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Abstract

We consider biperiodic integral equations of the second kind with weakly singular ker-
nels such as they arise in boundary integral equation methods. The equations are solved
numerically using a collocation scheme based on trigonometric polynomials. The weak
singularity is removed by a local change to polar coordinates. The resulting operators
have smooth kernels and are discretized using the tensor product composite trapezodial
rule. We prove stability and convergence of the scheme under suitable parameter choices,
achieving algebraic convergence of any order under appropriate regularity assumptions.
The method can be applied to typical boundary value problems such as potential and
scattering problems both for bounded obstacles and for periodic surfaces. We present
numerical results demonstrating that the expected convergence rates can be observed in
practice.

Keywords: numerical methods for integral equations, collocation method, super-
algebraic convergence rate, Laplace equation, Helmholtz equation

AMS-Classification: 65R20

1 Introduction

The boundary integral equation method for either an interior or an exterior boundary value
problem for an elliptic partial differential equation such as Laplace’s equation or the Helmholtz
equation consists in reformulating the problem equivalently as a boundary integral equation

λϕ(x)−
∫
∂D

K(x, y)ϕ(y) ds(y) = ψ(x) , x ∈ ∂D . (1)

This approach has attracted continuous interest over the past decades, in particular for exterior
problems. Projection methods, both of collocation and Galerkin type are the most popular
numerical solution techniques. Matrix compression schemes such as the Fast Multipole Method
or H-Matrix calculus have played an important part, keeping the overall complexity of such
approaches comparable to Finite Element Methods applied to the original boundary value
problem. It is state of the art to achieve low algebraic convergence orders with linearly or
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close to linearly growing operation count and memory requirement. On the other hand, for
two-dimensional problems, based on original work by Kussmaul [12] and Martensen, Nyström
methods can be applied that achieve exponential convergence rates at a O(N2) operation
count. At least for smooth, globally parametrizable boundaries, such methods are particularly
easy to implement. They involve only the composite trapezoidal rule and a second quadrature
rule for the singularity with the same quadrature points and weights given by a simple formula.

It is not so easy to achieve a comparable result in 3D: The singularity in the kernels not
only depends on distance from the singular point but also on the direction from which this
point is approached. This makes it hard to find a quadrature rule with the points of a
composite trapezoidal rule that achieves high order convergence. For the case of an integral
equation of the second kind, i.e. (1) with λ = 1, which we will also consider throughout
the paper, a successfull approach was suggested in the doctoral thesis of Wienert [14]. It
is limited to smooth surfaces globally parametrizable over a sphere, and in a nutshell, the
method consists of applying a Galerkin method using spherical harmonics. By a rotation of
the parametrization sphere, the singularity can be removed by transforming the integral. A
full convergence analysis was given later in [8, 9].

A different approach was suggested by Bruno and Kunyanski in the papers [5,6]. Let us assume
for simplicity that ∂D can be globally parametrized by a map η : Q = (−π, π)2 → ∂D. This
gives rise to an integral equation

ϕ(t)−
∫
Q

k(t, τ)ϕ(τ) dτ = ψ(t) , t ∈ Q . (2)

Using a cut-off function χ with χ(t) = 0 for |t| ≥ %, the singularity is isolated,

ϕ(t)−
∫
Q

k(t, τ)χ(τ − t)ϕ(τ) dτ +

∫
Q

k(t, τ) (1− χ(τ − t))ϕ(τ) dτ = ψ(t) (3)

for t ∈ Q. A transformation of the first integral in polar coordinates centered on t removes the
singularity, making all integrals computable to high order by the composite trapezoidal rule.
The integral equation is solved numerically by a Nyström method. Although the initial idea is
rather simple, there are a number of technicalities to be addressed in the implementation. The
original papers give some numerical results, however no stability or convergence analysis was
included relating achievable convergence rates to the overall complexity of the algorithm. Over
the past decade, there have been some contributions to closing this gap: In his thesis [10],
Heinemeyer related the approach to the method of locally corrected weights as proposed
by [7]. He was able to prove point-wise convergence of the discrete operators with super-
algebraic convergence rates but did not give a convergence rate of the overall scheme. The
most complete analysis is given in [4], but the authors limit themselves to only considering
scattering problems rather than more general boundary integral equations.

An alternative approach to [5, 6] was taken by one of the authors of this paper in [1], in
interpreting the scheme as a collocation method based on trigonometric polynomials rather
than a Nyström method. Instead of applying a heuristic approach to obtain approximate
density values in the polar coordinate grid points, the scheme evaluates the trigonometric
polynomials in these points exactly. Stability and a super-algebraic convergence rate at a
computational complexity quadratic in the number of unknowns were shown for a semi-discrete
scheme. However, the implementation of a fully discrete scheme leads to a much less favorable
complexity estimate.
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In the present paper, we improve the scheme of [1], with an emphasis on reducing the overall
complexity. This involves coupling the choice of %, the parameter characterizing the size of
the support of χ in (3), to the total number of unknowns. The main work lies in explicitly
deriving the dependence of constants in stability and convergence estimates on %.

Before we start with this analysis, we give some basic facts on Sobolev spaces of biperiodic
functions and on interpolation by trigonometric polynomials in such spaces in Section 2. The
main analytical results are all contained in Section 3. We analyse the mapping properties of
the integral operators and their discrete approximations. The main results are Theorems 3.11
and 3.12 establishing stability and convergence of the overall scheme with % coupled to the
grid size h. Assuming that the transformed kernel functions are infinitely often continuously
differentiable, any algebraic convergence rate is achieved.

In Section 4, we consider three different applications for the solver in the context of boundary
integral equations: an interior boundary value problem for Laplace’s equation, a scattering
problem for a bounded object and a scattering problem for a periodic surface. Numerical
results are presented in Section 5.

Let us emphasize that the present work only represents an intermediate step on the way to
a complete solution strategy: Firstly, we consider only a single integral equation limiting
ourselves to relatively simple settings and geometries. Even though the extension to systems
is relatively straight-forward, it did not seem feasible to include this material into the present
paper. Moreover, we focus only on questions of stability and convergence rates for the full
linear system with the critical issue being the analysis of approximating the weakly singular
integral operator. Schemes as considered here have to compete against simpler strategies
which just remove the singularity. As shown in [3], such a strategy can achieve 4th order
convergence by neglecting the singularity in a clever way.

For a full solution strategy, the question of approximating the matrix representing the integral
operator with a smooth kernel by possibly a block-wise low-rank matrix needs to be addressed
as well. The question of how to achieve this while maintaining the overall high convergence
rate will be the subject of furture research.

2 Periodic Sobolev Spaces and Interpolation

The numerical method introduced in this paper is applicable to weakly singular integral oper-
ators with kernel functions that are biperiodic with respect to both arguments. We will make
the notion precise: Set Q = (−π, π)2. We call a function u : R2 → C Q-periodic if

u(t) = u(t1 + 2ν1π, t2 + 2ν2π), t = (t1, t2)> ∈ R2, ν = (ν1, ν2)> ∈ Z2 .

Particular examples of Q-periodic functions are the trigonometric monomials,

T (ν)(t) =
1

2π
exp (i ν · t) , t ∈ R2 , ν ∈ Z2 .

The trigonometric monomials span spaces of trigonometric polynomials TN = span{T (ν) : ν ∈
Z2
N} where N = (N1, N2) ∈ N2 and Z2

N = {µ ∈ Z2 : −N1 < µ1 ≤ N1, −N2 < µ2 ≤ N2}. They
also form a complete orthonormal system in L2(Q), i.e. every u ∈ L2(Q) can be expanded
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into a Fourier series
u =

∑
ν∈Z2

uν T
(ν) .

The Fourier coefficients uν are given by

uν =
(
u, T (ν)

)
L2(Q)

=

∫
Q

u(t)T (−ν)(t) dt , ν ∈ Z2 .

Definition 2.1 Let s ≥ 0, Q as above. The Sobolev space Hs
Q is given by

Hs
Q = {u ∈ L2(Q) :

∑
ν∈Z2

(1 + |ν|2)s |uν |2 <∞}

with the inner product (u, v)Hs
Q

=
∑
ν∈Z2

(1 + |ν|2)s uν vν and norm ‖u‖Hs
Q

= (u, u)
1/2
Hs
Q

.

The 1D analogue of Hs
Q has been studied in depth in [11] and [13], the latter reference also

containing some results on multivariate functions. We remark that Hs
Q is a Hilbert space. For

s = 0, there holds Hs
Q = L2(Q). For s > 1, by Sobolev’s imbedding theorem, Hs

Q is compactly
imbedded in (Cper, ‖ · ‖∞), the space of Q-periodic continuous functions with the maximum
norm. It makes sense, then, to introduce an operator for interpolation by trigonometric
polynomials. We introduce a grid of interpolation points on Q, setting

tNµ = (tNµ,1, t
N
µ,2)> =

(
µ1 π

N1

,
µ2 π

N2

)>
, µ ∈ Z2

N .

Lemma 2.2 (Lemma 5.1 in [1]) Suppose that s > 1 and 0 ≤ σ ≤ s. Given u ∈ Hs
Q, for

every N ∈ N2, there is a unique interpolation polynomial PNu ∈ TN such that

u(tNµ ) = PNu(tNµ ) , µ ∈ Z2
N .

The linear operator PN : Hs
Q → Hσ

Q is bounded with

‖PNu− u‖Hσ
Q
≤ C

(max{N1, N2})σ

(min{N1, N2})s
‖u‖Hs

Q
,

where C > 0 is a constant depending on σ and s.

An alternative way to express the interpolation operator is using the Lagrange basis represen-
tation,

PNu =
∑
µ∈Z2

N

u(tNµ )LNµ , (4)

with the Lagrange basis functions given by

LNµ (t) =
π

2N1N2

∑
ν∈Z2

N

T (ν)(t− tNµ ) , t ∈ R2 .
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For t ∈ Q \ {tNµ }, there also holds the expression

LNµ (t) =
1

4N1N2

2∏
j=1

sin
(
Nj (tj − tNµ,j)

) [
i + cot

tj − tNµ,j
2

]
.

This follows from the corresponding one-dimensional result in [11, Section 11.3] with some
obvious modifications due to a slightly different choice of the space TN .

