2: Adjust to Proportional Sampling
if SC(TOP) �= 1∧SCmin = SC(T(Dk,pk))< 0 then

n = � nk
pk
� T(Dk,pk) is over-proportional sampled

for T(Di,pi) ∈ T ∧T(Di,pi) �= T(Dk,pk) do

ni = �n.pi�
//select extra (�n.pi�−ni) test cases

5: end for

else

for T(Di,pi) ∈ T do

ni = �n.pi�
end for

10: end if

Algorithm 2, adjusts the allocation of the test cases from each sub-
domain Di{i∈1,...,L} to reach a similarity confidence of 100%. The steps
of the algorithm are as follows. If the selected tested cases TOP is not sim-
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ilar to the OP and if SCmin = SC(Dk) is negative (line 1), then it means
that the sub-domain Dk is over proportionally sampled. In this case, the
total number of test case n is updated proportionally to nk (line 3), and for
each sub-domain except the sub-domain Dk, extra (�n.pi�− ni) test case
are selected (lines 4-6).

Otherwise, the sub-domains are under proportionally sampled, and for
each sub-domain Di, extra (�n.pi�−ni) test case are selected (lines 8-9).

3.9. Bayesian Inference and Stopping Criteria

We define a test stopping criteria based on the tester required (i) maximal
error of the reliability estimate d, and (ii) confidence level (1−α). The
goal of reliability testing is then to estimate the reliability R̂ to within d

with 100(1−α)% confidence.
For any test case ti selected from sub-domain Dl , we can according to

assumption 3, deterministically decide its outcome Xil (i.e., whether ti fails
or not). Let ul = P(test cases from Dl fail), be the probability of failure on
demand as introduced in Section 3.5. The outcome Xil is a Bernoulli ran-
dom variable according to assumption 2. Thus, the conditional probability
density function associated with Xil is:

f (Xil |μl) = μXil
l (1−μl)

1−Xil (3.17)

Within the Bayesian framework, we assume that μl is given by a random
variable Ml over (0,1), whose density f (.) is called the prior density. The
prior is a representation of a knowledge based on previous experiences or
beliefs about the parameter of interest, here μl .

Based on equation 3.3, μl is Binomial distributed. The conjugate prior
to the Binomial distribution is the Beta distribution. Consequently, we use
the Beta distribution for the prior density of μl . The advantage in using a
prior distribution from the conjugate family is that both prior and posterior
distributions are members of the same parametric distribution family. This
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3.9. Bayesian Inference and Stopping Criteria

allows us to have a kind of homogeneity in the way the belief about μl

changes as extra information are received. Thus, the conjugate distribution
is the Beta(β1,β2) distribution:

μl ∼ Beta(β1,β2) (3.18a)

f (μl) =
μβ1−1

l (1−μl)
β2−1

B(β1,β2)
(3.18b)

∝ μβ1−1
l (1−μl)

β2−1 (3.18c)

where the approximation in equation (3.18c) is the result of ignoring the
constant of proportionality represented by the Beta function B(β1,β2). The
beta function is parameterized with the two parameters β1 > 0, β2 > 0 rep-
resenting the belief about μl prior seeing any test results:

B(β1,β2) =
∫ 1

0
uβ1−1(1−u)β2−1du (3.19)

By exploiting the relationship between the beta function and the gamma
function (see Section 2.4.2), namely that:

B(β1,β2) =
Γ(β1)Γ(β2)

Γ(β1 +β2)
(3.20)

it follows:

f (μl) =
Γ(β1 +β2)

Γ(β1)Γ(β2)
μβ1−1

l (1−μl)
β2−1 (3.21)

The prior distribution summarizes all the information —including its
lack— gathered through testing about the failure probability μl . The prior
is parameterized based on previous experience and information about the

69



3. Adaptive Constrained Statistical Testing

software systems and its development process. One way to encode such
knowledge is to parameterize β1 and β2 as follows:

β1 = μ̂lT (3.22a)

β2 = (1− μ̂l)T (3.22b)

where μ̂l is an initial knowledge-based or experience-based estimate of the
true and unknown failure probability μl , and T ≥ 1 represents a trust factor.
The trust factor is specified based on knowledge and previous observations
about the software system. We propose as in [40], to set the trust factor T
to the number of test cases executed to get the initial estimate of μ̂l .

In some cases, however, such information may not be available. In such
a case, the non-informative or ignorance uniform prior with β1 = β2 = 1
can be used.

Suppose now that n test cases ti, . . . , tn from sub-domain Dl are executed.
The test cases has the outcome X1,l , . . . ,Xn,l . Suppose that k failures are
observed, meaning ∑n

i=1 Xi,l = k. The posterior distribution over μl is then
given by:

f (μl |
n

∑
i=1

Xi,l = k,β1,β2) =
f (∑n

i=1 Xi,l = k|μl) f (μl)∫ 1
0 f (∑n

i=1 Xi,l = k|ω) f (ω)dω
(3.23a)

∝ f (
n

∑
i=1

Xi,l = k|μl) f (μl) (3.23b)

=

(
n
k

)
μk

l (1−μl)
n−k (3.23c)

× Γ(β1 +β2)

Γ(β1)Γ(β2)
μβ1−1

l (1−μl)
β2−1 (3.23d)

∝ μk
l (1−μl)

n−k ×μβ1−1
l (1−μl)

β2−1 (3.23e)

= μk+β1−1
l (1−μl)

n−k+β2−1 (3.23f)
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3.9. Bayesian Inference and Stopping Criteria

Note that the approximations in equation (3.23b) and equation (3.23e) are
the result when ignoring the constants of proportionality.

Recall equation (3.18c), it follows from equation (3.23) then:

μl |
n

∑
i=1

Xi,l = k ∼ Beta(β1 + k,β2 +n− k) (3.24)

Equation (3.24) describes the conjugacy property. The conjugacy prop-
erty together with the Bayes theorem are used to update the prior informa-
tion on the probability μl after each iteration of our approach. This leads
to the construction of the posterior distribution of μl which will be used for
statistical estimation of the reliability R̂ as explained below.

Recall the stopping criteria: for a given test budget, we want to stop
reliability testing as soon as the reliability is estimated with a confidence
level of 1−α , with a margin of error d. This means, we want to compute
E[R̂] such that:

P(E[R̂]−d ≤ R ≤ E[R̂]+d)≥ 1−α (3.25)

where E[R̂] = 1−∑L
i=1 piμ̂i.

In Section 3.9.1, we show how we estimate iteratively the failure rate μ̂i

as well its variance σi for each sub-domain Di,i∈{1,...,L}. Then, in Section
3.9.2, we show how we use the failure rate to compute the required number
of test cases to select from each sub-domain Di,i∈{1,...,L} based on the user
target confidence level 1−α and margin of error d.

3.9.1. Iterative Estimation of the Failure Rate pro Sub-Domain

According to Bayes theorem, each test case executed from a sub-domain Dl

is a sample from a density f (.|μl). Recall that μl is an unknown probability
given by the random variable Ml whose density is f (.) as given in equation
3.18. Consequently, the posterior density of Ml after executing the test
cases t1, . . . , tn, whose outcome is X1l , . . . ,Xnl is:

71



3. Adaptive Constrained Statistical Testing

f (μl |X1l , . . . ,Xnl) =
f (X1l , . . . ,Xnl |μl) f (μl)∫ 1

0 f (X1l , . . . ,Xnl |ω) f (ω)dω
(3.26)

Based on assumption 2 of our approach (the independence of the test
cases outputs), it follows:

f (μl |X1l , . . . ,Xnl) =
∏n

i=1 f (Xil |μl) f (μl)∫ 1
0 f (X1l , . . . ,Xnl |ω) f (ω)dω

(3.27)

where f (Xil |μl), introduced in equation 3.17, is the conditional density
function associated with the i− th test case executed from sub-domain Dl .

Since the posterior density of Ml is a distribution (see equations 3.26 and
3.27), we can estimate μl by the posterior mean based on the result we got
from equation (3.24), which indicates that the posterior distribution of μl

is Beta(β1 + k,β2 + n− k). By using the property of the Gamma function
Γ(x+1) = xΓ(x) (See Section 2.4.1), the posterior mean is:

μ̂l = E[μl |
n

∑
i=1

Xi,l = k,β1,β2] (3.28a)

=
∫ 1

0
μl f (μl |

n

∑
i=1

Xi,l = k,β1,β2)dμl (3.28b)

=
∫ 1

0
μl

Γ(β1 +β2 +n)
Γ(β1 + k)Γ(β2 +n− k)

μβ1+k−1
l (1−μl)

β2+n−k−1dμl (3.28c)

=
Γ(β1 +β2 +n)

Γ(β1 + k)Γ(β2 +n− k)

∫ 1

0
μβ1+k

l (1−μl)
β2+n−k−1dμl (3.28d)

=
Γ(β1 +β2 +n)

Γ(β1 + k)Γ(β2 +n− k)
× Γ(β1 + k+1)Γ(β2 +n− k)

Γ(β1 +β2 +n+1)
(3.28e)

=
Γ(β1 + k+1)

Γ(β1 + k)
× Γ(β1 +β2 +n)

Γ(β1 +β2 +n+1)
(3.28f)

=
β1 + k

β1 +β2 +n
(3.28g)

72



3.9. Bayesian Inference and Stopping Criteria

The variance of μl is then computed based on the above equation (3.28g)
and by means of few algebraic steps as follows:

var[μl ] = E[μl
2]− (E[μl ])

2 (3.29a)

=
(β1 + k)(β2 +nl − k)

(β1 +β2 +nl)2(β1 +β2 +nl +1)
(3.29b)

3.9.2. Iterative Computation of the Number of Test Cases to
Select

As shown in Section 2.4.3, we can approximate the Beta distribution
Beta(β1,β2) to a normal distribution.

Now, recall that after executing nl test cases from a sub-domain Dl ,
where k test cases failed, the distribution of the failure rate μl is given by
equation (3.24): μl |∑nl

i=1 Xi,l = k ∼ Beta(β1 + k,β2 +nl − k).
Consequently, we can approximate the distribution of each μl, l∈{1,...,L}

with a normal distribution:

N(E[μl ],
√

var[μl ]) = N

(
β1 + k

β1 +β2 +nl
,

√
(β1 + k)(β2 +nl − k)

(β1 +β2 +nl)2(β1 +β2 +nl +1)

)
(3.30)

that means, the Beta distribution of each μl,l∈{1,...,L} is approximated by
a normal distribution, which has as a mean E[μl ] and standard deviation√

var[μl ].
Since, from equation (3.5a) the expected mean of the reliability we are

estimating, R̂, is defined as E[R̂] = 1−∑L
i=1 piμi, it follows that we can

approximate the distribution of R̂ to a normal distribution.
Now, we want to compute based on the failure rate μl,l∈{1,...,L} and its

variance var[μl ] = σl , the number of test cases to select optimally from
each sub-domain Dl, l∈{1,...,L} to meet with the stopping criteria (i.e, stop
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3. Adaptive Constrained Statistical Testing

reliability testing as soon as the reliability is estimated with a confidence
level of 1−α , with a margin of error d).

Let al (as defined in Section 2.5) be the allocation ratio for the sub-
domain Dl , with nl = n.al and n the total number of selected test cases
defined as n = ∑L

i=1 nl .
Let z be the upper α/2 critical point of the standard normal distribution.

Then, we want to find n such that z[var[R̂]]1/2 = d (margin of error equa-
tion), where var[R̂] = ∑L

i=1 pi
2 σi

2

ni
(recall equation (3.5b)).

From equation (2.22), we have nl = c∗al with al defined as:

al =
σl/

√
cl

∑L
i=1 pi.σi.

√
ci

Consequently, we can rewrite var[R̂] as follows:

var[R̂] =
L

∑
i=1

pi
2 σi

2

c∗al
(3.31)

=
1
c∗
.

L

∑
i=1

pi
2 σi

2

al
(3.32)

Now, we compute the total cost c∗ required to reach the desired level of
accuracy. By solving the margin of error equation z[var[R̂]]1/2 = d, for c∗

and by ignoring the finite population factor as in Section 2.5 we get:

c∗ =
z2

d2

[
L

∑
i=1

pi.σi.
√

ci

]2

Having computed both al and c∗, we can compute each nl = alc∗.
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3.10. Adaptive Constrained Statistical Testing

3.10. Adaptive Constrained Statistical Testing

Based on the discussions above, the adaptive constrained statistical testing
approach works as described in algorithm 7.

In the initialization phase (lines 1-3), first algorithm 3 is called. Since
our approach is based on variance computation of the failure rate in each
sub-domain, we require at least 2 test cases pro sub-domain. Based on this
requirement, algorithm 3 computes the number of test cases to start with
nstart (line 2 in algorithm 3). This means that at least 2 test cases should be
selected from the sub-domain with the smallest probability of occurrence
pmin. Having computed nstart, the algorithm selects |T(Di,pi)| test cases
from each sub-domain Di randomly proportional to its probability pi (line
4 in algorithm 3). In the second step of the initialization phase (line 2),
algorithm 4 is called to compute the failure rate in each sub-domain in the
initialization phase. Algorithm 4 initializes the Beta prior of the failure
rate of each sub-domain with a non-informative uniform prior, since at the
initialization phase we have no information about the failure rate (line 2 in
algorithm 4). Then, the |T(Di,pi)| test cases are executed (line 2 in algorithm
4), and the number of failures are counted (line 4 in algorithm 4). Based
on the number of failures k, compute the failure rate μ̂i (line 5 in algorithm
4) and its variance σi

2 (line 6 in algorithm 4) are computed as proposed in
equations (3.28g, 3.29b). μ̂i and σi

2 are then used to update our Beta prior
(lines 7-8 in algorithm 4) as proposed in equations (3.22a, 3.22b).

In the adaptive constrained test selection phase (lines 4-12), algorithm 5
is called to compute the optimal required number of test cases to be select
from each sub-domain, based on the stopping criteria formula (lines 3-5
in algorithm 5). Extra test cases are then selected if required (lines 6-8
algorithm 5). Otherwise, test cases have been optimally selected from that
sub-domain (line 9 algorithm 5). In the case, when extra test cases should
be selected from a sub-domain, the new failure rate μ̂i and its variance σi

2

(line 9) are computed by calling algorithm 6.
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3. Adaptive Constrained Statistical Testing

The algorithm stops and returns the estimated reliability if (i) a maximal
allowed test time interval Δ has passed or (ii) for all sub-domains the opti-
mal required number of test cases has been selected and the total selected
test cases are 100% similar to the operational profile (line 6).

Important Note: for presentation purposes, we illustrate the execution
of the selected test cases from each sub-domain in a batch mode. How-
ever, in reality the test cases are selected from each sub-domain. Then, the
execution is done based on the operational profile as illustrated in Section
2.1.3.

