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Kurzfassung

Langfaserverstärkte Thermoplaste (LFT) bieten ein hohes Potential, um großserien-

fähigen Leichtbau im Automobilbereich zu ermöglichen. Sie können effizient mit den

Fertigungsverfahren Spritzgießen oder Fließpressen verarbeitet werden, woraus eine kom-

plexe, vom Herstellungsprozeß abhängige und örtlich variierende Mikrostruktur des diskon-

tinuierlichen Wirrfasergerüsts resultiert. Um die mikrostrukturabhängigen Materialeigen-

schaften vorhersagen zu können, wurde im Rahmen dieser Arbeit eine neuartige

Methode zur Generierung eines repräsentativen Volumenelements (RVE) für LFT und

Materialien mit einer ähnlichen Mikrostruktur erstellt. Die Methode ist anwendbar für

Werkstoffe mit einem Faseraspektverhältnis bis ca. 5000 und einem Faservolumenanteil bis

ca. 25 %. Die Mikrostruktur des Wirrfasergerüsts wird basierend auf der planaren Faser-

orientierungsverteilung, der Faserlängenverteilung, sowie dem Faservolumengehalt erzeugt.

Das Netz für Simulationen mit der Methode der finiten Elemente beschreibt die Mikro-

struktur mit einer relativ geringen Elementzahl, wobei die Fasern mit einem einzigen

Element über ihren Querschnitt aufgelöst werden. Somit wird die Berechnung vergleichs-

weise großer Strukturen, die das komplette Faserlängenspektrum enthalten, ermöglicht.

Des Weiteren berücksichtigt die Modellierungsmethode den Pressprozeß bei der Herstel-

lung des Materials. Die resultierende Faserwellung, sowie mikromechanische Interaktionen

zwischen den Fasern werden vom Modell erfasst.

Drei LFT-Materialien mit unterschiedlichen Faseranteilen wurden experimentell

charakterisiert, um das Modell zu validieren. Die elastische Steifigkeit als fundamentale

mechanische Eigenschaft wurde zuerst untersucht. Die Modellvorhersagen sind in sehr

guter Übereinstimmung mit den experimentellen Daten, sowie den mit einem

analytischen Modell berechneten Werten. Um den Anwendungsbereich des Modells zu

erweitern, wurden Kriechszenarios untersucht, die für die Anwendung des Materials unter

erheblichen statischen Lasten wichtig sind. Um das experimentell beobachtete nicht-

linear viskoelastische Verhalten der Matrix zu berücksichtigen, wurde ein klassisches

Modell modifiert und in die Simulationssoftware implementiert. Die Modellvorhersagen

für den LFT-Verbundwerkstoff stimmen gut mit den experimentellen Ergebnissen überein.

Der Vergleich mit einer alternativen Modellformulierung zeigt, dass die Spannungs-

Umverteilung aufgrund des nichtlinear viskoelastischen Verhaltens der Matrix tatsächlich

einen erheblichen Einfluß auf das globale Deformationsverhalten hat. Als weiterer Anwen-

dungsfall wurde schließlich das Deformations- und Schädigungsverhalten von LFT unter

Berücksichtigung verschiedener Mechanismen untersucht. Diese sind die plastische Defor-

mation der Matrix, die Faser-Matrix-Grenzflächenschädigung, die Reibung beim Faser-

auszug und der Sprödbruch der Fasern. Das numerische Modell kann die experimentell

beobachtete Spannungs-Dehnungskurve des LFT mit hoher Genauigkeit wiedergeben und

ermöglicht die mechanismenbasierte Interpretation dieser.



Abstract

Long fiber reinforced thermoplastics (LFT) are considered as very promising for the mass

production of automotive components with a high lightweight potential. Cost-efficient

manufacturing is enabled by the application of the technologies of injection or compres-

sion molding, resulting in a complex, locally varying microstructure of the discontinous

fibers. In order to predict the microstructure-dependent material properties, a novel

procedure for the generation of a representative volume element (RVE) for LFTs and

materials with a similar microstructure was developed within this work. The method is

applicable to materials with a maximum fiber aspect ratio of up to approx. 5000 and a

maximum fiber volume fraction up to approx. 25 %. The microstructure generation is

based on characteristic values, describing the microstructure in a statistical sense, which

are the planar fiber orientation distribution, the fiber length distribution and the fiber vol-

ume fraction. The resulting mesh for finite element analysis represents the microstructure

by a relatively low element count, modeling each fiber by a single element over its cross

section. Hence, the analysis of comparably large structures which include the complete

fiber length spectrum is possible within computational limits. Furthermore, the modeling

procedure accounts for the pressing process as applied during fabrication of the material.

Thus, microstructural features like fiber waviness and micromechanical interactions be-

tween the fibers are inherent to the model.

Three LFT materials with varying fiber fractions were characterized experimentally and

are used to validate the model. The elastic stiffness as the fundamental mechanical prop-

erty was investigated at first. The model predictions were found to be in very good

agreement with the experimental results and those of an established analytical model. To

widen the range of application, creep scenarios were also studied which are important for

the application of the material under significant static loads. To account for the exper-

imentally observed nonlinear viscoelastic behavior of the matrix, a classical model was

modified and implemented into the finite element framework. On the composite level,

good agreement between numerical and experimental data was found for all investigated

load cases. A variation of the model formulation revealed that the effects of stress redistri-

bution within the matrix due to its nonlinear viscoelastic behavior are indeed significant.

Finally, the deformation and damage behavior was investigated under consideration of

different mechanisms, which are the plastic deformation of the matrix, the fiber-matrix

interface debonding, the post debonding friction between fibers and matrix and the brittle

fiber fracture. The numerical model was shown to be suitable for the accurate reproduc-

tion of the effective stress-strain curve, determined by experimental tensile tests. This

enables a mechanism-based interpretation of the deformation behavior of LFT.
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1 INTRODUCTION

1 Introduction

1.1 General introduction and background

As matters of energy efficiency and sustainability gain steadily in importance, a signif-

icant need exists for medium to high performance, cost-efficient composites which can

be manufactured on a mass-production scale e.g. for lightweight automotive components.

Thermoplastic composites are in general suitable to reduce the cycle times in the manufac-

turing process since no time-consuming curing step is needed in contrast to thermosetting

matrix systems. Due to the reversibility of solidification process, they are predestined for

the recycling of the material. Long fiber reinforced thermoplastics (LFT) are extremely

promising for a cost-efficient manufacturing of structural parts since they can be effi-

ciently processed by injection or compression molding and they provide a sufficiently high

fiber length which is essential for structural application. In order to create material de-

signs which are precisely adapted to their respective application, microstructural models

to predict the effective material performance based on the mechanical properties of the

constituents and the characteristics of the microstructure are of crucial importance. Such

models can also provide information about the active mechanisms at the microstructural

level and how they influence the global deformation and/or damage behavior. Effective

mechanical models of the material on the homogenized level, which account for the ob-

served micromechanical mechanisms, can then be developed in the following step. These

models will allow the simulation of LFT components as mandatory requirement for their

industrial application.

To achieve this goal, precise, three dimensional models of the complex microstructure of

LFT are essential. The arising challenges are enormous, mostly due to the extreme fiber

aspect ratio of these materials and the associated size of the models. Hence, significant

simplifications are mandatory in order that the models are computable. Motivated by

this situation, the key approach of this work is to close the gap between the existent type

of models: Conventional three dimensional finite element (FE) models of discontinous

fiber composites, in which the fibers are depicted by a multitude of elements over their

cross section, result in an extensive element count and related computational cost. On

the other hand, very simplified two dimensional methods are available, which use truss

elements for the fibers, permit interpenetration between them and are not suitable for the

modeling of the complex micromechanical interactions of LFTs. The degree of detail of

the proposed model is therefore chosen between both conventional approaches by means

of a fully three dimensional representation of the structure, but a rather coarse description

of the fibers by a single element over their cross section.

The core of this work is the development of an adapted structure generation procedure,

suitable for the reproduction of the LFT fiber structure in the form of a FE mesh. This
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1 INTRODUCTION 1.2 Structure of the thesis

is addressed by modeling a fiber compression procedure in analogy to the manufacturing

process of the material by the technology of compression molding. The modeling is based

on microstructural data in the form of fiber orientation and length distributions as well as

values of fiber volume fraction. The applicability of such generated structures to indus-

trial relevant load scenarios is investigated in order to assess the potential of the modeling

approach. The accuracy of the model with respect to predicting the elastic stiffness as the

most fundamental material property is investigated at first by comparison to experimental

data as well as to evaluations of an established analytical approach. Then, the range of

application is widened to the modeling of a creep scenario, accounting for the viscoelastic

behavior of the thermoplastic matrix. Consideration of such load scenarios is crucial for

the dimensioning of structural parts under significant static loads and particularly impor-

tant for thermoplastic materials due to their inherent tendency to creep. At last, virtual

tensile tests of the material are modeled accounting for different deformation and damage

mechanisms, which are in detail the plastic flow of the matrix, the fiber-matrix debonding

at the interface, the post-debonding friction between fiber and matrix during fiber pullout

and the brittle fracture of the fibers.

1.2 Structure of the thesis

The flow of data and interaction between the modeling techniques and experimental meth-

ods is illustrated in Fig. 1. The flowchart is divided into five blocks which represent

the main categories of the applied methods. Both modeling techniques (finite element

modeling and analytical homogenization) are fed by structural data (dotted grey lines),

describing the LFT microstructure in an statistical sense and by material data (dashed

grey lines) in the form of constitutive laws of the components fiber, matrix and interface.

The effective LFT properties (elasticity, viscoelasticity, plasticity and damage) labeled as

merged data (full grey lines) are obtained as output from the models and interact with

respective validation experiments. Besides the hierarchical structure of input data at the

first level (top of the flowchart), modeling procedures at the second level (middle) and

output data at the third level (bottom), there exist several cross-links between specific

components which are highlighted by bold, double-sided arrows, labeled as interaction

(e.g. validation of data against each other).

Microstructure characteristics

The LFT microstructure is described by the fiber volume fraction (calculated from the

mass flow rates of the manufacturing process), the fiber length distribution (obtained by

image analysis of the fiber structure of an incinerated specimen) and the fiber orientation

distribution (extracted by image correlation from CT scans). The applied methods are

specified in Section 3.1. The results are presented in Section 5.1.
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Constitutive models

Due to their fundamental character, the elastic properties of fiber and matrix are not elab-

orated by a separate chapter. The respective values used as input for the microstructural

models are specified in conjunction with the modeling results (e.g. Section 5.6.2). The

derivation of the viscoelastic matrix model is described in Section 4.1. A Burgers four

parameter model was modified to account for nonlinear viscoelastic effects as observed

experimentally. The results, divided into the calibration of the model with experimen-

tal data, the validation with respect to reproduction of an exemplary load history and

the three dimensional behavior as well as the derivation of modified model parameters

to partially compensate mesh effects are presented in Section 5.2. The plasticity of the

matrix was experimentally characterized with substance specimens and is numerically

described by application of a classical von Mises plasticity model. The methodology is

described in Section 4.2, whereas the calibration with experimental data is presented in

Section 5.3. Fiber damage was implemented by means of a brittle fracture model with

a value of failure stress from the literature. The value is specified in conjunction with

the modeling results in Section 5.6.11. The damage behavior of the fiber-matrix-interface

was investigated by single fiber push-out tests. Reverse determination of the interface

parameters is performed by FE simulation of the push-out scenario. The experimental

details are specified in Section 3.4, whereas the modeling is described in Section 4.3. The

results are given in Section 5.4.

Finite element modeling

Based on the structural data (fiber volume fraction, fiber orientation distribution, fiber

length distribution), a representative volume element (RVE) of the LFT material is

formed. The RVE generation procedure, mimicking the compression of the fibers in

analogy to the manufacturing process of the material, is detailed in Section 4.5. Several

RVEs were studied under variation of fiber volume fraction, orientation distribution, fiber

length and RVE size. The characteristics of the investigated structures are given in Sec-

tion 5.6.1 and compared to the microstructural input data. The multidirectional RVEs,

representing the LFT material, are analyzed by finite element simulations with respect

to different mechanical properties, which are the elastic and viscoelastic properties as

well as the deformation and damage behavior. The elastic properties were studied by

implicit simulations using the elastic material data for fibers and matrix. The viscoelastic

properties were investigated by implicit simulations under consideration of elastic fiber

properties and the viscoelastic model of the matrix. The deformation and damage behav-

ior was analyzed by explicit simulations and the application of the plastic matrix model,

the interface model and a brittle fiber failure criterion. The details of each numerical

study are specified in Section 4.5. The results are presented in conjunction with those

of the validation experiments in Section 5.6. The elastic results of the multidirectional

14
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RVEs were validated against the effective LFT properties from analytical homogenization

(Section 5.6.2). The single fiber push-out scenario was modeled to extract the interface

characteristics. Fiber-matrix-debonding is represented numerically by cohesive zone ele-

ments between the fibers and the matrix. The parameters of the traction-separation law

to describe the decohesion are reversely determined by simulation of the fiber push-out

scenario (Section 4.3). The parameters (Section 5.4) then flow into the multidirectional

RVEs in order to analyze the deformation and damage behavior of LFT. Several vari-

ants of an unidirectional (UD) fiber arrangement were studied to investigate the principle

relation between fiber length, elastic and viscoelastic properties. The methodology is de-

scribed in Section 4.4, whereas the results are presented in Section 5.5. Furthermore, the

elastic UD model was validated against the Halpin-Tsai equations.

Analytical homogenization

Analytical homogenization of the elastic properties of LFT was performed by multiple

steps, which are described in Section 4.6. At first, the transversely isotropic compliance

matrix of a unidirectional reference composite of uniform fiber length is calculated by

application of the Halpin-Tsai equations. Structural data in the form of fiber volume

fraction and material data in the form of elastic properties of fibers and matrix flow into

the model. The results are compared to those of the finite element models of a unidirec-

tional fiber arrangement in Section 5.5. In the next step, the fiber orientation distribution

is converted into second and fourth order orientation tensors in order to apply the orien-

tation averaging scheme. So-called orientation averaged pseudo-grains of uniform aspect

ratio are formed before averaging over these pseudo-grains is carried out to account for

the fiber length distribution. The homogenized LFT properties (orientation and length

averaged) are compared with the results from finite element modeling in Section 5.6.2.

Effective LFT properties

The results from finite element modeling (multidirectional RVEs) and analytical homog-

enization are compared to respective validation experiments in Section 5.6. The finite

element results include elasticy / viscoelasticity as well as plasticity and damage. The

analytical results are restricted to elasticity. The methodology of the validation experi-

ments is described in Section 3.2.2 and 3.3.2. To validate the elastic properties, tensile

tests in the elastic range were carried out on LFT specimens with varying fiber volume

fraction. Three loading-unloading cycles in the elastic range were performed to ensure

that no effects of material degradation or plasticity are active. The viscoelastic properties

are validated with creep experiments under variation of fiber volume fraction, load direc-

tion and stress level. The deformation and damage behavior is validated with quasi-static

tensile tests until fracture. Only the material with the highest fiber volume fraction was

tested in this respect.
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Figure 1: Flow of data and interaction between the applied modeling procedures and
experimental techniques.

16



1 INTRODUCTION 1.3 Notational conventions

1.3 Notational conventions

Vectors, tensors or matrices are highlighted either by the use of the index notation

(aij, Aijkl) or printed in bold face (first and second order in lower case - a, fourth order

in upper case - A), e.g.

a =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 . (1)

Einstein’s summation convention implies that if an index appears twice in a single term,

summation of that term over all the index values is carried out:

aibi =
3∑
i=1

aibi = a1b1 + a2b2 + a3b3 . (2)

The Kronecker delta δij returns zero or one depending on the equality of the indexes:

δij =

{
0 if i 6= j

1 if i = j
. (3)

The ⊗ sign represents the dyadic product between two vectors, e.g. (in 2D)

a⊗ b =

[
a1b1 a1b2

a2b1 a2b2

]
. (4)

The trace of a tensor or matrix is defined as

tr(a) = akk = a11 + a22 + a33 . (5)

The | · | sign represents the absolute value of a scalar variable, whereas ‖ · ‖ means the

Euclidean norm of a vector, e.g.

‖a‖ =
√
a2

1 + ...+ a2
n . (6)

The time derivative is marked by dots (Newton’s notation). The use within this work is

restricted to small deformation theory with a fixed coordinate system:

ẋ =
dx

dt
, ẍ =

d2x

dt2
. (7)

The f()-operator represents a function with the dependent variable y and the independent

variables x1 ... xn and is used as abbreviation in flowcharts to avoid an explicit specification

of the function:

y = f(x1 ... xn) . (8)
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2 Literature review

2.1 Material and process

2.1.1 Nomenclature and differentiation

A variety of materials can be considered to be associated with the class of long fiber

reinforced thermoplastics. Differentiation in particular to short fiber reinforcements is

not consistent in the literature, since some overlap exists between the different material

classes with respect to the fiber length. In Fig. 2, the most common materials are arranged

under consideration of their semi-finished product, their manufacturing process and their

characteristic fiber length according to Henning et al. [Hen05].

Figure 2: Nomenclature and differentiation of short, long and continuous fiber composites
based on semi-finished product, manufacturing process and characteristic fiber length
according to Henning et al. [Hen05].

Short fiber reinforced thermoplastics are exclusively processed by injection molding. The

polymer granules contain the pre-impregnated fibers and are plasticized in a single screw

extruder to avoid fiber attrition. The fiber length within the granules is well below

1 mm and further decreasing during injection into the mold. If LFT-G pellets instead of

short fiber granules are processed by injection molding, the fiber length can be kept at

several millimeters within the part. A more gentle processing of the pellets is available

with the technology of compression molding. Instead of injection into a closed mold with

fixed walls, a strand of the plasticized mass of molten pellets is positioned into an open

mold with moving walls which is then closed by a hydraulic press during the compres-

sion. Due to the omission of high-pressure injection, fiber attrition is reduced and the

characteristic fiber length within the part can be kept even longer. Glass mat reinforced

thermoplastics (GMT) are processed in a similar manner. Instead of the plasticized mass

as output from the extruder, the GMT blanks are cut into a shape close to the part

dimensions before heating and stacking the blanks in the mold by a robot. Although the
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achievable fiber length of the GMT process is very high, the process lacks in adaptability

to fully three dimensional shaped parts due to the somewhat limited formability of the

blanks. The direct LFT process (LFT-D) combines the flexibility for complex part designs

(an attribute of all processes which are based on injection or compression of a plasticized

mass) with a very high characteristic fiber length due to omission of a semi-product and

direct part manufacturing from the constituents (fiber rovings, polymer granules and ad-

ditives). The investigated material of this work was manufactured by application of the

direct compounding (LFT-D) scheme and compression molding. These two technologies

are therefore described in detail in the following sections.

From a modeling point of view, long fiber reinforced thermoplastics are in particular prob-

lematic because of their huge fiber aspect ratio in the region of several thousand and the

resulting data amount. For typical thin-walled structures, the characteristic fiber length

is significantly larger than the wall thickness, resulting in a layered structure with the

layers parallel to the part surface [Adv87]. Therefore, a two dimensional description of

the fiber orientation and a semi 3D or so-called 2.5D modeling procedure is sufficient to

represent the microstructure for most cases. In contrast, short fiber composites with a

typical fiber length well below the wall thickness can feature a significant component of

orientation in thickness direction and therefore a fully three dimensional description of the

fiber orientation and modeling is mandatory. A differentiation with respect to modeling

features is presented in Table 1.

Criterium Short fibers Long fibers
Typical fiber length 0.2 - 1 mm 2 - 100 mm
Aspect ratio 10 - 50 100 - 5000
Relative fiber length fiber length < wall thickness fiber length >> wall thickness
Fiber orientation 3D 2D layers
Modeling approach fully 3D semi 3D, 2.5D
Data amount medium high

Table 1: Differentiation between short and long fibers from a modeling point of view.

2.1.2 Direct compounding process

Fig. 3 illustrates the compounding process of a LFT-D material with two twin-screw,

co-rotating extruders (compounding extruder, horizontal / mixing extruder, vertical) and

direct introduction of the fiber rovings into the mixing extruder [Hen05, Kra03, Rad08,

Tro03]. The polymer granules as well as optional additives are fed into the compounding

extruder by a gravimetric dosing unit. The additives (e.g. coupling agents, heat stabilizers,

antioxidants and colorants) are chosen individually according to the requirements for a

specific application with respect to fiber-matrix interface characteristics, thermostability,

ultraviolet stability and coloring. The polymer melt is combined with the fiber rovings

19



2.1 Material and process 2 LITERATURE REVIEW

by the mixing extruder. The rovings are fed through a pre-heating device and heated up

to a temperature below the critical limit where the fiber sizing shows degradation effects.

The fiber rovings are then introduced directly into the mixing extruder. Thus, the fibers

are cut by the edges of the co-rotating screws with the maximum fiber length defined by

the pitch of the thread of the screws. The LFT-D strand (plasticized mass of polymer

and fibers) as it is provided by the mixing extruder is finally fed through a slot die to

shape its cross-section and then segmented into packages by a cutting unit.

Figure 3: Scheme of the direct LFT process [Hen05,Kra03,Rad08,Tro03].

The material resulting from the direct LFT process is characterized by a broad fiber

length distribution reaching from a large amount of fiber fragments with a length well

below 1 mm to very long fibers up to approx. 50 mm (depending on the extruder screws).

The very high maximum fiber length and the resulting high mechanical properties can

be considered as one major advantage of the direct process. Other benefits are its energy

and cost efficiency due to omission of semi-finished products, the possibility to introduce

a certain amount of recycled material into the process (LFT recycling chips plasticized

by a second compounding extruder feeding the mixing extruder) and the adaptability of

the polymer properties over a broad range to each individual application [Hen05].

2.1.3 Compression molding

The LFT-D strand as produced by the LFT-D compounding procedure described in the

previous section is positioned into one half of the opened mold. This is performed by

a handling robot with needle grippers, picking the strand package up from the end of

the conveyor belt which enables automatic transportation between the mixing extruder
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and the mold. The conveyor belt is covered by a heat tunnel to prevent heat dissipation

and to ensure that the strand temperature does not drop below the melt temperature of

the polymer. Depending on shape and complexity of the mold, several strand packages

might be positioned to different locations within the mold by multiple robots to save

process time and to prevent heat losses. The mold is heated to a certain temperature to

prevent instantaneous solidification of the strand at the touching area with the mold and

sharp temperature gradients resulting in a high degree of distortion after compression and

solidification of the part. The mold is then closed by a hydraulic press. This is illustrated

in Fig. 4. Shearing edges ensure that no material can flow out of the cavity even in

partially closed state. The compression forces the plasticized material to flow toward

cavities which were not initially covered by the strand. The streaming conditions within

these areas (called flow region of the part) cause a higher degree of fiber orientation than

it is characteristic within the strand inlay location (called press region of the part).

In Fig. 5, the development of the microstructure within an exemplary part geometry is

illustrated for the strand inlay position and the flow region.

