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Abstract

Fracture of storage particles is considered to be one of the major rea-
sons for capacity fade and increasing power loss in many commercial
lithium-ion batteries due to emergent effects such as the growth of a
solid electrolyte interphase, loss of contact in conductive pathways or
complete disintegration of the electrode. The appearance of fracture
and cracks in the particles is commonly ascribed to mechanical stress,
which evolves from inhomogeneous swelling and shrinkage of the mate-
rial when lithium is inserted or extracted. Here, we tackle the problem
of fracture in storage particles by merging a coupled model of mechan-
ical stress and diffusion of Li-ions with a phase field description of an
evolving crack. To numerically solve the resulting differential equations,
a parallelized finite element method computer code using adaptive mesh
refinement and time step control is developed.

The phase field description for crack growth and fracture is an attrac-
tive alternative to numerical methods based on discrete representations
of cracks, since the phase field methodology avoids the numerically chal-
lenging monitoring of the discontinuities introduced by the crack. In
particular, for the simulation of complex crack growth topologies and
application to coupled systems, e.g. with thermal or electrical fields, the
phase field method has shown promise. However, an accurate prediction
of the crack growth initiation is mandatory for a reliable simulation of
crack trajectories both in terms of load history and the path followed
through the material. We therefore first investigate predictions of crack
growth derived from the phase field method and compare them with
established relations from fracture mechanics.

The novel approach of simulating crack propagation coupled to diffu-
sion of Li using a phase field method for fracture allows us to simulta-
neously study the evolution of the lithium concentration together with
the initiation and growth of a crack in an arbitrary geometry, in two
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Abstract

and three dimensions, and without presuming a specific crack path. We
investigate how the formation of cracks depends on the size of the par-
ticle and an initial crack, as well as the applied flux at the boundary.
Crack growth is observed both during lithium insertion and extraction
in the first, as well as in the second half cycle. We find that dynamic
effects resulting from the inertia of the material have a strong impact on
the resulting crack patterns and describe the interplay between lithium
diffusion and mechanical stress in the presence of a crack.
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Zusammenfassung

Das Brechen von Speicherpartikeln wird als einer der schwerwiegend-
sten Mechanismen für Kapazitäts- und Leistungsverlust in vielen kom-
merziellen Lithium-Ionen-Batterien betrachtet. Gründe hierfür sind
damit einhergehende Effekte, wie das Wachstum einer sogenannten so-
lid electrolyte interphase, der Kontaktverlust an eine elektrisch leitende
Anbindung oder die vollständige Zerrüttung der Elektrode. Die Ent-
stehung von Rissen und Brüchen in den Partikeln wird üblicherweise
mechanischen Spannungen zugeschrieben, die auftreten wenn sich das
Material während des Einbringens oder Entnehmens von Lithium in-
homogen ausdehnt oder zusammenzieht. In dieser Arbeit behandeln
wir das Problem von Rissen in Speicherpartikeln indem wir ein ge-
koppeltes Modell für mechanische Spannungen und Lithium-Diffusion
mit einer Phasenfeldbeschreibung des wachsenden Risses verbinden.
Um das resultierende Modell numerisch zu implementieren wird ein
parallelisierter Finite Elemente Computercode entwickelt, der sowohl
eine adaptive Netzverfeinerung, als auch eine adaptive Zeitschrittwei-
tenkontrolle unterstützt.

Die Phasenfeldmethode zur Beschreibung von Risswachstum ist eine
attraktive Alternative zu anderen numerischen Methoden, die den Riss
als diskretes Objekt darstellen. Dies liegt daran, dass die Phasen-
feldbeschreibung das numerisch anspruchsvolle Verfolgen der bei einer
diskreten Betrachtungsweise miteinhergenden Unstetigkeiten vermei-
det. Infolgedessen hat sich die Phasenfeldmethode im speziellen bei
Simulationen mit komplexen Risstopologien und in gekoppelten Pro-
blemen als vielversprechend erwiesen. Eine genaue Vorhersage der
Rissinitiierung ist jedoch zwingend notwendig um verlässliche Vorher-
sagen für den exakten Rissverlauf durch das Material in Abhängigkeit
von der angelegten Last zu treffen. Aus diesem Grund untersuchen
wir im ersten Schritt das mittels der Phasenfeldmethode vorherge-

III



Zusammenfassung

sagte Risswachstum und vergleichen es mit bewährten Beziehungen
aus der Bruchmechanik.

Die neuartige Herangehensweise, Lithium-Diffusion und Risswachs-
tum mittels eines Phasenfeldansatzes zu simulieren, erlaubt es gleich-
zeitig die Entwicklung der Lithium-Konzentration und die Initiierung
und das Wachstum eines Risses zu studieren. Dabei liegt keine Ein-
schränkung bezüglich der genauen Geometrie des Partikels oder der
Anzahl an Raumdimensionen vor. Darüber hinaus sind keine Voran-
nahmen über den Verlauf des Risswachstums nötig. Wir untersuchen
wie die Entwicklung eines Risses von seiner anfänglichen Länge und
der Größe des Partikels, sowie dem aufgebrachten Fluss an der Ober-
fläche abhängt. Risswachstum wird sowohl während Zufuhr, als auch
Entnahme von Lithium beobachtet. Dabei untersuchen wir neben dem
ersten Halbzyklus auch die Frage, wie sich ein Riss im zweiten Halb-
zyklus bei umgedrehtem Oberflächenfluss entwickelt. Wir beobachten,
dass die mit der Trägheit des Materials einhergehenden dynamischen
Effekte eine starke Auswirkung auf die finale Rissgeometrie haben
und beschreiben das Wechselspiel zwischen Lithium-Diffusion und me-
chanischen Spannungen in der Gegenwart eines teilweise stationären,
teilweise wachsenden Risses.
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1 Introduction

1.1 Basics of Lithium-Ion Batteries

An electric battery consists of one or more electrochemical cells, which
transform chemical energy into electrical energy [1, 2]. The electrochem-
ical process involved in the conversion hereby determines the particular
type of the battery. An irreversible process allows the battery to dis-
charge only once, converting all the usable chemical energy into electrical
energy. In contrast to such a primary battery, a secondary or recharge-
able battery functions by a reversible process. Thus, the battery can
be operated also in the opposite direction to charge it. By charging it,
electrical energy is converted back to chemical energy and the battery is
returned to a state, where it may be discharged again. We will specify
the term ’process’ in the following pages. Before doing so, we want to
point out, that by denoting a process as irreversible, we are not only
referring to the principal chemical reactions, which make up the working
principle of a battery, but also to side reactions or other effects that lead
to an overall irreversibility.

A second distinction considers the fundamental reactants of the electro-
chemical process. In today’s most prominent battery type, the lithium-ion
(Li-ion) battery, ionic lithium is participating in the relevant reactions.
This is in contrast to Li-metal batteries, such as Li-sulfur or Li-air batter-
ies, in which elemental lithium metal is formed. Other material systems
are found in sodium-ion or nickel-metal hydride batteries.

Throughout this work, we will focus on the class of secondary Li-ion
batteries. While a large variety of material systems is covered by this
class, we will pose further restrictions with respect to certain material
properties later in the text.
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1. Introduction

1.1.1 Fields of Application

The Li-ion technology has contributed a more than significant part to
modern culture’s mobile lifestyle. A convincing demonstration of this
statement can be found in nearly everybody’s pant pocket or handbag,
the mobile phone. Taking the United States of America as example, with
326 million mobile subscribers in the year 2012 [3], on average each of the
314 million citizens was using wireless services, mainly via mobile phone.
Since not only mobile phones, but also over 99% of tablets, notebooks
and other mobile devices are powered by Li-ion batteries [4], practically
everyone benefits from applications enabled by the Li-ion technology.

While consumer electronics still hold the biggest share of products
equipped with Li-ion batteries, an increasing percentage of devices with
Li-ion technology might also find their way into the hands of people,
that by now were able to withstand the boon and bane of mobile com-
munication. Examples are the rising usage of Li-ion chemistry in power
tools, which should reach around 45% in 2015 [4] or the current growth
of popularity in Li-ion powered electric bicycles [5], where German sales
numbers nearly doubled from 200 000 in 2010 to 380 000 in 2012 [6].

Aside from that, strong growth is also being projected in the area of
electric storage systems, where forecasts expect up to 2.6GW of newly in-
stalled Li-ion power in the year 2020. With a total of worldwide 10.9GW
newly installed power, this would mean a share of around one fourth in
a market, where competitors are not only alternative cell materials, but
also completely different physical methods, such as for example ’Power
to Gas’, air compression, redox flow batteries or thermal energy stor-
age. High expectations lie on these investments to promote and support
the transition towards renewable energies and hopes can only feel en-
couraged when comparing the predicted numbers to the value of 0.1GW
that were installed in 2011 [7].

However, the greatest boost concerning the utilization of Li-ion tech-
nology is awaited in the automobile market, where Li-ion batteries pro-
vide the energy for electric propulsion systems. Depending on whether
the electric powertrain is working solely or in combination with a con-
ventional internal combustion engine, one differentiates between elec-
tric vehicles (EV) and hybrid (HEV) or plug-in hybrid electric vehi-
cles (PHEV), that can also be charged by connection to an external
power source. Forecasts in 2011 predicted a surge from around 14%
(3 639GWh) to 37% (49 034GWh) of the total Li-ion energy storage
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1.1. Basics of Lithium-Ion Batteries

demand for automobile applications in 2020, with a largest contribution
by PHEVs (see Fig. 1.1). Yet, trends related to e-mobility are harder to
predict than, for example, the development in the consumer electronics
segment. This uncertainty is also caused by the strong impact of partly
political factors, such as oil price development, infrastructure build-up
for recharging possibilities or stricter emission standards for conventional
combustion engine vehicles. Apart from that, new mobility concepts like
car sharing in densely populated urban areas or special arrangements for
commuters may have a non-negligible impact on the transition towards
electrically propelled vehicles [8].
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1.450 584
1.605
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Plug-In Electric Vehicles
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Mobile phones
Notebooks
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2011 2020

Figure 1.1.: Energy storage demand by volume and application in GWh. Extruded
parts mark automotive applications. The values are extracted from dia-
grams in [7].

Despite all the imponderability, the key factor on the success of elec-
trically powered automobiles and therefore also on the penetration of
Li-ion technology in the automobile market is the Li-ion battery itself.
Although first models are already being distributed quite successfully,
there are still considerable challenges in order to convince the broad ma-
jority of saying goodbye to the combustion engine. One of the most
obvious downsides that a potential customer faces when buying one of
the currently available electric vehicles is undoubtedly the cost of the
built-in battery. With costs of around 400e/kWh [9] and a typical en-
ergy storage capacity of up to 20 kWh for a minicar [10, 11], not only
a significant part of the costs for the electric powertrain, but also of
the total acquisition costs of an electric vehicle is spent for the battery.
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1. Introduction

However, due to scale effects and improvements of the manufacturing
productivity, batteries for automobiles should become cheaper in the
coming years and prices below 120e/kWh are awaited by 2025 [9].

More fundamental hurdles concern the battery technology. Better cells
with increased energy density, both per volume and weight, have to be
developed to improve the cruising range to levels where more extended
journeys become feasible. For hybrid vehicles, where integration space is
shared with the conventional propulsion system, higher power densities,
mainly per volume, have to be obtained. For the usage outside of cities,
fast-charge capability, enabling reasonable waiting times for intermedi-
ate recharge stops, is a further key ingredient. Due to the properties of
certain chemical components, some Li-ion cells are susceptible to fires
and explosions if the cell is damaged or suffers from production faults
[12]. Thus, it is mandatory to assure safety for the passenger even in
unusual situations. Aside from that, requirements concerning the life-
time of the battery are much more demanding in the automobile sector
compared to, for example, consumer electronics. In the United States of
America of 2010, a typical replacement cycle of a mobile phone lasted 22
months. It is not uncommon that the user already experiences a serious
drop in the capacity of the built-in battery at the end of this period. For
automobiles, it is desired that the costumer does not notice a significant
performance loss over its full lifetime, i.e. for at least 10 years [13]. Since
testing of cells over such a long duration is not practical, it is vital to es-
tablish a thorough understanding of the processes in a battery that lead
to its degradation. Only then, reliable predictions can be made where
real-time experiments over the full life cycle are not at disposition.

The described conditions for a wide success of Li-ion powered auto-
mobiles seem quite challenging at first glance. However, one has to keep
in mind, that Li-ion is a comparatively young technology. While the
history of compulsion engines in automobiles goes back to the end of
the 19th century, batteries with Li were first proposed in the 1970s by
Whittingham [14] and Besenhard et al. [15–17]. Almost two decades of
pioneering works passed until the fist commercial Li-ion batteries were
released by Sony in 1991 and a joint venture of Asahi Kasei and Toshiba
in 1992 [18]. After two more decades, Li-ion technology is now on the
verge of a breakthrough in the automobile market and the progress,
which has been made during these years, can only strengthen the confi-
dence that the last hurdles towards a completely electrified mobility may
be overcome with Li-ion or one of its related technologies.
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1.1. Basics of Lithium-Ion Batteries

1.1.2 Design and Working Principle

The fundamental working principle of an electrochemical cell is the dis-
parity in the electrochemical potential of charge carriers in different chem-
ical compounds [1]. In a typical Li-ion battery, these compounds are, for
example, on the one side lithium graphite LixC6 and on the other side a
lithium metal oxide, for example lithium manganese oxide Li1−xMn2O4,
with x ranging from 0 to 1 [19]. If no external voltage is applied, the
electrochemical potential of lithium is lower in the manganese oxide than
in graphite and lithium has the higher tendency to form a compound with
the manganese oxide. The reason for this is explained by a thermody-
namic argument. At constant pressure and temperature, the change in
Gibbs free energy is equal to the change of number of species multiplied
by their chemical potential. In differential notation, this reads

dG|p,T =
∑
i

μi dNi, (1.1)

with the Gibbs free energy G and the chemical potential and number μi

andNi of species i. In the presence of an electric field, an electric potential
is added to the chemical potential to yield the electrochemical potential

μ̄i = μi + ziFΦ, (1.2)

where zi is the valency of the species, F is Faraday’s constant and Φ is
the local electrostatic potential. The second law of thermodynamics now
states, that a spontaneous reaction is always following the direction, which
minimizes the Gibbs free energy. The number of species with higher elec-
trochemical potential thus decreases and the one of the species with lower
electrochemical potential increases. This direction corresponds to the dis-
charge process. By means of equation (1.2) we can reverse the direction
through application of the appropriate voltage and charge the battery. For
the abovementionedmaterial combination this gives the reaction equation

LixC6 + Li1−xMn2O4

discharge
�

charge
C6 + LiMn2O4, (1.3)

which consists of two steps. In the discharge (charge) direction, lithium
is oxidized (reduced) at the graphite and reduced (oxidized) at the metal
oxide

LixC6

discharge
�

charge
Lix + C6 + x e−, (1.4)
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1. Introduction

Lix +Mn2O4 + x e−
discharge

�
charge

LixMn2O4. (1.5)

If these partial reactions take place at two spatially separated electrodes,
both Li-ions and electrons have to move from one reaction site to the
other. The electrode of the oxidation reaction is called anode, the one
of the reduction reaction is labeled cathode. Although usually referred
to the discharge of the battery, the denotation of cathode and anode
can be misleading since it depends on the direction of the process. A
stricter distinction is made on the basis of the reduction potential of
the underlying reaction. The partial reaction with graphite (1.4) has a
lower reduction potential than that with the manganese oxide (1.5). The
former is therefore called negative electrode, the latter positive electrode.
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Figure 1.2.: (Left) Schmematic structure of an electrochemical cell design, consist-
ing of current collectors, positive and negative electrode and separator.
(Right) Illustration of the Li reduction at the surface of the storage par-
ticles. The Li-ions are transported through the electrolyte, which fills
the pores in the separator and electrodes. Electron conduction takes
place in the conductive network, consisting of conductive additives in
the binder and storage particles.
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1.1. Basics of Lithium-Ion Batteries

In addition to the spatial separation of the electrodes, the second basic
design element of an electrochemical cell is the enforcement of different
pathways for the relevant charge carriers. If the electrons are not allowed
to travel directly from one electrode to the other, but only through an
external circuit, an electric current develops, which can be used to power
a consumer [1]. For this purpose, an ordinary Li-ion battery consists of
several components, as depicted in FIG. 1.2. A porous separator prevents
direct electrical conduction between the electrodes and is most often made
of polymers, such as polypropylene (PP) or polyethylene (PE) [2]. In or-
der to provide ionic conduction, the pores of the separator are filled with a
liquid electrolyte. Due to the high reactivity of lithium, they are based on
non-aqueous, aprotic solvents. Examples are ionic liquids or organic com-
pounds, such as propylene carbonate (PC) or dimethoxyethane (DME),
with lithium hexafluorophosphate (LiPF6) as conducting salt [2]. To es-
tablish electric conduction, the electrodes are in contact with metal foils
made of copper and aluminum. These foils are called current collectors
and serve as terminals to connect a consumer or voltage source to the cell.

The power, that a consumer can tap from a battery, and the time, that
it takes to recharge it, depend in general only on one single condition. This
is the availability of reactants for the chemical reactions in equation (1.4)
and (1.5). Taking the discharge process at the cathode as an example,
the condition can be stated in the following questions. How much Li-ions
and electrons reach the reaction surface in a given time? How fast can Li-
ions move into the material to allow more Li to flow through the surface
and how large is the reaction surface itself? To optimize a battery with
respect to these questions, a typical Li-ion battery electrode is built up
as a composite of different materials, as shown on the right of FIG. 1.2.
The reacting material is formed as so called active or storage particles
with sizes below around 20μm. These particles can be mono- or poly-
crystalline and effectively store the Li-ions [20, 21]. The storage particles
are embedded in a soft, porous binder material, which provides structural
integrity of the electrode and allows electrolyte to reach the particle sur-
faces through its pores. In most cases, it consists of a polymeric material,
such as polyvinylidene difluoride (PVDF). But also alternative concepts,
such as alginates or rubber materials, are being pursued [1, 22]. To ensure
a high electronic conductivity of the electrode, the binder is enriched by
so called carbon black (a nano-sized carbon additive) [2]. Particles and
carbon black build an electrically conductive network through which the
storage particles are connected to the current collector.
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1. Introduction

The choice of active material determines the specific type of Li-ion cell.
The above mentioned graphite and manganese oxide compounds belong
to the class of intercalation materials. Members of this class have in
common, that the structure of the material remains unchanged during
insertion of the lithium. The material thus acts as a host providing
empty lattice sites that can be occupied by the lithium. This is in con-
trast to, for example, alloying materials [23], such as silicon or tin an-
odes, or conversion materials, such as copper fluoride CuF2 [24], which
lead to completely new crystal structures or chemical compounds. An
alternative example for an intercalation material on the anode side is
lithium titanate Li4+xTi5O12. It is structurally more stable and more
benign to reactions with the electrolyte than graphite [25, 26], but pos-
sesses a higher electrochemical potential leading to a lower overall cell
voltage. On the cathode side, different metal oxides, like the aforemen-
tioned lithium manganese oxide LiMn2O4, lithium cobalt oxide LiCoO2

or lithium nickel oxide LiNiO2, all come with their own advantages and
disadvantages [20, 21]. They are therefore often used in combination
as so called NCM (LiNixCoyMnzO2) or as blend with particles of dif-
ferent materials [27]. A further intercalation material, which does not
fall under the class of metal oxides, is lithium iron phosphate LiFePO4.
It is thermally more stable, but comes with a lower electrochemical
potential than the metal oxides [21].

1.1.3 Aging and Degradation Mechanisms

The primary tasks of both building durable lithium (Li) ion batteries,
that preserve capacity over a large number of cycles, and predicting the
remaining life time of a commercial Li-ion battery demands a thorough
understanding of the underlying mechanisms leading to the degradation
of a battery. As expected for a battery, a large part of these degradation
mechanisms are of electrochemical nature [28].

Among these detrimental effects, one of the most severe contribu-
tions is ascribed to the formation of the so called solid electrolyte in-
terphase (SEI) [29–36]. In Li-ion batteries, the SEI is a layer that
forms on the surface of the active particles in side reactions with the
electrolyte, mainly during the first few cycles. Its composition is highly
dependent on the choice of electrolyte, additives and active material.
However, since Li is always one of its constituents, the build-up of the
SEI reduces in any case the amount of available Li for energy storage.
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1.1. Basics of Lithium-Ion Batteries

Furthermore, it provides an obstacle for Li to reach the surface of the
storage particles, which results in an increased electrode impedance. It
is thus a crucial task to achieve a SEI with a low irreversible capacity
loss, that is stable in the sense, that its growth saturates at a certain
thickness and that does not detach from the particle surface [28].

Another chemical degradation mechanism leading to capacity fade
is the dissolution of active material, which presents a severe problem
for example in electrodes using lithium manganese oxide (LMO) as ac-
tive material [29, 37–39]. It is commonly assumed that the manganese
undergoes a disproportionation reaction in which trivalent Mn(III) be-
comes di- and tetravalent Mn(II) and Mn(IV). The Mn(II) dissolves
into the electrolyte [37] and may then participate in or cause further
SEI reactions [40]. The process thus presents a cause for both loss of
active material and raise of the electrode impedance.

The mentioned disproportion reaction can be considered as one ex-
ample of an undesired phase transition in the active material. A further
example of an unwanted phase change appears in metal oxides with spe-
cial layered structures to obtain higher operating voltages [41–44]. Due
to the higher voltages, these materials are identified as promising candi-
dates to improve the energy density of Li-ion batteries. However, at the
current stage of development, the materials are prone to drastic voltage
drops because of structural rearrangements already in the first cycles.

Another aging effect is the deposition of elemental Li on the elec-
trodes in form of plating or growth of dendrites [45, 46]. The phe-
nomenon not only causes capacity fade, but may also lead to com-
plete failure of the battery when dendrites cause an electrical short.
This becomes most severe during over-charge or operation at very low
temperatures [47, 48].

Further chemical degradation mechanisms are less related to the ma-
terial of the storage particles. For example, the current collectors may
corrode, electrolyte can decompose and lead to gas evolution or the
binder may degrade [28].

Although already the chemical degradation mechanisms are numer-
ous and complex to understand, in the recent past, a growing scientific
interest reflects the rising awareness that also mechanical aspects influ-
ence lifetime behavior of a Li-ion battery in a more than non-negligible
way. While some effort is spent on the impact of mechanical stress on
the macroscopic scale of a Li-ion battery [49–53], the greater focus lies
on the description of the interplay between diffusion and stress within
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1. Introduction

electrode storage particles. Our own work is settled in this field and
we will go into more details in the following section.

2 μm 4 μm

2 μm

Figure 1.3.: Pictures taking via scanning electron microscopy. Top row: Crack
in LMO (left) and fracture/delamination between primary particles in
NCM (right) after cycling. Shown by kind permission of T. Wald-
mann, ZSW Baden-Württemberg. Bottom row: LMAO Pristine Parti-
cle (LiMn1.95Al0.05O4) before and after 800 cycles [54].

1.2 State of the Art

The microscopic stress appearing in storage particles results from an in-
homogeneous volume change, which the material encounters when Li is
extracted from or inserted into the particle. Depending on the type of
material, the volume change is isotropic as in LiMn2O4 [19] or anisotropic
as in LiCo1/3Ni1/3Mn1/3O2 [55] and can exceed 300% as in Si [56]. As a
grave outcome of such stress, fracture and complete breakage of storage
particles may occur [57–60]. Examples for the observation of fracture
in storage particles are shown in FIG. 1.3. Subsequent loss of electrical
contact for the fractured particles [61, 62] and growth of the solid elec-
trolyte interphase on the new surfaces [63] are blamed as fatal threats
to a Li-ion battery expected to have a long life in terms of capacity fade
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1.2. State of the Art

and power loss [64, 65]. Detailed insight into the problem of fracture in
storage particles thus presents a central key to improvements in battery
design and appropriate operation for future generations.

One of the earliest efforts on modeling stress in active particles is the
work of Christensen et al. [66]. Included in their description is the effect
of mechanical pressure on Li diffusion, as well as nonideal interactions
between Li and host material. Reduced in complexity and valid only
for dilute Li concentrations, but applicable to fully three-dimensional
particles, a model of Zhang et al. [67] followed, which may be regarded
as the basis of many subsequent variations on their approach. Among
these are analytic works deriving closed form relationships among rele-
vant quantities by either geometric or physical simplification [68, 69] or
mathematical linearization [70]. Solutions of this kind are also found for
core-shell like particles [71], a promising approach for materials with very
large volume expansion, in which critical stress levels may be avoided by
using a composite structure. Corresponding numerical investigations are
presented in [72, 73]. The core-shell composite structure should not be
confused with phenomena in homogeneous materials that may experi-
ence a core-shell like concentration distribution during Li insertion or
extraction [74]. A general strategy for avoiding high mechanical stress
caused by lithiation swelling and shrinkage is to use smaller particles
sizes, possibly nanometer scale [75–77]. At such small sizes, surface ef-
fects become more dominant [78–82] and can even lead to the suppression
of phase separations [83–85]. Phase changes are also modeled by means
of phase field models of Cahn-Hilliard type [86–88] and demonstrate that
large stress may also result at low C-rates.

On the other hand, more elaborate mechanical treatments have been
undertaken, such as those that included elastic-plastic material behavior
or formulations for large deformations [89–93] as well as the introduction
of dislocations [94]. Going one step further, some treatments take the
computed stress and strain resulting from Li diffusion and use them to
investigate the critical conditions under which a particle may fracture.
For example, Woodford et al. [95] develop a so called electrochemical
shock map, sketching the values of parameters for which single crystals
and polycrystals tend to crack. A similar map is provided in [96] for
a phase-transforming material. Woodford et al. [95, 96] support their
findings by acoustic emission experiments, a method for monitoring par-
ticle fracture during cell operation [97–99] and a potential candidate for
linking it with decreased battery performance [100]. A basic concept
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1. Introduction

for determining the circumstances leading to cracks is a comparison of
the stored elastic energy released from the bulk material and the energy
required to create new surfaces [101]. The comparison is often evaluated
theoretically by introduction of an artificial crack in the material and
followed by computation of the energy required to grow the crack [102–
105]. Studies of systems with preexisting cracks address, for example,
the influence of the open circuit potential [106] or of plastic yielding [107]
on fracture resistance.

In this work, we aim at simulating crack propagation coupled to diffu-
sion of Li using a phase field method for fracture. Among the most com-
plicated aspects of the theory of fracture is the prediction of the path to
be taken by one or several cracks in a specimen or structural component.
Due to the complexity of the phenomena involved, one commonly relies
on computational methods to approach the problem [108]. A modeling
approach that allows a comparatively convenient numerical implementa-
tion is the phase field method for fracture. It is identified as a promising
candidate for studying intricate crack growth problems, including effects
such as crack branching, kinking or merging in arbitrary geometries and
dimensions [109, 110].

Similar to phase field methods used for other problems is the inherent
existence of one or many order parameters that take defined values de-
pending on the state and development of the phases subject to numerical
smoothing, giving a continuous transition between states. In the area
of fracture, the order parameter discriminates between an intact and a
cracked region of the material. In contrast to discrete crack models, the
phase field does not attempt to describe the crack as a geometric feature
with a physical discontinuity, but as a smoothed continuum approx-
imation with a gradient providing a transition between the intact and
fractured states, taking place within a characteristic length, l. [111, 112].

The crucial advantage of the phase field approach is the avoidance
of complicated, sophisticated techniques necessary to describe complex
crack topologies in the discrete setting. Examples of such techniques
are the adaptive reconstruction of the mesh through introduction of new
boundaries at freshly created crack surfaces [113] and the extended fi-
nite element method (XFEM) [114], that enriches the shape functions in
cracked elements by addition of a set of discontinuous ones. Also rather
common is the usage of so called cohesive elements that allow displace-
ment jumps at element boundaries and therefore restrict the crack to
penetration along the corresponding element edges [115, 116].
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Due to the smooth character of the phase field, complicated crack pat-
terns, as for example shown in [117–119], are in principle achievable in
the setting of a standard finite element method. The easy implementa-
tion of the method resulting from this benefit has lead to its utilization
already beyond purely mechanical problems, such as for example with
thermal expansion [120], in ferroelectrics [121, 122] or in piezoelectrics
[123, 124]. The flexibility of the approach has even been exploited in a
coupled model with water diffusion [125].

1.3 Objectives and Overview

In this work, we seek a deeper understanding of the phenomena involved
in the comminution of storage particles of Li-ion batteries by coupling a
model of Li diffusion and mechanical stress with a phase field approach
to fracture. A similar combination is found in [126] for thin films and in
[127] for LiFePO4 nanoparticles. While [126] concentrates on different
arrangements of cracks in a 2D setup, [127] investigates the influence
of detailed material properties, such as, for example, anisotropic coher-
ence strains and anisotropic Li diffusion. Here, we present an alternative
formulation. It includes a thermodynamically consistent description of
Li mass transport that is valid beyond the dilute case and takes into
account mechanical stress as an additional driving force for diffusion.
The formulation is combined with a fully dynamical description of the
fracture process, and we find that dynamic effects resulting from the
inertia of the material have a strong impact on the resulting crack pat-
terns, and may even lead to complete breakage of a particle in one half
cycle of insertion, or in only a few half cycles. The work is organized
as follows.

In chapter 2, the physical model is derived. We first describe the
interplay of Li diffusion and mechanical stress and then introduce the
phase field method for crack growth. Thereafter the two parts of the
model are coupled.

The resulting system of partial differential equations demands for a
sophisticated solution scheme, which is presented in chapter 3. We
determine the weak form of the boundary value problem and cast it into
a form that can be implemented into a computer algorithm. We then
describe the general solution scheme and develop a mesh adaptation
scheme, that is both based on an energy criterion and the evaluation of
the gradient of the phase field. In addition, a time-adaptive method is
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1. Introduction

presented, that keeps track of the currently dominant physical time scale
and adjusts the numerical time steps accordingly.

In chapter 4, the phase field method for crack growth is compared
with established results from fracture mechanics. We examine the accu-
racy of predictions on crack initiation and propagation in a pure bending
and an edge notch stretch test and investigate two different methods for
the introduction of an initial crack. In addition, we study the role of the
length scale parameter as a material parameter and the practicability of
using it for the definition of an initial crack distribution in chapter 5.

Chapter 6 and 7 present a comprehensive study on Li diffusion and
fracture in spherical and cylindrical particles. Precracks are introduced
into the particles and the fracture behavior during both Li insertion and
extraction is investigated. Several phenomena, such as crack branching or
complete breakage of the particles, are found and the difference between
two and three-dimensional setups are examined. Further, in chapter 8
we have a look on how cracks, that have grown in the first half cycle, may
extend in a second half cycle with reversed boundary conditions.

We give a quick outlook on how the model could be extended with
respect to the Li flux at the crack in chapter 9 and conclude our work
in chapter 10.
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2 Model Formulation

2.1 Stress and Diffusion in a Storage Particle

In this chapter a model is set up, which describes Li diffusion in an
intercalation material. The basis of the model is found in the work of
Bohn et al. [128, 129], which considers flux of Li in a phase-changing
material. However, we neglect phase transformations and reformulate
the model to make it more suitable for extension to include a fracture
phase field order parameter.

The central entity of the model is a single free energy density potential
from which we can derive all our material relations via partial derivatives.
In order to arrive at the free energy density potential, the following
assumptions are imposed:

• a fixed host lattice in the sense that as Li diffuses into the material
the lattice remains unaltered (intercalation material)

• intercalating Li is neither direct nor indirect interacting with each
other (ideal solution)

• taking into account the availability of lattice sites for hopping of
Li and saturation effects (non-dilute solution)

• a constant and homogeneous temperature throughout the particle

• an isotropic and linear volume expansion due to the inserted Li

• an isotropic and linear elastic material behavior

• the strain in the material is small in the sense that the mechanics
of infinitesimal straining provide a good approximation
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2. Model Formulation

We return to these assumptions and consider them in more detail after
first deriving the fundamental balance equations, that hold independent
of the specific material system.

2.1.1 Balance Equations

Balance of Li content

The time rate of change of the total content of Li stored in a part of
a particle is equal to the amount flowing in or out of it. Herein lies
the assumption that there do not exist mechanisms that stop Li in its
diffusive motion, for example by being trapped to certain lattice sites.
Further, no previously immobile Li is released for diffusion. Denoting
the domain describing a part of the body B with P ⊆ B and its boundary
with ∂P, this reads

d
dt

∫
P

dV c(x, t) = −
∫
∂P

dS J(x, t) · n(x, t). (2.1)

Here, t is a scalar denoting the time, x a vector in space, c(x, t) the Li
concentration, J(x, t) the Li flux and n(x, t) a unit vector normal to the
boundary of the domain. Working in the regime of small strains, we
can neglect a change of the shape or size of the domain with time. We
therefore take the time derivative1 into the integral yielding∫

P
dV ċ(x, t) = −

∫
∂P

dS J(x, t) · n(x) = −
∫
P

dV ∇ · J(x, t) (2.2)

where we have used the divergence theorem with the nabla operator
defined by ∇ = (∂/∂x, ∂/∂y, ∂/∂z) and the short notation of the time
derivative given by ċ(x, t) = d

dtc(x, t). Since this relation holds for any
arbitrarily small part of the body, it is equivalent to state the balance
equation in differential form by

ċ(x, t) +∇ · J(x, t) = 0. (2.3)

1 In this case, the material time derivative is required. Since assuming small strains,
material time derivatives are computed via partial derivative with respect to t.
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2.1. Stress and Diffusion in a Storage Particle

Balance of Linear Momentum

The time rate of change of the linear momentum of a body (or a part
of it) is equal to the sum of forces acting on it. We neglect body forces
such as, for example, due to gravity, and consider only forces that are
applied on the boundary of the body. The balance of linear momentum
then requires

d
dt

P :=
d
dt

∫
P

dV ρ(x, t)v(x, t) =

∫
∂P

dS t(x, t,n) (2.4)

Here, the total linear momentum P is defined as the integral of the
mass density ρ(x, t) times the velocity field v(x, t), which, in the small
strain regime, is given by the partial time derivative of the displacement
field v(x, t) = u̇(x, t). Since Li is a comparatively light element (e.g.
in LiMn2O4, the atomic weights are 6.94 u for Li, 54.94 u for Mn and
16.00 u for O), the mass density is taken to be independent of the Li
concentration. Further, in the small strain limit, elastic compression
or expansion does not have a significant impact on the density. It is
therefore taken as a constant and we can move the time derivative into
the integral and apply it only to the velocity. For the right hand side,
Cauchy’s theorem states, that the traction vector t(x, t,n) can be written
in terms of the Cauchy stress tensor as

t(x, t,n) = σ(x, t)n. (2.5)

Applying the divergence theorem, we obtain∫
P

dV ρ v̇(x, t) =

∫
P

dV ∇ · σ(x, t). (2.6)

As before, the mentioned arguments not only hold for the full body, but
for any part of it. We may therefore express it in differential form by

ρ v̇(x, t) = ∇ · σ(x, t). (2.7)

2.1.2 Free Energy Density

Equations (2.3) and (2.7) require constitutive relations, that describe
the physical behavior of the material, relating the secondary variables
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2. Model Formulation

J and σ with the principle variables concentration c and displacement
field u. Following principles of the so called theory of materials [130]
and confining ourselves to the case of infinitesimal strain, σ depends
only on the symmetric part of the gradient of u. Constitutive relations
are therefore given in terms of the small strain tensor

ε =
1

2

[∇u+ (∇u)T
]
. (2.8)

For a compact and easily extendible formulation of the model, we define a
single free energy density potential ψ from which we obtain the constitu-
tive relations through partial derivatives with respect to their conjugate
variables by σ = ∂εψ for the stress and μ = ∂cψ for the chemical poten-
tial. The appropriate free energy function is derived from a number of
considerations that are deduced from certain physical assumptions. In
the following, these shall be explained step by step.

Mechanical Part of Free Energy Density

We commence with the elastic energy stored in the material, i.e. ψelastic,
and use an analogy to a material undergoing thermal expansion propor-
tional to the local temperature. For an isotropic linear elastic material,
the elastic energy is then obtained by

ψelastic(ε, c) =
1

2
L(tr[ε− εLi])

2 +G′tr[(ε− εLi)
2], (2.9)

with Lamé’s first parameter L, the shear modulus G′ and the trace
operator tr[A] =

∑
i Aii. The strain caused by the isotropic volume

expansion due to the intercalated Li is given by

εLi =
Ω

3
(c− cref)1, (2.10)

where Ω is the molar volume of Li and cref the reference concentration.

Chemical Part of Free Energy Density

Next, we consider the change of the internal energy density, which occurs
when Li is introduced into the host lattice. In contrast to the foundation
of our model [128], we neglect mutual interaction between Li in this work
and obtain
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2.1. Stress and Diffusion in a Storage Particle

ψchem(c) = μ0c, (2.11)

where μ0 is the reference chemical potential of Li in the host material,
which is independent of pressure, temperature or concentration. Since
this term only adds a constant value to the full chemical potential of Li,
it does not enter the diffusion equation. However, one can expand ψchem
by more complex terms to account for phenomena like phase changes.

Entropic Part of Free Energy Density

The last contribution to the free energy density stems from the entropy,
resulting from the disorder of Li-ions in the host lattice. Using combi-
natorics, we count the number of possibilities W of arranging N Li-ions
on N̂ host lattice sites yielding the entropy density

η =
1

V0
kB lnW =

1

V0
kB ln

N̂ !

N !(N̂ −N)!
, (2.12)

where V0 is a reference volume and kB the Boltzmann constant. After
approximation of the expression for large values of N̂ , we replace Li-ion
numbers by concentrations and then integrate it to receive

ψentropic(c) = −Rθ

∫ c

0

dc′ ln
1− c′/cmax

c′/cmax
. (2.13)

Here, R is the universal gas constant and θ denotes the temperature,
which is assumed constant throughout the particle.

Full Free Energy Density

The expressions given in equation (2.9), (2.11) and (2.13) describe the
different contributions to the free energy density that result from the
assumptions presented in the introduction of this chapter. Combining
these, we obtain the full free energy density

ψ(ε, c) =
1

2
L(tr[ε− εLi])

2 +G′tr[(ε− εLi)
2]

+ μ0c−Rθ

∫ c

0

dc′ ln
1− c′/cmax

c′/cmax
. (2.14)
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2.1.3 Constitutive Relations

With the free energy density given by (2.14), the constitutive relations
are computed through partial derivatives, as described above, yielding

σ = L tr[ε− εLi]1+G′ (ε− εLi), (2.15)

μ = −Ωσh + μ0 −Rθ ln
1− c/cmax

c/cmax
, (2.16)

where we have used the hydrostatic stress given by

σh =
1

3
tr[σ]. (2.17)

The so defined stress-strain relationship (2.15) allows to solve the equa-
tion describing conservation of linear momentum (2.7) for any given Li
concentration. In contrast, the equation for balance of Li content (2.3)
requires as a further ingredient a relationship between the chemical po-
tential and the Li flux. This is generally given in the form [67]

J = cvLi = −cM(c)∇μ, (2.18)

where vLi is the velocity of Li atoms and M is their mobility. The
expression can be understood as follows. The flux of Li is equal to the
amount of Li per reference volume, i.e. the concentration c, flowing with
a certain velocity vLi. The driving force for the development of the
velocity field is given through the gradient of the chemical potential μ.
Depending on the mobility, the Li motion follows this driving force more
or less rapidly. A common approach is to take the mobility to be constant
[67, 131]. However, given Li hopping in a host lattice, it is reasonable
to assume that the mobility of Li should decrease with increasing lattice
site occupancy. In the most simple approximation, this implies a linear
relation of the form

M(c) = M0(1− c/cmax), (2.19)

where M0 = D0/(Rθ) is the mobility for a dilute solution of Li in the
host material and D0 denotes the diffusion coefficient of Li. Combining
equations (2.16), (2.18) and (2.19) we then obtain the flux

J = −D0∇c+
D0Ω

Rθ
c (1− c/cmax)∇σh. (2.20)
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The first term on the right is consistent with Fickian diffusion that would
result from constant mobility and concentrations of Li smaller than cmax.
However, given concentration dependent mobility as stated in equation
(2.19) it prevails at any concentration of Li. In addition, the concen-
tration dependent mobility of Li as given in equation (2.19) ensures the
significance of stress gradient driven diffusion controlled by the second
term on the right hand side of equation (2.20) and determines that it
is negligible at low and high Li concentration. As can be deduced from
equation (2.20) a constant mobility would lead to an overestimation of
the stress gradient driving force at higher Li concentration.