Algorithm 3: computeInitialTestCases

Require: OP = {(Di, pi)|i ∈ {1, ...,L},∑L
i=1 pi = 1}

pmin = min{pi|i ∈ {1, . . . ,L}}
nstart =

2
pmin

for (Di, pi) ∈ OP do

|T(Di,pi)| ← �nstart.pi�
5: end for

return TOP = {T(Di,pi)|(Di, pi) ∈ OP}

3.11. Predictive Adaptive Constrained Statistical Testing

Algorithm 6 requires at each iteration of the approach the execution of
|T(Di,pi)| test cases. The number of failures after the execution of the test
cases as well as the total number of executions are used to build the poste-
rior failure rate for each sub-domain Dl . The posterior is specified by the
expected failure rate μ̂l and its variance σl

2.
Instead of executing the |T(Di,pi)| test cases for each sub-domain, we

propose to predict the failure rate in each sub-domain based on previous
test cases executions. The prediction model must be able to predict the
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3.11. Predictive Adaptive Constrained Statistical Testing

Algorithm 4: computePriorFailureRate
Require:

TOP = {T(Di,pi)|(Di, pi) ∈ OP = {(Di, pi)|i ∈ {1, ...,L},∑L
i=1 pi = 1}}

for (Di, pi) ∈ OP do

β1
i = β2

i = 1 set uniform prior
execute the |T(Di,pi)| test cases
k ← number of failures after execution

5: μ̂i ← 1+k
2+|T(Di ,pi)

| see equation (3.28g)

σi
2 ← (1+k)(1+|T(Di ,pi)

|−k)

(2+|T(Di ,pi)
|)2(3+|T(Di ,pi)

|) see equation (3.29b)

// update prior as proposed in equations (3.22a, 3.22b)
β1

i ← μ̂i|T(Di,pi)|
β2

i ← (1− μ̂i)|T(Di,pi)|
end for

10: return OPnew = {(Di, pi, μ̂i,σi
2,β1

i,β2
i)|i ∈ {1, ...,L}}}

Algorithm 5: computeOptimalTestCases

Require: OPnew = {(Di, pi, μ̂i,σi
2,β1

i,β2
i))|i ∈ {1, ...,L}}

opt = 0
for (Di, pi, μ̂i,σi

2,β1
i,β2

i)) ∈ OPnew do

c∗ = z2

d2

[
∑L

i=1 pi.σi.
√

(1− pi)
]2

ai =
pi.σi/

√
(1−pi)

∑L
k=1 pk.σk.

√
(1−pk)

5: no
i = �c∗ai�

if |T(Di,pi)|< no
i then

|T(Di,pi)| ← no
i select extra (no

i −|T(Di,pi)|) test cases from
(Di, pi)

else

opt = opt+1
10: end if

end for

Adjust to proportional sampling: call Algorithm 1
return (TOP, opt)
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3. Adaptive Constrained Statistical Testing

Algorithm 6: computePosteriorFailureRate

Require: OPnew = {(Di, pi, μ̂i,σi
2,β1

i,β2
i))|i ∈ {1, ...,L}}

for (Di, pi, μ̂i,σi
2,β1

i,β2
i)) ∈ OPnew do

execute the |T(Di,pi)| test cases
k ← number of failures after execution
//update statistics
μ̂i ← β1

i+k
β1

i+β2
i+|T(Di ,pi)

| see equation (3.28g)

5: σi
2 ← (β1

i+k)(β2
i+|T(Di ,pi)

|−k)

(β1
i+β2

i+|T(Di ,pi)
|)2(β1

i+β2
i+|T(Di ,pi)

|+1)
see equation (3.29b)

end for

return {(Di, pi, μ̂i,σi
2,β1

i,β2
i)|i ∈ {1, ...,L}}

failure rate as well as to deliver some measure of uncertainty about the
prediction, which is the variance of the estimate.

We model the failure rate in each sub-domain as a Gaussian process dis-
tribution. A Gauss process over a univariate real function f (x) 1 is fully
specified by its mean function μx and its covariance function k(x,x′). The
kernel or covariance function k captures regularity in the form of the corre-
lation of the marginal distributions f (x) and f (x′) [80].

In our failure rate prediction setting, we model the failure rate in each
sub-domain Di as a Gauss process fi(x) in function of the number of test
cases to be executed, i.e., |T(Di,pi)|.

Each time t the algorithm 6 is called, instead of executing the |T(Di,pi)|
test cases, we make a prediction using the Gaussian process fi(x). This
would yield to:

μ̂i = fi(x)+ εi

After T calls of the algorithm 6, we obtain a vector yT,i = {y1,i, . . . ,yT,i}.
If we assumen that εi ∼N(0,σin

2) (i.i.d. Gaussian noise), then the posterior

1bold symbols denote vectors
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Algorithm 7: Adaptive constrained statistical testing

Require: OP = {(Di, pi)|i ∈ {1, ...,L},∑L
i=1 pi = 1}

Δ : maximal allowed test time
1−α : confidence level
d : margin of error

//1. Initialization
TOP = computeIntialTestCases(OP)
{(Di, pi, μ̂i,σi

2,β1
i,β2

i)|i ∈ {1, ...,L}}= computePriorFailure(TOP)
Repair faults if failures are revealed
//2. Adaptive constrained test selection
while true do

5: (TOP, opt) =
computeOptimalTestCases({(Di, pi, μ̂i,σi

2,β1
i,β2

i)|i ∈
{1, ...,L}}})
if Δ passed or (opt = L∧SC(TOP) = 100%) then

break;
end if

{(Di, pi, μ̂i,σi
2,β1

i,β2
i)|i ∈ {1, ...,L}}=

computePosteriorFailureRate(TOP,{(Di, pi, μ̂i,σi
2,β1

i,β2
i)|i ∈

{1, ...,L}})
10: Repair faults

opt = 1
end while

return R̂ = ∑L
i=1 pi.(1− μ̂i), var[R̂] = ∑L

i=1 pi
2 σi

2

|T(Di ,pi)
|

distribution of fi(x) is a Gaussian process defined by its mean value μT,i(x),
covariance kT,i(x,x

′), and its variance σ2
T,i(x) defined as follows [80]:

μT,i(x) = kT,i(x)
T (KT,i +σin

2I)−1yT,i

kT,i(x,x
′) = ki(x,x

′)−kT,i(x)
T (KT,i +σin

2I)−1kT,i(x
′)

σ2
T,i(x) = kT,i(x,x)
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with x is a number of test cases to be executed from sub-domain Di,
kT,i(x) = (ki(x,xt))1≤t≤T , and KT,i = (ki(xl ,xm))1≤l,m≤T .

Therefore, the failure rate of sub-domain Di can be estimated by:

μ̂i = μT,i(x)

and the variance of the estimated failure rate is:

σi
2 = σ2

T,i(x)

Consequently, the posterior Gauss process provides a measure of uncer-
tainty about fi(x) for test cases that has not been yet executed. We design
now our predictive algorithm 8 which is informed by this uncertainty.

In the initialization phase of algorithm 8, the prior computed about the
failure rate in each sub-domain (line 2) as well as the number of test cases
selected from each sub-domain (line 1) are used to train a Gaussian process
for each sub-domain. The algorithm then works the same way as the non-
predictive algorithm 7, except in line 13, where the algorithm 9 is called.

In Algorithm 9, for each sub-domain its corresponding Gaussian process
fi is used to predict the failure rate μ̂i and get a measure of the uncertainty
about the prediction σi

2 (lines 2 and 3). Then, the condition in line 4 is ver-
ified. The condition sets an upper-bound for the predicted failure rate and
its variance based on the formulas used to compute the prior failure rate in
lines 7 and 8. Both formulas are parameterized with the variable k repre-
senting the number of failures revealed after executing |T(Di,pi)| test cases.
Consequently, the maximal number of possible failures is k = |T(Di,pi)|,
which is then used to set upper-bound for both the predicted failure rate
and its variance.

If the prediction of the Gaussian process fi is judged unrealistic, based
on the condition in line 4, then the |T(Di,pi)| are executed and the Gaussian
process is trained with the computed posterior (line alg:TrainAgain).
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Algorithm 8: Predictive adaptive constrained statistical testing

Require: OP = {(Di, pi)|i ∈ {1, ...,L},∑L
i=1 pi = 1}

Δ : maximal allowed test time
1−α : confidence level
d : margin of error

//1. Initialization
TOP = computeIntialTestCases(OP)
{(Di, pi, μ̂i,σi

2,β1
i,β2

i)|i ∈ {1, ...,L}}=
computePriorFailureRate(TOP)
t = 0 //Gaussian process training
for (μ̂i, |T(Di,pi)|) do

5: train Gaussian process fi(|T(Di,pi)|)
end for

Repair faults if failures are revealed
//2. Adaptive constrained test selection
while true do

(TOP, opt) =
computeOptimalTestCases({(Di, pi, μ̂i,σi

2,β1
i,β2

i)|i ∈
{1, ...,L}}})

10: if Δ passed or (opt = L∧SC(TOP) = 100%) then

break;
end if

{(Di, pi, μ̂i,σi
2,β1

i,β2
i)|i ∈ {1, ...,L}}=

computeOrPredictPosteriorFailureRate(TOP,{(Di, pi, μ̂i,σi
2,β1

i,
β2

i)|i ∈ {1, ...,L}})
Repair faults

15: opt = 1
t = t +1

end while

return R̂ = ∑L
i=1 pi.(1− μ̂i), var[R̂] = ∑L

i=1 pi
2 σi

2

|T(Di ,pi)
|
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Many researches are showing that software faults can be well predicted
using software metrics (e.g., [36], [49], or [55]). Consequently, if such
metrics are available it would make sense to model them as independent
variables (in addition to the number of test cases) in the Gaussian process
fi of the failure rate. In Section 6.1.2, we show experimentally that consid-
ering software metrics can indeed increase the accuracy of our prediction
model.

Algorithm 9: computeOrPredictPosteriorFailureRate

Require: OPnew = {(Di, pi, μ̂i,σi
2,β1

i,β2
i))|i ∈ {1, ...,L}}

for (Di, pi, μ̂i,σi
2,β1

i,β2
i)) ∈ OPnew do

μ̂i ← μt,i(|T(Di,pi)|)
σi

2 ← σt,i
2(|T(Di,pi)|)

if ¬((σi
2 <

(β1
i+|T(Di ,pi)

|)β2
i

(β1
i+β2

i+|T(Di ,pi)
|)2(β1

i+β2
i+|T(Di ,pi)

|+1)
)∧ (μ̂i <

β1
i+|T(Di ,pi)

|
β1

i+β2
i+|T(Di ,pi)

| )) then

5: execute the |T(Di,pi)| test cases
k ← number of failures after execution
//update statistics
μ̂i ← β1

i+k
β1

i+β2
i+|T(Di ,pi)

| see equation (3.28g)

σi
2 ← (β1

i+k)(β2
i+|T(Di ,pi)

|−k)

(β1
i+β2

i+|T(Di ,pi)
|)2(β1

i+β2
i+|T(Di ,pi)

|+1)
see equation (3.29b)

train Gaussian process fi with the new independent variable
|T(Di,pi)| and the new dependent variable σi

2

10: end if

end for

return {(Di, pi, μ̂i,σi
2,β1

i,β2
i)|i ∈ {1, ...,L}}

3.12. Asymptotic Analysis

In the following, we prove the termination of algorithm 7, when Δ (maximal
allowed test time) is set to Δ = ∞.
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We also prove that our algorithm asymptotically converges to optimal
stratified sampling.

Theorem 3

The adaptive constrained test selection algorithm terminates with prob-
ability one, if Δ = ∞

Proof : Let μl , be the true failure rate of a sub-domain Dl (l ∈{1, . . . ,L}).
Assume, that nl test cases are selected from Dl and the test cases has
the outcome X1,l , . . . ,Xnl ,l . Suppose that k failures are observed, mean-
ing ∑nl

i=1 Xi,l = k.

Now, let β1 > 0 and β2 > 0 be the parameters of the Beta prior of
the estimate μ̂l of μl . From equation (3.28g), we know that:

μ̂l = E[μl ] =
β1 + k

β1 +β2 +nl

and:

σl
2 = var[μl ] = E[(μl − μ̂l)

2] =
(β1 + k)(β2 +nl − k)

(β1 +β2 +nl)2(β1 +β2 +nl +1)

Since k ≤ nl and β1 > 0 and β2 > 0 it follows:

σl
2 ≤ (nl +β1)β2

β1 +β2 +nl)2(β1 +β2 +nl +1)

≤ (nl +β1 +β2)(β2 +β1 +1+nl)

(β1 +β2 +nl)2(β1 +β2 +nl +1)

=
1

β1 +β2 +nl

Consequently, it follows:
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lim
nl→∞

σl
2 = 0 (3.34)

This means, that the posterior variance of the failure rate tend to be
0 as we execute more test cases from sub-domain Di.

Therefore, since both β1 and β2 are fix, we can conclude from the
law of large numbers that:

lim
nl→∞

μ̂l = μl (3.35)

that is, μ̂l converges almost surely to the true failure rate μl .

Since our algorithm returns a confidence interval which contains μl

with a posterior probability of at least 1−α and margin of error d

(i.e., it means the confidence interval has a width 2d), it follows from
equation (3.35), that the posterior probability P(μ̂l −d ≤ μl ≤ μ̂l +d)

must converge almost surely to 1 as nl → ∞.

Theorem 4

The adaptive constrained test selection algorithm converges asymptoti-
cally to optimal stratified sampling

Proof : Our approach adjusts the test allocation at each iteration to 100%
similarity to the operational profile, which means that our approach is
in fact a proportional stratified sampling.

From theorem 3, we proved in equation (3.34) that the variance of
the failure rate of each sub-domain Dl converges to 0 as nl → ∞. This
means, that asymptotically, the standard deviations of the failure rate
in all sub-domains are all equal, more precisely equal to 0. According
to theorem 2, it follows that our sampling scheme converges asymp-
totically to optimal stratified sampling.
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3.13. Discussion

After each iteration of our approach, if failures are revealed, then the re-
sponsible faults are repaired. Therefore, one could argue that after repairing
the faults the failure rate is expected to decrease. However, our approach
assumes that the failure rate remains the same after fault repair. We defend
our decision on the ground that there is no quantifiable measure of the con-
tribution of individual faults to the failure rate of the software as proposed
by [58].

However, our approach does not consider the case when a fault repair
introduces new faults and hence increases the failure rate. In order to ad-
dress such a limitation, a model for fault-repair operation may be needed to
account for erroneous fault repairs. The development of such a model can
be considered as a future work.
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4. Adaptive Constrained Weighted
White-Box Statistical Testing

In this Chapter, we consider the case where in addition to the operational
profile of the software component under study, we have access to the source
code implementing the component. Our goal is to make use of the infor-
mation provided by the source code to enhance the black-box approach
presented in Chapter 3 by further reducing the number of test cases to be
executed to reach a required statistical confidence on the reliability esti-
mate.

Before introducing our approach, it is necessary to introduce the follow-
ing terms. we differentiate between two type of faults [96]: (i) domain
faults, and (ii) computation faults. Domain faults are faults in the control
flow of the program, which cause the execution of the wrong program paths
for some inputs because they create a shift in the input boundaries of the
the program path. Computation faults are faults that cause the wrong com-
putation of a function for one or more inputs.

4.1. Problem Definition

The black-box approach we developed in Chapter 3 is based on the princi-
ple of optimal stratified sampling. The goal of optimal stratified sampling
is to decrease the variance of the failure rate within each sub-domain to
decrease the overall variance of the reliability estimator. This can be illus-
trated using the Anova (Analysis of variance) principle as follows:
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var(total) = var(within sub-domains)+ var(between sub-domains)

Since per construction, the operational profile sub-domains are disjoints,
and since we assume that the test cases outputs are independent (assumption
2 in Section 3.4), then it follows var(between sub-domains) = 0.

Consequently, the goal of the black-box approach we presented in Chap-
ter 3 is to reduce the variance of the failure rate within each sub-domain of
the operational profile.

If, we could reduce the variance of the failure rate in each sub-domain we
could reduce the required test cases to execute from each sub-domain. More
precisely, if the sub-domains were homogeneous, then we would require to
execute only one test case from each sub-domain.

Different studies has been conducted to compare the performance of ran-
dom testing and partition testing ([34], [94]), where the results were con-
form to the theory of stratified sampling (see Section 2.5). The results con-
firm that for the same testing effort, partition testing is more cost effective
than random sampling only if proportional sampling is used. Furthermore,
if the partitions are homogeneous then the number of test cases required by
partition testing will be significantly reduced compared to random sampling
(since only one test case is needed for each partition). However, homoge-
neous partitions of the input domain are very difficult to obtain in practice,
as we show in Section 4.2.

We present in the following an approach to transform the given oper-
ational profile sub-domains in fine-grained ones by using the information
provided by the source code. The goal is to define new sub-domains which
are more or less homogeneous. These sub-domains will be then used to
generate statistical test cases to assess the reliability of the software under
study. We compute for each of the new defined sub-domains a probability.
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This probability weigh the contribution of each test case execution on the
overall reliability estimate.