Figure 4: Scheme of compression molding: The LFT-D strand is placed in the cavity (one
half of the mold). The mold is then closed by a hydraulic press and the material flows
toward uncovered regions.

2.1.4 Effects of fiber length

The principle relationship between the fiber length and the effective mechanical prop-

erties is illustrated in Fig. 6 with respect to the elastic stiffness, strength and impact

energy. The diagram according to Schemme [Sch03] was constructed based on experi-

mental data of multidirectional laminates of glass fibers in a polypropylene matrix by

Thomason [Tho96a, Tho96b, Tho97]. It visualizes the fiber effectiveness, which was de-

fined by Schijve [Sch00] as the degree of contribution of a specific fiber length to the

effective property of a discontinuous fiber composite. The saturation length Lsat of each

individual property is defined as the corresponding fiber length to the saturation threshold

of the respective mechanical property.
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Figure 5: Compression molding of an exemplary part geometry: The arrows show the
flow direction within the part. Whereas the fiber orientation is low for the strand inlay
position, a more aligned state of the microstructure can be observed for the flow region.

With respect to the elastic stiffness, good agreement of the experimental data to the Cox

model [Cox52] (using an extension to account for fiber orientation by Krenchel [Kre64])

was found [Tho96a]. The saturation length and the corresponding aspect ratio for a uni-

form fiber diameter of 20 µm amount to Lsat
Stiffness ≈ 1 mm and ARsat

Stiffness ≈ 50, respectively.

The quasi static strength was compared to predictions of a modified Kelly-Tyson model

[Kel65] based on the critical fiber length LKT for which the fiber fracture stress σf can

be reached by load transfer over the cylindrical circumference area (defined by the fiber

diameter D and LKT) of the embedded fiber which has to be large enough to ensure that

the interfacial shear strength τ is not exceeded: LKT = σfD/2τ . Based on LKT the model

accounts for fibers of sub-critical length which will be pulled out and fibers of super-

critical length which will fail in normal tension mode. Thomason extended the model to

account for multidirectional fiber orientation to match the experimental data [Tho96b].

The results are strongly dependent on the interface properties influenced by fiber sizing

and processing conditions which define the value of the interfacial shear strength τ . The

resulting value of saturation length for strength (Fig. 6) is approx. one order of magnitude

larger than the value for stiffness with Lsat
Strength ≈ 10 mm (ARsat

Strength ≈ 500).

For further investigation of the experimental impact properties, the Cottrell model [Cot64]

was applied which distinguishes between sub- and super-critical fibers in a similar manner

as the Kelly-Tyson model [Tho97]. The model is based on the assumption that fiber pull-

out is the dominant mechanism for energy dissipation. The predicted impact dissipation

energy therefore reaches a maximum at medium fiber length before decreasing toward in-
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finite length when all fibers fail in normal mode instead of pullout. This is contradictory

to the experimental data, where no such drop of energy for very high fiber length could

be observed. A fiber strain energy model was therefore proposed by Thomason which is

based on the breakage of debonded fibers [Tho97]. The latter model gives excellent agree-

ment to the experimental data. Now, the impact energy reaches a saturation plateau

for very high fiber length in a similar form as observed for the quasi static strength.

The saturation value of fiber length for impact resistance amounts to Lsat
Impact ≈ 40 mm

(ARsat
Impact ≈ 2000) for the investigated material.

It is worth mentioning that the diagram and the underlying data need to be interpreted as

a model to describe the approximate relation between the respective measures. Generality

or transferability to other material systems is not proven. Furthermore, no systematic

variation of a single characteristic could be performed by the experimental studies, since

for example, a variation in fiber length always affects their orientation and local density

while manufacturing a new material variant. A more systematic approach would be met

by the application of microstructural simulations. Although a variety of numerical meth-

ods suitable for such studies is available, there are relatively few publications treating a

systematic variation of the fiber length. Some of them, mostly restricted to the prediction

of the elastic properties, are cited in Section 2.2.3 and 2.2.5 (e.g. by Hine et al. [Hin02]).

With respect to rate-dependent fracture, the influence of the fiber length was partially

examined by Okabe et al. [Oka14,Oka10]. However, no numerical studies of the relation

between the impact energy and the fiber length are currently known.

Figure 6: Principle dependence of effective mechanical properties on fiber length / aspect
ratio according to Schemme [Sch03]. A fiber diameter of 20 µm was assumed.
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2.1.5 Thermoplastic matrix material

Thermoplastics offer certain advantages over thermosets with respect to their application

as a matrix polymer. Instead of the time-consuming curing process of a thermoset, the

solidification of the thermoplastic melt is usually more time and cost efficient. Further-

more, a certain amount of recycled material can be fed into the process without significant

degradation of the material properties. Thermoplastics are therefore well suited for the

efficient mass production of structural parts with medium to high mechanical perfor-

mance and strength-to-weight ratio. Disadvantages of most thermoplastics are their poor

thermostability, their low glass-transition temperature, their tendency to creep and their

weak bonding to glass fibers due to the nonexistence of covalent bonds. The investigated

material of this work features a polypropylene matrix, which is the most universal thermo-

plastic matrix polymer because of its excellent cost-performance ratio and adaptability by

various modifications. Polypropylene is associated with the group of polyolefines which

form a semi-crystalline structure during solidification. This structure is characterized

by crystalline regions where a spheroidal arrangement of the polymeric chains is formed

based on a nucleation process depending on cooling rate, material formulation (additives)

and boundary conditions (e.g. the presence of surface tension in the vicinity of a fiber).

The remaining regions feature an amorphous structure similar to an undercooled melt

(Fig. 7). The resulting mechanical properties are directly influenced by the microstruc-

ture. The viscoelastic response is characterized by a spectrum of relaxation times in which

each value corresponds to a specific length of a polymeric chain. The inherent creep ten-

dency of most thermoplastics is caused by the lack of a side-chain network that would limit

the sliding of the polymeric chains (as existing for thermosets). Whereas inelastic defor-

mation of metals is based on dislocation motion and is therefore in general considered to

be independent of hydrostatic stress, such stress is mostly not negligible for thermoplastics

because of its effect on the amorphous regions [Gho08,Glo07,Sau74,Mea69].

Figure 7: Schematic microstructure of a semi-crystalline thermoplastic.
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2.2 Micromechanics and homogenization

2.2.1 Concept of homogenization

The general aim of micromechanics is the prediction of the effective mechanical behavior

based on the knowledge of the constituent properties and the geometry of the microstruc-

ture. The effective behavior denotes the mechanical response of the homogeneous medium

which is equivalent to that of the heterogeneous material. The method to derive the effec-

tive behavior of the homogeneous medium from the heterogeneous one is called homog-

enization. Additional problems often treated are the examination of the microstructural

stress-strain state to predict local damage mechanisms or the investigation of arbitrary,

often multiaxial load states which are difficult to analyze by experimental techniques. The

so-called virtual laboratory can also be helpful to study the effects of various constituents

without the necessity to actually produce each material variant. Thus, a virtual material

screening for a given application can be performed.

2.2.2 Classical stiffness prediction and homogenization methods

The first analytical approaches provide bounds for the effective elastic moduli of the het-

erogeneous material under assumption of a constant strain (Voigt upper bound [Voi89])

and a constant stress, respectively (Reuss lower bound [Reu29]) within the composite.

More accurate bounds were developed by Hashin and Shtrikman under application of

variational principles [Has62]. Eshelby’s equivalent inclusion problem [Esh57] at first

takes into account the shape of the inclusion by treating an ellipsoidal inclusion in an infi-

nite matrix at dilute concentration. The Mori-Tanaka model [Mor73] extends the Eshelby

problem to non-dilute concentrations of the inclusions by considering phase interactions

in an approximate way (the so-called mean field approach). The elastic constants of

a short fiber composite can be determined in this way [Tan84]. Following a different

route one can start from Hill’s self-consistent scheme [Hil63] and derive the modeling of

transversely isotropic composites including the effects of fiber aspect ratio, which leads

to the semi-empirical Halpin-Tsai equations [Hal76]. An overview of common methods

for stiffness prediction of unidirectional short fiber composites is given by Tucker and

Liang [Tuc99]. The effect of a varying fiber orientation can be addressed by averaging

the elastic constants of an imaginary transversely isotropic reference composite with re-

spect to the fiber orientation distribution (known as orientation averaging according to

Advani and Tucker [Adv87]). Since the microstructure is not explicitly depicted, all these

approaches require significant simplifications regarding the geometry and the interactions

between the fibers or inclusions. However, to predict the elastic properties, the classical

models are accurate enough even for modeling LFTs [Ngu08,Gar13], although character-

istic geometrical features like fiber waviness resulting from the dense packing and detailed

fiber-fiber interactions in regions of high fiber density cannot be addressed.
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2.2.3 Advanced nonlinear modeling approaches

The widening of the application range of various models beyond linear elasticity was an

important research topic of computational micromechanics in recent years.

One way to overcome the simplifications of the classical approaches is to predict the full

field at the micro-level by explicit depiction of the microstructure in the form of a sur-

face mesh or a voxel grid which can then be computed e.g. with FE simulations or fast

Fourier transform (FFT) solvers. This approach has no inherent limitation with respect

to microstructural features and their interaction and is therefore suitable to capture the

complex nonlinear and time-dependent behavior of the thermoplastic matrix of LFTs in

conjunction with fiber-fiber interactions and fiber-matrix interface debonding phenomena.

The major drawback of most full field approaches is their high computational cost, which

disqualifies them from simulating larger components of industrial relevance.

Gusev et al. studied short fiber composites of fixed aspect ratio and volume fraction under

variation of the fiber orientation distribution with a full field model and found agreement

of the elastic properties to the classical approaches within engineering accuracy [Gus02].

The effects of fiber volume fraction, aspect ratio and fiber length distribution on the elas-

tic and thermoelastic properties of short fiber composites were also studied [Hin02]. In a

similar spirit, Pan et al. created a RVE for random chopped fiber composites with volume

fractions up to 35 % and applied the model to predict the elastic properties as well as the

damage behavior including fiber-matrix interface debonding [Pan08b, Pan10]. Hoffmann

investigated RVEs of short fiber reinforced thermoplastics based on micromechanical val-

ues for fiber orientation, length and volume and included the effects of a plastic matrix

model accounting for damage [Hof12].

On the other hand, also the mean field approaches and purely phenomenological mod-

els were further developed for application to nonlinear material behavior. Their benefit

is their computational efficiency and therefore their suitability for computations on the

component level. However, their accuracy is somewhat limited due to consideration of

similar simplifications as the classical approaches or - in the case of purely phenomeno-

logical approaches - they are lacking in physical background.

Seelig et al. presented an integrative simulation approach with mapping from process

to structural simulation using a phenomenological LFT model which accounts for fiber

orientation in a simplified way and considers a tension-compression asymmetry [See08].

Fritsch et al. applied a phenomenological approach embedded in a FEM framework

to investigate the viscoelastic-viscoplastic response of LFT to dynamic loading [Fri09].

Nguyen et al. developed an effective elastic-plastic model for injection molded LFTs based

on their fiber orientation and length distributions and implemented it into a finite ele-

ment framework [Ngu09]. The nonlinear deformation behavior was very well reproduced,

whereas the validity of the model is restricted to the onset of damage. Therefore, effects
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of progressive failure could not be captured. Kammoun included the effects of progressive

failure in micromechanical models of short fiber reinforced thermoplastics [Kam11]. In his

work, the Eshelby-Mori-Tanaka approach was extended to incorporate a fiber orientation

and length distribution by a multiple step homogenization. Fibers with similar orienta-

tion and length were assigned to a so-called pseudo grain. At first, homogenization is

carried out for each individual pseudo grain before a second homogenization step is per-

formed over all grains with different micromechanical characteristics. The procedure was

implemented into a FE framework and validated against experimental data. A similar

procedure is commercially available with Digimat-MF [Dig14].

2.2.4 Representative volume element

The concept of homogenization is illustrated in Fig. 8 for the sample structure of an uni-

directional fiber arrangement. Due to computational cost, it is in general not possible

to model the microstructure of the material explicitly within the component to be calcu-

lated because the characteristic length of the microstructure is usually several orders of

magnitudes smaller than the characteristic component dimension. The microstructure is

therefore decomposed into a characteristic sub-unit, the representative volume element.

In most cases, the microstructure can be obtained by periodic arrangement of the RVE

as depicted in Fig. 8. Homogenization is performed for the RVE sub-unit of significantly

reduced dimensions under consideration of appropriate boundary conditions (mostly pe-

riodic boundary conditions if applicable). A mathematical description of the constitutive

behavior of the effective material is determined which is equivalent to the response of

the RVE as a function of the microstructure and the constituent properties (e.g. fiber

and matrix). The equivalent, homogenized material behavior is then applied (e.g. by im-

plementation in the form of an effective material law) for calculation of the component

without explicitly depicting the microstructure.

The necessary and sufficient condition for the equivalence of the homogenized medium

and the heterogeneous one was formulated by Hill [Hil51,Bis51]. Hill’s condition ensures

the equivalence of strain energy between the heterogeneous and homogenized level. It

states that the volume average of the product of microscopic stresses and strains of the

composite equals the product of the homogenized stress and strain, as long as the analyzed

volume is chosen large enough:

〈σijεij〉 = 〈σij〉〈εij〉 , (9)

where 〈 · 〉 = 1
V

∫
(V )
· dV denotes the volume average. The RVE acts as a substitute body

for the material’s microstructure. It has to be large enough to include all representative

features on the microscopic scale. If the structure is periodic, the RVE can also be

referred to as unit cell. The definition of the RVE dimensions strongly depends on the
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Figure 8: Concept of homogenization: Definition of a periodic sub-unit of the continuous
microstructure (RVE) and determination of its effective behavior.

characteristics of the material to be modeled and is often not trivial. In order to be

representative in a statistical sense, the characteristic RVE dimension LRVE (e.g. edge

length in case of a cubic RVE) must be large compared to the characteristic length on

the microstructural level Lmicro (e.g. the fiber length for discontinuous fiber composites

or the cell diameter in case of porous materials or foams) [Hoh05,Dem07]. On the other

hand, the RVE must be small compared to the characteristic part dimension Lmacro (e.g.

the wall thickness or lateral dimension of a component):

Lmacro � LRVE � Lmicro . (10)

Depending on the material, both inequalities might be contradictory and the RVE in a

statistical sense might not exist. This is the case for most variants of LFT materials:

The characteristic length on the microstructural scale, which can be considered as the

maximum fiber length, has a value of several mm (Lmicro = 50 mm for the material

investigated in this work). Most LFT components feature a wall thickness in the region

of Lmacro = 5 mm. As a consequence, the homogenization scheme in a strict statistical

sense is not applicable (Lmicro > Lmacro). However, if Eq. 10 is interpreted component-

wise, the condition can be met: Most LFT components feature lateral dimensions in the

region of or even larger than 1 m, but are very thin, shell-like structures. Because of the

thin walls, the fibers are geometrically constrained to be aligned in layers parallel to the

wall surface (as discussed by Advani and Tucker [Adv87] amongst others). If Lmicro in

direction of the wall thickness is therefore considered to be the fiber diameter (e.g. 20 µm),

the criterion can be met (20 µm � 5 mm). In the transverse directions, Lmicro represents

the maximum fiber length (e.g. 50 mm) which is often small compared to the lateral part
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dimensions (e.g. 1 m). As a consequence, the RVE shape cannot remain cubic and the

three RVE dimensions become unequal (e.g. a very flat cuboid). However, a variation of

the RVE size should always be performed to ensure that the results are insensitive in this

respect.

2.2.5 Microstructure generation of discontinuous fiber composites

Two classical RVE generation procedures which are often referred to in the literature

are the random sequential adsorption (RSA) scheme of cylindrical, uncurved fibers and

the generation of a FE mesh based on cubic voxels (both illustrated in Fig. 9). The RSA

Figure 9: Classical RVE generation procedures: Random sequential adsorption of cylin-
drical, uncurved fibers (left) and voxel based mesh generation (right).

scheme is mostly based on Monte-Carlo simulations. The position and orientation of cylin-

drical fibers, described by their starting point and 3D extrusion vector (e.g. Euler angles)

is chosen randomly until the desired orientation state and volume fraction is reached. The

method can be extended by a shaking or compressing algorithm to reach higher volume

fractions with less numerical effort. This procedure was implemented into the structure

generation software Palmyra [Pal14]. Lu et al. presented a modified RSA algorithm by

means of an automatic searching and coupling technique and applied it to investigate the

elastic properties of random, discontinuous fiber composites over a range of fiber aspect

ratios from 20 to 300 for volume fractions up to 15 % [Lu 14]. Wang et al. modeled layered

fibrous materials with different fiber lengths to investigate the effect of fiber length on

through-plane permeability [Wan07]. Dirrenberger et al. investigated the behavior of 3D

interpenetrating fibrous networks without consideration of a matrix phase toward gigan-

tic RVE sizes [Dir14]. As interpenetration of fibers is not acceptable for a realistic three

dimensional model of discontinuous fiber composites, an essential problem of all structure

generation methods which are based on cylindrical, uncurved fibers exists in the form of
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the so-called jamming limit, describing the dependence of the maximum achievable fiber

volume fraction on the fiber aspect ratio. Further investigations of randomly arranged

and dispersed, uncurved fibers were carried out by Evans and Toll [Eva86,Tol98] amongst

others. Fig. 10 shows the principle dependency. A more detailed analysis and comparison

is given by Pan [Pan10]. All analytical and numerical models agree that for (from a LFT

point of view) moderate aspect ratio of approx. 80, the maximum achievable volume frac-

tion for an unforced packing of uncurved fibers is well below 0.1 and further decreasing

toward higher aspect ratios.

Figure 10: Jamming limit according to Evans and Toll [Eva86,Tol98] describing the max-
imum achievable volume fraction of randomly arranged and dispersed, uncurved fibers.

To achieve higher volume fractions of discontinous fiber composites with aspect ratios

well above those of short fiber reinforcements, the classical RSA scheme for an unforced

packing of uncurved fibers needs to be modified. A suitable method for the modeling

of random strand fiber composites with volume fractions up to 35 % was developed by

Pan [Pan08a, Pan08b, Pan10]. The fibers are deposited into 2D layers under compli-

ance of a random fiber orientation distribution. If an intersection between two fibers

is unavoidable, the fiber extrusion vector jumps to the adjacent layer and bridges the

crossing fiber before switching back to the original layer. Pan applied the method to

model the elastic properties as well as to describe fiber debonding during quasi static

deformation by the inclusion of cohesive zone elements between the fibers and the ma-

trix. The resulting effective elastic properties are in good agreement to experimental re-

sults, although the characteristic kinks of Pan’s method cannot be considered as realistic.

Harper et al. modeled discontinuous carbon fiber composites with unlimited volume frac-

tion by representation of the fibers as one dimensional beam elements, embedded in a

free or structured matrix mesh [Har12a,Har12b]. Harper systematically investigated the

effects of RVE size, boundary conditions, fiber length (up to 10 mm) and volume fraction
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(up to 50 %) on the elastic properties of structures with random orientation. The main

advantage of the latter method is its ease of implementation as well as its computational

efficiency, whereas limitations exist with respect to the modeling of nonlinear material

behavior and damage. Soltani et al. reconstructed the 3D structure of non-woven fabrics

with algorithms applied on 2D slices of their CT voxel data to calculate the permeability

of such fiber networks [Sol14]. Each fiber features the exact geometry as observed by the

CT scan. However, vast efforts have to be made for such reconstruction mainly due to

detailed checks of neighborhood relations for each voxel. For the extremely high aspect

ratio of LFT, such detailed reconstruction of CT data can be considered as problematic

due to the size of the structures and the related amount of data. With state-of-the-art CT

and computational resources, this cannot be considered as currently technically feasible.

Faessel et al. generated fiber networks based on measured statistical values describing

the microstructure (fiber orientation, density, length and curvature) and investigated the

effects of thermal conductivity [Fae05]. However, the procedure does not account for any

matrix material and permits fiber interpenetration.

Commercial tools are available which use a cubic voxel grid to describe the microstruc-

ture (GeoDict [Geo14]). Each voxel is either assigned to the matrix or inclusion material

properties depending on its position. This is well suited for a stress analysis with FFT

solvers as implemented in GeoDict, but rather problematic and inefficient for FE analysis

of LFT materials with fiber aspect ratios well above 1000 due to the resulting data amount

respectively the element count. In detail, each fiber must be depicted by a multitude of

elements over its cross section to appropriately model features like fiber crossing, bridging

or entanglements. This is illustrated in Fig. 9 (right). To represent the complex LFT

structure more efficiently, a free meshing technique should be preferred, where the fiber

mesh is swept along the curved fiber axis instead of using a fixed voxel mesh.

The software Digimat-FE [Dig14] is in general suitable for the generation of an RVE with

discontinous, curved fibers. However, the generated microstructure is described based on

surface geometries by various CAD file formats which then need to be meshed by external

software (This procedure is also available in GeoDict as an alternative to the voxel grid).

For extremely large LFT structures, the indirect way of exporting a surface-based geomet-

rical description can be considered as problematic and meshing of such complex geometry

will require enormous computational resources. This issue can be addressed by appli-

cation of a direct procedure which generates the fiber mesh straight from the statistics,

whereas only the matrix mesh needs to be computed by appropriate FE pre-processing

software.
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3 Experimental methods

3.1 Material and microstructure

3.1.1 Processing conditions

The investigated LFT material consists of a polypropylene matrix

(DOW® C711-70RNA [DOW03]) and glass fibers (TufRov® 4575 [PPG13]). A cou-

pling agent was added to improve the reactivity of the polypropylene with the silane sizing

of the glass fibers in order to establish a strong bonding. Furthermore, a heat stabilizer

and carbon black inhibit the thermo-oxidative degradation of the matrix. Three mate-

rial variants PPGF10, PPGF20 and PPGF30 were produced with different fiber weight

fractions of 10, 20 and 30 % (corresponding fiber volume fractions of 3.80, 8.16 and

13.22 %) at the Fraunhofer Institute for Chemical Technology (ICT). PPGF30 and PPGF20

are of great interest for structural application and commonly used by the automotive in-

dustry, whereas PPGF10 is rather of academic interest to provide additional data for the

model validation. Plates with dimensions of 400 x 400 x 3 mm3 were formed by compres-

sion molding as described in Section 2.1. The LFT strand as it came out of the extruder

was positioned asymmetrically in the mold. The material flow during the compression of

the mold generates a rather high degree of fiber orientation everywhere outside the strand

inlay position. This so-called flow region of the plate was investigated in the following.

The specimen plate is illustrated in Fig. 11 with highlighted positions of the tensile and

the CT specimens as well as the position of the fiber length analysis section of approx.

100 x 60 mm2. Approximate characteristic dimensions are specified in the figure.

The polymer granules were processed on a Leistritz ZSE-40 HP - 32D inline compounder

and the resulting plasticized mass was mixed with the glass fibers (introduced in the form

of continous rovings) in a Leistritz ZSG-40 GL - 20D mixing extruder. The LFT-D strand

was then positioned into a flat plaque mold with shear edges with the dimensions of 400 x

400 mm2. Compression was performed by a Dieffenbacher DYL 630/500 hydraulic press

with a parallel motion control system and a maximum closing force of 5000 kN. Table 2

shows the parameters of the process.