Lemma 2.3 The set {LNµ : µ ∈ Z2
N} is an orthogonal basis of (TN , ‖ · ‖L2(Q)) with

(
LNµ , L

N
α

)
L2(S)

=
π2

N1N2

δα,µ , µ, α ∈ Z2
N .

Proof: From PN(TN) = TN and (4) it follows, that TN = span{LNµ : µ ∈ Z2
N}. Moreover,

(LNµ , L
N
α )L2(Q) =

π2

4N2
1 N

2
2

∑
ν,ι∈Z2

N

(
T (ν)(· − tNµ ), T (ι)(· − tNα )

)
L2(Q)

=
(π2)2

N2
1 N

2
2

∑
ν,ι∈Z2

N

(
T (ν), T (ι)

)
L2(Q)

T (ι)(tNα )T (ν)(−tNµ )

=
π3

2N2
1 N

2
2

∑
ν∈Z2

N

T (ν)(tNα − tNµ ) =
π2

N1N2

LNµ (tNα ) =
π2 δα,µ
N1N2

.

In some instances, products of functions from Hs
Q with smooth functions occur. For m ∈ N0

and ψ ∈ Cm
per, we set

‖ψ‖∞;m := sup
t∈Q
|ψ(t)|+ max

|β|=m
sup
t∈Q
|∂βψ(t)|.

Lemma 2.4 Let s ≥ 0 and σ ∈ N≥s. Suppose ϕ ∈ Hs
Q and let ψ ∈ Cσ

per. Then ψϕ ∈ Hs
Q and

‖ψϕ‖Hs
Q
≤ C‖ψ‖∞;σ‖ϕ‖Hs

Q
,

where the constant C > 0 is independent of ϕ and ψ.

Proof: The assertion follows from the equivalence of the norm ‖ · ‖Hs
Q

with the Sobolev-

Slobodeckǐı norm (see [11, Section 11.3] for a detailed exposition in 1D).

In particular, we are interested in an estimate of this kind when the smooth factor is a
trigonometric monomial.

Lemma 2.5 Let σ ∈ N. Then ‖T (µ)‖∞;σ ≤ 1
2π

(
1 + |µ|σ

)
for all µ ∈ Z2.

Proof: Let β ∈ N2
0 with |β| = σ. Then, for µ ∈ Z2 and t ∈ Q,

∂βT (µ)(t) = i|β| µβ11 µβ22 T (µ)(t),
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and hence ∣∣∂βT (µ)(t)
∣∣ ≤ |µ1|β1 |µ2|β2

2π
≤ |µ|

|β|
∞

2π
.

Since |µ|∞ ≤ |µ|, we finally obtain

‖T (µ)‖∞;σ ≤
1

2π
(1 + |µ|σ) .

In the later analysis, functions which are Q-periodic with respect to several independent
variables will occur. Such functions can be expanded into a Fourier series with respect to
one of these variables. The behaviour of the Fourier coefficients in such expansions will be of
importance.

Lemma 2.6 Let F ∈ C∞(R2 × R2) be Q-periodic with respect to both arguments. Then

F (t, τ) =
∑
λ∈Z2

F (λ)(t)T (λ)(τ), t, τ ∈ R2,

holds pointwise, where (F (λ))λ∈Z2 ⊆ C∞per. Moreover, for any m ∈ N0 and any multi-index
β ∈ N2

0 there exists a constant C > 0 such that

sup
λ∈Z2

sup
t∈R2

(
1 + |λ|2

)m |∂βF (λ)(t)| ≤ C ‖F‖∞;|β|+2m .

Proof: The series representation of F in the lemma is obtained by expanding F into a
Fourier series with respect to the second argument; here pointwise convergence holds due to
the smoothness of F (t, ·) for all t ∈ R2. In particular, we have

F (λ)(t) =

∫
Q

F (t, τ)T (−λ)(τ) dτ, λ ∈ Z2, t ∈ R2,

and well-known facts about parameter-dependent integrals yield F (λ) ∈ C∞per. Furthermore,

|∂βF (λ)(t)| ≤ 2π ‖F‖∞;|β| , t ∈ R2, β ∈ N2
0 .

Now, let m ∈ N0. In the remainder of the proof, we make use of the estimate,(
1 + |λ|2

)m ≤ 2m
(
1 + |λ|2m

)
, for all λ ∈ Z2,

and the identity

|λ|2m =
m∑
k=0

(
m
k

)
λ2k

1 λ
2(m−k)
2 =

∑
α∈N2

0:|α|=m

m!
α1!α2!

λ2α1
1 λ2α2

2 .

Let λ ∈ Z2, t ∈ R2, β ∈ N2
0 and α ∈ N2

0 with |α| = m. Then

m!
α1!α2!

λ2α1
1 λ2α2

2

∣∣∂βF (λ)(t)
∣∣

= m!
α1!α2!

∣∣∣ ∫
Q

∂βt F (t, τ)
(
− i
)2|α|

λ2α1
1 λ2α2

2 T (−λ)(τ)︸ ︷︷ ︸
=∂(2α1,2α2)T (−λ)(τ)

dτ
∣∣∣
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= m!
α1!α2!

∣∣∣ ∫
Q

∂βt ∂
(2α1,2α2)
τ F (t, τ)T (−λ)(τ) dτ

∣∣∣ ≤ 2π m!
α1!α2!

‖F‖∞;|β|+2m ,

where we used integration by parts in the third line. Hence,

|λ|2m
∣∣∂βF (λ)(t)

∣∣ =
∑
|α|=m

m!
α1!α2!

λ2α1
1 λ2α2

2

∣∣∂βF (λ)(t)
∣∣

≤ 2π ‖F‖∞;|β|+2m

∑
|α|=m

m!
α1!α2!

= 2m+1 π ‖F‖∞;|β|+2m .

From these we obtain(
1 + |λ|2

)m∣∣∂βF (λ)(t)
∣∣ ≤ 2m

(
1 + |λ|2m

)∣∣∂βF (λ)(t)
∣∣
≤ 2m+1π

(
‖F‖∞;|β| + 2m ‖F‖∞;|β|+2m

)
.

Since λ ∈ Z2 and t ∈ R2 were chosen arbitrarily, the proof is completed by observing the
boundedness of the imbedding of C

|β|+2m
per into C

|β|
per.

3 The Approach for a Single Biperiodic Integral Equa-

tion

We now return to considering the integral equation (2). We will impose the following assump-
tions on the kernel function and the right hand side:

Assumption 3.1 The kernel function has the representation k = k1+k2, where k2 ∈ C∞(R2×
R2) and Q-periodic with respect to both variables while k1 is Q-periodic with respect to both
arguments and k1 ∈ C∞(Q × Q \ {(t, t) : t ∈ Q}). Moreover, for every multi-index α ∈ N2

0,
the estimate

|∂αk1(t, τ)| ≤ C

minν∈Z2 |t− τ − 2π ν|1+|α| , t, τ ∈ R2 ,

is satisfied.

For some 0 < %0 < π, setting `(t, r, v) = |r| k1(t, t + rv), t ∈ Q, r ∈ [−%0, %0], v ∈ S1, we
assume that ` ∈ C∞(Q× [−%0, %0]× S1).

We also assume ψ ∈ Hs
Q.

Hence, k1 is assumed to be weakly singular, but with a special type of singularity that can be
removed by a transformation to polar coordinates around the singularity. In particular, many
boundary integral operators exhibit this type of singularity, as will be discussed in Section 4.

To make use of the assumption in the numerical method, we require appropriate cut off
functions. For 0 < δ < ε < π define

χδ,ε(τ) =


1 , |τ | ≤ δ ,

χ̃
(
ε−|τ |
ε−δ

)
, δ < |τ | < ε ,

0 , τ ∈ Q, |τ | ≥ ε ,
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with

χ̃(s) =
e−1/s

e−1/s + e−1/(1−s) , s ∈ (0, 1) .

On all of R2, χδ,ε is assumed to be Q-periodic. Furthermore, an argument by induction shows
that for any α ∈ N2

0 with |α| = m,

∂αχδ,ε(τ) =
m∑
`=1

pα` (τ)

(δ − ε)` |τ |2m−`
χ̃(`)

(
ε− |τ |
ε− δ

)
,

where pα` are either homogeneous polynomials of degree m or the zero function. From this
representation, we obtain the estimate

|∂αχδ,ε(t)| ≤ Cα

m∑
`=1

εm

δ2m−` (ε− δ)`
, t ∈ R2 . (5)

Usually, we will fix numbers 0 < δ1 < δ2 and 0 < % < π/δ2 and consider χδ1%,δ2%. In this case,
(5) simplifies to

|∂αχδ1%,δ2%(t)| ≤ Cα,δ1,δ2 %
−m , (6)

with a constant Cα,δ1,δ2 independent of %.

With the help of these cut-off functions, the integral operator from (2) can be split into a
weakly singular operator localized around the singularity and a globally acting operator with
a smooth kernel. Fixing numbers 0 < ε1 < ε2 < 1 and 0 < % < %0, we write∫

Q

k(t, τ)ϕ(τ) dτ

=

∫
Q

k1(t, τ)χε1%,ε2%(τ − t)ϕ(τ) dτ

+

∫
Q

[k1(t, τ) (1− χε1%,ε2%(τ − t)) + k2(t, τ)]ϕ(τ) dτ

=

∫
Q

k1(t, τ)χε1%,ε2%(τ − t)χε2%,%(τ − t)ϕ(τ) dτ

+

∫
Q

[k1(t, τ) (1− χε1%,ε2%(τ − t)) + k2(t, τ)]ϕ(τ) dτ .

Note that at this point, χε2%,% serves no purpose as it is identical to one on the support of
χε1%,ε2%. Its significance will become clear later when we discuss approximations of the weakly
singular integral operator.

Setting
ksmooth(t, τ) = k1(t, τ) (1− χε1%,ε2%(τ − t)) + k2(t, τ) , (7)

and introducing the operators

J1ϕ(t) =

∫
Q

k1(t, τ)χε1%,ε2%(τ − t)χε2%,%(τ − t)ϕ(τ) dτ ,

J2ϕ(t) =

∫
Q

ksmooth(t, τ)ϕ(τ) dτ ,

t ∈ Q ,
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we have written the integral equation in the form

ϕ− J1ϕ− J2ϕ = ψ on Q. (8)

We proceed by rewriting J1ϕ(t) via a transformation in polar coordinates around t. We set

Π(p) = r
%

π

(
cosϑ
sinϑ

)
, p = (r, ϑ)> ∈ Q ,

and

kpolar(t, p) =
|r| %2

2 π2
k1(t, t+ Π(p))χε1%,ε2%(Π(p)) , t, p = (r, ϑ)> ∈ Q .