4.2. Research Goals

The failure rate of a software program when executed with inputs from a
sub-domain Di, i∈{1,...,L} is the failure rate of the possible program execu-
tions induced by the inputs of Di, i∈{1,...,L}. It would be ideal if we could
separate successful program execution from the failing ones. However, this
is not likely, as explained in Section 3.1.

A program execution is a program path executed with an input value from
the program’s input domain. A program path is a sequence of statements,
and each program path defines an equivalence class on the input values
which can execute it. Consequently, the failure rate of the program when
executed with inputs from Di, i∈{1,...,L} is the failure rate of the possible
program paths when executed with inputs from that sub-domain.

We propose the stratification of each sub-domain Di, i∈{1,...,L} into parti-
tions of inputs, where each partition executes a program path (i.e., similar
program executions). Each partition (i.e., strata) is then a program path.

Symbolic execution (definition can be found in Section 2.8) is a tech-
nique for grouping program inputs which produce the same symbolic out-
put. The output of symbolic execution is a set of path conditions. A path
condition is a set of constraints on the program inputs. The satisfaction
of the constraints lead to the execution of the program path represented by
the path condition. If we assume that the symbolic execution of a program
always terminates (we will relax this assumption in Section 4.8), then all
path conditions define a complete partition of the input domain. Therefore,
the path conditions define the strata of our stratification scheme. The inputs
which satisfy a path condition lead to the execution of the corresponding
program path.
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The inputs satisfying a path condition are not necessarily homogeneous.
If the program path contains some faults, then some inputs would still ex-
ecute failure-free. For example the shifts caused by domain faults can be
very small, then most of the inputs would execute failure-free. Further-
more, arithmetic overflow failures are data-dependent which would contra-
dict with homogeneity assumption of the path conditions.

[96] proposed a technique to detect domain faults. The technique gen-
erates test inputs in the boundaries of the input domain of each program
path to detect possible shifts. However, it is difficult and impractical to de-
termine the input domain boundaries of each program path, which would
require among other thing the exhaustive counting of all inputs satisfying
the path condition representing the program path. A practical alternative to
the above technique is to randomly execute inputs for each program path
to increase the probability of revealing both domain faults and computation
errors.

Consequently, since the inputs executing a program path are not truly
homogeneous, then more than a test case pro program path is required. The
important question that arises is for each path condition, how many input
values which satisfy that path condition should be selected?

Furthermore, the program paths induced by the path conditions are not
equally likely to be executed when the program is executed according to the
operational profile. Consequently, the next question that arises is: which
program paths are likely to be executed and how probable is the execution
of each program path?

The goal of this Chapter is to present an approach to compute the prob-
ability of execution of a path condition given an operational profile, which
is the answer for the second question.

The fist question is answered by using our black-box approach we pre-
sented in Chapter 3. We give the black-box approach as input the program
path conditions together with their probability of execution as the new sub-
domains of the original operational profile.
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We have published part of the following results in [73].

4.3. Assumptions

We adopt the same assumptions as in Section 3.4, with the following ex-
ceptions:

• We relax assumption 5 in 3.4 as follows: we assume that failures are
uniformly distributed over the program paths.

• We assume that the input domain of the software under study is finite.

4.4. Motivating Example and Challenges

Consider the code in Figure 4.1. Assume we want to estimate the probabil-
ity of not reaching line 9, where an exception can arise. Assume the input
variables x and y range over the integer domain [1...100]. The input domain
has then 102 ×102 = 104 possible input values.

Figure 4.1.: Illustrative example and its symbolic execution tree

Consider the symbolic execution tree in Figure 4.1. Each node in the tree
is a branching constraint over the program inputs.

Assume now, that we want to compute the probability of executing the
statement assert false at line 9. The are two path conditions which would
execute line 9:
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1. PC1 = Y = X ∗10&![X > 5&Y > 10]

2. PC2 = Y =!X ∗10&![X > 5&Y > 10]

where ! stands for the logical not.
If we assume that the inputs are uniformly distributed within the input

domain, then the probability of line 9 is:

P(line 9) = P(PC1)+P(PC2)

The probability of executing PC1, is defined as:

P(PC1) =
#(x,y) satisfying PC1 given that x ∈ [1,100] and y ∈ [1,100]

cardinality of the input domain

=
cardinality of the solution space of PC1 given the defintion domain

cardinality of the input domain

Since the constraints in the program in Figure 4.1 are all linear, we can
use model counting, to count for each constraint the number of values from
the input domain that satisfy that constraint (the counter is in bracket under
each constraint). Based on the counting result of the solution space of each
constraint we can compute P(line 9):

P(line 9) =
6

10000
+

1454
10000

= 0.146

However, when the path constraints are not linear (e.g, contain cosine,
sine functions, etc,.), then model counting cannot be used. In the following,
we motivate our idea in computing the solution space of path conditions
even if it contains non-linear constraints.

4.4.1. Constraints Solution Space Computation

When solving a constrained problem, one is usually interested in finding
one solution or assessing that there is no solution at all. However, knowing
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the number of solutions can give a new perspective on the constrained prob-
lem. In mathematics, a set of linear inequalities form a bounded geometric
object. A solution to the set of inequalities is one point in the geometric
object. The number of possible solutions is the volume of the geometric
object. In the context of program analysis, each path condition is repre-
sented as a Boolean combination of constraints. Knowing the volumes of
the path conditions allows to compute the probability of executing each
path condition.

4.4.2. Interval Branch-and-Prune Algorithms

Consider a vector x = (x1, . . . ,xn) ∈ Rn of unknowns. A constrained prob-
lem is defined by a set C = {c1, . . . ,cl} of l constraints and a bounded do-
main Dx = Dx1 × . . .×Dxn where xk ∈ Dxk := {r ∈ R|ak ≤ r ≤ bk},k =

1, . . . ,n.
The solution set of the constrained problem, defined by the constrains

set C, is the set of tuples from x that satisfy all the constraints in C. Count-
ing the solution set of a constrained problem defined over continuous do-
mains involves computing an integral over the geometric object formed by
the constraints. However, the constraints may contain nonlinear expres-
sions which can be not differentiable. For this reason, the solution set
can be approximated using interval analysis techniques such as Interval
Branch-and-Prune algorithms [48]. Interval Branch-and-Prune algorithms
generate a set of n−dimensional boxes whose union define the solution set
of a constrained problem. Such algorithms alternates iterativ branch and
prune tasks to generate boxes from the initial bounded domain defined by
the Cartesian product Dx. The algorithm stops when a fixed precision is
reached. The pruning task eliminates inconsistent values and hence reduces
the size of a box. The branch task splits the box into smaller boxes [48].
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4.5. Overview of the Approach

Figure 4.2 depicts the approach for the adaptive white-box statistical test-
ing. The approach takes as input (i) the source code of the software pro-
gram, (ii) the expected operational profile and (iii) the reliability assessment
goals (i.e, required confidence on the reliability estimate). The approach is
based on the ability to execute the source code symbolically. Symbolic
execution outputs a set of path conditions. We present in Section 4.8 an
extension of symbolic execution, which is probabilistic. The probabilistic
symbolic execution gets as input (i) the source code, and (ii) a probabilistic
bound. The probabilistic bound is a replacement for the static bound usu-
ally set in the context of bounded symbolic execution to limit the symbolic
search. The goal of the bound is to avoid the problem of path explosion in
the presence of looping constructs. In contrast to state-of-the-art symbolic
execution approaches, we control the symbolic execution using a proba-
bilistic bound and not a static one which has no quantitative relation to the
reliability estimation goal. The probabilistic bound is incrementally up-
dated and is computed based on the reliability assessment goals. During
the symbolic execution of the code, the approach computes the probability
of executing each path condition in a compositional manner as shown in
Sections 4.6 and 4.7.

The first iteration of the approach starts with the adaptive constrained
black-box statistical testing, which we presented in Chapter 3. If the stop-
ping criteria as defined in Section 3.9 is not reached, then this means that
failures are revealed. Consequently, the responsible faults should be re-
paired. The adaptive constrained black-box statistical testing approach
computes then the required number of test cases to be further executed.
Based on this number, we compute a probabilistic bound. The probabilistic
symbolic execution uses then the probabilistic bound and the source code
to compute the probability of occurrence of the path conditions. The set of
(PCi, pi) is then the new operational profile, which will used in the next it-
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Figure 4.2.: Adaptive Constrained White-Box Statistical Testing
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erations by adaptive constrained black-box statistical testing. The approach
iterates until the stopping criteria is reached.

In real world programs, the path conditions can very large. Consequently,
the quantification of their solution space can be very expensive. We propose
a compositional approach to compute the probability of executing each path
condition based on the divide and conquer principle as depicted in Figures
4.3 and 4.4. In the divide step in figure 4.3, the path conditions are splitted
into a set of variable-independent constraints. The solution space quantifi-
cation is then executed on each split. In the conquer step in figure 4.4, the
approximations of the splits are merged to compute the probability of each
path condition in a compositional manner.
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Figure 4.3.: Compositional Solution Space - Divide

4.6. Compositional Path Condition Solution Space
Computation

We consider the problem of efficiently computing the solution space of
an individual path condition. A path condition is a conjunction of a set
of branching constraints. In real world applications, a path condition can
be very large (i.e., include a large number of branching constraints). We
propose to split a path condition into disjoint sets of branching constraints
whose solution space can be determined independently from each other.

Each branching constraint defines a relation between its variables. Each
variable has a definition domain. A constraint ranges over a given defini-
tion domain and specifies which values from the domain of its variables
are compatible to the relation. More formally, we introduce the following
definitions.
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Figure 4.4.: Compositional Solution Space - Conquer

Definition 29

(Branching Constraint). A branching constraint c is a triple <Vc,Bc,Rc>,
where Vc is a set of l variables <v1,v2, . . . ,vl>, Bc is the Cartesian prod-
uct I1 × I2, . . .× In with Ik the definition domain of variable vk, and Rc

the constraint relation defined as:
Rc ⊆ {<i1, i2, . . . il>|i1 ∈ I1, i2 ∈ I2, . . . , il ∈ Il}
Rc is a subset of the Cartesian product I1 × I2, . . . Il with Ik the definition
domain of variable vk and ik a possible value for variable vk.

The definition of a path condition follows from the definition of a branch-
ing condition as follows:

Definition 30

(Path Condition). A path condition Φ is a triple <VΦ ,BΦ ,CΦ> where VΦ

is a set of n variables <v1,v2, . . . ,vn>, BΦ (a box) the Cartesian product
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I1 × I2, . . .× In of the variables definition domains where each variable vi

ranges over the interval Ii, and CΦ is a finite set of branching constraints
expressed as linear or nonlinear equations or inequalities on subsets of
the variables V . Consequently, a path condition can be defined as Φ =∧

ci∈CΦ ci = <VΦ ,BΦ ,CΦ>.

Now we move to the definition of the solution space of a path condition.
We start with defining a solution to a branching constraint:

Lemma 1

(Branching Constraint Solution). A solution of a branching constraint
c = <Vc,Bc,Rc>, is a tuple sc ∈Rc where sc ⊆ Bc.

Our ultimate goal is to characterize the complete set of solutions:

Lemma 2

(Branching Constraint Solution Space). The solution space of a branch-
ing constraint c = <Vc,Bc,Rc>, is a set of tuples Sc ⊆ Bc where:

• ∀ s ∈ Sc : s ∈Rc (only solutions inside the set)

• ∀b∈Bc b �∈ Sc : b �∈ Rc (no solutions outside the solution space)

We propose to split a path condition into a set of disjoint branching con-
straints that have input variables in common. We define dependent con-
straints as follows:

Definition 31

(Dependent Branching Constraints). Two branching constraints ci =

<Vci ,Bci ,Rci> and ck = <Vck ,Bci ,Rck> are called dependent if: Vci ∩
Vck �= /0.

We introduce now a dependency relation among the constraints of a path
condition:
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Definition 32

(Constraint Dependence Relation). The constraint dependence relation
DEP : C × C → Boolean, where C a set of constraints, is recursively
defined as follows:

• ∀c ∈ C : DEP(c,c) = true

• ∀ci,c j ∈ C, if Vci ∩Vck �= /0, then DEP(ci,c j) = true

• ∀ci,c j,ck ∈ C, if DEP(ci,c j) = true∧DEP(c j,ck) = true, then
DEP(ci,ck) = true

Intuitively, two constraints are dependent if they share at least one input
variable.

Lemma 3

(Independent Branching Constraint Solution Space). The solution space
of the conjunction of two independent branching constraints ci and c j is
S(ci∧c j) = Sci ∪Sc j .

The dependency relation allows us to split a path condition in a set of
disjoint sets containing independent constraints.

Definition 33

(Path Condition Split). We can split the formula of a path condition
Φ =

∧
ci∈C ci = <VΦ ,BΦ ,CΦ> into mutually exclusive and collectively

exhaustive sets of constraints (or sub-formulas) based on the constraint
dependence relation DEP as follows:

• CΦ = ∪i∈{1,...,m}Cs
i

• For i �= j, the sets Cs
i and Cs

j are disjoint: Cs
i ∧Cs

j = /0.

• ∀ci,c j ∈Cs
k: DEP(ci,c j) = true

• ∀ci ∈Cs
i and ∀c j ∈Cs

j: DEP(ci,c j) = f alse
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The splitted path condition Φ is defined then as: Φsplit = Φ1 ∧Φ2 ∧ . . .∧
Φm, where Φi =

∧
ck∈Cs

i
ck = <VΦi ,BΦi ,C

s
i >.

Note that the dependency relation (see Def. 32) is by construction an
equivalence relation over the set of constraints. Note also that for two in-
dependent constraints c1 and c2, the satisfaction of c1 is independent from
the satisfaction of c2. Additionally, for two independent constraint sets C1

and C2, the satisfaction of the constraints in C1 is independent form the
satisfaction of the constraints in C2.

Lemma 4

(Path Condition Solution Space). The solution space of a path condition
Φ =

∧
ci∈C ci = <VΦ ,BΦ ,CΦ> is a set of tuples SΦ ⊆ BΦ where:

• ∀S∈SΦ∀s∈S∀c ∈ C : s ∈Rc (only solutions for all path constraints
inside the set)

• ∀B⊂BcB �⊂ SΦ : ∃b∈B b �∈ Rc (no solutions outside the solution
space)

• SΦ = SΦsplit = ∪i∈{1,...,m}SΦi

Remarks. The composition of the solution space of a path condition
allows us to split the quantification of the solution space of a large path
condition into the analysis of smaller and simpler constraints. This allows
to parallelize the quantification procedure of the solution space. It also
allows us to reuse already quantified constraints (i.e., caching).

4.6.1. Solution Space of Constraints over Finite Floating
Domains

We consider now the problem of counting the solution space of constraints
defined over finite floating domains. Counting the solution set of con-
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straints defined over continuous domains involves computing an integral
over the geometric object formed by the constraints. However, the con-
straints may contain nonlinear expression which are not differentiable. For
this reason, we approximate the solution space of a conjunction of depen-
dent constraints with a set of boxes that cover the exact solutions of the
constraints. The union of the boxes is an over-approximation of the solu-
tion space but never an under-approximation.

The boxes representing the solution space are extracted using constraint
propagation techniques [67]. Constraint propagation techniques implement
local reasoning on constraints to eliminate inconsistent values from the def-
inition domains of the constraints variables. Such techniques prune and
subdivide the definition domain of the constraints until a stopping criteria
is satisfied. Note that the definition domain of the constraints as a Carte-
sian product of intervals is a set of boxes (See Def. 30 and Def. 29). The
following definitions are adapted from [67], [9] and [10].

Definition 34

(Consistency). A set B ⊆ BΦ is consistent with a path condition Φ =∧
ci∈C ci = <VΦ ,BΦ ,CΦ> iff it contains at least one solution of Φ . Oth-

erwise, it is called inconsistent.