3.1.2 Fiber orientation distribution

The fiber orientation distribution was extracted by means of image analysis of computer

tomographic (CT) scans, which were taken at the Fraunhofer IWM in Halle. A Phoenix

nanome|x 180NF µCT device was used to acquire the scans with a voxel size of approx.

8 µm and a resolution of 3603 voxels of the cubic analysis section of 33 mm3 to screen the

specimens over their complete thickness. The scans were taken at a tube voltage of 85 kV

and a current of 90 µA by a flat panel detector with a max. resolution of 5122 pixels. The
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Figure 11: LFT specimen plate with the dimensions of 400 x 400 x 3 mm3 manufactured
by compression molding. The positions of the tensile and CT specimens as well as the
position of the fiber length analysis section are highlighted in the figure.

Parameter Value Unit
Pressing force 3200 kN
Temperature mold (top) 60 ◦C
Temperature mold (bottom) 65 ◦C
Temperature mixing extruder 240 ◦C
Temperature heat tunnel 260 ◦C
Temperature conveyor belt 250 ◦C
Polymer mass flow 30 kg/h
Revolution speed of mixing extruder 71 rpm
Density of rovings 2400 tex
Number of rovings (PPGF30, 13.2 vol-%) 14
Number of rovings (PPGF20, 8.2 vol-%) 8
Number of rovings (PPGF10, 3.8 vol-%) 4

Table 2: Parameters of the LFT-D manufacturing process of the investigated material.
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specimens were taken from the same region of the LFT plate as the 0◦ tensile specimens

(Fig. 11). In the following, the CT data was analyzed by the plugin Directionality of

the image processing software ImageJ [Fij14]. In order to apply the procedure, the raw

CT voxel data was decomposed into 360 slices of 2D images which were binarized before

applying the analysis procedure (Fig. 12). The plugin chops each single 2D image into

square sections, in which the Fourier transform in the form of its power spectrum in polar

coordinates is analyzed for each angle under application of spatial filters proposed by

Liu [Liu91]. Therefore, the relative amount of area with a preferred direction is evaluated

by means of a probability density function (the planar fiber orientation distribution). The

integral orientation distribution as used for the RVE modeling was derived by averaging

over all 360 histograms (Fig. 13) of the stack. The distributions are interpreted as fiber

length fraction per angle class as the software recognizes the amount of picture area with

a preferred direction and does not perform any segmentation of fibers.

Figure 12: Analysis procedure to extract the fiber orientation distribution from CT scans:
Raw CT voxel data (left, the white arrow shows the flow direction), decomposition into
a stack of 360 2D images (middle, exemplary image depicted) and binarization and ori-
entation analysis of each 2D image with the plugin Directionality [Fij14] of the program
ImageJ (right). The data of the PPGF30 material (13.2 vol-%) is shown.

3.1.3 Fiber length distribution

The fiber length distribution cannot be determined from the CT scans since this would

require identification of the continuity of the fibers which is not currently possible for

LFT materials due to the enormous size of such analysis sections and the related data

amount. The fiber length distribution therefore was determined by the analysis of the

diluted fiber structure of an incinerated specimen by means of automatic image analysis.

The specimen was taken from the same region of the plate as the 0◦ tensile specimens

(Fig. 11). To distort the measurement as little as possible, a large specimen area of approx.

100 x 60 mm2 was chosen to extract the fiber structure. 8868 fibers were analyzed. The

analysis was carried out by the company xyz high precision under application of their

fiber separation procedure and the analysis software FASEP® [FAS14,Har09].
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Figure 13: Plot of the fiber orientation distribution over the stack of 360 2D images
(PPGF30). The black line represents the integral planar orientation distribution as used
for the RVE models, as obtained by averaging over the 360 histograms of the stack.

The mean fiber length as characteristic value of the fiber length distribution can be ex-

pressed as the arithmetic mean (number average) l̄n or alternatively be weighted by fiber

length (weight average) l̄w according to the following equations:

l̄n =

∑
i nili∑
i ni

, (11)

l̄w =

∑
i nil

2
i∑

i nili
, (12)

where li is the fiber length and ni the number of fibers with the length li.

3.1.4 Fiber volume fraction

The fiber volume fraction fv was calculated from the weight fraction fw which results from

the mass flow rates of the manufacturing process (Section 3.1.1). The mass density values

for fiber ρf and matrix ρm were taken from the manufacturers data sheet [DOW03,PPG13].

fv =
fw

fw + (1− fw) ρf

ρm

(13)
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3.2 Tensile tests

3.2.1 Matrix specimens

To determine the elastic-plastic response of the polypropylene matrix, tensile tests on

matrix substance specimens were performed. Specimen plates of 500 x 500 x 4 mm3 were

manufactured by injection compression molding at the Fraunhofer Institute for Chemical

Technology (ICT). The manufacturing process was chosen in order to ensure similar pro-

cessing conditions as for the compression molding of the LFT specimens (Section 3.1.1).

The same additives (coupling agents, UV stabilizers) were added to the matrix polymer

(Polypropylene DOW® C711-70RNA [DOW03]) as used to produce the LFT plates.

Quasi-static tensile tests with a cross-head displacement rate of 0.01, 0.1 and 1 mm/s

(corresponding strain rates of approx. 7 · 10−5, 7 · 10−4 and 7 · 10−3 1/s) were carried out

with a Hegewald & Peschke Inspekt 100 testing machine on specimens cut from the

4 mm thick plates. The geometry of the dog bone shaped specimens with a reduced

section of 70 x 10 mm3 is depicted in Fig. 14. An Instron® 2620-604 axial clip-on ex-

tensometer with a gauge length of 50 mm was used for strain acquisition.

Figure 14: Geometry of multi-purpose tensile specimens according to
DIN EN ISO 3167 [DIN03] (dimensions in mm).

3.2.2 LFT specimens

Elasticity

To measure the elastic properties of the LFT material, quasi-static tensile tests were

carried out in a similar manner as in described for the matrix specimens (Section 3.2.1).

Exclusively the lowest crosshead displacement rate of 0.01 mm/s (corresponding strain

rate of approx. 7 · 10−5 1/s) was applied for the elastic testing procedure. The specimens

(same geometry as before) were taken from the flow region of the plate under 0◦ and

90◦ relative to the material’s flow direction (Fig. 11). The stiffness was determined from

the initial, linear elastic part of the stress-strain curve, where no effects of plasticity or
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damage could be observed (a range up to approx. 10 % of the respective strength for each

material variant and fiber orientation). Three loading-unloading cycles were repeated to

ensure that no degradation effects were active. At least three specimens per material

variant and orientation were tested to obtain the stiffness values in flow direction E1 and

in transverse direction E2. The analysis procedure is shown in Fig. 15 for an exemplary

stress-strain curve.

Figure 15: Exemplary stress-strain curve to determine the elastic modulus of a LFT
specimen (PPGF30, 13.2 vol-%, 0◦ load direction). The experimental data is depicted
with grey solid lines, whereas the linear least squares fit to extract the stiffness value
features a black dashed line.

Plasticity and damage

The deformation and damage behavior of LFT under 0 and 90◦ load direction was in-

vestigated by quasi-static tensile tests with a cross-head displacement rate of approx.

0.05 mm/s (corresponding strain rate of approx. 7 · 10−4 1/s). A different specimen ge-

ometry (Fig. 16) than the one used for the remaining experiments was chosen in order

to ensure that the fracture was localized within the specimen’s and extensometer’s gauge

section, which could not be achieved with the standard geometry (Fig. 14). A HBM DD1

axial clip-on extensometer with a gauge length of 10 mm was used for strain acquisition.

The resulting stress-strain curves presented in Section 5.6.11 were generated under con-

sideration of values of engineering stress (σ = F/A0, actual force F divided by original

cross section A0) and engineering strain (ε = ∆l/L0 with ∆l being the displacement value

of the extensometer and L0 being the original distance between the blades).
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Figure 16: Geometry of LFT specimens for tensile tests until fracture
(dimensions in mm).

3.3 Creep tests

3.3.1 Matrix specimens

Creep tests on matrix substance specimens were carried out at standard climate

(23 ◦C temperature, 50 % relative humidity). The specimens are described in

Section 3.2.1. At the beginning of the load period of 6 · 105 s, a load defined by the

product of specimen cross section and desired nominal stress level was applied in the form

of a lead weight. For the lower stress levels up to 5 MPa, the load was directly attached

to the specimen clamps, whereas a lever mechanism with a transmission ratio of 10 was

used for the higher stress levels. The strain was measured with an Instron® 2620-604

axial clip-on extensometer with a gauge length of 50 mm. Up to a time period of 3600 s,

a recording interval of 1 s was chosen (an interval of 600 s between 3600 and 6 · 105 s) for

data acquisition.

3.3.2 LFT specimens

Validation experiments to characterize the creep behavior of LFT were performed under

the same conditions as described in the previous section (Section 3.3.1). Specimens of

0◦ and 90◦ relative to the materials flow direction (Fig. 11) were tested. The specimen

geometry is defined in Fig. 14.

3.4 Fiber push-out tests

To determine the fiber-matrix interface properties, single fiber push-out tests were per-

formed on thin slices of the PPGF30 material at the Institute for Applied Materials

(IAM-WK) of the Karlsruhe Institute of Technology (KIT). The specimens featuring a

multitude of fibers were prepared from the cross section of the LFT plates and were

polished with a diamond suspension to a desired thickness of 85 µm. The specimens

were prepared with their surface being transversely oriented relative to the flow direction.

Thus, a multitude of fibers are aligned in thickness direction of the specimen (Fig. 17).

The slice was then placed on a perforated plate with a hole diameter of 60 µm and a
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grid distance of 200 µm (Fig. 18). Several fibers were manually selected for indentation

under compliance of the criteria that the fibers were located within a hole of the perfo-

rated plate and that the fibers were aligned preferably in push-out direction. Numerical

studies support that fiber eccentricity and angular misalignment up to 25◦ from push-out

direction rather weakly affect the resulting peak force with a maximum deviation below

10 % [Bry11, Bry10]. Indentation was then carried out with a Zwick ZHU 0.2 universal

hardness testing machine (nominal load capacity of 200 N) using a flat-punch indenter with

a tip diameter of approx. 5 µm (Fig. 18). The indents were performed in displacement-

controlled mode at a displacement rate of 3 µm/min up to an indentation depth of approx.

6 to 8 µm measured after the initial contact between indenter and fiber.

Figure 17: Preparation of the push-out specimens (thickness 85 µm) from the cross section
of a LFT plate (PPGF30, 13.2 % fiber volume fraction) with the flow direction being
parallel to the thickness direction of the specimen.

Figure 18: Push-out loading scenario with the specimen bearing on a perforated plate
(left), flat-punch indenter (middle) and details of the indenter tip (right).
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4 Modeling techniques

4.1 Viscoelastic matrix model

4.1.1 Modeling strategy

The nonlinear viscoelastic matrix model as applied in this work is based on the classical

linear viscoelastic Burgers model. The numerical implementation of the linear viscoelastic

variant was carried out according to the literature (Section 4.1.2 - 4.1.6). In the following

step, the linear model was modified to a nonlinear variant based on the experimental

findings (Section 4.1.7 - 4.1.8).

There are several ways of mathematical description of viscoelastic models like the Burgers

model. The most general is to derive the ordinary differential equation (ODE,

Section 4.1.3) and to solve the ODE either analytically for a specific boundary condi-

tion (e.g. a constant stress σ0) or numerically for an arbitrary load history.

A more elegant and computational efficient way is based on the hereditary form, where the

time-dependent creep compliance (as obtained from the analytical solution of the ODE

for a constant stress) is combined with an arbitrary load history by means of a convolution

integral, known as the memory function and based on Boltzmann’s superposition princi-

ple. This approach is described in detail in Section 4.1.4 and essentially limited to linear

viscoelasticity in its original form (various approaches of a modified superposition princi-

ple exist to overcome this limitation, Section 4.1.7). If the hereditary integral is converted

to its incremental form (Section 4.1.5), it is reduced to a simple recursive formulation,

in which the state of strain needs to be inherited from the previous to the current time

increment, resulting in a very efficient numerical method which is suitable for the anal-

ysis of the very large models of this work. The three dimensional incremental form is

derived in Section 4.1.6. It is suitable for numerical implementation of the classical linear

viscoelastic Burgers material, in which the recursive approach corresponds to a variety of

viscoelastic models presented in the literature [Tay70,Lai96,Haj04,Ric06,Hua08,Wol11].

In incremental form, the limitation to linear viscoelastic behavior only affects the current

time increment ∆t by assumption of a constant stress rate σ̇ = ∆σ/∆t and constant

model parameters E, η for the current time increment. Thus, the overall nonlinear vis-

coelastic behavior as observed for the investigated polymeric matrix (Section 5.2.1) can

be approximated by numerical integration of the load history with sectional linear time

increments. The nonlinear modification of the model and its range of validity is described

in Section 4.1.7. A detailed flowchart and the equations of the nonlinear model ready for

implementation by means of a user subroutine (UMAT) are presented in Section 4.1.8.
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4.1.2 Burgers four parameter model

The Burgers model is a composition of a viscous Maxwell model, represented by the

spring E0 and the dashpot η0 and a viscoelastic Kelvin-Voigt model with the parameters

E1 and η1. Fig. 19 shows its reological notation as it can be found in various lecture books

(e.g. by Brinson [Bri08]). The Maxwell model describes a fluid whereas the Kelvin-Voigt

model represents a solid.

Figure 19: Schematic notation of the viscoelastic Burgers model as a combination of a
viscous Maxwell model with the parameters E0 and η0 and a viscoelastic Kelvin-Voigt
model with the parameters E1 and η1.

By combining both elementary models, the Burgers model represents the characteristic

mechanical behavior of an ideal thermoplastic as illustrated in Fig. 20 for a creep-recovery

experiment under application of a constant stress σ0 at time t0 and removal of the stress

at t1. The stationary creep rate ε̇ = σ0/η0 of the second phase after relaxation of the

Kelvin-Voigt element as well as the irreversible strain εirr after unloading correspond to

the assumption of unlimited, continuous sliding of the polymeric chains under load.

Figure 20: Response of the Burgers model to a constant stress σ0 applied at time t0 and
recovery behavior of the unloading period after t1.
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4.1.3 Differential equation

The one dimensional constitutive equation of the Burgers model in the form of an ODE

is given by
E1

η0

σ +

(
1 +

E1

E0

+
η1

η0

)
σ̇ +

η1

E0

σ̈ = E1ε̇+ η1ε̈ . (14)

The derivation (as described by Brinson [Bri08] amongst others) is carried out in the

appendix (Section A.1.1).

The analytical solution of the ODE (Eq. 14) under the boundary condition of a con-

stant stress σ0 is given by

ε(t) = σ0

[
1

E0

+
t

η0

+
1

E1

(
1− e

−t
τr

)]
= σ0 C(t) , (15)

where τr denotes the relaxation time of the Kelvin-Voigt element: τr = η1/E1.

In this case, the creep behavior is independent of load and can be separated in the form

of the creep compliance C(t), defined as

C(t) =
1

E0

+
t

η0

+
1

E1

(
1− e

−t
τr

)
. (16)

4.1.4 Hereditary integral

Besides the differential form as described in the previous section, a viscoelastic material

behavior can be expressed in terms of a hereditary integral based on the Boltzmann su-

perposition principle. The validity of the superposition principle in its original form is

limited to linear viscoelasticy, where the creep response is independent of load.

The memory function of viscoelasticity is defined by the convolution integral

ε(t) =

t∫
0

C(t− τ)σ̇ dτ , (17)

where C is the creep compliance, σ̇ the stress rate at time τ and τ the time inte-

gration variable. The derivation of the memory function is specified in the appendix

(Section A.1.2).
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4.1.5 Incremental form

The hereditary form offers some advantages with respect to numerical implementation as

in incremental formulation, the model reduces to a simple recursive formulation in which

the strain components of the Kelvin-Voigt element need to be inherited from the previ-

ous time increment to the current. Numerical implementation of such an approach was

first published by Taylor et al. [Tay70]. The derivation as specified in the appendix

(Section A.1.3) was described by Woldekidan [Wol11]. A similar procedure for the

Maxwell body was presented by Richter [Ric06]. Furthermore, a variety of implemen-

tations of viscoelastic models in the literature are based on a comparable recursive algo-

rithm [Lai96,Haj04,Hua08].

The total strain increment ∆εtot is decomposed into an elastic ∆εe, a viscous ∆εv and a

viscoelastic ∆εve component:

∆εtot = ∆εe + ∆εv + ∆εve . (18)

The elastic component is given by

∆εe =
∆σ

E0

. (19)

Under knowledge of the stress value at the beginning of the time increment σ(t−∆t), the

viscous component is defined as

∆εv(t) =
∆t

η0

[
σ(t−∆t) +

∆σ

2

]
. (20)

The following recursive expression applies to the viscoelastic component, where

εinh(t − ∆t) is the viscoelastic strain which is inherited from the previous time

increment:

∆εve(t) =
∆σ

E1

−
[
e
−∆t
τr − 1

]
εinh(t−∆t)− 1

E1

∆σ

∆t
τr

[
1− e

−∆t
τr

]
. (21)

4.1.6 3D generalization

The incremental form of the one dimensional model needs to be generalized to three

dimensions as described by Lai and Bakker [Lai96] and Woldekidan [Wol11]. Some ab-

breviations are introduced with respect to a compact notation suitable for numerical

implementation by means of a user subroutine (UMAT). The equations of this section

can be directly used for numerical implementation of the linear 3D Burgers model.
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Two general ways to model the 3D behavior of a viscoelastic body are known:

� Type A: Constant Poisson’s ratio

For this type of 3D behavior of time-dependent deformation, a constant Poisson’s

ratio is assumed over the complete time history. The time-dependent deformation

is therefore considered as compressible and treated in the same way as the instanta-

neous, elastic response of a solid with a constant Poisson’s ratio νe = νt < 0.5. The

one dimensional creep compliance C(t) (Eq. 16) can then be divided into a shear

J(t) and a bulk B(t) component as follows:

J(t) = 2(1 + ν)C(t) , (22)

B(t) = 3(1− 2ν)C(t) , (23)

ν = const. . (24)

� Type B: Time-dependent Poisson’s ratio

The second type of 3D behavior assumes only the shear component of viscoelastic

deformation to be time-dependent, whereas the bulk part remains constant and

equal to the bulk component of the instantaneous elastic response. Whereas the

elastic response is assumed to be compressible with a Poisson’s ratio νe < 0.5, the

time-dependent part of deformation is considered as incompressible (νt = 0.5 and

thus tr(εt) = 0). As a consequence, the overall Poisson’s ratio of time dependent

deformation with an elastic and viscoelatic component becomes time-dependent:

J(t) =
BC(t)

3

[
9

B
− 1

C(t)

]
, (25)

B = const. , (26)

ν(t) =
1

2
− B

6C(t)
. (27)

For glassy or semi-crystalline, thermoplastic polymers as the investigated matrix material,

type A of time-dependent 3D behavior is commonly assumed [Lai96] and was therefore

applied in the following. In contrast, type B is used to model materials like bituminous

mastic, where the shear deformation is considered to be dominant [Wol11].

The three dimensional equations of the following sections refer to the Voigt form of

stress σ and strain ε - their tensors are reduced to six dimensional vectors in favor of a

compact notation:

σ =
[
σ11 σ22 σ33 σ23 σ13 σ12

]
, (28)

ε =
[
ε11 ε22 ε33 2ε23 2ε13 2ε12

]
. (29)

44



4 MODELING TECHNIQUES 4.1 Viscoelastic matrix model

The elastic shear and bulk compliances J0 and B0 can be expressed in terms of Young’s

modulus E and Poisson’s ratio ν by

J0 =
2(1 + ν)

E0

, (30)

B0 =
3(1− 2ν)

E0

, (31)

where E0 denotes the stiffness of the Maxwell element and ν the Poisson’s ratio of the

overall Burgers material.

The same is done for the Kelvin-Voigt element by the following:

J1 =
2(1 + ν)

E1

, (32)

B1 =
3(1− 2ν)

E1

. (33)

The reciprocal value of the relaxation time τr is defined as

λr =
E1

η1

=
1

τr

, (34)

with E1 and η1 being the stiffness and viscosity of the Kelvin-Voigt element, respectively.

Some additional abbreviations are introduced to avoid cumbersome terms:

β = e−λr∆t , (35)

α = β − 1 , (36)

x =
∆t

η0

, (37)

where η0 is the viscosity of the Maxwell element.

The time-dependent shear compliance J∗ and bulk compliance B∗ are given by

J∗ =
1

2

[
J0 + J1

(
1 +

1

λr∆t
α

)]
, (38)

B∗ =
1

3

[
B0 +B1

(
1 +

1

λr∆t
α

)]
. (39)
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The model’s constitutive equation to express the incremental stress ∆σ in terms of the

incremental strain ∆ε at the time t is defined as

∆σ(t) =

[
1

J∗
M ∗

d +
1

B∗
Mb

]
∆ε(t)− x

[
1

J∗
M ∗∗

d +
1

B∗
Mb

]
σ(t) (40)

−α
[

1

J∗
M ∗∗∗

d εinh
d (t−∆t) +

1

B∗
Mbε

inh
b (t−∆t)

]
.

The coupling matrix for the deviatoric strain components (Md, M ∗
d, M ∗∗

d and M ∗∗∗
d ) is

given by

Md =



2/3 −1/3 −1/3 0 0 0

−1/3 2/3 −1/3 0 0 0

−1/3 −1/3 2/3 0 0 0

0 0 0 a 0 0

0 0 0 0 a 0

0 0 0 0 0 a


, (41)

where a = 2 for Md, a = 1 for M ∗
d, a = 3/2 for M ∗∗

d and a = 1/2 for M ∗∗∗
d .