Substituting τ = t+ Π(p) in the expression for the operator J1 gives

J1ϕ(t) =

∫
Q

kpolar(t, p)χε2%,%(Π(p))ϕ(t+ Π(p)) dp , t ∈ Q . (9)

Because of Assumption 3.1 and kpolar(t, p) = 0 for |Π(p)| ≥ ε2%, we have that kpolar ∈ C∞(Q×
Q) and that this function can be extended Q-periodically to R2 with the same smoothness
with respect to both arguments. Note that χε2%,%(Π(·))ϕ(t+ Π(·)) can also be Q-periodically
extended to R2 without loss of regularity.

We want to solve the integral equation (8) numerically using a collocation method on the
space TN . Thus, the semidiscrete problem is to find ϕN ∈ TN such that

ϕN − PNJ1ϕN − PNJ2ϕN = PNψ on Q. (10)

A fully discrete method is obtained in several steps. Firstly, both integrals are replaced by
composite trapezoidal rules which are highly efficient for periodic functions. For M , N ∈ N2,
we set for ϕ ∈ Hs

Q

J1,Mϕ(t) =

∫
Q

PM [kpolar(t, ·)χε2%,%(Π(·))ϕ(t+ Π(·))] (p) dp

=
π2

M1M2

∑
ν∈Z2

M

kpolar(t, t
M
ν )χε2%,%(Π(tMν ))ϕ(t+ Π(tMν )) (11)

J2,Nϕ(t) =

∫
Q

PN [ksmooth(t, ·)ϕ] (τ) dτ

=
π2

N1N2

∑
ν∈Z2

N

ksmooth(t, tNν )ϕ(tNν ) . (12)

While both operators are discrete in principle, only J2,N can be used directly. The expression
for J1,M involves the evaluation of ϕ(t+ Π(tMν )). An exact evaluation requires the knowledge
of LNµ (Π(tMν )) for all µ ∈ Z2

N , ν ∈ Z2
M which amounts to O(N1N2M1M2) operations. In [4–6]

the quadrature rule in radial direction is slightly perturbed and the values of ϕ(t + Π(·)) in
the quadrature points are obtained to high accuracy by fixed degree polynomial interpolation.
However, this approach limits the asymptotic convergence rate.
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The approach of [1] is a collocation method and uses the exact values of ϕ(t + Π(·)) in the
quadrature points. Here, we modify the scheme by reducing the cost in the approximation of
J1. We require the orthogonal projection OM from L2(Q) onto TM ,

OMv =
∑
µ∈Z2

M

(
v, T (µ)

)
L2(Q)

T (µ) =
M1M2

π2

∑
µ∈Z2

M

(v, LMµ )L2(Q) L
M
µ (13)

for v ∈ L2(Q), where the second representation is due to Lemma 2.3. Let 1 < ε3 denote a
number such that ε3% ≤ %0. A scaled projection for functions on Q% = (−ε3%, ε3%)2 is given
by

ÕMv = OM

[
v
(%
π
·
)](π

%
·
)
, v ∈ L2(Q%) .

We define for M , M̃ ∈ N2,

J1,M,M̃ϕ(t) =

∫
Q

PM

[
kpolar(t, ·)

OM

[{
χε2%,% ÕM̃ [χ%,ε3% ϕ(t+ ·)]

}
◦ Π
] ]

(p) dp . (14)

As we will see in the following analysis, the reasons for introducing the additional approxi-
mations are the possibility for proving a convergence and stability theorem in the case of OM

and the reduction of computational complexity in the case of ÕM̃ .

For the remaining part of this section, we focus on the convergence analysis of the approach
introduced above. We will start with properties of the operators J2 and J2,N which are simpler
to analyse.

Theorem 3.2 Let s ≥ 0. Then J2 : Hs
Q → Hs+1

Q is a well-defined, bounded linear operator

with ‖J2‖ ≤ C %−max{5,s+3} for all % ≤ %0 with C dependent on k, ε1 and ε2.

Proof: We write ksmooth using its Fourier series representation from Lemma 2.6,

ksmooth(t, τ) =
∑
λ∈Z2

k
(λ)
smooth(t)T (λ)(τ), t, τ ∈ R2.

Let ϕ ∈ Hs
Q and denote by σ = bsc the largest integer smaller or equal to s. By Lemma 2.4,

there holds∥∥∥k(λ)
smooth

∥∥∥
Hs+1
Q

= 2π
∥∥k(λ)

smoothT
(0)
∥∥
Hs+1
Q

≤ C
∥∥k(λ)

smooth

∥∥
∞;σ+2

∥∥T (0)
∥∥
Hs+1
Q
≤ C

∥∥k(λ)
smooth

∥∥
∞;σ+2

for all λ ∈ Z2. Therefore,

‖J2 ϕ‖Hs+1
Q
≤
∑
λ∈Z2

∣∣∣∣∫
Q

T (λ)(τ)ϕ(τ) dτ

∣∣∣∣ ∥∥k(λ)
smooth

∥∥
Hs+1
Q

10



=
∑
λ∈Z2

|ϕ−λ|
∥∥k(λ)

smooth

∥∥
Hs+1
Q

≤ C ‖ϕ‖Hs
Q

(∑
λ∈Z2

(
1 + |λ|2

)−σ ∥∥k(λ)
smooth

∥∥2

∞;σ+2

)1/2

≤ C ‖ϕ‖Hs
Q

sup
λ∈Z2

[(
1 + |λ|2

)max{(2−σ)/2,0} ∥∥k(λ)
smooth

∥∥
∞;σ+2

]
×

(∑
λ∈Z2

(
1 + |λ|2

)−2

)1/2

≤ C ‖ϕ‖Hs
Q

∥∥ksmooth

∥∥
∞;σ+2+max{2−σ,0}

= C ‖ϕ‖Hs
Q

∥∥ksmooth

∥∥
∞;max{4,σ+2} .

where the last estimate is due to Lemma 2.6. Here, and throughout the paper, we denote by
C a generic constant that may be different in each occurence.

Define the set Ω% = {(t, τ) ∈ R2 × R2 : |t − τ + 2πν| ≥ ε2% for all ν ∈ Z2}. We proceed to
bound for m ∈ N0 using Assumption 3.1 and (6)∥∥ksmooth

∥∥
∞;m
≤ ‖k2

∥∥
∞;m

+ ‖k1

∥∥
∞

+ C
∑

|α|+|β|=m

‖∂αt k1(·, ·)‖∞;Ω% ‖∂β(1− χε1%,ε2%)‖∞;R2 ≤ C%−m−1

for % ≤ %0, which completes the proof.

Theorem 3.3 Let s > 1 and t ∈ [0, s]. Then J2,N : Hs
Q → H t+1

Q is a well-defined, bounded
linear operator. Moreover,

‖(J2 − J2,N)ϕ‖Ht+1
Q
≤ C %−2s−6 (max{N1, N2})t

(min{N1, N2})s
‖ϕ‖Hs

Q

for all ϕ ∈ Hs
Q, % ≤ %0 and all N ∈ N2, where C depends on k, ε1 and ε2.

Proof: Let σ ∈ N≥s. From Lemma 2.2, we conclude∣∣∣ ∫
Q

(
T (λ)ϕ− PN [T (λ)ϕ]

)
(τ) dτ

∣∣∣ ≤ 2π
∥∥T (λ)ϕ− PN [T (λ)ϕ]

∥∥
Ht
Q

≤ C
(max{N1, N2})t

(min{N1, N2})s
∥∥T (λ)ϕ

∥∥
Hs
Q
.

From Lemmas 2.4 and 2.5, we obtain∥∥T (λ)ϕ
∥∥
Hs
Q
≤ C

∥∥T (λ)
∥∥
∞;σ
‖ϕ‖Hs

Q
≤ C

(
1 + |λ|σ

)
‖ϕ‖Hs

Q
≤ C

(
1 + |λ|2

)σ
2 ‖ϕ‖Hs

Q

so that ∣∣∣ ∫
Q

(
T (λ)ϕ− PN [T (λ)ϕ]

)
(τ) dτ

∣∣∣ ≤ C
(max{N1, N2})t

(min{N1, N2})s
(
1 + |λ|2

)σ/2 ‖ϕ‖Hs
Q
.

11



Thus

‖(J2 − J2,N)ϕ‖Ht+1
Q
≤
∑
λ∈Z2

∣∣∣ ∫
Q

(
T (λ)ϕ− PN [T (λ)ϕ]

)
(τ) dτ

∣∣∣ ∥∥k(λ)
smooth

∥∥
Ht+1
Q

≤ C
(max{N1, N2})t

(min{N1, N2})s
‖ϕ‖Hs

Q

∑
λ∈Z2

(
1 + |λ|2

)σ/2 ∥∥k(λ)
smooth

∥∥
∞;σ+1

and again Lemma 2.6 completes the proof as the remaining argument is very similar to that
at the end of Theorem 3.2.

The derivation of a similar result for the approximation J1,M,M̃ of J1 as introduced in (14) is
more complicated. The coordinate transform in polar coordinates around the singularity has
removed the singularity. However, the integral operator now takes on a non-standard form
which makes the analysis of its mapping properties much more involved.

To simplify the considerations, let us rewrite J1 in terms of expressions that are easier to
analyse. Writing kpolar as a Fourier series with respect to p,

kpolar(t, p) =
∑
λ∈Z2

k
(λ)
polar(t)T

(λ)(p), t, p ∈ Q , (15)

we formally have

J1ϕ(t) =
∑
λ∈Z2

k
(λ)
polar(t)

∫
Q

T (λ)(p)χε2%,%(Π(p))ϕ(t+ Π(p)) dp .

The later analysis will show that interchanging integration and summation is indeed justified.

Recalling Q% = (−ε3%, ε3%)2, and defining the scaled trigonometric monomials

T
(ν)
Q%

(τ) =
1

2ε3%
exp

(
i
π

ε3%
τ · ν

)
, τ ∈ Q% ,

consider functions u of t ∈ Q, τ ∈ Q%. These can be expanded into Fourier series with respect
to both variables,

u(t, τ) =
∑
µ,ν∈Z2

uµ,ν T
(µ)(t)T

(ν)
Q%

(τ) .