In order to eliminate input values that do not satisfy a constraint, a pro-
jection function is associated with each constraint:

Definition 35

(Projection Function). For a path condition Φ =
∧

ci∈C ci = <VΦ ,BΦ ,CΦ>,
a projection πc of a constraint c ∈ CΦ with a solution space Sc, is a map-
ping between the subsets of BΦ where ∀B ⊂ BΦ :

• πc(B)⊆ B

• ∀b∈B b �∈ πc(B) : b �∈ Sc
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Usually the implementation of projection functions relies on interval
analysis methods (e.g., the interval newton method). The set of projection
functions associated with the constraints are then used to eliminate values
from the definition domain that do not satisfy the constraints. The pruning
of a box is done using constraint propagation. When a projection func-
tion eliminates a value of a variable, this information is propagated to the
other constraints depending on that variable. This process terminates when
the projection functions cannot further eliminate values (i.e. cannot further
reduce the size of the boxes).

Definition 36

(Constraint Propagation). For a path condition Φ =
∧

ci∈C ci = <VΦ ,BΦ ,CΦ>,
let πCΦ be the set of projections for all the constraints CΦ . Constraint
propagation CP defines a mapping between the the subsets of BΦ where
∀B ⊂ BΦ :

• CP(B)⊆ B (contractance)

• ∀b∈B b �∈ CP(B) : ∃c ∈ CΦ b �∈ Sc (correctness)

• ∀π∈πCΦ
π(CP(B)) = CP(B) (fixed point)

The pruning level we can achieve using constraint propagation is depen-
dent on the ability of the projection function to identify value combinations
that do not satisfy the analyzed constraint [10]. However, projection func-
tions do not miss any solution [10]. In order to further prune the result
boxes, the boxes are subdivided and constraint propagation is applied to
each sub-box. Such algorithms are called branch-and-prune algorithms.
Such algorithms terminate when for example the box is judged too small to
be considered for branching.

Constraint reasoning techniques do not loose any solution during the pro-
cess of approximating the solution space of a set of constraints. Conse-
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quently, using such techniques, we get a safe enclosure for the solution
space of a constraint.

Constraint reasoning techniques maintain two coverings for the solution
space SΦ of path condition Φ . We assume that the variables VΦ are defined
over R, i.e., BΦ ⊆ R|VΦ |

Definition 37

(Outer Box Cover). An outer box cover of SΦ is a set of disjoint boxes
S�

Φ = {B1, . . . ,Bn} where:

• ∀i∈{1,...,n}Bi ⊆ BΦ ∧vol(Bi)> 0

• ∀i, j∈{1,...,n}∧i�= j vol(Bi ∩B j) = 0

• SΦ ⊆⋃n
i=1 Bi

vol(Bi) is computed as the product of the intervals forming the box Bi.
Complementary to the concept of outer box cover, we define the concept

of inner box cover.
Definition 38

(Inner Box Cover). An inner box cover of SΦ is a set of disjoint boxes
S�

Φ = {B1, . . . ,Bn} where:

• ∀i∈{1,...,n}Bi ⊆ BΦ ∧vol(Bi)> 0∧Bi ⊆ SΦ

• ∀i, j∈{1,...,n}∧i�= j vol(Bi ∩B j) = 0

•
⋃n

i=1 Bi ⊆ SΦ

The solution space SΦ of the path condition Φ is approximated with
a joint cover of S�

Φ = <S�
Φ ,S�

Φ> of the outer and inner cover box where
S�

Φ ⊆ S�
Φ .

Constraints over Integer Domains and Mixed Domains: The
presented approach works also for integer domains and mixed integer con-

103



4. Adaptive Constrained Weighted White-Box Statistical Testing

strains (i.e., constraints which contain both integer and floating variables).
As suggested in [9], we can handle integer variables as floating variables
when each domain modification is followed by rounding the computed
bounds to the nearest integer inside the interval domain. The resulting inte-
ger value is represented as a point interval to be conform to the definitions
above of the solution space enclosure.

Disjunctive Domains: Consider the case when a variable x is defined
over the union of intervals [−100,2]∪ [7,100]∪ [200,500]. We can define
the variable x over the interval [−100,500] and add the constraint min(x−
2,min(max(7−x,x−100),500−x))≤ 0. Note that such operations are not
differentiable. However, constraint reasoning techniques need only that the
operations can be evaluated over the intervals.

4.6.2. Solution Space of Constraints Over Data Structures

The computation of the solution space for constraints over data structures
deserves special interest. Such constraints are called heap constraints. The
solution space in the case of data structure variables is discrete. Quantifying
the solution space means counting the model formed by the constraints. As
before, we restrict ourselves to finite input domains. Consequently, the
number of possible heap nodes in the input domain is finite.

We propose to use Korat [12] to count the input data structure that sat-
isfy a constraint over data structures within pre-defined bounds. Korat is a
framework for the constraint-based generation of structurally complex in-
puts for Java programs. Korat provides also efficient counting of input data
structures. Korat generates the inputs by solving constraints written as a
boolean method called repOk. The body of such a method can contain any
arbitrary complex predicate. The scope of the input domain is specified us-
ing specific Korat methods. Scope methods are used to specify bounds on
the size of the input data structures and bounds on the definition domain of
the primitive fields of the data structure.
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4.6. Compositional Path Condition Solution Space Computation

We encode the constraints we obtain from symbolic execution as a predi-
cate in the repOk methods. Korat counts then the data structures that satisfy
the constraints for a given scope.

Example: Consider the Java code in Listing 4.1 for swapping a node in a
linked list. The field element represent the integer value of the node. The
field next represent the next node in the list. The method swapNode up-
dates the input list which is referenced by the parameter this. The update
is done through a nonlinear condition on the nodes n and next.

class Node {

int element;

Node next;

5 Node swapNode () {

if(next!=null) {

if(element > next.element) {

//location to analyze

Node n = next;

10 next = n.next;

n.next = this;

return n;

}

}

15 return this;

}

}

Listing 4.1: Example swapping a node in a linked list

We illustrate now the use of Korat to count the data structure models.
First of all we scope our domain, and assume that the nodes can take the
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values 1 or 2. Additionally, we bound the size of the linked list to 2 nodes.
These bounds are passed to Korat via its scope methods.

The path condition to reach the second branching condition in the swapNode
(i.e., the location at line 8) is:

node!=null ∧ node.next!= null ∧ node.next!=node ∧
node.element>node.next.element

We pass the path condition to the repOk method of Korat. The total number
of of valid input data structures that satisfy the path condition under the
specified scope is 17. This means, there is 17 possible inputs to reach the
location at line 8 of the code in Listing 4.1.

Remark: Constraints over numerical domains that contain transitive de-
pendencies on the data structure encoded by the heap constraints are also
counted by Korat.

4.7. Probability of Satisfying a Path Condition

The theory of probability is a classical model to deal with uncertainty. A
probabilistic model is defined by a set of random variables and a set of
events. A random variable is a function from the sample space to the real
numbers. An event is an assignment of values to all the variables of the
model.

We want to compute the probability of satisfying a path condition. In our
case here, the model is the path condition and the random variables are the
variables of the path condition. An event is an assignment of values to the
variables such that the path condition is satisfied.

In order to specify a probabilistic model, a full joint probability distri-
bution should be explicitly or implicitly used. This distribution assigns a
probability measure to each possible event. Such distributions can be pro-
vided by an operational profile.
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Operational profile Example: Consider a method with a single input
variable x defined over a floating domain. A possible operational profile can
be of the form OP = {(x ∈ [1,10],0.3),(x ∈ [20,30],0.7)}. This means that
the probability that the variable x takes values from the interval [1,10] is
0.3 and that it takes values from [20,30] is 0.7.

More formally, an OP can be defined as OP = {(Ci, pi)|i ∈ {1, ...,L},
∑L

i=1 pi = 1}: it is a set of pairs (Ci, pi) where Ci represents constraints over
the definition domain to describe a possible operational scenario, and pi is
the probability that an operational input belongs to Ci.

4.7.1. Probability of a Path Condition over Data Structures

For heap path conditions, we use model counting as described in Section
4.6.2. Let #(ci) denotes the function which counts the number of elements
from a definition domain D, which satisfy ci. The probability of ci is then:
(ci) = #(ci)/#D.
Consider we have the following operational profile, OP = {(Ci, pi)|i ∈

{1, ...,L},∑L
i=1 pi = 1}. For a path condition Φ , it follows from the law of

total probability:

(Φ |OP) =
L

∑
i=1

(Φ |Ci).pi

Furthermore, it follows from the definition of conditional probability:

(Φ |Ci) =
(Φ ∧Ci)

(Ci)

Consequently, we obtain:

(Φ |OP) =
L

∑
i=1

#(Φ ∧Ci)

#(Ci)
.pi
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4.7.2. Probability of a Path Condition over Numeric Domains

Definition 39

(Probability of a Path Condition) The probability of a path condition
Φ = <VΦ ,BΦ ,CΦ> given the indicator function SΦ (x) : R|VΦ | → {1,0}
defined as follows:

SΦ (x) =

⎧⎨⎩1, if x ∈ SΦ

0, if x �∈ SΦ

is defined as:

(Φ) =
∫
BΦ

SΦ (x). fVΦ (x)dx

where fVΦ is a full joint probability density function (p.d.f) over the path
constraint variables VΦ , SΦ the solution space of the path condition and
BΦ the definition domain of the path condition.

Generally, the multidimensional integral in Def. 39 may have no closed
form solution since the constraints of a path condition may define a complex
nonlinear integration boundary. Our approach approximates the solution
space of a path condition with a joint cover S�

Φ = <S�
Φ ,S�

Φ>.
Monte Carlo methods provide an approach to approximate the value of

multidimensional integrals by randomly sampling N points in the multidi-
mensional definition space and averaging the integral values at the samples.
Definition 40

(Monte Carlo Integration) Let SΦ ⊆ R|VΦ |, and B a |VΦ |−dimensional
box. If we sample uniformly N random values {x1, . . . ,xn} inside B, then
by the law of large numbers it follows:

∫
B

SΦ (x). fVΦ (x)dx � ÎSΦ (B, fVΦ ) =
∑N

i=1 SΦ (xi). fVΦ (xi)

N
.vol(B)

108



4.7. Probability of Satisfying a Path Condition

where vol(B) the volume of the box B.

By the central limit theorem, one can estimate the uncertainty in the ap-
proximation of the Monte Carlo integration.

Definition 41

(Standard Deviation of the Estimate) The standard deviation of the ap-
proximation of the integral ÎSΦ (B, fVΦ ) follows from the central limit
theorem as follows:

σ(ÎSΦ (B, fVΦ )) =
vol(B)

N

√√√√ N

∑
i=1

( SΦ (xi). fVΦ (xi))2 − (∑N
i=1( SΦ (xi). fVΦ (xi))2

N

The standard deviation describes a statistical estimate of the error on the
integral approximation.

Definition 42

(Approximate Probability of a Path Condition) Given a joint box cover
S�

Φ = <S�
Φ ,S�

Φ> of the solution space of a path condition Φ , an approx-
imation for the probability of satisfying Φ is:

[ (Φ)] = ∑
Bi∈S�

Φ

[
∑N

i=1 SΦ (xi). fVΦ (xi)

N
.vol(Bi)

]

Monte Carlo Integration may suffer from a slow convergence rate espe-
cially when the approximated integral gets close to zero. One may need
a large number of random samples N to approximate the probability to
some given confidence. Stratified sampling and importance sampling are
well-know techniques to reduce the variance of Monte Carlo integration
methods. We integrate these techniques in our approximation as follows:

Definition 43

(Approximate Probability of a Path Condition) Given a joint box cover
S�

Φ = <S�
Φ ,S�

Φ> of the solution space of a path condition Φ , an approx-
imation for the probability of satisfying Φ is:
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[ (Φ)] = ∑
Bi∈S�

Φ

[
∑N

i=1 SΦ (xi). fVΦ (xi)

N
. (Bi)

]
= ∑

Bi∈S�
Φ

[
p̂i. (Bi)

]

The scheme ∑Bi∈S�
Φ

[
p̂i. (Bi)

]
integrates both stratified sampling and

importance sampling. Each box Bi can be written as the Cartesian prod-
uct of intervals: Bi : [a1,b1]× [a2,b2]× . . .× [ai,bi]. (Bi) is defined then
as: (Bi) = x1([a1,b1]). x2([a2,b2]) . . . xi([ai,bi]) with xi([ai,bi]) =∫ bi

ai
fi(xi)dxi and fi the probability distribution function over the variable xi.

Such a distribution can be specified in an OP.

4.8. Looping Constructs: Incremental Probabilistic Symbolic
Execution

Usually a bound on the exploration depth is set when executing a program
symbolically. Instead of setting a static bound, we introduce a probabilis-
tic bound Pdepth. Given an OP, the user may be interested in only explor-
ing program paths which have a probability higher than Pdepth. Algorithm
10 sketches our extension to symbolic execution to incrementally compute
the path condition probabilities. For a given program starting with state-
ment s, an initial update U0, an operational profile OP, and a probabilistic
bound Pdepth the call of IncProbSymExe(U0,s, true, /0,OP,Pdepth) will return
the path conditions of all feasible paths of the program together with their
computed probabilities. Until a branching condition is found the procedure
accumulates the state changes in form of update expressions (lines 5-7). In
the case of a branching statement a new path condition is constructed for
each branch outcome based of the current path condition Φ and the branch
conditions (cond(s) and ¬cond(s)). Only if a constructed path condition
is satisfiable, algorithm 11 computes its probability (usually SAT solving
is less expensive than model counting). The corresponding branch code
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is further proceeded if the computed probability is higher than the bound
Pdepth. Algorithm 11 splits the conjunction (line 1) as defined in Def. 33. It
then computes the probability of Φ as described in Section 4.7.

Algorithm 10: An abstract incremental probabilistic symbolic execu-
tion procedure – IncProbSymExe
Data: U : Update, s : Statement, Φ : Formula, PCs : Set<Formula>

OP = {(Di, pi)|i ∈ {1, ...,L}, ∑L
i=1 pi = 1}, Pdepth

1 begin

2 if s = /0 then

3 PCs ← PCs∪Φ
4 else

5 while ¬branch(s) do

6 U ← U ◦update(s)
7 s ← next(s)

8 if SAT(Φ ∧{U}cond(s)) then

9 (Φ ∧{U}cond(s))←
computeProbs(OP,Φ ,{U}cond(s))

10 if (Φ ∧{U}cond(s))≥ Pdepth then

11 IncProbSymExe(U ,first(s),Φ ∧{U}cond(s),PCs)

12 if SAT(Φ ∧{U}¬cond(s)) then

13 (Φ ∧{U}¬cond(s))←
computeProbs(OP,Φ ,{U}¬cond(s))

14 if (Φ ∧{U}¬cond(s))≥ Pdepth then

15 IncProbSymExe(U ,first(s),Φ ∧{U}¬cond(s),PCs)

16 return <PCs,Probabilities>

4.9. Adaptive Constrained White-Box Statistical Testing

Algorithm 12 works until line 11 as explained in Section 3.10. If the
stopping criteria (line 6) is not reached, then algorithm 12 executes the
black-box test cases and computes the posterior failure rate (line 9). Then
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Algorithm 11: Compute formula probability and search depth – com-
puteProbs

Data: OP = {(Di, pi)|i ∈ {1, ...,L}, ∑L
i=1 pi = 1},

Φ : Formula,c : Formula
1 begin

2 <Φdep,Φnotdep>= split(Φ ,c)
3 (Φ)← (Φ(notdep)) //Previously computed and in cache
4 (Φ)← (Φ)+ (Φdep|OP)
5 return (Φ)

faults are repaired. Pdepth is computed as 1
|TOP| , where |TOP| is the total

number of test cases that must be executed from the operational profile
(OP). This describes the smallest probability that a test case can take to be
conform to the probability distribution of the operational profile.