For the bulk components, it takes the form of

Mb =



1/3 1/3 1/3 0 0 0

1/3 1/3 1/3 0 0 0

1/3 1/3 1/3 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


. (42)

Some additional abbreviations are introduced:

γ = − J1

2λr∆t
(1− β) , (43)

δ = − B1

3λr∆t
(1− β) . (44)

The strain of the Kelvin-Voigt element εinh is inherited from the previous timestep. Its

bulk and deviatoric components are stored separately and updated at the end of each

time increment by the following equations:

εinh
d (t) = βεinh

d (t−∆t) + γMd∆σ(t) , (45)

εinh
b (t) = βεinh

b (t−∆t) + δMb∆σ(t) . (46)
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4.1.7 Nonlinear modification and range of validity

As a strong nonlinear viscoelastic behavior of the investigated polypropylene matrix mate-

rial was observed experimentally, the classical, linear viscoelastic Burgers model is not ap-

plicable within reasonable accuracy (studies on several variants of the model formulation,

including a linear viscoelastic one, are presented in Section 5.6.9). Thus, the formulation

of the linear viscoelastic model according to the Boltzmann superposition principle had

to be modified. Similar approaches were made by Leaderman [Lea43], who introduced

the modified superposition principle (MSP) to account for nonlinear viscoelastic effects

and Schapery [Sch69], who extended the MSP theory to account for more nonlinear func-

tions, a reduced time and a shift factor in analogy to the thermodynamically motivated

time-temperature superposition principle. In the original form of the model, the shift

factor accounts exclusively for stress. Temperature and aging effects can be incorporated

by additional shift factors [Lai96]. The creep function of the Schapery model, specified in

the form of a time-dependent uniaxial strain ε(t) is defined as

ε(t) = g0C0σ + g1

t∫
0

∆C(ψt − ψ
′

t)
dg2σ

dτ
dτ , (47)

where C0 is the instantaneous and ∆C the time-dependent part of the creep compliance

and ψt the reduced time, given by

ψt =

t∫
0

dt
′

aσ(σ(t′))
, (48)

and ψ
′
t = ψt(τ). The functions g0(σ), g1(σ) and g2(σ) correspond the nonlinear material

properties and aσ(σ) is the shift factor of the reduced time with respect to stress. For the

3D representation of the model, the von Mises equivalent stress, the hydrostatic pressure

or a combination of both are usually chosen as measures of the effective stress based

on which the nonlinear functions are expressed, as described by Lai and Bakker [Lai96].

In this way, it is also possible to account for a tension-compression asymmetry of the

material. For g0 = g1 = aσ = 1, the model reduces to the modified superposition principle

of Leaderman:

ε(t) = C0σ +

t∫
0

∆C(ψt − ψ
′

t)
dg2σ

dτ
dτ , (49)

and further simplification with g2 = 1 yields the linear viscoelastic form. In this work,

a similar approach of modification of the superposition principle was implemented. The

Burgers model was retained as the underlying framework since empirical functions, which

explicitly describe the stress-dependence of the Burgers parameters, could be found while
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interpreting the experimental results (Section 5.2.1). It therefore seems to be more ade-

quate to apply a bottom-up approach and to directly use these functions instead of fitting

the Schapery model to the experimental data. Moreover, the Schapery model is predes-

tined for thermosetting materials with a decaying secondary creep rate and no irreversible

strain in the recovery phase [Bri08], since it is usually based on a generalized Maxwell

model. The application of a generalized Maxwell model to the experimental data as alter-

native to the Burgers model is described in Section 5.2.2, Paragraph ’3D behavior’. For

the Burgers model, only one relaxation time had to be considered to accurately reproduce

the experimental data (Fig. 42), whereas a multitude of relaxation times were necessary

to describe the experimental curves with the generalized Maxwell body. Furthermore,

the presence of an irreversible part of strain in the recovery period of the experiments

indicates that the viscous character of the Burgers model is justified and therefore, the

Burgers model was retained as the framework for the nonlinear version.

Finally, the stress-dependence of the Kelvin-Voigt spring E1 and dashpot η1 as well as

the Maxwell dashpot η0 is expressed by empirically determined equations specified in the

results section (Section 5.2.1), whereas the spring E0 was not found to be stress dependent

(the parameters are defined in Fig. 19). For each time increment of the load history, the

model parameters E1, η0 and η1 therefore need to be recalculated. An explicit calculation

of these parameters is not possible: The material routine needs to compute the stress

increment for a given strain increment by application of stress-dependent model parame-

ters. Thus, the general framework of the material model must be extended by an iterative

Newton-Raphson algorithm to determine the model parameters implicitly as described in

detail in the following section. A similar approach was chosen by Lai and Bakker [Lai96]

and Woldekidan [Wol11] for the implementation of the Schapery model.

The nonlinear approach and its numerical time integration scheme as presented in the fol-

lowing is based on the incremental form of the linear viscoelastic Burgers model

(Section 4.1.5). In order that the time integration scheme is applicable, the assump-

tion is made that the model parameters E, η remain constant for each time increment

∆t and stress is assumed to vary linearly over each time increment, σ̇ = ∆σ/∆t, in

accordance to the implementations of Lai and Bakker [Lai96] and Woldekidan [Wol11].

These simplifications affect the range of validity of the nonlinear viscoelastic model. Fur-

ther discussion and a method to improve the accuracy by the application of an extended

predictor-corrector approach in combination with the recursive formulation can be found

in the publication of Haj-Ali [Haj04]. Due to the need for a computational efficient model

which is suitable for the analysis of very large microstructures, the model was kept as

simple as possible and no such additional corrector steps were considered. The model is

therefore not necessarily applicable to scenarios with a fast variation of load (e.g. cyclic

loading), but sufficiently accurate to analyze creep scenarios without abrupt changes in

load. Further analysis and discussion can be found in Section 5.6.9 and 6.2.2.
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4.1.8 Numerical implementation of nonlinearity

A flowchart of the numerical implementation by means of a user subroutine (UMAT)

is shown in Fig. 21. The stress dependent parameters are calculated implicitly by an

iterative loop. As a significant part of the model is identical to its linear form, some

abbreviations used in the following were already defined in Section 4.1.6.

Figure 21: Flowchart of the numerical implementation of the nonlinear Burgers model.
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� Calculate trial stress with parameters from previous converged state

Applying Eq. 50 (identical to the linear model, Eq. 40), a trial stress increment ∆σtr

is computed with the model parameters from the previous converged state based on

the strain increment ∆ε which is provided by the FE software at the beginning of

the UMAT call (the coupling matrices are defined by Eq. 41 and 42):

∆σtr(t) =

[
1

J∗
M ∗

d +
1

B∗
Mb

]
∆ε(t)− x

[
1

J∗
M ∗∗

d +
1

B∗
Mb

]
σ(t) (50)

−α
[

1

J∗
M ∗∗∗

d εinh
d (t−∆t) +

1

B∗
Mbε

inh
b (t−∆t)

]
.

� Update model parameters based on trial stress

The trial stress is formed by addition of the trial stress increment to the previous

value of stress:

σtr(t+ ∆t) = σ(t) + ∆σtr(t) . (51)

The hydrostatic stress σH and the von Mises equivalent stress σM are calculated at

each material point by

σH =
1

3
σkk , (52)

σM =

√
3

2
σ
′
ijσ
′
ij , (53)

where σ
′
ij denotes the deviatoric stress, defined as

σ
′

ij = σij −
1

3
δijσkk , (54)

and δij being the Kronecker delta (Eq. 3).

The indicator stress σind is defined as the largest absolute value of σM and σH:

σind =

{
σM if |σM| ≥ |σH|
σH if |σH| > |σM|

. (55)

The indicator stress σind is then used to determine the stress-dependent model pa-

rameters E1, η0, η1 (defined by Eq. 118 - 120 in Section 5.2.1). For stress levels

outside the experimentally investigated range, the material behavior is assumed

to be linear viscoelastic. Thus, the model parameters remain constant at their

respective values for stresses lower (higher) than 2.5 (12.5) MPa. The variables

J∗, B∗, x, α, β, γ, δ then need to be recalculated with the new values of model

parameters under application of the equations defined in Section 4.1.6.
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� Calculate backwards to trial strain and form residual

Applying Eq. 56, the trial stress increment ∆σtr is converted into a trial strain

increment ∆εtr using the updated model parameters:

∆εtr(t) = [J∗Md +B∗Mb] ∆σtr(t) + xM xσ(t) (56)

+α
[
Mdε

inh
d (t−∆t) +Mbε

inh
b (t−∆t)

]
.

The coupling matrix for the deviatoric Md and bulk components Mb was already

defined (Eq. 41 and 42). For the Maxwell dashpot (M x), it takes the form of

M x =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 3 0 0

0 0 0 0 3 0

0 0 0 0 0 3


. (57)

A residual strain vector ∆εres is computed by subtraction of the strain increment

∆ε (provided by the FE software at the beginning of the subroutine call):

∆εres = ∆εtr −∆ε . (58)

� Minimize residual with updated trial stress

The residual strain vector ∆εres is minimized by an iterative Newton-Raphson pro-

cedure until the following criterion is satisfied:

‖∆εres‖
‖∆ε‖

≤ 10−6 , (59)

where ‖ · ‖ is the Euclidean norm (Eq. 6).

A maximum of n = 15 iterations is performed for the following recursive formulation

to calculate the updated trial stress increment ∆σn+1
tr :

∆σn+1
tr = ∆σntr − (

1

J∗
M ∗∗∗

d +
1

B∗
Mb)∆εres . (60)
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If the procedure did not converge after 15 iterations, the recursive loop is aborted

and a warning message is written to the message file. The material routine is then

continued in the same way as if convergence would have been obtained.

� Update history variables and return the tangential matrix

Before exiting the UMAT subroutine, the strain of the Kelvin-Voigt element needs to

be stored in state variables. The values are updated by Eq. 45 and 46.

9 state variables are necessary to save the deviatoric (6) and bulk (3) components

separately.

The current values for the stress-dependent model parameters E1, η0 and η1 are

stored in three more variables.

The maximum value of indicator stress σind over the time history is also saved: If

the current value of σind is larger than the value of the state variable, the state

variable is updated (otherwise not).

Another two state variables store the hydrostatic strain εH and the equivalent de-

viatoric strain ε
′
eq for postprocessing purposes:

εH =
1

3
εkk , (61)

ε
′

eq =
1

1 + ν

√
3

2
ε
′
ijε
′
ij , (62)

with ε
′
ij = εij − 1

3
δijεkk being the deviatoric strain.

The equivalent deviatoric strain (Eq. 62) is calculated in analogy to the von Mises

form in order to provide a scalar measure of the deviatoric part of strain. The

factor 1/(1 + ν) effects that under uniaxial load, the equivalent strain is equal to

the uniaxial strain, since a constant and equal Poisson’s ratio of instantaneous and

time-dependent deformation (Eq. 22 - 24) is considered by the model.

In total, 15 state variables at each material point are used by the material sub-

routine.

At the end, the tangential matrix d∆σ
d∆ε

is updated with

d∆σ

d∆ε
=

1

J∗
M ∗∗∗

d +
1

B∗
Mb . (63)
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4.2 Plastic matrix model

The von Mises plasticity model is based on the second invariant J
′
2 of the deviatoric stress

tensor σ
′
ij (Eq. 54). The invariant defines a scalar stress intensity value as a function of

the six dimensional space of stress which is independent of the rotation of the underlying

coordinate system. Because only the deviatoric stress is considered, the model implies

that plastic deformation is exclusively effected by distortional deformation modes, whereas

the material response to volumetric deformation remains purely elastic. The derivation,

as carried out in the following, can be found in various lecture books (e.g. Bower [Bow10])

and the Abaqus manual [Aba11].

The invariants J
′
i represent the coefficients in the characteristic equation to extract the

three principal stresses σ of the deviatoric stress tensor σ
′
ij (Eq. 54):

σ3 − J ′1σ2 + J
′

2σ − J
′

3 = 0 . (64)

The three invariants J
′
i of the deviatoric stress tensor are given by

J
′

1 = σ
′

kk = 0 , (65)

J
′

2 =
1

2
σ
′

ijσ
′

ij =
1

6

[
(σ11 − σ22)2 + (σ22 − σ33)2 + (σ33 − σ11)2

]
+ σ2

12 + σ2
23 + σ2

31 , (66)

J
′

3 =
1

3
σ
′

ijσ
′

jkσ
′

ki . (67)

Based on J
′
2, the von Mises equivalent stress σ̄ is defined as

σ̄ =
√

3J
′
2 =

√
3

2
σ
′
ijσ
′
ij = σM . (68)

To differentiate between the elastic and plastic part of deformation, the total strain εtot

is decomposed into its elastic εe and plastic εp part:

εtot = εe + εp . (69)

The equivalent plastic strain ε̄p can be obtained by integration of the equivalent plastic

strain rate ˙̄εp over the time t:

ε̄p =

t∫
0

˙̄εp dt . (70)
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The equivalent plastic strain rate ˙̄εp is defined as

˙̄εp =

√
2

3
ε̇p
ij ε̇

p
ij . (71)

The yield stress σ̄Y defines the critical limit of equivalent stress to cause plastic flow:

σ̄(σ) = σ̄Y(ε̄p) . (72)

The yield surface in the six dimensional stress space is defined by its normal n:

n =

√
3/2

σ̄
σ
′
. (73)

Plastic flow occurs if the equivalent stress reaches the yield stress and if the stress rate σ̇

points outside the yield surface:

σ̄(σ) = σ̄Y and nT σ̇ > 0 . (74)

An associated flow rule is assumed which induces the plastic flow rate to be parallel to

the normal of the yield surface:

ε̇p = Λn . (75)

The proportionality constant Λ is always larger than or equal to zero in the case of plastic

flow. For negative values of Λ, the material response is elastic. Plastic flow is assumed

to be isochoric, which implies a Poisson’s ratio of 0.5 (incompressible solid). For an

exemplary case of uniaxial loading, this results in

ε̇p
11 = ε̇ , ε̇p

22 = −1

2
ε̇ , ε̇p

33 = −1

2
ε̇ . (76)

The above equations are numerically implemented by an iterative elastic predictor / plastic

corrector approach. The evolution of the yield surface (isotropic hardening) is defined in

the form of tabular value pairs of equivalent plastic strain ε̄p and corresponding yield

stress σ̄Y. Interpolation between two values is performed linearly, whereas the yield stress

outside the specified range is assumed to remain constant. The model is available in

Abaqus under the keyword *PLASTIC, which was applied in the simulations accounting

for plasticity.
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4.3 Interface model

4.3.1 Simulation of fiber push-out

Reverse determination of the fiber-matrix interface properties was performed by FE sim-

ulation of the fiber push-out experiments in Abaqus Explicit. The parameters describing

the mechanical behavior of the interface were manually adjusted in a way that the force-

displacement curves of the push-out experiments could be reproduced

(Section 5.4). The obtained description of the interface was then implemented into the

RVE models to investigate their effect on the global deformation behavior of LFT. The

fiber push-out scenario was modeled using the same coarse representation of the fibers

by a single hexahedral element (C3D8R) as applied to model the LFT structures. Cohe-

sive zone elements (COH3D8 ) were added between the fiber and the matrix. They are

assigned to material properties in the form of a traction-separation law (Section 4.3.2)

representing the debonding behavior. To simulate the effects of post-debonding friction,

a contact formulation (Section 4.3.3) was optionally activated which captures the surface

interactions after deletion of the cohesive zone elements, representing interface failure.

Fig. 22 shows the model featuring the same thickness (85 µm) and support diameter

(60 µm) as the experiments (Section 3.4). A cylindrical section of the push-out specimen

was modeled with the inner circle representing the whole diameter of the perforated plate.

The nodes outside the whole diameter are constrained in their DOF parallel to the push-

out direction (support area in Fig. 22). The nodes of the fiber elements were displaced

in fiber direction to model the fiber push-out. The fiber and matrix elements were given

the same elastic properties as used for the LFT simulations (Em = 1250 MPa, νm = 0.35,

Ef = 72000 MPa, νf = 0.22).

Figure 22: Simulation of the single fiber push-out tests for the reverse determination of
the interface properties (left: bottom / right: top view). The black arrow shows the
push-out direction.
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4.3.2 Traction-separation law

Due to the thickness of the interface region being infinitesimally small and its stiffness

being infinitesimally high, stress singularities would occur if the interface was modeled

with continuum elements. A common method to overcome this problem is the use of

a simplified model, which describes the effective mechanical behavior of the interface in

terms of traction and separation between the two surfaces of the interface. The model is

based on the work of Dugdale [Dug60] and Barenblatt [Bar62]. During the elastic period

of separation of the two cohesive surfaces, the traction stress increases linearly until a

critical value, representing the threshold of damage initiation, is reached. With ongo-

ing separation, the traction stress is decreased continuously until complete separation is

reached and finally the cohesive element is deleted from the mesh, breaking the nodal con-

nectivity between the adjacent parts of the finite element model. The traction-separation

law has no physical background and is therefore in general not transferable to other ma-

terial systems without re-calibration. Furthermore, the initial stiffness K represents a

numerical aid rather than a realistic material property.

The traction t and separation δ vector both have three components, in which the n-

component represents the normal direction of the interface and the s- and t-components

represent both shear directions. No coupling between the normal and the shear compo-

nents was considered. Thus, the traction-separation law takes the form of tn

ts

tt

 =

 Kn

Ks

Kt


 εn

εs

εt

 . (77)

where ε = δ/h is the nominal strain defined by the quotient of separation and the nominal

thickness of the interface h. The stiffness components of the elasticity matrix K were set

to an equal value since they do not have any physical meaning: Kn = Ks = Kt = K.

A quadratic nominal strain criterion defines the threshold of damage initiation:(
〈εn〉
ε0

n

)2

+

(
εs

ε0
s

)2

+

(
εt

ε0
t

)2

= 1 , (78)

where the superscript 0 denotes the respective threshold for each strain component and

the 〈·〉 - operator effects that a compressive normal strain does not initiate any damage

(a compressive strain counteracts the separation of the interface, 〈εn〉 = 0 if εn < 0).

Because of the lack of mode-dependent experimental data, the threshold was set to an

equal value for all strain components: ε0
n = ε0

s = ε0
t = ε0.
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The damage evolution is described by the scalar damage variable D, which has the initial

value of 0 and increases monotonically with ongoing damage until the value of 1 is reached,

representing a completely damaged interface. The traction stress of the damaged interface

t̄n,s,t depends on the damage variable in the following way:

t̄n,s,t = (1−D)tn,s,t , (79)

where tn,s,t represents the traction component of the undamaged interface.

The evolution of the damage variable D was specified to increase linearly until a maximum

effective displacement δ̄ is reached:

δ̄ =
√
〈δn〉2 + δ2

s + δ2
t . (80)

The above equations are implemented in Abaqus Explicit. The cohesive zone elements of

the fiber push-out model as well as the multidirectional RVEs accounting for interface

damage were assigned to section properties referring to the traction-separation law.

4.3.3 Contact formulation

To simulate the effects of post-debonding friction during fiber push- or pullout, mechan-

ical contact was activated for the simulations considering friction. Invoking the contact

prevents penetration between the fibers and the matrix after the cohesive elements are

deleted from the mesh and enables the incorporation of a friction coefficient during the

relative motion of the contact surfaces.

The general contact of Abaqus Explicit was activated for all simulations considering post-

debonding friction. The contact algorithm tracks all exterior element surfaces, nodes and

edges. Thus, node-into-surface and edge-into-edge penetrations are prevented by impos-

ing a normal reaction force. Newly exposed surfaces (after elements are deleted from

the mesh) are automatically detected and included in the list of active contact pairs. To

consider edge-into-edge penetrations, the feature edge parameter was applied. A nom-

inal thickness equal to the geometric value of the cohesive elements was considered by

a global thickness property assignment to compensate the clearance between fibers and

matrix which develops after deletion of the cohesive elements. The tangential behavior of

the contact pair was defined under specification of the coefficient of friction, whereas the

normal behavior was specified with the hard contact parameter.
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4.4 Unidirectional fiber arrangement

In order to study the effects of a varying fiber length in detail, a unidirectional fiber

model consisting of four fibers with square packing arrangement was investigated. A

nominal fiber volume fraction of 13.22 % (corresponding to PPGF30) was chosen for all

UD models. To ensure compatibility to the multidirectional RVEs and for the sake of

reasonable computation times, the coarse mesh variant with a single hexahedral element

(C3D8R) over the (square) fiber cross section was chosen for most of the models. To study

the mesh dependency, a model with round fibers and a multitude of elements over the

fiber cross section (C3D8R) was created for the smallest investigated variant with 1 mm

length of the periodic RVE. A clearance of 40 µm representing approx. two fiber diameters

was chosen between the fiber ends of all variants with finite fiber length. The nominal

fiber volume fraction of 13.22 % is referred to the variant of infinite fiber length where

the model contains no fiber ends. The same mesh is used for the variants with finite fiber

length - the elements between the fiber ends are then assigned to the matrix properties.

This causes a deviation from the nominal fiber volume fraction, which was found to be

negligible in particular for the variants with a fiber length above 1 mm. Fig. 23 shows

both mesh variants of the 1 mm long RVE, whereas the respective fiber structures are

depicted in Fig. 24.

Figure 23: Periodic UD fiber arrangement (1 mm RVE length, 13.22 % vol. frac.): Fine
mesh with round fibers (left) compared to coarse mesh with square fibers (right).

Periodic boundary conditions were applied to all investigated variants of the UD fiber

arrangement. The constrained regions are marked in Fig. 25 showing the deformed RVE

whose shape results from the discontinuous fibers and strain concentrations at the fiber

ends. Each pair of corresponding nodes (na/nb) of each of the six RVE surfaces is con-

strained by the following boundary conditions (Eq. 81 - 86).
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Figure 24: Round fiber structure (top) compared to the square variant (bottom).

� Surfaces left and right / top and bottom

u1(na)− u1(nb) = 0 , (81)

u2(na)− u2(nb) = 0 , (82)

u3(na)− u3(nb) = 0 , (83)

� Surfaces start and end

u1(na)− u1(nb) = 0 , (84)

u2(na)− u2(nb) = 0 , (85)

u3(na)− u3(nb) = d3 , (86)

with d3 being the displacement of a dummy node on which the load in x3-direction

was applied and which was used for calculation of the effective strain.

Figure 25: Periodic boundary conditions illustrated on deformed RVE.
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4.5 Multidirectional LFT structure

The numerical LFT modeling procedure as described in the following, its validation with

respect to the elastic properties and preliminary studies of creep and damage scenarios

were previously published by the author [Fli15,Fli14,Fli13a,Fli13b,Fli12]. The procedure

is divided into three steps: First, a fiber generator tool creates a stack of planar fibers

with given length and orientation distributions. This stack is then compressed until the

desired fiber volume fraction is reached. In the last step, the remaining gaps are filled

with elements representing the matrix to complete the RVE. The procedure is illustrated

in Fig. 26 for an exemplary RVE with 5 mm edge length.

Figure 26: Three step procedure of the RVE generation: 1. Generation of a fiber stack,
2. Fiber compression and 3. Addition of the matrix mesh.