For s ≥ 0, we introduce the vector space

Hs
Q,Q% =

{
u ∈ L2(Q×Q%) : ∑

µ,ν∈Z2

(1 + |µ|2)s(1 + |µ− π
ε3%
ν|2)σ|uµ,ν |2 <∞ for all σ ≥ 0

}
.

Remark 3.4 For all 0 ≤ t ≤ s, Hs
Q,Q%

is a subspace of Ht
Q,Q%

.

For convenience, set for u ∈ Hs
Q,Q%

and σ ≥ 0

ps,σ(u) :=
∑
µ,ν∈Z2

(1 + |µ|2)s(1 + |µ− π
ε3%
ν|2)σ|uµ,ν |2 and

12



qs,σ(u) :=
∑
µ,ν∈Z2

(1 + | π
ε3%
ν|2)s(1 + |µ− π

ε3%
ν|2)σ|uµ,ν |2.

Between ps,σ and qs,σ, there holds a certain equivalence relation. For u ∈ Hs
Q,Q%

and σ ≥ 0,
we estimate

ps,σ(u) =
∑
µ,ν∈Z2

(
1 + |µ|2

)s(
1 + |µ− π

ε3%
ν|2
)σ|uµ,ν |2

≤ 2s
∑
µ,ν∈Z2

(
1 + |µ− π

ε3%
ν|2 + | π

ε3%
ν|2
)s(

1 + |µ− π
ε3%
ν|2
)σ|uµ,ν |2

≤ 2s
∑
µ,ν∈Z2

(
1 + | π

ε3%
ν|2
)s(

1 + |µ− π
ε3%
ν|2
)σ+s|uµ,ν |2 .

Thus
ps,σ(u) ≤ 2s qs,σ+s(u) , (16)

and by similar arguments also qs,σ(u) ≤ 2s ps,σ+s(u).

Two technical lemmas yield most results required to establish the mapping properties of J1.

Lemma 3.5 Denote by χ̂%,ε3% the Fourier transform of the extension of χ%,ε3%|Q to R2 by 0.
Then for any σ ∈ N0 and ε3% ≤ %0,

sup
x∈R2

[
(1 + |x|2)σ

∣∣χ̂%,ε3%(x)
∣∣] ≤ C %−2σ+2 ,

where the constant C depends only on σ and ε3.

Proof: We note
χ%,ε3%(%t) = χ1,ε3(t) , t ∈ Q .

Let Bδ = {t ∈ R2 : |t| < δ}. Then

χ̂%,ε3%(x) =

∫
Bε3%

χ%,ε3%(t) e−it·x dt = %2

∫
Bε3

χ1,ε3(t) e−i% t·x dt .

Let R > 0 and consider x = |x| x̂ with |x| ≥ R. We rewrite the integral using the divergence
theorem as∫

Bε3

χ1,ε3(t) e−i% t·x dt

=

∫
Bε3

{
x̂ · ∇χ1,ε3(t) e−i%|x| t·x̂

i |x| %
−∇t ·

[
x̂ χ1,ε3(t) e−i%|x| t·x̂

i |x| %

]}
dt

=
1

i%|x|

∫
Bε3

x̂ · ∇χ1,ε3(t) e−i%|x| t·x̂ dt .

We repeat this argument 2σ − 1 times to obtain

χ̂%,ε3%(x) =
%2

(i%|x|)2σ

∫
Bε3

h(t) e−i%|x| t·x̂ dt

with some function h depending on ε3 and continuously on x̂. The assertion follows by applying
the triangular inequality for integrals and taking the maximum with respect to x̂.

For |x| ≤ R, the assertion follows from |χ̂%,ε3%(x)| ≤ C (ε3%)2 and ε3% ≤ %0.
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Lemma 3.6 Let s ≥ 0, ε3% ≤ %0.

(a) For ϕ ∈ Hs
Q define

Mϕ(t, τ) := χ%,ε3%(τ)ϕ(t+ τ) , (t, τ) ∈ Q×Q%.

Then Mϕ ∈ Hs
Q,Q%

, and for all σ ≥ 0,

ps,σ(Mϕ) ≤ C %−2σ−2 ‖ϕ‖2
Hs
Q
,

where the constant C depends only on σ and ε3.

(b) For λ ∈ Z2 and u ∈ Hs
Q,Q%

, set

J (λ)u(t) :=

∫
Q

T (λ)(p)χε2%,%(Π(p))u(t,Π(p)) dp, t ∈ Q.

Then (J (λ))λ∈Z2 is a family of linear operators mapping Hs
Q,Q%
→ Hs+1

Q . Moreover

‖J (λ)u‖Hs+1
Q
≤ c

%
(1 + |λ|2)

√
ps,3(u), for all u ∈ Hs

Q,Q% and λ ∈ Z2,

where c > 0 is a constant only depending on ε2, ε3 and s.

(c) (J (λ) ◦ M)λ∈Z2 is a family of linear and bounded operators mapping Hs
Q → Hs+1

Q . In
particular,

‖J (λ)Mϕ‖Hs+1
Q
≤ C %−5 (1 + |λ|2)‖ϕ‖Hs

Q
, for all ϕ ∈ Hs

Q

and all λ ∈ Z2, the constant C > 0 only depending on ε2, ε3 and s.

Proof: (a) Let s ≥ 0 and ϕ ∈ Hs
Q. In a first step, we calculate the Fourier-coefficients uµ,ν of

u =Mϕ. Therefore, let µ, ν ∈ Z2. Then

uµ,ν =

∫
Q

∫
Q%

u(t, τ)T (−µ)(t)T
(−ν)
Q%

(τ) dτ dt

=
1

2ε3%

∫
Q%

χ%,ε3%(τ) e
−i π

ε3%
ν·τ
(

1

2π

∫
Q

ϕ(t+ τ) e−iµ·(t+τ−τ) dt

)
dτ

=
1

2ε3%

∫
R2

χ%,ε3%(τ) e
−i( π

ε3%
ν−µ)·τ

(
1

2π

∫
τ+Q

ϕ(t′) e−iµ·t′ dt′
)

dτ

=
1

2ε3%
χ̂%,ε3%(

π
ε3%
ν − µ)ϕµ,

where the last step holds due to the Q-periodicity of ϕ. Now, in a second step, for σ ≥ 0,
there holds

ps,σ(u) =
1

(2ε3%)2

∑
µ,ν∈Z2

(
1 + |µ|2

)s(
1 + |µ− π

ε3%
ν|2
)σ|ϕµ|2∣∣χ̂%,ε3%( π

ε3%
ν − µ)

∣∣2
14



=
1

(2ε3%)2

∑
µ∈Z2

(
1 + |µ|2

)s|ϕµ|2
×

(∑
ν∈Z2

(
1+| π

ε3%
ν−µ|2

)σ+2(
1+| π

ε3%
ν−µ|2

)2 ∣∣χ̂%,ε3%( π
ε3%
ν − µ)

∣∣2) .
From ∫

R2

1

(1 + |x|2)2
dx ≥ h2

∑
ν∈Z2

ν1,ν2 6=0

1

(1 + |hν|2)2
, h > 0 ,

and similar estimates for the remaining terms in the sum, we see that the value of the series∑
ν∈Z2

(
1 + | π

ε3%
ν − µ|2

)−2

is uniformly bounded in µ and % for ε3% ≤ %0. Thus from Lemma

3.5, the assertion follows.

(b) Using the Fourier series expansion of u, there holds

J (λ)u =
∑
µ,ν∈Z2

uµ,ν

∫
Q

T (λ)(p)χε2%,%(Π(p))T
(ν)
Q%

(Π(p)) dp T (µ).

Suppose ν 6= 0. We write (ν1, ν2)> = qν(cosϑν , sinϑν)
> for some qν > 0 and some ϑν ∈ (−π, π],

and obtain

T
(ν)
Q%

(Π(p)) =
1

2ε3%
exp (i qν (r/ε3) cos(ϑ− ϑν)) , p = (r, ϑ) ∈ Q.

Hence, the substitution ϑ′ = ϑ− ϑν and the 2π-periodicity with respect to ϑ yield∫
Q

T (λ)(p)χε2%,%(Π(p))T
(ν)
Q%

(Π(p)) dp

=
1

2ε3%
eiλ2 ϑν

∫
Q

T (λ)(r, ϑ′) [χε2%,% ◦ Π] (r, ϑ′ + ϑν)e
i qν (r/ε3) cosϑ′ d(r, ϑ′).

The behaviour of the integral in this expression with respect to λ and ν can be estimated by
the method of stationary phase. A detailed proof is given in [1, Lemma 6.2]. We obtain∣∣∣ ∫

Q

T (λ)(p)
[
χε2%,% T

(ν)
Q%

]
◦ Π(p) dp

∣∣∣ ≤ C

∥∥T (λ) [χε2%,% ◦ Π] (·, ·+ ϑν)
∥∥
∞;2

qν
.