Using the computed Pdepth the incremental symbolic execution is called
(line 12) to extract a set of path conditions together with their probability
of satisfaction according to the OP, PCi,P(PCi). Then, algorithm 12 is
recursively called using the new extracted operational profile PCi,P(PCi)

line (13).

4.10. Discussion

In algorithm 12, the incremental symbolic execution is restarted at each
iteration of the algorithm (line 12). This is explained by the fact that after
fault repair, the behavior of the software program is expected to change.
Therefore, it may happen that some path condition disappear after fault
repair. Consequently, it is necessary to restart symbolic execution at each
iteration of the algorithm.

Furthermore, we do use the predictive approach presented in Section
3.11, since the available test inputs per path condition may be not sufficient
to train the Gaussian process.
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4.10. Discussion

Algorithm 12: Adaptive Constrained White-Box Statistical Testing -
adaptiveWhiteBox

Require: OP = {(Di, pi)|i ∈ {1, ...,L},∑L
i=1 pi = 1}

Δ : maximal allowed test time
1−α : confidence level
d : margin of error

//1. Initialization
TOP = computeIntialTestCases(OP)
{(Di, pi, μ̂i,σi

2,β1
i,β2

i)|i ∈ {1, ...,L}}= computePriorFailure(TOP)
Repair faults if failures are revealed
//2. Adaptive constrained test selection
while true do

5: (TOP, opt) =
computeOptimalTestCases({(Di, pi, μ̂i,σi

2,β1
i,β2

i)|i ∈
{1, ...,L}}})
if Δ passed or (opt = L∧SC(TOP) = 100%) then

break;
end if

{(Di, pi, μ̂i,σi
2,β1

i,β2
i)|i ∈ {1, ...,L}}=

computePosteriorFailureRate(TOP,{(Di, pi, μ̂i,σi
2,β1

i,β2
i)|i ∈

{1, ...,L}})
10: Repair faults

Pdepth ← 1
|TOP|

(PCi,P(PCi))← IncProbSymExe(U0,s, true, /0,OP,Pdepth)
adaptiveWhiteBox(PCi,PC�)
opt = 1

15: end while

return R̂ = ∑L
i=1 pi.(1− μ̂i), var[R̂] = ∑L

i=1 pi
2 σi

2

|T(Di ,pi)
|
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5. Verification-Based Reliability
Assessment

In the following we consider a white-box software component, where its
provides and required methods are formally specified (e.g., JML contracts).
Furthermore, we require a specification of its execution environment (e.g.,
provided by using the Palladio Component Model). We use in the following
the KeY theorem prover as the deductive source code verification system
to illustrate our approach. However, we believe that our approach can be
easily extended to other deductive verification systems.

5.1. Problem Definition

Deductive source verification can automatically prove the correctness of a
software with respect to a formal verification. If we formally verify the
software program as well as its environment, then the verification system
would certify the 100% reliability of the software system with total confi-
dence (i.e., perfect reliability). However, usually it is not practical to ver-
ify the software program as well the execution environment. In such as
case only the software program may be verified. In order to consider the
execution environment of the software program, exhaustive testing is ex-
ecuted (verification-based testing). However, exhaustive testing is usually
impractical for real work software systems. Furthermore, without doing
exhaustive testing, we cannot make any statement about the reliability of
the software under study. Existing reliability assessment approaches do
not make use of the certainty gained after the verification of the software
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program and rely on verification for the generation of exhaustive test cases.
Can we make use of the certainty gained from verification for the reliability
assessment to avoid exhaustive testing?

Now, let us assume that verification is only done for the software pro-
gram. Because of the semi-decidability of first-order logic, the KeY theo-
rem prover may never terminate (e.g., because of existing software faults).
If a timeout is set, then KeY would not close all proof obligations, i.e, some
proof obligations will remain open. In such as case, the open branches are
usually exhaustively tested to detect possible faults. However, in order to
estimate the reliability of the software system, the whole software should
be exhaustively tested as explained above.

We believe, however, that the closed proof obligations give us some cer-
tainty about the reliability of the software systems, and the open branches
should reduce our confidence on the software reliability

5.2. Research Goals

Our first goal is to make it possible to assess the reliability of a software
system without explicitly modeling the execution environment in the veri-
fication logic. This would allow us to quantify the reliability of the software
system after verification is done without the need to exhaustively test it to
take the environment into consideration.

The second goal, uses the first goal to quantify the reliability of the soft-
ware system when some proof obligations are open. This means, our goal
is to quantify the uncertainty produced by the open proof obligations on the
reliability estimate.

5.3. Assumptions

The verification-based reliability assessment approach we present in this
Chapter makes use of both the white-box and the black-box approaches
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from Chapters 4 and 3. Consequently, we adopt the same assumptions as
in Section 4.3 and 3.4.

Furthermore, we assume that:

• a specification of the reliability of the execution environment is pro-
vided as described in Section 2.2.4.

• each required method is formally specified in order to be able to run
the verification.

5.4. Motivating Example

Figure 5.1.: Motivating Example - PCM Instance

Deployment Model

«resource container»
Server2

«resource»
CPU2

«resource»
HD1

«resource container»
Server1

«resource»
CPU1

MTTF: 150h
MTTR: 8h

MTTF: 200h
MTTR: 8h

MTTF: 100h
MTTR: 6h

fp:
0.00002

user

delegatedSort

localSort

advancedSort
clusterSort

mergeSort

mergeSortclusterSort

d.size <1000d.size >1000

sort
d.size > 1000 (0.2) / 
d.size < 1000 (0.8)

sort

Usage Model

<<uses>>

<<implements>>

Component Service Behavior Model

<<allocated>>

<<allocated>>

<<allocated>>

Figure 5.1 shows a motivating example for our verification-based reli-
ability assessment approach. The example shows a Palladio Component
Model instance. The example consists of three software components. The
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/*@ ensures isSorted(\result); *@/
public Data delegatedSort(Data d){
if(d.size < N){

5 return mergeSort(d);
}else{
return clusterSort(d);

} }

10 /*@ ensures ...; *@/

public boolean isSorted(Data d);

/*@ ensures isSorted(\result); *@/
15 public Data mergeSort(Data d);

/*@ ensures isSorted(\result); *@/
public Data clusterSort(Data d);

Figure 5.2.: Motivating example Code

delegatedSort component requires an advancedSort component and
a localSort component. The dependencies between the components is
described by the component service behavior model.

The provided method sort is supposed to sort the data of a class Data
which is provided as argument d. If the size of the data is smaller than
some number 1000, then the method mergeSort provided by the compo-
nent localSort is invoked to perform the sorting, otherwise the method
clusterSort provided by the component advancedSort is invoked.

The usage model specifies how the provided method sort will be called
by the user. According to the usage model, we expect that d.size > 1000

in 20% of the cases, and d.size < 1000 in 80%. The Palladio Component
Model uses the usage model and the component service behavior model to
solve parameter dependencies, and output an operational profile for each
provided method.

Assume now that the component advancedSort is a COTS compo-
nent and its code is not available. We use then our black-box reliabil-
ity assessment approach to estimate the reliability of its provided method
clusterSort. Assume that the component localSort is not planned for
formal verification, but its source code is at hand. We use then our white-
box reliability approach to estimate the reliability of the provided method
mergeSort.
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Using KeY the correctness of the implementation in Figure 5.2 of deleg-
atedSort wrt. its specification can be easily proved—but, how reliable is
the method in practice?

The deployment model as depicted in Figure 5.1, defines the execution
environment consisting of physical computing nodes connected via net-
work links. Each component is deployed on a physical computing node.
The availability of each physical node can be computed as described in
Section 2.2.4. Furthermore, the method clusterSort is called via net-
work and the failure probability of the network should be considered when
estimating the reliability.

5.5. Reliability Assessment When Proof Attempt Succeeds

Assume, that we used KeY to verify the correctness of the provided method
sort of the component delegatedSort and the proof attempt succeeded.
In such a case we obtain a set of closed proof obligations with PCs, PCc =

{PCc
1,PCc

2, . . . ,PCc
m}.

The reliability of the software is thus estimated as:

R̂ =
m

∑
i=1

(PCc
i |OP).(1−FRi)

where (PCc
i |OP) the probability of executing the path condition PCc

i

given the operational profile OP, computed as explained in Chapter 4.
Let M be the set of required methods called within PCc

i , that is M =

{m1
required , . . . ,m

|M|
required}. Then, FRi is defined as follows:

FRi = (1−Av(ei)).
|M|

∏
j=1

μ̂(m j
required).r

j
cr

FRi = 1−Av(ei).
|M|

∏
j=1

(1− μ̂(m j
required)).r

j
cr
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with Av(ei) the availability of the execution environment where the pro-
gram path represented by PCc

i is executed (i.e, the availability of the phys-
ical computing node where the component delegatedSort is deployed),
and μ̂(m j

required) is the failure rate of the method m j
required , and r j

cr is the
reliability of call and return of the required method m j

required defined as:

• r j
cr = 1, if m j

required is called within the same physical computing node
as the program path represented by PCc

i .

• r j
cr = (1− f p(L))2, otherwise, where f p(L) is the failure probabil-

ity of the network link used for the two message transports call and
return.

A software component per definition should encapsulate its state or be-
havior behind an interface. Furthermore, a component is only dependent on
its framework and other components in its operating environment, where
the dependencies are explicitly defined through the required and provided
interfaces.

Therefore, we can assume that the failure rate of the required methods
M = {m1

required , . . . ,m
|M|
required} called within PCc

i are independent.
The failure rate of m j

required can be estimated using:

• the black-box reliability assessment approach presented in Chapter
3, if the component implementing m j

required is black-box

• the white-box reliability assessment approach presented in Chapter
4, if the component implementing m j

required is white-box

• the approach presented in this Section, if m j
required is implemented by

a component we want to formally verify its correctness

In all cases, a failure rate μ̂m j
required

and a variance σ̂2
m j

required
are estimated

for each m j
required .

Recall that for independent random variables X1, . . . ,Xn, we have:
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var(
n

∏
i=1

Xi) = E[(
n

∏
i=1

Xi)
2]− (E[

n

∏
i=1

Xi])
2

= E[(
n

∏
i=1

Xi
2)]− (

n

∏
i=1

E[Xi])
2

=
n

∏
i=1

E[Xi
2]−

n

∏
i=1

(E[Xi])
2

=
n

∏
i=1

(var(Xi)+(E[Xi])
2)−

n

∏
i=1

(E[Xi])
2

Consequently, the variance the failure rate for PCc
i can be computed as

follows:

σ̂2
i =

|M|

∏
i=1

(σ̂2
m j

required
+(μ̂m j

required
)2)−

n

∏
i=1

(μ̂m j
required

)2

Now using equation (3.5b), the variance of the reliability estimate R̂ can
be computed as follows:

var(R̂) =
m

∑
i=1

(PCc
i |OP)2 σ̂2

i
ni

=
m

∑
i=1

(PCc
i |OP)2 σ̂2

i
#(OP) (PCc

i |OP)

=
m

∑
i=1

(PCc
i |OP)

σ̂2
i

#(OP)

where ni the number of test cases (samples) executed from PCc
i , defined

as ni = #(OP) (PCc
i |OP), with #(OP) the cardinality of the input domain

which we assume finite. Since PCc
i is verified as correct, this means that all

possible inputs satisfying PCc
i will execute it correctly. Since the variance

σ̂2
i is computed based on the fact that PCc

i is verified as correct, then it
follows that ni is the number of all test cases that can execute PCc

i .

121



5. Verification-Based Reliability Assessment

Now, if a confidence level 1−α is required for the reliability estimate
R̂ with a margin of error d, then we can compute based on the variance
var(R̂), the actual margin of error as:

z α
2

√
var(R̂)√
#(OP

where z α
2

is the upper α
2 critical value for the standard normal distribution.

If d < z α
2

√
var(R̂)√
#(OP

, then testing is required. In such a case, since all PCs

are correct, then the black-box reliability assessment approach presented in
Section 3.10, can be used to decrease var(R̂) and hence decrease the margin
of error d.

5.6. Reliability Assessment When Proof Attempt not Succeed

If the proof attempt does not succeed, then we obtain open proof obligations
with PCs, PCo = {PCo

1 ,PCc
2, . . . ,PCo

p}. Here we differentiate between two
cases: (i) some proof obligations are closed, (ii) all proof obligations are
open.

5.6.1. Some Proof Obligations are Closed

In such as case we can estimate the reliability as well as its variance as
shown in Section 5.5.

The PCos decrease our confidence on the reliability estimate to c =

1−∑p
i=1 (PCo

i |OP). If the confidence c or the reliability estimate R̂ are
less than the user required values, then we execute statistical testing only on
the PCos. The PCs identified by KeY define disjoint input sets of the soft-
ware program. Consequently, symbolic execution defines a fine grained
representation of the OP: OPsym = {(PCi, (PCi|OP))|i = 1,2, . . . ,(n +

p),∑n+p
i=1 (PCi|OP)) = 1} that we use as input to our adaptive test selec-

tion approach. The approach uses the symbolically estimated reliability and
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the fine grained OPsym to efficiently select test cases across the PCs. As-
sume that the adaptive selection approach requires that nc test cases should
be selected from the PCcs and no from the PCos. We do not execute PCcs,
but we take their failure rates, the variances of the failure rate as well as
the probabilities of PCc to be executed into account when computing the
required number of test cases to estimate the unknown failure rate of the
PCos and bound its unknown variance. Therefore, instead of executing
no +nc test cases, we execute only no test cases.

5.6.2. All Proof Obligations are Open

In such as case, the white-box reliability assessment approach is used to
estimate the reliability and its variance.

5.7. Recursive Method Calls and Looping Constructs.

In our approach we treat recursive method calls and looping constructs by
bounded unrolling. This allows full automation of the approach. The stan-
dard solution is to set a static bound on the exploration depth. We guide the
construction of the proof tree based on the user required reliability goal.
Based on user reliability goal, our adaptive white-box approach (See Sec-
tion 3) computes the required number n of test cases to be executed to
reach the target reliability goal. Each test has a corresponding PC. Given
an OP = {(Di, pi)|i = 1,2, . . . ,L,∑L

i=1 pi = 1}, each test execution from a
subdomain Di has at least the probability pi/n. At each unrolling attempt
of a loop we compute the probability of the obtained PC and unroll the loop
if (PC|Di)< pi/n. This bound is computed based on the reliability goals
and adaptively updated after test cases are executed and reliability goals not
reached (see previous section when proof attempt not succeeds).
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In this Chapter, we experimentally evaluate the goal of our approach in
reducing the number of test cases required to reach a target confidence
on the reliability estimate. Our approach is composed of three techniques
(i) Black-Box reliability assessment, (ii) White-Box reliability assessment,
and (iii) Verification-based reliability assessment. Consequently, we exper-
imentally evaluate the ability of each of the three techniques in reducing
the testing overhead. A subset of the presented case studies have been pre-
sented in our publications [72] and [73]. Furthermore, we study the ability
of our approach in reducing the sensitivity of the reliability estimation to
variations of the operational profile.

6.1. Black-Box Reliability Assessment

The goals of the following experimental validation are:

1. validate the reliability estimation efficiency and accuracy of the black-
box reliability assessment approach compared to state-of-the-art sta-
tistical testing approaches

2. validate the prediction accuracy of the non-parametric reliability pre-
diction model compared to state-of-the-art reliability models

6.1.1. Reliability Estimation Efficiency and Accuracy

We conduct a set of experiments on two real subject programs to evaluate
the performance of the adaptive constrained statistical test selection (AC-
STS) approach against the standard proportional test selection approach as
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proposed by Musa [69] (PS), and the (theoretical 1) optimal test selection
approach (OS) with respect to the estimated reliability accuracy and preci-
sion.

6.1.1.1. Subject Programs

Two real subject programs are used to evaluate the efficiency of ACSTS:
TCAS: Traffic Alert and Collision Avoidance System prevents aircraft

from midair collisions. The correct versions, 41 faulty versions of the pro-
grams as well as a suite of 1608 test cases were downloaded from [84].
TCAS is 173 LOCs big.