60



4 MODELING TECHNIQUES 4.5 Multidirectional LFT structure

4.5.1 Generation of a fiber stack

The structure of the fiber generator tool is shown in Fig. 27 as a flowchart. The program

generates a stack of layers in which each layer contains multiple planar, straight fibers

according to the statistics provided by the user. These are the desired fiber orientation

distribution L(αc)des, the desired fiber length distribution L(lc)des, the desired total fiber

length Ltot, the RVE dimensions X, Y , the limit of fiber length per layer L∗ as well

as several other variables which control the process of the algorithm. First the length

distribution L(lc)des given in terms of desired cumulative fiber length L for each length

class lc is scanned for its maximum value of lc in which the desired value of L is still

larger than the length sum of the currently generated fibers ΣL(lc). If necessary, the

value of lc is decreased by the length interval ∆l until a length class is found which is

not fully occupied. In the next step, a random in-plane fiber angle αf is chosen and the

orientation distribution L(αc)des is checked whether the desired cumulative length L for

each class of angle αc is still larger than the current value of fiber length ΣL(αc) plus the

current fiber length lf . If a value of αf is found, but the fiber does not fit inside the RVE

dimensions X and Y , a finite number of attempts (limited by the re-orientation limit o)

to re-orientate the fiber by choosing an alternate value of αf is carried out. The practical

meaning of this procedure is to prevent any cropping of longer fibers and to preserve their

length by aligning them preferably in the direction of the largest RVE dimension (this

issue is discussed in Section 6.1.4). In the next step, a random value for the fiber layer

coordinate z is chosen. If the cumulative length per layer ΣL(z) plus lf is larger than

the length per layer limit L∗, another layer is randomly chosen. L∗ is given by the user

as a parameter to control the packing density for each layer. The number of layers is

calculated by dividing the total fiber length Ltot by L∗. The planar fiber position, defined

by the fiber start and end points xs, ys is chosen randomly within the RVE borders and

the end points xe, ye are calculated. The fiber location is then checked for intersection

with any other fiber of the current layer, and, if necessary, the fiber is translated to

another location. If such a location cannot be found in a number of attempts which is

smaller than the re-position limit p, another random value for z will be chosen. If all

checks were successfully performed, the fiber is generated. If L∗ is set to a high value,

too many fibers are packed into too few layers and too many attempts are then needed

to find a fiber position where no collision with any other fiber in the specific layer occurs.

Consequently the calculation time for the fiber generation procedure raises drastically. If

the value for L∗ is set too low, e.g. resulting in only a single fiber per layer, the fiber stack

increases in height which increases the calculation time for the following fiber compression

procedure. Fiber placement is repeated until the total generated fiber length reaches the

desired amount Ltot. If the desired fiber length is generated, the program ends with the

automatic generation of an Abaqus input file for the following step of fiber compression.

61



4.5 Multidirectional LFT structure 4 MODELING TECHNIQUES

Figure 27: Structure of the fiber generator tool to create a stack of planar, straight fibers
according to the given fiber orientation and length distribution.
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4.5.2 Fiber compression

The fiber stack is compressed by an explicit FE simulation until the desired value of

the fiber volume fraction is reached. Fully integrated, hexahedral elements (C3D8 ) are

chosen to model the fiber compression scenario (which turned out to be beneficial to

avoid penetration between the contact surfaces of the elements), whereas the element

type is changed to reduced integration (C3D8R) in the following step of structural anal-

ysis (which is essential to avoid shear locking in fiber bending modes). The procedure as

well as the coordinate system which defines the mean fiber orientation as the flow direc-

tion (x1), the transverse direction (x2) and the layer stacking or pressing direction (x3)

is illustrated in Fig. 28. The fiber stack is positioned between two rigid shell elements

whose distance is continuously decreased until the desired fiber volume fraction is reached.

Figure 28: Illustration of the fiber compression scenario showing the maximum displace-
ment of the pressing plates umax, the mean fiber orientation or flow direction x1, the
transverse direction x2 and the pressing direction x3.

The typical values of fiber volume fraction of LFT materials in applications for struc-

tural parts are in the range of 5 to 25 %. Due to their non-unidirectional alignment, their

high aspect ratio and fiber volume fraction the fibers cannot remain straight to realize

the required dense packing. This was investigated in detail by others [Eva86, Tol98] for

randomly oriented fiber structures. In order to retain the fiber orientation distribution as

well as possible, the pressing procedure is divided into two phases with different boundary

conditions as specified in Table 3.
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Phase BC regions BCs Plate displacement
A All nodes of each fiber u1, u2 = 0 0 to 0.9 umax

u3 = free
B Only nodes of first v1 > 0 0.9 umax to umax

and last fiber element u2 = 0
u1, u3 = free

Table 3: Boundary conditions for the two phases of the fiber compression procedure.

In phase A of the compression procedure, active for 90 % of the total displacement of

the rigid plates umax, all nodes of each fiber are constrained in their planar displacements

u1 and u2, whereas u3 was left unconstrained. This ensures that the orientation distri-

bution in the 12-plane remains unchanged and fiber waviness develops only in thickness

direction. For the structures presented here the achievable fiber volume fraction at the

end of phase A is approx. 5 to 7.5 % before the simulation aborts due to excessive ele-

ment distortion. To generate a higher volume fraction, the fiber constraints must then be

relaxed.

The following scenario for phase B turned out to be suitable for reaching higher vol-

ume fractions up to approx. 25 % (depending on the orientation distribution and aspect

ratio) with only minor distortion to the planar orientation distribution. Only the nodes of

the first and last element of each fiber are constrained by boundary conditions, which set

their displacement in x2-direction to zero and apply a non-zero velocity in x1-direction. A

certain value of velocity parallel to the mean fiber direction as well as a non-zero friction

coefficient of the contact formulation was beneficial to keep fiber waviness at a minimum.

Different scenarios were investigated with the result that the two phase procedure is

indeed needed in order to allow just the mandatory intensity of fiber waviness as a conse-

quence of the dense packing, but to avoid major distortion of the orientation distribution.

In detail, the boundary conditions must not be relaxed until contact between any fiber

and its neighbors is ensured because otherwise fiber waviness increases excessively. To

keep a minimum distance between the fibers, the general contact formulation in Abaqus

Explicit was given a non-zero value for the global thickness parameter and the feature

edge parameter was enabled to avoid interpenetration of the fibers. Table 4 shows the

parameters of the contact formulation as well as additional parameters of the explicit fiber

compression simulation.
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Parameter Value Unit
Element edge length 0.0151 mm

Mass density 2 · 10−9 t/mm3

Elastic modulus 5000 MPa
Poisson’s ratio 0.22
Coefficient of friction 0.3
Contact measure of overclosure 0.001 mm
Contact stiffness scale factor 100
Global surface thickness assignment 0.01 mm
Global surface feature assignments PERIMETER
Step time 0.001 s
Automatic mass scaling target increment size 10−7 s

Table 4: Additional parameters of the fiber compression procedure.

4.5.3 Meshing and boundary conditions

In the last step of the RVE generation procedure, the deformed fiber mesh is imported into

the FE preprocessing software HyperMesh (Version 11.0) [Hyp14] to fill the remaining

gaps between the fibers with a tetrahedral mesh representing the matrix. First, the fiber

mesh is positioned into a cuboid with the desired dimensions of the RVE. The faces of the

three dimensional fiber elements (C3D8R) act as seeds for the tetrahedral matrix elements

(C3D4 ) in order to let the matrix mesh grow from each fiber surface. The desired element

size of the matrix mesh can either be set to a constant value or the element size is chosen

automatically by the meshing algorithm resulting in very small elements in regions near

or between several fibers and larger elements toward the RVE borders, where the fiber

density decreases. For the RVEs analyzed in this work, the latter option was able to keep

the total element count below 10 million. Details of the resulting mesh for RVEs of all

three investigated fiber volume fractions are shown in Fig. 29 with a part of the matrix

mesh removed. The corresponding fiber structure (1/4 of the total RVE) is depicted in

Fig. 30. The fiber meshes of two RVE variants with different fiber volume fraction are

compared to the respective CT scans in Fig. 31.

Due to the complexity of the structure and the fact that the fibers need to be enclosed by

the RVE boundary surfaces in order to create the matrix mesh, it is currently not possible

to consider periodic BCs for the RVE simulations. Thus, displacement BCs are applied.

The displacement value for each node of the constrained region u1, ..., un is set to zero for

one side and to an equal non-zero value for the opposite side. Since the surfaces where the

BCs are applied are forced to remain planar, stress and strain concentrations occur in the

RVE boundary region which would distort the result if the boundary displacements would

directly be used to calculate the averaged properties. Therefore, two node sets outside

these stress concentrations are defined to determine the averaged effective properties of

the RVE, as it can be seen in Fig. 32.
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Figure 29: Mesh details of typical RVEs with varying fiber volume fractions. Some of the
matrix elements were removed for illustration purposes.

Figure 30: Details of typical fiber structures with varying fiber volume fraction. One
quarter of the RVE length is depicted for each variant. All matrix elements were removed.
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Figure 31: Comparison between fiber structures and CT scans for two values of fiber
volume fraction.

Figure 32: Applied BCs to determine the effective properties (RVE LD6 with dimensions
of 5 x 1.5 mm2 and an exemplary reference length L0 = 3 mm is shown). The displacement
values for all nodes of each RVE border u1, ... , un are set to zero for one side (A) and
to a non-zero value for the opposite side (B). The node sets outside the stress concentra-
tions (a,b) are used to determine the averaged properties. The color scale visualizes the
equivalent stress and strain, respectively (the darker the color, the higher its magnitude).
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4.5.4 Elasticity

To determine the elastic stiffness, displacement boundary conditions (also known as

Dirichlet BCs) were applied at the RVE borders as detailed in Fig. 32. The result-

ing displacement values for each node of the node sets a and b were then averaged:

ūa = avg(ua,1, ... , ua,n) resp. ūb = avg(ub,1, ... , ub,n) with avg() being the arithmetic

mean and the engineering strain was calculated by ε = (ūb − ūa)/L0 with the reference

length L0 being the initial distance between the node sets a and b. The elastic modulus

was finally determined according to Hooke’s law by calculation of the quotient of engi-

neering stress and strain: E = σ/ε. The stress σ was obtained by dividing the sum of

nodal reaction force FB = ΣFB,1, ... , FB,n at the RVE border B by the initial RVE cross

section area.

To obtain the stiffness values presented in Section 5.6.2 - 5.6.4, the RVEs were com-

puted by implicit FE simulations with Abaqus Standard (Version 6.11) [Aba14]. Here,

the static equilibrium equations derived from the principle of virtual work ensure equi-

librium between outer and inner forces of the model. The equations need to be solved at

the structural or geometrical level in order to compute values of the model’s inner force

variables which can then be translated into values of strain and stress for each element

by application of the constitutive law at the material level. Effects of nonlinearity at the

structural level are addressed by incremental application of the boundary conditions (e.g.

load or displacement). The deviation of the linearized approximation to the exact solution

is controlled at each increment of the simulation step. Therefore, the residual vector r in

the form of r = Ku − F (with F being the force vector, K being the stiffness matrix

and u being the displacement vector) is formed and minimized by an iterative Newton

procedure until a specific level of tolerance is reached (e.g. the initial prediction of the dis-

placement vector u was corrected in a way that the residual r is sufficiently small). Then,

equilibrium between inner and outer forces is obtained and the increment has converged.

The global solution process can now continue with the following increment. For each it-

eration of the Newton procedure, activated at each increment of the simulation step, the

equation system (r = Ku− F ) must be solved for u. Therefore, the stiffness matrix K

must be inverted, which requires enormous computational memory. The solution is either

computed directly by a so-called direct sparse equation solver (to overcome the ineffi-

ciency of a classical Gaussian method for sparsely occupied matrices) or is approximated

by a second iterative procedure in the form of a Krylov subspace method, the so-called

iterative solver. An approximated solution is then searched in a subspace of the original

set of equations with a much smaller number of mathematical operations and memory

than necessary for the direct sparse solver to compute the complete equation system. If

convergence cannot be reached using the first subspace, the subspace is sequentially en-
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larged with each iteration until convergence is reached (an approximated solution could

be found with the corresponding residual being sufficiently small). Krylov’s subspace

method is in particular efficient for the analysis of blocky structures like the investigated

RVEs, where each element can interact with each other via an existing connection over a

path of remaining elements (high degree of mesh connectivity). This causes the stiffness

matrix K to be occupied to a much higher degree than for most cases of analysis of rather

shell-like components with a sparse stiffness matrix [Aba11].

The iterative solver with the default settings for convergence criteria (relative conver-

gence tolerance of 10−3 and maximum number of iterations of 300) was applied to all

implicit simulations of elasticity presented in Section 5.6.2 - 5.6.4. Small deformation the-

ory was used and due to the linear elastic constitutive law of fibers and matrix (the values

are specified in the results section), only one increment was needed for the simulation step.

Due to the direct relation between the size of the model and occupied computational

memory for all implicit simulations (here the stiffness matrix K must be inverted, which

is very costly), element studies with quadratic elements (which are much more computa-

tionally expensive than linear elements because of more DOFs) could not be carried out

on the 50 mm long RVEs. Thus, the results presented in Section 5.6.5 were generated by

application of Abaqus Explicit (Version 6.11). In explicit FEM, the equation of motion

F = Mü + Cu̇ + Ku (where F is the force vector, M the mass matrix defining the

mass assigned to each integration point corresponding to the material’s density and ü the

acceleration vector) is solved for ü. Thus, the mass matrix M must be inverted instead

of K (implicit FEM), which is much less expensive (the mass matrix mostly features only

diagonal components and therefore, the inverse is trivial). Neither the equilibrium of the

system is ensured, nor the convergence is controlled by evaluation of a residual. Thus, the

increments of the simulation step must be chosen several orders of magnitudes smaller

than for the implicit solution procedure with the benefit that computational cost is influ-

enced by the model size to a much lower degree (no expensive inversion of the stiffness

matrix) and therefore, the analysis of the full size 50 mm RVEs with quadratic elements is

technically feasible. However, the results have to be interpreted with care as the solution

might be affected by the effects of inertia (if the total amount of kinetic energy of the

model is not negligible compared to its strain energy) as well as round-off errors, if a huge

number of increments respectively floating point operations is needed to compute models

with a small characteristic element length resulting in a small stable increment size. The

latter problem was addressed by application of the double-precision executable of Abaqus

Explicit whereas energetic issues are further analyzed in Section 5.6.5 and the discussion.
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4.5.5 Viscoelasticity

Creep simulations of a total time period of 6 · 105 s were carried out at the respec-

tive RVEs under application of load controlled boundary conditions. Therefore, the

nodes of the RVE border B (Fig. 32) were coupled to a reference dummy node (kine-

matic coupling in all DOFs) and the load (equal to the product of RVE cross section

and desired stress level) was applied to the dummy node over a ramp of 1 s at the

beginning of the simulation. For the remaining part of the creep simulation, the load

was kept constant. Determination of effective strain was performed in the same form

as described in Section 4.5.4 by averaging the displacement values of both node sets

a and b (Fig. 32) which were recorded as history output at every increment.

Abaqus Standard (Version 6.11) with the iterative solver option and small deformation

theory was applied to generate the results presented in Section 5.6.6 - 5.6.10. The size of

the time increments was chosen automatically by Abaqus based on several criteria (e.g.

numbers of Newton iterations made to reach convergence for the previous increment),

which were kept to the default values (e.g. number of iterations resulting in a cutback

(10) or increase of increment size (4)). An initial increment size of 0.1 s and a maxi-

mum increment size of 104 s was always chosen, if not specified otherwise. No cutback

in increment size could be observed (the increment size chosen by Abaqus was increasing

monotonically until the upper limit of 104 s was reached and 9 Newton iterations were

necessary to obtain convergence for the largest increments). The viscoelastic model (Sec-

tion 4.1 and 5.2) was assigned to the matrix elements, whereas the fibers were modeled

as linear elastic (same values as specified in Section 5.6.2). A perfect interface between

fibers and matrix was assumed.

4.5.6 Plasticity and damage

Virtual tensile tests including the effects of nonlinear deformation due to matrix plasticity

and interface damage were carried out until the onset of fiber damage, which is assumed

to represent the composite’s strength. Effects of matrix damage could not be investigated

because of the varying element size of the tetrahedral matrix elements which precludes

modeling of material failure due to damage localization within the smallest elements.

The RVE border B (Fig. 32) was coupled to a dummy node in all DOFs where a constant

displacement rate corresponding to a nominal strain rate of 10 · 1/s was applied. The

reaction force of the dummy node was recorded in the form of history output at 200

equally spaced intervals over the step time of 0.01 s and divided by the nominal RVE

cross section area to obtain the values of engineering stress. Engineering strain was

determined in the same way as described in Section 4.5.4 based on averaged displacement

values of both node sets a and b (Fig. 32).
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Abaqus Explicit (Version 6.11) was applied to generate the results presented in

Section 5.6.11 - 5.6.15. Finite deformation theory was applied. A semi-automatic mass

scaling with a target increment size of 5 · 10−9 s was activated, if not specified other-

wise. To ensure the validity of the results, the values of kinetic and internal energy

for the entire model were analyzed and the kinetic energy was always found to be suf-

ficiently small compared to the internal energy. To avoid localization of plastic defor-

mation and interface / fiber damage at the constrained RVE bordes, where stress con-

centrations occur, the regions of the RVE outside the distance between the node sets

(Fig. 32) were assigned to linear elastic material properties as illustrated in Fig. 33. The

calibration of the matrix plasticity model, the cohesive zone model and the contact for-

mulation representing post-debonding friction between fibers and matrix is described in

Section 5.3 and 5.4.

Figure 33: Assignment of material properties within an exemplary LFT structure (a
cut at half wall thickness of the RVE LD7 with lateral dimensions of 5 x 5 mm2 is
shown). The elastic RVE boundary ensures that no damage localization occurs at the RVE
borders where the displacement BCs are applied and therefore stress concentrations occur
(Fig. 32).
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4.6 Analytical homogenization

To predict the effective properties of LFT, its complex nonwoven structure is approxi-

mated by virtual decomposition into a laminate of transversely isotropic unidirectional

layers which are arranged according to the given fiber orientation distribution. This pro-

cedure is called orientation averaging and was introduced by Advani and Tucker [Adv87].

The Halpin-Tsai equations are used to predict the properties of the virtual unidirec-

tional layer (Section 4.6.1). The fiber orientation tensor is formed in order to apply the

orientation averaging procedure (Section 4.6.2). Orientation averaging is then carried

out for each pseudo-grain with fibers of equal aspect ratio (Section 4.6.3). The term

pseudo-grain is often used in context with multiple-step homogenization to combine mi-

crostructural entities (e.g. fibers) with similar properties (e.g. orientation, aspect ratio or

both) to a sub-unit for which the first homogenization step is performed [Ada09,Kam11].

In the following, fibers with equal aspect ratio are combined to virtual pseudo-grains.

For LFT with a non-uniform fiber length, a length averaging also needs to be performed

(Section 4.6.4). As shown by Garesci and the author [Gar13], a suitable procedure is

characterized by performing the orientation averaging at first to determine the orienta-

tion averaged properties for pseudo-grains of uniform fiber length and then to weigh the

contributions of each pseudo-grain with the given fiber length distribution to obtain the

final orientation and length averaged LFT stiffness value. The three-step procedure is

illustrated in Fig. 34.

Figure 34: Scheme of the analytical homogenization procedure: At first, the stiffness ma-
trix of the unidirectional reference composite is determined by the Halpin-Tsai equations
(left). Orientation averaging is then carried out for each individual pseudo-grain of equal
aspect ratio (middle). Finally, the influence of the fiber length distribution is addressed
by averaging over all pseudo-grains (right).
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4.6.1 Halpin-Tsai equations

The Halpin-Tsai equations [Hal76] are widely used to model the elastic properties of

a transversely isotropic, unidirectional and discontinous fiber composite. The semi-

empirical equations were derived from Hill’s self-consistent scheme [Hil63]. (An overview

about micromechanics is presented in Section 2.2.2.) The ratio of the composite property

P c (Young’s modulus Ec
11, Ec

22 or shear modulus Gc
12) to the matrix property Pm (Em

11,

Em
22, Gm

12) is defined by the following expression, with the index 1 referring to the fiber

direction and 2, 3 referring to the transverse directions, respectively:

P c

Pm
=

1 + ζHTηHTfv

1− ηHTfv

, (87)

where fv denotes the fiber volume fraction. The parameter ηHT is defined as

ηHT =
P f/Pm − 1

P f/Pm + ζ
, (88)

with P f being the fiber property (Ef
11, Ef

22, Gf
12). The geometry factor ζHT is given by

ζE11
HT = 2AR + 40f 10

v , (89)

ζE22
HT = 2 + 40f 10

v , (90)

ζG12
HT = 1 + 40f 10

v , (91)

where AR is the fiber aspect ratio and the term 40f 10
v an extension to improve the model

accuracy at high volume fractions [Hew70,Hal76,Tuc99]. The remaining values needed to

form the compliance matrix (Section 4.6.3) can be derived by application of the following

relations of transverse isotropy and the rule of mixture:

E33 = E22 , (92)

G13 = G12 , (93)

G23 =
E22

2(1 + ν23)
, (94)

ν12 = νffv + νm(1− fv) , (95)

ν12

E1

=
ν21

E2

, (96)

ν31 = ν21 , (97)

ν32 = ν23 =
1

fv

νf
+ 1−fv

νm

, (98)

with νf , νm being the Poisson’s ratio of the isotropic fiber and matrix, respectively.
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4.6.2 Orientation tensor

In order to apply the orientation averaging scheme for the first step of homogenization

of each pseudo-grain with equal aspect ratio (Fig. 34), the fiber orientation distribution

in the form of 2D probability density functions (Section 3.1.2) needs to be converted

to orientation tensors after Advani and Tucker [Adv87]. With the orientation tensors,

a compressed description of orientation information is available, which allows the stor-

age of orientation information at every material point (e.g. mesh of a process simulation

and mapping to a FE-mesh for structural simulation). When the second order orienta-

tion tensor a (or aij in index notation) is applied, only five independent parameters are

needed to describe a 3D orientation state (two independent parameters for 2D) instead of

a probability density function with a magnitude of variables, while retaining a sufficiently

accurate description of the orientation state for engineering applications.

The fundamental properties of a are:

� tr(a) = 1 - The trace of the tensor equals one. This is a consequence of the

probability density function being normalized (Eq. 102).

� The diagonal components a11, a22, a33 represent the relative fiber amount aligned in

the principal directions of a.

� The off-diagonal components aij, i 6= j have values ranging from - 1/2 to 1/2. They

represent a measure of the degree of misalignment between the coordinate axes

(x1, x2 and x3) and the principal directions of the tensor and vanish if they coincide.

� One can visualize the orientation tensor as an ellipsoid in which the diagonal com-

ponents define its shape by the three principal semi-axes and the off-diagonal com-

ponents effect the rotation of these axes against the coordinate system.

The derivation of the fiber orientation tensors from the fiber orientation functions is

carried out in the following. If a fiber is modeled as rigid cylinder, its orientation in 3D

space can be described by the two angles θ, φ in a spherical coordinate system (Fig. 35).

The orientation distribution can then be defined as probability density function ψ(θ, φ).

In order to introduce the vector p (unit length) to describe the fiber position in Cartesian

coordinates, the following transformations are applied:

p1 = sin θ cos φ , (99)

p2 = sin θ sin φ , (100)

p3 = cos θ . (101)
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Figure 35: p vector to describe the fiber orientation in Cartesian coordinates (x1, x2, x3)
and corresponding spherical coordinates (θ, φ).