We additionally need a set of initial and boundary conditions, de-
fined on the domain B describing the storage particle geometry and its
boundary ∂B. We denote prescribed displacements by ū, tractions by
t̄, concentrations by c̄ and fluxes by J̄. A well-defined set of boundary
conditions is given by u = ū on ∂Bu and t = σn = t̄ on ∂Bt with
∂Bu ∩ ∂Bt = ∅ and ∂Bu ∪ ∂Bt = ∂B for the conservation of linear mo-
mentum, as well as c = c̄ on ∂Bc and J = J̄ on ∂BJ with ∂Bc∩∂BJ = ∅
and ∂Bc ∪ ∂BJ = ∂B for the conservation of Li. The required ini-
tial conditions have the form c(x, t0) = c0(x), u(x, t0) = u0(x) and
v(x, t0) = v0(x).

2.2 Fracture in a Phase Field Approach

The classical energy criterion for brittle fracture developed by Griffith
and Irwin [132–134] states that a preexisting crack starts to grow as soon
as the elastic energy in the material that can be released during crack
propagation is sufficient to overcome the fracture resistance of the ma-
terial. That is, to extend a crack of length a by a distance Δa, enough
stored energy must be transformable into surface energy, plastic work
and other dissipative processes required to separate the material. From
a thermodynamical point of view, crack extension thus can be treated
as a process that occurs, subject to irreversibility, to minimize a free
energy composed of the stored elastic bulk energy plus the fracture en-
ergy. The foundation of the fracture phase field method through such
a variational approach was established in [135] and [136]. Approximate
representations of the energy variation were then found by introduction
of a scalar field d and a length scale parameter l transverse to the crack
surface, so that the original surface based fracture energy functional was
characterized as a volume based parameter over the distance l in a reg-
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ularized form in terms of d and its gradient [137], an idea originally
developed for problems related to image segmentation [138]. A require-
ment is that the original energy functional should be restored in the
sense of Γ-convergence when l tends to zero. A comprehensive overview
of the topic is given in [139].

x

d(x)

1

2l

 (d)l

2l

B
B

a) b)

Figure 2.1.: (a) Schematic illustration of the characterization of a cracked region by
d = 1 along Γ, in blue, and smoothing of the uncracked-cracked tran-
sition over a length scale l, in red. (b) Corresponding one dimensional
representation. A scanning electron micrograph of a LiMn2O4 particle
is also shown (permission of T. Waldmann, ZSW Baden-Württemberg).

Here, we follow the formulation of rate-independent crack propagation
given in [140], with modifications taken from [117]. Alternative ap-
proaches are found, for example, in [112, 141].

A standard feature of a phase field method is the definition of a so
called order parameter that indicates the state of a phase present at
a certain point in time t ∈ R and space x ∈ Rdim. In our case, the
two states refer to cracked and intact material and correspond to order
parameter values 1 and 0 respectively, as depicted for a discrete crack
by the blue line in FIG. 2.1. Thus, the order parameter2 is of the form

d(x) =

{
1, if material is cracked,
0, if material is intact.

(2.21)

The second distinctive feature of the method is a spatially smoothed
representation of the crack, given that x is distance measured orthogo-

2 We will use both the term order parameter and phase field to denote d(x, t)
without any distinction.
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2.2. Fracture in a Phase Field Approach

nally from the center of the smeared crack. A typical continuous, smooth
approximation of (2.21) in one dimension is the exponential function

d(x) = e−|x|/l, (2.22)

with the length scale parameter l ∈ R+ determining the width of smear-
ing of the function and thus the distance over which material transitions
smoothly from the uncracked to the cracked state. As l approaches zero,
a discontinuous function is recovered representing a discrete crack. The
smoothed approximation to the spike function is depicted in FIG. 2.1 b).
It can be shown that the function in equation (2.22) is a minimizer of
the one-dimensional analog to the functional

Wcrack(d) = Gc

∫
B

dV
(

1

2l
d2 +

l

2
|∇d|2

)
︸ ︷︷ ︸

γl(d)

, (2.23)

subject to the condition that there is a crack at x = 0. Here, Gc is the
Griffith-type critical energy release rate and γl(d) is the so called crack
surface density [140]. A solution to the minimization principle

d(x, t) = Arg
{

inf
d∈DΓ(t)

Wcrack(d)

}
, (2.24)

thus represents a smoothed approximation to the discrete crack at
x ∈ Γ(t), as depicted in FIG. 2.1 a). The functional Wcrack approxi-
mates the fracture energy through substitution of the integration along
the crack surfaceΓ(t) by a volume integration of the crack surface density3,
i.e.

∫
Γ(t)

dA ≈ ∫
B γl(d)dV . However, the actual position and geometry of

the crack have to be determined in advance by appropriate constraints
of the type

DΓ(t) = {d | d(x, t) = 1 at x ∈ Γ(t)}. (2.25)

3 The crack surface density γl(d) is typically overestimated in our simulations. This
partly results from the quadratic terms in its definition. Borden et al. [110] have
shown that faster convergence of the approximation of the crack surface to its
actual value can be achieved by an alternative formulation that takes into account
higher gradients of the phase field. However, this poses certain requirements on
the continuity of the approximative solution that cannot be implemented directly
with a standard finite elements method. Nevertheless, in chapter 4 it is shown
that the chosen formulation and implementation generate sufficiently accurate
predictions of crack growth.
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2. Model Formulation

In order to obtain the full evolution of the growth of the crack, the
minimization principle in equation (2.23), (2.24) and (2.25) is replaced
by one involving the total energy. Borden et al. [117] present this in the
form of a total Lagrangian energy functional

L(ε, u̇, c, d) =

∫
B

dV
(
1

2
ρu̇2 − ψelastic(ε, c, d)

)
−Wcrack(d), (2.26)

where ρ is the density of the material. The stored elastic energy density
ψ(ε, c, d) is based on the constitutive law for an elastic linear isotropic
material response summarized by equations (2.10 – 2.17). However, as-
suming that only tensile stress leads to crack growth, we decompose the
energy density into compressive and tensile parts via

ψ±(ε, c) =
1

2
L〈tr[ε− εLi]〉2± +G′tr[〈ε− εLi〉2±]. (2.27)

Operating on scalars, the angle brackets are defined by 〈x〉± = 1
2 (|x| ± x).

Applied to tensor quantities, they project onto the eigenspace with pos-
itive or negative eigenvalues by 〈A〉± =

∑
i〈αi〉± νi ⊗ νi, where αi and

νi are the eigenvalues and corresponding eigenvectors of A respectively.
The dyadic product A = v ⊗ w is defined so that Aij = viwj , L is the
Lamé constant and G′ the shear modulus. The release of elastic energy
at cracked locations is then modeled by multiplying the tensile part ψ(+)

with a function, which becomes zero if the order parameter d approaches
unity, so that

ψelastic(ε, c, d) = [(1− d)2 + k]ψ+(ε, c) + ψ−(ε, c). (2.28)

Here, k is a numerical parameter chosen to stabilize the solution. The
presented decomposition of ψelastic is exact in the sense that for d = 0
and k = 0, the ordinary isotropic linear elastic energy density is obtained
again4. A further advantage of this formulation is that it naturally de-
scribes the behavior of crack faces under compressive force in a correct
way. A numerically challenging tracking of possibly interpenetrating sur-
face elements and the imposition of certain conditions to avoid non-
physical behavior of the computational results, as often necessary with
discrete descriptions of cracks, is therefore not required in our implemen-

4 See Appendix A.2.
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2.3. Fracture in a Storage Particle

tation. Alternative approaches to distinguish between contributions to
the elastic energy that come from different types of stress can be found in
[112, 142, 143]. The Euler-Lagrange equations of the Lagrangian (2.26)
are then used to find the evolution equation for the phase field

d− l2∇2d = 2(1− d)
H

Gc/l
, (2.29)

where the local history field of maximum positive elastic stored energy

H(x, t) := max
s∈[0,t]

ψ+(ε(x, s), c(x, s)), (2.30)

replaces ψ+(ε) to ensure that the crack growth is irreversible so that
no crack healing can occur. In equation (2.30), s describes all points
in time from 0 to the current one t. The elastic energy that drives the
crack results from conservation of linear momentum as stated in equation
(2.7), consistent with the Euler-Lagrange equations.

The coupled pair of balance equations (2.7) and (2.29), together with
the constitutive relations for the Cauchy stress resulting from the cor-
responding partial derivative of ψelastic(ε, d), as well as the definition of
the history field (2.30) and the kinematic relation for the strain (2.8),
represent a well-defined mathematical problem. The necessary boundary
conditions to this problem are given by u = ū on ∂Bu and t = σn = t̄
on ∂Bt, as stated above, as well as ∇d · n = 0 on ∂B.

2.3 Fracture in a Storage Particle

We assume, that the driving force for fracture is solely generated by the
tensile elastic energy present in the material. In this approximation,
chemical effects of the Li on the initiation and propagation of a crack
are neglected and only its effect of swelling the material is accounted for.
Alternative formulations, considering coupled mechano-chemical driving
forces for fracture, can be found in [144, 145]. However, the simulation
of the growth of a crack is not pursued in those works.

By virtue of the formulation via a single free energy density, it is a
straightforward matter to couple the stress diffusion model to the phase
field describing crack growth. The central quantity that links the differ-
ent fields is the elastic energy. Under the assumption, that only mechan-
ical energy from elastic strain induces fracture, the spectral decomposi-
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2. Model Formulation

tion in equations (2.27) and (2.28) of section 2.2, is transfered to the full
free energy density of the stress diffusion model (2.14), together with the
fracture energy, yielding a replacement for equation (2.14) as

ψ(ε, c, d) = [(1− d)2 + k] ψ+(ε, c) + ψ−(ε, c) +Gcγl(d)

−Rθ

∫ c

0

dc′ ln
1− c′/cmax

c′/cmax
+ μ0c. (2.31)

The functional dependence of the free energy density on the strain is
not affected by the spectral decomposition in the sense, that ψ(ε, c, d)
is still only dependent on the elastic strain εelastic = ε − εLi. As a
consequence, the form of the partial derivative with respect to the con-
centration remains unaltered when expressed through the hydrostatic
stress, as defined in equation (2.17), i.e.

∂ψelastic

∂c
=

∂ψelastic

∂(ε− εLi)
:
∂(ε− εLi)

∂c
= −Ω

3
σ : 1 = −Ω

3
tr[σ] = −Ωσh.

(2.32)
The constitutive equation for the flux, as expressed in equation (2.20),
therefore remains valid in the coupled model. However, since the spec-
tral decomposition influences the Cauchy stress σ, the hydrostatic stress
entering the flux is modified. The Cauchy stress σ is again obtained
through a partial derivative of ψ(ε, c, d) as

σ = ∂εψ = [(1−d)2+k] ∂εψ
++∂εψ

−) = [(1−d)2+k]σ++σ−, (2.33)

with the compressive and tensile stress given by

σ± = L〈tr[ε− εLi]〉±1+G′〈ε− εLi〉±. (2.34)

In this first approximation, the presence of a crack affects the diffusion
of Li only through the modification in the stress field. A direct impact
of the crack on the Li flux by hindering or blocking flow perpendicular
to the crack faces, enhancing or mitigating diffusion along the faces, or
introducing additional flux through the faces, is not examined in this
work and remains as a future task.

For the sake of a better overview, we summarize the relevant equa-
tions in FIG. 2.2. The initial and boundary conditions of the coupled
model are directly taken over from section 2.1 for the displacement and
concentration field u and c and from section 2.2 for the phase field d.
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2.3. Fracture in a Storage Particle

Figure 2.2.: Summary of the derived partial differential and algebraic equations.
The model describes Li diffusion, mechanical stress and crack growth
in a simultaneous fashion. The different physical blocks are mutually
coupled and demand for an elaborated solving strategy (see FIG. 3.2).
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3 Numerical Implementation

3.1 From Differential To Matrix Equations

Due to the complexity of the model derived in the previous chapter, the
system of partial differential equations (PDE) presented in FIG. 3.2, can
only be solved using an appropriate numerical method such as the finite
element method (FEM). To this purpose, the boundary value problem
(BVP) has to be cast in a suitable form, so that it can be implemented
in a computer algorithm. We describe the steps required to obtain this
form in the following sections.

3.1.1 Time Discretization

Various approaches exist for numerical solution of a boundary value
problem, which is both depending on time and space. For example, one
may first discretize the equations in space and then solve the remain-
ing ordinary differential equation in time. This approach is generally
referred to as the so called method of lines [146] and works particularly
well for parabolic partial differential equations. However, for the elliptic
equation describing the balance of linear momentum, it is more com-
mon to resolve first the differential operator in time by a suitable time
integration method. Thereafter the resulting equation is solved for its
spatial variables. In our work, the implicit Backward-Euler time integra-
tion method is applied. Alternatives, such as, for example, the explicit
Forward-Euler or Crank-Nicholson method were tested, but showed sig-
nificant disadvantages in terms of stability.

We divide the observation time T into S time steps and impose as
requirements on the time increments that Δtn ∈ R+, tn+1 = tn+Δtn+1

and T = tS−1, where n ∈ {0; 1; ...;S − 1}. Applying the Backward-Euler
method for the time step n+1, the balance of Li content (2.3) then reads
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3. Numerical Implementation

cn+1(x)

Δtn+1
− cn(x)

Δtn+1
+∇ · Jn+1(x) = 0. (3.1)

With the concentration at the previous step cn(x) being given, one thus
has to solve for the current concentration cn+1(x). The flux is hereby
computed from the current solution. This is different in explicit meth-
ods, where the flux is computed from the previous solution. The time
integration eliminates the derivative with respect to time. Hence, the
remaining differential operators act solely on the spatial variable. For
the sake of brevity, we drop the subscript for the current time step and
also the dependence on the spatial location to give

c

Δtn+1
− cn

Δtn+1
+∇ · J = 0. (3.2)

The reason for keeping the subscript at the time increment Δtn+1 is not
to be confused with time increments of previous steps, which may be
different due to the time-adaptive method implemented in our algorithm.

The necessity of working with a time-adaptive method can be un-
derstood by examination of the characteristic time scales on which the
different physical phenomena of the model take place. On the one hand,
the diffusive motion of the Li-ions is a comparatively slow process, de-
termined by the mobility of the ions and the net relative distance they
have to travel. Performing a simple dimensional analysis, we obtain a
characteristic time of τdiffusion = r20/D0, where r0 is the typical length
scale of the storage particle in question, e.g. the radius of a spherical
particle. We set it to r0 = 1μm throughout this work. With diffu-
sion coefficients around D0 ≈ 10−14 m2/s, this gives τdiffusion ≈ 102 s.
On the other hand, where inertia effects dominate the elastic behavior
of the material, e.g. during unstable crack growth, action takes place
on a much shorter time scale. A rough estimate gives the time that a
sound wave needs to travel from one side of the particle to the other.
If vwave =

√
E/ρ is approximately the speed of sound in matter, the

characteristic elastic time scale is τelastic = r0/vwave = r0
√

ρ/E. With
typical values of ρ ≈ 103 kg/m3 for the density and E ≈ 100GPa for
Young’s modulus, this yields τelastic ≈ 10−10 s. With respect to the ra-
tio of these characteristic time scales τdiffusion/τelastic ≈ 1012, it becomes
obvious, that in order to monitor each physical process adequately, an
elaborate time adaptation method is necessary. This will be presented
in section 3.3.4.
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3.1. From Differential To Matrix Equations

The variable time increment must be taken into account in the applica-
tion of the time integration method to the equation describing the bal-
ance of linear momentum (2.7). Proceeding in a similar way as above,
we obtain

ρu

Δt2n+1

− ρun

Δt2n+1

− ρ (un − un−1)

Δtn+1Δtn
= ∇ · σ, (3.3)

where we have used v̇ and u̇ = v. With displacement fields from the last
two time steps un and un−1 being known, we solve for u and compute
σ from the current solution.

3.1.2 Spatial Discretization

After execution of the time integration method, the resulting partial
differential equations only involve differential operators acting on spatial
variables. In order to obtain solutions for the relevant fields at each
time step, we employ the so called Galerkin’s method, a scheme that
is commonly used in the finite element method [147]. It transfers the
continuous differential operator problem to a discrete matrix problem.
We come back to the the different steps involved in Galerkin’s method
and explain them in detail after first extending the system of partial
differential equations by an additional equation in the sense of a mixed
formulation.

Mixed Formulation

A set of differential equations that depends on the variables a1, ..., aN ,
which is expressed by

A(a1, ..., aN ) = 0 in the domain B and
B(a1, ..., aN ) = 0 on its boundary ∂B,

is formulated in a so called irreducible way if none of the variables
a1, ..., aN can be eliminated while leaving the problem in a well-defined
way. If this is not the case, the formulation is called mixed [147]. Mixed
formulations can effect the requirement on the continuity of the shape
functions, approximating the solution of the problem, and may stabilize
the solution of numerically delicate problems. They have been employed
successfully in, for example, problems with almost incompressible elastic
bodies or fluid dynamics, such as the Stokes equation [148, 149]. Here,
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3. Numerical Implementation

we use a mixed formulation that defines the hydrostatic stress as an
additional independent variable, as given in equation (2.17), through

σh − 1

3
tr[σ] = 0. (3.4)

This approach has proven to be numerically advantageous in our im-
plementation. We attribute this to the smoothness of the numerical
solution in a standard finite element method. As explained on page 37,
the numerical approximation to the current solution is continuous, but
not continuously differentiable. Spatial derivatives of the approximate
solution, in particular those of higher order, are thus allowed to jump. In
our model, this concerns the hydrostatic stress, which enters the equa-
tion for balance of Li in the form of its spatial gradient. In the mixed
formulation, the second order derivatives of the displacement field are
transferred to first order derivatives of a field, that on the other hand
includes first order derivatives of the displacement field. In the numeri-
cal implementation, this leads to a smoother solution since jumps of the
first order derivatives are replaced by their averaged values. This results
in a better convergence of our numerical scheme.

Weak Form

The translation of the PDE to matrix equations, as pursued in Galerkin’s
method, commences with the expression of the corresponding boundary
value problem in its weak form. We therefore multiply the balance equa-
tions with so called variational test functions δc, δu and δd and integrate
over the full body. For the equation describing balance of Li content
(3.2), we obtain

Gc(c, d, σh, δc) =

∫
B

dV
c

Δtn+1
δc−

∫
B

dV
cn

Δtn+1
δc

+

∫
B

dV ∇ · J δc = 0, (3.5)

where the dependence of Gc(u, c, d, δc) on the displacement and phase
field is hidden in the flux. The variational test functions are members of
a certain function space consistent with the given boundary conditions
and solutions of (3.5) are so called weak solutions of (3.2) with respect
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to the chosen set of test functions. For arbitry δc, it can be shown that
equations (3.2) and (3.5) are equivalent. Using integration by parts we
rearrange the weak form to

Gc(c, d, σh, δc) =

∫
B

dV
c

Δtn+1
δc−

∫
B

dV
cn

Δtn+1
δc

−
∫
B

dV J · (∇δc) +

∫
∂B

dS J̄ · n δc = 0, (3.6)

Following the same procedure for the equation describing the balance of
linear momentum yields

Gu(u, c, d, δu) =

∫
B

dV
ρu

Δt2n+1

δu−
∫
B

dV
ρun

Δt2n+1

δu+

∫
B

dV σ : δε

−
∫
B

dV
ρ (un − un−1)

Δtn+1Δtn
δu−

∫
∂B

dS t̄ · δu = 0, (3.7)

where the symmetry relation σ : ∇(δu) = σ : 1
2 [∇(δu) + (∇(δu))T ] =

σ : δε was exploited. The dependence of Gu(u, c, d, δu) on the concen-
tration and the phase field results from the definition of the stress tensor.
The weak form of the evolution equation for the phase field reads

Gd(d,u, c, δd) =

∫
B

dV
(
Gc

l
+ 2H

)
d δd

+

∫
B

dV Gc l∇d · ∇(δd)− 2

∫
B

dVH δd = 0, (3.8)

which depends on the displacement and concentration field through the
history field H. For the additional equation resulting from the mixed
formulation, we obtain

Gσh
(u, c, d, σh, δσh) =

∫
B

dV σhδσh −
∫
B

dV
1

3
trσ δσh = 0. (3.9)

As before, the dependence on the displacement field, concentration and
phase field is contained in the definition of the stress.
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Staggered Solution Scheme

In order to obtain an effective algorithm in terms of computation time
and memory consumption, we aim for solving the system of partial differ-
ential equations in a staggered scheme. Among other advantages, such
as a simplified implementation, this allows to exploit specific proper-
ties of the partial differential equations, such as symmetry and positive
definiteness. These properties are reflected in the corresponding matrix
equations, presented later in this chapter. The staggered approach thus
permits the choice of numerical solvers that are most suitable for each
equation1. In contrast to a monolithic approach, where the full system is
solved as a whole, a staggered approach solves only parts of the system
while holding others fixed. As an example, the equation describing con-
servation of linear momentum is solved for a fixed concentration field. A
drawback of this approach is that increments of solutions between differ-
ent time steps have to remain small. This is granted by the time-adaptive
method presented in section 3.3.4. In the derived weak forms, most of
the variables thus only act as parameters. The distinction between the
variables for which the respective weak form is solved and those that are
treated as parameters is formally represented by a vertical bar in the
following notation

Gc(c, σh, δc) → Gc(c, δc |σh), (3.10)
Gu(u, c, d, δu) → Gu(u, δu | c, d), (3.11)
Gd(d,u, c, δd) → Gd(d, δd |u, c), (3.12)

Gσh
(u, c, d, σh, δσh) → Gσh

(σh, δσh |u, c, d). (3.13)

Remarks on Linearization

Seeking for solutions of equations (3.6 – 3.9) requires an appropriate so-
lution scheme. The standard algorithm in the field of the finite element
method is given by the Newton-Raphson method. Its basic idea is equiv-
alent to Newton’s method for an ordinary scalar equation of the type

f(x) = 0, (3.14)

1 Implementation of the equations in a single monolithic matrix would make it
mandatory to use a direct solver. The scaling behavior of these solvers with
respect to the size of the system is generally significantly worse than for iterative
solvers. Hence, detailed results as shown, for example, in the study of Li insertion
in chapter 6, would not have been achievable in this approach.
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where f(x) is steady and differentiable in a region X around the solution
x∗. Starting with an initial guess xm ∈ X that is close enough to x∗, it is
straight-forward to show that the solution is approached iteratively via

xm+1 = xm − f(xm)

f ′(xm)
. (3.15)

In the language of the finite element method f(xm) and f ′(xm) are
labeled residuum R and tangent operator K respectively. In order to
obtain the equivalent of K for the above derived weak forms, one has
to compute the partial derivatives with respect to the relevant unknown
fields, i.e. in our case u, c, d and σh. Technically, this is calculated by
the directional derivative (cf. [150]), which for the functional Gu and
with respect to the variable u has the following form

Du[Gu(u, c, d, δu)]|u=u0
=

d
dε

Gu(u0 + εΔu, c, d, δu)|ε=0 . (3.16)

In particular, the dependence of Gu on one of the independent variables
includes also their spatial derivatives. We note that within the theory of
infinitesimal strain, the linear change of an independent variable, such
as for example Δu, commutes with the spatial derivative of the same
variable ∇u, i.e. Δ(∇u) = ∇(Δu). This relation enables us to perform
the linearization with a formal chain rule like procedure, i.e.

Du[G] = Δu[G] + Δ∇u[G] + . . . =
∂G

∂u
· (Δu) +

∂G

∂(∇u)
: ∇(Δu) + . . .

In order to keep the notation tight, we further use the relation

Δ∇u[G] =
∂G

∂ε
Δε, (3.17)

where the linear increment of ε is given by

Δε = Δu[ε] = Δu[sym[∇u]] = sym[∇(Δu)]. (3.18)

Linearization

Due to the staggered solution scheme and the resulting distinction be-
tween independent variables and constant parameters, each of the weak
forms given in equations (3.6 – 3.9) is only linearized with respect to the
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respective independent variable. This simplifies the linearization proce-
dure significantly. The linearized weak forms therefore read

Lin[G�] = G� +D�[G�], (3.19)

with the square symbol � representing the four fields c, u, d and σh and
the linear increments given by

Dc[Gc] =

∫
B

dV
1

Δtn+1
δcΔc−

∫
B

dV (∇δc) · (JcΔc+ J∇c · (∇Δc)),

(3.20)

Du[Gu] =

∫
B

dV
ρ

Δt2n+1

δu ·Δu+

∫
B

dV δε : C : Δε,

(3.21)

Dd[Gd] =

∫
B

dV
(
Gc

l
+ 2H

)
δdΔd+

∫
B

dV Gcl (∇δd) · (∇Δd),

(3.22)

Dσh
[Gσh

] =

∫
B

dV δσh Δσh, (3.23)

in terms of the linear increments of the concentration Δc, displacements
Δu, phase field Δd and hydrostatic stress Δσh respectively. The partial
derivatives of the flux with respect to c and ∇c read

Jc := ∂J/∂c =
D0Ω

Rθ
(1− 2c/cmax)∇σh, (3.24)

J∇c := ∂J/∂(∇c) = −D01, (3.25)

and the forth order stiffness tensor is defined by C := ∂σ/∂ε. We follow
a similar approach as in [151] and express it in terms of eigenvalues λi

and eigenvectors νi of the strain tensor by

C =

3∑
a,b=1

∂sb
∂λa

νb ⊗ νb ⊗ νa ⊗ νa+

1

2

∑
a,b=1
a �=b

sb − sa
λb − λa

(νa ⊗ νb ⊗ νa ⊗ νb + νa ⊗ νb ⊗ νb ⊗ νa) , (3.26)
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with si denoting an eigenvalue of the Cauchy stress tensor. Due to the
isotropy of the free energy density potential, the eigenvectors of the stress
and strain tensor are co-linear and the eigenvalues can be expressed as
si = ∂ψ/∂λi. Inserting (2.28), we express the respective terms by

∂sb
∂λa

= [(1− d)2 + k]

[
L
〈∑3

j=1 λj〉+∑3
j=1 λj

+ 2G′ δab
〈λb〉+
λb

]

+

[
L
〈∑3

j=1 λj〉−∑3
j=1 λj

+ 2G′ δab
〈λb〉−
λb

]
, (3.27)

sb − sa
λb − λa

= [(1− d)2 + k] 2G′
〈λb〉+ − 〈λa〉+

λb − λa
+ 2G′

〈λb〉−〈λa〉−
λb − λa

. (3.28)

In cases where eigenvalues are zero or equal to each other, the above
expressions are understood in an asymptotic sense. Namely, it can be
shown that as a denominator approaches zero, the corresponding enu-
merator tends to zero at the same rate. Each of the terms in equations
(3.26 – 3.28) is therefore well-defined and no singularities occur.

Approximation through Shape Functions

In the finite element method, the domain representing the geometry of
the particle is described by a mesh of M elements. Depending on the
type of element, they are comprised of a number of nodes that either lie
on corners, edges, faces or inside the element. The actual fields, e.g. the
concentration field c, are then replaced by an approximation ch, which is
assumed to be a linear combination of so called basis or shape functions

c ≈ ch =
N∑
j

Nj(x)D
c
j = NDc, (3.29)

where the index j runs over the total number of nodes N . The short
notation on the right hand side is understood in a vector-like sense as
N = [N1 N2 . . . NN ] and Dc = [Dc

1 D
c
2 . . . Dc

N ]T . For numerical reasons,
the shape functions are defined such that each of them becomes unity at
the location of one node and zero at all other nodes2. If xi is the location
of the i-th node, this means that Nj(xi) = δij . Hence, Di represents the

2 The advantage of this definition lies in the sparsity of the resulting matrix equation.
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value of the approximated solution at the point xi. Further, nodes adja-
cent to two or more elements are shared between the respective elements
which implies C0-continuity of the approximate solution. We proceed in
the same way for the displacements, phase field and hydrostatic stress3

u ≈ uh =

N∑
j

Nj(x)D
u
j = NDu, (3.30)

d ≈ dh =

N∑
j

Nj(x)D
d
j = NDd, (3.31)

σh ≈ σh
h =

N∑
j

Nj(x)D
σh
j = NDσh , (3.32)

withtheshortnotations4Du = [Du
1 Du

2 . . .Du
N ]T ,Dd = [Dd

1 D
d
2 . . . Dd

N ]T

and Dσh = [Dσh
1 Dσh

2 . . . Dσh

N ]T . As apparent from the definitions given
in equations (3.29 – 3.32), the spatial dependence of the approximate solu-
tions is solely covered by the shape functions. This allows to express the
differential operators appearing in the weak forms by simplematrix-vector
products. For example, replacing c by its approximation ch, the gradient
of the concentration field becomes

∇c ≈ ∇ch = ∇(NDc) = (∇TN)Dc = BDc (3.33)

with the 3×N matrix Bij = ∂Ni/∂xj . In a similar way, we substitute
the strain tensor via

ε = sym[∇u] ≈ sym[∇uh] =

N∑
j

sym[Nj(x)D
u
j ] =

N∑
j

SjDu
j = SDu,

(3.34)

3 It is implicit in these definitions, that only one type of shape functions (Quadratic
Lagrange functions) is used for all the relevant physical fields. Working with shape
functions of different orders has been tested in a small number of simulations, but
showed no significant improvement in terms of computation time.

4 For the sake of a breve notation, we define Du formally by a ordered representa-
tion of vectors. In general, vector-valued problems, like the momentum equation,
require a specific enumeration of the nodal values for an actual implementation in
a computer code. A typical scheme for the displacement field is to number coeffi-
cient Di describing x-displacements with i = 3j, y-displacements with i = 3j + 1
and z-displacements with i = 3j + 2, where j is the corresponding node number.
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where the third order operator Sj is given by Sj
klm = δkm∂lNj+δlmδkNj

with k,m, l ∈ {0, 1, 2} and j ∈ {0, 1, . . . ,N}. A last definition shall be
made to define the dyadic product of the vectors of shape functions,
often referred to as mass matrix at unit density

M = NTN. (3.35)

The above definitions apply in the same way to the test functions and the
linear increments. While the shape functions are unaffected, the nodal
values are replaced by the corresponding virtual displacements and linear
increments respectively. For the concentration this yields, for example,

Δc ≈ Δch =

N∑
j

Nj(x)ΔDc
j = NΔDc, (3.36)

δc ≈ δch =

N∑
j

Nj(x)δD
c
j = N δDc. (3.37)

We mentioned earlier that the test functions lie in a certain function
space. By equation (3.37) we assume, that the shape functions lie in
the same function space. The choice of the same set of shape functions
for both δc and c or Δc is called symmetric Galerkin’s method. We
insert equation (3.29), (3.36) and (3.37) into the linearized weak form of
equation (3.19), with the linear increment given by (3.20), yielding

Lin[Gh
c ] =

∫
B

dV
1

Δtn+1
δDcTMDc −

∫
B

dV
1

Δtn+1
δDcTMDc

n

−
∫
B

dV δDcTBTJh −
∫

∂BJ

dS δDcTN
T (

J̄h · n)

+

∫
B

dV
1

Δtn+1
δDcTMΔDc −

∫
B

dV δDcTB
T

Jh
c NΔDc

−
∫
B

dV δDcT Jh
∇c B

T

BΔDc = 0. (3.38)

Terms marked with the superscript ’h’ must be understood as approxi-
mations to the actual parameters. For example, Jh is the Li flux com-
puted via (2.20) using the approximate concentration field ch.
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As mentioned earlier, the initial weak form presented in equation (3.5),
from which the linearized, approximated expression of equation (3.38)
is derived, needs to be fulfilled for an arbitrary choice of test functions
δc, living in a certain function space. This principle transfers to the lin-
earized expression in the sense that it needs to be fulfilled for an arbitrary
choice of δDc. By successively setting, for example, all but one compo-
nent of δDc to zero, expression (3.38) yields N independent equations.
Casting these into the form of a matrix equation, we obtain

Rc +KccΔDc = 0, (3.39)

with the residual vector and the tangent matrix

Rc =

∫
B

dV
1

Δtn+1
MDc −

∫
B

dV
1

Δtn+1
MDc

n

−
∫
B

dVBTJh −
∫

∂BJ

dSNT
(
J̄h · n) , (3.40)

Kcc =

∫
B

dV
1

Δtn+1
M−

∫
B

dVBTJh
c N −

∫
B

dV Jh
∇c B

TB. (3.41)

The continuous boundary value problem is thus transformed to a matrix
equation and the remaining difficulty of inverting the N ×N tangent
matrix Kcc can be forwarded to a computer algorithm. We perform the
same steps to receive the matrix equations for the displacement, phase
and hydrostatic stress field

Ru +KuuΔDu = 0, (3.42)

Rd +KddΔDd = 0, (3.43)
Rσh

+Kσhσh
ΔDσh = 0, (3.44)

where the residuals are expressed by

Ru =

∫
B

dV
ρ

Δt2n+1

M (Du −Du
n)−

∫
B

dV
ρ

Δtn+1Δtn
M

(
Du

n −Du
n−1

)

+

∫
B

dV
(
σh : S

)T −
∫

∂BJ

dSNT t̄h, (3.45)
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Rd =

∫
B

dV
(
Gc

l
+ 2Hh

)
MDd +

∫
B

dV GclB
TBDd, (3.46)

Rσh
=

∫
B

dV MDσh −
∫
B

dV
1

3
tr[σh]NT . (3.47)

The formal way of writing the expressions through ordered represen-
tations of scalars and tensors bares notational subtleties that shall be
explained here. First, σh is the approximated Cauchy stress tensor, not
the hydrostatic stress σh. Second, the product N

T

t̄h is computed in a
component-wise way. Each component N

T

is multiplied by the three-
dimensional vector t̄h yielding an ordered representation of vectors that
is consistent with the definition of Du. Similar,

(
σh : S

)T describes an
array of column vectors σh : Sj = (σklS

j
klm), where m is the index of

a vector-component running from one to three, or x, y, z respectively5.
The tangent matrices are then given by

Kuu =

∫
B

dV
ρ

Δt2n+1

M+

∫
B

dV
(
σh : S

)T
: S, (3.48)

Kdd =

∫
B

dV
(
Gc

l
+ 2Hh

)
M+

∫
B

dV GclB
TB, (3.49)

Kσhσh
=

∫
B

dV M. (3.50)

Here
(
σh : S

)T
: S represents a N × N array of 3 × 3 tensors that are

defined by5
((

σh : S
)T

: S
)
ij

= CklmnS
i
mnoS

j
klp, where k, l,m, n, o, p ∈

{0, 1, 2} and i, j ∈ {0, 1, . . . ,N}.

3.2 Implementation and Software

As mentioned in the introduction of this work, the application of the
phase field method for crack growth in a coupled model with Li diffusion
in storage particles bears several advantages. These are, for example,
unconstrained crack paths, that are not determined in advance, or a

5 Einstein’s sum convention is used in this notation.
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straight-forward integration into the existing model describing Li diffu-
sion. However, the phase field method also presents numerical challenges
that must not be underestimated.

In particular, the size of the systems6 that are solved can easily reach
levels that demand for an elaborate solution algorithm. The reason for
this lies in the smoothing of the discontinuous crack over a certain length
scale l. Only if this parameter is small in comparison to the relevant
length scale of the problem, the phase field approximation is justified.
Consider, for example, a two-dimensional specimen of square shape with
side length b = 10μm, that has a triangular shaped notch on one side.
Boundary conditions shall be applied in such a way that a crack starts to
grow at the notch. In order for the phase field to recognize the notch as
a distinct geometric feature, the length scale parameter l must be chosen
such that it is significantly smaller than the notch size. Otherwise the
local differences in the stress can not be distinguished correctly by the
phase field. If the notch size is a = 1μm, a reasonable value for the
length scale parameter is l ≈ 0.1μm. To numerically resolve the phase
field in a sufficiently precise way, the element size of the finite element dis-
cretization should be approximately7 h ≈ l/2 [109]. Assuming a uniform
mesh of four-sided quadratic Lagrange elements (QUAD9), this requires
around 160 000 nodes or, in our model, 800 000 degrees of freedom. Of
course, these numbers are considerably exceeded in a three-dimensional
computation.

The computational needs are further aggravated by the fact, that the
system is time-dependent with two very different characteristic time
scales, that it is nonlinear and that it comes with a bad conditioning
of the elastic tangent matrix due to the decomposition into compressive
and tensile stress when a crack opens.

Some of the strategies and tools, employed to overcome these hurdles,
are outlined in the following sections.

3.2.1 deal.II

The typically large number of degrees of freedom, resulting from the
phase field method for crack growth, is mainly tackled with two sepa-
rate techniques. First, by using an adaptive mesh algorithm only regions

6 In the sense of the number of degrees of freedom of the matrix equations.
7 Alternative approaches of the phase field method for crack growth, which relax

this rule of thumb [110, 152], are not further discussed in this work.
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around a crack are resolved finely. In this way, the number of degrees
of freedom is kept as small as possible without loosing significant nu-
merical accuracy. Second, the still remarkably large matrix systems are
assembled and solved in a parallel way spreading the computational tasks
among multiple processors, as shown in FIG. 3.1.
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Figure 3.1.: The coupled problem of diffusion and fracture (right) is solved in a paral-
lel way, distributing the numerical work among several processors (left).
Each color on the left denotes one processor, so that only a small fraction
of the overall element number has to be solved by one processor.

The combination of both methods creates several intricacies, such as
how to distribute the computational load uniformly among the proces-
sors while the partitioned mesh is being refined and coarsened, or how to
obtain required solutions of previous steps, that might have been com-
puted on another processor using a different mesh.

To address these details in an efficient way, we implement the model
in a C++ code using the finite element library deal.II8 v8.1 [153, 154],
an open source project maintained primarily at Texas A&M University,
that originally emerged from work at the Numerical Methods Group at
Universität Heidelberg.

The major scope of deal.II is to aid the development of finite element
code for efficiently solving partial differential equations using adaptive
meshes. It further supports implementation of the code in a parallel
fashion, both on a single machine through Threading Build Blocks and
across multiple computer nodes via the Message Passing Interface (MPI).
To maintain work balance across the processors while adaptation of the
mesh, deal.II can be interfaced to the software library p4est [155]. Its
8 The abbreviation deal.II stands for being the successor of the so called Differential

Equations Analysis Library.
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task is the management of the mesh adaptation steps as a collection of
adaptive octrees, i.e. in a tree data structure.

Apart from these essential properties, deal.II comes with a number
of useful features. Two of them shall be mentioned briefly. First, it
brings interfaces to the software projects Trilinos [156] and PETSc [157].
This enables us to choose from a large set of numerical solvers and pre-
conditioners and pick those that are most suitable with respect to the
properties of the corresponding matrix equations. We found that this
has an immense impact on the stability and computation time of the
simulations. Second, deal.II is set up in a way that allows to write the
program in a dimension-independent way. We are therefore able to run
simulations in both two and three dimensions with only minor changes
in the code.