Space: a language oriented user interface developed by the European
Space Agency. It allows the user to describe the configuration of an array
of antennas with a high level language. The correct version as well as the 38
faulty versions and a test suite of 13,585 test cases are downloaded from
the software-artifact infrastructure repository (http://sir.unl.edu). In these
experiments, three faulty versions are not used because we did not find test
cases that failed on these faulty versions. Space is 9126 LOCs big.

A failure of an execution is determined by comparing the outputs of the
faulty version and the correct version of the program. A failure is a devia-
tion from the expected output. The failure rates for both studied programs
are empirically computed by executing all the available test cases against
each faulty version of a program and recording the number of failed test
cases.

6.1.1.2. Operational Profiles

Operational profiles for TCAS and Space are not available. We create op-
erational profiles for TCAS and Space as follows. We assume that in each
sub-domain Di, all possible inputs are equally likely to arise. Hence, it fol-
lows that the number of sub-domains (greater or equal to two sub-domains)

1We assume here that we know the failure rates in advance, and we sample accordingly
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6.1. Black-Box Reliability Assessment

as well as the number of inputs in each sub-domain may not bias the sta-
tistical properties (i.e., variance and mean) of the estimated reliability. The
estimated reliability is influenced by the probability of occurrence of the
sub-domains, as well as the true failure rate of the tested software when
executed with inputs from each sub-domain. In that sense, we partition the
test cases of TCAS and Space in six disjoint sub-domains. All six sub-
domains contain the same number of test cases except for rounding issues.
For each sub-domain, test cases are randomly selected without replacement
from the pool of test cases. In order to minimize possible bias due to the
choice of the test cases in each sub-domain, we repeat the allocation of the
test cases of each subject program into the six sub-domains twice. This re-
sults into 2 possible allocations of the test cases to sub-domains Di for each
subject program.

We define two different profiles for the probability of occurrence of the
sub-domains:

1. uniform profile: the probability of occurrence of each sub-domain is
the same except for rounding error

2. optimal profile: the probability of occurrence of each sub-domain is
proportional to the number of test cases allocated to each sub-domain
using optimal allocation

These two profiles are some typical or extreme profiles and cannot rep-
resent all usage scenarios in field use.

Consequently, for each subject program, 4 different operational profiles
are created.

The 1608 test cases of TCAS are partitioned into six disjoint classes each
contains 268 test cases. The 13,585 test cases of Space are partitioned into
six disjoint classes: 2264, 2264, 2264, 2264, 2264 and 2265.
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6.1.1.3. Performance Metrics

ACSTS, PS and OS are randomized test selection strategies. For statistical
significance, we conduct 200 independent repetitions of each experiment
for each test selection strategy.

We compare the performances of ACSTS, PS and OS by comparing the
accuracy and precision of the estimated reliability by each approach. The
accuracy of an estimate is a measure of how close the estimated value is
to its true value. The precision of an estimate is a measure of how close
the estimates measured from different samples are to another, when the
samples are taken from the same data set. We use the sample variance as
metric for the reliability estimation accuracy. The sample variance is an
unbiased estimator of the variance. We use the root mean squared error

(RMSE) to quantify the estimate precision.
Based on assumption 6 in Section 3.4, the reliability estimates delivered

by ACSTS, PS, and OS are unbiased. Consequently, we can compare the
relative efficiency of the estimates using the sample variance. For each
experiment E we define the mean value of the reliability estimate (R), its
sample variance ( S2

199(R̂)), its root mean squared error (RMSE(R̂)), and
the relative efficiency of the reliability estimator using ACSTS to PS and
OS as follows:

R =
1

200

200

∑
i=1

R̂i, S2
199(R̂) =

1
199

200

∑
i=1

(R̂i −R)2

RMSE(R̂) =

√
1

200

200

∑
i=1

(R̂i −R)2

eff(R̂ACST S, R̂PS) =
RMSE(R̂PS)

RMSE(R̂ACST S)

eff(R̂ACST S, R̂OS) =
RMSE(R̂OS)

RMSE(R̂ACST S)
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6.1. Black-Box Reliability Assessment

where R is the true reliability calculated based on the true failure rates,
R̂i the reliability estimate in repetition i of the experiment, R̂ACST S the relia-
bility estimate using ACSTS, R̂PS the reliability estimate using PS and R̂OS

the reliability estimate using OS.
The differences in reliability mean values between the different test se-

lection strategies is confirmed using the the non-parametric Matt-Whitney
U test [97]. The differences between the sample variances are tested using
the Brown-Forsythe test[97].

For each experiment and for each test selection strategy, we compute the
reliability estimate at seven checkpoints: 200,250,350, . . . ,500. After 200
repetitions of the experiment, we compute the mean value, sample variance
and the root mean square error of the reliability estimates for each test se-
lection strategy. Note that the more test cases are executed the more will
the variance of the estimator decrease. In addition, the experimental dataset
is selected randomly from the population and the selection is repeated 200
times. Consequently, the selected dataset do not affect the efficiency and
the generalizability of ACTS.

6.1.1.4. Experimental Results

The goal of this set of experiments is to assess the efficiency and precision
of our reliability estimation approach.

Figures 6.2 and 6.1 present the sample means and sample variances for
TCAS and Space respectively. The dashed lines are the true reliability val-
ues for the subject programs.

According to the experimental results, the means as well as the sample
variances of the reliability estimates of ACSTS are closer to the true values
than those of PS and OS. This is confirmed by the statistical tests Matt-
Whitney U test and Brown-Forsythe test in tables 6.1 and 6.2. Both tables
confirm that ACSTS significantly deliver more accurate reliability estimate
that PS and OS.
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Figure 6.1.: Sample means and variances of the reliability estimates for
Space

Variance Mean

Scenarios ACSTS OS ACSTS OS
TCAS pro-

file1

PS 0/7 1/7 7/7 0/7

OS 0/7 - 7/7 0/7
TCAS pro-

file2

PS 0/7 0/7 7/7 0/7

OS 0/7 - 7/7 -
TCAS pro-

file3

PS 1/7 0/7 7/7 0/7

OS 0/7 - 7/7 -
TCAS pro-

file4

PS 0/7 0/7 7/7 0/7

OS 0/7 - 7/7 -

Table 6.1.: Matt-Whitney U and Brown-Forsythe test results for the sample
means and variances for TCAS

During the experiments some failures are not observed, since the number
of test cases used in each experiment is limited. Consequently a bias is in-
troduced intro the reliability assessment. Figure 6.3 depicts the RMSEs for
the studied approaches. Figure 6.3 shows that ACSTS provide low RMSEs
compared to PS and OS. Consequently, ACSTS introduces less bias to the
reliability estimate that PS and OS.

The computed mean of the relative efficiency of the reliability estimator
using ACSTS compared to the one using PS for the TCAS experiments

130



6.1. Black-Box Reliability Assessment

Figure 6.2.: Sample means and variances of the reliability estimates for
TCAS

Figure 6.3.: RMSEs of the reliability estimates for TCAS and Space

was 1,71. This means, that PS will yield a reliability estimate as accurate
as ACSTS only if 71% more test cases are selected.

The computed mean of the relative efficiency of the reliability estimator
using ACSTS compared to the one using OS for the TCAS experiments
was 1,32. This means, that OS will yield a reliability estimate as accurate
as ACSTS only if 32% more test cases are selected.

For the Space experiments, the relative efficiency to PS and OS estima-
tors was 1,57 and 1,23 respectively.
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Variance Mean
Scenarios ACSTS OS ACSTS OS
Space pro-

file1

PS 0/7 4/7 6/7 0/7

OS 0/7 - 7/7 -
Space pro-

file2

PS 0/7 1/7 7/7 7/7

OS 1/7 - 7/7 -
Space pro-

file3

PS 1/7 1/7 7/7 5/7

OS 1/7 - 5/7 -
Space pro-

file4

PS 0/7 1/7 5/7 1/7

OS 2/7 - 6/7 -

Table 6.2.: Matt-Whitney U and Brown-Forsythe test results for the sample
means and variances for Space

6.1.1.5. Threats to Validity

There are several potential threats to the validity of the experiments, which
are not limited to the following.

Construct validity: The experiments make use of operational profiles
that were synthetically created based on available test suites. However, as-
sumptions on the operational profiles may cause bias. In order to minimize
possible bias due to the choices of the test cases in each sub-domain, the
allocation of the test case to the sub-domains is repeated four times. We
conduct then the experiments on all the created operational profiles.

Internal validity: The experiments compare the performance of test se-
lection strategies with a focus on variance minimization. For each test se-
lection strategy, 200 repetitions are conducted in each experiment to ensure
confidence and statistical significance of the computed results. For each test
selection strategy, the sample means, the sample variances and the RMSEs
of the reliability estimates are compared using the Matt-Whitney U test and
the Brown-Forsythe test to avoid possible statistical bias during the com-
parison. The used statistical tests are less sensitive to the data distribution
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6.1. Black-Box Reliability Assessment

allowing us to avoid assumptions about distribution of data. Another im-
portant threat to validity is that mutation and similar fault injection tech-
niques were used to create faulty versions of the studied subject. Primary
motivator for this is that faulty software version were not readily avail-
able. In addition, mutation-based fault injection have been actively used in
software testing research like [3] and [32], where it has been shown that
mutation is an effective approach to simulate realistic faults and provide a
low-cost way to obtain sets used to obtain statistically significant conclu-
sions. Consequently, while mutation techniques represent a potential threat
to the validity of our experiments, we think it is a necessary technique to
enlarge our data sets.

6.1.2. Prediction Accuracy of the Reliability Prediction Model

We perform an extensive evaluation of our reliability prediction model, de-
scribed in Section 3.11, based on benchmark data set presented in [29]. The
experiments are applied on bug and test data of the following open source
software: Mylyn, Equinox framework and Eclipse JDT Core. Table 6.3,
summarizes the experiments subjects.
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6.1. Black-Box Reliability Assessment

6.1.2.1. Experimental Setup and Metrics

For a given release of the subject software, we predict the post release fail-
ure rate for each class of the software. As independent variables for our
Gauss regression-based reliability model, we use the number of existing
test cases per class as well as two different software metrics as proposed by
[29]:

1. Entropy of changes, which measures how changes to the source code
are distributed in the software over a time interval when repairing
faults. This metric computes the Shannon entropy of code changes
[51]. The intuition of this metric is as follows: the more distributed
the changes, the higher the complexity of the repair.

2. Entropy of source code, which extends the entropy of changes metric
with the concept of the CK source code metric [21].

Both metrics have been computed and provided by [29].
We compare the prediction accuracy of our prediction model with:

1. the poisson generalized linear model (pGLM) [35], which is the basis
of most of the software reliability models

2. the standard feed forward neural network, which has been used in
[86], and outperformed the traditional software reliability models.

The prediction accuracy of the three prediction models is assessed using
cross validation as follows: 80% of the available classes are used for model
training and the rest of classes are used to test the accuracy.

Since all models are randomized, we repeat our experiments 20 times.
Each experiment gets different training set at each repetition. We report
then the means of the estimated accuracy as well as the standard deviations.
In order to compare the accuracy of the prediction models, we compute the
root mean squared error (RMSE) between the actual and the predicted fail-
ure rate and the standard deviations over the 20 rauns of our experiments.
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6.1.2.2. Evaluation Results Using Entropy of Change Metric

Table 6.4 summarizes the obtained performances of the evaluated predic-
tion models when using entropy of changes and the number of test cases
as independent for model training and prediction generation. As shown in
table 6.4, our model yields better performance than both GLM and NN.

Table 6.4.: Entropy of Change Metric and # test cases
System pGLM Our Model NN

Eclipse JDT Core 1.41(0.45) 1.03(0.36) 1.48(0.58)
Equinox framework 1.18(0.36) 1.03(0.26) 1.86(0.21)

Mylyn 1.23(0.08) 0.97(0.07) 1.31(0.33)

6.1.2.3. Evaluation Results Using Entropy of Source Code
Metric

Table 6.5 summarizes the obtained performances of the evaluated predic-
tion models when using entropy of source code and the number of test cases
as independent for model training and prediction generation. As shown in
table 6.5, our model yields better performance than both GLM, and better
performance than NN with only one exception.

Table 6.5.: Entropy of Source Code Metric and # test cases
System pGLM Our Model NN

Eclipse JDT Core 1.50(0.43) 0.96(0.23) 0.84(0.16)
Equinox framework 1.02(0.46) 0.92(0.21) 1.01(0.11)

Mylyn 1.26(0.32) 0.60(0.18) 1.25(0.37)

6.1.2.4. Evaluation Results Without Software Metrics

Table 6.6 summarizes the obtained performances of the evaluated predic-
tion models when using only the number of test cases as independent for
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6.2. White-box Reliability Assessment

model training and prediction generation. As shown in table 6.6, the per-
formance of all models is poor compared to the case when software metric
are used in tables 6.5 and 6.4.

Consequently, using software metrics for the prediction of the failure rate
should increase the accuracy of our model.

Table 6.6.: Only # test cases
System pGLM Our Model NN

Eclipse JDT Core 1.09(0.18) 1.03(0.40) 1.35(0.51)
Equinox framework 1.06(0.19) 0.92(0.24) 1.47(0.44)

Mylyn 1.13(0.39) 1.10(0.14) 1.35(0.23)

6.2. White-box Reliability Assessment

The goals of the following validation are:

1. validate the accuracy and performance of our approach for comput-
ing the probability of path conditions compared to state-of-the-art
approaches

2. show the applicability of our approach in aiding during program un-
derstanding and testing

3. validate the reliability estimate efficiency of the source code based
reliability assessment approach compared to the black-box one

6.2.1. Implementation Details and Experimental Setup

Implementation: The prototype implementation of the probabilistic
symbolic execution approach works with the symbolic execution engine
of both KeY and Java Pathfinder. In order to split a path condition into dis-
joint sets of dependent constraints (see Def. 33), we model the constraints
of each path condition as an undirected graph. The nodes of the graph are
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the constraints and the edges encode a dependency between the constraints:
when constraints share the same input variable, an edge is added between
the corresponding nodes. The computation of the connected components
of the graph delivers us the split. In order to approximate the solution space
of the constraints with a union of boxes, we base our implementation on
an interval branch-and-prune constraint propagation framework, RealPaver
[48]. The original RealPaver defines a user defined stopping criteria for the
branch-and-prune algorithm by specifying (i) a maximal time budget per
query, or (ii) the number of boxes reported per query, or (iii) lower bound
on the size of box eligible for branching. We extended RealPaver by intro-
ducing a new stopping criteria which is more suitable to our probabilistic
setting. Our goal when approximating the solution space of a path condition
is the accurate computation of the probability of that path condition. The
stopping criteria we introduced to the branch-and-prune algorithm imposes
a used defined accuracy to the probability enclosure computed with Monte
Carlo integration over the outer box cover. This allows us to control the
branching part toward the boxes with the highest uncertainty in their com-
puted probability. Consequently, we can efficiently reduce the uncertainty
on the computed probability. In the case that the user required accuracy
is too sharp and the required accuracy cannot be reached (because of the
accumulation of rounding errors), the branch-and-prune algorithm stops
when the lower bound on the size of the boxes reached (there are no more
eligible boxes). All the following experiments are executed on an Mac Pro
2.66 Ghz with 8Gb of memory running OSX 10.9. Our tool implementa-
tion as well as the source code of the examples used in the experiments and
the evaluation can be downloaded from [77].