Similarly as in the proof of Lemma 3.5 we observe that

[χε2%,% ◦ Π] (r, ϑ+ ϑν) = χε2,1

(
r

π

(
cos(ϑ+ ϑν)
sin(ϑ+ ϑν)

))
is independent of %. Hence∣∣∣T (λ)(p)

[
χε2%,% T

(ν)
Q%

]
◦ Π(p) dp

∣∣∣ ≤ C

∥∥T (λ)
∥∥
∞;2

qν
≤
√

2C

∥∥T (λ)
∥∥
∞;2

(1 + |ν|2)1/2
. (17)

Note that the final estimate is also true for ν = 0. Now, using Lemma 2.5, gives∣∣∣∣∫
Q

T (λ)(p)χε2%,%(Π(p))T
(ν)
Q%

(Π(p)) dp

∣∣∣∣ ≤ C
1 + |λ|2

(1 + |ν|2)1/2
.
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We proceed with∥∥J (λ)u
∥∥2

Hs+1
Q

≤ C2
∑
µ∈Z2

(1 + |µ|2)s+1

(∑
ν∈Z2

1+|λ|2
(1+|ν|2)1/2

|uµ,ν |

)2

= C2(1 + |λ|2)2
∑
µ∈Z2

(1 + |µ|2)s

(∑
ν∈Z2

(1+|µ|2)1/2

(1+|ν|2)1/2
|uµ,ν |

)2

≤ C2(1 + |λ|2)2
∑
µ∈Z2

(1 + |µ|2)s

×

(∑
ν∈Z2

(1+| π
ε3%

ν|2)1/2

(1+|ν|2)1/2
(1 + |µ− π

ε3%
ν|2)1/2|uµ,ν |

)2

≤ C2

%2
(1 + |λ|2)2

∑
µ∈Z2

(1 + |µ|2)s

(∑
ν∈Z2

(1+|µ− π
ε3%

ν|2)3/2

1+|µ− π
ε3%

ν|2
|uµ,ν |

)2

. (18)

As in the proof of part (a), the series
∑

ν∈Z2

(
1 + |µ− π

ε3%
ν|2
)−2

is bounded independently of

µ and % < 1, so that we can apply the Hölder inequality for `2-series to obtain

∥∥J (λ)u
∥∥2

Hs+1
Q
≤ 2C2

(ε3%)2
(1 + |λ|2)2

∑
µ,ν∈Z2

(1 + |µ|2)s(1 + |µ− π
ε3%
ν|2)3|uµ,ν |2

=
C2

%2
(1 + |λ|2)2 ps,3(u) .

(c) The assertion follows directly by combining (a) and (b).

With these preliminary considerations, we are now able to investigate the mapping properties
of J1.

Theorem 3.7 Let s ≥ 0. Then
J1 : Hs

Q → Hs+1
Q

defined in (9) is a bounded linear operator with

‖J1ϕ‖Hs+1
Q
≤ C %−5 ‖ϕ‖Hs

Q

for ε3% ≤ %0 with C depending only on s, ε1, ε2 and ε3.

Proof: By definition, J1 is a linear integral operator. It remains to show its boundedness from
Hs
Q to Hs+1

Q . We rewrite J1 slightly by inserting another cut-off function. We then expand
kpolar into its Fourier series (15) and use the operators from Lemma 3.6 to obtain

J1ϕ(t) =

∫
Q

kpolar(t, p)χε2%,%(Π(p))χ%,ε3%(Π(p))ϕ(t+ Π(p)) dp

16



=
∑
λ∈Z2

k
(λ)
polar(t)J

(λ)Mϕ(t) .

This is justified by the estimates for any σ ∈ N≥s+1 using Lemma 3.6

‖J1ϕ‖Hs+1
Q
≤ C

∑
λ∈Z2

‖k(λ)
polar‖∞;σ

∥∥J (λ)Mϕ
∥∥
Hs+1
Q

≤ C %−5 ‖ϕ‖Hs
Q

∑
λ∈Z2

(
1 + |λ|2

)
‖k(λ)

polar‖∞;σ

≤ C %−5 ‖ϕ‖Hs
Q

∑
λ∈Z2

1

(1 + |λ|2)2

(
1 + |λ|2

)3‖k(λ)
polar‖∞;σ .

The series converges as the two last factors are bounded by Lemma 2.6 with

sup
λ∈Z2

(
1 + |λ|2

)3‖k(λ)
polar‖∞;σ ≤ C ‖kpolar‖∞,σ+6 .

With t, p = (r, ϑ)> ∈ Q and setting p̂ = (cosϑ, sinϑ)>, we write kpolar(t, p) as

kpolar(t, p) =
%

2π
`
(
t,
% r

π
, p̂
)
χε1,ε2

( r
π
p̂
)

with the function ` from Assumption 3.1. It follows that ‖kpolar‖∞,σ+6 ≤ C uniformly for
ε3% ≤ %0 with C depending only on σ, ε1 and ε2. This completes the proof.

We next wish to derive an analogue of Theorem 3.3 for J1, i.e. an estimate for the difference
J1 − J1,M,M̃ . We do this in two steps, writing

J1 − J1,M,M̃ =
[
J1 − J̃1,M̃

]
+
[
J̃1,M̃ − J1,M,M̃

]
,

where

J̃1,M̃ϕ(t) =

∫
Q

kpolar(t, p)
[{
χε2%,% ÕM̃ [χ%,ε3% ϕ(t+ ·)]

}
◦ Π
]

(p) dp (19)

for t ∈ Q, and bounding the two differences separately. Note, that using the projection OM̃ ,

OM̃u(·, ··) =
∑
µ∈Z2

∑
ν∈Z2

M̃

uµ,ν T
(µ)(·)T (ν)

Q%
(··) , u ∈ Hs

Q,Q% , (20)

we can write J̃1,M̃ as

J̃1,M̃ϕ =
∑
λ∈Z2

k
(λ)
polar J

(λ)OM̃Mϕ

Some technical tools are collected in the next lemma.

Lemma 3.8 Let s ≥ 0, ε3% ≤ %0, M = (M1,M2)> ∈ N2 and recall the definitions of J (λ) and
M from Lemma 3.6.

(a) For all u ∈ Hs
Q,Q%

and λ ∈ Z2,

‖J (λ)u‖Hs+1
Q
≤ C

%
(1 + |λ|2)

√
qs,s+3(u) ,

where C depends only on s, ε2 and ε3.
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(b) For 0 ≤ t ≤ s, σ ≥ 0 and all u ∈ Hs
Q,Q%

,

qt,σ
(
(I − OM)u

)
≤
(√

2 min{M1,M2}
)2(t−s)

qs,σ(u) .

Here I denotes the identity operator.

(c) Let 0 ≤ t ≤ s, λ ∈ Z2. Then J (λ)(I − OM)M : Hs
Q → H t+1

Q is bounded with

‖J (λ)(I − OM)Mϕ‖Ht+1
Q
≤ C

%2s+5
(1 + |λ|2) (min{M1,M2})t−s ‖ϕ‖Hs

Q

for all ϕ ∈ Hs
Q, where the constant C > 0 only depends on s, t, ε2 and ε3.

Proof: (a) This follows from Lemma 3.6 (b) together with (16).

(b) Let 0 ≤ t ≤ s and σ ≥ 0. Then

qt,σ
(
(I − OM)u

)
=
∑
µ∈Z2

∑
ν∈Z2\Z2

M

(
1 + | π

ε3%
ν|2
)t(

1 + |µ− π
ε3%
ν|2
)σ|uµ,ν |2

=
∑
µ∈Z2

∑
ν∈Z2\Z2

M

(
1 + | π

ε3%
ν|2
)t−s(

1 + | π
ε3%
ν|2
)s(

1 + |µ− π
ε3%
ν|2
)σ|uµ,ν |2

≤
∑
µ∈Z2

∑
ν∈Z2\Z2

M

(
1 + |ν|2

)t−s(
1 + | π

ε3%
ν|2
)s(

1 + |µ− π
ε3%
ν|2
)σ|uµ,ν |2

≤
(√

2 min{M1,M2}
)2(t−s)

qs,σ(u)

holds for all u ∈ Hs
Q,Q%

.

(c) Let ϕ ∈ Hs
Q and set u =Mϕ. Then, by Lemma 3.6 (a) and Remark 3.4, u ∈ Ht

Q,Q%
, and

hence also (I −OM)u ∈ Ht
Q,Q%

. From part (a) and (b) together with (16) and Lemma 3.6 (a),
we obtain the estimate

‖J (λ)(I − OM)u‖Ht+1
Q
≤ C

%
(1 + |λ|2)

√
qt,t+3

(
(I −OM)u

)
≤ C

%
(1 + |λ|2) (min{M1,M2})t−s

√
qs,s+3(u)

≤ C

%
(1 + |λ|2) (min{M1,M2})t−s

√
ps,2s+3(u)

≤ C

%2s+5
(1 + |λ|2) (min{M1,M2})t−s ‖ϕ‖Hs

Q
,

which is the desired result.

Theorem 3.9 Let M̃ ∈ N2, s ≥ 0 and t ∈ [0, s]. Then J̃1,M̃ : Hs
Q → H t+1

Q defined in (19) is
a well-defined, linear and bounded operator with

‖(J1 − J̃1,M̃)ϕ‖Ht+1
Q
≤ C

%2s+5
(min{M̃1, M̃2})t−s‖ϕ‖Hs

Q

for all ϕ ∈ Hs
Q and all ε3% ≤ %0, where the constant C > 0 only depends on s, t, ε2 and ε3.
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Proof: Let ϕ ∈ Hs
Q and σ ∈ N≥s+1. Proceeding analogously as in the proof of Theorem 3.7,

from Lemma 3.8 (c) we obtain

‖(J1 − J̃1,M̃)ϕ‖Ht+1
Q
≤ C

∑
λ∈Z2

‖k(λ)
polar‖∞;σ

∥∥J (λ)(I − OM̃)Mϕ
∥∥
Ht+1
Q

≤ C

%2s+5
(min{M̃1, M̃2})t−s‖ϕ‖Hs

Q

∑
λ∈Z2

(
1 + |λ|2

)
‖k(λ)

polar‖∞;σ .

The remainder of the proof is identical to the last arguments in the proof of Theorem 3.7.

Theorem 3.10 Let M, M̃ ∈ N2, s ≥ 0 and t ∈ [0, s]. Then J1,M,M̃ : Hs
Q → H t+1

Q defined in
(14) is a well-defined, linear and bounded operator. Moreover, there is some τ > 0 such that

‖(J̃1,M̃ − J1,M,M̃)ϕ‖Ht+1
Q
≤ C %−4 (max{M1,M2})τ

(min{M1,M2})s−t+τ
‖ϕ‖Hs

Q

for all ϕ ∈ Hs
Q and all ε3% ≤ %0, where the constant C only depends on s, t, τ , ε2 and ε3.

Proof: We follow the proof of Theorem 6.5 in [1]. Let ϕ ∈ Hs
Q. We set

v(p) =
{
χε2%,% ÕM̃ [χ%,ε3% ϕ(t+ ·)]

}
◦ Π(p), p ∈ Q,

and write the operators as

J̃1,M̃ϕ =
∑
λ∈Z2

k
(λ)
polar

∫
Q

T (λ)(p) v(p) dp ,

J1,M,M̃ϕ =
∑
λ∈Z2

k
(λ)
polar

∫
Q

PM
[
T (λ)OMv

]
(p) dp .