3.2.2 ParaView

ParaView [158] is an open-source data analysis and visualization appli-
cation, that emerged to the largest part from a collaboration of Kitware,
Sandia National Labs and CSimSoft. It was developed to analyze large
datasets using distributed memory computing resources. It includes fil-
ters for different methods of visualizing ones data and readers for several
data types. In particular, it is able to handle the combination of HDF5
files, a format for extremely large datasets, e.g. resulting from simulations
on supercomputers, and XDMF metadata files, which are used to store
the big amount of data generated during the simulations of this work.

3.2.3 Trelis

Trelis [159] is a commercial preprocessor for finite element analysis and
computer fluid dynamics, that is based on the CUBIT geometry prepara-
tion and mesh generation software from Sandia National Laboratories.
It is being distributed by CSimSoft. Among the myriad of available
meshing software, we decided to pick Trelis for two reasons. On the one
hand, the meshing algorithm is well developed for hexahedral elements.
This is a constraint implied when using deal.II, which does not support
other element types, such as, for example, tetrahedral ones. And on the
other hand, it provides an interface, that allows to write Python scripts
for the output of meshes into user-specific file formats. This interface
showed great flexibility for the definition of specific boundary conditions
and their exportation to the input file required by deal.II.
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Initialization Store solution in
temporary arrays

Compute Concentration

Compute Concentration

Compute Hydrostatic Stress

Compute Hydrostatic Stress

Compute Elasticity

Reset History Field

Update History Field

Compute Phase Field

Compute Residual Norms

Adjust Timestep

Do Timestep

Refine Mesh

Generate Output
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Figure 3.2.: Schematic structure of the algorithm. The purpose of the colored blocks
is to solve the respective PDE’s given in FIG. 2.2. Purple blocks refer to
time or mesh adaptation steps and gray blocks denote further auxiliary
functions and operations.
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3.3 Structure and Details of the Implementation

The basic structure of the C++ code is presented in the diagram of
FIG. 3.2. The blocks shown in the diagram are marked with different
colors according to their task in the computer algorithm. The purpose
of the green, blue and orange blocks is to solve the respective part of
the boundary value problem, corresponding to the partial differential
equations given in FIG. 2.2. Gray blocks refer to auxiliary functions
and operations, such as generating data for visualization or analysis
of convergence behavior and computation time. Functions related to
time and mesh adaptation are printed in purple. The numbers in cir-
cles represent if-cases in the computer code that decide whether the
algorithm proceeds with the next step or repeats the respective step
in a loop. The criteria of the if-cases will be explained in the corre-
sponding sections below. Colored and dark gray arrows refer to steps
that are executed in a loop, light gray arrows denote simple proceeding
from one block to the next one. The diagram is read from the top left
to the bottom right.

The first steps in the computer code are summarized by the term
initialization in FIG. 2.2. This includes setting up the MPI-communi-
cation between different processors and reading parameters from an
input file, e.g. material and numerical parameters, geometry and mesh
information, boundary conditions, and more. According to the infor-
mation given in the input file, the mesh is either constructed within
deal.II or loaded from a mesh file. Special types of parallelized arrays9
are then set up for later storage of residual vectors and tangent ma-
trices. Thereafter the initial conditions are either defined from values
given in the input file or restored from previous solutions in a saved
file. This is typically succeeded by a number of mesh refinement steps,
either to provide a mesh that is fine enough with respect to the cri-
teria discussed in section 3.3.5 or to reconstruct the final mesh of the
previous simulation.

After completion of the initialization step, the actual solution process
begins. It is built up by essentially three nested loops. The outermost
loop, depicted by the dark gray arrows starting and ending at the circle

9 These objects are provided by deal.II and hold additional information, e.g. about
eventual constraints such as Dirichlet boundary conditions and hanging-node con-
straints, or sparsity properties of the tangent matrices. In addition, versions op-
timized for the exchange between deal.II and Trilinos or PETSc can be selected.
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with number 4 iterates through the number of time steps. It stops when
the maximum time defined in the input file is exceeded. For a simple
transient linear problem with constant time steps, this would be the only
loop required to obtain the solution at the respective time steps. Within
the iterations, the current solution is computed, the mesh is refined and
coarsened, output for later visualization is generated, information on
convergence behavior and computation time is printed and the solution,
as well as the mesh, is saved in a file. In order to save computation time,
some of these tasks are executed only every x-th time step. In addition
to these steps, the time-adaptive method adjusts the time step after the
current time step has been computed.

As described in section 3.3.4, the time adaptation algorithm is imple-
mented in such a way that the current time step is re-calculated when
the used time step size turns out to be too large. The solution of the
previous time step is therefore stored in temporary arrays before solving
for the new solution and is restored in the case of a decrease of the time
step, as depicted by the upper two purple blocks in FIG. 2.2. In this
case, the algorithm runs a limited number of time adaptation loops, as
illustrated by the purple arrows. The decision on whether the time step
is adjusted, is marked by the purple circle with number 3 and follows
the criteria described in the scheme presented in section 3.3.4.

The purple blocks of the time adaptation scheme frame the central
part of the computer code, where the partial differential equations of
the boundary value problem are solved. As mentioned earlier, the solu-
tion algorithm is built in a staggered fashion using a mixed formulation,
that takes the hydrostatic stress as an additional variable. As a con-
sequence, the equations for the balance of Li and linear momentum,
the definition of the hydrostatic stress and the phase field equation are
solved separately while holding the other variables fixed. Using a mixed
formulation and splitting the equation for balance of Li into two equa-
tions does, in principal, not imply any kind of approximation. Solution
of both equations in a coupled form by an exact method yields the
same results as the solution of the equation for balance of Li expressed
without the additional definition of the hydrostatic stress. However, the
treatment of the two equations in a staggered fashion, i.e. one after the
other, introduces an error due to their mutual dependence. In order to
reduce this error, both equations are always implemented in an internal
loop, as shown by the green arrows. Only when their combined residual
norm falls below a certain threshold, the solution of the diffusion part
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is accepted and the algorithm steps on. This criterion is marked by
the green circles with number 1. The number of these iterations is ex-
ploited in the time adaptation scheme, described in section 3.3.4, since
it yields an estimate on the dynamics of the diffusion problem at the
current time step, e.g. whether the concentration is changing rapidly
with large spatial gradients or flowing more steadily. In addition, since
the equation for balance of Li and, even more, for the hydrostatic stress
are comparatively fast to assemble and solve, it is also advantageous in
terms of the total computation time to solve them more often than, in
particular, the equation for balance of linear momentum.

After the first solution of the concentration and hydrostatic stress
fields is obtained (in the green blocks of 2.2), the different physical parts
of the problem are solved in a number of iterations, as depicted by the
tricolor arrow. Thereby, the equation for balance of linear momentum
(blue) is computed first. Thereafter the history and phase field (orange)
are calculated. The former step is divided into two blocks, a subtlety
that is described in section 3.3.3. In the final step, the diffusion part
of the boundary value problem is solved again. The combined residual
norm is calculated as

Rtotal :=
√

|Rc(Dc)|2 + |Rσh
(Dσh)|2 + |Ru(Du)|2 + |Rd(Dd)|2

(3.51)

and compared with a threshold value to determine whether another
iteration is required. This criterion is presented by the tricolor cir-
cle with number 2. After either reaching the desired precision or the
maximum number of iterations, the algorithm steps on. Depending on
the time adjustment, it either proceeds towards the next time step or
re-calculates the current one.

Some of the functions and blocks presented above bear intricate details
and shall therefore be discussed in more detail in the following sections.

3.3.1 Linear Blocks

The two linear equations in our model determine the hydrostatic stress
σh and the phase field d by means of (2.17) and (2.29) respectively. Due
to the linearity of the equations, it is sufficient to assemble the corre-
sponding tangents and residuals once and then solve them with respect
to the desired precision. In fact, the matrix resulting from the discretiza-
tion of the definition of the hydrostatic stress is constant and only has
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to be built from scratch when the mesh is refined or coarsened. It is
commonly referred to as mass matrix at unit density. Being both sym-
metric and positive definite, this matrix is particularly easy to solve. An
ordinary conjugate gradient (CG) solver with a symmetric successive
over-relaxation (SSOR) preconditioner turned out to be a good choice
to approach this equation. The equation describing the evolution of the
phase field is a Helmholtz type equation and shares the same properties.
The corresponding tangent matrix is symmetric and positive definite.
However, due to the large local differences in the history field, a more
conservative selection of the solver showed to be advantageous. We there-
fore pick the generalized minimal residual method (GMRES) with the
algebraic multigrid preconditioner (AMG) from the Trilinos package.

3.3.2 Nonlinear Blocks

The nonlinear equations in our model describe the balance of Li content
and the balance of linear momentum. Different numerical approaches
were used to solve the equations and shall be presented here. The non-
linearity in the balance of linear momentum stems from the spectral
decomposition of the strain tensor into tensile and compressive parts.
As soon as the displacement field is updated by the new solution, the
eigenvalues of the strain tensor change and the corresponding stiffness
tensor has to be adapted. In order to find an optimal convergence of the
non-linear iterations in the sense of rate and stability, we implemented
a backtracking line search method as explained in [160]. Instead of just
adding the computed increment from equation (3.42) to the old solution,
we first determine an optimal step length α to give

Du
new = Du

old + αΔDu. (3.52)

In principal, the convergence of the Newton-Raphson method is best,
i.e. quadratic, close to the solution, when α = 1. However, when the
starting point is not close enough to the solution, setting α to unity can
lead to over-shooting, which may slow down convergence or even result
in divergence. To avoid this behavior, we imply the so called sufficient
decrease or Armijo condition

|Ru(D
u
old + αΔDu)| ≤ |Ru(D

u
old)|+ c1α |KuuΔDu|, (3.53)
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where c1 ∈ (0, 1) and the Euclidian norm |x| =
√
x2
1 + x2

2 + · · ·+ x2
n.

The condition only ensures, that the step length is not too large and may
be extended by further requirements10 to determine also a lower bound-
ary for α. We go without an additional condition and use a backtracking
approach to find the largest step length, that still fulfills equation (3.53).
The corresponding algorithm looks schematically as follows:

1. Set q, c1 ∈ (0, 1) and α = 1.

2. Solve Ru +KuuΔDu = 0 (3.42) to obtain ΔDu.

3. Compute the old residualRu(D
u
old) and direc. derivativeKuuΔDu.

4. Compute the new residual Ru(D
u
old + αΔDu).

5. Check the sufficient decrease condition (3.53).

a) If the condition is fulfilled, update the old solution to get
Du

new = Du
old + αΔDu.

b) If the condition is not fulfilled, decrease the step size by
α ← q α and go back to 4.

6. If for the new residual norm |Ru(D
u
new)| > threshold, assemble the

new residual and tangent matrix and go back to 1. Else, quit.

The second step in the above scheme is the computationally most expen-
sive part in the overall algorithm. The elastic equation is of vector-type
and has dim×N degrees of freedom, where N is the number of nodes and
dim is the number of physical dimensions. The impact of the number
of degrees of freedom on the computation time is further enhanced since
the solution time of iterative solvers11 typically scales worse than linear
with the number of degrees of freedom. In addition, the tangent matrix
can become badly conditioned due to the decomposition into tensile and
compressive parts. The most effective preconditioner was found to be
the algebraic multigrid preconditioner (AMG) from the Trilinos package.
Since the matrix is both positive definite and symmetric, we combined
it with a conjugate gradient (CG) solver. To reduce the number of calls
10See [160] for the so called curvature condition.
11The computation time of iterative solvers typically scales between linear and

quadratic with the number of degrees of freedom, whereas that of direct solvers
scales between quadratic and cubic. Due to this behavior, the larger memory
requirements and drawbacks in terms of the parallel performance, we refrain from
using direct solvers.
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of the computationally expensive solver, we further integrate a predic-
tion step into the first iteration. This step generates both a linear and a
quadratic extrapolation of the displacements using the last time steps.
By a small number of bi-sections it then finds the linear combination
of both extrapolations, which minimizes the residual norm |Ru|. This
prediction function significantly helps to lower the number of nonlinear
iterations and requires only negligible additional computation time.

The nonlinear part in the balance of Li content originates from the
mechanically driven term in the Li flux (2.20). Due to the non-constant
mobility, this term is quadratic in the concentration. Further, the mixed
formulation, that takes the hydrostatic stress as a separate variable,
comes with an additional numerical subtlety. In general, it would be
most common to solve the conservation of Li and the hydrostatic stress
as one system. However, in our case it turned out, that this approach
does not perform well in terms of stability. Instead, we work with a
staggered scheme, as shown by the green blocks and arrows in FIG. 2.2,
of the following form:

1. Set β0 ∈ (0, 1), nβ > 1 and j = 1.

2. Solve Rc +KccΔDc = 0 (3.39) to obtain ΔDc

and Rσh
+Kσhσh

ΔDσh = 0 (3.44) to get ΔDσh .

3. If j < nβ , set the step length β = β0 + j(1− β0)/nβ . Else β = 1.

4. Update the solution to receive the new concentration and hydro-
static stress Dc

new = Dc
old + βΔDc and Dσh

new = Dσh

old + βΔDσh .

5. Compute the combined residual norm

Rdiff(β) :=
√

|Rc(Dc
new)|2 + |Rσh

(Dσh
new)|2.

6. If for the combined residual norm Rdiff(β) > threshold, assemble
the new residual vectors and tangent matrices, increase the loop
variable j ← j + 1 and go back to 2. Else, quit.

The presented scheme sets the step length β in a predefined way without
checking any optimality condition. If β0 is small, this might result in an
unnecessarily large number of iterations for finding the current solution.
However, the approach outperformed more sophisticated techniques in
terms of both stability and computation time. There are several reasons
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for this. On the one hand, no directional derivatives and only a few
number of residuals have to be computed. On the other hand, the in-
creasing step length β is similar to an approach, where the diffusion part
of the boundary value problem is solved with smaller time steps between
the elastic block. In combination with the time adaptation scheme, pre-
sented in section (3.3.4), this turned out to be a very effective strategy.

3.3.3 Updates of the History Field

The solution blocks of the equations describing the balance of linear mo-
mentum, abbreviated by the term Elasticity in the diagram, and the evo-
lution of the phase field are combined into the tricolor loop of FIG. 3.2,
which assures that the total residual norm converges below a certain
threshold. Inside this loop the history field, which represents the driving
force for the phase field, is only updated temporarily. This is achieved
with the following scheme:

1. Assemble and solve the balance of linear momentum as described
in section 3.3.2 to obtain the current displacement solution Du.
See first blue block in FIG. 3.2.

2. Store the previous history field DH in the temporary field DHtmp.
See first orange block in FIG. 3.2.

3. Update DH as node-wise maximum

(DH)j = max[(DHtmp)j , (D
ψ+mech)j ],

where Dψ+mech are the nodal values of the elastic, tensile energy
ψ+

mech, obtained via extrapolation fromGaussian integration points.
See the second orange block in FIG. 3.2.

4. Assemble and solve the equation describing the evolution of the
phase field to obtain the current solution of the phase field Dd.
See the third orange block in FIG. 3.2.

5. Solve the diffusion part of the BVP as described in section 3.3.2
to obtain the current solution of the equation describing balance
of Li content Dc and the definition of the hydrostatic stress Dσh .
See the third and fourth green blocks in FIG. 3.2.
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6. Compute the total residual norm Rtotal via equation (3.51).
See the tricolor block in FIG. 3.2.

7. If the residual norm Rtotal > threshold, go back to 2. Else, quit.
See the tricolor circle with number 2 in FIG. 3.2.

As a result of this strategy, the history field is always a result of fully
converged solutions of the displacement and phase field. The approach
assures that values from non-converged solutions do not affect the evo-
lution of the phase field and therefore the predictions on crack growth.

3.3.4 Time Adaptivity

The time adaptation scheme, implemented in our code, intends to find
the maximum time step size, which is still small enough to describe both
the process of Li diffusion and crack propagation in a satisfactorily ac-
curate way. It turned out, that a good indicator with respect to this
directive is given by the number of iterations to reach a certain thresh-
old for the combined residual norms Rdiff and Rtotal. The initiation and
subsequent growth of a crack may happen in a rather drastic event. Con-
sequently, the time-adaptive method must be able to react fast enough
to such incidents. To meet this requirement, we formulate the algorithm
in such a way that it allows to go one time step back and re-calculate
the current time step, if the time step size turns out to be too large. The
scheme thus reads like the following:

1. Set factors to adapt time step ktotal
↓ ∈ (0, 1), kdiff

↓ ∈ (0, 1) and
k↑ > 1 and maximum and minimum number of iterations ntotal

max ,
ndiff

max and ntotal
min , ndiff

min for solving the full BVP and its diffusion
part.

2. Store the current solution of the displacements Du, concentration
Dc, hydrostatic stress Dσh , as well as the history field DH in tem-
porary vectors Du

tmp, Dc
tmp, D

σh
tmp, Dd

tmp and DHtmp.
See the first purple block in FIG. 3.2.

3. Compute the blocks related to the concentration, hydrostatic
stress, elasticity and phase field.
See the green, blue and orange blocks in FIG. 3.2.

4. Check the number of iterations ntotal and ndiff to pass the desired
thresholds with residual norms Rtotal and Rdiff
See the second purple block and purple circle in FIG. 3.2.
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a) If ntotal > ntotal
max or ndiff > ndiff

max, go one time step back by
setting t ← t−Δt and restore the temporary solutions
Du ← Du

tmp, Dc ← Dc
tmp, DH ← DHtmp and Dd ← Dd

tmp.

i. If ntotal > ntotal
max , decrease time step via Δt ← ktotal

↓ Δt.

ii. Else if ndiff > ndiff
max, decrease time step via Δt ← kdiff

↓ Δt.

Go back to 3.
See the vertical purple block in FIG. 3.2.

b) Else if ntotal < ntotal
min or ndiff < ndiff

min,
increase the time step via Δt ← k↑Δt.

The factor for the decrease of the time step due to the total iterations
ktotal
↓ , which is dominantly influenced by the residual norms of the so-

lution of the displacements and the phase field when a crack grows, is
typically set smaller than the one for the diffusion part kdiff

↓ . This way,
the code is both able to find a good time step for the relatively smooth
diffusion process and may adjust quickly to the appearance of crack
growth. The necessity for this distinction becomes obvious by having
a look at the typical time step lengths attained during different dom-
inant physical effects. A sole diffusion process, for example, typically
requires a time step12 of around Δt/τ ≈ 10−2, while during unstable
crack growth, a time step of around Δt/τ ≈ 10−13 is adequate. It thus
requires a drastic drop of the time step to resolve correctly the growth
of a crack from its first onset on.

Furthermore, the large difference in the order of magnitude of Δt
demands for a careful handling of numerical errors. The changes in the
concentration that appear, for example, during a time step as short as
Δt ≈ 10−13 may be very small in comparison to the given numerical
precision. Hence, small errors might be introduced. Due to the large
number of required time steps, these errors may sum up over time. To
counteract this phenomenon, we temporarily disable the diffusion block
in the solution algorithm in cases where Δt < Δtmin. Instead, we sum
up the time steps Δtdiff =

∑
i Δti until Δtdiff ≥ Δtmin and then solve

the diffusion equation with this time increment.

12The characteristic time scale τ = r20/D0 involved in the Li diffusion problem is
defined through the diffusion coefficient D0 and the characteristic length scale,
which is set to r0 = 1μm in this work.
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3.3.5 Mesh Adaptivity

The indispensability of a mesh adaptation method was outlined in the
introduction of section 3.2. The basic idea of this method is to refine
the mesh only in regions where a high spatial resolution is required. As
a result, the number of elements or degrees of freedom can be reduced
substantially.

Using the phase field method for crack growth, the possible savings
in computation time acquired with a mesh-adaptive method are even
enhanced due to the correlation between element size h and length scale
parameter l. Imagine, for example, a two-dimensional geometry with
surface area A. Assuming approximately equally large elements with
area h2, the number of elements is given by Nelem ≈ A/h2. As mentioned
earlier, the element size should be at maximum equal to half of the value
of the length scale parameter, i.e. h ≈ l/2 [109]. This means, that the
number of elements goes with Nelem ∝ A/l2. Imagine now that not the
whole geometry but only a crack in its interior is covered with such a
fine mesh. The crack shall have the length a and be described by a
smooth phase field d = d(x). The area that needs to be covered by a fine
mesh is determined by the region where d is notably above zero13 since
the spatial variation of d is negligible in other parts of the geometry.
The width of this area shall be denoted by b. Assuming that the mesh
is considerably finer at the crack than at the rest of the geometry, the
greatest part of elements is located around the crack. The total number of
elements is therefore given by Nelem ≈ ab/h2 or Nelem ∝ ab/l2. However,
the width of the area is only a numerical parameter, which becomes
smaller with a decreasing length scale parameter, namely by b ∝ l. The
number of elements therefore scales linearly with the inverse of the length
scale parameter14, i.e. Nelem ∝ a/l. This is in contrast to the quadratic
dependence in the case of a uniformly refined mesh. Consequently, using
the same total number of elements, much smaller values for l can be
achieved with an adaptive mesh refinement method.

The obligation of using element sizes, determined by the length scale
parameter, lies in the computation of the crack volume. If the shape of
the phase field is represented with only insufficient accuracy, the fracture
energy cannot be calculated in a satisfying way and the phase field may
not evolve the same as it would with a finer mesh. In addition, geomet-
13For example, in the studies of chapters 4 to 9, a value of d = 0.95 was defined to

distinguish between cracked and intact material.
14A similar argument holds for three-dimensional geometries.
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rical details that could act as stress concentrators may not be resolved
accurately enough. This can lead to an underestimation of the elastic
energy, i.e. the driving force for the phase field, in those points. In or-
der to obtain a mesh-independent phase field evolution, it is therefore
mandatory to refine the mesh at the relevant positions before a crack
even starts to grow.

To satisfy this requirement, we set up an algorithm, that uses the
local elastic energy from tension ψ+ as a trigger value to either refine
or coarsen the mesh. The choice of ψ+ is most suitable since it defines
the driving force of the phase field through the history field H. Hence,
before crack growth is initiated, ψ+ is expected to increase locally. This
increase is used as a criterion to trigger mesh refinement before a crack
begins to propagate. The tensile elastic energy ψ+ is therefore com-
pared with a threshold value ψthresh, so that an element is refined if
ψ+ > ψthresh. As mentioned above, insufficiently accurate resolution of
stress concentrators in an initially coarse mesh may lead to a numerical
underestimation of the local tensile energy ψ+. To take into account this
effect, ψthresh should therefore be comparatively small in regions where
the mesh is coarse. On the other hand, it is computationally desirable
to generate a very fine mesh only in regions of maximum tensile elastic
energy, i.e. in regions where a crack is expected to grow. Hence, in a
finely meshed area, ψthresh should be comparatively large so that further
refinement only takes place around the locations of highest values of ψ+.
To manage both requirements, we assume that the initial mesh is built
up by approximately equally sized elements and define the threshold as a
function ψthresh = ψthresh(n), that depends on the number of refinements
n of the element in question by

ψthresh(n) = (ψup − ψlow)

(
n− nmin

nmax − nmin

)r

+ ψlow. (3.54)

It is small for low numbers of refinements and increases with n. Here, ψup
is the upper threshold for which all elements, that have been refined nmax
times or less, are further refined. Likewise, ψlow is the lower boundary
at which elements are refined, that were only refined nmin times or less.
Together with the initial element size, nmax and nmin determine the
final smallest and largest element size obtained through this refinement
criterion. The exponent r can be adjusted to determine the shape of the
refinement region, e.g. to obtain large areas with only weak refinement
and a small center with highly refined elements.
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Elements are coarsened if n > nmin and if ψ+ is lower than the value of
the threshold function for a refinement number of n − 1. This offset is
introduced in order to avoid alternating refinement and coarsening when
ψthresh(n) < ψ+ < ψthresh(n + 1). The principle of the refinement and
coarsening scheme is illustrated in FIG. 3.3.
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Figure 3.3.: Threshold function for mesh adaptation. Above the blue graph, the
tensile energy exceeds the threshold and the element is refined. To
avoid jumping back and forth coarsening is only allowed below the
orange graph, where ψ+ < ψthresh(n + 1). In the green area, elements
are neither refined nor coarsened.

The refinement parameter nmax must be chosen in such a way, that the
most refined element size hmin is equal or less than half the length scale
parameter l. At the same time, nmin determines the ratio of small-
est and largest element size hratio = hmax/hmin and should be defined
appropriately. If hratio is too small, the total number of elements will
become unnecessarily high, if hratio is too large, the greater difference
in element sizes might lead to stronger numerical errors. Since hmin
and hratio are more general in terms of the initial mesh and more intu-
itively to set, we substitute the refinement numbers via hmin = h0/2

nmax ,
hmax = h0/2

nmin and h = h0/2
n , where h0 is the initial element size.

Inverting these relations and inserting them into equation (3.54) yields

ψ̃thresh(h) = (ψup − ψlow)

(
1 +

ln(hmin)

ln(hratio)
− ln(h)

ln(hratio)

)r

+ ψlow, (3.55)

which becomes independent from the initial element size. The so defined
threshold function is thus also suitable for an initially non-uniform mesh.
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The threshold function provides an energy based criterion for mesh re-
finement or coarsening. However, in situations, where a crack has de-
veloped and the tensile energy decreases again, the threshold function is
not sufficient to guarantee, that the mesh remains fine enough. For this
reason, a second measure is introduced.

The reason for the usage of element sizes equal or close to half the
length scale parameter lies in a correct resolution of the gradient of the
phase field. As a guideline, we take the one-dimensional solution (2.22)
and derive the highest value of the phase field gradient

d′max = lim
|x|→0

|d′(x)| = lim
|x|→0

1

l
e−|x|/l =

1

l
. (3.56)

As mentioned above, the element size should be at maximum equal to
half the value of the length scale parameter, i.e. hmin = k l with k ≤ 1/2.
With this element size, the product of the highest value of the phase field
gradient and the element size yields d′maxhmin = k, so that k determines
the maximum change in the phase field over one element. Assuming that
this value should not be exceeded in any part of the mesh, the upper
boundary for the local element size is given by the relation d′h ≤ k.

We generalize this argument to two and three dimensions and impose
a second criterion, that triggers refinement if the product of the norm
of the gradient of the phase field |∇d| and the element size h is larger
than a defined constant |∇d|h > k1. Typically, k1 is set slightly below
one half. In the same way, coarsening is allowed if |∇d|h < k2, where
k2 ≤ k1/2. The full refinement scheme, executed for each element, then
looks like the following:

1. Loop over all quadrature points qi ∈ Q and find the maximum
energy and gradient norm max

qi∈Q
ψ+ and max

qi∈Q
|∇d|.

2. Compute the element size h as the maximum diameter divided by
the root of the number of dimensions.

3. Compute the threshold energy for refinement and coarsening

a) If h ≤ hmax, ψrefine
thresh = ψ̃thresh(h) and ψcoarsen

thresh = ψ̃thresh(h/2).

b) Else, ψrefine
thresh = ψ̃thresh(hmax) and ψcoarsen

thresh = ψ̃thresh(hmax/2).

4. For every element, set refinement and coarsening flags according
to the following rules:
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a) If max
qi∈Q

ψ+ > ψrefine
thresh and h ≥ hmin, flag for refinement.

b) Else if max
qi∈Q

|∇d| > k1/h, flag for refinement.

c) Else if max
qi∈Q

ψ+ < ψcoarsen
thresh and max

qi∈Q
|∇d| < k2/h

and h ≤ hmax, flag for coarsening.

d) Else, clear any refinement or coarsening flag.

After having run through all elements of the mesh, the algorithm may
flag further elements to generate a smoother mesh and to avoid unfavor-
able constellations, e.g. isolated groupings of refined elements, that may
lead to a degradation of the numerical approximation. The algorithms
for this step are provided by deal.II.

A working example of the mesh refinement and coarsening algorithm
is presented in FIG. 3.4. It is taken from chapter 4 and shows an edge
notch specimen with an initial crack introduced as a free surface located
along the left half of the bottom edge of the square. As the tensile load
on the top surface is increased from a.i) to a.v), the phase field develops
from d = 0 (blue) to d = 1 (red). It is observable that mesh refinement
takes place before the phase field increases. As stress is released in
certain regions due to the growth of the crack, the mesh is coarsened
again, as can be seen by comparison of a.iv) and a.v). Nevertheless, the
mesh remains fine enough to resolve the gradient of the phase field. This
is shown in FIG. 3.4 b), where the product of the maximum phase field
gradient and the local element size is plotted for the same time step as
in FIG. 3.4 a.v). The product ranges from 0 (blue) to 0.44 (red). Hence,
it is below the critical value of 0.5 in all regions of the specimen.

3.3.6 Performance and Scalability

The parallel scalability of the computer code is investigated in two and
three-dimensional simulations. The corresponding physical problems are
explained in detail in section 6.1 and 6.2. The scalability is tested with
respect to strong scaling, which means that while the size of the problem
is kept fixed, the number of processors is varied.

The first example runs with a mesh of 49 404 elements or 992 925
degrees of freedom in two dimensions. The required time to finish the
first 20 time steps of the simulation is shown in FIG. 3.5. In order to
obtain a better estimate of the long term scaling, i.e. in cases where
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the simulation runs to its end, we subtract the time necessary for ini-
tialization, for example, due to mesh construction or set-up of initial
conditions, from the total time.

a.i) a.ii)

a.iii) a.iv)

a.v) b)

Figure 3.4.: Illustration of the adaptive mesh refinement and coarsening with a.i)–
a.v) showing the phase field d with values ranging from d = 0 (blue) to
d = 1 (red) and b) the product of maximum phase field gradient and
element size with values ranging from 0 (blue) to 0.44 (red).

For small number of processors ncpu, the scaling behavior of the pro-
gram is almost directly linear, i.e. the computation time follows a simple
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relation of the form t = t(ncpu = 1)/ncpu. For n ≥ 8, the scaling be-
comes sublinear, but is still satisfying, as shown in FIG. 3.5. The time
saved using, for example, 32 instead of one processor, is still around a
factor of 21. The scaling factor is thus approximately ncpu × t(ncpu =
32)/t(ncpu = 1) ≈ 2/3. For higher numbers of processors, the scaling
becomes significantly worse. The trade-off between distributing compu-
tational tasks and communication between the processors is getting less
favorable for the system size of this example.
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Figure 3.5.: Computation time for the first 20 time steps of the Li insertion example
in 2D with approximately 1 million degrees of freedom. The dashed gray
lines illustrate a perfectly linear scaling behavior, i.e. with t = t0/ncpu.

For systems with larger numbers of degrees of freedom the time for
communication between the processors should become less significant
in comparison to the reduction of computation time due to the distri-
bution of computational tasks. This would result in a scaling behavior
that is more closely to a linear one even for higher numbers of pro-
cessors. In order to test this, we run the same example with a mesh
that was additionally refined twice. The number of elements thereby
increases to 786 441 with around 15 million degrees of freedom. Sim-
ulations of this size cannot be run in a reasonable amount of time on
a single processor. However, the linear scaling behavior can not be re-
trieved in the larger systems. Performing three simulations with 128,
256 and 512 processors, we obtain a scaling law, which is approximately
t ∝ t(ncpu = 128)/n0.4

cpu. Given the few number of simulations, this can
of course only give a rough estimate.
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The several blocks of the code that compute the solutions of different
several physical parts of the model, e.g. the evolution of the phase field
or the balance of Li content, follow a similar behavior. We find that
for a large number of processors the elastic block scales worst. At the
same time, it requires most of the computation time. For the simulations
shown in the graphs of FIG. 3.5, the mean contribution of the elastic part
was around 82% of the total simulation time. There are several reasons
for this effect. The equation describing balance of linear momentum is
the only vector-valued problem, which means that the stiffness matrix
is larger by a factor of four in a two-dimensional problem. Further, it is
nonlinear due to the decomposition of the strain tensor into compressive
and tensile parts and, for the same reason, rather bad conditioned.

1 2 4 8  16  32  64  128
 0

 20

 40

 60

 80

number of CPUs

co
nt

rib
ut

io
ns

 o
f e

la
st

ic
 b

lo
ck

 [%
]

solver
assemble
residual
direc. deriv.
extrapolation

Figure 3.6.: Contributions of different tasks involved in the solution of the equation
for balance of linear momentum with increasing number of processors.

The largest share in the computation of the equation describing the
balance of linear momentum is taken by the numerical solver itself, as
shown in FIG. 3.6. Apart from tweaking certain parameters, there are
not many options to reduce this time. However, in comparison to other
combinations of preconditioners and solvers, the chosen one performs by
far the best. The time required for computing the residual norm is higher
than the full assemble step since it is called much more frequently in the
iterations to find an optimal step length of the backtracking algorithm.

The contribution of the elastic block becomes more dominant in three-
dimensional simulations, as shown in FIG. 3.7. The corresponding ge-
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ometry in the simulation consists of a half sphere with 15056 elements
and 855798 degrees of freedom. As can be observed from the logarithmic
scale of the figure, the ratio of the computation time for the elastic block
and the total one to run the first 20 time steps is around 96%.

The scaling of the code is excellent for less than 16 and satisfying for
less than 128 processors. However, typical three-dimensional simulations
exceed the number of elements in this example by up to a factor of 100
and more. To get an impression of the scaling behavior in these cases, we
refine the mesh yielding 786 441 elements and approximately 16 million
degrees of freedom. To reduce the overall computation time, we run the
simulation only for the first five time steps. An almost perfectly linear
scaling behavior is obtained from 64 to 96 and 128 processors. Again,
this yields only a rule of thumb. However, we can expect that for large
simulations such as, for example, described in section 6.2, we should
receive a very good scalability for at least up to around 200 processors.
Typical simulations are therefore run with 64 to 128 processors in three
dimensions and with up to 32 processors in two dimensions.
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Figure 3.7.: Scaling behavior of the computer code with increasing number of pro-
cessors. The dashed gray lines illustrate a perfectly linear scaling be-
havior, i.e. which scales like t = t0/ncpu.

63





4 An Assessment of the Phase Field
Formulation for Crack Growth

The phase field description for crack growth and fracture is an attrac-
tive alternative to numerical methods based on discrete representations
of cracks, since the phase field methodology avoids the numerically chal-
lenging monitoring of the discontinuities introduced by the crack. In
particular, for the simulation of complex crack growth topologies and
application to coupled systems, e.g. with thermal or electrical fields,
the phase field method has shown promise. However, applying the tech-
nique to situations that involve complexities from multiphysical effects,
or examining detailed crack patterns that result, for example, from dy-
namic crack processes, requires validation. This is particularly the case
if experiments to visualize the crack trajectory are difficult or impossible
to carry out and the researcher therefore has to rely on the results of
computations to gain insight into how flaws propagate. The most obvi-
ous manner in which validation of the phase field methodology can be
achieved is to check whether its results are in agreement with well estab-
lished results from classical fracture mechanics. The following chapter
shall thus present an examination of a typical fracture phase field for-
mulation to check on its conformity with standard results from fracture
mechanics. To our knowledge, the closest comparison of this type can
be found in [141], but we judge additional results as presented below
to be insightful and valuable in regard to the validity of a phase field
methodology for fracture.
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4.1 Results

Two different setups are chosen to investigate the effectiveness of this
particular fracture phase field implementation in solving typical fracture
mechanics problems. The first is a pure bending specimen and the second
is a load controlled uniaxial stretch specimen, as depicted in FIG. 4.1 a)
and c) respectively. Both specimens are studied in two dimensions under
plane strain. Further descriptions and analytic fits to numerical solutions
for these problems can be found in [161].

a

bh

a

b
b

M

Ma)

M

-

b) c)

Figure 4.1.: (a) Pure bending specimen with initial crack length a, height 2h, width b
and bending angle θ. (b) Illustration of relation between bending moment
M and normal stress σ along upper boundary of the bending specimen.
(c) Single edge notch specimen with side length b and normal stress σ.

In both specimens an initial edge crack with length a is introduced. Two
different approaches are examined for this step. In one approach, the
crack is modeled with free boundaries starting at the edge and reaching
into the interior of the mesh, as, for example, utilized in [140]. We will
denote this approach as mesh induced initial crack. An example of it is
shown on the left hand side of FIG. 4.2.

Alternatively, we prescribe the crack through the phase field by defin-
ing an initially non-zero history field of the form

H0 = α e−(y/β)2 ×
{

1, x < a

e−((x−a)/β)2 , x ≥ a,
(4.1)
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for a crack that is located at y = 0 and extends from the edge at x = 0
to x = a. The phase field is then allowed to relax in a number of iter-
ations to the given history field, combined with an adaptive re-meshing
of the initially uniform mesh. The idea behind this approach is to de-
velop a phase field that resembles the form that it commonly takes on
when it describes a crack that has grown due an external load. In those
situations, the history field H at the crack is typically a very localized
field with large values at the peak location of the phase field and a steep
decrease away from it. The amplitude in equation (4.1) is therefore set
to α = 104 and the width β = l/10.

mesh induced initial crack phase field induced initial crack

x

y

Figure 4.2.: Different approaches for introducing the initial crack. Both figures are
depicted before the crack begins to grow. (Left) Mesh defined initial
crack, modeled with free boundaries of the mesh. (Right) Phase field
induced initial crack, introduced through the initial history field H0.

In contrast to the approach in [141], directly setting the initial phase
field d0(x) is not applicable in our formulation. This results from the
fact, that the irreversibility condition only enters the history field H.
An initially zero history field would therefore always lead to a vanishing
order parameter d, independent of its initial condition. The method is
also more versatile than using nodal constraints of Dirichlet type for the
order parameter since in this case the location of the crack would have to
coincide with nodes of the mesh. Further, it can be generalized to model
more complex initial crack geometries but a discussion of the details is
beyond the scope of this work.

We believe our approach to be a reasonable since the form of the re-
sulting phase field in regions that are induced by H0 is identical to that
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obtained when the phase field has grown because of tensile stress. This
can be seen in FIG. 4.3 where we plot the value of the order parameter
d at a location, where a crack is initially induced through H0 and at
a location through which the crack grows thereafter. The difference is
negligible. In addition, the influence of the parameters α and β on the
actual shape of the phase field proves to be negligible as long as the
amplitude α of H0 is high enough and its decay, controlled by beta, is
faster than the one from the phase field for a grown crack. An alter-
native realization of the history variable induced precrack can be found
in [117]. This approach will be called the case of a phase field induced
initial crack. It is depicted on the right hand side of FIG. 4.2.
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Figure 4.3.: a) Decay of the order parameter d along a line perpendicular to the
crack path taken at two locations along the crack, as marked in b).
At the first location, the phase field is initially induced through H0.
The second location is somewhere between the initial and final crack
tip position, i.e. where the phase field is driven through elastic energy
growing the crack.

The specimens are slowly bent or stretched, with the angle or load being
proportional to time. The main focus then lies in finding the charac-
teristic critical quantities, such as applied stress or imposed angle, that
lead to growth of the crack, and comparing them with analytic results
from the literature for quasistatic behavior. The quasistatic growth con-
dition for a crack under mode I loading is such that the relevant stress
intensity factor

KI = σ
√
πaF (a/b) (4.2)
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must be equal to the plane strain fracture toughness KIc. The char-
acteristic stress measure σ and shape factor F (a/b) are specific to the
respective specimen and will be given later. In terms of energy release
rates, this means that if

G =
K2

I

E′
(4.3)

reaches the toughness Gc, the crack starts to extend. For plane strain
conditions, the parameter E′ is defined as E′ = E/(1− ν2). The quan-
tities are thus compared with the relations (4.2) and (4.3), calibrated to
the specific specimens investigated.