The probability density function ψ(θ, φ) can then be converted to its Cartesian represen-

tation ψ(p). The integral over all possible directions of p (Cartesian coordinates) or over

the surface of the unit sphere (spherical coordinates) must equal 1 since the probability

density function must be normalized [Adv87]:

∮
ψ(p) dp =

2π∫
φ=0

π∫
θ=0

ψ(θ, φ) sin θ dθ dφ = 1 . (102)

Second, due to the symmetry of a fiber, the following conditions for periodicity apply:

ψ(θ, φ) = ψ(π − θ, φ+ π) , (103)

ψ(p) = ψ(−p) . (104)

Orientation tensors are then defined by forming dyadic products of the vector p and

integrating the product with the probability distribution function over all possible direc-

tions [Adv87]. Because of the symmetry condition (Eq. 104), only the even-order tensors

are different from zero. The second order (a, aij) and fourth order (A, Aijkl) orientation

tensors have practical importance and are given by

a =

∮
p⊗ p ψ(p) dp , (105)

A =

∮
p⊗ p⊗ p⊗ p ψ(p) dp . (106)

It is worth mentioning that in the literature, the fourth order orientation tensor is usually

written in lower case (aijkl) [Adv87]. However, to ensure compatibility with the notational

conventions (Section 1.3), an upper case letter is used in this work (A, Aijkl).
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To describe orientation states, the second-order tensor a is usually accurate enough (e.g.

to visualize the fiber orientation in mold-filling process simulation software). The fourth

order tensor A is needed for the following step of orientation averaging.

4.6.3 Orientation averaging

First, the transversely isotropic compliance matrix SUD is formed:

SUD =



1
E11

−ν12

E11

−ν12

E11
0 0 0

−ν12

E11

1
E22

−ν23

E22
0 0 0

−ν12

E11

−ν23

E22

1
E22

0 0 0

0 0 0 2(1+ν23)
E22

0 0

0 0 0 0 1
G12

0

0 0 0 0 0 1
G12


. (107)

SUD describes the properties of the virtual unidirectional composite as calculated by the

Halpin-Tsai equations (Section 4.6.1) or another suitable homogenization method.

The stiffness matrix CUD is defined as the inverse of SUD:

CUD =



C11 C12 C13 0 0 0

C21 C22 C23 0 0 0

C31 C32 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66


= S−1

UD . (108)

The parameters B
′
i are calculated from the components of the stiffness matrix CUD

[Adv87]:

B
′

1 = C11 + C22 − 2C12 − 4C66 , (109)

B
′

2 = C12 − C23 , (110)

B
′

3 = C66 +
1

2
(C23 − C22) , (111)

B
′

4 = C23 , (112)

B
′

5 =
1

2
(C22 − C23) . (113)
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The orientation averaged stiffness matrix COA can now be obtained by [Adv87]

COA
ijkl = B

′

1(Aijkl) +B
′

2(Aijδkl + Aklδij) +B
′

3(Aikδjl + Ailδjk + Ajlδik + Ajkδil) (114)

+B
′
4(δijδkl) +B

′
5(δikδjl + δilδjk) ,

with i, j, k, l = 1, 2, 3 and δij being the Kronecker delta.

4.6.4 Length averaging

The stiffness values obtained by the application of the orientation averaging scheme were

analyzed for each individual pseudo-grain (aspect ratio of 10, 50, 100, 500, 1000, 2000,

3000 and 4000) for each volume fraction of 3.8 % (PPGF10), 8.2 % (PPGF20) and

13.2 % (PPGF30). To obtain the final values as specified in Table 12 (Section 5.6.2),

averaging over all pseudo-grains with respect to fiber length was performed by weigh-

ing the orientation-averaged stiffness value of each pseudo-grain with the respective fiber

length fraction of the fiber length distribution (Eq. 115). The fiber length distribution

(Section 5.1.2) had therefore to be coarsened to the intervals of fiber length corresponding

to the values of aspect ratio of the pseudo-grains.

COA/LA =
n∑
i=1

nili
Ltot

COA(ARi) , (115)

where COA/LA denotes the orientation and length averaged stiffness matrix,

nili/Ltot the length fraction of the number ni of fibers with the length li,

Ltot =
∑

i nili the total fiber length and

COA(ARi) the orientation averaged stiffness matrix (Eq. 114) of a pseudo-grain with fixed

fiber aspect ratio ARi.

In analogy to a probability distribution function, the sum over all fiber length fractions

must necessarily be normalized:
∑n

i=1
nili
Ltot

= 1.
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5 Results

5.1 Material and microstructure

5.1.1 Fiber orientation distribution

The planar fiber orientation distributions of the PPGF30 and PPGF20 material

(13.22 / 8.16 vol-%) are specified in Fig. 36. The distributions are averaged over the

material thickness as described in Section 3.1.2. Analytical fit curves of the probability

density function of the pattern ψ(φ) = a e b sin(cφ+d) + e with the parameters a ... e were

applied to calculate the second order orientation tensors aij as described in Section 4.6.2.

The values of aij as well as the functions ψ(φ) are specified in the figure.

Figure 36: Experimental planar fiber orientation distributions of PPGF30 and PPGF20,
fit functions ψ(φ) and orientation tensors aij.

5.1.2 Fiber length distribution

The fiber length distribution of an incinerated specimen of PPGF30 was analyzed by the

automatic procedure described in Section 3.1.3. The resulting distribution (normalized

by number and weighted by length) is specified in Fig. 37, 38 and 39 (a second analysis

is presented in the appendix, Section A.2). The original distribution as depicted in the

figures features approx. 3000 length classes which is not suitable to realize both orienta-

tion distribution and length distribution in the FE model (multidirectional RVEs) with a

reasonable number of fibers. The length distribution was therefore coarsened to 33 length

classes with an interval of 200 µm for fibers below 2 mm length and an interval of 2 mm

for 2 - 48 mm fiber length. No significant deviation in mean fiber length can be observed

comparing the original and coarsened distributions (Table 5). Furthermore, the distribu-

tions were cropped to a maximum fiber length of 48 mm, so that the longest fibers can
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fit inside the largest RVEs with a length of 50 mm. The few fibers which feature a length

between 50 and 60 mm were therefore shortened to 48 mm, resulting in the peak at the

right end of the distribution (Fig. 37 - 38).

Figure 37: Fiber length distribution (normalized by number) of PPGF30.

Figure 38: Fiber length distribution (weighted by length) of PPGF30.

Length Mean length Mean length Length class
distribution (by number) l̄n [mm] (weighted) l̄w [mm] [mm]
Original 1.2 15.0 0.015
Coarsened 1.3 14.5 0.2 (< 2 mm)

2 (2 - 48 mm)

Table 5: Characteristic values of original and coarsened fiber length distributions.
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Figure 39: Cumulative depiction of fiber length distribution (normalized by number /
length) of PPGF30.

5.1.3 Fiber volume fraction

The fiber volume fraction fv was calculated from the weight fraction fw as described in

Section 3.1.4. The values are given in Table 6.

Material Fiber weight Fiber volume
fraction fw [%] fraction fv [%]

PPGF10 10 3.80
PPGF20 20 8.16
PPGF30 30 13.22

Table 6: Fiber weight fraction fw and volume fraction fv of the investigated materials.

5.1.4 Fracture surfaces

Fig. 40 - 41 show scanning electron microscopy (SEM) images of the fracture surface of

a PPGF30 specimen. Because of the backscattered electron (BSE) contrast, the fibers

appear brighter than the matrix due to their higher mass density. The specimen was bro-

ken at cryogenic temperature to ensure brittle fracture in order to expose the specimen’s

inner structure in its original state and to avoid ductile deformation of the matrix, which

would smear the fracture surface. The characteristic LFT structure with the fibers being

aligned within layers parallel to the specimen surface and a low degree of fiber orientation

in thickness direction can be observed in Fig. 40. A high degree of fiber pullout (repre-

sented by the amount of free fiber surfaces and holes of the pulled out fibers from the

opposite surface, respectively) can be seen in Fig. 41.
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Figure 40: Fracture surface of PPGF30 specimen. The wall surfaces are marked by the
arrows. A layer-wise alignment of the fibers parallel to the surfaces can clearly be seen.

Figure 41: Fracture surface of a PPGF30 (13.2 vol-%) specimen (detail). A high degree
of fiber pullout can be observed.
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5.2 Viscoelastic matrix model

5.2.1 Model calibration

To determine the parameters of the Burgers model (E0, E1, η0 and η1), the ODE (14)

was solved for the boundary condition of a constant stress σ0:

ε = σ0

[
1

E0

+
t

η0

+
1

E1

(
1− e

−E1
η1
t
)]

. (116)

Equation (116) was fitted to uniaxial creep and recovery experiments at varying stress

levels from 2.5 to 12.5 MPa under application of the least squares method to determine

the model parameters for each discrete stress level. Exclusively the creep period of the

experimental data (up to 6 · 105 s) was used to fit the parameters, since the abrupt

removal of the load affects the strain measurement to become imprecise. The fit curves

are presented together with the experimental data in Fig. 42. For the stress levels of 2.5,

5 and 10 MPa, the experimental data is reproduced with high accuracy by the fit curves.

For 7.5 and 12.5 MPa, a slightly overrated creep rate can be observed for the second

period of creep (above 2 · 105 s). The experimental data for the highest stress level of

12.5 MPa is missing above 3 · 105 s due to a failure of the strain measurement device.

It is worth mentioning that multiple experiments for each stress level were carried out.

The creep curves used for parameter identification (which are shown in the figure) were

manually selected from the middle of the scatter band. To evaluate the stress-dependence

of the model parameters, the values of E1, η0 and η1 are plotted in Fig. 43 as symbols

for each investigated stress level. E0 as instantaneous elastic stiffness of the material is

treated as stress-independent. For the remaining parameters, the stress dependence can

be described by a power law of the pattern a(σ) = b cσ for E1 and logarithmic functions

of the pattern a(σ) = b + c ln(σ + d) for η0 and η1, respectively. The functions are

represented through the solid lines in Fig. 43. Overall, the experimental data can be

described with high accuracy be the empirical functions. Only the value of E1 is slightly

underestimated at a stress of 5 MPa. The stress level or indicator stress refers to the

unidirectional stress for the creep experiments and the equivalent stress (Eq. 55) for the

three dimensional model, respectively. The stress dependent model parameters are finally

given by the following equations:

E0 = 1250 , (117)

E1 = 3292.34 · 0.86788 σind/MPa , (118)

η0 = 3.0602 · 109 − 1.11126 · 109 ln(σind/MPa− 0.4369) , (119)

η1 = 5.38979 · 107 − 1.78557 · 107 ln(σind/MPa− 1.73967) , (120)

where σind is the indicator stress (Eq. 55).
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Figure 42: Experimental creep-recovery tests on matrix substance specimens under vary-
ing stress levels and fit curves of the Burgers model to determine the model parameters.

Figure 43: Stress dependence of three of the four Burgers parameters as determined
experimentally and fit functions.
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5.2.2 Model validation

The model validation is divided into two parts: First, the suitability of the nonlin-

ear modified Burgers model (as derived in Section 4.1.8, in the following denoted by

Burgers UMAT ) to describe a complex load sequence was validated against an experi-

ment for the uniaxial case. Second, the 3D behavior of the linear viscoelastic Burgers

model was validated against the viscoelastic model which is implemented in Abaqus.

Load history

To validate the Burgers UMAT with respect to a complex load history emphasizing the

nonlinear viscoelastic behavior, an exemplary sequence was investigated. The sequence

consists of three load controlled periods and one strain controlled period. The response

of the model is compared to that of a matrix substance specimen in Fig. 44. Overall, the

model is well able to describe the experimental data for all periods. It is worth mentioning

that the model was calibrated with experimental data of specimens which were selected

from the middle of the scatter band, whereas a single specimen was used for the validation

sequence. Thus, the minor differences in absolute strain of the third period can likely be

explained by experimental scatter. With respect to the shape of the curves, a systematic

underprediction of the curvature of the experimental data by the model is existent.

Figure 44: Complex load sequence of a matrix substance specimen compared to the
response of the nonlinear viscoelastic matrix model (Burgers UMAT ).
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3D behavior

To validate the 3D behavior of the Burgers UMAT, it was compared to the viscoelastic

material model which is implemented in Abaqus under the keyword ∗V ISCOELASTIC
(referred to as Abaqus model in the following). The latter represents a generalized Maxwell

model. The schematic notations of both models are compared in Fig. 45.

Figure 45: Schematic notation of the Burgers model (Burgers UMAT, left) compared to
the generalized Maxwell model (Abaqus *VISCOELASTIC, right).

The creep compliance of the Burgers model is defined as

CBurgers(t) =
1

E0

+
t

η0

+
1

E1

(
1− e

−t
τ1

)
. (121)

For the generalized Maxwell model, it takes the form of

CMaxwell(t) =

[
E0 +

n∑
i=1

Ei e
−t
τi

]−1

, (122)

with τi = ηi/Ei being the relaxation time.

Due to the free dashpot η0 of the Burgers model, the viscous properties are dominant in

contrast to the generalized Maxwell model, which represents a viscoelastic body due to

the spring E0 being parallel to all dashpots. Thus, the model formulations are incom-

patible and simple conversion of the parameters is not feasible. Therefore, the Abaqus

model needs to be fitted to the strain response of the Burgers UMAT. Several Maxwell

elements are needed in the form of coefficients of the Prony series (the relaxation times

τi in the summation term of Eq. 122) to capture the shape of the curve. These were

computed automatically by Abaqus under specification of the time-dependent strain val-

ues. The 3D behavior was assumed to feature a constant Poisson’s ratio as described in

Section 4.1.6. The applicability of the Abaqus model is restricted to linear viscoelasticity.

Therefore, the model parameters of the Burgers UMAT were forced to remain constant

for this study to mimic a linear viscoelastic response. The parameters were fixed to the

respective values for an indicator stress σind of 10 MPa. Fig. 46 shows the response of

the Abaqus model and the Burgers UMAT for an uniaxial tension of 10 MPa. It was

not possible to identify parameters for the Abaqus model which reproduce exactly the

results of the Burgers UMAT. Therefore, a small deviation can be seen in the figure. In
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the following, the 3D behavior of the Burgers UMAT was validated against the Abaqus

model for two different load cases: Four of the eight nodes of a single hexahedral element

(C3D8 ) were fixed in all DOFs whereas the remaining four nodes were subjected to pure

shear loading respectively distortion with a different load applied to each node in an ar-

bitrary direction. Both load cases are illustrated in Fig. 47. The time-dependent nodal

displacements for both scenarios are shown in Fig. 48. The small deviation between the

Burgers UMAT and the Abaqus model results from the different and incompatible model

formulations and is negligible. Thus, the 3D behavior of the Burgers UMAT could be

successfully verified against the commercial implementation of Abaqus.

Figure 46: Comparison between the Abaqus model and the Burgers UMAT for uniaxial
tension of 10 MPa.

Figure 47: Load scenarios of the single element tests: shear (left) and distortion (right).

5.2.3 Modified parameters

This section deals with the derivation of modified parameters of the nonlinear viscoelas-

tic matrix model to compensate the effects of the coarse matrix mesh in the multidi-

rectional LFT structures (RVEs) to a certain degree. Due to their enormous size, it
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Figure 48: Comparison between the Abaqus model and the Burgers UMAT for the load
case of shear (left) and distortion (right).

was not technically feasible to carry out element studies on the 50 mm long RVEs with

the implicit FEM (A respective study under application of the explicit solver is pre-

sented in Section 5.6.5). A very small RVE of 1 x 1 mm2 was therefore chosen to study

the effects of varying mesh densities and element types applying the implicit solver.

Table 7 specifies the investigated variants. The column labeled Element order refers

to both fiber and matrix elements, whereas the one denoted by Integration applies to

the fiber elements only. In the column Elements per fiber, the number of elements

over the fiber cross section is specified. The column Matrix material defines the pa-

rameters of the viscoelastic matrix model (Fig. 50). The fiber elements were chosen

to hexahedral elements for variant A, B, D, E (tetrahedral elements for variant C ),

whereas the matrix was always represented by tetrahedral elements. The response of the

1 x 1 mm2 RVE is specified in Fig. 49 (left) for a stress of 50 MPa. No difference in

effective behavior could be observed for mesh variants C and D ; therefore convergence

is assumed for both variants. In the following, the parameters of the viscoelastic ma-

trix model were varied until the effective behavior of the converged mesh variants under

application of the original model parameters could be reproduced with the coarse mesh

(variant E ). The resulting modified model parameters are plotted in Fig. 50 and speci-

fied by Eq. 123 - 126. To validate the modified model parameters, a second RVE with

5 x 1 mm2 base section was analyzed under two different stress levels of 10 and 50 MPa.

The effective behavior for mesh variant C and E is shown in Fig. 49 (right). No signifi-

cant difference can be observed between the modified matrix model with the coarse mesh

(variant E ) and the original material with the quadratic mesh (variant C ). Thus, the ef-

fects of the coarse mesh can indeed partially be compensated by the modified parameters.
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Variant Element El. type Integr- El. type Elements Matrix
order fiber ation matrix per fiber material

A linear C3D8 (hex.) full C3D4 (tet.) 1 original
B linear C3D8R (hex.) reduced C3D4 (tet.) 1 original
C quadratic C3D10 (tet.) full C3D10 (tet.) 2 original
D linear C3D8R (hex.) reduced C3D4 (tet.) 16 original
E linear C3D8R (hex.) reduced C3D4 (tet.) 1 modified

Table 7: Investigated mesh variants of the element studies.

Figure 49: Element study on small RVE (left) and validation on second RVE (right).

Figure 50: Functions of original and modified parameters of the nonlinear Burgers model.

Emod
0 = 1050 , (123)

Emod
1 = 2400 · 0.86788 σind/MPa , (124)

ηmod
0 = 3.1 · 109 − 1.11126 · 109 ln(σind/MPa− 0.4369) , (125)

ηmod
1 = 4.6 · 107 − 1.78557 · 107 ln(σind/MPa− 1.73967) , (126)

where σind is the indicator stress (Eq. 55).
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5.3 Plastic matrix model

This section deals with the calibration of the von Mises plasticity model to describe the

plastic deformation of the thermoplastic matrix to model the deformation and damage

behavior of LFT. It is worth noting that the plastic model is completely independent of

the viscoelastic model of the previous sections - no viscoelastic effects are considered here.

The evolution of the multilinear hardening in the form of strain-dependent values of yield

stress was fitted to the stress-strain curve of a characteristic matrix substance specimen

(Fig. 51). The experiment which was used to calibrate the matrix model was performed

at the same effective strain rate as the LFT validation experiments (ε̇ = 7 ·10−4 1/s). The

apparent softening of the experimental curve beyond a value of total strain of approx. 0.04

is likely caused by specimen necking which is not captured by the engineering notation

of stress and strain. Consequently, no such softening is considered in the numerical data

of the LFT simulations. An additional study about the effect of a varying strain rate

of 7 · 10−5 1/s ≤ ε̇ ≤ 7 · 10−3 1/s and the effects of a supposed softening of the matrix

material can be found in the appendix (Section A.3). Table 8 shows the tabular data used

Figure 51: Calibration of the von Mises plasticity model with experimental data.

to define the multilinear, isotropic hardening of the plasticity model in terms of equivalent

plastic strain ε̄p and yield stress σ̄Y. The values of total strain εtot were calculated

under consideration of the elastic properties from the manufacturer’s data sheet [DOW03]

(Em = 1250, νm = 0.35). In Fig. 51, σ̄Y is plotted against εtot in order to compare the

response of the model with the calibration experiment.

Total uniaxial Equivalent plastic Yield stress
strain εtot strain ε̄p σ̄Y[MPa]
0.0096 0 12
0.02 0.0104 17
0.03 0.0204 19

Table 8: Tabular values for isotropic hardening of the matrix plasticity model.
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5.4 Interface model

This chapter describes the inverse modeling of single fiber push-out experiments with

the aim to extract interface parameters which can then be fed into the multidirectional

LFT models (RVEs) to investigate their effect on the global deformation and damage

behavior. In Fig. 52, the load-displacement curves of the fiber push-out experiments

(Section 3.4) are plotted together with the simulation results (Section 4.3).

Figure 52: Load-displacement curves of fiber push-out (experimental and numerical data).

Table 9 shows the parameters of the traction-separation law (assigned to the cohesive

elements), which were obtained by fitting the numerical curves to the experimental data

as described in Section 4.3. The curve denoted by cohesive elements in Fig. 52 features

only cohesive elements and considers no post-debonding friction, whereas an additional

contact formulation was activated for the variant labeled cohesive elements + friction.

The failure displacement of the cohesive zone elements then needs to be reduced to the

specified value in the table.

Parameter Cohesive el. Coh. el. + fric. Unit
Nominal thickness of cohesive section 1 · 10−5 1 · 10−5 mm

Mass density 2 · 10−9 2 · 10−9 t/mm3

Stiffness of elastic traction (K) 10 10 N/mm
Displacement of damage initiation 0.005 0.005 mm
Displacement of damage evolution 0.00025 0.00015 mm
(corresponding stiffness degradation of 1)
Coefficient of friction - 2
Global surface thickness assignment - 1 · 10−5 mm
(general contact formulation)

Table 9: Parameters of the cohesive law (debonding) and contact formulation (friction).
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5.5 Unidirectional fiber arrangement

Several variants of an unidirectional fiber arrangement (Section 4.4) were studied to in-

vestigate the principle relation between the fiber length and the effective elastic and vis-

coelastic properties, respectively. The microstructural properties of the examined variants

of the model are specified in Table 10.

Variant AR Length [mm] Vol. frac. [%] Fiber ends Mesh
1-f 27 1 12.10 8 round fibers, fine
1-c 27 1 12.16 8 square fibers, coarse
2-f 57 1 12.63 4 round fibers, fine
2-c 57 1 12.69 4 square fibers, coarse
3-c 145 5 13.01 8 square fibers, coarse
4-c 292 5 13.11 4 square fibers, coarse
5-c 586 10 13.17 4 square fibers, coarse
6-c 2939 50 13.21 4 square fibers, coarse
7-f ∞ 1 13.15 0 round fibers, fine
7-c ∞ 1 13.22 0 square fibers, coarse

Table 10: Characteristic values of the investigated variants of the UD fiber arrangement:
The column AR denotes the corresponding fiber aspect ratio (∞ for continous fibers),
Length the lateral RVE dimension, Vol. frac. the actual value of fiber volume fraction,
Fiber ends the number of fiber ends within the RVE and Mesh the investigated mesh
variants as described in Section 4.4.

In Fig. 53, the elastic properties of the UD fiber arrangements (nominal vol. frac.

13.22 %) are compared to the predictions of the Halpin-Tsai equations (Section 4.6.1,

13.22 % and 15 %). The constituent properties are: Em = 1250 MPa, νm = 0.35,

Ef = 72000 MPa, νf = 0.22. It can be seen that the saturation behavior of the elastic

stiffness with increasing fiber length is very similarly predicted by the FE and analytical

approach, whereas its absolute value is underestimated if the Halpin-Tsai equations are

fed by a realistic value of fiber volume fraction of 13.22 %. This issue can be addressed

by choosing a slightly increased value of 15 % which yields a very good agreement to the

FE model.

In addition to the elastic studies, the viscoelastic properties of the unidirectional fiber ar-

rangements were investigated with the aim to identify a fiber length of saturation similar to

one with respect to the elastic properties. The results were generated under application of

the nonlinear viscoelastic matrix model with its original parameters (Section 5.2) and elas-

tic fiber properties (Ef = 72000 MPa, νf = 0.22). At first, the deviation between the coarse

mesh with square fiber cross section and the fine mesh with round fibers was investigated.