A central observation regarding this representation of J1,M,M̃ is∫
Q

PM
[
T (λ)OMv

]
(p) dp =

∑
ι∈Z2

M

T (λ)(tMι )OMv(tMι )

∫
Q

LMι (p) dp

=
∑
ι∈Z2

M

T (λ)(tMι )
π2

M1M2

OMv(tMι )

=
∑
ι∈Z2

M

T (λ)(tMι )
π2

M1M2

( ∑
ν∈Z2

M

M1M2

π2

∫
Q

LMν (p) v(p) dpLMν (tMι )
)

=
∑
ι∈Z2

M

T (λ)(tMι )

∫
Q

LMι (p) v(p) dp

=

∫
Q

v(p)PMT
(λ)(p) dp ,

so that we obtain

(J̃1,M̃ − J1,M,M̃)ϕ =
∑
λ∈Z2

k
(λ)
polar

∫
Q

v(p)
[
T (λ)(p)− PMT (λ)(p)

]
dp . (21)
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Moreover, let τ > 3 and ω ≥ s − t + τ . By Sobolev’s Imbedding Theorem, the space Hτ
Q is

continuously imbedded in the space of twice continuously differentiable Q-periodic functions.
Hence, by Lemma 2.2∥∥T (λ) − PMT (λ)

∥∥
∞;2
≤ C

∥∥T (λ) − PMT (λ)
∥∥
Hτ
Q

≤ C
(max{M1,M2})τ

(min{M1,M2})ω
∥∥T (λ)

∥∥
Hω
Q
≤ C

(max{M1,M2})τ

(min{M1,M2})s−t+τ
(
1 + |λ|2

)ω/2
.

Setting u =Mϕ with M from Lemma 3.6 and recalling OM̃ from (20), we obtain∫
Q

(
T (λ)(p)− PMT (λ)(p)

)
χε2%,%(Π(p))OM̃u(·,Π(p)) dp

=
∑
µ∈Z2

∑
ν∈Z2

M̃

uµ,ν

∫
Q

(
T (λ) − PMT (λ)

)
(p)
[
χε2%,% T

(ν)
Q%

]
◦ Π(p) dp T (µ).

Hence, by a slight modification of the estimate in (17), we can proceed as in (18) to obtain∥∥∥∫
Q

(
T (λ)(p)− PMT (λ)(p)

)
χε2%,%(Π(p))OM̃u(·,Π(p)) dp

∥∥∥
Ht+1
Q

≤ C (max{M1,M2})τ (1+|λ|2)ω/2

(min{M1,M2})s−t+τ

∑
µ∈Z2

(
1 + |µ|2

)t( ∑
ν∈Z2

M̃

(1+|µ|2)1/2

(1+|ν|2)1/2
|uµ,ν |

)2

1/2

≤ C (max{M1,M2})τ (1+|λ|2)ω/2

(min{M1,M2})s−t+τ

( ∑
µ∈Z2

ν∈Z2
M̃

(
1 + |µ|2

)t(
1 + |µ− π

ε3%
ν|2
)3|uµ,ν |2

)1/2

≤ C (max{M1,M2})τ
(min{M1,M2})s−t+τ

(
1 + |λ|2

)ω/2√
pt,3(u).

Now, by setting σ = btc from (21), we arrive at∥∥(J̃1,M̃ − J1,M,M̃

)
ϕ
∥∥
Ht+1
Q

≤ C
∑
λ∈Z2

‖k(λ)
polar‖∞;σ+2

∥∥∥∥∫
Q

(
T (λ)(p)− PMT (λ)(p)

)
χε2%,%(Π(p))

×OM̃u(·,Π(p)) dp

∥∥∥∥
Ht+1
Q

≤ C
(max{M1,M2})τ

(min{M1,M2})s−t+τ
√
pt,3(u)

∑
λ∈Z2

‖k(λ)
polar‖∞;σ+2

(
1 + |λ|2

)ω/2
.

Using Lemma 3.6 (a), Lemma 2.6 and arguing as in the proof of Theorem 3.7, we establish
the bound ∥∥(J̃1,M̃ − J1,M,M̃

)
ϕ
∥∥
Ht+1
Q
≤ C %−4 ‖ϕ‖Ht

Q
.

The assertion follows from the continuous imbedding of Hs
Q in H t

Q.
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We now consider the approximation of the solution of the integral equation (8) by the fully
discrete version of (10) which is to find ϕN ∈ TN such that

ϕN − PN (J1,M,M̃ + J2,N)ϕN = PNψ . (22)

The results on operator approximations allow us to prove stability and convergence for (22).
To simplify expressions in these results, let us assume N1 = N2 and introduce the meshsize
h = π/N1. We next set M̃1 = M̃2 = b%/hc and M = M̃ . Further set

A = J1 + J2 , Ah = PN (J1,M,M̃ + J2,N) .

We will assume that I − A is boundedly invertible on any Hs
Q, s ≥ 0.

Theorem 3.11 Let t > 1 and assume that % = hα for some α ∈ (0, 1/(2t + 6)). Then there
exists h0 > 0 such that I − Ah : H t

Q → H t
Q has a bounded inverse for any 0 < h ≤ h0 with

norm bounded independently of h.

Proof: We write

A− Ah = (J1 − J1,M,M̃) + (J2 − J2,N) + (I − PN) (J1,M,M̃ + J2,N) .

From Theorems 3.3, 3.10 and 3.9, we have the estimates

‖(J1 − J1,M,M̃)ϕ‖Ht
Q
≤ C h

(
1

%2t+5
+

1

%4

)
‖ϕ‖Ht

Q
,

‖(J1 − J1,M,M̃)ϕ‖Ht+1
Q
≤ C

(
1

%2t+5
+

1

%4

)
‖ϕ‖Ht

Q
,

‖(J2 − J2,N)ϕ‖Ht
Q
≤ C h

%2t+6
‖ϕ‖Ht

Q
,

‖(J2 − J2,N)ϕ‖Ht+1
Q
≤ C

%2t+6
‖ϕ‖Ht

Q
.

By Lemma 2.2, I − PN : H t+1
Q → H t

Q with operator norm bounded by Ch. Thus

‖(A− Ah)ϕ‖Ht
Q
≤ C h

%2t+6
‖ϕ‖Ht

Q
−→ 0 (h→ 0) .

The assertion now follows from standard results for operator approximation.

Theorem 3.12 Let α ∈ (0, 1/2) and % = hα. Assume t ≥ 0 and s > max{1, t, 12α+2αt+t
1−2α

}.
Assume further that (22) is a stable approximation of (8) in Hs

Q, i.e. ‖ϕh‖Hs
Q
≤ C‖ϕ‖Hs

Q
for

sufficiently small h. Then there exists h0 > 0 such that

‖ϕ− ϕh‖Ht
Q
≤ C h(s−t)(1−2α)/2‖ϕ‖Hs

Q

for all 0 < h ≤ h0.
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Proof: From
ϕh = PNψ + Ahϕh = PN(ϕ− Aϕ+ J1,M,M̃ϕh + J2,Nϕh)

we obtain

(I − A)(ϕ− ϕh)
= ϕ− Aϕ+ J1,M,M̃ϕh + J2,Nϕh − ϕh − (J1,M,M̃ + J2,N − A)ϕh

= (I − PN)(ϕ− Aϕ+ J1,M,M̃ϕh + J2,Nϕh)− (J1,M,M̃ + J2,N − A)ϕh .

From Theorems 3.3, 3.9 and 3.10, we have

‖J1,M,M̃ϕh + J2,Nϕh‖Hs
Q
≤
(
‖A‖+

C h

%2s+6

)
‖ϕh‖Hs

Q
.

Similarly, we have

‖(J1,M,M̃ + J2,N − A)ϕh‖H1
Q
≤ C hs

%2s+6
‖ϕh‖Hs

Q
.

Thus from the boundedness of (I +A)−1 in L2(Q), Lemma 2.2 and the stability estimate, we
conclude

‖ϕ− ϕh‖L2(Q) ≤ C ‖(I + A)(ϕ− ϕh)‖L2(Q) ≤
C hs

%2s+6
‖ϕ‖Hs

Q

for all h ≤ h0 such that also % ≤ %0.

For the general result, we observe that for T ∈ TN , the estimate ‖T‖Ht
Q
≤ C h−t ‖T‖L2(Q)

follows directly from the definition of the norm in H t
Q. Using the orthogonal projection ON ,

we have

‖ϕ− ϕh‖Ht
Q
≤ ‖ϕ−ONϕ‖Ht

Q
+ ‖ONϕ− ϕh‖Ht

Q

≤ ‖ϕ−ONϕ‖Ht
Q

+ C h−t ‖ONϕ− ϕh‖L2(Q)

≤ ‖ϕ−ONϕ‖Ht
Q

+ C h−t ‖ϕ− ϕh‖L2(Q) ,

where the last estimate follows from the Pythagorean theorem. For ϕ−ONϕ the same bounds
as for ϕ− PNϕ have been shown as part of the proof of Lemma 2.2. Thus

‖ϕ− ϕh‖Ht
Q
≤ C hs−t

(
1 +

1

%2s+6

)
‖ϕ‖Hs

Q
.

From s ≥ 12α+2αt+t
1−2α

follows (s− t)(1− 2α)/2 ≥ 2α(t+ 3). Thus

hs−t

%2s+6
= hs−t−α(2s+6) = h(s−t)(1−2α) h−2α(t+3) ≤ h(s−t)(1−2α)/2 .

This concludes the proof.
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4 Applications

In this section we will consider some applications for the method analysed in Section 3. There
are two basic classes of examples: boundary value problems for bounded domains that are
globally parametrizable over Q and boundary value problems in periodic media. More general
boundary value problems can be treated by special surface representations and lead to systems
of Q-periodic integral equations. We will discuss such cases in a forthcoming paper.

Example 4.1 Consider D ⊆ R3 such that ∂D is the image of a C∞ smooth regular Q-periodic
parametrization η : R2 → R3, i.e. D has the shape of a torus. The Dirichlet boundary value
problem

∆u = 0 in D ,

u = f on ∂D ,
(23)

can be solved by a double layer potential ansatz,

u(x) = DL ϕ̃(x) =

∫
∂D

n(y) · (x− y)

4π |x− y|3
ϕ̃(y) ds(y) , x ∈ D ,

where n(y) denotes the outward drawn unit normal to ∂D in y. Through the jump relations
for the double layer potential we see that u is a solution to (23) if ϕ̃ is a solution to the integral
equation

ϕ̃(x)−
∫
∂D

n(y) · (x− y)

2π |x− y|3
ϕ̃(y) ds(y) = −2 f(x) , x ∈ ∂D .