In most situations investigated, crack growth takes place in an unsta-
ble fashion. This means that as soon as the phase field starts to evolve
and the crack extends, the local tensile strain energy at the crack tip
does not decrease fast enough to arrest crack growth and a new equilib-
rium cannot be found. Hence, although the applied boundary conditions
remain fixed, the crack continues to propagate. Its extension per time
step is therefore only controlled by inertia. As a result, the number of al-
ternating iterations between the elastic and phase field computations, as
described in section 3.3.4, exceeds a defined threshold. Due to the time
adaption algorithm, the time step consequently decreases drastically by
orders of magnitude. After a number of time adaption steps, the ex-
tension of the crack per time step becomes small enough, so that the
prescribed maximum number of iterations for the elastic and phase field
computations is sufficient to find the current dynamic equilibrium, and
the time step stabilizes again. We take this rapid drop in the time step
to be an objective criterion for determining the instant of crack growth
initiation and for selecting the respective critical quantities. Since this
drop does not occur during stable crack growth, we also exploit it for
differentiating between the onset of stable and unstable crack extension.

For crack growth initiation, the length of the crack is defined by the
method of introducing it. For the mesh induced initial crack, it is given
through the length of the free surface; for the phase field induced ini-
tial crack, it is prescribed by a in the definition of the initial history
field, given in equation (4.1). To measure the crack length during crack
growth, as in the stable growth regime for the bending test, a differ-
ent definition of the crack length has to be found. The crack is therefore
taken to terminate with its tip at the location where d = 0.95. The crack
length is measured accordingly and the corresponding critical values of
parameters are extracted from the output with this given definition of
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crack length. We concede that the chosen value of the order parameter
to define the crack tip is somewhat arbitrary. Borden et al. [117], for
example, use a value of d = 0.75 in their work to find the crack tip
when identifying its velocity. Furthermore it is not fully consistent with
the definition of the crack length for crack growth initiation. However,
we emphasize that the ambiguity in defining the crack tip is an intrin-
sic property of the phase field formulation for fracture and discuss its
consequences in section 4.2.

4.1.1 Pure Bending Specimen

The pure bending specimen is selected as a test case since it allows the
study of both stable and unstable crack growth. The characteristic stress
of equation (4.2) is defined through the bending moment, as illustrated
in FIG. 4.1 b), by

σ =
6M

b2
(4.4)

and the shape factor is taken from [161] as

F (a/b) =

√
2b

πa
tan

πa

2b

0.923 + 0.199(1− sin πa
2b )

4

cos πa
2b

, (4.5)

giving better than 0.5% accuracy in KI in terms of equation (4.2) for
any a/b. Inserting this function into (4.2) yields a right hand side, which
is monotonically increasing with crack length. This means that for a
given critical stress intensity factor, the stress necessary to generate crack
growth is monotonically decreasing with the crack length. A moment or
force controlled bending test thus always leads to a situation of unstable
crack growth. In contrast, if the bending is prescribed through the angle,
both a stable and an unstable regime can be found.

The total bending angle can be separated into two parts, a bending
that assumes a perfect rectangular specimen without a crack and a con-
tribution due to the crack

θ = θuncracked + θcrack. (4.6)

We prescribe the angle on the upper boundary for which h/b = 3. Since
the aspect ratio h/b = 3 enables use of beam theory, the first part can
be deduced to be
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θuncracked =
σ

E
(1− ν2)

4h

b
, (4.7)

For the crack contribution we use the solution from [161], which comes
with an accuracy of better than 1% for any a/b. It reads

θcrack =
σ

E
(1− ν2) 4S(a/b), (4.8)

with

S(a/b) =

(
a/b

1− a/b

)2 4∑
i=0

qi(a/b)
i (4.9)

and q0 = 5.93, q1 = −19.69, q2 = 37.14, q3 = −35.84 and q4 = 13.12.
Combining equations (4.6 – 4.9) and replacing the stress by equations
(4.2) and (4.3), we obtain

θc =
4

πa

1

F (a/b)

(
h

b
+ S(a/b)

)√
Gc

E
(1− ν2) (4.10)

as the equilibrium angle at which the energy release rate is equal to the
critical one given a crack length a. The dimensions of our specimen are
set to b = 1μm and h = 3μm, Young’s modulus is E = 93GPa, the
Poisson ratio ν = 0.3 and the material density ρ = 4140 kg/m3. The
critical energy release rate is defined by Gc = 1.2 J/m2. The corre-
sponding curve is plotted in both FIG. 4.4 and FIG. 4.5. The angle is
prescribed through a multi-point constraint. For the upper boundary,
the vertical displacement of the center node u0

y located at x = 0 and
y = h is unconstrained and vertical displacements of all other nodes are
fixed by uy(x) = u0

y − θ
2x. The edge is therefore free to move vertically

while keeping the prescribed angle, so that no net axial force acts on it.
The boundary condition on the lower edge is applied correspondingly.
The rate of the bending angle was set to θ̇ = 10−4 rad/s. The loading
history can therefore be considered to be quasi-static.

We observe that under rotation controlled boundary conditions, a reg-
ime of stable crack growth exists for a/b ≥ 0.67. In this region, a crack
that has grown by a distance Δa, only further extends if the rotation is
increased. In contrast, for smaller ratios of a/b, a crack that has once
started to grow, does not stop until it reaches the corresponding angle in
the stable region at which the energy release rate is again G = Gc. This
process is depicted in FIG. 4.6. From our experience, unstable crack
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propagation can only be predicted accurately by a dynamic analysis.
Otherwise, an erroneous evolution of the phase field may occur, e.g. by
a significantly larger smoothing of d than expected from the length scale
parameter. This broadening effect has also been mentioned in [140].
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Figure 4.4.: The solid blue line shows the equilibrium angle at which G = Gc de-
pending on the ratio of crack length a to specimen width a/b, as ob-
tained from equation (4.10). Yellow dots mark points of crack initiation
obtained from phase field simulations with a mesh induced initial crack.
The red dots were extracted during stable crack growth from an initially
unstable simulation (yellow dot with arrow). The gray line describes
the theoretical boundary between stable and unstable growth.
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Figure 4.5.: The solid blue line shows the equilibrium angle at which G = Gc de-
pending on the ratio of crack length a to specimen width a/b, as ob-
tained from equation (4.10). Yellow dots mark points of crack initiation
obtained from simulations with a phase field induced initial crack. The
red dots were extracted during stable crack growth from an initially
stable simulation (yellow dot with arrow). The gray line describes the
theoretical boundary between stable and unstable growth.
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As a second quantity to evaluate the predictions on crack growth ob-
tained from the phase field simulations, we compute the energy release
rate G for the data points presented in FIG. 4.4 and 4.5. We combine
equations (4.2) and (4.3) yielding

G = σ2 πaF 2(a/b) (4.11)

and insert the measured crack length and applied stress σ, as given by
equation (4.4). The results are normalized by the input parameter Gc

and plotted in FIG. 4.7.
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Figure 4.6.: Illustration of results for the bending specimen. (Right) Normal stress
in y-direction is plotted for a number of bending angles. The dis-
placements are scaled by a factor of 5 to show the deformation of the
specimen exaggerated. (Left) During bending an initially small crack
propagates in an unstable fashion and stops at a location close to the
opposite free edge. An order parameter of d = 1 marks cracked regions,
whereas d = 0 corresponds to intact regions.

4.1.2 Single Edge Notch Specimen

To strengthen the findings on the predictions of the phase field method
for crack growth obtained from the observations on the pure bending
specimen, a second series of simulations is run for a single edge notch
specimen with force controlled boundary conditions. The corresponding
geometry, shown in FIG. 4.1 c), represents the most simple setup to
study crack growth. Due to its unstable behavior at crack initiation, it
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allows determination of the critical stress very precisely and is therefore
suitable for examining the influence of the length scale parameter l on
the numerical results. Other works, investigating this kind of specimen,
can be found in, for example, [140, 141].
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Figure 4.7.: Computed energy release rate G normalized by the critical energy re-
lease rate Gc. Data points correspond to those shown in FIG. 4.4 and
FIG. 4.5. Again, the gray line describes the theoretical boundary be-
tween stable and unstable growth. Mesh induced initial crack : The
start of crack growth (yellow diamonds) is always unstable. The red
dots indicate the values of G for cases where the growth of a mesh in-
duced crack has changed to a stable regime. Phase field induced initial
crack : The start of crack growth (black stars) is unstable or stable in
agreement with the theoretical boundary. The values of G computed
during stable crack growth are denoted by the green squares.

The characteristic stress of equation (4.2) is equal to the normal stress
in the y-direction σ = σyy at the upper boundary and the shape factor
is again taken from [161]

F (a/b) =

√
2b

πa
tan

πa

2b

0.752 + 2.02(a/b) + 0.37
(
1− sin πa

2b

)3
cos πa

2b

, (4.12)

with better than 0.5% accuracy in F (a/b) for any a/b. The width of the
specimen is b = 1μm, Young’s modulus is set to E = 93GPa, Poisson
ration to ν = 0.3, the material density to ρ = 4140 kg/m3 and the critical
energy release rate to Gc = 1.2 J/m2.

The load on the specimen is increased slowly with time until the crack
starts to grow. We again take the drop in the time step resulting from
the time adaption scheme to determine the moment of crack growth ini-
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Figure 4.8.: Applied external stress for varying crack length a at instance when
G = Gc. Colored markers are stress values taken from simulations at
the moment when the crack starts to grow. The diagram on the right
is a magnification of the points with larger initial crack length.

tiation in the phase field simulation. The corresponding critical stress is
presented in FIG. 4.8 for both mesh and phase field induced initial cracks,
for different initial crack lengths a and two values of the length scale pa-
rameters l. The results are compared with the theoretical stress at which
G = Gc. For the latter, equations (4.2) and (4.3) are combined to give

σc =

√
GcE

1− ν2
1√
πa

1

F (a/b)
. (4.13)

We impose the critical stress as boundary condition in a second, purely
elastic simulation without phase field to determine the energy release
rate using the J-integral method. For the evaluation of J , we use the
commercial tool COMSOL Multiphysics R©. For the presented setting J
is a path-independent line integral. Given a counterclockwise path S
around the tip of a crack, it reads

J =

∫
S

(
w dy − ti

∂ui

∂x
ds

)
, (4.14)

with the length increment ds along the contour Γ, the strain energy
density w =

∫ εij
0

σijdε′ij and the traction vector ti = σijnj in normal
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direction n = niei to the path [132]. For the given setting of a linear
elastic material under quasi-static conditions, the magnitude of the J-
integral is equal to the energy release rate, J = G. The so computed
energy release rates are plotted in FIG. 4.9.
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Figure 4.9.: Normalized energy release rates G/Gc at crack growth initiation com-
puted via the J-integral method against initial crack length a for two
values of the length scale parameter l and both methods of introducing
the initial crack.

In order to explore the influence of the length scale parameter l on the
predictions of the phase field method more closely, simulations with l
ranging from 0.005 b to 0.0005 b are run for an initial crack length of
a = b/2, including both methods of introducing the initial crack. The
resulting energy release rates are shown in FIG. 4.10.

4.2 Discussion

4.2.1 Pure Bending Specimen

Comparing the critical angle extracted from simulations with the ana-
lytic solution (cf. FIG. 4.4) in the unstable regime, we observe a non-
negligible discrepancy between 13.3% and 14.6% for computations with
a mesh induced initial crack. As will be shown for the single edge notch
specimen, this discrepancy does not result from the mesh or the staggered
solution scheme. We attribute it to an initial build-up phase required to
create a region of d = 1 at the crack tip, that significantly postpones the
crack initiation in the sense of an evolving phase field.
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In contrast, the numerical results for the phase field induced initial crack
are in very good agreement with the analytic ones for the case of unsta-
ble crack growth, see FIG. 4.5. The error in θc is always below 2.1% in
the unstable regime.
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Figure 4.10.: Normalized energy release rates G/Gc computed via J-integral method
against ratio of length scale parameter l and specimen width b for both
methods of introducing the initial crack.

In the stable regime, the results from the two methods of introducing
the crack are closer to each other, when the data is extracted during
crack growth. This agrees with our expectations, since in both cases
the growth of the crack is described through the same extension of the
non-zero phase field region. However, there is a slight offset between nu-
merical and analytical data, even for the phase field induced initial crack.
One reason for this difference might lie in the non-unique way that the
length of a phase field crack may be measured during crack growth, re-
sulting from the continuous increase of the order parameter at the crack
tip from zero to unity. To make this point clearer, some numbers shall
be given here. For all bending specimen calculations, the crack tip was
defined to be located at d = 0.95. However, if we measure the crack
tip instead at d = 0.5 (d = 0.1), the crack length would be longer by
Δa ≈ 0.005 b (Δa ≈ 0.018 b). To estimate, how large the effect of the
criterion on the error in terms of the bending rotation is, we compute
the Taylor expansion of equation (4.10) to first order in a yielding

Δθc =

∣∣∣∣ 4

πa

1

F (a/b)

[
−
(
1

a
+

1

b

F ′(a/b)
F (a/b)

)(
h

b
+ S(a/b)

)
+

1

b
S′(a/b)

]∣∣∣∣
×
√

Gc

E
(1− ν2)Δa. (4.15)
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For a crack length of a = 0.914 b and an error of the crack length of
Δa ≈ 0.005 b (Δa ≈ 0.018 b), taken from a simulation with a phase
field induced precrack, this gives a relative error in the angle of around
Δθc/θc ≈ 5.4% (Δθc/θc ≈ 19.5%). The actual relative error from a phase
field computation with a crack of this length is |θnum

c − − θana
c |/θana

c ≈
18%. The uncertainty in measuring a is therefore believed to contribute
a significant fraction of the discrepancy between the results from the
phase field calculation and that from the fracture mechanics analysis of
the problem based on equation (4.2), (4.4) and (4.5). This issue is also
further discussed in section 4.2.2 for the stretch specimen. In the unsta-
ble regime, we observe good agreement for the phase field induced crack.
The energy release rate is only slightly underestimated, by less than 10%.
In contrast, for the mesh induced initial crack, G deviates from Gc by
around 25%. In the stable region, both methods of introducing the crack
give results that lie very close to each other.

A second contribution to the discrepancy may come from finite values
of the order parameter in regions far away from the crack. It is notable
that the order parameter is perceptibly above zero in the ligament ahead
of the crack tip. For example, in the example mentioned above with a =
0.914 b, the order parameter is d = 0.01, if extracted at the compressive
fiber on the right hand side of the specimen in the extension of the
crack. Treating d as a damage parameter in the sense that we can define
an effective elastic modulus given by E∗ = (1 − d)2E [162], this would
mean a decrease of around 2% for the stiffness of the material. Given
that this location is more compliant, the applied moment required to
bend the specimen by a certain angle is decreased. This means, that
the actual stress acting at the crack tip, is lower than expected for a
given bending angle. For the simulations with a mesh induced initial
crack, the value of d is larger by around 5% at the free surface beyond
the ligament leading to a decrease in stiffness of the same order. It is
difficult to estimate if this small difference can explain the slightly larger
offset for the mesh induced initial crack. An additional influence could
come from the initially unstable crack growth even in the stable regime,
as described below. The growth velocity affects the shape of the phase
field, as for example mentioned in [117], and could therefore also have
an impact on the results.

Interestingly, although the critical bending angle is generally over-
estimated for these points, the energy release rate is quite accurate.
We ascribe this to a compensating effect due to the underestimation of
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the bending moment, as described above. The non-zero values of d at
presumably intact regions, leading to this underestimation, are strongly
dependent on the history of the calculation due to the irreversibility con-
dition in H. For the mesh induced initial crack, where crack initiation
generally starts later than it should, regions away from the crack may
experience higher stress than for the phase field induced initial crack.
Hence, in this case, the order parameter should be slightly larger in in-
tact regions. To verify this hypothesis, we pick one simulation for each
method of describing the initial crack, find the times where the crack
has grown to the same extent and study the magnitude of d in regions
away from the crack. We find, that for the mesh induced initial crack the
order parameter is larger by around 3-5% in intact regions. This may
lead to the larger offset of the data points associated with stable growth
in FIG. 4.4 compared to FIG. 4.5. The argument might also explain the
discrepancy in computing G, if we assume that the overestimation of the
crack length a, as defined through the order parameter d, has a more
dominant effect than the underestimation of σ.

Two mechanisms leading to deviations of the numerical results are
identified, that apply to the situation of a phase field induced initial crack
or when the crack is already growing from a mesh induced initial crack.
A global one stemming from a non-zero phase field at locations that
should actually be perfectly intact and a local one from the inaccuracy
of measuring the crack length. Both issues, in particular the latter one,
can be eased by choosing a smaller length scale parameter l. As described
above, for the used value of l = 0.005 b, the outcome of the simulations
is in good agreement with solutions from classical fracture mechanics.

In contrast, crack initiation for a mesh induced initial crack occurs
always with a significant delay. Both the energy release rate and the
critical bending angle are therefore overestimated. An overestimation of
the critical failure load was also reported by Bourdin [163], who presents
a backtracking algorithm in order to overcome this deficiency. We believe
this to be a result of an initial build-up phase, which the phase field has to
undergo before true crack growth can initiate. As a matter of course, this
build-up is not required if the initial crack is already described through
the phase field. A critical consequence of the initial overestimation of
Gc is a predicted crack growth that is always initially unstable. This
can also be observed in FIG. 4.4. The yellow data point at the tail
of the arrow, used as the starting point for the stable results depicted
by red, gives an initial spurt of crack growth that directly jumps to
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the first stable result (in red) without significant change of the bending
angle (horizontal arrow). This behavior is not found with the phase field
induced initial crack. In this case, the simulation predicts entirely stable
crack growth when the initial crack length is in the stable regime. For
this reason, the yellow and red data points in FIG. 4.5 lie on the same
curve. This finding undermines the claimed capability of the fracture
phase field method to find and accurately describe crack initiation at
arbitrary locations in a specimen.

4.2.2 Single Edge Notch Specimen

The most accurate results in terms of the predicted critical stress, shown
in FIG. 4.8, are obtained in this case with the phase field induced crack
and l = 0.001 b. The relative errorΔσc = (σphase field

c −σanalytic
c )/σanalytic

c

of the critical stress σphase field
c resulting from the phase field simulations

with respect to the calculated one, σanalytic
c , from equation (4.13) ranges

between 0.4% and 5.2%. Computations with l = 0.005 b generate predic-
tions with a similar accuracy for both the phase field and mesh induced
crack of up to 11.8% and 11.3% respectively. However, the least accu-
rate results of Δσc ≈ 14.5% are obtained from the mesh induced crack
with the smaller value of the length scale parameter l = 0.001 b. This
behavior is unexpected since it does not allow the improvement of pre-
dictions from phase field simulations by choice of numerical parameters
that result in a better shape of the phase field more closely resembling
the discrete nature of a crack. This is further discussed in terms of
energy release rates G below.

As can be seen in FIG. 4.10, the predictions of the phase field sim-
ulations with respect to the obtained value of G are quite satisfactory
for the case of a phase field induced initial crack and a small length
scale parameter l. This was already reported in [141], see in particular
FIG. 6 of their work. For example, the computed energy release rate
G for l = 0.001 b is only 1.6% below the critical one Gc. For the corre-
sponding simulations with different initial crack lengths a, the relative
error ΔG = (G−Gc)/Gc ranges between 0.2% and 4.5%. The energy
release rate is slightly underestimated for very small and large cracks,
as shown in FIG. 4.9.

The tendency is the same for l = 0.005 b, but the results become less
satisfactory. The energy release rate G lies around 11% to 30% below Gc.
This underestimation is again attributed to the overestimation of the
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crack length due to the diffusive representation of the crack in the phase
field method. For example, in the simulations with l = 0.005 b, the phase
field drops to d = 0.5 (d = 0.1) at a distance of Δx = 0.011 b (Δx =
0.027 b) from the crack tip when crack growth is just about to start.
By varying the crack length in J-integral computations, we find that a
difference in the crack length of Δa ≈ 0.02 b can lead to an approximate
change in G of 17%. This is in the range of the relative error ΔG.

The effect is less pronounced for cracks close to half the width of the
specimen. For small cracks, the slope of the critical stress σc against
the crack length becomes larger (see FIG. 4.8) so that small differences
in the crack length have a stronger impact on the resulting σc. In the
case of large cracks, the relative inaccuracy of the width Δ(b− a) of the
ligament connecting the upper and lower part is increasing, which makes
the computation of the critical stress less precise.

The simulations with a mesh induced initial crack show a similar,
though slightly attenuated behavior. However, as before, there is a no-
ticeable offset of 16% to around 20% between the computed energy re-
lease rates and the critical one for l = 0.001 b. Moreover, the discrepancy
is even intensified for smaller values of the length scale parameter l, as
observable in FIG. 4.10, so that convergence towards the actual value
of Gc is not observed. As for the pure bending specimen, we attribute
the overestimation of Gc to an initial build-up of a non-zero phase field
region. This presents an intrinsic drawback of the formulation since it
postpones the actual crack initiation. To exclude any influence of the
mesh, e.g. by not sufficiently resolving the singular stress field at the
crack tip, we repeatedly reduce the element size around it. Even for an
element size of h ≈ 6 ∗ 10−6 b around the crack tip an improvement in
terms of an earlier crack growth initiation is not recognizable.

To ensure that the error is not an outcome of the staggered imple-
mentation scheme, we extract data from a similar simulation with a
monolithic solution scheme, found in FIG. 12 of [109]. In contrast to our
own simulations, the results of the corresponding work are generated
with displacement controlled boundary conditions. We insert the crit-
ical displacements uc taken from the diagrams as boundary conditions
and compute the energy release rate via the J-integral. The results
overestimate Gc by a factor of 19% to 24%, depending on the critical
displacements (input parameter is Gc = 2.7 ∗ 103J/m2, extracted energy
release rates are 3.22∗103J/m2 and 3.35∗103J/m2). This is even slightly
higher than our results.
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4.3 Conclusion

In this chapter, a study on the accuracy of predictions from a fracture
phase field formulation on crack growth initiation is undertaken and
compared with relations from fracture mechanics. We investigate the in-
fluence of the numerical length scale parameter l, determining the width
of smoothing of the represented crack, and two methods of introducing
an initial crack. Two setups are examined, a pure bending specimen and
a single edge notch specimen. Due to the requirement of a fine mesh
for small values of l, the model is implemented in a parallelized finite
element computer code supporting both mesh and time adaption.

We find that results of the phase field simulations are in very good
agreement if l is small and the initial crack is induced as a heterogeneity
in the phase field through an initially non-zero history field (phase field
induced initial crack). Predictions become less satisfying for large values
of the length scale parameter l. In situations, where the initial crack is
prescribed through free surfaces of the mesh (mesh induced initial crack),
predictions from the phase field simulations deviate significantly from
analytic relations found in the literature. This is neither a consequence
of an overly coarse mesh, nor of the staggered implementation scheme,
and can also not be resolved using a smaller value of l.

Due to the advantages of the phase field approach for simulating
complex crack topologies and in coupled applications with multiphys-
ical phenomena, the method is worth considering as an alternative or
in addition to established discrete fracture techniques. Accurate results
should be obtained if initial cracks are introduced in the manner de-
scribed above, i.e. with a phase field induced initial crack with a small
value of l. However, small values of the length scale parameters l pose
computational demands that must not be underestimated and the step
of reducing the numerical effort by choosing larger values of l must be
taken with care. Considering the results from the mesh induced crack,
the capability of the presented fracture phase field formulation to find
and accurately describe crack initiation at arbitrary locations in a spec-
imen is disproved. To overcome this difficulty, further development of
the method is required.
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5 A Study on the Role of the Length Scale
Parameter as a Material Parameter

In the absence of cracks, classical fracture mechanics states that crack
growth cannot occur since the critical load required to initiate crack
growth becomes infinite with the crack length a going to zero. However,
in simulations of specimens under an externally applied load, which uti-
lize a phase field method for fracture, it is often observed that the order
parameter d increases at the locations with highest mechanical stress
even if it is initially zero throughout the entire specimen and no crack
has been introduced in the material. It is therefore reasonable to assume
that a specific type of initial crack distribution can be attributed to the
phase field.

The parameters entering the evolution equation of the phase field 2.29
form the dimensionless group H

Gc/l
, which represents the driving force for

crack growth in the phase field approach. Among the parameters influ-
encing the evolution of the phase field, the length scale parameter l is the
only one which is not directly linked to a physical parameter, such as,
for example, the critical energy release rate Gc, and which possesses the
dimension of a length. Hence, the imagined distribution of initial cracks
is assumed to be connected to the value of the length scale parameter l.
As a consequence, the length scale parameter should not only be con-
sidered as a numerical parameter, but instead might act as a material
parameter. Investigations on this hypothesis, e.g. about the influence of
the length scale parameter on the critical stress to induce fracture, are
presented, for example, in [112, 117, 164, 165] by means of both homo-
geneous and non-homogeneous analytic solutions in one dimension and
numerical tests in two dimensions. Here, we examine a set of simple
two-dimensional test specimens and derive relations between the length
scale parameter l and an imagined initial crack length a. Using these
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relations, we explore whether it is a reasonable and practical approach
to treat l as a material parameter in order to represent an initial crack
length or strength of the material. The following study shall thereby
also serve as a clarification on whether this approach is applicable to the
fully coupled model, describing crack growth and Li diffusion.

a

b
ba

b

b

a

b

b

-

-

a) b) c)

Figure 5.1.: Geometry and boundary conditions for a) uniaxial stretch b) biaxial
stretch and c) pure shear specimen. The crack in light gray is only shown
for better understanding of the considerations on the orientation of the
imagined initial crack. It is not introduced in the actual simulation.

5.1 Results

Either uniaxial, biaxial or pure shear load is applied to the rectangular
test specimens, as shown in FIG. 5.1. The edge length of the specimens is
b = 1μm and material parameters are the same as for the pure bending
and single edge notch specimen, presented in chapter 4. In order to save
computation time, only the upper half of the geometry is simulated. The
external load is increased until the order parameter d raises to unity.
This is accompanied by a drastic drop of the time step, as described
on page 69 of chapter 4. This drop is used to determine the instant of
failure. The critical external stress, extracted at this point in time, is
plotted in FIG. 5.2.

To analyze the influence of the length scale parameter l, we imagine
the following scenario. The test specimens shall be covered by cracks of
length a and orientation angle β with respect to the x-axis. Increasing
the applied stress to a certain critical value, the condition is reached
where the cracks grow. Speaking in terms of the order parameter, this
corresponds to d rising to unity. We thus relate the critical stress ob-
tained from the simulations to an effective length of an imagined crack.
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Figure 5.2.: The critical stress σc at which the order parameter becomes d = 1
in specimens under uniaxial, biaxial and pure shear load, plotted for
different values of the length scale parameter.

For this, we assume an orientation angle β of the crack such that the
critical stress required to initiate crack growth is minimized. Hence, β is
found by maximizing the stress intensity factor. For the uniaxial stress
specimen, the mode I stress intensity factor is largest if the crack is
aligned perpendicular to the applied load. It is given by equation (4.2).
Considering the large critical stress values obtained from the computa-
tions, it is reasonable to assume that the effective crack length is very
small, i.e. a � b. In this case, the shape factor F (a/b) converges to a
constant, i.e. lima/b→0 F (a/b) = f . For a through crack in the interior
(an edge crack), the constant becomes f = 1 (f = 1.122). Within this
approximation, equation (4.2) reads

KI = σf
√
πa. (5.1)

We isolate the crack length a and replace the stress intensity factor with
the energy release rate using equation (4.3). For the instant of crack
growth initiation, i.e. when G = Gc and σ = σc, we then receive the
effective crack length of the imagined crack by

a =
1

π

1

1− ν2
GcE

σ2
cf

2
. (5.2)
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By rotation of the coordinate system and application of the principle of
superposition [132], it can be shown that equation (5.1) also applies to
the biaxial stretch and pure shear specimen, if the crack is expected to
lie in the interior, i.e. when f = 1. In the case of a biaxial load with
equal load from all sides, the stress intensity factor is independent of
the orientation angle β due to the purely hydrostatic stress field. In
the pure shear test, the most severe angle for mode I loading is again
β = 0◦. Considering mode II loading, the stress intensity factor is high-
est at β = 45◦ with KII = σ

√
πa and KI = 0. Since the maximum

stress intensity factors are identical for all the test specimens, we use
equation (5.2) to determine the effective crack length corresponding to
the respective critical stress. The so computed crack lengths are shown
in FIG. 5.3.
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Figure 5.3.: The effective crack length a in specimens under uniaxial, biaxial and pure
shear load, plotted for different values of the length scale parameter l.

To confirm our findings in the relation between l and a, we further per-
form a similar study examining the pure bending specimen described in
section 4.1.1. Commencing with an entirely intact specimen, i.e. with
d = 0 everywhere, we monotonically increase the imposed angle on the
upper boundary and extract the critical angle at which the specimen
fails, i.e. when the phase field raises to unity at some location in the
specimen. We repeat this procedure for several values of l and compute
the effective crack length matching the critical angle by numerically solv-
ing equation (4.10) for the crack length a. Both critical angle and crack
length are shown in FIG. 5.4.
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Figure 5.4.: The critical angle θc and the effective crack length a, plotted for dif-
ferent values of the length scale parameter l.

5.2 Discussion

The graphs describing the effective crack length a, shown in FIG. 5.3,
follow a linear relation with respect to the length scale parameter l.
Fitting the plotted data points with a polynomial of degree one obtains
the following relationship between l and a

uniaxial stress with through crack a ≈ 2 ∗ 10−4 b+ 2.46 l,

uniaxial stress with edge crack a ≈ 4 ∗ 10−8 b+ 1.95 l,

biaxial stress with through crack a ≈ 4 ∗ 10−8 b+ 3.45 l,

uniaxial pure shear with through crack a ≈ 2 ∗ 10−4 b+ 3.16 l.

Considering the negligible size of the offsets obtained in the fits, we con-
clude that as l approaches zero, also a vanishes. This is in agreement
with the derivation of the phase field method for fracture. For decreasing
values of the length scale parameter l, the spatially smoothed represen-
tation of the crack converges to the discrete shape. The approximation
of the fracture energy by equation (2.23) becomes more accurate and
results, obtained using the phase field approach, should resemble more
closely predictions from standard fracture mechanics. In this case, a
non-zero initial crack length does not exist.

The relations presented above give a rough estimate of the intrinsic,
effective crack size obtained when using a certain length scale parameter
l. At the same time, they provide a measure for the size of an initial
crack that can still be resolved in a fracture phase field simulation with
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5. A Study on the Role of the Length Scale Parameter as a Material Parameter

a given length scale parameter. Only if the initial crack, induced, for
example, by the methods presented in chapter 4, is noticeably larger
than the effective crack length related to the given value of the length
scale parameter, the role of l as a material parameter can be neglected.
However, we observe that the effective crack length, corresponding to a
certain value of the length scale parameter l, depends on the specific type
of load or, in general, the boundary conditions. To understand this point
better, we examine the behavior of the phase field at failure more closely.

The evolution of the order parameter d follows the same trend for
both the uniaxial and biaxial stretch specimen. As the external load is
increased, the order parameter first grows homogeneously to a value be-
tween d ≈ 0.23 and d ≈ 0.33 and then abruptly raises to d = 1 at specific
locations in the specimen. As can be seen from FIG. 5.5, large values of
the order parameter d are localized at certain positions in the specimen
even if geometry and boundary conditions should generate a uniform
stress field. In the uniaxial and biaxial stretch test, the regions of the
highest value of the order parameter are found at the lower and upper
edges and corners respectively. We assume that numerical errors slightly
increase d at these locations. By a self-enforcing effect, the phase field
then grows faster at the respective locations. Remarkably, this behavior
is significantly less pronounced in the case of the pure shear specimen,
where the order parameter raises above d ≈ 0.82 everywhere.
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Figure 5.5.: Contour plots of the order parameter at failure in specimens under
uniaxial, biaxial and pure shear load.

In an arbitrarily shaped specimen, the stress condition is typically nei-
ther known a-priori nor is it as simple as in these specimens. Hence,
it is generally not possible to determine which of the presented speci-
mens resembles closest the stress situation in the specimen in question,
also because details in the geometry can influence the local stress field
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in a significant way. Hence, a relation between a and l, or equivalently
a l-dependent material strength, cannot be predicted in advance for an
arbitrarily shaped specimen. This makes it questionable, if the length
scale parameter l can be used in a practical way to define an initial crack
length or material strength. Furthermore, the behavior of the phase field
before critical conditions are reached does not describe brittle fracture
in the actual sense. The homogeneous increase of the order parameter
d, preceding the failure of the specimen, leads to a nonlinear increase
of the material compliance and is more reminiscent of damage theory,
describing a distribution of small cracks in a continuous way without
resolving each crack [162, 166].

The linear relation between the crack length a and the length scale
parameter l, found in the stretch and shear specimens, is not reproduced
in the bending specimen. This can be seen in FIG. 5.4, which shows the
critical angle for failure θ of the specimen and the corresponding effective
crack length a. Fitting a polynomial of degree one to an increasingly
smaller selection of the corresponding data points, we find the following
relations

all data points a ≈ 0.0058 b+ 0.30 l,

leaving away l > 0.1 a ≈ 0.0038 b+ 0.36 l,

leaving away l > 0.05 a ≈ 0.0019 b+ 0.46 l,

leaving away l > 0.025 a ≈ 0.0011 b+ 0.52 l,

leaving away l > 0.0125 a ≈ 0.0005 b+ 0.58 l.

The proportionality constant between a and l grows and the offset tends
to zero, as larger values of l are excluded from the fitting procedure.
While the trend of the offset points in the expected direction, the slope
of the functions is significantly different in comparison to the ones ob-
tained from the stretch and shear specimens. Whereas the typical initial
crack size was found to be between a ≈ 2 l and a ≈ 3 l in the stretch and
shear specimens, the results from the bending specimen suggest that it
is closer to a ≈ l/2. To understand this incongruity, we take a closer
look at the evolution of the phase field during bending of the specimen.
For this reason, we compare the phase field at an instant just before the
critical angle θc is reached and directly at θc, when a crack is about to
develop. The respective contour plots are shown in FIG. 5.6. The length
scale parameter used in the corresponding simulations is l = 0.00625 b.
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Figure 5.6.: Evolution of the phase field with increasing bending angle drawn a)
shortly before a crack starts to grow and b) at crack initiation. The
diagram on the left shows the value of the phase field along a horizontal
line from the outer edge to the center of the specimen.

We observe that before a crack nucleates and begins to grow, the or-
der parameter already reaches d ≈ 0.3 at the tensile fiber on the left
hand side of the specimen. This non-zero phase field relaxes the stress in
y-direction along the edge and results in a nonlinear material response.
The nonlinear behavior of the material can also be observed in the normal
stress in y-direction at the upper boundary of the specimen, as plotted
in FIG. 5.7. In a purely elastic specimen, the prescribed angle results
in a torsional moment around the center of the upper boundary. Hence,
the normal stress σyy should be zero in the center of the upper edge and
follow a linear relation with respect to the x-coordinate. This behavior
is found for the lowest bending angle. However, as the bending angle is
increased, the phase field rises at the outermost tensile fiber, resulting in
a more compliant material response in this part of the specimen. As a
consequence, the location of zero normal stress slightly moves towards the
compressive fiber on the right hand side of the specimen and the graph
of the normal stress in y-direction no longer describes a straight line.

From these observations, we conclude that the specimen behaves sig-
nificantly different than expected for a purely elastic material. However,
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an elastic material response was assumed in the derivation of the ana-
lytic relations between effective crack length a and critical angle θc. The
discrepancy in the relationship between l and a, comparing the stretch
and shear specimens to the bending specimen, is thus caused by the
damaging character of the phase field in advance to the actual crack
growth initiation.
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Figure 5.7.: Normalized normal stress in y-direction, plotted in x-direction along
the upper boundary of the specimen for different values of the bending
angle. See FIG. 5.6 for the direction of coordinate axes. The dot-
dashed, green line corresponds to the situation in FIG. 5.6 a), the dark
gray stars are taken from the situation illustrated in FIG. 5.6 b).

In order to find a better estimate of the dependence of the effective crack
length a on the length scale parameter l in the bending specimen, we
assume that in a small area along the outermost tensile fiber, the stress
state is roughly comparable to a pure stretch specimen. We therefore
extract the normal stress in y-direction, that is generated at the upper
left corner at the time when the critical angle is reached, and insert it
into equation (5.2). Depending on the selection of data points, we obtain
the following relations

all data points a ≈ 0.0170 b+ 1.39 l,

leaving away l > 0.1 a ≈ 0.0020 b+ 1.84 l,

leaving away l > 0.05 a ≈ 0.0004 b+ 1.95 l,

leaving away l > 0.025 a ≈ 0.0005 b+ 1.94 l,

leaving away l > 0.0125 a ≈ 0.0002 b+ 1.98 l.
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The resulting proportionality factor between a and l is closer to the one
obtained for the stretch and shear specimens, but still slightly smaller.
This difference might result from the coarse approximation in using ex-
pressions derived for a uniaxial stretch specimen. However, it confirms
the finding for the stretch and shear specimens, that a precise value of
an effective initial crack length cannot be introduced using the length
scale parameter l. Further, the behavior of the phase field is again not
representing brittle fracture, as can be seen by the non-local damage
along the tensile fiber. This is also the case for the smallest length scale
parameter chosen in the simulations, i.e. l = 0.00625 b. For this choice
of parameters, the ratio of the length scale parameter l and the charac-
teristic size of the specimen size, i.e. the width b, is already below 1%.
With respect to this ratio, the approximation of brittle fracture through
the phase field method is still rather poor. Application of the phase
field method to arrangements without high stress concentrators should
therefore be treated with care.

5.3 Conclusion

A study on the role of the length scale parameter l as a material param-
eter is examined. Different specimen geometries are investigated and
a principle correlation between l and an effective initial crack size a is
found. However, the precise dependence of the crack length a on the
length scale parameter l is found to depend on the specific geometry and
boundary conditions. Further, the failure behavior does not resemble
brittle fracture, but incorporates a damage-type process in advance to
the actual formation of a crack.

We therefore do not recommend to use the length scale parameter in
a practical way to adjust a certain crack length or material strength for
general applications. Indeed, in coupled systems, where further physical
parameters depend on the precise strain or stress of a purely elastic
material, the damaging character may lead to erroneous results. Hence,
in order to apply the method to situations, where no initial crack is
introduced in advance, further development is mandatory.

The damage-type regime could, for example, be reduced by a modifica-
tion of the prefactor, that releases the tensile energy, so that a significant
increase of the order parameter d occurs only at a later stage, but then
more abruptly. An alternative approach could involve an intermediate
processing step, which follows a different criterion such as, for example,
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an evaluation of the stress in a certain volume. In this intermediate step,
the order parameter could be set above a critical value. The subsequent
crack growth could then again follow the energy based criterion.

93





6 Crack Growth during Lithium Insertion

In the previous chapters, it was shown that the phase field approach
for fracture is a suitable method to generate reliable predictions of the
appearance of crack growth under specific load conditions. Here, the
fully coupled system of Li diffusion, mechanical stress and fracture is
investigated during insertion of Li in a storage particle. The mechanical
stress leading to crack growth is thus no longer caused by an externally
prescribed load, but results from the distribution of Li in the material.
At the same time, Li diffusion is strongly affected by the mechanical
stress, in particular at the crack tip. The simultaneous study of all these
physical processes reveals interesting phenomena, which are examined in
the following.