Experimental Setup and Metrics: The following experiment eval-
uates how our approach compares with recently developed techniques,
VolComp [91, 81] and qCoral [78, 11]. VolComp and qCoral are both
recent techniques to approximate the probability of constraints. We use
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the built-in method NProbability (with the default parametrization) of
the mathematical tool Mathematica [63] as a baseline for comparison.
NProbability computes numerical integrals over predicates and probabil-
ities, terminates when default accuracy requirements are met, and notifies
when the accuracy requirements are not met.
VolComp bounds the solution with an interval. qCoral as well as our

approach report the approximated solution and a standard deviation of the
approximation. Our approach was configured as follows: (i) for the Monte
Carlo integration, we use N = 1000 random samples, (ii) we set the lower
bound on the size of the boxes eligible for branching to 10−5 and (iii) we
set the required accuracy to 0.005 (the stopping criteria of our approach).
We used the same configuration for qCoral, except the accuracy stopping
criteria, since qCoral do not provide such a feature. Both our approach and
qCoral implement randomized algorithms. We report averaged estimate
and standard deviation over 20 runs.

To compare the three approaches, we selected benchmarks from the pub-
licly available VolComp benchmarks [91]. The comparison subjects are: (i)
ARTRIAL: the Framingham artial fibrillation risk calculator, (ii) CORONARY:
the Framingham hypertension risk calculator, (iii) PACK: a model of a robot
packing objects with varying weights and (vi) VOL: controller for filling a
tank with fluid at certain rates. The path conditions for these programs are
produced using VolComp.

6.2.1.1. Experimental Results

Table 6.7 summarizes the comparison between our approach and VolComp

and qCoral. The first column of Table 6.7 state the program event whose
probability is computed. The second column #PCs states the number of
path conditions that reach the event.

In summary, our approach was almost always faster than qCoral, VolComp
and NProbability (except for the VOL example, where VolComp was
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slightly faster). Note that the performance of NProbability depends usu-
ally on advanced settings. The tuning of such settings requires a deep
understanding of the mathematical properties of the function to integrate.
Such an understanding may not be derived from the code during the analy-
sis. The efficiency of our approach compared to qCoral can be explained
by the fact that we apply Monte Carlo Integration only on the outer box
cover of the approximated solution space. However, qCoral samples ran-
domly over the whole approximated solution space. Our approach required
more than 30 minutes to compute the Vol event count ≥ 20. This is caused
by the accumulation of rounding errors. Rounding errors accumulation
magnifies when the quantified probability is close to 1. The rounding er-
rors increase the uncertainty about the estimate. More uncertainty means
more sampling.

We notice that the estimates computed by our approach as well as the es-
timates computed by qCoral fall within the bounds extracted by VolComp.
The estimates delivered by our approach were closer to the exact solutions
delivered by NProbability than the estimates produced by qCoral and
VolComp. The precision of our approach is due to the integration of im-
portance sampling and stratified sampling which reduce the uncertainty of
the estimate. In addition, we control the branching step of the interval
branch-and-prune algorithm toward branching the boxes with the highest
uncertainty. This should decrease the overall uncertainty.

We observe that our approach as well as qCoral were equal slow for the
benchmark PACK. The reason for that is that RealPaver generated only an
outer box cover for the solution space. This means we sampled randomly
over the whole solution space. This reduces the impact of our sampling
strategy.
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6.2.2. Applicability in Program Understanding and Testing

The goal of this evaluation is to see whether our approach can aid during
program understanding and testing. We consider in our evaluation the Bi-
nary Tree implementation that was used by [90] to show that the Binary
Tree example contains a bug in the delete method.

Coverage Probability and Program Understanding: The follow-
ing experiments are conducted on a Binary Tree implementation with a cor-
rect implementation of the method delete as proposed by [90]. The imple-
mentation can be found in the Appendix and in [77]. We want to examine
how the probability of covering a certain program location changes when
changing the input values. We used our approach to compute the proba-
bility of reaching different branches in the code implementing the methods
add(n) and delete(n). The source code can be found in Appendix. Both
methods take integer values as input. We bounded the scope input domain
to data structures with 3 nodes with increasing data value ranges [1 . . .10],
[1 . . .50] and [1 . . .100]. We compute for different branches in the code all
path conditions that reach the branch as well as their probabilities. The
probability of the branch is approximated by the sum of the probabilities
of the path conditions reaching it. The results are presented in Table 6.8.
The probabilities are rounded for presentation purposes. The Branch Loca-
tion column indicates the location in the code, # PCs refers to how many
path conditions reach the branch and the three following columns show the
computed probability to reach the branch. The parameter values are chosen
uniform randomly from the intervals.

First observation to make is that there is no correlation between the num-
ber of path conditions reaching a branch and the probability of covering that
branch. For example, the branch at location 7 of method delete is reached
by 14 PCs and the probability to cover it is smaller than the branch at lo-
cation 7 which is reached by only 7 PCs. Considering the implementation
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Table 6.8.: Probability for covering branches in a Binary Search Tree
Method Branch Location # PCs [1 ... 10] [1 ... 50] [1 ... 100]

add

1
2
3
4

7
10
7
10

6.1218 ×10−2

3.3261 ×10−1

6.1218 ×10−2

3.3261 ×10−1

6.4499 ×10−2

3.5542 ×10−1

6.4499 ×10−2

3.5542 ×10−1

6.8939 ×10−2

3.7677 ×10−1

6.8939 ×10−2

3.7677 ×10−1

delete

5
6
7
8

7
14
14
1

4.3999 ×10−1

3.5834 ×10−1

5.3759 ×10−2

0.9399 ×10−6

4.7931 ×10−1

3.7464 ×10−1

5.7464 ×10−2

2.4310 ×10−7

4.9165 ×10−1

3.8802 ×10−1

6.1537 ×10−2

1.3728 ×10−9

code of the method add, the branches at locations 1 and 3 as well as the
branches at location 2 and 4 are symmetric around the check whether the
value to add is less or greater than current root value. This code aspect is
captured by our probabilistic approach.

Next observation we can make is that for some branches the probability
to reach them increases when the range of value increases. For example,
adding values to the binary tree is easier when the range of values to select
from is larger: it is less likely to select and add a value that is already
in the binary tree. The branch at location 8 in the method delete is the
least likely to be reached. This event becomes more rare when the range
of allowed input values increases. Based on the implementation code, this
branch corresponds to the case when we try to delete the root node when
the tree is empty. This is an unlikely behavior since it simulates deleting an
element from an empty tree.

Scalability Remarks: Korat enumerates each possible data structure
including all input values. Such an enumeration can be very expensive es-
pecially when the range of possible input values increases. For counting
data structure models with values in [1 . . .10], Korat took less than 2 sec-
onds on average. However, for values in the range [1 . . .50] Korat took 17
minutes and more than 2 hours on average for values in the range [1 . . .100].
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Probability of a Bug: For the next set of experiments we study the
probability of triggering the bug reported by [90] under different opera-
tional profiles. We use the buggy implementation which can be found in
[77]. The code has a bug in the delete method. The bug makes it impossi-
ble to remove the root element of the tree and sometimes incorrectly deletes
subtrees [90]. We limit the data values in the container to the range [1...50]
and perform the calls add and delete randomly. We evaluate sequences
of 7 calls after which we check whether the bug was triggered by using an
assertion.

Table 6.9.: Probability of triggering a bug in a the Binary Tree
Calls Distribution Values Distribution Probability to trigger the bug

Uniform Uniform 0.000641
70% delete Uniform 0.00113
30% delete Uniform 0.00826

No delete in the last call Uniform 0.00163
No delete in the last two calls Uniform 0

The operational profile as shown in Table 6.9 vary the probability of
performing the calls and the probability of choosing the values. The first
scenario considers the case where both the calls and the inputs are selected
uniformly from their domains (i.e. each with 0.5 probability). The second
and the third scenarios consider respectively the cases where 70% of the
time delete is called and where only 30% of the time delete is called.
This follows the intuition that the bug is in the delete method. However,
in fact the more we delete the less will be the probability to trigger the bug.
This means that the execution of the buggy code region is related to how
and when delete is called. This is justified by the two last scenarios where
no delete is called last and where the last two calls are not a delete call
in the sequence (the probability to trigger the bug is zero).
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6.2.3. Reliability Estimation Efficiency and Accuracy

In order to compare the efficiency of the white-box reliability assessment
approach with the black-box one, we conduct several experiments on two
software artifacts. We compare then for each approach the number of test
cases required until reaching a target confidence level and margin of error.
For all two artifacts, we assume a uniform operational profile, where we
divide the definition domain into two equally probable sub-domains. The
artifacts are the following:

• MER: models a component of the flight software for JPL Mars Ex-
ploration Rovers (MER) [5]. It consists of a resource arbiter an two
other components competing for five resources. MER has 4697 LOC
including the Polyglot framework.

• Windy: a standard example from the reinforcement learning litera-
ture; a robot, affected by wind, moves in a grid with start and target
positions. We analyze two versions: simple (5x4 grid) and complex
(9x6 grid) [61].

The software artifacts contain injected faults for the purpose of testing
[5]. MER contains one known fault, Windy contains 3 faults.

Table 6.10 summarizes the number of test cases required by each tech-
nique (i.e, black-box and white-box) to reach a target confidence level and
margin of error. Here, we do not repair faults if failures are revealed.

Table 6.10 confirms the mathematical theory of stratified sampling. Since
the white-box reliability assessment approach considers each path condi-
tion as a sub-domain, then it will decrease systematically the variance of
the reliability estimate. The black-box approach divides, however, the test
cases over only two sub-domains. Another observation is: when we de-
crease the margin of error, the required number of test cases to reach the
confidence goal, for both approaches does not vary too much. We explain
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MER(small)#path: 122

# testcases
1−α d Black-Box White-Box
0.99 10−2 12028 10351

0.99 10−3 13089 12804

0.99 10−4 16293 14618

Windy(small) #path: 614

#testcases
1−α d Black-Box White-Box

0.99 10−2 13082 6297

0.99 10−3 14762 6845

0.99 10−4 14914 6938

Table 6.10.: White-Box Reliability Assessment v.s. Black-box Reliability
Assessment

this phenomena with the fact that our both approaches are designed to sys-
tematically reduce the variance of the estimate.

6.3. Verification-based Reliability Assessment

The goal of this section is to show the applicability of the verification-based
reliability assessment approach in the following two scenarios:

1. when a proof attempt succeeds, i.e., all proof obligations are closed:
all path conditions are verified as correct with regard to a formal spec-
ification

2. when a proof tree fails, i.e., some proof obligations remain open:
only some path conditions (but not all) are verified as correct.
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6.4. Implementation Details

The prototype implementation uses the KeY system to extract the symboli-
cally executed proof obligations. Each proof obligation is then represented
by a path condition. Based on a given operational profile, we compute the
probability of each path condition using our tool for probabilistic program
analysis (see section 6.2.1).

In order to generate JUnit test cases, we use the tool Korat.

6.5. Experiment Subject

We use for this validation a standard KeY example, a banking example
code, which implements the following three methods

1. Bank.login(userdid, password)

2. UserAccount.getBankAccount(num)

3. UserAccount.tryLogin(userid, password)

We assessed the reliability of the method UserAccount.tryLogin using
our black-box approach. Each call of the method UserAccount.tryLogin is
annotated with its reliability and corresponding variance.

Our goal now is to assess the reliability of the methods Bank.login
and UserAccount.getBankAccount using the verification-based approach.
We assume that the execution environment has an availability of 0.9

We define an operational profile for our reliability assessment scenario
using the following two parameters:

1. numus : the number of user accounts

2. numacc : the number of bank accounts

We defined the operational profile for this scenario as follows:

147



6. Validation

1. Scenario 1 : numus in [0, 3000], numacc in [0, 7500]: 40%

2. Scenario 2 : numus in [3000, 6000], numacc in [7500, 18000]: 60%

Both methods are formally verified using KeY. Table 6.11 lists the sim-
plified path conditions of the method Bank.login with their probabilities.

Table 6.13 lists the simplified path conditions of the method UserAc-
count.getBankAccount.

When All Path Conditions Verified In this case, the reliability of
each method is defined as presented in Section 5.5 as:

R̂ =
3

∑
i=1

(PCc
i |OP).(1−FRi)

For example, the reliability of the method Bank.login is estimated as
follows:

Rlogin = 0.37∗ ˆμ(tryLogin)∗0.9+0.11∗0.9+0.52∗0.9

When Some Path Conditions are not Verified We inject some
faults in both methods. The obtained results are illustrated in the tables
6.12 and 6.14.

For example, the reliability of the method UserAccount.getBankAccount
is:

RgetBankAccount = 0.08∗0.9+0.36∗0.9

with a confidence c = 1−0.58
In this case, the confidence c = 1−0.58 is too low. In order to increase

the confidence, the white-box reliability assessment should be used.
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Table 6.11.: Path Conditions and their Probabilities- Bank.login
index Path Conditions Probability

1 userid >= 0, userid <numus 0.37
2 userid <0 0.11
3 userid >= 0, userid >numus 0.52

Table 6.12.: Path Conditions and their Probabilities after Fault Injection-
Bank.login

Index Path Conditions Probability verified?
1 userid >= 0, userid + 500 <numus 0.31 verified
2 userid <0 0.11 verified
3 userid >= 0, userid + 500 >= numus 0.58 n.a

6.6. Sensitivity Analysis

Software statistical testing characterizes the field of use of the tested soft-
ware using an operational profile. Determining an operational profile can
be difficult in practice and might introduce some errors when estimating it.
We conduct a sensitivity analysis to investigate the effect of an error in the
operational profile on the change of the reliability estimate variance.

The sensitivity value of an error in the operational profile is computed
based on the analytical approach presented in [68]. Let D j be the sub-
domain whose probability is in error, and let εD j be the error in probability.
We use the subscript F to indicate quantities associated with the true oper-
ational profile in field use and T to indicate erroneous quantities associated
with the testing operational profile. Then εD j = pTD j

− pFD j
, where pTD j

the estimated probability of occurrence of D j used when testing and pFD j

the true probability of occurrence. Since probabilities can vary between 0
and 1, it follows: −pFD j

≤ εD j ≤ 1− pFD j
. Let ηD j be the relative error de-

fined as ηD j = εD j/pFD j
. Then −1 ≤ ηD j ≤ (1/pFD j

−1). Since we only
select tests from sub-domains specified in the operational profile, the sum
of the probabilities pFD j

and pTD j
for the operational profile sub-domains
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Table 6.13.: Path Conditions and their Probabilities -
UserAccount.getBankAccount
Index Path Conditions Probability

1 num <0 0.08
2 num >= 0, numacc >num 0.38
3 num >= 0, num >= numacc 0.52

Table 6.14.: ath Conditions and their Probabilities after Fault Injection -
UserAccount.getBankAccount

Index Path Conditions Probabilities verified?
1 num <0 0.08 verified
2 num >= 0, num + 500 <numacc 0.36 verified
3 num >= 0, num + 500 >= numacc 0.56 n.a

are both 1. Consequently, the sum of errors εDk over the sub-domains must
be 0 [68]. Therefore, the existence of the error εD j implies the existence
of other errors in probability or difference between the test and field opera-
tional profiles εDk that are nonzero. There are no known factors that would
cause εD j to affect the other εDk . Hence, we can assume that all εDk are
affected in the same relative way so they have the same relative error η .
Since the sum the probabilities of occurrence is equal 1, we obtain

η =−ηD j .pFD j

(1− pFD j
)

Consequently, an error in one occurrence probability of the operational
profile causes errors in other probabilities of occurrence. The sensitivity of
the reliability estimator variance on an error in the probability of occurrence
of a sub-domain Di can be then defined as the ratio of of relative errors for
the variances as follows:

SD j = (varT−varF
varF

)

ηD j

(6.1)
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The goal of our white-box reliability assessment approach is to generate
fine-grained sub-domains, which even if they are not truly homogeneous,
they are usually less heterogeneous than the original sub-domains. Conse-
quently, if an error in the probability of a sub-domain occurs, it might not
affect the variance significantly. Since the total variance of the reliability es-
timate is defined as var[R̂] = ∑L

i=1 pi
2 σi

2

ni
, then an error in the probability of

a sub-domain would lead to small variations of varT−varF
varF

. Consequently,
when our white-box approach is used, then the sensitivity will tend to zero.