Fig. 54 shows the response of both variants for aspect ratios of 27, 57 and∞ for a constant

stress of 50 MPa. Similar to the elastic behavior (Fig. 53), the difference between the two

mesh variants is large for an aspect ratio of 27, decreases for an AR of 57 and vanishes

for an infinite AR.
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Figure 53: Elastic properties of the UD fiber models compared to the Halpin-Tsai predic-
tions. The different mesh variants are described in Section 4.4.

Figure 54: Creep properties of the UD fiber arrangement (nominal vol. frac. 13.22 %) for
a stress of 50 MPa and a varying AR of 27, 57 and ∞. The creep response of the coarse
mesh (square fibers) is compared to the fine mesh (round fibers).
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In the following, a characteristic measure needs to be defined in order to quantify the

creep behavior and to relate it with the fiber length. Therefore, the creep rate ε̇ of the

secondary period was evaluated by linear fit functions applied to the creep curves between

2 · 105 and 6 · 105 s using the least squares method. Fig. 55 shows the normalized creep

strain ε(t)/ε0 of the UD fiber model with the coarse mesh and varying aspect ratios from

27 to∞ for a stress of 50 MPa in together with the corresponding linear fits of the second

period of creep.

Figure 55: Creep properties of the UD fiber arrangement (nominal vol. frac. 13.22 %)
for a stress of 50 MPa and varying AR from 57 to ∞. The dashed lines represent linear
fits to the second period of creep between 2 · 105 and 6 · 105 s used to determine the creep
rate.

In Fig. 56, the saturation behavior of the creep rate is compared to that of the elastic

stiffness. For this purpose, the normalized creep rate ε̇norm = ε̇(AR)/ε̇∞ is visualized in

together with the normalized elastic compliance Cnorm = C(AR)/C∞ based on the data

of Fig. 53 and 55. In order to interpolate between the data points (symbols), logarith-

mic fit functions were applied (continous lines). The creep properties are presented for

two stress levels of 5 and 50 MPa, which delimit a reasonable application range of such

a material, because the saturation fiber length with respect to the creep rate is stress

dependent. The aspect ratio of saturation is then determined to the AR where the corre-

sponding property deviates less than 10 % from its saturation value (a value of 1.1 for the

y-axis in Fig. 56). The saturation AR is finally evaluated to ARsat
elastic ≈ 100 with respect

to the elastic stiffness and ARsat
creep ≈ 1600 to 2600 for the creep rate (depending on stress).
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Figure 56: Saturation behavior of the elastic compliance and creep rate: The effective
properties are normalized to their respective values for an infinite fiber aspect ratio.
The aspect ratio of saturation is then defined as the corresponding value to the elastic
compliance resp. creep rate for an infinite fiber aspect ratio multiplied by a factor of 1.1.

5.6 Multidirectional LFT structure

In this chapter, the results of the multidirectional LFT models (RVEs) are presented.

First, the microstructural characteristics of the investigated structures are compared to

the corresponding experimental data (Section 5.6.1).

Then, the elastic properties of the RVEs are studied and compared to experimental data

as well as to the results of an analytical homogenization scheme (Section 5.6.2 - 5.6.5).

In this context, multiple aspects, such as the variation of the RVE size, the fiber length

and the FE mesh are examined.

In Section 5.6.6 - 5.6.10, the findings with respect to the viscoelastic properties are pre-

sented under investigation of the same aspects as for the elastic properties which are com-

pleted by studies with regard to varying formulations of the viscoelastic matrix model.

Finally, the multidirectional RVEs are used to model the deformation and damage be-

havior of LFT under application of constitutive models for the plasticity of the matrix,

interface and fiber damage (Section 5.6.11 - 5.6.15). It is worth mentioning that the lat-

ter results were generated under application of the explicit FEM and are thus completely

independent of the elastic and viscoelastic modeling (implicit FEM).
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5.6.1 Nomenclature and microstructure characteristics

The microstructure characteristics of the investigated RVEs are specified in Table 11.

The value which is modified between adjacent rows is printed in bold italic.

Each RVE was assigned to an identifier as follows:

LDx - RVEs with implemented measured fiber Length Distribution

CLx - RVEs with Constant fiber Length.

RVE Volume Dimensions Elem. Tot. fib. Mean fiber
frac. fv [%] [mm3] count len. [mm] length l̄w [mm]

LD1 3.82 (PPGF10) 50 x 2.75 x 0.125 7.4 · 106 3056 10.1 (15 - distr.)
LD2 8.03 (PPGF20) 50 x 2.75 x 0.099 8.7 · 106 5048 9.4 (15 - distr.)
LD3 13.15 (PPGF30) 50 x 1.5 x 0.134 9.7 · 106 6067 8.1 (15 - distr.)
LD4 13.50 (PPGF30) 20 x 1.5 x 0.132 3.9 · 106 2498 5.5 (15 - distr.)
LD5 13.10 (PPGF30) 10 x 1.5 x 0.137 2.0 · 106 1241 4.2 (15 - distr.)
LD6 13.34 (PPGF30) 5 x 1.5 x 0.135 1.0 · 106 622 2.5 (15 - distr.)
LD7 12.95 (PPGF30) 5 x 5 x 0.265 6.9 · 106 3806 2.4 (15 - distr.)
CL1 13.09 (PPGF30) 50 x 1.5 x 0.143 10 · 106 6075 1.2 (1.2 - const.)
CL2 12.91 (PPGF30) 50 x 1.5 x 0.139 9.8 · 106 6061 6.1 (15 - const.)

Table 11: Microstructural characteristic values of the investigated RVE variants: The
column RVE denotes the RVE identifier, Volume frac. is the actual fiber volume fraction,
Dimensions the lateral RVE dimensions, Elem. count the number of elements of the RVE,
Tot. fib. len. the total fiber length within the RVE and Mean fiber length the actual mean
fiber length of the RVE followed by the input value in brackets.

The right column (Mean weighted fiber length l̄w, Eq. 12) shows the actual value of

the RVE realization followed by the given value in brackets. If the RVE dimensions

are significantly smaller than the max. fiber length (e.g. RVEs with 1.5 mm width), the

resultant mean length deviates significantly from the given value as the fibers aligned

in the short RVE dimension will be cropped automatically by the fiber generator tool

(Section 4.5). The RVEs LD1 - LD7 were generated with the measured fiber length

distribution (Section 5.1.2) as input, whereas the RVEs CL1 - CL2 were given a constant

fiber length of 1.2 and 15 mm, respectively. The value of 1.2 mm (15 mm) corresponds

to the arithmetic mean l̄n (weighted mean l̄w) of the measured length distribution. The

fiber orientation distributions of all RVEs are compared to the corresponding CT scans in

Fig. 57 and 58. No CT data was available for the material with the lowest fiber fraction.

Therefore, the RVE LD1 (PPGF10) was generated with the fiber orientation distribution

of PPGF20. The RVEs were analyzed under application of the same image correlation

technique as for the CT scans. Fifty view cuts, equally spaced over the RVE thickness

were analyzed. The screenshots were taken with the fibers being displayed in white,

whereas the matrix was given a black color in analogy to the CT scans. In general, a

good agreement between the orientation distributions of the RVEs and the experimental

ones can be observed.
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Figure 57: Planar fiber orientation distributions of the RVEs with measured fiber length
distribution and dimensions of 50 x 1.5 mm2 (PPGF30, left) respectively 50 x 2.75 mm2

(PPGF10 and PPGF20, right) compared to the corresponding CT data (Section 5.1.1).

Figure 58: Planar fiber orientation distributions of the RVEs with varying RVE
length (PPGF30, measured fiber length distribution, left) and with varying fiber length
(PPGF30, 50 x 1.5 mm2 RVE dimensions, right) compared to the corresponding CT data
(Section 5.1.1).
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5.6.2 Elasticity - general

The elastic stiffness of the multidirectional RVEs of the three investigated materials

is compared to the experimental (Section 3.2.2) and analytical (Section 4.6) results in

Table 12. The 50 mm long RVEs LD1, LD2 and LD3 were analyzed by implicit FE sim-

ulations as described in Section 4.5.4. The table specifies the effective elastic modulus of

LFT in flow (E1) and transverse direction (E2). The same data is illustrated as bar chart

in Fig. 59.

The constituent properties were taken from the manufacturer’s data sheet [DOW03] re-

spectively from the literature [Kim98,Gom96,Ngu08,Hin02]:

Em = 1250 MPa, νm = 0.35, Ef = 72000 MPa, νf = 0.22.

Material Fib. vol. E1 exp. E1 num. E1 an. E2 exp. E2 num. E2 an.
frac. [%] [MPa] [MPa] [MPa] [MPa] [MPa] [MPa]

PPGF10 3.8 3052 2968 2568 2054 1999 2000
PPGF20 8.1 4435 4431 4025 2432 2568 2841
PPGF30 13.2 6649 6841 6508 3074 3148 3323

Table 12: Elastic stiffness: Experimental vs. numerical vs. analytical data.
RVEs LD1, LD2 and LD3 (50 mm length) were analyzed.

Figure 59: Elastic stiffness: Experimental vs. numerical vs. analytical data.

Overall, a good agreement between the numerical approach and the experimental values

can be seen (Fig. 59). The deviation between the analytical values and the experimental

ones is somewhat higher, where the values of E1 tend to be under- and the values of E2

to be overestimated by the analytical model. The standard deviation of the experimental

values (illustrated with error bars) is in general low, whereas the values of E2 of PPGF10

and of E1 of PPGF30 are slightly increased.
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5.6.3 Elasticity - variation of RVE size

The effect of a varying RVE length on the elastic compliance in flow direction was analyzed

for RVEs with a length of 5, 10, 20 and 50 mm. The results are presented in Fig. 60. The

ratio of reference length to RVE length was set to a constant value of L0/LRVE = 0.8,

with the reference length L0 being the distance between the node sets of Fig. 32. The

elastic compliance was normalized to the value of the 50 mm RVE: Cnorm = C/C50mm. All

RVEs feature a fiber volume fraction of 13.2 % (PPGF30) and the measured fiber length

distribution.

Figure 60: Effect of the RVE length on the normalized elastic compliance.

The absolute effective elastic modulus in flow (E1) and transverse direction (E2) of the

RVEs is specified in Table 13. The relative deviation to the reference RVE (LD3, 50 mm

length) is also given.

RVE RVE RVE E1 Dev. to E2 Dev. to
length [mm] width [mm] [MPa] LD3 [%] [MPa] LD3 [%]

LD3 50 1.5 6841 0 3148 0
LD4 20 1.5 6789 0.77 3180 1.02
LD5 10 1.5 6579 3.99 3082 2.14
LD6 5 1.5 6654 2.81 3028 3.96

Table 13: Effect of the RVE length on the elastic stiffness of PPGF30.

From both depictions of the data (Fig. 60 and Table 13), a rather weak effect (approx.

1 % deviation) can be observed if the RVE length is reduced from 50 to 20 mm, whereas

the error increases significantly (approx. 4 %) for a further reduction to 10 and 5 mm,

respectively.
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The fluctuation of the elastic compliance within different sized RVEs was studied by analy-

sis of different ratios of reference length to RVE length

L0/LRVE = 0.2, 0.4, 0.6, 0.8 for RVEs of 5, 10, 20 and 50 mm length. The results are

presented in Fig. 61. The elastic compliance was normalized to the maximum value of

each RVE Cnorm = C/Cmax. For the RVEs LD5 and LD6 (10 and 5 mm, respectively), a

rather strong fluctuation of the value of Cnorm can be observed, whereas the larger RVEs

LD3 and LD4 (50 and 20 mm, respectively) show significantly less variation of elastic

compliance.

Figure 61: Fluctuation of the normalized elastic compliance within different sized RVEs.

5.6.4 Elasticity - variation of fiber length

The effect of a varying fiber length on the elastic properties of various RVEs with

13.2 % fiber volume fraction (PPGF30) is shown in Table 14.

RVE Mean weigthed Length E1 Dev. to E2 Dev. to
fiber length l̄w [mm] distribution [MPa] LD3 [%] [MPa] LD3 [%]

LD3 8.1 (15) Measured distr. 6841 0 3148 0
CL1 1.2 (1.2) Constant length 5872 16.50 3315 5.30
CL2 6.1 (15) Constant length 6551 4.43 3262 3.62

Table 14: Effect of a varying fiber length on the elastic properties of PPGF30.

The second column (Mean weighted fiber length) shows the actual value of the RVE re-

alization followed by the value of the input distribution in brackets. In this respect, the

deviation of the variants LD3 and CL2 is caused by the anisotropic RVE dimensions with

the RVE width being significantly smaller than the fiber length (Section 5.6.1).
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Substitution of the length distribution (RVE LD3) by fibers of uniform length equal to

the mean weighted length l̄w of the distribution yields only moderate deviation in elastic

modulus (RVE CL2), whereas a large deviation (16.5 % in E1) can be observed for a

uniform fiber length equal to the number average l̄n of the distribution (RVE CL1).

5.6.5 Elasticity - variation of FE mesh

Aim of this study is to investigate the effects of the coarse FE mesh of the RVEs on

their elastic properties. Due to the enormous size of the models, element studies of the

50 mm long RVEs could not be performed with the implicit solver (A study on much

smaller structures using the implicit solver is presented in Section 5.2.3). A linear and

a quadratic mesh variant of the RVE LD3 (50 x 1.5 mm2, PPGF30, 13.2 vol-%) was

therefore analyzed by Abaqus Explicit (Section 4.5.4, last paragraph).

Fig. 62 shows the stress-strain curves of 0◦ and 90◦ load direction to derive the elas-

tic modulus whereas in Fig. 63, the kinetic energy Ekin is plotted against the internal

energy Eint to ensure that Ekin is sufficiently small against Eint in order that the effects

of inertia do not significantly affect the solution. Eint is equivalent to the strain energy

for a linear-elastic material: U = 1
2
V σε = 1

2
V Eε2 (with U being the strain energy, V the

volume of the model, σ the stress, ε the strain and E the modulus).

In 0◦ load direction, the kinetic energy has approx. the same magnitude as the internal

energy at the very beginning of the simulation step (t ≤ 0.0001 s, Fig. 63 left) whereas

it becomes negligible for the further progress of the simulation. Thus, the effect can be

tolerated but affects the stress-strain curve to oscillate significantly. The stiffness value

can finally be determined by linear approximations of the stress-strain data. Compari-

son of the resulting elastic moduli (Table 15) for a different increment size (the target

increment size of mass scaling) reveals that no significant difference in elastic modulus

can be observed, whereas the degree of oscillation is directly affected by the increment size.

In 90◦ load direction, no oscillation can be seen for the larger increment size of 5 · 109 s

and therefore no additional simulation with a decreased increment size was investigated.

The resulting elastic moduli of all mesh variants of RVE LD3 are finally compared to the

implicit simulation results in Table 15. The same elastic properties of the constituents were

used as for the implicit calculations (Em = 1250 MPa, νm = 0.35,

Ef = 72000 MPa, νf = 0.22). It can be seen that a significant influence of the mesh

exists for E2 (in this case, the stiffness value of the quadratic mesh variant is about

10 % smaller than the value of the linear mesh) whereas no significant influence can be

observed for E1.
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Figure 62: Stress-strain curves of the explicit element studies (left: 0◦ load direction,
right: 90◦ load direction).

Figure 63: Development of kinetic and internal energy of the explicit element studies
(left: 0◦ load direction, right: 90◦ load direction).

Element Simul. Increment E1 Dev. to E2 Dev. to
type techn. size [s] [MPa] impl. [%] [MPa] impl. [%]
linear C3D8R/C3D4 Implicit - 6841 0 3148 0
linear C3D8R/C3D4 Explicit 1 · 10−8 6879 0.56 3130 0.58
quadratic C3D10M Explicit 2.5 · 10−9 (slow) 6797 0.65 - -
quadratic C3D10M Explicit 5 · 10−9 (fast) 6790 0.75 2891 8.89

Table 15: Resulting elastic moduli for different mesh variants of RVE LD3.
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5.6.6 Viscoelasticity - general

In the following sections, the results of the creep simulations are presented, which were

performed on several variants of the multidirectional RVEs (representing the LFT ma-

terial) with the implicit FEM. The methodology is further described in Section 4.5.5.

The fibers are modeled linear elastic (Ef = 72000 MPa, νf = 0.22), whereas the matrix

was assigned to a viscoelastic behavior by incorporation of the viscoelastic matrix model

described in Section 5.2. The following results were generated under the assumption of

a perfect fiber-matrix interface and are limited to the viscolastic region. The simula-

tions therefore exclude (visco-)plastic or damage effects. Furthermore, no extrapolation

to times outside the range of the underlying experimental data of the matrix model (up

to 6 · 105 s) is legitimate, since otherwise, additional relaxation times had to be included

in the model. Therefore, most of the creep results are evaluated based on their absolute

uniaxial strain ε within time range from 0 to 6 · 105 s. A more detailed description of the

range of validity of the modeling approach can be found in Section 6.2.2.

The creep curves of the RVE simulations of all investigated material variants (PPGF10,

PPGF20 and PPGF30), two load directions (0 and 90◦ relative to flow direction) and var-

ious stress levels (three in 0◦, two in 90◦) are compared to their corresponding validation

experiment on a LFT specimen in Fig. 64 - 69.

The creep curve of each experiment was offset by a constant value of strain in such a

way that its elastic strain at the time of the load application (instantaneous strain at the

beginning of the creep experiment) was equal to the corresponding mean value of elastic

stiffness for each material variant, specified in Table 12 and Fig. 59 and determined by

quasi-static tensile tests. This procedure was necessary since the tactile strain measure-

ment by means of a clip-on extensometer is not reliable at the time of the sudden load

application in contrast to the creep period, where no abrupt changes in load or vibrations

occur.

The RVE simulations were carried out under application of two different sets of parameters

of the viscoelastic matrix model (denoted by original and modified in the following). The

original parameters are exclusively based on experimental findings and are described in

Section 5.2.1. The derivation of the modified paramaters is detailed in Section 5.2.3. The

modified parameters were inversely determined based on element studies and compensate

the observed effect of the coarse matrix mesh of the RVEs to a certain amount.
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Overall, a good agreement between the validation experiments and the simulations can

be observed (Fig. 64 - 69). In most cases, the experimental creep curves lie in between

the simulations under application of the original and modified parameters, respectively.

In 0◦ load direction, the difference between the simulations with the original and modified

parameters is rather small, whereas in 90◦ load direction, the properties of the matrix are

more dominant (less fibers are aligned in load direction) and consequently, the difference

between the two sets of parameters is larger.

Figure 64: Creep curves of PPGF10 (3.8 vol-%) and 0◦ load direction. Sim. org. mat.
and Sim. mod. mat. refer to the original / modified parameters of the matrix model.

Figure 65: Creep curves of PPGF10 (3.8 vol-%) and 90◦ load direction. Sim. org. mat.
and Sim. mod. mat. refer to the original / modified parameters of the matrix model.
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In 0◦ load direction, the creep rates are rather well predicted for the lower and medium

stress levels (PPGF10: 3.3 and 10 MPa - PPGF20: 10 and 20 MPa - PPGF30: 15 and

25 MPa) whereas they tend to be overestimated by the model for the highest stress levels

(PPGF10: 15 MPa - PPGF20: 30 MPa - PPGF30: 40 MPa).

Figure 66: Creep curves of PPGF20 (8.1 vol-%) and 0◦ load direction. Sim. org. mat.
and Sim. mod. mat. refer to the original / modified parameters of the matrix model.

Figure 67: Creep curves of PPGF20 (8.1 vol-%) and 90◦ load direction. Sim. org. mat.
and Sim. mod. mat. refer to the original / modified parameters of the matrix model.
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In 90◦ load direction, the creep rates are significantly overestimated by the simula-

tions for all material variants and stress levels. This is likely due to the drastically re-

duced RVE dimensions in transverse direction (PPGF30: 1.5 mm - PPGF20 & PPGF10:

2.75 mm, see Table 11) compared to the flow direction (50 mm for all materials). Thus,

the structures do not represent the fiber length distribution adequately in 90◦ direction

which likely explains the overestimated creep rates in this case.

Figure 68: Creep curves of PPGF30 (13.2 vol-%) and 0◦ load direction. Sim. org. mat.
and Sim. mod. mat. refer to the original / modified parameters of the matrix model.

Figure 69: Creep curves of PPGF30 (13.2 vol-%) and 90◦ load direction. Sim. org. mat.
and Sim. mod. mat. refer to the original / modified parameters of the matrix model.
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5.6.7 Viscoelasticity - variation of RVE size

The effect of a varying RVE length on the creep rate in flow direction was analyzed for

RVEs with a length of 5, 10, 20 and 50 mm. The results are presented in Fig. 70. The

ratio of reference length to RVE length was set to a constant value of L0/LRVE = 0.8, with

the reference length L0 being the distance between the node sets of Fig. 32. The creep

rate of the second period between 2 · 105 and 6 · 105 s (determined by linear fits to the

creep curves of the RVEs in analogy to Fig. 55) was normalized to the value of the 50 mm

RVE: ε̇norm = ε̇/ε̇50mm. The simulations were performed at a stress level of 40 MPa and

with the modified material parameters of the viscoelastic matrix model (Section 5.2.3).

Figure 70: Effect of the RVE length on the normalized creep rate.

In Fig. 71, the effect of a varying RVE length on the creep curves in flow direction is

shown (the same parameters were used as for Fig. 70).

Figure 71: Creep curves of multiple RVEs with a varying RVE length.
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Both figures show a large effect of the RVE size on the creep rate: Decreasing the RVE

length from 50 to 20 mm affects the creep rate to increase approx. 20 %. Further reduction

to 10 mm still has a significant effect, whereas only negligible deviation between 10 and

5 mm can be observed.

The fluctuation of the creep rate within different sized RVEs was studied by analysis of

different ratios of reference length to RVE length L0/LRVE = 0.2, 0.4, 0.6, 0.8 and RVEs

of 5, 10, 20 and 50 mm length. The results are presented in Fig. 72. The creep rate is

normalized to the maximum value of each RVE ε̇norm = ε̇/ε̇max.

Figure 72: Fluctuation of normalized creep rate within different sized RVEs.

A strong variation of the creep rate within the RVEs LD5 and LD6 (10 and 5 mm,

respectively) can be observed, whereas the fluctuation is significantly weaker within the

longer RVEs LD3 and LD4 (50 and 20 mm, respectively).

5.6.8 Viscoelasticity - variation of fiber length

Fig. 73 shows the effect of a varying fiber length on the creep curves of PPGF30 in 0◦

load direction at a stress level of 40 MPa.