The model incorporates a set of 8 material parameters. In addition,
required inputs are the size of the storage particle, the magnitude of
the applied flux and the length of a possible initial crack. Using the
Buckingham π-theorem, this yields already 7 dimensionless groups [132],
which could be investigated on their impact on fracture and diffusion
in the storage particles. A comprehensive study on a sub-set of these
groups without the introduction of a crack can be found in [167]. In
order to reduce the complexity of the study and to obtain results, that
are as general as possible, we focus on spherical (3D) or cylindrical
(2D plane strain) particles1 of outer radius r, as illustrated in FIG. 6.1.
The boundary condition for the Li diffusion problem is applied in two
steps. First, a constant flux J̄0 is imposed on the perimeter until the
maximum concentration cmax is reached. Thereafter the concentration

1 Real LiMn2O4 storage particles are often shaped like polyhedrons, with clear
facets resulting from the crystallographic planes. However, the additional com-
plexity, introduced by the orientation and size of the different surfaces, in par-
ticular with respect to the ones of a crack, would make an interpretation of the
results in the sense of general conclusions harder.
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c is held fixed2. The magnitude of the imposed flux J̄0 is prescribed in
form of the C-rate C, i.e. the inverse time in hours theoretically required
to completely charge or discharge the particle, through

|J̄0| = V

S
cmaxC/[3600 s]. (6.1)

Here, V and S are the storage particle volume and surface respectively.
On battery cell level, this sequence corresponds to the so-called constant
current constant voltage (CCCV) operation mode. In this mode the
cell voltage is held fixed after a certain upper or lower cut-off voltage
is reached during charging or discharging with a constant current. Un-
der neglect of cell internal resistances present during operation, this is
equivalent to keeping the Li concentration on the surface of the storage
particles constant. The process of filling battery particles at a constant
rate is also known as galvanostatic charging, while filling them at a con-
stant voltage is known as potentiostatic charging.

For insertion, the largest tensile stress occurs in the interior of a par-
ticle, as shown, for example, in [129]. This stress might lead to fracture
starting from voids or pores in the material, as found in [168]. An initial
crack is therefore introduced in the particle center with the shape of a
line (2D) or disk (3D) with length or diameter a. The material parame-
ters are chosen by using values for LiMn2O4, as given in TAB. 6.1. The
temperature is set to room temperature and for the critical energy re-
lease rate, a typical value of 10 J/m2 for a ceramic is assumed, which is
in the range of experimental results for this material [169]. As in section
3.3.4, the characteristic length scale of the storage particles is defined by
r0 = 1μm.

Following the findings in chapter 4, the initial crack is introduced as
a heterogeneity in the phase field through an initially non-zero history
field H0, as given by

H0(x, y) = α e−(y/β)2 ×
{

1, s < 0

e−(s/β)2 , s ≥ 0,
(6.2)

2 The described scheme for Li insertion is numerically realized by a smoothed step-
like function J̄(c), which takes on the value J̄0 for c < cmax and zero for c ≥ cmax.
Hence, as soon as the maximum concentration cmax is reached at the perimeter
of the storage particle, the concentration c oscillates around this value. However,
the amplitude of the oscillation is negligible due to the comparatively small time
steps in the simulations and does not affect the results obtained in this study.
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6.1. Cylindrical Particles in 2D under Plane Strain

where α = 104 and β = l/10. The local distance to the crack tip is
defined by s = |x| − a/2 in two dimensions and s =

√
x2 + y2 − a/2 in

three dimensions. To save computation time, we exploit the symmetry
of the problem and simulate only one quarter of the particle in two
dimensions, and one half of it in three dimensions. The simulations are
started with zero concentration, i.e. c0 = 0, and stopped when the state
of charge (SOC), describing the mean concentration in units of maximum
concentration c/cmax, reaches a level above 99.9%.

Parameters

Symbol Description Value Unit Ref.

E Young’s modulus 93 GPa [168]
ν Poisson ratio 0.3 - [168]
ρ material density 4140 kg/m3 [170]
cmax max. concentration of Li 2.29 ∗ 104 mol/m3 [67]
Ω partial molar volume of Li 3.497 ∗ 10−6 m3/mol [67]
D0 diffusion coefficient of Li 7.08 ∗ 10−15 m2/s [66]
θ temperature 300 K
Gc critical energy release rate 10 J/m2

Table 6.1.: Material parameters for lithium manganese oxide LiMn2O4.

6.1 Cylindrical Particles in 2D under Plane Strain

Particle sizes are chosen between r = 5μm and 20μm in steps of 5μm, the
crack sizes are a = 0.2μm, 1μm and 2μm and the C-rate is given values
ofC = 1, 5 and 10. In all the simulations, the length scale parameter is set
to l = 0.05μm. In this way, the range of transition between cracked and
uncracked state is sufficiently small in comparison to the size of the crack.
Hence, all crack sizes chosen are resolved correctly, including the smallest
one. The residual stiffness parameter is chosen as k = 10−5 and the mesh
adaptation scheme is configured such that the mesh element size close to
the crack faces has dimensions h ≤ (2/5) l. Depending on the storage
particle radius, the initial mesh and the stage of growth of the crack, the
number of elements ranges from 828 to 80 397, or in terms of degrees of
freedom the model ranges from 17 355 to 1 649 820. The computations
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are typically run on either 16 or 32 processors and take between 3 and
170 hours, heavily influenced by system size and crack behavior.

Figure 6.1.: Geometry and boundary conditions for the Li intercalation study. The
geometry is either 2D plane strain in section 6.1 or 3D axisymmetric
in section 6.2. In the three dimensional geometry, the initial crack has
the shape of a disc. This is illustrated, for example, in FIG. 6.19.

As shown in TAB. 6.2, a number of different crack phenomena occur,
depending the combination of parameters chosen. To present these in a
comprehensible way, we begin with the condition with lowest mechanical
stress in the storage particle and then go through the several possibilities
of crack growth step by step.

6.1.1 Safe Conditions without Crack Growth

The least severe condition for the particle is given when its radius is
smallest and the C-rate is low. This was also reported, for example, in
[167] and results from the following argument. The time for Li to diffuse
from the surface to the center of a storage particle grows approximately
in a quadratic way with the radius of the particle. Consequently, a larger
difference between the Li concentration at the perimeter and interior of
the particle builds up when the radius is increased. This effect is fur-
ther enhanced when the amount of Li inserted at the perimeter per unit
time is high. The concentration difference leads to a non-homogeneous
swelling of the particle and with it to mechanical stress, eventually re-
sulting in fracture. The least harsh situation of the ones described in
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6.1. Cylindrical Particles in 2D under Plane Strain

TAB. 6.2 is therefore found when r=5μm, a=0.2μm and C=1. To
understand the mechanism of stress generation, we take a closer look at
the results of this simulation in the following.

Parameters crack behavior
r [μm] a [μm] C growth branching breakage

5...20 0.2 1...10 no no no

5 1 1 no no no
5 1 5 yes no yes
5 1 10 yes no yes

10 1 1 yes no yes
10 1 5 yes yes yes
10 1 10 yes yes yes

15...20 1 1...10 yes yes yes

5 2 1 no no no
5 2 5 yes no no
5 2 10 yes no no

10...15 2 1...10 yes no no

20 2 1...10 yes yes yes

Table 6.2.: Input parameters, i.e. particle radius r, crack length a and C-rate C, as
well as the occurrence of the different crack phenomena in the insertion
study. Dots between two numbers imply that the corresponding line is
valid for the entire range in between, e.g. storage particles with radius
r between 5 and 20μm and initial crack length a = 0.2μm neither
experience crack growth, nor branching or breaking, when Li is inserted
with a C-rate between 1 and 10.

Typical results for the process of Li insertion are shown in FIG. 6.2 a),
where we use the term state of charge (SOC) to denote the average Li
concentration in units of cmax. The SOC first rises in a linear way to
around 90% until its rate decreases at the transition from galvanostatic
to potentiostatic charging at approximately t ≈ 23 τ , with τ = r20/D0.
It then asymptotically converges to unity. The transition is marked by
a sudden drop of the maximum concentration difference maxΔc, i.e. the
difference between highest and lowest concentration in the particle.
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Figure 6.2.: Characteristic results for Li insertion with r = 5μm, a = 0.2μm and
C = 1. (a) State of charge (SOC) and maximum concentration differ-
ence maxΔc in units of maximum concentration cmax. (b) The highest
value of the maximum principal stress maxσ1st and maximum hydro-
static stress maxσh during Li intercalation.

The role of the concentration difference on the generation of mechanical
stress can be observed by comparing the maximum concentration dif-
ference maxΔc in FIG. 6.2 a) with the highest value of the maximum
principal stress maxσ1st in FIG. 6.2 b). The maximum concentration
difference represents to some extent the magnitude of gradients of the Li
concentration in the particle. As the maximum concentration difference
grows to maxΔc ≈ 0.2 cmax in the first stage of the insertion process,
maxσ1st increases also to around 0.34GPa. This stress is caused by the
higher Li concentration close to the particle surface compared to that
at its center, as depicted in FIG. 6.3. The outer region of the particle
expands more than the elastic stretching in the interior. Due to this pro-
cess, tensile radial stress develops in the particle interior and compressive
hoop stress results at its outer perimeter, as described, for example, in
[129]. Both the highest value of the maximum principal and hydrostatic
stresses are located at the crack tips.

After the concentration difference reaches its first maximum, it de-
creases slightly thereafter, beginning at t ≈ 4.9τ , before increasing again
and peaking once more at the transition between galvanostatic and po-
tentiostatic insertion. This small decrease results from the concentration
dependent prefactor in the mechanical driving force of the Li flux (2.20),
which is highest at c = cmax/2 and thus hastens Li flux from the parti-
cle perimeter to its center as the concentration passes through this value.
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6.1. Cylindrical Particles in 2D under Plane Strain

However, as c approaches cmax near the perimeter, the diffusion there slows
down again allowing a higher concentration difference build-up, causing
a new peak in stress. Once galvanostatic insertion has ended, the Li dis-
tribution begins to equalize throughout the particle and the maximum
concentration difference decreases, thereby relaxing the maximum stress.
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Figure 6.3.: Concentration c in units of maximum concentration cmax in a storage
particle at an intermediate time step during Li insertion with r = 5μm,
a = 0.2μm and C = 1. The region around the crack is magnified on
the right to show the impact of the stress around the crack on the
concentration. Areas with d > 0.95 are removed to show the location
of the crack. The opening of the crack is exaggerated by a linear scaling
of the nodal displacements.

The graph of the highest value of the maximum principal stress maxσ1st
versus time is therefore directly related to the time history of the max-
imum concentration difference maxΔc. Both quantities show peaks at
the same point in time. However, two differences can be observed in
FIG. 6.2. First, the relative decay of maxσ1st after the first peak is
greater than that of the maxΔc difference and second, maxσ1st is largest
at the first peak, while maxΔc is higher at the second one. We attribute
these details to the effect of the crack on the stress distribution and its
influence on the concentration.

The hydrostatic stress in the particle is shown in FIG. 6.4 for an inter-
mediate time step in a simulation. As shown on the right inset of FIG. 6.4,
the highest tensile hydrostatic stress is located at the crack tips. The same
applies to the maximum principal stress. However, along the crack sur-
faces there is almost no stress at all (|σh| < 1MPa). As a consequence, the
gradient of the hydrostatic stress, and with it the mechanical part of the
flux, points towards the crack tips, but away from the crack faces. At some
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6. Crack Growth during Lithium Insertion

distance away from the crack (Δr ≈ 2...4 a), the stress field is to a good
approximation spherically symmetric and only marginally influenced by
the crack. Hence, the hydrostatic stress aids Li transport towards the
particle center throughout most of the particle, but hampers Li diffusion
to the crack faces at small distances from the crack, as illustrated on the
right of FIG. 6.3. The stress gradient effect on Li flux is weighted by the
prefactor c(c− cmax/2), see equation (2.20). At early stages of insertion,
this prefactor is larger in regions away from the crack. The mechanical
term in the Li flux therefore predominantly promotes diffusion into the
particle center at the beginning of insertion. At later stages, the prefactor
is higher close to the crack and stress-driven diffusion hinders transport
to the particle center. The maximum concentration difference is therefore
more pronounced at the later peak. However, while the concentration
difference is slightly bigger at this point in time, the major part of the dif-
ference takes place over a small distance around the crack. For example,
the relative difference in the concentration from the center to a distance
2μm vertical above the crack in FIG. 6.3, is higher by 53% for the second
peak, compared to the first one. This means, that the region with the low-
est swelling is restricted to a smaller volume in the case of the later peak.
The absolute difference in volume expansion between the outer and inner
part of the particle is therefore smaller and less tensile stress is generated
at the crack tip. Hence, the highest value of the maximum principal stress
is larger at the first peak.

As described in section 2.3, the Li diffusion is not directly influenced
by the crack, but only through its modification of the stress field. While
this assumption may seem rather coarse at first glance, it is very rea-
sonable for the examples presented here because of two reasons. First,
a crack, lying completely in the interior of a particle, is not accessed by
electrolyte. Hence, an additional sink or source of Li at the crack faces
cannot be expected. And second, due to the symmetry of the examples
considered, a driving force of Li through the crack, does not exist. It is
therefore without effect whether the crack is modeled as permeable for Li
diffusion or not. Other approximations associated with this assumption
are believed to be negligible, for example the effect of surface diffusion
of Li along the crack face.

The conditions lead to an example, where Li insertion is both limited
by the rate of diffusion and the externally applied flux J̄0. A consider-
able concentration difference builds up, caused by the limited diffusivity
and leading to a non-negligible stress in the particle. However, the dif-
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6.1. Cylindrical Particles in 2D under Plane Strain

fusion of Li towards the center of the storage particle is still high enough
to maintain an approximately constant concentration difference between
its perimeter and interior during galvanostatic insertion. When larger
particles or higher C-rates are considered, the effect of finite Li diffusion
rate becomes more dominant. This can be seen in FIG. 6.5, where we
plot the same concentration and stress parameters as before for the case
of r=5μm, a=0.2μm and C=5, i.e. with a much higher C-rate.
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Figure 6.4.: Hydrostatic stress σh in a storage particle at an intermediate time step
during Li insertion with r = 5μm, a = 0.2μm and C = 1. The region
around the crack is magnified on the right to illustrate the influence of
the crack on the stress field. Areas with d > 0.95 are removed to show
the location of the crack. The opening of the crack is exaggerated by
a linear scaling of the nodal displacements.

The linear stage of the SOC graph now ends at t = 3 τ with a value
of SOC = 59%. The maximum concentration difference at this point is
already at maxΔc = 0.91 cmax. This means, that while the particle is
fully filled at its surface, there is only a very small amount of Li that has
reached its center due to the slow diffusion. This leads to a noticeably
higher maximum principal stress of around maxσ1st ≈ 1.26GPa, hap-
pening at the transition from galvanostatic to potentiostatic insertion.
The maximum stress reaches even higher values when bigger particles or
faster C-rates are considered. However, we find that the maximum value
of σ1st saturates at around 1.48GPa as the particle size and C-rate are
increased, see TAB. 6.3.

The reason for the saturation can be understood through the following
arguments. The typical time that Li needs to move a distance Δr′ in
the radial direction is approximately τΔr′ = Δr′2/D0. If the flux at the
boundary is high enough and the particle big enough, the corresponding
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6. Crack Growth during Lithium Insertion

galvanostatic insertion time τgalvano to reach the maximum concentration
at the particle surface is much smaller then the typical time for the Li to
diffuse into the particle, τgalvano � τΔr′ . The distance that Li travels by
τgalvano is negligible, Δr′ � r. The insertion process is therefore almost
entirely potentiostatic.
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Figure 6.5.: Characteristic results for Li insertion with r = 5μm, a = 0.2μm and
C = 5. (a) State of charge (SOC) and maximum concentration differ-
ence maxΔc in units of maximum concentration cmax. (b) The highest
value of the maximum principal stress maxσ1st and maximum hydro-
static stress maxσh during Li intercalation.

We further note that for small crack lengths a � r, the modification
of the stress distribution by the crack is constrained to a small region.
Hence, in most of the particle, the pattern of Li diffusion is not signifi-
cantly different from that in a particle without a crack. However, high
stress in the central region of the particle does not result from small
deviations in the Li content around the crack, but instead from large
volume expansions in the rest of it. We may thus neglect the presence
of a crack for the moment. Since the comparatively slow diffusion pro-
cess is the only transient effect in this case, we may also neglect inertia
terms, i.e. drop the left hand side of the conservation of linear momentum
in equation (2.7). Under these assumptions, it can be shown through
non-dimensionalization3 of the corresponding constitutive and balance

3 From the non-dimensionalized equations (A.2) and (A.7) in Appendix A.1, one
can see that the balance equations of the boundary value problem do not de-
pend on the radius r of the storage particle. The radius only scales the relevant
equations by a factor. This becomes most obvious after application of the substi-
tution rules (A.1), (A.4), (A.5) and (A.8), using the radius r as the characteristic
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6.1. Cylindrical Particles in 2D under Plane Strain

equations, that mechanical stress does not depend on the storage parti-
cle radius r, when Li is inserted potentiostatically. This was also shown
by Cheng et al. [68] through analytic solutions for a spherical particle
under neglect of stress-driven diffusion. In particular, equation (3) of
their work states that the radial normal stress σr(r

′) ∝ ctotalav − cav(r
′)

is proportional to the average concentration cav in a spherical volume of
radius r′ within a particle with total average concentration ctotalav . The
relation was taken from a thermal analogy in [171]. The conclusion re-
mains the same for a cylindrical particle under plane strain.

Parameters
r [μm] C maxσ1st[GPa]

5 1 0.340
5 5 1.246
5 10 1.456

10 1 1.097
10 5 1.477
10 10 1.477

Parameters
r [μm] C maxσ1st[GPa]

15 1 1.443
15 5 1.463
15 10 1.463

20 1 1.476
20 5 1.478
20 10 1.478

Table 6.3.: Maximum values of the first principal stress σ1st obtained for a crack
length of a = 0.2μm and different particle radii and C-rates. The small
difference between the magnitudes for r = 15μm and r = 10μm or
r = 20μm at the higher C-rates is caused by different meshes.

The highest value of the maximum principal stress at higher C-rates
in larger particles therefore only depends on the time τgalvano to reach
potentiostatic boundary conditions. As τgalvano approaches zero, the
highest value of the maximum principal stress remains constant. Since
the crack is situated at the location of highest stress, the crack length
a = 0.2μm, which does not propagate in the simulations, thus is too
small for Li insertion to lead to fracture through concentration differ-
ence induced stress, as shown in TAB. 6.2.

length r0. The radius only comes into play through the boundary conditions,
e.g. when applying pressure or a certain flux. This is shown by the substitution
rule of the applied flux (A.3), which depends linearly on r0. This dependence
becomes quadratic when expressing the reference flux J̄ in terms of the C-rate.
However, since the storage particle is free to expand and since in potentiostatic
conditions only the Li concentration at the perimeter of the storage particle is
set as boundary condition, the full boundary value problem is independent of r.
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6. Crack Growth during Lithium Insertion

We find that the maximum stress generated in the particle depends on
the ratio of two insertion limiting processes, the diffusivity of the Li-
ions and the flux at the boundary. For large C-rates, the latter becomes
negligible and the highest tensile stress occurs at the transition from gal-
vanostatic to potentiostatic insertion. For a given particle radius, this
stress determines the critical crack size still avoiding fracture.

6.1.2 Unstable Crack Growth

As described in the above section, high mechanical stress is expected
for large C-rates. From Griffith’s theory for brittle fracture it is further
known that the critical stress for a crack to grow typically decreases
with larger crack size. In order to simulate fracture in a storage particle,
we therefore choose the parameter combination r=5μm, a=2μm and
C=5, i.e. a high C-rate with a long crack. The associated phenomena
discussed in the following are representative for a wider set of input pa-
rameters. As shown in TAB. 6.2, similar behavior is obtained for C = 10
and in all simulations with a = 2.0μm and 10μm ≤ r ≤ 15μm.
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Figure 6.6.: (Left) Concentration c in units of maximum concentration cmax in a
storage particle with r = 5μm, a = 2μm and C = 1 after crack growth
has stopped. Areas with d > 0.95 are removed to show the location of
the crack. The opening of the crack is exaggerated by a linear scaling of
the nodal displacements. The spherical symmetry of the concentration
distribution is perturbed due to the presence of the crack. (Right)
Order parameter d at the same time step.

As the crack length is increased, the stress at the crack tip becomes large
enough to initiate crack growth. Assuming that the stress at the crack
in the interior results mainly from the concentration gradient close to
the boundary, the stress field at the crack in the first instants of growth
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6.1. Cylindrical Particles in 2D under Plane Strain

is to some extent comparable to that at a small through crack in a very
large plane strain specimen subject to biaxial stress at its perimeter. In
this case, crack propagation occurs in an unstable way since the stress
intensity factor increases with crack length even if the applied load is
held fixed. Of course, the stress field in the storage particle is more com-
plicated and, with extension of the crack, the situation resembles more
closely a displacement controlled process rather than a load controlled
one as the extension of the crack will tend to relax the particle stresses.
Above all, close to the surface of the particle the radial stress drops to
zero, as mentioned above, and the hoop stress becomes compressive, as
described in [129]. The crack thus grows into a compressive stress field
limiting further propagation.
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Figure 6.7.: Characteristic results for Li insertion with r = 5μm, a = 2μm and
C = 5. (a) State of charge (SOC) and maximum concentration differ-
ence maxΔc in units of maximum concentration cmax. (b) The highest
value of the maximum principal stress maxσ1st and maximum hydro-
static stress maxσh during Li intercalation.

As will be shown in the following, the principle idea of the crack growth
behavior during Li insertion as described above is confirmed in the nu-
merical simulations. The crack first penetrates in an unstable way and
then comes to rest close to the surface, as shown in FIG. 6.6. The graphs
of SOC and stress are plotted for this case in FIG. 6.7. We observe that
the curve of the SOC follows the same trend as before. It rises first
linearly and after the transition from galvano- to potentiostatic inser-
tion its rate of increase falls. In contrast, the stress parameters behave
significantly differently. They both first peak, drop and then rise to the
same magnitude again. For the maximum principal stress this peak is
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6. Crack Growth during Lithium Insertion

maxσ1st = 1.68GPa. Also the maximum concentration difference shows
a small deviation from the curves for cases without crack growth in the
early stages of insertion. More detail is shown in FIG. 6.8.
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Figure 6.8.: Magnified view on characteristic results of FIG. 6.7 for early times.
(a) State of charge (SOC) and maximum concentration difference
maxΔc in units of maximum concentration cmax. (b) The highest value
of the maximum principal stress maxσ1st and maximum hydrostatic
stress maxσh during Li intercalation.

Comparing SOC and maximum first principal stress in FIG. 6.8, we find
that the highest stress is reached before the boundary condition switches
from galvanostatic to potentiostatic insertion at t ≈ 2.6 τ . With respect
to the above considerations regarding maximum stress and concentration
difference, this indicates that the stress that can be generated with this
set of parameters is higher than that necessary to initiate crack growth.
Most of the crack growth takes place at t ≈ 1.31 τ . At this time the crack
starts to propagate in an unstable way on a time scale that is smaller by
orders of magnitude than that associated with the diffusion process. This
is shown by a step-like behavior of the graph of crack length versus time
plotted in FIG. 6.9. For this reason, unstable crack growth is associated
only with the first peak of the stress curve. After this peak, the maximum
principal stress drops rapidly to a value below maxσ1st = 1.5GPa.

We attribute this dramatic drop to inertia driven crack propagation
in the last stages of growth. The material adjacent to the upper and
lower crack faces build up momentum when the crack is rapidly propa-
gated. The deceleration of the material then leads to an inertia induced
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6.1. Cylindrical Particles in 2D under Plane Strain

stress field in addition to the stress from the volume expansion, when
crack growth is slowed down, causing further crack growth. The ad-
ditional stress field then relaxes on a time scale controlled by inertia
effects, explaining the dramatic drop in the maximum stress. Thereafter
the remaining stress is due only to the inhomogeneous volume expansion
of the material associated with the Li distribution.
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Figure 6.9.: Crack length during Li insertion in a storage particle with radius
r = 5μm, initial crack length a = 2μm and C-rate C = 5. Unsta-
ble crack growth is followed by an intermediate phase of arrested and
subsequent stable crack growth.

Due to the small time scale of the unstable crack growth, the Li dis-
tribution is not able to adjust simultaneously to its stress field. Only
after crack propagation has ended does Li redistribution become recog-
nizable. Relative to the rate of Li diffusion, the crack tip propagates
very rapidly to its penultimate location. The crack tip is surrounded
by a region of high tensile stress, which propels the Li to flow towards
the tip. This effect is shown in FIG. 6.10. The mechanically driven flux
becomes large enough, so that the concentration at the crack tip exceeds
the maximum concentration in the rest of the particle. This explains the
abrupt change of slope and the subsequent elevation in the graph of the
maximum concentration difference in FIG. 6.8. Hence, the location of
highest concentration is no longer at the surface, but at the crack tip.
The effect is so strong that the concentration on the surface closest to
the crack tip is lower than on the rest of the perimeter.

Asmore Li flows into the particle, themagnitude of the stress driven dif-
fusion decreases because of the concentration dependent prefactor. A front
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6. Crack Growth during Lithium Insertion

of almost maximum concentration then passes the crack tip and thereafter
the Li concentration distribution has little dependence on the stress.
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The Li inserted into the particle, after the unstable crack propagation
has ended, leads again to an increase of the stress in the particle and in
particular at the crack tip. This corresponds to the short, steep increase
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Figure 6.10.: Li concentration in units of maximum concentration cmax redistributing
around the crack tip after unstable crack growth has stopped around
t/τ ≈ 1.3 with τ = r20/D0. Areas with d > 0.95 are removed to show
the location of the crack. The opening of the crack is exaggerated by
a linear scaling of the nodal displacements. Dashed lines are drawn to
aid recognition of the extension of the crack during stable growth. The
illustrations are obtained from a simulation with r = 5μm, a = 2μm and
C = 5. As unstable crack propagation is rapid, Li only starts to adapt to
the new stress field after growth has stopped. This can be seen in the top
left, where lines of equal concentration are still parallel to the surface.
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after the drop in the maximum principal stress of FIG. 6.8. During the
build-up of stress the crack does not grow further. This is shown by
the short, constant plateau between unstable and stable crack growth
in FIG. 6.9. The stress at the crack tip then becomes large enough,
σ1st ≈ 1.62GPa, to drive the crack to grow a little further. This is
marked by the noticeable decrease in the slope of the maximum princi-
pal stress at around t ≈ 1.69 τ .

The crack then propagates a small distance in a stable way, as can be
observed in FIG. 6.9. The stage of stable crack growth thereby corre-
sponds to the segment of smaller slope in σ1st, shown in FIG. 6.8, that
ends at t ≈ 2.62 τ with the maximum stress maxσ1st ≈ 1.68GPa. The
time at which crack extension ceases coincides approximately with the
transition from galvanostatic to potentiostatic insertion. However, we do
not attempt to explain the criterion controlling crack growth termination
in terms of global parameters, due to the complicated stress field result-
ing from the Li concentration around the crack, as shown in FIG. 6.10.
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Figure 6.11.: (a) Kinetic, elastic and fracture energy, as well as their sum, around
the moment of crack growth during Li insertion in storage particle with
r = 5μm, a = 2μm and C = 5. Since the initial crack is considered
as a feature of the investigated geometry, the offset associated with
its creation, W 0

crack, is subtracted from the fracture energy Wcrack.
(b) Detail of the diagram in (a) for the time during crack growth. The
offset t0 is set such that it approximately coincides with the initiation
of crack growth.

The mechanism of momentum build-up, that drives the crack a little
further than expected in a static situation, can also be understood by
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6. Crack Growth during Lithium Insertion

means of FIG. 6.11, where we show the different energy contributions
related to crack propagation. The elastic energy Ψelastic in the particle
first rises due to the insertion of Li and the resulting inhomogeneous con-
centration distribution. It is then released at the onset of crack growth.
At the same time, some of it is transformed into kinetic energy Ψkinetic
due to movement of separation of the material adjacent to the crack
faces. The elastic energy than reaches a stationary value, comprised of
both compressive and tensile contributions in the entire particle but it
is is not localized enough to drive further crack growth. Next, kinetic
energy is partly converted back into elastic energy, which in turn enables
the creation of new fracture surfaces. This is reflected in the slightly dif-
fering times at which elastic energy Ψelastic and the final fracture energy
Wcrack reach a stationary value, as shown on the right of FIG. 6.11.

On the short time scale of unstable crack growth, the free energy con-
tributions resulting from the amount and distribution of Li in the particle
do not change significantly. Except for a constant offset, the summed
contributions represented by the green curve in FIG. 6.11 are therefore
equivalent to the total free energy during crack growth. With respect
to the green curve, we therefore find that energy conservation does not
hold, even on time scales for which Li insertion is negligible. This re-
sults from two reasons. First, the model describes isothermal processes,
i.e. the temperature is kept constant and generated (dissipated) heat is
absorbed (provided) by the environment. Second, although actual heat
generation from fast motions in the body, such as oscillations or vibra-
tions, is not modeled by physical means, it is qualitatively covered in
the numerical implementation. When crack growth stops, the time steps
in the numerical simulation increase by orders of magnitudes. Inertia
effects cannot be resolved with these comparatively large time steps and
the kinetic energy is neglected. Energy conservation is therefore only
violated after the kinetic energy has been dissipated, which can be seen
by the simultaneous drop of the blue and green curve on the right hand
side of FIG. 6.11. Of course, this is not a suitable approach when truly
modeling effects such as wave propagation in the material. However, in
this case, the behavior is qualitatively equivalent to that expected if a
damping term, modeling energy dissipation in the sense of heat genera-
tion, were introduced.

In order to explain the appearance of unstable crack growth by means
of analytic considerations, we wish to compare the competing effects sim-
ilar to the idea of an R-curve [132]. The following equations hereby result
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6.1. Cylindrical Particles in 2D under Plane Strain

from very simplified assumptions and shall only serve for a qualitative
understanding of the phenomenon.

The stress intensity factor in an infinite plane, i.e. under negligence of
boundary effects, with a uni- or biaxial applied load of magnitude σ is
given by KI = σ

√
πa. It is related to the energy release rate G in plane

strain through K2
I = GE/(1 − ν2). Combining both relations, we find

the critical stress at which fracture occurs to be

σc(a) =
1

a1/2

√
GE

π(1− ν2)
. (6.3)

With extension of the crack length a, the critical stress decays as

∂σc

∂a
= −1

2

1

a3/2

√
GE

π(1− ν2)
. (6.4)

A simple relation, expressing a condition for crack growth in terms of a
characteristic stress σc, as given in equation (6.3), does not exist for a
crack in a storage particle. However, to gain a qualitative understanding,
we take as characteristic stress the radial stress σr in a particle without
a crack4. The radial stress is found from a thermal analogy in [171] as

σr(r
′) =

ΩE

6(1− ν)
(cav(r)− cav(r

′)) , (6.5)

with the average concentration cav(r
′) = 2

r′
∫ r′

0
c(r̃′)r̃′dr̃′ within the ra-

dius r′ ∈ [0, r] around the center of a particle with radius r. We assume
a Li distribution along the radius that can be approximated by a power
law c(r) = (co− ci)(r

′/r)γ + ci with the inner and outer concentration ci
and co respectively. The Li content along the radius is typically convex,
which requires an exponent of γ > 1. The radial stress then reads

σr(r
′) =

ΩE

3(1− ν)

co − ci
γ + 2

(1− (r′/r)γ). (6.6)

To compare the decay of critical and radial stress, we choose the con-
centration difference co − ci such, that σr(r

′) = σc(a). The derivative of
σr with respect to the radius then becomes
4 The same argument can also be carried out with the circumferential stress. However,

while the trends remain the same, the resulting expressionsbecomemore complicated.
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∂σr

∂r′
= − 1

a1/2
γ

rγ
r′γ−1

1− (r′/r)γ

√
GE

π(1− ν2)
. (6.7)

To obtain a rule of thumb on how the radial stress decreases with r′

close to the crack tip, we set r′ = a. The strongly modified stress field
at the crack tip is neglected hereby. Unstable crack growth then occurs
if ∂σc/∂a < ∂σr/∂r

′
|r′=a. Using (6.4) and (6.7), this yields the stability

condition
1

2

√
r

γ

1− (a/r)γ

(a/r)γ−1/2
< 1. (6.8)

If the left hand side is larger then one, the crack will propagate in an
unstable way. The derived relation significantly underestimates the range
of crack lengths that undergo unstable propagation. However, it provides
a number of fundamental dependencies. The function is monotonically
increasing with γ, i.e. with the convexity of the Li distribution. Thus, as
more Li is located at the outer parts of the particle, unstable crack growth
is more likely to occur. The same applies for an increasing radius of the
particle r when the ratio a/r is fixed. And lastly, as a approaches r, crack
propagation is expected to be stable.

We have seen that a certain minimum length is required for the crack
to grow even when particle size and C-rate are increased to high values.
At the same time, if crack growth starts from a through crack in the
center, it is most likely to happen in an initially unstable way, followed
by a distinct, short period of stable growth.
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Figure 6.12.: (Left) Concentration c in units of maximum concentration cmax in a
storage particle with r = 5μm, a = 1μm and C = 5 after it has broken
into two. Areas with d > 0.95 are removed to show the location of the
crack. The opening of the crack is exaggerated by a linear scaling of the
nodal displacements. (Right) Order parameter d at the same time step.

114
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6.1.3 Particle Breakage

We define the critical crack size ac as the maximum length of the initial
crack a that does not lead to crack growth during Li insertion in a storage
particle of a given radius r during Li insertion with a defined C-rate C.
In order inspect a crack length a that is close to the critical one, ac,
we decrease a and investigate the parameters r=5μm, a=1μm and
C=5. This combination of parameters is also representative of the case
of C = 10, as shown in TAB. 6.2.

As a result of the smaller initial crack length, the crack now propagates
all the way through to the perimeter of the particle and breaks it into
two. We emphasize that this happens in only one half cycle of lithiation.
As can be seen in FIG. 6.12, the fracture process again takes place on
a time scale short enough so that the Li concentration distribution is
barely able to adapt to the stress field modified by the extended crack.

The reason for the breakage of the particle lies in the momentum build-
up during crack growth, as already described in section 6.1.2. However,
in comparison to the case studied in section 6.1.2 the effect is more pro-
nounced due to the smaller initial crack length. To illustrate this point,
the crack tip velocities for the cases with initial crack length a = 1μm
and a = 2μm are plotted in FIG. 6.13. In order to extract the crack
tip velocity from a sequence of contour plots, the crack tip is defined
to be located at the position at which the order parameter takes on the
value d = 0.95.

The offsets for the starting time of crack growth are shifted in FIG. 6.13
such that both graphs for the two initial crack lengths can be displayed
in one diagram. The actual starting time for the smaller initial crack
length (t ≈ 1.98 τ) is significantly larger than for the larger initial crack
length (t ≈ 1.29 τ). This is due to the higher load necessary to ini-
tiate crack growth of a smaller crack. To generate this higher load
through an inhomogeneous concentration of Li, more Li has to be in-
serted through the boundary and more time is required. As a conse-
quence, more elastic energy is accumulated in the particle when the
smaller initial crack begins to grow (ψmech/μm = 6.5 ∗ 10−5 J/μm in
comparison to ψmech/μm = 4.8 ∗ 10−5 J/μm). As this energy is released,
the growth of the crack is significantly faster, as can be seen both by
the maximum velocity and the comparatively short time to break the
particle. The large elastic energy accelerates the material adjacent to
the upper and lower faces of the crack faster away from each other.
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6. Crack Growth during Lithium Insertion

Hence, more linear momentum builds up and the inertia induced addi-
tional stress, generated when crack growth slows down, is sufficient to
drive the crack all the way to the surface.

Inertia effects, resulting from unstable crack growth, may lead to parti-
cle breakage in a single Li insertion half cycle. This phenomenon is most
likely to occur when the initial crack length is close to the critical one.
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Figure 6.13.: Crack tip velocity against time for two different initial crack lengths.
Particle radius and C-rate are r = 5μm and C = 5 in both cases. The
starting time is shifted so that both cracks begin to propagate at t = 0 s.

6.1.4 Crack Branching

Inertia driven phenomena become more distinct when the particle radius
is increased and the crack length is kept at an intermediate value, i.e.
above the critical one ac, but still small enough so that a large amount of
elastic energy is stored in the particle before crack growth is initiated. In
order to study possible effects related to higher crack tip velocities than
those observed above, we examine the combination r=10μm, a=1μm
and C=5. With respect to the phenomena observed, the set of parame-
ters is equivalent to the same combination with C = 10, see TAB. 6.2.
The larger particle radius now leads to crack branching, as plotted in
FIG. 6.14. The reason for branching lies in the increased crack tip ve-
locity. On the one hand, this results from the larger travel distance
through regions of high tensile stress, during which the crack tip is fur-
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6.1. Cylindrical Particles in 2D under Plane Strain

ther accelerated. And on the other hand, the ratio of initial crack length
and radius is smaller, so that the crack only starts to grow at a later
stage, when more elastic energy is stored in the particle. This is also
in agreement with the stability condition (6.8), which yields values that
are further away from the condition for stable growth when the radius
of the storage particle is larger and more Li is close to its perimeter, as
obtained with higher C-rates.
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Figure 6.14.: (Left) Concentration c in units of maximum concentration cmax in a
storage particle with r = 10μm, a = 1μm and C = 5 after cracks
have branched and reached the surface. Areas with d > 0.95 are
removed to show the location of the crack. The opening of the crack
is exaggerated by a linear scaling of the nodal displacements. (Right)
Order parameter d at the same time step.

The higher crack tip velocity is also observable in FIG. 6.15, where we
plot the crack tip velocities during Li insertion with two different C-rates.
The precise point of branching cannot be determined for a finite value of
the length scale parameter l, since the phase field first starts to broaden
a little and then branches off. The corresponding time ranges are marked
by gray circles in FIG. 6.15. The typical wave speeds for this system are,
c1 = 5730m/s, c2 = 3062m/s and cr = 2841m/s for the dilatational,
shear and Rayleigh wave speed respectively [172]. The maximum crack
tip velocity lies between 1400 and 1600m/s, which is in a qualitatively
satisfying agreement with, for example [173], where the critical velocity
for crack branching is found to be vcrit = 0.46 cr. The value is taken
from solutions of [174] for a mode III problem5, but should also give a
reasonable estimate for this case.
5 It is derived using Griffith’s energy release rate criterion [133, 175, 176] and the

principle of local symmetry [177–179], which states that the crack propagates in such
a direction that in-plane shear stress always vanishes in the vicinity of the crack tip.
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Figure 6.15.: Crack tip velocity against time for two different C-rates. Particle radius
and crack length are r = 10μm and a = 1μm in both cases. The starting
time is shifted so that both cracks begin to propagate at t = 0 s. The
regions in gray mark times where the phase field broadens and branches.

The fundamental reason for crack branching lies in a velocity dependent
modification of the stress distribution around the crack tip. In terms of
the stress intensity factors, this means, that their dynamic counterparts
Kl(t, v) are related to the ones at restKl(t, 0) [173, 175, 176, 180] through

Kl(t, v) = kl(v)Kl(t, 0), (6.9)

where v is the crack tip velocity, kl(v) are known universal functions
of v and l = I, II, III denotes the respective mode. The modification of
the stress around the crack tip during crack growth and branching is
illustrated in FIG. 6.16 by means of the maximum principal stress. We
observe, that with increasing crack tip speed, the region of high tensile
stress is distorted more and more around the crack tip so that it is finally
preferential for the crack tip to branch into two.