Inserting η and setting ϕ(t) = ϕ̃(η(t)), we obtain the Q-periodic integral equation

ϕ(t)−
∫
Q

(∂1η(τ)× ∂2η(τ)) · (η(t)− η(τ))

2π |η(t)− η(τ)|3
ϕ(τ) dτ = −2 f(η(t)) , t ∈ Q . (24)

Lemma 4.2 The kernel of the integral operator in (24) satisfies Assumption 3.1 with k2 = 0.

Proof: We denote the kernel of (24) by k(·, ··). The bound on derivatives of k is obvious from
iterated applications of the quotient rule.

Representing τ = t + r v, t ∈ Q, r ∈ R, v ∈ S1, we can apply various variants of the residual
representation in Taylor’s theorem to obtain

η(t)− η(τ) = r

∫ 1

0

∂

∂s
η(τ − s v)

∣∣∣∣
s=σr

dσ

= −r η′(τ) v + r2

∫ 1

0

(1− σ)
∂2

∂s2
η(τ − sv)

∣∣∣∣
s=σr

dσ . (25)

Note that
(∂1η(τ)× ∂2η(τ)) · [η′(τ) v] = 0 ,

as this is a scalar product of the normal and a tangential vector to ∂D. It follows that both
enumerator and denominator in |r| k(t, t+ rv) are C∞.
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It remains to show that |η(t+ rv)− η(t)|/r is uniformly bounded away from zero. Fixing any
r0 > 0, this is clear for r0 ≤ r ≤ %0 = π/2. From the first representation in (25), we see

|η(t+ rv)− η(t)|2

r2
=

∫ 1

0

∫ 1

0

v>η′(t+ σ1r v)> η′(t+ σ2r v) v dσ2 dσ1 .

The matrix η′(t)>η′(t) is the first fundamental form of ∂D, which is uniformly positive definite
as η is regular. Hence we can choose r0 such that the integrand above is bounded away from
0 uniformly in t ∈ Q, v ∈ S1 and r ≤ r0. Thus ` from Assumption 3.1 is C∞ smooth.

Example 4.3 Consider the scattering of a time-harmonic acoustic wave by a smooth bounded
obstacle. Such a problem can be modelled as an exterior boundary value problem for the
Helmholtz equation. Again, we assume that D ⊆ R3 is such that ∂D is the image of a C∞

smooth regular Q-periodic parametrization η : R2 → R3. For a wavenumber k > 0, we assume
that the total field u satisfies the Helmholtz equation outside D and a Dirichlet boundary
condition on ∂D, i.e.

∆u+ k2u = 0 in R3 \D ,

u = 0 on ∂D .
(26)

Given the incident field ui, which is assumed to be a solution to the Helmholtz equation in
all of R3, we additionally assume that the scattered field us = u− ui satisfies the Sommerfeld
radiation condition at infinity.

A solution to this problem is given by the combined potential layer ansatz,

us(x) = DL ϕ̃(x)− iλ SL ϕ̃(x) =

∫
∂D

[
∂Φ(x, y)

∂n(y)
− iλΦ(x, y)

]
ϕ̃(y) ds(y)

for x ∈ R3 \D provided that ϕ̃ is a solution to the boundary integral equation

ϕ̃(x) + 2

∫
∂D

[
∂Φ(x, y)

∂n(y)
− iλΦ(x, y)

]
ϕ̃(y) ds(y) = −2ui(x) , x ∈ ∂D.

Here, λ is some complex number satisfying Re(λ) 6= 0 and Φ denotes the fundamental solution
to the Helmholtz equation

Φ(x, y) =
eik |x−y|

4π |x− y|
, x 6= y .

After inserting the parametrization and substituting ϕ(t) = ϕ̃(η(t)), we obtain the Q-periodic
integral equation

ϕ(t) +

∫
Q

eik |η(t)−η(τ)|

2π

[
(∂1η(τ)×∂2η(τ))·(η(t)−η(τ))

|η(t)−η(τ)|3 (1− ik |η(t)− η(τ)|)

− iλ |∂1η(τ)×∂2η(τ)|
|η(t)−η(τ)|

]
ϕ(τ) dτ = −2ui(η(t)) , t ∈ Q . (27)

Lemma 4.4 The kernel function in (27) satisfies Assumption 3.1.
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Proof: We set

K1(x, y) =
1

2π

[
D(y)n(y) · (x− y)

|x− y|3
(cos(k |x− y|) + k |x− y| sin(k|x− y|))

− iλ
D(y)

|x− y|
cos(k |x− y|)

]
,

K2(x, y) =
1

2π

[
D(y)n(y) · (x− y)

|x− y|3
(i sin(k |x− y|)− ik |x− y| cos(k|x− y|))

+ λ
D(y)

|x− y|
sin(k |x− y|)

]
,

where D(y) = |∂1η(τ)× ∂2η(τ)||y=η(τ) is the determinant of the first fundamental form. We
denote the kernel of (27) by

k(t, τ) = k1(t, τ) + k2(t, τ) = K1(η(t), η(τ)) +K2(η(t), η(τ)) .

Note that

K2(x, y) = D(y)n(y) · (x− y) p1(k2 |x− y|2) + λD(y) p2(k2 |x− y|2)

with analytic functions p1, p2. The smoothness of D(η(τ)) follows again from the positive
definiteness of the first fundamental form. Thus k2 is smooth.

Similarly, we have

K1(x, y) =
D(y)n(y) · (x− y)

|x− y|3
p3(k2 |x− y|2) + λ

D(y)

|x− y|
p4(k2 |x− y|2)

with analytic functions p3, p4. The smoothness of ` now follows with similar arguments as in
the proof of Lemma 4.2.

Example 4.5 As a third example we consider scattering of a plane acoustic wave by a biperi-
odic smooth surface. The problem formulation is similar to that of Example 4.3, with D given
by

D = {x = (t, x3)> ∈ R3 : t ∈ R2 , x3 < f(t)} ,

where f ∈ C∞(R2) is Q-periodic, and the incident field is given by

ui(x) = ei k d·x , x ∈ R3 , d ∈ S2 , d3 < 0 .

An important feature of this field and correspondingly also the scattered field is that it is
kd-quasi-periodic, i.e. ui(t+ 2π ν, x3) = exp(i 2πk (d1, d2)> · ν)ui(t, x3).

The Sommerfeld radiation condition has also got to be replaced by the condition that us

is a linear superposition of upward propagating plane waves and evanescent waves, see [1]
for details. The scattered field can again be found as a combined double- and single-layer
potential,

us(x) = DL ϕ̃(x)− iλ SL ϕ̃(x) =

∫
∂D

[
∂G(x, y)

∂n(y)
− iλG(x, y)

]
ϕ̃(y) ds(y)
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for x ∈ R3 \ D. Here G is the kd-quasi-periodic fundamental solution to the Helmholtz
equation and ϕ̃ is a kd quasi-periodic density. Representations and algorithms for the efficient
evaluation of this function are discussed in [1,2]. The unit normal n(y) to ∂D at y is assumed
to point upward, i.e. n3 > 0.

Setting ϕ(t) = exp(−ik (d1, d2)>·t) ϕ̃(t, f(t)), we obtain a Q-periodic density ϕ. us is a solution
to the scattering problem, if ϕ solves the integral equation

ϕ(t) +

∫
Q

ei k(d1,d2)>·(τ−t)
[
∂G(x, y)

∂n(y)
− iλG(x, y)

]
×
√

1 + |∇f(τ)|2 ϕ(τ) dτ = −2 e−i k(d1,d2)>·t ui(t, f(t)) , t ∈ Q . (28)

For simplicity, we have used the abbreviations x = (t, f(t)), y = (τ, f(τ)) here.

From [1, Theorem 3.8] we have the representation

G(x, y) =
cos(k |x− y|)

4π |x− y|
+ P (k2 |x− y|2) , |x− y| ≤ π

2
,

with an analytic function P . Hence, by a similar analysis as in Lemma 4.4, we see that the
kernel in (28) satisfies Assumption 3.1.

5 Implementation and Numerical Examples

The implementation of the operator J2,N is already given in (12): It is simply the application
of the tensor-product composite trapezoidal rule to the integral representing J2. The imple-
mentation of J1,M,M̃ as given by (14) is more complicated as it involves an approximation of
the two orthogonal projections. To simplify notation, we define

wµ
M̃

= ÕM̃

[
χ%,ε3% ϕ(tNµ + ·)

]
=
∑
ι∈Z2

M̃

wµ,ι
M̃
T

(ι)
Q%
,

vµ
M,M̃

= OM

[{
χε2%,%w

µ

M̃

}
◦ Π
]
,

so that

J1,M,M̃ϕ(tNµ ) =

∫
Q

PM

[
kpolar(t

N
µ , ·) v

µ

M,M̃

]
(p) dp

=
π2

M1M2

∑
ν∈Z2

M

kpolar(t
N
µ , t

M
ν ) vµ

M,M̃
(tMν ) , µ ∈ Z2

N . (29)

From (13), using the Lagrange basis function, we obtain for µ ∈ Z2
N , ν ∈ Z2

M ,

π2

M1M2

vµ
M,M̃

(tMν ) (30)

=
∑
λ∈Z2

M

∑
ι∈Z2

M̃

wµ,ι
M̃

∫
Q

χε2%,%(Π(p))T
(ι)
Q%

(Π(p))LMλ (p) dpLMλ (tMν )
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Preparation (carry out once)

– compute bµ,ν = kpolar(t
N
µ , t

M
ν ), µ ∈ Z2

N , ν ∈ Z2
M

– compute cν,ι ≈
∫
Q

[{
χε2%,% T

(ι)
Q%

}
◦ ΠLMν

]
(p) dp, ν ∈ Z2

M , ι ∈ Z2
M̃

Matrix-Vector-Multiplication (ϕ(tNµ ))µ 7→ (ψµ)µ

– for each µ ∈ Z2
N

- compute dµ,λ = χ%,ε3%(t
N
λ )ϕ(tNµ + tNλ ), λ ∈ Z2

M̃

- perform (wµ,ι
M̃

)ι ←− FFTM̃(dµ,λ)λ

- compute vµ
M,M̃,ν

=
∑
ι∈Z2

M̃

cν,ιw
µ,ι

M̃
, ν ∈ Z2

M

- compute ψµ =
∑

ν∈Z2
M

bµ,ν v
µ

M,M̃,ν

Figure 1: Algorithm for Matrix-Vector-Multiplication ψ ← A1ϕ

=
∑
ι∈Z2

M̃

wµ,ι
M̃

∫
Q

χε2%,%(Π(p))T
(ι)
Q%

(Π(p))LMν (p) dp . (31)

For an implementation of this formula, the integrals need to be computed accurately. It is
helpful that χε2%,% is radially symmetric: applying the Jacobi-Anger expansion for T

(ι)
Q%

(Π(·)),
gives a sum of products of two 1D integrals. The integration over p2 can be carried out
analytically, while for the integration over p1 we apply the composite trapezodial rule. The
computation of an approximation of the Fourier coefficients wµ,ι

M̃
is done by an interpolation

instead of the orthogonal projection. The convergence rate of both operations are identical
for functions in Hs

Q.