Asymptotically, our black-box approach would reduce the variance within
each sub-domain through extra testing. So asymptotically, the black-box
approach would be able to reduce the sensitivity of the reliability estimation
to variations of the operational profile.

The verification-based approach is able to reduce the input domain of the
software since it does not execute path conditions verified as correct. The
reduction of the input domain reduces the probability to introduce errors
when estimating the probabilities of the operational profile sub-domains.
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This chapter highlights existing approaches and addresses the relationship
to our work.

7.1. Statistical Testing based on Sampling

Stratified sampling is linked to the idea of partition testing or sub-domain
testing of a software.

In [50] and [95], partition testing is compared to simple random sampling
from a program’s input domain with respect to the probability of detecting
at least one failure during testing. Inputs were selected randomly from each
partition. Different combinations of partition size, partition probability of
occurrence, partition failure rate and overall failure rate were considered.
[50] and [95] conclude that partition testing is significantly more effective
than random testing when one ore more partition have a relative high failure
rate. Our approach is aligned with the conclusions of [50] and [95]. since
the program failure rates are usually not known in advance, it is safer to use
partition testing instead of simple random testing to assess the failure rate
of a program. Our approach adaptively selects inputs from each partition,
more inputs are selected from the partitions which have a relative observed
high failure rate. In addition, our approach considers the probability of
occurrence of each partition by adaptively selecting inputs towards a 100%
similarity to the operational profile probabilities.

[88] present the usage of probabilistic test generation for fault detection.
They generate automatically tests to address different behavioral and struc-
tural test criteria. Apparently, in [88], they view the evaluation of tests as
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inexpensive. They call their approach "statistical testing" although it dos
not involve reliability estimation. In contrast to [88], we think that evaluat-
ing test is an expensive process. Our approach aims to reduce the variance
of a reliability estimator and consequently reduce the required number of
executed and evaluated test cases to reach a target reliability confidence.

Techniques to estimate software reliability using partition testing, which
resemble conventional stratified sampling, are proposed in [14], [33] and
[70] for example. They introduced the idea of sampling to reliability esti-
mation but did not specify a sampling design. To account for operational
profile, [14] present a stratified reliability estimator similar to the reliability
estimator (see equation 3.4) we present in our approach. They assume that
the estimator is unbiased, when all sub-domains are sampled using simple
random sampling within the entire program’s input domain. This assump-
tion is repeated in [75]. This assumption is incorrect however: the estima-
tor is generally biased unless we further assume that all possible inputs are
equally likely to arise in operational use. ([14] and [75] do not make such
an assumption.)

[65] present a stratified estimator of the the failure rate when no failures
occur during testing by incorporating prior assumptions about the failure
rate in the estimation. They reuse the approach presented in [14] and they
do not consider the variance of the estimator.

The work of [76] is related to our research. However, they only used the
idea of equal stratification using clustering to estimate the software reliabil-
ity from software execution profiles collected by capture/replay tools. Fail-
ure rates have been extensively used in the area of adaptive random testing
([16], [20], [56]). Adaptive random testing aims to distribute the selected
test cases as spaced out as possible to increase the chance of hitting the fail-
ure patterns. The intuition behind adaptive random sampling can be added
in a future work to our approach to probably further enhance the efficiency
of the reliability estimator. [16], [20], [56] do not address the problem
of reliability estimator efficiency. A recent work on adaptive testing [54],
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allocates test cases using a gradient search method based on the variance
variation of the failure rate. However, their approach introduces bias re-
sulting from the use of the gradient method: it is possible that all test cases
are selected from the sub-domain that first reveals a failure. They avoid
such situations by introducing a biased estimator using Bayesian estima-
tion. Consequently, their reliability estimator, in contrast to our estimator,
is biased. Contrary to [54], we adopt a global optimization scheme for test
cases selection which guarantees that our approach converges to globally
optimal solution as testing proceeds. Furthermore, the approach presented
in [54] does not generate test cases which are conform the probabilities of
the operational profile sub-domains, which would further bias the reliability
estimate.

[58] developed a Bayesian-based stopping criteria for statistical testing.
In contrast to the stopping criteria presented in [58], our approach does not
use uniform prior but updates the prior after test execution. Furthermore,
our stopping criteria allows to specify a margin of error in addition to the
required confidence level as a stopping criteria. In addition, the stopping
criteria in [58], in opposition to our approach is not designed with setting
to distribute the test cases across the operational profile sub-domains, or to
consider the failure rate of the different sub-domains.

7.2. Combining Statistical Testing with Formal Verification

[28] presents a transformational approach for the assessment of software
reliability. The main idea of [28] is to apply vertical slicing to reduce the
dimension of the software input domain, and horizontal slicing to reduce
the cardinality of the input domain. The reduction of the input domain is
achieved through the verification of the slices. The goal of the combina-
tion of formal verification and statistical testing is to reduce the amount
of testing required to attain a target confidence level on the reliability es-
timate. However, in contrast to our approach, [28] makes no quantitative
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statements about the gain of using formal verification, does not define how
the software reliability will be computed in the presence of formal proofs.
Furthermore, [28] abstracts from the execution environment and assumes
that proved program slices do not need to be tested. However, such an as-
sumption is very misleading. Our approach, however, is able to analyze
the reliability of a software program in an execution environment. The ap-
proach in [28] is actually not a combination of formal verification and sta-
tistical testing, rather formal verification has been used to reduce the input
domain of software programs and hence reduce the testing effort usually
required by statistical testing.

Another work [27] accelerates statistical testing by applying monotonic
transformations to the software program and the execution environment
(e.g., program slicing, replacing function computation by table lookup, use
of fast process simulation or use of centralized instead of distributed com-
puting). Such transformations imply the correctness of the original pro-
gram, and a failure of the transformed program does not necessary means
that the original program would fail. This would require the invocation
and test of the original version. In addition, the approach presented in [27]
is labor-intensive requiring the formal verification of each transformation
by skilled software engineers, which would limit the applicability of the
approach.

7.3. Software Reliability Modeling and Prediction

The goal of Software Reliability Growth Models is to describe the software
failure process in form of a stochastic process. The stochastic process is
usually used for software reliability prediction and estimation. Software
reliability growth models assume that faults repair is made on the go as
testing progress, and that the faults repair results in decreasing failure rate.

Software reliability growth models received much attention with more
than 100 different models [62]. However, the usage of software reliability
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growth models require usually assumptions, which are questionable and
sometime unrealistic [62], [2].

Therefore, many research solution has been presented to address the as-
sumptions related to software reliability growth models such as applying
time series models, especially ARIMA models like [2]. However, such
models require timed failure data, which is usually not always available.
Furthermore, in contrast to our non-parametric Gaussian process model,
such models provide no measure of the uncertainty of the prediction. In
addition, the usage of such models requires special attention to satisfy the
assumptions of the time series models.

A recent work [89], presents a Gaussian process failure count prediction
model using software metrics as independent variables. [89] generates one
single model for the whole software and do not account for the number
of test cases executions. The generated model is trained on existing data to
predict future behavior. Our approach, however, generates a model for each
sub-domain of the failure. One main advantage of generating a Gaussian
process for each sub-domain is as follows: each Gaussian process models a
different subspace of the input domain, which allows learning multimodal
data distribution with more flexibility than a single model for the input do-
main. Furthermore, our model is trained adaptively (only when needed),
based on the uncertainty provided by the prediction. Another recent work
[17], predicts failure count using Bayesian-based support vector machines,
where the independent variables are software metrics as in [89]. Like [89],
the approach in [17] is not designed to adaptively train itself based on the
prediction uncertainty. Our prediction model makes effective use of pre-
vious test executions during model inference. Based on the uncertainty
on the prediction and confidence goals on the reliability estimate and cost
constraints, the approach decides whether to execute the test cases or not.
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7.4. Probabilistic Program Analysis

Our white-box reliability assessment approach is related to many areas in-
cluding statistical model checking [52], analysis of probabilistic programs
[66], and integration methods over polyhedras [30]. We compute the prob-
ability of a path condition or more generally a set of path conditions that
lead to a program behavior of interest. The techniques for the probability
computation of the path conditions differ in the approach used to approxi-
mate the solution space, the distribution type of the input variables and the
linearity of the constraints.

Geldenhuys et al. [39] present an approach that considers only uniform
distributed input variables and linear integer arithmetic constraints. They
used LattE Machiato [30] to count the solution space of the path condi-
tions. One main difference between this work and ours is that we sup-
port complex nonlinear constraints and we use constraint propagation tech-
niques to approximate the solution space. In addition our approach is not
restricted to uniform distribution. The approach of Geldenhuys et al., in
contrast to our approach, do not handle symbolic data structures. They as-
sume that the structures are concrete and only the data is symbolic. In our
approach both the input structure as well as the input data is taken to be
symbolic. Sankaranarayanan et al. [81] recently proposed a technique to
remove the restriction of uniform distribution by developing an algorithm
for the under and over-approximation of probabilities. They use Linear
Programming solvers to compute the over-approximations and heuristics to
compute the under-approximation. However, their approach is limited to
linear constraints. More recently, Borges et al. [11] proposed an approach
for handling nonlinear constraints based on interval constraint propagation
techniques and Monte Carlo integration. One main technical difference be-
tween this approach and our work is that our approach is incremental and
computes probabilities at each branching constraint which allows for better
scalability of symbolic execution. The approach of Borges et al. com-
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putes the probabilities after symbolic execution finishes. In addition, our
work extends interval constraint propagation by allowing to control the ef-
ficiency of the solution space approximation. The approximation procedure
is controlled based on a user-defined accuracy parameter on the computed
probability of a target program behavior. Furthermore, our work makes use
of the joint box cover structure computed by the interval constraint propaga-
tion techniques and applies Monte Carlo integration only on the outer cover.
Borges et al. apply Monte Carlo integration on the whole approximated so-
lution space. Consequently, their approach as shown in our experiments
may require more samples to compute the probabilities with a given accu-
racy. Moreover, our work supports constraints over data structure which is
not supported by Borges et al.
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Our society rely on the correct functioning of software systems and our
dependence on them is growing. The failure of software systems can be
disastrous resulting in humanitarian and financial damages. Consequently,
it is necessary to assess the reliability of software systems with high confi-
dence.

However, existing software reliability assessment techniques are usually
either theoretical sound, labor-intensive and time-consuming or practical
but not trustworthy because of their underlying unrealistic assumptions and
poor estimation accuracy. Therefore, software development organizations
are considering software reliability assessment as a cost rather than a return.
The reliability of a software is usually assessed using formal verification or
testing.

Formal verification can prove perfect reliability of the software. How-
ever, it is usually impractical to verify the program as well as its execution
environment. Furthermore, if formal verification is applied to only some
parts of the software, existing techniques do not account for the confidence
gained from verification in the reliability estimate.

Exhaustive testing is usually impossible for complex real world software
system. Therefore, statistical testing based on sample models according to
an operational profile has been proposed as the theoretical sound tools to
assess the software reliability. However, statistical testing requires a large
number of test cases to reach a target confidence on the reliability estimate.

This dissertation proposes a solution to reduce the overhead required by
statistical testing, and developed a method to account for any formal veri-
fication effort in the reliability estimation. In order to reduce the overhead

161



8. Conclusion

required by statistical testing, we formulated our approach as an uncertainty
reduction technique, which aims to use the available information about the
software in order to efficiently assess and reduce the uncertainty about the
software future behavior. The information can be provided from (i) previ-
ous test cases execution, (ii) the source code of the software (iii) previous
formal verification attempts. The more information we have about the soft-
ware under study the more our approach gains on efficiency. In order to
account for any formal verification effort, we developed a method to sym-
bolically estimate the software reliability before executing any test cases if
the program has been verified even partially. Furthermore, we proposed a
novel combination of deductive formal verification with statistical testing.

The main contribution of this dissertation can be arranged in three groups.
First, we developed a black-box reliability assessment approach which

adaptively sample test cases from the sub-domains of an operational profile.
The approach learns from previous test cases executions and computes in an
iterative manner the required number of test cases to be executed based on
user required confidence level. Compared to state-of-the-art approaches,
we could reach a target confidence with less test cases. Furthermore, we
developed a non-parametric reliability prediction model based on Gaussian
process. The model is trained adaptively, and decides at each iteration to
predict the future failure rate or to execute the test cases.

The second contribution is white-box reliability assessment, which makes
use of the source code information to generate based on the operational
profile sub-domains finer partitions. The finer partitions are then used as
the new sub-domains. This required the development of a probabilistic
symbolic execution engine. The novel symbolic execution engine propa-
gates the uncertain information provided by the operational profile while
executing the source code symbolically. If in addition to the operational
profile, the source code if available, our approach benefits from the white-
box information available to further enhance the efficiency of the black-box
approach. We developed an automated probabilistic analysis approach of
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source code based on symbolic execution. The white-box approach prop-
agates the uncertain information provided by the operational profile while
executing the source code symbolically. Compared to the black-box ap-
proach, the white-box approach makes use of the source code information
to further reduce the number of required test cases to reach a target statisti-
cal confidence on the reliability estimate.

The third contribution is verification-based reliability assessment which
merges the strengths of both formal verification and statistical testing in a
coherent form. The reliability estimate is derived from the proof tree. If the
reliability goal cannot be reached by symbolic computation of the reliabil-
ity, the approach complements the reliability estimate by test cases derived
from the open proof branches. The test cases are derived using the white-
box reliability assessment approach. The developed approach analyzes the
reliability of a program in a runtime environment without explicitly model-
ing the environment in the verification logic.

The stopping criteria of our approach does not consider the case when a
fault repair introduces new faults. A possible improvement of our approach
is to develop models for fault-repair. Our prototype tool implementation for
the verification-based reliability assessment is using Korat for the genera-
tion of the JUnit test cases. KeY can however efficiently generate test cases
for open proof obligations toward fault detection. Our approach can bene-
fit from such capabilities. We also plan to investigate further applications
of the probabilistic symbolic execution approach in the analysis of Cyber
physical systems, or code-based security analysis. Idea of the probabilistic
bound which guides the symbolic execution can be used in the context of
bounded verification to systematically increase the bound when needed.
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A. Appendix

This appendix presents the code for the Binary Search Tree example used
in this thesis.

.1. Implementation Code of the Method add

public void add(int x) {

Node current = root;

5 if (root == null) {

root = new Node(x);

return;

}

10 while (current.value != x) {

if (current.value > x) {

if (current.left == null) {

//Location 1

current.left = new Node(x);

15 } else {

//Location 2

current = current.left;

}

} else {
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20 if (current.right == null) {

//Location 3

current.right = new Node(x);

} else {

//Location 4

25 current = current.right;

}

}

}

}
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.2. Implementation Code of the Method delete

.2. Implementation Code of the Method delete

public boolean delete(int x) {

Node current = root;

5 Node parent = root;

boolean isLeftChild = true;

if (current == null)

10 return false;

while(current.value != x) {

//assign parent to current

parent = current;

15 if(current.value > x) {

//Location 5

isLeftChild = true;

current = current.left;

}

20 else {

//Location 6

isLeftChild = false;

current = current.right;

}

25 if(current == null) {

//Location 7

return false;

}

}
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30
if(current.left == null && current.right ==

null) {

if(current == root) {

//Location 8

root = null;

35 }

else if(isLeftChild) {

parent.left = null;

}

else {

40 parent.right = null;

}

}

else if(current.right == null)

if(current == root) {

45 root = current.left;

}

else if(isLeftChild) {

parent.left = current.left;

}

50 else {

parent.right = current.left;

}

else if(current.left == null)

if(current == root) {

55 root = current.right;

}

else if(isLeftChild) {

parent.left = current.right;

}
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60 else {

parent.right = current.right;

}

else {

65
Node successor = getSuccessor(current);

if(current == root) {

root = successor;

70 }

else if(isLeftChild) {

parent.left= successor;

}

else {

75 parent.right = successor;

}

successor.left = current.left;

}

80 return true;

}
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