We find that such a strong distortion of the stress field is absent for
slower crack growth. This is illustrated in FIG. 6.17, which again shows
the maximum principal stress during crack growth, but taken from a sim-
ulation with parameters r = 5μm, a = 1μm and C = 5. Crack branching
does not occur in this case. The corresponding condition for the critical
velocity vcrit, at which a crack may branch, can be deduced from a balance
of energy release, as is typical in Griffith’s theory [133, 173]. Due to the
modification of the stress field around a fast moving crack tip, the energy
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6.1. Cylindrical Particles in 2D under Plane Strain

the energy release rate G̃ of a single moving crack after branching. How-
ever, the latter also depends on the branching angle φ, i.e. G̃ = G̃(ṽ, φ),
where ṽ is the crack tip velocity after branching. As always, the energy
release rate must be equal to the critical one, i.e. the energy to tear apart
the crack faces, which in general may also depend on the velocity. As-
suming that the fracture energy is constant, one can deduce a relation
between the energy release rates immediately before and after branching,
G(v) = G̃(ṽ, φ) [173]. This imposes a necessary condition for crack branch-
ing. For small initial velocities v, the energy release rate of the single crack
G(v) is always larger than G′(v′, φ) and branching cannot occur [173].
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3.93 m
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t=0.21*10  s-8 t=0.25*10  s-8 t=0.30*10  s-8

t=0.34*10  s-8 t=0.37*10  s-8

Figure 6.16.: Maximum principal stress around crack tip for various states of crack
growth in the storageparticlewith r = 10μm, a = 1μmandC = 5. Areas
with d > 0.95 are removed to show the location of the crack. The opening
of the crack is exaggerated by a linear scaling of the nodal displacements.
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Figure 6.17.: Maximum principal stress around the crack tip in a storage particle
with r = 5μm, a = 1μm and C = 5. Areas with d > 0.95 are
removed to show the location of the crack. The opening of the crack is
exaggerated by a linear scaling of the nodal displacements. In contrast
to the scenario with crack branching, the region of high stress is only
slightly distorted around the crack tip.

Because of the crack branching, the path of the crack no longer lies on
the symmetry axis between the upper and lower half of the particle.
Hence, the argument given in section 6.1.1, that the condition for flux
through the crack can be ignored due to symmetry is no longer valid.
However, since crack growth takes place in an unstable way in these ex-
amples, diffusion is too slow to change the Li distribution significantly
before crack propagation stops or before the crack reaches the surface.
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6.1. Cylindrical Particles in 2D under Plane Strain

Since we are only interested in the time range until breakage, neglecting
a direct impact of the crack on diffusion is still a good approximation.
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Figure 6.18.: (Left) Concentration c in units of maximum concentration cmax in a
storage particle with r = 20μm, a = 1μm and C = 5 after cracks
have branched twice and reached the perimeter. Areas with d > 0.95
are removed to show the location of the crack. The opening of the
crack is exaggerated by a linear scaling of the nodal displacements.
(Right) Order parameter d at the same time step.

Going to even more severe conditions, a second branching occurs and the
fracture patterns become increasingly complex, as depicted in FIG. 6.18.
The combination of parameters used for this simulation is r=20μm,
a=0.5μm and C=5. Similar crack topologies are also found for other
C-rates. We observe that the second branching occurs in a region of al-
most zero concentration, i.e. at a location that has not yet been reached
by a significant amount of Li. This circular area is marked by the deep
blue color in the left plot of FIG. 6.18. In the considerations on stress
in a particle without crack growth in section 6.1.1, it is shown that the
stress at a certain radial distance from the center of a storage particle
is to a great extent determined by the average Li concentrations of the
material inside and outside of this radius. This means, that the stress
in the interior of the deep blue zone merely decreases with distance to
the center. Hence, after the first crack branches and the new crack tips
are thus moving relatively slowly, the crack tips are again accelerated by
high stress to the critical velocity vc for crack branching.

Due to inertia effects the particle may therefore not only break into
two, but be fragmented into several parts. This phenomenon is an out-
come of crack branching, occurring if the crack tip velocity exceeds a
critical value vc, achieved in cases of large particle radii r and C-rates C
and with initial crack lengths a close to the critical one ac.
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6. Crack Growth during Lithium Insertion

6.2 Spherical Particles in 3D

The two dimensional simulations have revealed different effects for crack
growth and its interplay with Li diffusion. To confirm that these findings
are transferable to three dimensional storage particles, we run a small
number of computations in 3D. Due to the computational cost of these
simulations, only three combinations of parameters are examined. As
shown in TAB. 6.4, they are chosen such that the different fracture
phenomena, described in section 6.1, i.e. crack growth, branching and
breakage, are represented. Further effects resulting from the additional
dimension shall be discussed in the following.

Parameters crack behavior
r [μm] a [μm] C growth branching breakage

5 1 5 no no no

5 2 10 yes no no

10 1 5 yes yes yes

Table 6.4.: Input parameters, i.e. particle radius r, crack length a and C-rate C, as
well the occurrence of the different crack phenomena observed in three
dimensional simulations of storage particles during Li insertion.

To reduce computation times the length scale parameter is increased
to l = 0.25μm, which allows for a slighty coarser finite element mesh
and is still sufficient to resolve the initial cracks. The residual stiffness
parameter is kept at k = 10−5 and the mesh adaptation scheme again
generates a suitable mesh element size close to the crack faces, which
is h ≤ (2/5) l. Despite the stronger smoothing of the crack, the refined
meshes reach up to 2 million in terms of number of elements and over
199 million in terms of degrees of freedom. The simulations run on either
96 or 128 processors and take up to a maximum of 26 days.

6.2.1 Safe Conditions without Crack Growth

As before, we commence with the simplest situation, i.e. without any
crack growth. The corresponding parameters are r=5μm, a=1μm
and C=5. The shape of the initial crack is shown in FIG. 6.19.
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Figure 6.19.: (Left) Initial phase field d representing a precrack of circular shape in a
storage particle with r = 5μm and a = 1μm. The volume protruding
from the half sphere includes the region having d > 0.95. (Right)
Magnification around precrack showing the adaptively refined mesh.

The behavior of the characteristic parameters is similar to that described
in section 6.1.1 for a two dimensional particle. The state of charge first
follows a linear trend until the transition to galvanostatic insertion is
reached, as plotted in FIG. 6.20, to be compared to FIG. 6.5. At this
point the maximum concentration difference is largest and the charac-
teristic stress parameters peak before beginning to decrease.
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Figure 6.20.: Characteristic results for the 3D insertion example with r = 5μm,
a = 1μm and C = 1. (a) SOC and maximum concentration differ-
ence maxΔc in units of maximum concentration cmax. (b) Highest
value of maximum principal stress maxσ1st and maximum hydrostatic
stress maxσh.
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The reason that the maximum principal stress hits a plateau at around
t ≈ 1.75 τ while the concentration difference is still growing is twofold.
The first reason stems from the specific location at which the maximum
and minimum in concentration occur and was also discussed for the two
dimensional setting in section 6.1.1. The minimum concentration in
the particle that determines the maximum difference, lies in a volume
adjacent to the crack faces, as shown in FIG. 6.21. This volume is com-
paratively small and, most importantly, more compliant than the rest of
the material since the crack faces are allowed to separate. It is therefore
not affecting the stress in the rest of the body as strongly as the concen-
tration difference between intact regions, i.e. where the order parameter
is close to zero. The concentration difference in the intact parts of the
particle remains almost constant in the time range of the existence of the
stress plateau. Second, we observe that the order parameter increases
slightly around the crack, although crack growth is not initiated. This
decreases the effective stress due to the prefactor (1− d)2 of the tensile
part of the elastic energy, given in equation (2.28).

0.09

0.68

co
nc

en
tra

tio
n 

c

0.00

1.00

ph
as

e 
fie

ld
 d

 

Figure 6.21.: (Left) Concentration c in units of maximum concentration cmax at an
intermediate stage of Li insertion in a storage particle with r = 5μm,
a = 1μm and C = 5. (Right) Order parameter d at the same time step.
The comparison shows that the minimum concentration, in dark blue on
the left, is located at the faces of the crack, marked by red on the right.

A further difference in FIG. 6.20 when compared to the studies in 2D,
specifically the results displayed in FIG. 6.2, is that the highest value
of the hydrostatic stress is significantly closer to the highest one for
the maximum principal stress. Although both maxima do not have to
be located at the same position, the 3D simulation indicates that the
maximum hydrostatic stress should occur in a region of high maximum
principal stress and that, in contrast to 2D plane strain conditions, the
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stress state is strongly triaxial with the second and third principal stress
being almost equal to the first one.
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Figure 6.22.: Regions of highest hydrostatic andmaximumprincipal stress, maxσh and
maxσ1st respectively. The ring-shaped regions form an extension of the
circular crack front, which is definedhereby theorderparameter d = 0.95.

This assertion is confirmed by the fact that the maxima for both quan-
tities are located in ring-like regions around the disk-like initial crack,
with the ring of peak maximum principal stress being slightly closer
to the crack tip than that for the peak hydrostatic stress, as shown
in FIG. 6.22. In the interior of the storage particle close to the crack,
the first and second principal stresses are components oriented in the
circumferential direction and the third principal stress is orientated in
the radial direction. Each principal stress is tensile, as depicted in
FIG. 6.23. Close to the faces of the crack, the first principal stress is
aligned parallel to them while it acts perpendicular to them close to
the ring-like crack tip front. The magnitudes of the principal stresses
lie very close to each other (differing below around 8%), which explains
the large hydrostatic stress. Closer to the perimeter of the storage par-
ticle, the orientation changes. The second and first principal stresses
are oriented in the circumferential direction, while the first principal
stress acts radially. In this location all stress components are compres-
sive, although the magnitude of the first principal stress is significantly
smaller at the boundary, |σ1st|/|σ2nd| = |σ1st|/|σ3rd| � 10%.

Hence, a small crack in the center of a spherical storage particle merely
affects the stress distribution within its center. In the interior the stress
state is almost purely hydrostatic and tensile. In contrast, at the perime-
ter stress is compressive and the radial stress magnitude is significantly
lower than that of the hoop stress.
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Figure 6.23.: Magnitude and orientation (pink arrows) of principal stresses, taken at
an intermediate stage of the Li insertion process, in a storage particle
with r=5μm, a=1μm and C=5.

6.2.2 Unstable Crack Growth

In order to achieve the critical stress required to initiate crack growth
in the storage particle, we increase both the C-rate and the crack di-
ameter and set the parameters to r=5μm, a=2μm and C=10. The
corresponding crack geometry and Li concentration distribution during
Li insertion is shown in FIG. 6.24.

The crack first grows in an unstable fashion and then stops close to the
surface. Rotational symmetry is preserved in the results even though an
asymmetric perturbation, e.g. a slightly longer extension in one direction
than in another, is permitted by the fact that we simulated half of the
particle. Due to arrest of the crack in the interior of the particle, the
behavior of crack growth and Li diffusion resembles that described in
section 6.1.2. The notable similarities are as follows.

First, the Li concentration distribution does not adapt to the modified
stress field during the initial phase of crack growth due to the short
period of time involved. However, after crack growth has stopped, Li
is attracted by the crack tip due to high tensile stress and begins to
accumulate around it. This leads to a spot of higher concentration at
the crack tip and relative depletion at the surface close to it in 2D, as
depicted in FIG. 6.10. In 3D, the crack tip is a ring-shaped front, as
illustrated in FIG. 6.26. Hence, the aggregation of Li forms a ring and
the lowered concentration on the surface is a circular band, as observable
in the top right of FIG. 6.10.
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Second, the Li insertion following the unstable crack propagation results
in a similar behavior of the highest value of the maximum principal
stress, as can be seen by comparison of FIG. 6.7 and FIG. 6.25. The
highest value of the maximum principal stress maxσ1st first peaks at the
onset of unstable growth, then drops rapidly and afterwards grows again
to reach a second maximum. In 2D, this process is related to a second
period of stable crack growth, as shown in FIG. 6.9. A stable regime
is also present in the three dimensional case. However, the distance
traveled by the crack tip during stable crack extension (Δa = 0.02μm)
is very small in this case.
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Figure 6.24.: Concentration c in units of maximum concentration cmax during Li
insertion and crack growth in a storage particle with r = 5μm, a = 2μm
and C = 10. Times are given in units of τ = r20/D0. Regions with
d > 0.95 are removed to show the location of the crack. The opening of
the crack is exaggerated by a linear scaling of the nodal displacements.
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Remarkably, the second principal stress becomes as large as the first one
during the second period of growing stress, as depicted by the blue and
dashed red curve in FIG. 6.25. The curves become congruent for t � τ ,
with τ = r2/D0. We therefore expect the highest values of first and
second principal stress to occur at the same location. The material at
the crack is more compliant perpendicular to the crack faces than parallel
to them. It is thus unlikely that stress perpendicular to the crack faces
and parallel to them acquire the same magnitude at the crack tip. Hence,
we expect that the highest tensile stress no longer occurs at the crack
tip. In order to confirm this hypothesis we analyze the stress distribution
within the storage particle in the following.
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Figure 6.25.: Characteristic results for the 3D insertion example with r=5μm, a=2μm
and C=10. (a) SOC and maximum concentration difference maxΔc in
units of maximum concentration cmax. (b) Maximum principal stresses
maxσx, x = {1st, 2nd, 3rd} and maximum hydrostatic stress maxσh.

As mentioned above, the crack grows in the form of a disk until it
reaches its penultimate radius. This growth relaxes the tensile stress
in the plane of the crack perpendicular to its faces. However, as more
Li is inserted after unstable growth, the circumferential stress in the
material above and below the crack faces further increases. It becomes
maximal at a distance of around 2μm from the particle center along the
vertical axis and results in a local maximum of d ≈ 0.26, as observable
in FIG. 6.26. Being located in the axis of symmetry, the stress state
is also symmetric and the first and second principal stresses coincide.
This explains the congruent curves in FIG. 6.25 and is depicted by the
arrows in FIG. 6.26.
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6.2. Spherical Particles in 3D

Crack growth in a 3D sphere shows similar effects as those obtained un-
der 2D plane strain. These are unstable crack growth, Li attraction at
the crack tip and subsequent stable crack growth, given that the parti-
cle does not break during unstable growth. However, in contrast to the
two-dimensional geometry, even with an extended disk-like crack in the
interior, the inhomogeneous volume expansion is so constrained that large
magnitudes of tensile stress may occur at locations away from the crack.
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Figure 6.26.: Order parameter d during Li insertion and crack growth in a storage
particle with r = 5μm, a = 2μm and C = 10. Times are given in units
of τ = r20/D0 and correspond to those shown in FIG. 6.24. The volume
protruding from the half sphere includes the region of d > 0.95. The pink
arrows denote principal stress directions and qualitative magnitudes.
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6. Crack Growth during Lithium Insertion

6.2.3 Multiple Initial Cracks

In order to examine whether the large mechanical stress described above,
appearing in the vertical symmetry axis at some distance from the crack,
is sufficient to initiate crack growth at that location, we introduce a second
and third crack above and below the center crack at this location with
diameters a in one case and a/2 in another. The plane of these cracks
is orthogonal to that of the crack at the center of the particle, as can be
seen in FIG. 6.27. From the illustrations in the lower row of FIG. 6.27
we observe that the stress generated in the particle after the crack at
the particle center has stopped growing, is not sufficient to initiate crack
growth of the smaller additional cracks (first column). However, if all
cracks are of the same size, the ones closer to the particle surface begin
to extend first. Thereafter the stress at the central crack is too small
to drive crack growth (second column). If only the cracks above and
below the particle center are introduced and the crack at the particle
center is absent, both cracks grow and reach a final state that is almost
identical to the final state of the central crack when it is present alone
(third and fourth column). This means, that although the rotational
symmetry around the axis perpendicular to the crack faces is disturbed
by the initial cracks, the growth is such that symmetry is restored again.
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Figure 6.27.: Order parameter d at the initial and final stages of lithiation for dif-
ferent arrangements of cracks in a storage particle with r = 5μm,
a = 2μm and C = 10. The volume protruding from the half sphere
includes the region of d > 0.95.
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6.2. Spherical Particles in 3D

Fracture behavior becomes increasingly complicated with a larger number
of initial cracks. However, we find that different locations of the initial
crack along the symmetry axes may result in the same final crack geometry
due to the approximately spherically symmetric stress state in the particle.

6.2.4 Crack Branching and Particle Breakage

In order to observe crack branching in the 3D particle, the crack tip
velocity vc has to reach high values. In section 6.1, we found that a
crack length a close to the critical one ac and large particle radii, lead to
high values of vc. In 3D we therefore study the parameter combination
r=10μm, a=1μm and C=5. Under these conditions, the crack not
only branches but breaks the particle into pieces. Observation of the
fragments in FIG. 6.28 seems to indicate two cone-like pieces from the
top and bottom part of the particle and one ring-shaped piece. How-
ever, examining the crack topology more closely, we find that the result
becomes more complex.

As depicted in FIG. 6.29, the crack tip at first propagates as a circle
of increasing radius. The crack front then branches off into two rings
with trajectories forming cone cracks having an angle between them of
around 80◦. The two rings continue to move until the cone cracks even-
tually reach the particle surface. However, further branching occurs to
relieve the circumferential stress perpendicular to the conical crack faces.
In particular, the hoop stress parallel to the original crack front at its lo-
cation prior to branching remains high and even increases locally during
growth of the cone cracks. This hoop stress becomes largest between the
upper and lower conical crack faces at a radial distance of around 3.5μm
from the location where the initial branching occurred. The resulting
large stress leads to the creation of new splitting cracks perpendicular
to the existing ones, as shown in the right column of FIG. 6.29.

The splitting cracks separate the outer ring-like piece into 12 similar
sized segments. The angles between these segments lie between 28◦
and 34◦. The reason for the variation in the angle and for the dif-
ferent starting times of the new cracks, observable in the top right of
FIG. 6.29, cannot be explained by physical arguments, but is attributed
to numerical error. Besides that, the difference in how much each split-
ting crack has grown in FIG. 6.29 is partially an imaging problem due
to the sharp criterion of d > 0.95 used in the post-processed plots to
specify where the crack surfaces are located. A lower threshold leads
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6. Crack Growth during Lithium Insertion

to a more uniform appearance for the splitting cracks in terms of size,
shape and location.
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Figure 6.28.: Concentration c in units of maximum concentration cmax during Li in-
sertion and crack growth in a storage particle with r = 10μm, a = 1μm
and C = 5. Times are given in units of τ = r20/D0. Regions with
d > 0.95 are removed to show the location of the crack. The opening of
the crack is exaggerated by a linear scaling of the nodal displacements.

At an intermediate stage of growth of the splitting cracks (see center
right picture in FIG. 6.29) their extensions are all similar. Only the
cracks marked with the number 2 are a little less developed. This may
result from the larger angle between the faces of those numbered 3, lead-
ing to larger stresses for and the earlier onset of the cracks numbered 1.
The differences among the crack extensions becomes more pronounced
thereafter, as illustrated in the bottom right of FIG. 6.29. The slightly
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6.2. Spherical Particles in 3D

larger sizes of the cracks with numbers 1 and 3 lead to a lower stress
at the crack front of that numbered 2 and a consequently slower crack
growth. This is to some extent comparable to the findings in [181], where
alternating crack lengths of initially equally sized cracks were deduced
in the case of thermally induced stress.
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Figure 6.29.: Order parameter d during Li insertion and crack growth in a storage
particle with r = 10μm, a = 1μm and C = 5. Times correspond to
those shown in FIG. 6.28. The volume protruding from the half sphere
includes the region of d > 0.95. To demonstrate the computational
effort required to perform these simulations, the number of degrees of
freedoms ndof is given instead of the respective time.

Because of the varying sizes only the cracks with number 1 and 3 reach
the particle surface and do so only close to the equator of the particle, as
illustrated in FIG. 6.30. Close to the cone crack faces, the vertical cracks
do not entirely penetrate to the perimeter. Hence, the circumferential
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6. Crack Growth during Lithium Insertion

segments are still joined to each other by thin ligaments. Considering
the small width of the ligaments, we expect that a subsequent extrac-
tion half cycle would tear the segments apart even for low C-rates. In
contrast, the parts divided by the faces with number 2 may withstand
stressing in subsequent cycles. We cannot prove these speculations due
to the computational time required to continue the simulation into a sec-
ond half cycle. The final number of stable particle fragments is therefore
not determined, but may lie between 10 and 14.

We find that in three dimensional particles complex crack patterns can
result, when growth of one or several cracks does not relieve enough tensile
stress to keep further cracks from growing and when inertia driven effects
lead to crack branching. Under these circumstances a storage particle
may break into several parts in just one cycle.

Figure 6.30.: Final crack pattern in a storage particle with r = 10μm, a = 1μm
after crack growth during Li insertion with C = 5. Regions with
d > 0.95 are removed to show the location of the crack. The opening of
the crack is exaggerated by a linear scaling of the nodal displacements.
For better visibility, only a section of the spherical particle is shown.
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7 Crack Growth during Lithium Extraction

In the previous chapter, we found that dynamic effects resulting from
the inertia of the material have a strong impact on the resulting crack
patterns, and may even lead to complete breakage of a storage particle
in one half cycle of Li insertion. Here, we focus on the opposite charg-
ing condition and examine the dependence of unstable crack growth on
particle radius and initial crack length for different rates of Li extraction.

For the sake of comparability with our previous investigation and in
order to reduce the complexity of the study, we vary the same set of
parameters as in the study on crack growth during Li insertion, pre-
sented in chapter 6, and focus on spherical (3D) or cylindrical (2D plane
strain) particles of outer radius r, as illustrated in FIG. 7.1. The bound-
ary condition for the Li diffusion problem is applied in a mode that is
analogous to constant current constant voltage (CCCV) operation of a
battery cell. First, a constant flux J̄0 is imposed on the perimeter until
the minimum concentration cmin is reached. Throughout this work, we
set cmin = 0. Thereafter the concentration c is held fixed. The two
consecutive steps are also known as galvanostatic and potentiostatic dis-
charge respectively. The magnitude of the imposed flux J̄0 is prescribed
in the form of the C-rate C, i.e. the inverse time in hours theoretically
required to completely charge or discharge the particle. With V and S
denoting the volume and surface of the storage particle respectively, it
can be expressed through

|J̄0| = V

S
cmaxC/[3600 s]. (7.1)

For Li extraction, the largest tensile stress occurs at the surface of a par-
ticle, as shown, for example, in [129]. This stress might lead to fracture
starting from voids or pores close to the surface and incisions or defects
on the surface. Initial cracks are therefore introduced at the particle
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7. Crack Growth during Lithium Extraction

surface with the shape of a line (2D) or a half-disk (3D) with length or
radius a. As in the study on Li insertion, material parameters are chosen
by using values for LiMn2O4, as given in TAB. 6.1 of chapter 6.

Following the findings in the assessment of the phase field method for
crack growth, presented in chapter 4, the initial cracks are introduced
as heterogeneities in the phase field through an initially non-zero history
field H0, as given by

H0(x, y) = α e−(y/β)2 ×
{

1, s < 0

e−(s/β)2 , s ≥ 0,
(7.2)

where α = 104 and β = l/10. The local distance to the crack tip is de-
fined by s = |x|− (r−a) in two dimensions and s =

√
(|x| − r)2 + y2−a

in three dimensions. The so defined initial history field introduces two
cracks on opposite sides of the storage particle and therefore preserves
the mirror symmetry with respect to the horizontal and vertical plane
through the center of the storage particle, as shown in FIG. 7.1.
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Figure 7.1.: Geometry and boundary conditions for the Li deintercalation study.
The geometry is either 2D plane strain in section 7.1 or, under ne-
glect of the initial cracks, 3D axisymmetric in section 7.2. In the three
dimensional geometry, the initial cracks have the shape of half-disks.
This is illustrated, for example, in FIG. 7.15.

This allows savings in computation time by simulation of only one
quarter of the particle in two dimensions, and one half of it in three
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7. Crack Growth during Lithium Extraction

dimensions. The simulations are started with maximum concentration,
i.e. c0 = cmax, and stopped when the state of charge (SOC), describ-
ing the mean concentration in units of maximum concentration cmax,
reaches a level below 0.01%.

In the investigations on Li insertion, initial crack growth always occurs
in a markedly unstable way. Only in the case of crack growth termination
inside the storage particle, is stable crack propagation observed after fur-
ther Li insertion. As will be shown in the following sections, the regime
of unstable crack growth is generally less pronounced when the crack
starts to extend from the surface towards the center during Li extrac-
tion. For this reason, the transition from unstable to stable growth is less
abrupt, but instead rather smooth. Because of the smoother transition,
the distinction between stable and unstable crack growth is less obvious
and the method of using the sudden and dramatic decrease of the time
step to differentiate between unstable and stable crack propagation, used
in chapter 6, cannot always be used in the case of Li extraction.

Instead of using the drop of the time step to identify when unstable
crack growth commences, we find that the time rate of change of the
total crack surface area Ȧcrack is a suitable alternative indicator for dif-
ferentiating between stable and unstable crack growth. As described in
the context of equation (2.23), the phase field method approximates the
crack surface by integration over the crack surface density through

Acrack ≈
∫
B
γl(d)dV, (7.3)

where the crack surface density is defined in equation (2.23) by

γl(d) =
1

2l
d2 +

l

2
|∇d|2. (7.4)

In the case of the 2D plane strain geometry, the total crack surface area
is proportional to the length of each crack via Acrack = 2ah, where h is
an arbitrary thickness associated with the plane strain condition. We set
it to h = 1μm. For one single crack or multiple cracks of equal length,
evaluation of the time rate of change of the total crack surface area Ȧcrack
is therefore equivalent to observation of the crack tip velocity. However,
evaluation of the crack tip velocity requires cumbersome tracking of the
crack tip in an additional post-processing step, and is therefore avoided
through use of the time rate of change of the total crack surface area.
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Figure 7.2.: Time rate of change of the total crack surface area Ȧcrack during Li ex-
traction in a storage particle with radius r = 5μm, initial crack length
a = 0.1μm and C-rates of (a) C = 12 and (b) C = 13. For better visi-
bility of the transition from unstable to stable crack growth, the vertical
axis in (a) is adjusted such that it does not cover the full range of the time
rate of change of the total crack surface area. Linear fits in the stable und
unstable regime are shown in orange in (b), and their use is explained in
the text. The time is given in units of r20/D0 with r0 = 1μm.

The suitability of Ȧcrack as a measure to differentiate between stable and
unstable crack growth regimes shall be explained by means of FIG. 7.2,
which shows the time history of Ȧcrack during Li extraction for two dif-
ferent C-rates at equal radius and crack length. In the case of unstable
crack growth, the extension of a crack does not release sufficient elastic
tensile energy to stop further growth. The time rate of crack extension
is therefore only controlled by inertia effects. The time scale of these
effects is in the range of, for example, the time that a sound wave re-
quires to travel from one side of the storage particle to the other side. In
contrast, during stable crack growth, the crack length is always in equi-
librium with the applied load in the sense that the energy release rate
is equal to its critical value, i.e. G = Gc. Hence, in order to drive stable
crack growth in a continuous way, the external load has to be increased
steadily. In terms of the Li concentration, this means that further Li
has to be extracted or inserted. In the case of stable crack growth, the
time rate of change of the total crack surface area Ȧcrack is therefore
closely linked to the charge or discharge rate. Consequently, the time
scale corresponding to stable crack growth is significantly longer than
that associated with unstable crack growth. Vice versa, the time rate of
change of the total crack surface area Ȧcrack is substantially larger during
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unstable crack growth. This behavior is reflected by the sharp increase
of Ȧcrack at around t ≈ 1.2 τ in FIG. 7.2 a) and t ≈ 1.1 τ in FIG. 7.2 b),
and a notably smaller magnitude of Ȧcrack for t � 1.25 τ and t � 1.15 τ
respectively. As in chapter 6, the characteristic time scale is defined as
τ = r20/D0 with r0 = 1μm. The intermediate point of almost vanishing
rate of the total crack surface, marked by the kink in FIG. 7.2 a), can
be understood by the findings in the study on crack growth during Li
insertion, for example, described in section 6.1.2. During crack growth,
the material adjacent to the crack faces is accelerated away from each
other due to the increasing crack opening and linear momentum builds
up. The deceleration of the material then leads to an inertia induced
stress field in addition to the stress from the volume expansion, when
crack growth is slowed down. This stress field drives the crack to grow
farther than its equilibrium length during stable growth. The energy re-
lease rate then falls below its critical value and the crack stops to grow.
This is marked by the red circle in FIG. 7.2 a). Only after further Li is
extracted from the storage particle, the mechanical stress at the crack
tip becomes again large enough to drive further crack growth, now in a
stable way. The time of Ȧcrack ≈ 0 thus marks the transition from stable
to unstable growth. We use it to determine the distance of stable and
unstable crack propagation.

The variation in the shapes of the graphs in FIG. 7.2 a) and b) re-
sults from a less pronounced unstable crack growth regime in the latter
case. When the extent of unstable crack growth is short, the maximum
crack tip velocity is comparatively small, i.e. Ȧa)

crack > Ȧb)
crack. As a

result, the momentum build-up in the material adjacent to the crack
faces is negligible and the additional crack extension driven by inertia
forces is marginal. In this case, the small extra distance leading to a
preliminary termination of crack growth for which Ȧcrack drops to zero
is not resolved within the simulations for the chosen numerical parame-
ters. In order to identify the transition from unstable to stable growth
nonetheless present in such a case, we use the intersection of the linear
fits f1(t) and f2(t), as illustrated in FIG. 7.2 b). For shorter extents of
total unstable crack growth, the graph becomes progressively smoother,
so that the distinction between the initial peak, representing the onset
of unstable growth, and the subsequent stable part of the graph, is less
clear. We therefore use the slopes m1 and m2 in a criterion to determine
if crack growth is exclusively stable (m1/m2 < 2) or if an unstable crack
growth regime exists (m1/m2 ≥ 2). The criterion provides a consistent
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operational measure for deciding whether unstable crack growth occurs.
However, we note that the choice for the threshold of the ratio m1/m2 is
somewhat arbitrary and the determination of the precise transition be-
tween unstable and stable growth is less accurate in the case of smaller
extents of unstable growth.
Before going into the details of the study, we comment on the flux condi-
tion at the crack surfaces. As described in the formulation of the model,
presented in section 2.3, the diffusion of Li is only influenced by the order
parameter d through modifications to the stress field. Hence, introducing
the crack as a heterogeneity in d does not specify the crack surfaces in
the sense that Li can be inserted through them. This may not describe
the actual physical situation perfectly, but nevertheless provides a good
first approximation in absence of physically sound information on the
precise Li transport conditions inside the crack; any assumption that we
might make in this regard is currently not supported by experimental
observations. However, we emphasize that our simplified assumption in
the case of extraction differs in its implications from when we used it
in our study of Li insertion in chapter 6. In that case a more elaborate
condition for diffusion at the crack surface could be neglected on physical
grounds due to the symmetries in the problem, the short time scale of
unstable crack growth and the initial location of the crack in the interior
of the storage particle. While the argument of symmetry remains valid
in the following study, the crack now lies at the perimeter of the stor-
age particle and crack growth towards the center of the storage particle
is comparatively slow. As a consequence, electrolyte may flow into the
crack and fill the void volume. Thus, although Li diffusion across the
crack can still be neglected for reasons of symmetry, Li-ions could, in
principal, deintercalate at the crack faces and leave the crack through
transport in the electrolyte.
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Parameters crack behavior
r [μm] a [μm] C growth unstable add. cracks

2 0.1...1.0 1...10 no no no

3 0.1...1.0 1...5 no no no

3 0.1 10 yes yes no
3 0.5 10 yes no no
3 1.0 10 yes no no

5 0.1...1.0 1 no no no

5 0.1 5 yes yes no
5 0.5 5 yes no no
5 1.0 5 yes no no

5 0.1...10 10 yes no no

10 0.1 1 yes yes no
10 0.1 5 yes yes no
10 0.1 10 yes no no

10 0.5 1 yes yes no
10 0.5 5 yes no no
10 0.5 10 yes no no

10 1.0 1...10 yes no no

15...20 0.1 1 yes yes no
15...20 0.1 5 yes no yes
15...20 0.1 10 yes no yes

15...20 0.5...1.0 1 yes no no
15...20 0.5...1.0 5 yes no yes
15...20 0.5...1.0 10 yes no yes

Table 7.1.: Input parameters, i.e. particle radius r, crack length a and C-rate C,
as well as type of crack growth, i.e. entirely stable or with an initial
unstable phase, and occurrence of additional cracks in the 2D extraction
study. Dots between two numbers imply that the corresponding line is
valid for the entire range in between, e.g. storage particles with r = 2μm
and initial crack length a between 0.1 and 1.0μm show no crack growth
when Li is extracted with a C-rate between 1 and 10.
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7.1 Cylindrical Particles in 2D under Plane Strain

The particle size is varied between r = 2μm and 20μm, the crack sizes
are a = 0.1μm, 0.5μm and 1μm and C-rates range between C = 1, 5
and 10, as shown in TAB. 7.1. The length scale parameter is typically
set to l = 0.05μm, the residual stiffness parameter is chosen as k = 10−5

and the mesh adaptation scheme is configured such that the mesh ele-
ment size close to the crack faces is h ≤ (2/5) l. To obtain even more
accurate results in the study of unstable crack growth with varying ini-
tial crack lengths and C-rates, the length scale parameter is decreased
to l = 0.01μm and l = 0.025μm respectively and the residual stiffness
is set to k = 10−7 and k = 10−5 respectively.
Depending on the particle radius, the number of initial global mesh

refinements and the stage of crack growth, the number of elements ranges
from 843 to 53 532, or in terms of degrees of freedom it ranges from 17 650
to 1 085 565. Simulations are typically run on either 16 or 32 processors
and last between 30 minutes and around 200 hours, heavily influenced
by system sizes and crack behavior.

With respect to TAB. 6.2, given in the study on crack growth during Li
insertion of chapter 6, and TAB. 7.1, we find that it generally requires less
severe conditions to drive crack growth during Li extraction in compari-
son to Li insertion. For example, a surface crack with length a = 0.1μm
in a storage particle with radius r = 3μm grows during Li extraction with
C = 10. In contrast, even in a storage particle with radius r = 20μm, a
crack of length a = 0.2μm does not commence growing under Li inser-
tion at the same C-rate. Furthermore, for Li extraction, the existence of
crack growth does not seem to be affected by the initial crack length a as
strongly as for Li insertion. Indeed, within the chosen set of parameters,
the question whether crack growth takes place does not depend on a, but
instead only on the particle radius and C-rate. However, the type of ini-
tial growth, i.e. whether it is stable or unstable, is influenced by the crack
size a. We return to these observations and consider them in more detail
after first investigating in the next section the principal reason for stress
generation during Li extraction in situations without crack growth.

7.1.1 Safe Conditions without Crack Growth

Safe conditions, in the sense that no crack growth takes place in the
storage particle, are found for particle radii of r = 2μm, r = 3μm (ex-
cept for C = 10) and r = 5μm (except for C = 5 and C = 10), as
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7.1. Cylindrical Particles in 2D under Plane Strain

listed in TAB. 7.1. The strong impact of particle radius and C-rate on
the occurrence of crack growth is explained by reasons similar to those
invoked in the case of Li insertion, described in chapter 6. The char-
acteristic time scale for Li to diffuse into the particle is approximately
given by r2/D0. Thus, as r and C are increased, the concentration gra-
dient becomes stronger and higher mechanical stress is generated. A
characteristic parameter related to the inhomogeneous Li concentration
occurring in the storage particle is the maximum concentration difference
maxΔc. It serves as a suitable indicator for the interplay of Li diffusion
and mechanical stress and its evolution during Li extraction is discussed
at corresponding passages in this work. In the following study, the cor-
relation between the maximum concentration difference and the stress
obtained during Li extraction will be explored. To illustrate the role of
the initial crack size a on the mechanical stress in the particle, we take
a look at Li extraction in two particles of the same size and at the same
C-rate, but with different initial crack lengths. For this, we examine
the parameter combinations r=3μm, a=0.1μm, C=5 and r=3μm,
a=1.0μm, C=5. Results for specific parameters are plotted in FIG. 7.3.
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Figure 7.3.: Characteristic results for Li extraction with r = 3μm, C = 5 and
a = 0.1μm, or a = 1.0μm as a function of time. (a) State of charge
(SOC) and maximum concentration difference maxΔc in units of maxi-
mum concentration cmax. No difference between the graphs for the SOC
for a = 0.1μm and a = 1.0μm is recognizable. (b) The highest value
of the maximum principal stress maxσ1st during Li deintercalation.

We find that the highest value of the maximum principal stress maxσ1st
present in the particle during extraction of Li is higher by up to 34%
in the case of the larger initial crack length. This difference results due
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to the following reason. During Li extraction, the concentration of Li
decreases and the particle shrinks. This shrinkage is most pronounced
close to the particle surface, where the largest amount of Li is being
extracted. Consequently, tensile hoop stress develops on the surface and
compressive radial stress is generated in the interior. For a larger initial
crack length, the portion of the particle that lies outside of the radius
r − a and generates tensile stress at the crack tip is bigger, as shown in
orange color in FIG. 7.4. Thus, more contracting material acts on the
crack tip and the resulting tensile stress is increased, as can be seen in
FIG. 7.3. However, as a is increased beyond a certain value, the stress
at the crack tip becomes smaller again since most of the volume con-
traction is relaxed due to the larger crack opening and since the volume
with higher Li content in the interior becomes smaller.

tensile hoop stress

tensile hoop stress

tensile hoop stress

tensile hoop stress

compressive
radial stress

compressive
radial stress

mode I load
at crack tipK (a=0.1μm)I K (a=1.0μm)I

K (a=0.1μm) < K (a=1.0μm)I I

Figure 7.4.: Schematic illustration of the mechanical stress state in the storage par-
ticle during Li extraction for two initial crack sizes. The exact stress
distribution is complicated by the inhomogeneous Li concentration and
the presence of the crack. However, in a coarse approximation, the region
shaded gray at the core of the particle is in radial compression while that
having the lighter shade (orange) is subject to circumferential tension.

The effect of the lowered stress away from the crack tip on the Li concentra-
tion distribution, resulting from the larger crack opening with increased
crack length, can be observed in FIG. 7.5. Due to the larger initial crack
length, both the tensile stress on the surface and the compressive stress
in the interior are reduced. Hence, the gradient in the hydrostatic stress
pointing from the surface towards the center is decreased as well. As a
consequence, the mechanical driving force for Li flux, as given in equation
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7.1. Cylindrical Particles in 2D under Plane Strain

(2.20), is less pronounced and a larger concentration difference between
surface and interior builds up. This can be recognized by the deeper blue
at the surface and the slightly more yellow color in the center.

Apart from this global effect, the higher tensile stress at the crack tip
leads to a significant increase in the local concentration at the crack tip,
which becomes even larger than in the interior. This strongly localized
accumulation of Li may trigger undesired phase transitions in the ma-
terial, eventually leading to voltage or capacity fade. This effect was
already found in the case of Li insertion.

The presence of a surface crack alters the Li concentration distribution
during extraction in two ways. First, a global effect on the mean concen-
tration gradient results from the relaxation of tensile stress at the surface
due to the crack opening. And second, high tensile stress at the crack tip
attracts Li in a strongly localized way.
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Figure 7.5.: Concentration c in units of maximum concentration cmax during Li ex-
traction for r = 3μm, C = 5 and a = 0.1μm (left), as well as a = 1.0μm
(right). The time selected for the plots is t = 3.5 τ , with τ = r20/D0. Areas
with d > 0.95 are removed to show the location of the crack. The opening
of the crack is exaggerated by a linear scaling of the nodal displacements.