For a description of the implementation, we assume again that N1 = N2 = π/h and that
% = hα for some fixed α ∈ (0, 1). Denote by N = 4N1N2 the total number of unknowns. With
M̃j = Mj = b%/hc, we have #Z2

M = #Z2
M̃

= O(N1−α).

In the following arguments, we will use indices in Z2
N for the coefficients of vectors in CN, the

map from Z2
N → {1, . . . ,N} being implicit, and likewise for matrices in CN×N. We write the

fully discrete version of (22) as the linear system

(I−A1 −A2)ϕ = ψ ,

where ϕµ = ϕ(tNµ ), ψµ = ψ(tNµ ), µ ∈ Z2
N , I denotes the identity matrix in CN×N and Aj =

(aj,µ,ν) ∈ CN×N denotes the discretization of Jj, j = 1, 2.

The linear system will be solved by an iterative method, so that algorithms for the computation
of Ajϕ are required. The computation of a2,µ,ν is obvious from (7) and (12), so that this matrix
in principle can be pre-calculated and used for matrix vector multiplication. The operation
count and storage requirements for this are O(N2). However, various approaches are known to
reduce this considerably, such as Fast Multipole Methods, H-Matrix calculus, etc. The focus
of the present paper does not lie in this aspect.
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Figure 2: Errors for Dirichlet Problem for Laplace’s equation. Green symbols are used for
ε1 = 0.1667 with α = 0.15 (×), α = 0.25 (�), blue symbols for ε1 = 0.6667, with α = 0.15
(+), α = 0.25 (◦), α = 0.4 (∗), magenta symbols are used for ε1 = 0.6667 and α = 0.6 (�).

The matrix vector multiplication A1ϕ can be carried out using (29)–(31). The algorithm
is described in detail in Figure 1. From this description, we see that the preparation step
requires O(N2−α + N2−2α) memory locations for storage and O(N2−α + SN2−2α) operations,
where S denotes the number of operations for acurate evaluation of the integrals in (31). For
the matrix vector multiplication itself, only the operational count is of interest. It amounts to

O(N (N1−α + N1−α log(N1−α))) = O(N2−α (1 + (1− α) log(N))

operations.

In order for the preparation step not to dominate the overall complexity, it is necessary that S
is at most proportional to Nα. This requires some careful balancing. Note however also that
(31) only involves the parameters % and εj, but is independent of the actual problem. Hence,
these calculations can be carried out once for a given parameter set and the resulting values
stored in a data base.

As a first example, we consider the Dirichlet boundary value problem for Laplace’s equation
from Example 4.1. As the domain D, we choose a torus given by the parametrization

η(t) = (R1 +R2 cos(t2))

cos(t1)
sin(t1)

0

+R2

 0
0

sin(t2)

 , t = (t1, t2)> ∈ R2 , (32)

with R1 = 1.0 and R2 = 0.25. We have carried out the case, where the exact solution is

u(x) =
(
4π
∣∣x− (2, 1, 1)>

∣∣)−1
, x ∈ D. The integral equation (24) was solved numerically

for various sets of parameters and the double layer potential with the resulting density was
evaluated at a number of points x(`), ` = 1, ..., P , in the domain.

Tests were run with % = 0.15 (20/N)α for various α ∈ (0, 1) and for two choices for ε1. In
all cases ε2 = 0.8333, ε3 = 2.0 as well as M̃ = ceil(%/h) and M proportional to M̃ with a
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total # of ε1 = 0.1667
N unknowns α = 0.15 α = 0.25

24 2304 3
-1.1848

3
-1.1996

32 4096 4
2.2589

4
2.4786

48 9216 5
0.7081

5
0.6326

64 16384 6
3.5330

6
2.4481

96 36864 9
2.9765

8
3.2272

128 65536 11
5.2162

10
3.3908

192 147456 16 13

total # of ε1 = 0.6667
N unknowns α = 0.15 α = 0.25 α = 0.4 α = 0.6

24 2304 3
-0.2149

3
0.0386

3
-0.1475

3
1.2710

32 4096 4
1.5702

4
1.2810

4
2.3161

3
0.0382

48 9216 5
1.0533

5
1.8965

5
-0.1309

3
0.5098

64 16384 6
3.1685

6
2.3366

5
1.1316

4
0.7219

96 36864 9
3.4198

8
3.2304

6
3.2355

4
2.7811

128 65536 11
5.2133

10
3.8985

7
3.9480

5
1.2084

192 147456 16 13 11 6

Table 1: Estimated orders of convergence for the Dirichlet problem for Laplace’s equation.

fixed constant. Figure 2 shows the maximum error ErrN for evaluations of the double layer
potential in the points x(`). Table 1 lists estimated orders of convergence

EOC =
log(ErrN1 /ErrN2)

log(N2/N1)

for subsequent values of N . The total number of unknowns for each problem is also listed.

For the choices of α < 0.5 we see that the increasing convergence rates to be expected from
Theorem 3.12 are indeed achieved. On the other hand, the result for α = 0.6 does not exhibit
an increasing convergence rate which may be an indication that Theorem 3.12 is sharp in this
respect.

As the second example, we carried out computations for a scattering problem from Example
4.3 for the wave numbers k1 = 2

√
2 and k2 = 4

√
2. As the obstacle, the torus defined by

(32) was used and ρ was chosen by the same recipe as before. After solution of the boundary
integral equation, the field was evaluated on a 51× 51 grid G in the horizontal plane x3 = −1
beneath the obstacle. To assess the achievable convergence rates, we used the “incident field”
ui = Φ(·, z) with z = (0.9, 0.0, 0.15)> ∈ D. In this case us = −ui in R3 \D, so that we know
the scattered field exactly. We denote the field computed by our method for a given value of
N by uN and evaluated

ErrN = max
x∈G
|usN(x) + ui(x)| .

The values obtained have been plotted in Figure 3. In Table 2 we report on estimated conver-
gence rates computed as in the previous example for the case k = 2

√
2. Corresponding rates

for k = 4
√

2 are presented in Table 3.
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Figure 3: Errors for the scattering problem. Blue symbols used for k = 2
√

2 with α = 0.15
(+), α = 0.25 (◦), α = 0.4 (∗), red symbols are used for k = 4

√
2 with α = 0.15 (×), α = 0.25

(�), α = 0.4 (�).

total # of α = 0.15 α = 0.25 α = 0.4
N unknowns M EOC M EOC M EOC

24 2304 3
-0.5278

3
-0.1241

3
-0.4843

32 4096 4
1.1799

4
0.7187

4
2.0920

48 9216 5
1.6587

5
2.8525

5
-0.3633

64 16384 6
2.8249

6
2.3226

5
1.7294

96 36864 9
3.8533

8
3.4798

6
3.3664

128 65536 11
5.6597

10
3.2667

7
3.9864

192 147456 16 13 11

Table 2: Estimated orders of convergence for the scattering problem with k = 2
√

2.

total # of α = 0.15 α = 0.25 α = 0.4
N unknowns M EOC M EOC M EOC

24 2304 3
0.5676

3
0.8457

3
0.2843

32 4096 4
1.1900

4
0.6782

4
2.0810

48 9216 5
1.5574

5
3.0471

5
-0.5332

64 16384 6
2.9099

6
2.4527

5
1.8940

96 36864 9
4.0797

8
3.6469

6
2.7877

128 65536 11
4.7555

10
3.2173

7
4.6971

192 147456 16 13 11

Table 3: Estimated orders of convergence for the scattering problem with k = 4
√

2.
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Figure 4: Scattering of a plane wave by a torus at k = 12
√

2.

A true scattering problem is displayed in Figure 4. A plane wave with incident direction
d = (

√
3/2, 0,−1/2)> is scattered by the torus given by (32). The wavenumber is k = 12

√
2,

the other parameters are chosen as N = 128, M = 11 and % = 0.35671.

The torus is visibly enhanced by a superimposed grid that is in no way related to the com-
putational grid used. On the surface of the torus, the real part of −ui is displayed, on the
horizontal and vertical plane, the potential evaluated for the density computed with our solver
is presented.

Finally, we also carried out computations for scattering problems involving periodic surfaces as
described in Example 4.5. Specifically, we used the surface given as the graph of the function

f(t) =
1

6
cos(t1) exp(sin(t1)) , t ∈ R .

Computations were carried out at k = 2
√

2 with the plane wave ui(x) = exp(ik x · d) with
d = (

√
3/2, 0,−1/2)> used as the incident field. Figure 5 shows the real part of the scattered

field in this situation. The parameters used for this plot are N = 48, M = 5 and % = 0.41325.
Two periods of the surface are shown in both directions. The field on the biperiodic surface is
simply the Dirichlet boundary values, on the vertical planes the potential with the computed
density was evaluated.

In conclusion, these examples show comprehensively that the super-algebraic convergence rates
predicted by Theorem 3.12 are achievable in practice in a variety of applications. Moreover,
there is some numerical evidence, that the bound α < 1/2 necessary in the proof of this
theorem is indeed sharp.
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Figure 5: Scattering of a plane wave by a periodic surface at k = 2
√

2. The scale in the
vertical direction is doulbe that in the horizontal directions.
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