7.1.2 Stable Crack Growth

As shown inTAB. 7.1, crack growth only takes placewhen the combination
of radius, crack length and C-rate exceeds a certain threshold. To study
the interplay of Li diffusion andmechanical stress during crack growth, we
therefore increase the C-rate and investigate the parameter combination
r=3μm, a=1μm and C=10. The physical behavior discussed in the
following is representative of all input parameters, that neither lead to
unstable crack growth nor creation of additional cracks.
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As shown in FIG. 7.7, the highest value of the maximum principal stress
rises to a maximum of maxσ1st ≈ 1.65GPa at t ≈ 0.45 τ , thereupon
crack growth is initiated. It then follows a plateau until the crack stops
growing at t ≈ 1.72 τ . Since the transition from galvanostatic to po-
tentiostatic Li extraction occurs at τgalvano ≈ 1.48 τ , the stress at the
crack tip is still high enough to induce further crack propagation within
the time period between 1.48 τ and 1.72 τ even though the maximum
concentration difference in the particle has begun to decrease.
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Figure 7.6.: Li concentration in units of maximum concentration cmax redistributing
around the crack tip during crack growth in a storage particle with
r = 3μm, a = 1μm and C = 10. Dashed lines are drawn to aid
recognition of the extension of the crack during growth. Times are
given in units of τ = r20/D0.
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Figure 7.7.: Characteristic results for Li extraction with r = 3μm, a = 1μm and
C = 10. (a) State of charge (SOC) and maximum concentration differ-
ence maxΔc in units of maximum concentration cmax. (b) The highest
value of the maximum principal stress maxσ1st and maximum hydro-
static stress maxσh during Li deintercalation.

The maximum concentration difference at the transition from galvanos-
tatic to potentiostatic Li extraction is maxΔc ≈ 0.9 cmax. At this time,
the minimum concentration is located at the surface and the maximum
concentration is found at the crack tip, which acts as a center of attrac-
tion for Li due to the large tensile stress at this location. This effect can
also be observed in FIG. 7.6. After the boundary of the region of maxi-
mum concentration c = cmax, shown in deep red color, has been passed
by the crack tip, the concentration dependent prefactor c (c − cmax) of
the mechanical driving force for diffusion, given in equation (2.20), be-
comes non-zero at the crack tip. As a consequence, the Li concentration
adapts to the stress field around the crack tip (cf. plots at t ≈ 0.14 τ and
t ≈ 0.36 τ). A location of high Li concentration forms at the crack tip
which moves with the crack tip during its propagation. This is in con-
trast to the unstable crack growth that occurs for Li insertion, described
in chapter 6, where the propagation of the crack tip is typically too fast
for Li to follow. In this example, crack propagation and Li extraction
thus take place on the same time scale. This is also visible in FIG. 7.7,
where the time range of crack growth, marked by the plateau in the
highest value of the maximum principal stress, covers a substantial part
of the overall extraction time. The chosen combination of parameters
therefore presents an example of entirely stable crack growth. This state-
ment is also in agreement with the criterion derived in the introduction
of this chapter, which takes into account the slope of the time rate of
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7. Crack Growth during Lithium Extraction

change of the crack surface area Ȧcrack. That is, for this combination of
parameters we find that m1/m2 < 2.

Hence, the chosen parameter range indicates that crack growth during
Li extraction, starting from a surface crack, occurs under less severe
conditions, in the sense of lower particle radii, crack length and C-rates,
as compared to growth of a central through crack during Li insertion.
Also, crack propagation does not necessarily take place in an unstable
way when Li is being extracted.
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Figure 7.8.: Characteristic results for Li extraction with r = 3μm, a = 0.1μm
and C = 10. (a) State of charge (SOC) and maximum concentration
difference maxΔc in units of maximum concentration cmax. (b) The
highest value of the maximum principal stress maxσ1st and maximum
hydrostatic stress maxσh.

7.1.3 Unstable Crack Growth

In the consideration of Li insertion in cases of unstable crack growth,
presented in chapter 6, it was found that for small initial cracks, i.e.
a � r, the mechanical load on the crack increases with the crack length a.
Hence, if the mechanical load induced by the Li concentration distribution
is sufficient for initiation of growth of a crack with length a, it is also
sufficient for initiation of growth of a crack with length a′ > a. For this
reason, the extension of the crack does not lead to a new equilibrium in
the sense that G ≤ Gc and crack growth occurs in an unstable way. This
is not observed in the example of stable growth presented in the previous
section. During Li insertion, stable crack growth only takes place for large
initial crack sizes, where the assumption of a � r is not valid anymore. In
order to check whether unstable growth of small initial cracks also takes
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7.1. Cylindrical Particles in 2D under Plane Strain

place during Li extraction, we decrease the crack length and consider
the parameters r=3μm, a=0.1μm and C=10. The corresponding
concentration and stress results are plotted in FIG. 7.8.
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Figure 7.9.: Magnified view of the characteristic results in FIG. 7.8 for early time.
(a) State of charge (SOC) and maximum concentration difference maxΔc
in units of maximum concentration cmax. (b) The highest value of the
maximum principal stress maxσ1st and maximum hydrostatic maxσh.

The peak and subsequent drop in the highest value of the maximum
principal stress around t ≈ 0.65 τ indicate that a regime of unstable crack
growth exists for the chosen combination of parameters. In order to show
this detail more clearly, a magnified view of the diagrams is plotted in
FIG. 7.9. The drop in the highest value of the maximum stress results
from the additional extent of crack growth induced by inertia forces.
This effect was discussed in the context of FIG. 7.2 and first found in our
study of crack growth during Li insertion. The crack propagates further
than it would if only promoted by the mechanical stress resulting from
the concentration distribution present at that time. Thus, as inertia
forces have relaxed, the stress at the crack tip temporarily falls below
the magnitude required to drive further crack growth.

The comparatively small time scale of the unstable crack growth re-
sults in a sharp kink in the curve describing the maximum concentration
difference, as shown in FIG. 7.8 a) and FIG. 7.9 b). The tensile stress in
the outer shell of the particle is smallest at the crack faces, since some
of the tensile stress is relaxed due to the crack opening. Consequently,
the gradient of the hydrostatic stress points away from the crack faces.
As a result, Li is repulsed from these regions and the local Li concen-
tration decreases. This is shown, for example, by the deep blue region

149



7. Crack Growth during Lithium Extraction

of the last contour plot in the upper row of FIG. 7.10. The maximum
difference in concentration maxΔc thus takes place between the center
of the storage particle and the material adjacent to the crack faces. This
Li concentration distribution remains almost constant during unstable
crack growth due to the high velocity of the process, see middle row in
FIG. 7.10. However, after unstable propagation ceases, the crack tip is
further away from the surface and the stress in the outermost shell of the
particle is relaxed. The gradient in the hydrostatic stress that previously
forced Li to move away from the crack faces is decreased, so that Li now
distributes itself more homogeneously at the particle surface (cf. plots
at t ≈ 0.65 τ with t ≈ 0.66 τ and t ≈ 0.68 τ). The Li concentration in
the material adjacent to the crack faces thereby increases so that the
maximum concentration difference maxΔc becomes smaller. Only after
more Li is extracted at the surface does the maximum concentration
difference rise again.

Due to continued Li extraction after termination of unstable crack
growth, the stress again becomes large enough to drive crack growth
further. However, crack propagation now takes place in a stable fash-
ion, as shown in the bottom row of FIG. 7.10. The separation into
a regime of unstable and stable crack growth can also be observed in
FIG. 7.11, where we plot the time history of the crack length a. The
small time scale of unstable crack growth is reflected by the step-like
shape of the graph of the crack length. Following this increase in crack
length, it remains constant for a short period of time before slowly ris-
ing to its final value as a result of stable crack growth. This behavior
is similar to what was reported by Bahr et al. in [182] in the case of
surface cracks in a specimen that undergoes thermal shock. Depending
on the temperature difference and initial crack length, they find that
crack propagation may first happen in an unstable way, followed by a
regime of stable growth.
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Figure 7.10.: Li concentration in units of maximum concentration cmax redistributing
around the crack tip during crack growth in a storage particle with
r = 3μm, a = 0.1μm and C = 10. Regions in gray indicate values of the
Li concentration c < 0.32 cmax. Times are given in units of τ = r20/D0.

Effect of Crack Length

With respect to the considerations made at the beginning of this sub-
section, unstable crack growth should only occur when the initial crack
length is small in comparison to the particle radius. This is reflected
by the graph in FIG. 7.12, where we vary the initial crack length while
keeping particle radius and C-rate constant at r=5μm and C=5. We
find that a critical initial crack length (ac ≈ 0.06...0.07μm) exists that
must be exceeded in order to induce unstable crack growth for the chosen
set of parameters. The extent of unstable crack growth then decreases
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7. Crack Growth during Lithium Extraction

with larger initial crack lengths a. For crack sizes larger than a � 0.5,
only stable crack growth takes place. As described in the explanation for
FIG. 7.2, small extents of unstable crack growth are difficult to identify
precisely in the simulations. In FIG. 7.12, the data point at a = 0.4μm
therefore has to be considered as a rough estimate of the actual extent.
Analysis of the time rate of change of the total crack surface area ob-
tained in this case shows an estimated deviation of approximately ±50%
compared to the plotted value of unstable growth extent. However, such
a large error only applies to this data point.
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Figure 7.11.: Crack length during Li extraction in a storage particle with radius
r = 3μm, initial crack length a = 0.1μm and C = 10. Unstable crack
growth is followed by a regime of stable crack extension.

The dependence of the extent of unstable crack growth on the initial
crack length, as illustrated in FIG. 7.12, is in agreement with the assess-
ment made by means of FIG. 7.4 in section 7.1.1. For a given C-rate
C and particle radius r, a certain initial crack length ã exists for which
the stress at the crack tip is maximal. A smaller initial crack length
a < ã results in less stress generated by the contracting material for
radii r′ > r − a. Larger values a > ã lead to a wider crack opening and
less material within the radius r′ < r − a, working against the contrac-
tion. Hence, the stress at the crack tip decreases. These two effects act
counter to each other and only for a certain initial crack length ã is the
tensile stress at the crack tip maximized with respect to a. For a > ã,
the stress decreases with growth of the crack and more Li needs to be
extracted for further crack propagation to occur. Hence, crack growth
is stable. If the initial crack length is too small, i.e. a ≤ ac, the stress at
the crack tip is not high enough to induce crack growth. As in the case
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of Li insertion in chapter 6, the most pronounced unstable crack growth
is therefore expected in the case where the crack length a is just slightly
larger than the critical crack length ac.
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Figure 7.12.: Distance traveled by the crack tip during unstable crack growth for
different values of the initial crack length a. The radius of the storage
particle is r = 5μm and Li is extracted with C = 5.

Effect of C-rate

Following the findings in [182], the extent of unstable growth should not
only depend on the initial crack length, but also on the flux boundary
conditions. In FIG. 7.13, we therefore vary the C-rate, keeping the parti-
cle radius and initial crack length constant at r=5μm and a=0.1μm.
In [182], the influence of an instantly applied surface temperature re-
duction on the behavior of crack growth was studied. In the case of Li
concentration induced volume changes, this corresponds to an entirely
potentiostatic Li extraction. Since the boundary condition applied in
our simulation involves galvanostatic extraction followed by potentio-
static extraction, the results in FIG. 7.13 are not directly comparable to
the ones in [182]. However, the fundamental trend is the same. First,
a gradient in volume expansion above a threshold value is required to
drive crack growth. In [182], this corresponds to a threshold in temper-
ature difference between the surface and interior. Here, the gradient in
volume expansion results from the inhomogeneous Li concentration and
its magnitude is related to the C-rate. The minimum C-rate resulting
in crack growth for the given particle radius r and initial crack length
a is found to be Cmin ≈ 5. When the gradient in volumetric expansion
is increased by choice of smaller surface temperatures or higher C-rates,
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the extent of unstable crack growth decreases, as shown in FIG. 7.13.
This relation is consistent with the mechanism described above on stress
generation by shells of radius r′, smaller and larger than r − a, and the
influence of the crack opening. For large C-rates, the mechanical stress
at the crack tip increases due to the stronger gradient in volumetric ex-
pansion. This shifts the critical crack length ac to smaller values. For a
C-rate of C = 5, the critical crack length is approximately equal to the
crack length used in the simulation, a = 0.1μm. In this case, the C-rate
is just sufficiently large to initiate crack growth. With further increase
of the C-rate, the critical initial crack length ac becomes smaller and the
difference between the chosen initial crack length a and the critical one,
ac, increases. The distance traveled by the crack tip during unstable
crack growth thus decreases.
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Figure 7.13.: Distance traveled by the crack tip during stable and unstable crack
growth for different values of the C-rate C. The radius of the storage
particle is r = 5μm and the initial crack length is a = 0.1μm.

In [182], an upper critical temperature difference is determined above
which only stable crack growth takes place. An analogous situation can-
not be attained through variation of the C-rate for the given particle
radius r and crack length a due to the following reason. With increasing
C-rate, the extraction process resembles more closely an entirely poten-
tiostatic Li extraction, as described in chapter 6. However, in contrast
to the thermal model in [182], where the temperature difference between
inner and outer part of the specimen can, in principle, take on arbitrar-
ily high values, the maximum difference in Li concentration is bounded
by the maximum Li concentration cmax. Consequently, as the C-rate
increases, the extent of unstable crack growth converges to the value ob-
tained for entirely potentiostatic Li extraction, with c = 0 at the surface.
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Hence, for the particle size and initial crack length used, purely stable
crack growth does not occur, independent of the selected C-rate.

Effect of Particle Radius

Besides initial crack length a and C-rate C, the particle radius r influ-
ences the occurrence of unstable crack growth as well. As illustrated
in chapter 6, the particle radius has a strong impact on the minimum
crack length and C-rate necessary to initiate crack growth. This can
be explained by the characteristic time scale for Li to diffuse into the
particle, which scales roughly with τr = r2/D0. As the radius of the stor-
age particle is increased, the time required for Li to equalize grows and
larger differences of Li concentration build up. The resulting inhomo-
geneous volume expansion leads to higher stress in the storage particle.
This relationship also applies to extraction and is reflected in TAB. 7.1,
which shows that growth of initial cracks with specific lengths during Li
extraction with given C-rates only occurs when the size of the storage
particle is above a certain threshold. For example, under Li extraction
with C = 1, initial cracks of length between 0.1 and 1.0μm only grow
when the storage particle radius r exceeds 5μm. In addition the con-
ditions under which cracks grow only in a stable way is affected by the
storage particle radius r. Compare, for example, the simulations with
a = 0.1μm and C = 5 in TAB. 7.1. For r = 5μm and r = 10μm initial
crack extension is unstable, while for r = 15μm and r = 20μm the en-
tire crack propagation is stable. This is consistent with the finding when
the C-rate was varied that higher concentration gradients lead to more
limited regions of unstable growth.

We find that unstable crack growth also occurs during extraction of Li.
However, it is typically less pronounced than during insertion in the sense
that crack tip velocities large enough to induce crack branching or particle
breakage are not encountered during Li extraction. Also, while increasing
C-rates and particle radii lead to faster unstable crack propagation during
Li insertion, such conditions reduce the regime of unstable crack growth
in the case of Li extraction.

7.1.4 Additional Cracks

In our simulations with the highest C-rates and largest particle radii,
additional cracks are nucleated at locations, where there are no initial
cracks. This effect is observed for r ≥ 15μm and C ≥ 5, as shown
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in TAB. 7.1. An example of the resulting fracture pattern is given in
FIG. 7.14. The additional cracks are a result of the smooth approxima-
tion of the discrete cracks inherent in the phase field method. The stress
relaxed by growth of the two initial cracks in the horizontal symmetry
axis, which are introduced through the history field, is not sufficient to
significantly lower the stress level on the remote perimeter of the storage
particle. The remaining high stress then leads to the creation of cracks
at locations where the order parameter d is initially zero. In this situa-
tion, the length scale parameter l behaves to some extent as a material
parameter, which defines an effective initial crack length. However, as
was shown in chapter 5, it is doubtful whether the initial crack length
for defects modeled in such a manner can be obtained from a specified
value of l in a precise way. Further, with respect to the findings in chap-
ter 4, predictions of the character of initial crack growth, i.e. stable or
unstable, are likely to become less reliable for cracks modeled in this
manner. Hence, the meaning of the results of the corresponding com-
putations cannot be deduced in the same way as in simulations where
the initial crack size is introduced in a well-controlled way. Therefore
computations are terminated without evaluation of the results as soon
as additional cracks, such as those depicted in FIG. 7.14, begin to grow.

co
nc

en
tra

tio
n 

c

0.00

1.00

0.00

1.00
ph

as
e 

fie
ld

 d

Figure 7.14.: Li extraction in a storage particle with r = 10μm, a = 1μm and C = 5
after additional cracks have formed on its surface. (Left) Concentra-
tion c in units of maximum concentration cmax. Areas with d > 0.95
are removed to show the location of the crack. The opening of the
crack is exaggerated by a linear scaling of the nodal displacements.
(Right) Order parameter d at the same time step.
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7.2 Spherical Particles in 3D

In order to study whether the results obtained in the 2D plane strain
geometry are transferable to three-dimensional storage particles and to
examine whether further phenomena related to the additional dimension
exist, we run a representative number of three-dimensional simulations.

As in the 3D simulations of the study of crack growth during Li inser-
tion in chapter 6, the length scale parameter is increased to l = 0.25μm,
allowing a slightly coarser finite element mesh. This saves computation
time but is still sufficiently small to resolve the initial cracks. The mesh
adaptation scheme again generates a suitable mesh element size close to
the crack faces, which is h ≤ (2/5) l. Due to the stronger smoothing of the
crack, the refined mesh stays below approximately 0.4 million in terms
of number of elements or approximately 21 million in terms of degrees of
freedom. However, simulations of crack growth during Li extraction typ-
ically take more time than those of Li insertion for the following reasons.
First, since most of the crack growth during Li extraction is stable, the
diffusion and fracture process take place on a similar time scale. In con-
trast to unstable crack growth, this means that during growth of the crack
the concentration distribution changes by a significant amount. This re-
sults in a modification of the volume expansion due to the intercalated Li.
For this reason, the difference between the displacement fields of two sub-
sequent time steps is larger than during entirely unstable crack growth,
where the concentration distribution remains approximately constant1.
Hence, at each new time step, the displacement field is further away
from the current solution. This slows down solving the non-linear equa-
tion describing conservation of linear momentum since more iterations
of the Newton-Raphson method are required. Second, the large crack
opening at the surface makes the stiffness matrix less well-conditioned
due to the spectral decomposition of the strain tensor. For this reason,
we increase the residual stiffness to k = 5× 10−4 and focus on only one

1 The Li concentration enters the equation for balance of linear momentum (2.7)
through the constitutive equation for the stress (2.34) and the definition of the
Li strain (2.10). In order to satisfy equation (2.7), the small strain tensor ε,
defined in equation (2.8), needs to compensate for a change in the Li strain. The
displacement field thus experiences stronger changes when the concentration is
altered by larger amounts. This is most pronounced close to the surface, where
the integrated local volumetric expansion determines the total shrinkage of the
particle. In the Li extraction study, this is also where the initial crack is located
and where the equation for balance of linear momentum is strongly non-linear
due to the decomposition of the strain tensor.
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three-dimensional simulation with crack growth, as shown in the last
row of TAB. 7.2. A second simulation, running with k = 1 × 10−5 and
computing only an eighth of the sphere, showed qualitatively identical
results and only small deviations in the values of computed parameters
such as, for example, the hydrostatic stress.

Parameters crack behavior
r a C growth unstable

5 1 1 no no
5 1 5 no no

5 1 10 yes yes

Table 7.2.: Input parameters, i.e. particle radius r, crack length a and C-rate C, as
well as the type of crack growth, i.e. entirely stable or with an initial
unstable phase, in the 3D extraction study.

7.2.1 Safe Conditions without Crack Growth

As in the two-dimensional study, we first consider a situation without
crack growth. This is given, for example, by the parameter combination
r=5μm, a=1μm and C=5. The corresponding phase field represen-
tation of the initial crack is shown on the right of FIG. 7.15.
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Figure 7.15.: (Left) Concentration c in units of maximum concentration cmax at an
intermediate stage of Li extraction in a spherical storage particle with
r = 5μm, a = 1μm and C = 5. (Right) Order parameter d at time
t = 0. The quarter-disks protruding from the half sphere illustrate the
volumes characterized by d > 0.95.
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The graphs of results for the characteristic parameters plotted in FIG. 7.16
are similar to the ones obtained in section 7.1 for the cylindrical particle
under plane strain. The state of charge first decreases linearly until the
transition from galvanostatic to potentionstatic Li extraction is reached
at t ≈ 3.9 τ . As before, the difference in Li concentration is largest be-
tween the center of the particle and the material adjacent to the crack
faces, where the lower hydrostatic stress repulses Li. This is illustrated
in the left of FIG. 7.15. Due to the concentration dependent prefactor in
the mechanically driven part of the flux, given in equation (2.20), the re-
pulsive effect is stronger at earlier times when the Li concentration close
to the surface is still above zero. However, high magnitudes of mechan-
ical stress are not determined by small, localized volumes of material
with low Li concentration, but instead by differences of the Li concen-
tration between large volumes in the inner and outer part of the particle.
Thus, the highest value of the maximum principal stress is found at the
transition from galvanostatic to potentiostatic Li extraction, when the
difference between the average Li concentration at the surface and the
Li concentration in the center of the storage particle is largest.
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Figure 7.16.: Characteristic results during Li extraction in a 3D spherical particle
with r = 5μm, a = 1μm and C = 5. (a) State of charge (SOC)
and maximum concentration difference maxΔc in units of maximum
concentration cmax. (b) The highest value of the maximum princi-
pal stress maxσ1st and maximum hydrostatic stress maxσh during Li
deintercalation.

We find that the highest value of the first principal stress (maxσ1st ≈
0.79GPa) is only slightly larger than the highest value of the second
principal stress (maxσ2nd ≈ 0.72GPa) at this point in time. This can
also be observed by comparison of the first and second contour plot in
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7. Crack Growth during Lithium Extraction

FIG. 7.17. The region around the crack, where the first principal stress
acts perpendicular to the crack faces, is drawn in almost the same deep
red color as the rest of the surface. At some distance away from the
crack, the surface of the storage particles showing contour plots of the
first and second principal stress, are colored in the same red tone. At
these locations, the stress state is biaxial with a large tensile hoop stress
and negligible (maxσ1st < 10MPa) radial stress. In the center of the
particle the stress state is triaxial and entirely compressive.

A small crack on the surface of the storage particle therefore influences
the stress distribution within the spherical particle only by a small degree.
This is similar to the case of Li insertion in chapter 6. However, stress
directions during Li extraction are reversed with respect to Li insertion.

1st 2nd 3rd

-0.66 0.79
xprincipal stress   [GPa] 

Figure 7.17.: Magnitude and orientation (pink arrows) of principal stresses at tran-
sition from galvanostatic to potentiostatic Li extraction in a storage
particle with r = 5μm, a = 1μm and C = 5.

7.2.2 Crack Growth

We increase the C-rate and examine the parameter combination r=5μm,
a=1μm and C=10. Due to the higher C-rate sufficient mechanical
stress is generated to provoke growth of the initial crack. This can be
observed by means of FIG. 7.18, which shows results for characteristic
parameters involved in the Li extraction process.

The initiation of crack growth is marked by the first peak and subse-
quent drop of the highest value of the first principal stress maxσ1st. The
crack first extends along the surface of the particle in an unstable way, as
shown in FIG. 7.19. During growth the crack front remains in the plane
of the initial crack. The regime of unstable crack growth ends after the
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7.2. Spherical Particles in 3D

crack faces of the two initial cracks merge at around t ≈ 0.522 τ and a
ring-like crack topology is created. This is illustrated in the second to
last image in FIG. 7.19. Before and during unstable crack propagation,
the largest tensile stress occurs at the segment of the crack front that is
located at the particle surface. For this reason, the graphs in FIG. 7.18,
showing the highest values of the maximum principal stress, found in
the entire storage particle, at its surface and at the crack front, coincide
with each other.
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Figure 7.18.: Characteristic results during Li extraction in a 3D spherical particle
with r = 5μm, a = 1μm and C = 10. (a) State of charge (SOC)
and maximum concentration difference maxΔc in units of maximum
concentration cmax. (b) The highest value of the hydrostatic stress
maxσh and the maximum principal stress maxσ1st in the entire par-
ticle and at surface and crack tip during Li deintercalation.

After completion of the formation of the ring crack, it extends further
into the interior of the particle, now in a stable way. While the highest
value of the maximum principal stress at the crack front remains con-
stant, the stress at the surface rises again. The magnitude of the highest
stress at the surface then surpasses that of the stress at the crack tip,
which occurs at t ≈ 0.68 τ . The difference in the evolution of the stress
at the crack front and at the surface results from the shape and ori-
entation of the crack. The increase of the crack opening relaxes only
tensile stress in the direction perpendicular to the crack faces. Hence,
the tensile hoop stress acting in the direction parallel to the ring crack
is not lowered. The location of the highest value of the maximum prin-
cipal stress therefore jumps from the crack front to the perimeter of the
storage particle. The direction of the principal stress is also illustrated
by the pink arrows on the right of FIG. 7.20.
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Figure 7.19.: Order parameter d during Li extraction and crack growth in a storage
particle with r = 5μm, a = 1μm and C = 10. Times are given in
units of τ = r20/D0. To improve the visibility of the progressing crack
growth only the lower half of the storage particle is shown.

After galvanostatic Li extraction ends at t ≈ 1.28 τ , the maximum dif-
ference in Li concentration in the storage particle decays. This results
in a decrease of the highest value of the maximum principal stress.
The reduction is fastest at the perimeter of the storage particle and
at t ≈ 1.48 τ , the location of the highest value of the maximum prin-
cipal stress shifts back to the crack front. At this time, crack growth
stops. However, as depicted by the green curve in FIG. 7.18, the stress
at the crack tip is not relaxed as fast as at the perimeter of the storage
particle. This can be explained by the dependence of the mechanical
stress on the Li distribution within the storage particle. As described
in section 7.1.1, the stress generated at the crack tip mainly depends
on the overall contrast in volume change of the material located within
radius r′ < r − a and r′ > r − a, which results from the inhomogeneous
Li concentration. Only to a lesser extent is it affected by the detailed
distribution of Li within the various parts of the storage particle. This
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7.2. Spherical Particles in 3D

is different for the mechanical stress at the perimeter of the storage par-
ticle, which is strongly influenced by the gradient of Li concentration in
the outermost shell of the storage particle. As the boundary condition
shifts from galvanostatic to potentiostatic Li extraction, this gradient
diminishes within a comparatively short time scale. In contrast, the im-
pact of the transition to potentiostatic extraction on the evolution of
the Li concentration in the interior of the storage particle requires some
time to take effect. Hence, the average Li concentration in the volumes
within radius r′ < r− a and r′ > r− a does not change as rapidly. As a
consequence, the decrease of the stress at the crack tip is delayed with
respect to that at the perimeter of the storage particle.

From these observations we conclude that the trajectory taken by the
crack front during growth is highly dependent on the prevailing symmetry
of the particle. Although the initial cracks disturb the rotational symmetry
around the vertical center axes, the symmetry is restored by the initial
pattern of crack growth. This first phase of crack growth takes place in
an unstable way along the surface and is followed by stable extension of the
crack towards the center of the storage particle. The surface crack does
not fully relax the tensile stress on the surface of the storage particle. For
this reason, additional initial surface cracks would be expected to grow,
even though the first crack has significantly expanded in size.
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Figure 7.20.: (Left) Concentration c in units of maximum concentration cmax during
Li extraction in a spherical storage particle with r = 5μm, a = 1μm
and C = 10. The time selected for the plots is t ≈ 0.8 τ , with τ =
r20/D0. (Right) Highest value of the maximum principal stress σ1st at
the same time. The pink arrows illustrate the local orientation of the
maximum principal stress.
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8 Crack Growth in the Second Half Cycle

In the study of crack growth during Li insertion in chapter 6, we saw that
storage particles can break into two or several fragments when inertia
forces, appearing during unstable crack growth, become strong enough
to drive crack growth to the perimeter of the storage particle. This was
not observed in the investigation on crack growth during Li extraction,
described in chapter 7, where the regime of unstable crack growth is
typically less pronounced. However, by comparison of TAB. 6.2 and 7.1
we observe that the critical conditions required for crack growth, i.e.
the minimum crack size, particle radius and C-rate, are generally lower
for a surface crack during Li extraction. This can be understood from
the following simple argument. In the case of Li extraction in a storage
particle with an initial surface crack, the crack opens to one side. Hence,
the mechanical force, tearing the crack faces apart, only acts on one crack
tip. In the case of Li insertion with an initial through crack, the critical
stress required to induce crack growth has to be reached at two crack
tips. Consequently, a higher total force perpendicular to the crack faces
is necessary. This poses the interesting question of whether cracks, that
have grown during Li extraction, are prone to propagate further during
the next half cycle of Li insertion and whether particle breakage may also
occur in a multi-step process. In this case, the comparatively wide range
of parameter combinations still avoiding breakage of storage particles,
that was found in the study on crack growth during Li insertion, might
be narrowed since the first step of crack growth may take place during
Li extraction, where the limits to prevent crack growth are lower. At
the same time, crack growth during Li insertion commencing from a
large initial crack may not lead to breakage of the storage particle due
to the less pronounced unstable crack growth in this scenario. However,
if the crack tip has propagated into regions that experience tensile stress
during Li extraction, the storage particle may nevertheless break in a
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8. Crack Growth in the Second Half Cycle

subsequent half cycle. In this chapter, we thus investigate crack growth
and Li diffusion in the second half cycle.

To examine the fracture behavior in the second half cycle, we take as
initial conditions the final state of some of the simulations presented in
chapter 6 and 7. The material and numerical parameters are adopted
from the respective computations without changes. Further, the absolute
value of the applied flux is the same as in the corresponding initial half
cycle and only its direction is reversed. We do not attempt to investigate
all parameter combinations, presented in TAB. 6.2 and 7.1, but instead
select a subset that covers the two central scenarios, with and without
crack growth in the second half cycle. Storage particles that break into
parts during the first half cycle are not further examined.

8.1 Lithium Extraction with Initial Through Crack

8.1.1 Cylindrical Particles in 2D under Plane Strain

In the study on crack growth during Li extraction in chapter 7, it
is found that the critical stress required to induce crack growth is
more easily generated in storage particles with large radius and during
Li extraction with a high C-rate. Further, during Li extraction, the
strongest tensile stress occurs at the perimeter of the storage particle.
Hence, cracks that end close to the surface of the storage particle are
more prone to crack growth. Among the combinations of parameters,
that do not lead to crack growth during Li insertion (see TAB. 6.2), the
one with storage particle radius r=5μm, initial crack length a=2μm
and C-rate C=1 is therefore the one with the highest probability to
show crack growth during Li extraction in the second half cycle. In
order to evaluate whether crack growth in the second half cycle takes
place even if the storage particle resists crack growth during the first
half cycle, we select this combination of parameters and simulate the
process of Li extraction, taking as initial conditions the final state of
the first half cycle. The corresponding characteristic parameters are
plotted in FIG. 8.1.

The graphs showing the characteristic concentration and stress param-
eters are identical to those obtained in a simulation without an initial
crack in the center of the storage particle. Hence, both the highest value
of the maximum principal stress and the highest value of the hydrostatic
stress is not located at the crack tip, but instead is found at the surface
of the storage particle. This can be understood by the following argu-
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8.1. Lithium Extraction with Initial Through Crack

ment. The hoop stress in a storage particle without crack is given by a
thermal analogy in [171] as

σθ(r
′) =

ΩE

6(1− ν)
(cav(r) + cav(r

′)− 2c(r′)) . (8.1)

The average concentration within the radius r′ ∈ [0, r] of a storage par-
ticle with outer radius r is defined through cav(r

′) = 2
r′
∫ r′

0
c(r̃′)r̃′dr̃′.

Similar to the considerations in section 6.1.2, we assume a Li concentra-
tion distribution along the radius that is approximated by a power law
c(r′) = (co − ci)(r

′/r)γ + ci with the concentrations ci and co at the
center and perimeter of the storage particle respectively. The Li content
along the radius is typically concave during extraction, which requires an
exponent of γ > 1 due to c0 < ci. The resulting hoop stress then reads

σθ(r
′) =

ΩE

3(1− ν)

co − ci
γ + 2

(1− (2(γ + 2)− 1)(r′/r)γ). (8.2)

For r′/r ≤ 1/5, i.e. from the crack tip to the center of the storage particle,
and γ > 1, this expression yields negative values of σθ. The same argu-
ment holds for the radial stress. Hence, both hoop and radial stress are
compressive at the location of the crack. Consequently, the crack faces
do not open and the material behaves as if there was no crack.
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Figure 8.1.: Characteristic results for Li extraction in second half cycle with
r = 5μm, a = 2μm and C = 1. (a) State of charge (SOC) and max-
imum concentration difference maxΔc in units of maximum concen-
tration cmax. (b) The highest value of the maximum principal stress
maxσ1st and maximum hydrostatic stress maxσh during Li extraction.
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Figure 8.2.: Characteristic results for Li extraction in second half cycle with
r = 5μm, a = 2μm and C = 5. (a) State of charge (SOC) and max-
imum concentration difference maxΔc in units of maximum concen-
tration cmax. (b) The highest value of the maximum principal stress
maxσ1st and maximum hydrostatic stress maxσh during Li extraction.

In order to examine whether the situation changes when we consider Li
extraction during the second half cycle in storage particles that already
experience crack growth in the first half cycle, we repeat the procedure
for a storage particle with the same radius and initial crack length, but
with increased C-rate. The corresponding parameter combination is thus
given by r=5μm, a=2μm and C=5. In this case, the crack growth
during Li insertion in the first half cycle stops close to the perimeter of
the storage particle, with an extension of Δa ≈ 3.86μm in one direction.
The final diameter is 9.72μm, as can be seen in FIG. 6.6 and in the
left contour plot of FIG. 8.3. Due to the close proximity of crack tip
and surface of the storage particle, equation (8.2) now predicts a tensile
hoop stress at the crack tip during Li extraction. This is confirmed from
analysis of the stress field, obtained in the simulation, and can also be ob-
served indirectly by the attraction of Li on the left hand side of FIG. 8.2.
The mechanical stress at the crack tip not only becomes tensile, but also
larger than on the particle surface. This is marked by the gray region in
FIG. 8.2. Further, the magnitude of tensile stress acquired at the crack
tip becomes sufficiently large to initiate further crack growth. Since the
hoop stress does not decrease with respect to the radial distance to the
center of the storage particle and because less material has to keep the
two halves of the particle together when the crack extends, the resulting
crack growth takes place in an unstable way. This is indicated by the
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8.1. Lithium Extraction with Initial Through Crack

sharp drop of the stress parameters in FIG. 8.2 b). After the particle has
broken into two, the largest tensile stress is again located at the perime-
ter of the storage particle. Due to the separation into two fragments,
as depicted on the right of FIG. 8.2, the highest value of the maximum
principal stress is now lower than before breakage.
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Figure 8.3.: Concentration c in units of maximum concentration cmax in a storage
particle with r = 5μm, a = 2μm and C = 5, shown before (t ≈ 0.37 τ)
and after (t ≈ 0.49 τ) breakage of the storage particle. Areas with
d > 0.95 are removed to show the location of the crack. The opening of
the crack is exaggerated by a linear scaling of the nodal displacements.

8.1.2 Spherical Particles in 3D

Due to the computational cost of the three-dimensional simulations, the
choice of simulated Li insertion processes available as starting point for
computation of the second half cycle is limited. However, the central
cases, i.e. with and without crack growth during the second half cycle,
are covered by this selection. Again, we first examine a combination of
parameters that does not lead to crack growth during Li insertion in the
first half cycle. This is given by r=5μm, a=1μm and C=5.

As in the two-dimensional case, the graphs of the characteristic con-
centration and stress parameters, shown in FIG. 8.4, during Li extraction
in the second half cycle in a storage particle, that does not experience
crack growth in the previous half cycle, cannot be distinguished from
the case of Li extraction in a storage particle without cracks. As before,
this can be explained by means of analytic relations of the type given in
equation (8.1) and (8.2). The different geometries of the two- and three-
dimensional cases only affect the corresponding relations by prefactors.
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Figure 8.4.: Characteristic results for Li extraction in second half cycle with
r = 5μm, a = 1μm and C = 5. (a) State of charge (SOC) and max-
imum concentration difference maxΔc in units of maximum concen-
tration cmax. (b) The highest value of the maximum principal stress
maxσ1st and maximum hydrostatic stress maxσh during Li extraction.

Hence, assuming the same concentration distribution along the radial
coordinate, we obtain the hoop stress at distance r′ from the center by

σθ(r
′) =

ΩE

3(1− ν)

co − ci
γ + 3

(2− (γ + 2)(r′/r)γ). (8.3)

For γ > 1 this predicts compressive stress within a radius of r′/r ≤ 2/3,
which is well above the crack extension of a/r = 1/10. Hence, the entire
crack is again under compressive stress and the mechanical behavior of
the material is not affected by the presence of the crack. Comparing the
radial distance at which equations (8.2) and (8.3) yield zero hoop stress
for the same value of γ, we find that the region of compressive stress
in the three-dimensional spherical particle is significantly larger than in
the two-dimensional cylindrical particle under plane strain. For γ = 1,
the radial coordinate of zero hoop stress is r′/r = 2/3 and r′/r = 1/5
respectively. The difference results from the different volumes Vshell, oc-
cupied by shells with the same thickness and distance to the center of
the storage particle, in a sphere and in a cylinder1. In the case of the
three-dimensional sphere, the volume of the shell scales as Vshell ∝ r′2.
For the two-dimensional cylinder, it goes with Vshell ∝ r′. During Li

1 For the illustration of such a shell, see the region in orange color, shown in
FIG. 7.4, with omission of the crack.
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8.1. Lithium Extraction with Initial Through Crack

extraction, the outer shell contracts, resulting in a compressive force on
the inner part of the storage particle. The stress in the storage particle
is determined by a balance of force between this outer shell and the inner
core. Since the volume of the outer shell in a spherical storage particle
grows faster with respect to the radial distance to the center than in the
cylindrical particle, the radius at which hoop stress becomes tensile is
shifted closer to the surface. Hence, in order to experience tensile stress
during Li extraction, the crack tip of a through crack needs to be located
closer to the perimeter of the storage particle.
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Figure 8.5.: Characteristic results for Li extraction in second half cycle with
r = 5μm, a = 2μm and C = 10. (a) State of charge (SOC) and
maximum concentration difference maxΔc in units of maximum con-
centration cmax. (b) The highest value of the maximum principal stress
maxσ1st and maximum hydrostatic stress maxσh during Li extraction.

The three-dimensional simulation of crack growth during Li insertion
showing crack growth without breakage of the storage particle, is given
by the parameter combination r=5μm, a=2μm and C=10. The final
diameter of the crack after the first half cycle is approximately 8.9μm,
which corresponds to a radial extension of the crack of Δa ≈ 3.45μm.
The material behavior during the second half cycle of Li extraction is
similar to the case with crack growth in the two-dimensional geometry.
In the initial phase of Li extraction, highest tensile stress occurs at the
surface of the storage particle. The location of highest tensile stress then
switches to the crack tip, where it becomes large enough to initiate crack
growth. The transition of the location of the highest value of the maxi-
mum principal stress does not affect the graphs of the stress parameters,
plotted in FIG. 8.5, as noticeably as in the two-dimensional setting, shown
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8. Crack Growth in the Second Half Cycle

in FIG. 8.2. However, the transition is confirmed by analysis of the three-
dimensional stress distribution in contour plots during post-processing.

As soon as the critical stress for crack growth is reached, the storage
particle breaks into two almost instantly. This is marked by the sharp
drop in the stress parameters at t ≈ 0.39 τ . After breakage of the stor-
age particle, the highest tensile stress is again located at the particle
surface. Its magnitude is now slightly lower than before breakage of the
storage particle. The reduction of the tensile stress is a consequence of
the deformation of the storage particle due to the tensile stress at its
surface and the free motion of the crack faces after breakage. In order to
illustrate this effect more clearly, the deformation of the storage particle,
displayed on the left of FIG. 8.6, is scaled by a factor of 10.

Both the two- and three-dimensional simulations, as well as analytic
relations, show that crack growth during Li extraction starting from an
initial through crack in the center of the storage particle only occurs if the
crack tip is located close to the perimeter of the particle. This is typically
the case if the crack has already grown in the previous half cycle. If crack
growth occurs in the second half cycle, it is unstable and leads to breakage
of the storage particle. This also confirms the hypothesis on page 134
of section 6.2.4 that small ligaments at the surface, holding a particle
together, cannot withstand the high stress in the following half cycle.
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Figure 8.6.: (Left) Concentration c in units of maximum concentration cmax after
the storage particle has broken in two. Areas with d > 0.95 are removed
to show the location of the crack. The opening of the crack is exag-
gerated by a linear scaling of the nodal displacements. (Right) Order
parameter d at the same time step. The protruding volume marks the
region with d ≥ 0.95. The inlets show the concentration c and order
parameter d at the beginning of the second half cycle.
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8.2. Lithium Insertion with Initial Surface Crack

8.2 Lithium Insertion with Initial Surface Crack

8.2.1 Cylindrical Particles in 2D under Plane Strain

With respect to the finding from the studies on crack growth during Li
insertion and Li extraction, presented in chapter 6 and 7 respectively, it
is known that crack growth during Li insertion typically requires more
severe conditions than during Li extraction, i.e. a larger storage particle
radius and crack size and a higher C-rate. Since crack growth during Li
extraction in the second half cycle is not observed if the crack has not
undergone growth in the first half cycle of Li insertion, it is therefore
also not expected in the corresponding scenario with swapped order of
Li extraction and insertion. For this reason, we choose a parameter com-
bination that already shows crack growth during the first half cycle. The
selected combination of parameters is given by r=5μm, a=0.1μm and
C=5. The individual extension of the cracks obtained in the respective
first half cycle is Δa ≈ 3.3μm.
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Figure 8.7.: Characteristic results for Li insertion in second half cycle with r = 5μm,
a = 0.1μm and C = 5. (a) State of charge (SOC) and maximum con-
centration difference maxΔc in units of maximum concentration cmax.
(b) The highest value of the maximum principal stress maxσ1st and
maximum hydrostatic stress maxσh during Li intercalation.

From the graphs of the characteristic concentration and stress parame-
ters, plotted in FIG. 8.7, we can deduce that further crack growth does
not occur under these circumstances. The highest value of the maxi-
mum principal stress maxσ1st grows monotonically until the transition
to potentiostatic insertion is reached at t ≈ 3 τ . At this point, also
the maximum concentration difference maxΔc is largest. A drop in the
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8. Crack Growth in the Second Half Cycle

characteristic stress parameters indicating crack growth is not observ-
able. This is confirmed by analysis of the final state of the phase field,
which is identical to the initial one.
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Figure 8.8.: (Left) Concentration c in units of maximum concentration cmax in a
storage particle with r = 5μm, a = 0.1μm during Li insertion in the
second half cycle with C = 5, taken at t = 2.98 τ . (Right) The hy-
drostatic stress σh at the same time step. Areas with d > 0.95 are
removed to show the location of the crack. The opening of the crack is
exaggerated by a linear scaling of the nodal displacements.

Although the crack does not grow in the second half cycle, its presence
influences the concentration and stress evolution in a noticeable way.
This is in contrast to the investigation on Li extraction in the second
half cycle, presented in section 8.1.1, where the stress and Li concen-
tration distribution in the storage particle with initial through crack is
identical to that without any crack. The effect of the crack on the stress
and Li concentration distribution is illustrated in FIG. 8.8. We observe
that the highest tensile stress occurs at the crack tip. This tensile stress
attracts Li directly at the crack tip. However, in the material adjacent
to the crack faces close to the crack tip, Li is repulsed due to the com-
paratively low hydrostatic stress. Hence, the maximum concentration
difference close to the transition from galvanostatic to potentiostatic Li
insertion at t = τgalvano takes place between the perimeter of the stor-
age particle and the material at the crack faces close to the crack tip.
The interplay of Li diffusion and mechanical stress leads to a maximum
concentration difference maxΔc that seems to converge to a value below
one before potentiostatic insertion is reached, as shown in FIG. 8.9. The
decreasing slope of maxΔc is reflected by a slower rise of maxσ1st.
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8.2. Lithium Insertion with Initial Surface Crack
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Figure 8.9.: Magnified view on graphs shown in FIG. 8.7. (a) State of charge (SOC)
and maximum concentration difference maxΔc in units of maximum con-
centration cmax. (b) The highest value of the maximum principal stress
maxσ1st and maximum hydrostatic stress maxσh during Li intercalation.

Althoughthecritical stress requiredto initiatecrackgrowth isnotacquired,
the highest value of the maximum principal stress of maxσ1st ≈ 1.2GPa,
reached at t = τgalvano, is in the range of the typical magnitude observed
during crack growth of maxσ1st ≈ 1.68GPa, as, for example, shown in
FIG. 8.2. Hence, we expect that a slight increase of the radius of the
storageparticleor theC-rate is sufficient togenerateenoughstress to induce
further crack growth. We therefore investigate the same combination of
parameters, butwith ahigherC-rate, i.e. r=5μm, a=0.1μm andC=10.
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Figure 8.10.: Characteristic results for Li insertion in second half cycle with r = 5μm,
a = 0.1μm and C = 10. (a) State of charge (SOC) and maximum con-
centration difference maxΔc in units of maximum concentration cmax.
(b) The highest value of the maximum principal stress maxσ1st and
maximum hydrostatic stress maxσh during Li intercalation.
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8. Crack Growth in the Second Half Cycle

With respect to the graphs of the characteristic concentration and stress
parameters plotted in FIG. 8.10, we find that crack growth is initiated
and that it leads to complete breakage of the storage particle. The
incident of particle breakage can be observed by the sharp drop in the
graphs of the stress parameters at t ≈ 0.78 τ . As in the study on crack
growth during Li extraction in the second half cycle, the sharp decrease
of the stress parameters indicates that crack growth takes place in an
unstable way. This results from the increase of tensile stress with smaller
distance to the center of the storage particle and the decrease of material
holding the upper and lower half of the storage particle together. An
indication for the higher stress in the center is given by the larger crack
opening displacement at r′ = 0 in comparison to that at r′ = r, as
depicted in FIG. 8.11. Thus, as soon as crack growth is initiated in the
second half cycle, the particle breaks into parts.
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Figure 8.11.: (Left) Concentration c in units of maximum concentration cmax in a
storage particle with r = 5μm, a = 0.1μm during Li insertion in the
second half cycle with C = 10, shown after breakage of the storage par-
ticle. Areas with d > 0.95 are removed to show the location of the crack.
The opening of the crack is exaggerated by a linear scaling of the nodal
displacements. (Right) The order parameter d at the same time step.

8.2.2 Spherical Particles in 3D

In order to examine possible differences between the fracture behavior
of cylindrical particles under plane strain and spherical particles during
Li insertion in the second half cycle, we perform two three-dimensional
simulations. The respective starting points for the simulations are final
states of computations presented in section 7.2. As before, we commence
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8.2. Lithium Insertion with Initial Surface Crack

with a parameter combination that does not lead to crack growth in the
first half cycle. This is given by r=5μm, a=1μm and C=5. The
characteristic parameters during Li insertion are plotted in FIG. 8.12.

The graphs describing the time history of the characteristic Li concen-
tration and stress parameters are identical to those obtained in an intact
storage particle without initial crack. This is most clearly observable
from the congruent graphs of the highest value of the maximum princi-
pal and hydrostatic stress. The stress state in the center of the storage
particle, where tensile stress is largest during Li insertion, is not influ-
enced by the cracks at the surface. Hence, even though the rotational
symmetry around the vertical axis of the storage particle is broken due
to the presence of the cracks, the stress state at the center is triaxial with
equal magnitude in all directions. For this reason, the highest value of
the maximum principal and hydrostatic stress coincide with each other.
The vanishing influence of the cracks on the stress distribution results
from the purely compressive stress state in those parts of the storage
particle, where the cracks are located. Since the cracks do not extend
far enough into to particle to experience tensile stress, the cracks do not
open and the material behaves as if it was intact. This can also be ex-
plained by analytic relations of the type presented in equation (8.3).
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Figure 8.12.: Characteristic results for Li insertion in second half cycle with r = 5μm,
a = 1μm andC = 5. (a) State of charge (SOC) and maximum concentra-
tion difference maxΔc in units of maximum concentration cmax. (b) The
highest value of the maximum principal stress maxσ1st and maximum
hydrostatic stress maxσh during Li intercalation.

Next, we investigate the parameter combination r=5μm, a=1μm and
C=10. The corresponding simulation of the first half cycle is presented
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8. Crack Growth in the Second Half Cycle

in section 7.2.2 and shows crack growth with an extension ofΔa ≈ 1.6μm
of the crack front towards the center. The characteristic parameters ob-
served during Li insertion in the second half cycle are shown in FIG. 8.13.
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Figure 8.13.: Characteristic parameters during Li insertion in second half cycle with
r = 5μm, a = 1μm and C = 10. (a) SOC and maximum concentration
difference maxΔc in units of maximum concentration cmax versus time
in units of τ = r20/D0. (b) Maximum first principal stress maxσ1st
and maximum hydrostatic stress maxσh during Li intercalation.

We observe that at around t ≈ 0.84 τ , the highest value of the maximum
principal stress drops from around maxσ1st = 7.26GPa to 5.97GPa,
indicating that crack growth takes place in the second half cycle for
the selected set of parameters. The crack growth is entirely unstable
and leads to breakage of the particle into two halves, as illustrated in
FIG. 8.14. In the moment of breakage of the storage particle, the loca-
tion of the highest maximum principal stress jumps from the ring-like
crack front to two symmetrically equivalent points on the vertical sym-
metry axis of the storage particle. The distance of these points to the
center of the storage particle is approximately z ≈ 2.55μm. This leads
to a slight increase of the order parameter around the vertical symmetry
axis close to the center of the storage particle, as illustrated by the image
on the right of FIG. 8.14.

In comparison to the case with C = 5, the crack growth in the second
half cycle results from two reasons. First, a higher C-rate leads to larger
stress in the particle. And second, the crack growth during the first
half cycle has promoted the crack front further into the particle. As was
shown by the considerations on equation (8.3), the stress at the crack tip
is highly dependent on its location in the particle. We therefore attribute
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8.2. Lithium Insertion with Initial Surface Crack

the crack growth during Li insertion in the second half cycle mainly to
the extension of the crack in the first half cycle.
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Figure 8.14.: (Left) Concentration c in units of maximum concentration cmax in a
storage particle with r = 5μm, a = 1μm during Li insertion in the
second half cycle with C = 10, shown after breakage of the storage
particle. Areas with d > 0.95 are removed to show the location of the
crack. The opening of the crack is exaggerated by a linear scaling of
the nodal displacements. (Right) The order parameter d at the same
time step. The protruding volume marks the region with d ≥ 0.95.
The inlets show concentration and order parameter at the beginning
of the second half cycle.

In contrast to Li insertion in the first half cycle, where crack growth is
generally expected to result in breakage of the storage particle, either in
the first half cycle or during subsequent extraction in a second half cycle
(cf. section 8.1), extension of a surface crack during extraction is not a
sufficient indicator for subsequent particle breakage. Although the critical
conditions for growth of a surface crack are less severe, the extension
of the crack is typically smaller than that of a through crack during Li
insertion. Hence, the crack tip may come to rest in a region that does not
experience sufficiently high stress to promote further crack growth in the
following half cycle. However, if crack growth is initiated, it takes place
in an unstable way and leads to fragmentation of the particle.
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9 Lithium Diffusion at Crack

As described in the formulation of the model in chapter 2, a direct in-
fluence of the crack on the diffusion of Li within the storage particle is
neglected in this work. The presence of the crack therefore influences the
Li concentration distribution only through the modification of the hydro-
static stress. In the study on crack growth during Li insertion of chapter
6, we argue that this assumption is reasonable when the crack is closed,
so that electrolyte cannot flow into it, and when either due to reasons of
symmetry or because of the comparatively fast crack propagation, Li is
not driven to cross the crack faces. In contrast, when the crack is located
at the surface of the storage particle and opens to the surrounding, the
crack might fill with electrolyte. This is the case in the investigation on
crack growth during Li extraction, presented in chapter 7. Under these
circumstances, Li could flow into or out of the crack through transport
in the electrolyte and may intercalate or deintercalate at the crack faces.
Further, in more generic geometries of storage particles than those exam-
ined in chapter 6 and 7, the argument of symmetry does not hold since
the crack does not lie in a symmetry plane. In this scenario, the diffusion
of Li across the crack could be blocked or at least hindered.

A physically more accurate description of the Li flux at the crack faces
and the crack tip is beyond the scope of this work. Also, validation of
more elaborated assumptions is difficult if not impossible at the current
state since corresponding experimental observations are missing. How-
ever, the phase field approach for fracture provides a large flexibility1

1 In addition, the complexity to implement modifications to the balance of Li,
resulting from the diffusion at the crack, is facilitated by the staggered solution
scheme, presented in chapter 3. Since the order parameter, describing the crack,
is taken as constant during the solution of the equation for balance of Li, it is
not required to introduce new off-diagonal terms in the stiffness matrix. Hence,
for these modifications, only comparatively small adjustments in the process of
deriving the weak form, performing the linearization, and so on, is required.
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9. Lithium Diffusion at Crack

for incorporation of additional effects for Li diffusion at the crack. We
therefore discuss a small number of possible extensions in the following.

Blockage of Lithium Diffusion

An arbitrarily located crack in the interior of the storage particle, which
is not filled with electrolyte, may hamper Li diffusion perpendicular to
the crack faces in a significant way. A straight forward implementation
of this behavior could be achieved by multiplying the Li flux

J = −D0∇c+
D0Ω

Rθ
c (1− c/cmax)∇σ, (2.20)

derived in chapter 2, by a prefactor that depends on the local value of
the order parameter d, e.g. by

J̃ = [(1− d)α + dαkres]J, (9.1)

with α > 0 and kres ∈ [0, 1). As a consequence of this modification,
the Li flux is decreased at locations of non-zero order parameter, with
the relative reduction being determined by kres. This approach is equiv-
alent to a local decrease of the diffusion coefficient in the sense that
D̃ = [(1− d)α + dαkres]D0. The assumption may improve the physical
correctness of the description of Li diffusion across the crack. However,
it does not take into account that Li flux parallel to the crack faces
should not be hindered by the crack. In general, similar to grain bound-
ary diffusion in polycrystalline materials, which can dominate over lattice
diffusion at low temperatures [183], Li diffusion along the crack faces can
be different compared to the one in the bulk material. Such an effect can
be approximated by usage of the gradient of the phase field. Except for
the location of the crack tip and at possible branching points, it is ori-
entated in perpendicular direction to the crack faces. The modification
of the flux thus reads as

J̃ = (1− d)αJ+ dα(k1D+ k2(1−D))J, (9.2)

where D = (∇d ⊗ ∇d)/d2 is a tensor projecting onto the direction of
the phase field gradient. Hence, at the location of the crack, the effec-
tive diffusion coefficient can be written as D̃1 = k1d

αD0 for Li flux in
perpendicular direction to the crack faces and D̃2 = k2 d

αD0 for Li flux
parallel to the crack faces.
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9. Lithium Diffusion at Crack

Additional Flux at the Crack Face

In a similar sense as for the blockage of Li diffusion, the order parameter
d can be exploited for modeling Li diffusion in the crack by using its value
to switch between terms describing Li diffusion in the storage material
and terms related to Li transport in the electrolyte within the crack.
However, Li flux in the crack depends on several factors that require
more thorough considerations. On the one hand, the flow of electrolyte,
serving as a medium for Li transport in the crack, is influenced by, for
example, its viscosity and capillary effects related to the crack opening.
On the other hand, the diffusion of Li in the electrolyte may be modified
by the strong spatial confinement in direction perpendicular to the crack
faces. Further, the intercalation reaction at the surface of the storage
particle requires electrons to recombine with Li-ions so that the formed Li
can move into the storage particle. The supply of electrons is influenced
by the electrical conductivity of the storage material and the possible
coating on its surface. On the crack faces this might be different from
the one at the perimeter of the storage particle, for example, due to the
lack of a coating layer.

However, a first approximation can be made by assuming that Li
transport into the crack and electron conduction along the crack are
so fast that they do not limit the insertion (extraction) of Li at the
crack faces. In this case, an intercalation (deintercalation) rate of ap-
proximately equal magnitude as that on the perimeter of the storage
particle can be expected. In this scenario, Li insertion (extraction) at
the crack faces could be modeled through placement of the initial crack
in a symmetry plane of the storage particle and subsequent simulation of
one of the symmetrically equivalent halves of the storage particle. The
boundary condition at the symmetry plane would then be defined via

Ĵ(c, d) = dαJ̄(c), (9.3)

where J̄(c) is the Li flux prescribed at the perimeter of the storage parti-
cle. In this case, Li would be inserted (extracted) at the crack faces also
during growth of the crack. However, as soon as the crack begins to prop-
agate out of the symmetry plane, for example, due to crack branching,
introduction of Li flux through the crack faces would not be applicable
with this method since the crack would no longer lie at the boundary.
A more versatile approach is therefore presented in the following.
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9. Lithium Diffusion at Crack

In the formulation of the phase field model for fracture, described in sec-
tion 2.2, the method for the computation of the fracture energy in the
phase field approach was explained. In the context of equation (2.23), we
discussed that the actual crack surface is approximated by a volume in-
tegration of the crack surface density

∫
Γ(t)

dA ≈ ∫
B dV γl(d). This crack

surface density can be exploited to describe an additional Li flux through
the crack faces during the growth of cracks along arbitrary paths. In the
first introduction of the conservation of Li,

d
dt

∫
P

dV c(x, t) = −
∫
∂P

dS J(x, t) · n(x, t), (2.1)

given in section 2.1.1, possible internal sources or sinks for Li within
the storage particle were neglected. However, if a crack, that permits
a constant flux J̄0 into or out of the storage particle, is located at x ∈
Γ(t) ⊂ P, an additional term is added to the balance equation so that

d
dt

∫
P

dV c(x, t) = 2J̄0

∫
Γ(t)

dA−
∫
∂P

dS J(x, t) · n(x, t), (9.4)

where the factor 2 comes from the two faces of a crack. As for the
fracture energy, we approximate the crack surface by the integral of the
crack surface density. In addition, we write the Li flux J̄0 into the integral
to obtain

d
dt

∫
P

dV c(x, t) =

∫
P

dV 2J̄0γl(d)−
∫
∂P

dS J(x, t) · n(x, t). (9.5)

The so modified equation for the balance of Li can again be stated in
differential form as

ċ(x, t) +∇ · J(x, t) = 2J̄0γl(d), (9.6)

where the crack surface density now acts as a source or sink for Li, de-
pending on the sign of J̄0. The method of introducing an additional
flux through a suitable boundary condition, as given in equation (9.3),
is, to some extent, a special case of this approach. In order to make
this statement clearer, we integrate equation (9.3) along the boundary
S ⊂ ∂Breduced, which would coincide with the symmetry plane in the full
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9. Lithium Diffusion at Crack

geometry. Here, Breduced is the domain describing the reduced geometry,
i.e. the symmetric half of the storage particle, and ∂Breduced is the cor-
responding boundary. In addition, we assume that the Li concentration
is constant along the boundary. The total Li flux prescribed through S
is then given by

Jtotal
S = J̄0

∫
S

dAdα. (9.7)

For a vanishing length scale parameter l, the spatial transition from
d = 0 to d = 1 becomes negligible and the value of the integral on the
right hand side of equation (9.7) converges to the actual value of the
total crack surface, i.e.

lim
l→0

∫
S

dAdα =

∫
Γ(t)

dA. (9.8)

Within the restrictions of the first method, i.e. coincidence of the po-
sition of the crack with a symmetry plane of the storage particle, both
formulations are therefore identical in an asymptotic sense (l → 0).
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Figure 9.1.: (Left) Concentration c in units of maximum concentration cmax at inter-
mediate time step during Li extraction at the perimeter of the storage
particle and the crack faces with r = 5μm, a = 0.1μm and C = 5.
(Right) The hydrostatic stress σh at the same time step. Areas with
d > 0.95 are removed to show the location of the crack. The opening of
the crack is exaggerated by a linear scaling of the nodal displacements.

The modified equation for balance of Li is implemented in the finite
elements code and a small number of simulations for Li extraction are
performed to show possible consequences of the additional flux at the
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9. Lithium Diffusion at Crack

crack faces. The factor J̄0 is defined consistent to the flux applied at
the perimeter of the storage particle, as, for example, described on page
96 in chapter 6. However, as mentioned on page 23 of chapter 2, the
computation of the crack surface density γl(d) in our simulations yields
values that are slightly too large. In order to not overestimate the in-
fluence of the additional flux at the crack faces, we therefore only apply
half of J̄(c) at the crack faces.

The concentration distribution and hydrostatic stress at an interme-
diate step of crack growth during Li extraction in a storage particle with
r=5μm, a=0.1μm and C=5 is shown in FIG. 9.1. The effect of the
additional extraction is demonstrated by the lower concentration at the
crack faces close to the perimeter of the storage particle (compare, for
example, the straight isolines of the Li concentration at the cracks in
FIG. 7.6 and 7.10 of chapter 7 with the curved ones in FIG. 9.1).
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Figure 9.2.: Characteristic results during Li extraction at the perimeter of stor-
age particle and the crack faces with r = 5μm, a = 0.1μm and
C = 5. (a) State of charge (SOC) and maximum concentration dif-
ference maxΔc in units of cmax in units of maximum concentration
cmax. (b) The highest value of the maximum principal stress maxσ1st
and maximum hydrostatic stress maxσh during Li extraction.

The impact of the additional Li extraction is also visible in the time
history of the maximum concentration difference maxΔc, plotted in
FIG. 9.2 a). The corresponding graph first rises until the crack begins
to grow in an initially unstable way at t ≈ 0.5 τ . The unstable crack
propagation is further marked by the peak in the highest value of the
maximum principal stress maxσ1st in 9.2 b). Due to the short time scale
of unstable crack growth and the fast change in the hydrostatic stress
field, the maximum concentration difference then shortly drops before it
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9. Lithium Diffusion at Crack

grows again. The steeper slope of the graph of the maximum concen-
tration difference, observed after crack growth, stems from the increased
area through which Li is extracted. This leads to a more rapid drop of
the Li concentration, in particular close to the location at the perime-
ter of the storage particle where the initial cracks are introduced. The
higher total rate at which Li is extracted also leads to higher stress in the
particle. This is reflected by the larger final crack extension during Li
extraction with additional flux through the crack faces (Δa ≈ 3.50μm)
in comparison to that without additional flux (Δa ≈ 3.23μm).

Increasing the C-rate to C = 10, the extraction of Li at the crack
faces leads to more drastic consequences on the final crack geometry. As
shown in FIG. 9.3, the additional Li extraction generates a significant
gradient in the Li concentration close to the crack tip. This gradient gen-
erates sufficient mechanical stress to induce crack branching. The new
branches then propagate towards the perimeter of the storage particle in
almost perfectly perpendicular orientation with respect to the prior di-
rection of crack growth. In contrast to the study on crack growth during
Li insertion in chapter 6, this branching is not caused by inertia effects
but results solely from the distribution of mechanical stress induced by
the inhomogeneous Li concentration.
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Figure 9.3.: Concentration c in units of maximum concentration cmax for different
times during Li extraction at the perimeter of the storage particle and
the crack faces with r = 5μm, a = 0.1μm and C = 10. Times are
given in units of τ = r20/D0. Areas with d > 0.95 are removed to show
the location of the crack. In addition, the geometry is scaled using the
nodal displacement values.

Due to the deep penetration length of the cracks into the storage parti-
cle and because of the crack branching in its interior, the particle may

187



9. Lithium Diffusion at Crack

become too fragile to withstand the stress generated in the next half cy-
cle during Li insertion and break. However, we observe that this in not
the case if the boundary conditions are applied in the same way during
Li insertion in the second half cycle. This is shown by contour plots of
the resulting Li concentration in FIG. 9.4. Although the total rate of Li
insertion is faster due to the additional Li insertion at the crack faces,
the difference of the Li concentration between outer and inner parts of
the particle is smaller because Li is also inserted close to the center of
the storage particle. As a consequence, the mechanical stress resulting
from the inhomogeneous Li concentration distribution does not acquire
sufficiently large magnitudes to induce further crack growth.
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Figure 9.4.: Concentration c in units of maximum concentration cmax during Li in-
sertion in the second half cycle of the storage particle shown in FIG. 9.3.
Times are given in units of τ = r20/D0. Areas with d > 0.95 are re-
moved to show the location of the crack. In addition, the geometry is
scaled using the nodal displacement values.

Comparison of FIG. 9.3 and 9.4 also gives an indication of the crack
opening due to the different stress fields during extraction and inser-
tion of Li. In FIG. 9.3, the cracks are under tensile stress, which is
reflected by the larger crack opening. In contrast, during Li insertion,
the mechanical stress is mainly compressive at the location of the cracks.
Hence, the cracks do not open. As a result, it is doubtful whether the
cracks are filled by electrolyte so that Li can be inserted through the
crack faces. A more elaborate description of Li diffusion into and along
the crack becomes necessary. This is not pursued in this work.
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10 Conclusion

A coupled model of Li diffusion, mechanical stress and crack growth is
presented using a phase field method for fracture. The approach allows
the study of the behavior of Li diffusion and crack growth, as well as
their mutual interaction, in a simultaneous fashion. Due to the numerical
complexity of the problem, the system is implemented in an elaborate
computer algorithm.

The solution approach, as well as implementation details, are pre-
sented and the phase field method for crack growth is compared with
relations from fracture mechanics. We find that results of the phase field
simulations are in very good agreement if the involved length scale pa-
rameter is small and the initial crack is induced as a heterogeneity in
the phase field through an initially non-zero history field. Under these
conditions the phase field method is assessed as a suitable approach to
study crack growth coupled to the diffusion of Li in storage particles.
We therefore apply the model to investigate crack growth during Li in-
sertion and extraction, as well as in the second half cycle with opposite
direction of the applied flux.

Crack growth starting at the interior of a storage particle during in-
sertion of Li is highly influenced by inertia effects due to the strongly
unstable manner of crack propagation. Although material properties are
assumed to provide a setting that is as simple as possible, i.e. without
taking into account, for example, crystallographic planes, non-isotropic
diffusion, phase changes, and much more, the interplay of Li diffusion and
fracture, as well as the resulting crack topologies, become rather complex.

The comparison between two and three dimensional computations re-
veals a number of similarities, e.g. the fundamental dependencies on
particle and crack size and the behavior of characteristic stresses and
concentrations. At the same time, results of 3D simulations become
more intricate due to the additional direction possible for high compo-

189



10. Conclusion

nents of stress. We observe, that although one crack may run through
almost the whole particle, it might not relieve sufficient stress in other
directions to avoid additional cracks from growing.

We find, that growth of an initial crack in the interior of the particle
can lead to breakage of the particle in only one insertion half cycle.
Depending on the nature of crack branching, the particle may thereby
be fragmented into several parts. These effects are most pronounced for
large particles, high C-rates and small crack sizes.

When the initial precrack is comparatively large, the crack does not
penetrate to the perimeter and a short regime of stable crack growth
typically follows the initially unstable extension. However, the thin, re-
maining ligaments, joining the different parts, are believed to fail in a
subsequent extraction half cycle. This is confirmed by exemplary simu-
lations of the subsequent extraction half cycle.

Growth of an initial surface crack during Li extraction is found to
occur under less severe conditions than during insertion, i.e. in smaller
storage particles or with slower Li extraction. For the most part, cracks
grow in a stable way towards the particle interior and come to rest with
their tip at some distance from the center. Depending on the C-rate,
particle radius and initial crack size, a phase of unstable crack growth
may precede the stable regime.

This remains true in a three-dimensional spherical particle. However,
in comparison to the two-dimensional geometry, the crack first grows
in an unstable fashion along the surface and then penetrates in a ring-
like shape into the particle. The symmetry and geometry of the par-
ticle are found to be more decisive on the final crack shape than the
initial crack form.

Breakage of the particle during a single extraction half cycle is not
observed. However, in most of the simulations showing crack growth, the
final location of the crack tip is situated at a radius that would experience
tensile stress in a subsequent half cycle of Li insertion. We confirm
the occurrence of crack growth and storage particle fragmentation in
simulations of the second half cycle.

From this we conclude that particle breakage both occurs in a single
step, i.e. within one half cycle, or in a process of two or many steps, even
without taking into account additional fatigue mechanisms that might
pile up during cycling. These findings are expected to hold in a similar
way for more elaborate material descriptions such as, for example, those
taking into account phase transformations.
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A Appendix

A.1 Non-Dimensionalization

The coupled system of partial differential equations, shown in FIG. 2.2
requires a set of material parameters. These parameters determine the
ratio in magnitude of different physical effects, e.g. the ratio between
chemically induced and mechanically driven Li flux. However, as ex-
plained why the Buckingham π-theorem in chapter 6, they do not de-
scribe a fully independent set, in the sense that the described physical
problem only depends on a subclass of combinations of the parameters.
To some extent the parameters therefore only scale the corresponding
equations. For example, the conservation of linear momentum in a
static situation, i.e. ∇ · σ = 0, is independent of Young’s modulus E
if the boundary conditions are of Dirichlet type, i.e. with prescribed
displacements. As a matter of fact, the resulting stress in the material
is not independent from E. However, in order to find a solution for the
displacement field u, the value of E is not required. Indeed, in a numer-
ical implementation, it is generally recommended to avoid scaling of the
equations by material parameters since they can lead to larger numeri-
cal errors, when prefactors are very small or large. Further, numerical
parameters, e.g. absolute convergence thresholds, have to be adjusted if
the corresponding equations scale with a factor.

For this reason, we implement the boundary value problem in a non-
dimensionalized form. As mentioned in chapter 6, there is some degree of
freedom in the choice of the non-dimensionalized parameters. In contrast
to [167], our choice is not based on physical arguments, but on simple
substitution rules for a straight-forward numerical implementation.

We begin with the balance of Li given in (2.3). The Li concentration
c ranges from 0 to cmax in our model. To keep numbers close to 1, it is
therefore reasonable to express c in terms of cmax. The spatial gradient
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and the time derivative introduce two dimensions that are scaled by the
characteristic length r0, e.g. the radius of a particle, and time τ = r20/D0.
The substitution rules thus read

c �→ ĉ =
c

cmax
, t �→ t̂ = t

D0

r20
, ∂t �→ ∂t̂ =

∂t

∂t̂
∂t =

r20
D0

∂t,

J �→ Ĵ = J
r0

D0cmax
, x �→ x̂ =

x

r0
∇x �→ ∇x̂ =

∂x

∂x̂
∇x = r0∇x,

(A.1)

where the replacement of the flux J follows for reasons of consistency.
The balance of Li then reads

∂t̂ĉ+∇x̂Ĵ = 0. (A.2)

Boundary conditions, such as an applied flux at the boundary must be
given in the same form, i.e.

J̄ �→ ˆ̄J = J̄ r0/(D0cmax). (A.3)

In contrast to the material parameters, which are taken from the litera-
ture for LiMn2O4, the characteristic length is fixed to r0 = 1μm.

Applying the rules to the definition of the flux (2.20) leaves a last free
choice on how to substitute the material parameters. We wish to keep
the non-dimensionality of the product describing volume changes due to
Li, Ωc, and define the molar volume Ω in reciprocal units of cmax. Again,
to maintain consistency, this yields a set of new replacement rules

Ω �→ Ω̂ = Ω cmax, σ �→ σ̂ =
σ

Rθ/Ω
, L �→ L̂ =

L

Rθ/Ω
,

G′ �→ Ĝ′ =
G′

Rθ/Ω
, ν �→ ν̂ = ν, E �→ Ê =

E

Rθ/Ω
. (A.4)

To avoid confusion, we emphasize that G′ is the shear modulus and not
the energy release rate. The same substitution rule for the stress and the
elastic parameters results from the non-dimensionality of the strain ε

u �→ û = u/r0,

ε �→ ε̂ = sym[∇x̂û] = sym[r0∇xu/r0] = sym[∇xu] = ε. (A.5)
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The non-dimensionalized flux then reads

Ĵ = −∇x̂ĉ+ ĉ(1− ĉ)∇x̂σ̂h. (A.6)

In the same way, we proceed with the conservation of linear momentum
in equation (2.7) to receive

ρ̂ ∂t̂v̂ = ∇x̂ · σ̂, (A.7)

with the substituted density and velocity given by

ρ �→ ρ̂ = ρ
D2

0

r20

Ω

Rθ
, v �→ v̂ =

r0
D0

v, v̇ �→ ∂t̂v̂ =
r30
D2

0

v̇. (A.8)

The replacement rules for the elastic parameters apply in the same way
for all kinds of energies, so that with

ψ �→ ψ̂ =
ψ

Rθ/Ω
, H �→ Ĥ =

H
Rθ/Ω

,

l �→ � = l/r0, Gc �→ Ĝc =
Gc

r0Rθ/Ω
, (A.9)

the evolution equation of the phase field (2.29) takes the form

Ĝc

�

[
d− �2∇2

x̂d
]
= 2(1− d)Ĥ. (A.10)

A.2 Exact Decomposition of Elastic Energy Density

In order to demonstrate that the decomposition of the elastic energy,
introduced in equation (2.27), is exact in the sense that, with vanishing
order parameter, i.e. d = 0, and neglecting the numerical parameter
k, the sum of tensile and compressive parts yields the ordinary tensile
energy, as defined by

ψ(ε) =
1

2
L(tr[ε])2 +G′tr[ε2], (A.11)
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we add up the compressive and tensile part of the decomposed energy by

ψ+(ε) + ψ−(ε) =
1

2
L〈tr[ε]〉2+ +G′tr[〈ε〉2+] +

1

2
L〈tr[ε]〉2− +G′tr[〈ε〉2−].

(A.12)
Next, we rearrange the terms to receive

ψ+(ε) + ψ−(ε) =
1

2
L
(〈tr[ε]〉2+ + 〈tr[ε]〉2−

)
+G′

(
tr[〈ε〉2+] + tr[〈ε〉2−]

)
.

(A.13)
For the volumetric parts, we express the trace operator in terms of the
eigenvalues, which yields

〈tr[ε]〉2++〈tr[ε]〉2− = 〈
∑
i

λi〉2++〈
∑
i

λi〉2− = (
∑
i

λi)
2 = (tr[ε])2. (A.14)

We proceed in the same way for the deviatoric part

tr[〈ε〉2+] + tr[〈ε〉2−] = tr[〈
∑
i

λiηi〉2+] + tr[〈
∑
i

λiηi〉2−]

= tr[(
∑
i

〈λi〉+ηi)
2] + tr[(

∑
i

〈λi〉−ηi)
2]

= tr[(
∑
i

〈λi〉2+ηi)] + tr[(
∑
i

〈λi〉2−ηi)]

=
∑
i

〈λi〉2+ +
∑
i

〈λi〉2−

=
∑
i

λ2
i , (A.15)

where we use the representation of ε in terms of its eigenvectors and
eigenprojectors and the definition of the bracket operators, as well as
the one for powers of a matrix. We express the result again in a different
way by ∑

i

λ2
i = tr[(

∑
i

λ2
iηi)] = tr[ε2]. (A.16)

Inserting equations (A.14-A.16) into equation (A.13) then yields

ψ+(ε) + ψ−(ε) =
1

2
L(tr[ε])2 +G′tr[ε2] = ψ(ε). (A.17)
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A.3 Cauchy Stress Tensor for Spectrally
Decomposed Strain

Defined as the derivative of the free energy with respect to the full strain,
we calculate the stress tensor as

σ =
∂

∂ε
ψmech(ε, c) = [g(d) + k]

∂

∂ε
ψ+

intact(ε, c) +
∂

∂ε
ψ−intact(ε, c), (A.18)

with

∂

∂ε
ψ±intact(ε, c) = L〈tr[ε− εLi]〉±1+ 2G′〈ε− εLi〉±. (A.19)

For the first term, we used

∂

∂ε
tr2[ε− εLi] =

∂tr2[ε− εLi]

∂tr[ε− εLi]

∂tr[ε− εLi]

∂ε
= 2tr[ε− εLi]1, (A.20)

and for the second term

∂

∂ε
tr[〈ε− εLi〉2] = ∂

∂ε

∑
i

〈λ̃i〉2±

= 2
∑
i

〈λ̃i〉± ∂

∂ε
〈λ̃i〉±

= 2
∑
i

〈λ̃i〉±η̃(i)

= 2〈ε− εLi〉±. (A.21)

In the second last step, we have exploited a relationship between the
derivative of an eigenvalue with respect to the related tensor and the
corresponding eigenspace projection operator, see Lemma 2 below.

Lemma 1

If Φ is isotropic, then
∂Φ

∂ε
=

∑
i

∂Φ

∂λi
η(i).
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Prove: If Φ is isotropic, one can use the three invariants

αj = j−1trεj , with j = 1, 2, 3

to express the dependence of Φ on the strain tensor by

Φ(ε) = Φ(α1, α2, α3).

For the derivative of Φ we then use the chain rule

∂Φ

∂ε
=

∑
j

∂Φ

∂αj

∂αj

∂ε
=

∑
j

∂Φ

∂αj
εj−1.

The last step becomes clear by applying j times ∂
∂A tr[AB] = Bt or

∂
∂aij

tr[AB] = ∂
∂aij

∑
lm almbml = bji with A = ε and B = Bt = εj−1.

To close the prove, we use the spectral decomposition

εj−1 =
∑
i

λj−1
i η(i),

as well as the dependance of the three invariants on the eigenvalues

αj = j−1
∑
i

λj
i ,

which gives us the derivatives

∂αj

∂λi
= λj−1

i .

Putting everything together, we receive

∂Φ

∂ε
=

∑
j

∂Φ

∂αj
εj−1

=
∑
i

∑
j

∂Φ

∂αj
λj−1
i η(i)

=
∑
i

∑
j

∂Φ

∂αj

∂αj

∂λi
η(i)

=
∑
i

∂Φ

∂λi
η(i).
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Lemma 2

If λi is an eigenvalue of ε, then

∂λi

∂ε
= η(i).

Since an eigenvalue is an objective quantity, it can be expressed by the
three invariants of Lemma 1. This can be shown explicitly in a few steps.
Hence, λi fulfills the required properties of Φ in Lemma 1. We therefore
set Φ = λi and confirm the above statement by using ∂λi

∂λj
= δij .
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Fracture of storage particles is considered to be one of the major reasons for 
capacity fade and increasing power loss in many commercial lithium-ion batteries 
due to emergent effects such as the growth of a solid electrolyte interface, loss 
of contact in conductive pathways or complete disintegration of the electrode. 
The appearance of fracture and cracks in the particles is commonly ascribed to 
mechanical stress, which evolves from inhomogeneous swelling and shrinkage of 
the material when lithium is inserted or extracted.  
In this work, we tackle the problem of fracture in storage particles by merging 
a coupled model of mechanical stress and diffusion of Li-ions with a phase field 
description of an evolving crack. The novel approach allows us to simultaneously 
study the evolution of the Lithium concentration together with the initiation and 
growth of a crack in an arbitrary geometry, in two and three dimensions, and 
without presuming a specific crack path. 
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