A significant, but rather moderate deviation in their creep behavior can be observed if

the fiber length distribution (RVE LD3) is substituted by a uniform fiber length of 15 mm

(RVE CL2, representing the mean weighted length l̄w of the distribution), whereas a huge

difference can be seen for RVE CL1 with a uniform fiber length of 1.2 mm, representing

the number average fiber length l̄n of the length distribution. It is worth mentioning

that the deviations always effect the creep rate of the second period (where the rate is

approx. constant) in together with an offset of the curves which is larger than the pure

difference in instantaneous elastic strain. If the creep rates are evaluated by linear fits

of the creep curves between 2 · 105 and 6 · 105 s, a relative increase of ε̇CL1/ε̇LD3 = 1.94
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is found comparing RVE CL1 and LD3, whereas the increase is significantly smaller for

RVE CL2 which amounts to ε̇CL2/ε̇LD3 = 1.16.

Figure 73: Creep curves of RVEs with varying fiber length.

5.6.9 Viscoelasticity - variation of model formulation

In order to study the effects of stress redistribution within the matrix due to its nonlinear

viscoelastic behavior (regions exposed to a higher stress will relax faster, see Fig. 42),

the model formulation was varied for one RVE variant and the highest investigated stress

level of 40 MPa. The highest stress level was chosen, since here, the nonlinear effects can

be expected to be large.

Fig. 74 compares the RVE response under application of the fully nonlinear material

model as derived in Section 4.1.8 with a so-called pseudo nonlinear variant: An elastic

trial stress was applied at the first increment (t = 0). The viscoelastic model parameters

for each material point were then determined based on the trial stress and were kept

constant for the remaining part of the simulation. In contrast, the fully nonlinear model

determines the parameters for each time increment anew.

Figure 74: Creep curves under variation of the formulation of the matrix model.
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The deviations between both model formulations are indeed significant and affect mostly

the creep rate. As expected, the stress redistribution within the matrix, which is ex-

clusively described by the fully nonlinear model, slows the creep rate down compared

to the pseudo nonlinear variant, where this kind of stress redistribution is deactivated.

Evaluation of the creep rates between 2 · 105 and 6 · 105 s reveals a relative increase of

ε̇pseudo/ε̇fully = 1.37 which supports the visual impression of the curves.

In order to investigate further simplifications of the model, a pure linear viscoelastic vari-

ant was also applied. Here, the model parameters remain constant and equal for all

material points. Fig. 75 shows the RVE response under a creep load of 40 MPa, where

the linear viscoelastic model was applied with prescribed values of indicator stress from

2.5 to 12.5 MPa which define the model parameters E1, η0 and η1 (Fig. 50).

Figure 75: Creep curves for varying parameters of the linear viscoelastic matrix model.

As it can be seen in Fig. 75, the range covered by all variants of model parameters is

large. This is supported by the evaluation of the creep rates, which reveals a relative

deviation between the two boundary curves of ε̇2.5 MPa/ε̇12.5 MPa = 4.65. It is therefore

not possible to apply a linear viscoelastic model within reasonable accuracy to reproduce

the creep experiments - the stress dependence of the model parameters must somehow be

considered.

Since an explicit time integration scheme is used for all variants of the viscoelastic

model, the solution might be affected by the size of the time increments of the FE

simulation. If the variation of load is too fast within a time increment, the assump-

tion of a constant stress rate σ̇ = ∆σ/∆t and constant model parameters E, η for

the current increment - as considered by all variants of the viscoelastic model - might

be an incorrect simplification (Section 4.1.7). Motivated by these facts, the effect of

a varying increment size was investigated by an exemplary study, in which the incre-

ment size was limited to a very small value of 5 s. RVE LD4 with dimensions of

20 x 1.5 mm2 was chosen due to computational performance (Computation of the
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50 mm long RVE LD3 would have been to expensive since the limitation to 5 s increment

size extensively increases the total number of increments). In Fig. 76, the simulation with

the limited increment size of 5 s is compared to the variant where the increment size was

chosen automatically by Abaqus, as applied for all presented creep studies: Here, the ini-

tial size of the increment was specified to 0.1 s and successively increased until the upper

limit of 104 s was reached (more details are specified in Section 4.5.5). Therefore, the

increment size remains sufficiently small in the beginning of the creep period (first phase)

with a considerable change of strain over time, whereas the increments are chosen larger

for the second period after relaxation of the Kelvin-Voigt element (exclusively governed

by the viscous strain component and characterized by a smaller and constant strain rate).

Figure 76: Creep curves of simulations with a varying size of the time increments.

As it can be seen in Fig. 76, no significant deviation between both variants with different

sized time increments exists and thus, the automatically chosen time increments (max.

size of 104 s) are sufficiently small for the investigated creep scenarios.

5.6.10 Viscoelasticity - contour plots

Fig. 77 shows the stress redistribution after the application of a creep load of 40 MPa

within a section of RVE LD3 (view cut at half thickness). The upper plot depicts the von

Mises stress at t = 600 s with a maximum value within the fibers of approx. 1200 MPa.

The lower plot shows the state at t = 600 000 s with a maximum fiber stress of approx.

2000 MPa. The observed stress redistribution from the matrix to the fibers happens

because of the steady softening of the matrix during the creep period and is similar for

all variants of the matrix model (the fully nonlinear model was applied here).
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Figure 77: Redistribution of Mises stress σM (Eq. 53) within RVE LD3.

Similar plots of the equivalent deviatoric strain resp. the hydrostatic strain of the same

structure under the same boundary conditions are depicted in Fig. 78 and 79. It is worth

noting that the maximum value of the color scale is chosen to 0.05 for Fig. 78 (equivalent

deviatoric strain) and significantly smaller to 0.01 for Fig. 79 (hydrostatic strain). Thus,

it can be concluded that the hydrostatic strain is significantly smaller anywhere and to

any time within the investigated structure. Furthermore, the regions under a high hy-

drostatic strain are significantly smaller than those of a high equivalent deviatoric strain.

Hence, the hydrostatic strain decays within a shorter distance.

Figure 78: Redistribution of eq. dev. strain ε
′
eq (Eq. 62) within RVE LD3.
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Figure 79: Redistribution of hydrostatic strain εH (Eq. 61) within RVE LD3.

5.6.11 Plasticity and damage - deformation and damage mechanisms

In this section, the results of the modeling of the deformation and damage behavior of

LFT are shown. The material with the highest fiber fraction (PPGF30, 13.2 vol-%)

was investigated in this respect under application of the explicit FEM (Section 4.5.6),

the plastic matrix model (Section 4.2), the interface model (Section 4.3) and a brittle

fracture model of the fibers. It is worth noting that the applied models in this section

are completely independent of the ones used for the implicit simulations of elastic and

viscoelastic properties.

The matrix and interface properties were chosen as described in Section 5.3 and 5.4. The

fibers were assigned to elastic properties (Ef = 72000 MPa, νf = 0.22). A brittle fracture

model with a mean value of failure stress (σf = 2500 MPa) from the middle of the range

which is specified in the literature [Kim98,Adv14,And02,Tho14,Zha00a,Zha00b,Wan97]

was activated in all simulations accounting for fiber damage: If the failure stress is reached

for an element, it is immediately deleted.

Fig. 80 compares the stress-strain curve of a characteristic LFT validation experiment

with the simulations for a load direction of 0◦, whereas the results for 90◦ are presented

in Fig. 81. The 50 mm long RVE LD3 was analyzed in 0◦ load direction, the 5 mm

long RVE LD7 in 90◦.
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Figure 80: Simulation of the deformation and damage mechanisms of PPGF30 in 0◦

load direction. The different mechanisms are denoted by: Sim. plas.: Matrix plasticity
and elastic fibers / Sim. plas. + fib. dam.: Matrix plasticity and brittle fiber failure
Sim. plas. + int. dam.: Matrix plasticity and interface debonding / Sim. plas. + int. dam.
+ fib. dam.: Matrix plasticity, interface debonding and brittle fiber failure / Sim. plas.
+ int. dam. + fric.: Matrix plasticity, interface debonding and post-debonding friction
Sim. plas. + int. dam. + fric. + fib. dam.: Matrix plasticity, interface debonding, post-
debonding friction and brittle fiber failure (all mechanisms).

In general, similar effects of the different mechanisms can be observed for both load di-

rections (Fig. 80 and 81): At higher strains close to the point of fracture, the slope of the

experimental stress-strain curve is overestimated by the simulations which do not account

for interface damage and thus consider a perfect interface. If interface debonding is ac-

tive, the slope of the experimental curve can be accurately reproduced until the point of

fracture. For the simulations, the point of fracture is determined by the first occurrence

of failure of fiber elements since no matrix damage can currently be modeled. This point

is marked by the arrows. For the simulations where fiber damage was deactivated, the

further development of the stress-strain curves beyond the point of fracture is depicted by

the thin lines. The variants which account for interface damage but no post-debonding

friction then feature a drop of load (thin lines), whereas no such drop can be observed if

friction was activated.

It is remarkable that in 0◦ load direction (Fig. 80), the best agreement between the sim-

ulations and the experiment can be observed for the variant which accounts for all mech-

anisms (matrix plasticity, interface damage, post-debonding friction and fiber damage),

whereas the point of fracture is significantly underestimated if post-debonding friction is

deactivated (only matrix plasticity, interface damage and fiber damage are considered).
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Figure 81: Simulation of the deformation and damage mechanisms of PPGF30 in 90◦ load
direction. The different mechanisms are the same as in Fig. 80.

The variant accounting exclusively for matrix plasticity and fiber damage (perfect in-

terface) does not reproduce the shape of the stress-strain curve accurately, but the point

of fracture is only weakly overestimated.

In 90◦ load direction (Fig. 81), the difference between the variant with a perfect interface

(no interface damage) deviates very strongly from the remaining variants and the exper-

iment: The softening of the curve toward the point of fracture is not captured and the

values of fracture stress and strain are strongly overestimated. Based on the agreement

with the experimental data, the simulation variant with matrix plasticity, interface dam-

age and fiber damage (but no post-debonding friction) seems to be the most realistic one,

even if the effect of activating post-debonding friction is very weak in this case.

5.6.12 Plasticity and damage - experimental scatter

In the following, the degree of experimental scatter is visualized by depicting three exper-

imental curves in together with the simulations (accounting for all mechanisms). For this

purpose, the data of 0◦ load direction is shown in Fig. 82, whereas the results for 90◦ are

presented in Fig. 83. Furthermore, the degree of nonlinearity of the stress-strain curves is

emphasized by additional plots of the mean values of the elastic moduli in both directions

(E1 and E2, respectively, see Table 12). It is worth noting that the elastic moduli were

determined on different specimens than the ones which were loaded until fracture.

In 0◦ load direction (Fig. 82), the observed scatter with respect to the point of fracture

is rather low, whereas significant deviation in the shape of the curves can be observed.

It is remarkable that two of the three curves almost coincide, which furthermore agree
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Figure 82: Experimental scatter of PPGF30 for 0◦ load direction.

Figure 83: Experimental scatter of PPGF30 for 90◦ load direction.
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very well with the mean value of elastic stiffness in their initial phase at low strains.

Therefore, the third experiment with larger deviations likely represents an outlier. The

degree of nonlinearity of the curves is rather weak, but significant: If the material would

be modeled linear elastic, the stress would be overestimated by approx. 30 % at a strain

of 0.02.

For a load direction of 90◦ (Fig. 83), the scatter is significantly larger than for 0◦. The

middle curve which was considered as the representative experiment for the validation of

the simulation agrees very well with the mean value of elastic stiffness in its initial phase.

Therefore, the choice seems to be justified. It is remarkable that the degree of nonlinearity

is very large for this load direction: An elastic modeling of the material would result in

an overprediction of stress of approx. 100 % at a strain of 0.02.

5.6.13 Plasticity and damage - variation of RVE size

A variation of the RVE size was also studied with respect to plasticity and damage, even if

no systematic variation in multiple steps was performed as for the elastic and viscoelastic

properties. Fig. 84 shows the effects of a varying RVE size (5 vs. 50 mm length) for a load

direction of 0◦. Both RVEs feature the measured fiber length distribution and account

for all mechanisms.

It can be clearly observed that the stress-strain curve of the RVE with reduced dimensions

(LD7, 5 mm) deviates significantly from the large one (LD3, 50 mm) above a strain value

of approx. 0.01. The fracture strain is overestimated, whereas the fracture stress does not

significantly deviate from the large RVE and the experiment. Furthermore, the initial

stiffness of both RVEs is very similar.

Figure 84: Effect of RVE size analyzed for PPGF30 and 0◦ load direction.
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5.6.14 Plasticity and damage - variation of fiber length

In analogy to the elastic and viscoelastic properties, a variation of the fiber length was

studied. Substituting the fiber length distribution (RVE LD3), a uniform fiber length of

1.2 mm (equal to the number average fiber length l̄n of the distribution) is implemented

into RVE CL1, whereas RVE CL2 features a uniform fiber length of 15 mm (representing

the weight average fiber length l̄w of the distribution). Fig. 85 shows the effects of a vary-

ing fiber length for 0◦ load direction and a RVE size of 50 x 1.5 mm2. The simulations

represented by the bold lines account for all mechanisms, whereas the thin lines refer

to the simulations which exclusively account for matrix plasticity and interface damage

to visualize the additional load transfer which is enabled under consideration of post-

debonding friction (bold lines).

It can be seen (Fig. 85, bold lines) that the difference between RVE LD3 and CL2 is very

small and thus, the weight average fiber length l̄w seems to be an appropriate substitute

for the length distribution, whereas the number average fiber length l̄n (RVE CL1) yields

a strong underprediction of the failure stress and the shape of its stress-strain curve de-

viates significantly from the remaining variants. If post-debonding friction is deactivated

(thin lines), the failure strain of RVE CL1 collapses to approx. half of its initial value

(under consideration of friction, bold line) and the composite fails catastrophically by

fiber pullout. No such drastic effect can be observed for the remaining RVEs, where the

level of the maximum stress remains similar if friction is deactivated.

Figure 85: Effect of fiber length analyzed for PPGF30 and 0◦ load direction.
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5.6.15 Plasticity and damage - contour plots

Fig. 86 shows the damage localization within the cohesive zone elements of

the RVE CL1 at the time of its failure by fiber pullout, when no post-debonding fric-

tion was considered (thin line in Fig. 85), which would prevent such localization within

the cohesive zones. The legend represents the scalar stiffness reduction factor D of the

damage evolution law (Section 4.3.2). A value of 1 corresponds to a completely degraded

element. Matrix and fiber elements were removed for illustration purposes.

Figure 86: Damage localization within the cohesive elements of RVE CL1.

Fig. 87 shows the damage localization within the fiber elements of RVE LD3 at a nominal

strain of approx. 0.02 (at the point of fracture, Fig. 80). All mechanisms (matrix plas-

ticity, fiber-matrix debonding, post-debonding friction and fiber failure) were activated

for the simulation. The legend represents the von Mises stress. Some fiber elements can

actually feature a value slightly above the nominal failure stress of 2500 MPa due to their

non-zero (but very small) value of damage evolution energy (a certain amount of energy

must be dissipated before the element is deleted).

Figure 87: Damage localization within the fiber elements of RVE LD3.
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6 Discussion

The discussion is divided into three main sections.

First, the Microstructural aspects are treated (Section 6.1) with respect to the identifica-

tion and evaluation of sources of uncertainty which affect the experimental determination

of the characteristic values (fiber volume fraction, fiber orientation distribution, fiber

length distribution). Besides the discussion of the single aspects it is very important to

incorporate their correlation and interaction. The last part of this chapter deals with the

artificial reproduction of the microstructure in the form of computer models and high-

lights their promising features as well as current shortcomings.

The part Constitutive models (Section 6.2) deals with the mechanical continuum mod-

els which were applied to describe multiple aspects of the behavior of the components

fiber, matrix and interface within the simulation of the LFT material. It is mandatory

to clearly define their respective range of validity and limitations in order to evaluate

their roles within the microstructural simulation of LFT. The treated models are the vis-

coelastic matrix model, which was applied to reproduce the creep behavior, the plastic

matrix model used to describe the quasi-static deformation, the brittle fracture model of

the fibers and the interface model to represent debonding phenomena.

Finally, the chapter Multidirectional LFT structure (Section 6.3) highlights the relation-

ship between the microstructure and the effective mechanical behavior of LFT. Multiple

partial models are now combined to describe different phenomena of the material. The

principle effect of several characteristics, e.g. the fiber length or the size of the structures

is evaluated and compared with respect to different mechanical properties. The knowl-

edge of such relations, which is gained by the virtual laboratory, is important for the

design and development of new material variants. A mechanism-based interpretation of

the deformation and damage behavior of LFT is fundamental for the future development

of effective mechanical models which can then be used to simulate components made from

the material.

6.1 Microstructural aspects

6.1.1 Fiber volume fraction

In this work, the nominal fiber volume fraction was calculated based on the values of the

mass flow rate of the manufacturing process (Section 3.1.1). The accuracy of this proce-

dure was investigated by Tröster [Tro03] and Radtke [Rad08] amongst others. Differen-

tial weighing of multiple specimens taken from varying positions of a LFT plate support

that the uncertainty with respect to the calculated values of fiber volume fraction can
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be considered as low and that the nominal values are sufficiently accurate [Tro03]. For

example, analysis of a 400 x 400 mm2 specimen plate manufactured by compression mold-

ing with a nominal volume fraction of 13.22 % (PPGF30) revealed a minimum value of

12.41 % and a maximum value of 13.77 % [Rad08]. For most regions of the plate, the

agreement to the calculated value was even better.

On the microscale, a significant fluctuation of the fiber volume fraction (the local fiber

density) could be observed. In Fig. 88, the CT data of Fig. 12 is rearranged so that an ex-

emplary fiber agglomeration is clearly visible. Such fiber agglomerations form within the

material possibly as a relict of fractions of fiber rovings which were not homogeneously

dispersed and infiltrated with the polymeric melt during the compounding procedure.

The agglomerations can be classified as internal flaws of the material and possibly act as

crack starters due to the locally missing bonding to the matrix and thus, an imperfect

load transfer to the fibers.

Figure 88: Fiber agglomeration observed in the 3D (left) and 2D (right) depiction of the
rearranged CT data of Fig. 12.

6.1.2 Fiber orientation distribution

The applied image correlation technique (ImageJ ) does not perform any segmentation of

fibers. Each 2D slice of the CT data is analyzed independently and no connectivity of the

fiber fragments can be detected. Thus, the obtained fiber orientation data represents area

fractions of each single 2D image with a preferred direction. The method was validated

against computer generated images containing multiple lines in which the orientation

state is known and found to be suitable for an accurate reproduction of their orientation

state [Fij14]. Moreover, similar methods to analyze the fiber orientation were reported in

the literature. For example, the commercial fiber analysis software FibreShape [Fib14] was

applied to analyze the planar fiber orientation in natural fiber composites and validated

against manual measurements with ImageJ [Gra14].
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The general limit of the applied image correlation technique is reached when a high degree

of fiber waviness or orientation in thickness direction causes the cut through the fibers

visible in the 2D slice to degrade to an ellipsoid or in the worst case, to a circle. If

the majority of the fibers of the section to be analyzed show the latter phenomenon,

the method becomes inaccurate and no reliable evaluation of the orientation state can

be performed. However, the structure of the investigated material features layer-wise

alignment of fibers with a low degree of fiber orientation in thickness direction (Fig. 12,

40, 88). Visual screening of the 2D slices of each CT scan ensured that no such circular

degradation of the fibers was dominant and that the majority of the slices feature linear

fiber segments (exemplary slices are depicted in Fig. 12 and 89). The procedure can

therefore be considered as suitable for the analysis of the investigated material.

The studied LFT material produced by compression molding does not show a significant

change of fiber orientation over the thickness of the specimen plates (An exemplary plot

is shown in Fig. 13). It is therefore well justified to average the fiber orientation over

the complete material thickness, resulting in a single 2D histogram or probability density

function to describe the orientation state. For injection molded LFTs, a characteristic

structure with three layers over the cross section is commonly assumed [Ngu08, Ngu09]

with the outer layers featuring a high degree of orientation in flow direction and the inner

layer being transversely oriented. The modeling procedure could be extended to account

for such a structure by averaging the orientation over the respective layer, followed by

generation of a partial RVE for each layer. Due to the equivalent mesh of the boundary,

the partial RVEs could then easily be joined to form the complete RVE of a layered

structure. A possible restriction concerns the size of the resulting model, because the size

of the investigated structures of a single layer is already very close to the limit which is

processable with common computational resources.

The characteristic values of the microstructure were determined by random samples. The

CT screening section of 33 mm3 used to extract the fiber orientation distribution can be

considered as relatively small compared to the analysis section of the tensile specimens of

50 x 10 x 3 mm3. A possible variation of the orientation distribution within the specimens

is not considered in the current data and cannot be captured due to the extensive effort

which would be necessary to analyze the fiber orientation at multiple positions within

a single specimen. To minimize this source of uncertainty, a process simulation of the

compression molding of the LFT plates could provide additional information about the

variation of the microstructure characteristics within the specimens and between several

specimen positions of the LFT plate. The simulation could then be validated with CT

scans at several positions. For injection molded, short fiber reinforced thermoplastics, this

procedure is currently technically feasible. A process simulation of the injection molding

of LFTs is a topic of ongoing research. Only few works about compression molding of

LFTs are currently available [Jin13].
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6.1.3 Fiber length distribution

To extract the fiber length distribution (Section 3.1.3 and 5.1.2), a part of the specimen

plate (Fig. 11) was incinerated so that the matrix was burned off and the pure fiber

structure remains. A characteristic sample of fibers was introduced into an automatic

scanning procedure after the fibers were dispersed in a dilute solvent. The incinerated

specimen needs to be large enough to avoid distortion of the length distribution due to

cutting of too many fibers at its edges and therefore features a multitude of fibers which

cannot be analyzed completely by the scanning procedure. Thus, a sample of fibers had

to be selected for the analysis, which was chosen to contain approx. 10000 fibers. Because

of gravitational effects, short fibers tend to sink down through the fiber structure toward

the bottom of the ceramic crucible containing the specimen during the incineration proce-

dure in a muffle furnace. To avoid the exclusion of the short fibers from the analysis, the

fibers were manually selected from the top as well as the bottom of the fiber structure. A

second analysis was performed under application of the same parameters, resulting in a

negligible deviation to the first analysis, which supports the robustness of the procedure

(Fig. 94, Section A.2). However, the procedure is based on experience and is not statis-

tically proven. A method to overcome this problem and to perform a more systematic

sampling was presented by Kunc [Kun07]. Kunc infiltrated the incinerated fiber structure

with epoxy resin by applying a cylinder-shaped droplet reaching from the bottom to the

top of the fiber structure. A syringe was used to let the droplet grow from the bottom

toward the top. Then, the droplet with all captured fibers was separated from the re-

maining part of the structure. The epoxy droplet was burned off and the fiber sample

was introduced into the scanning procedure.

6.1.4 Correlation between fiber orientation and length distribution

Uncertainties remain concerning the correlation between the fiber length and orientation

distributions. Experimental determination of such correlation is currently not possible

since the orientation distributions and length distributions are determined by different

and independent measurements, which cannot be related. It was therefore necessary to

assume that the longest fibers are preferably aligned in flow direction for the generation

of the fiber structures. Although this assumption seems reasonable it is not validated by

independent measurements. In the RVE generation procedure, this issue is represented

by the finite number of attempts to re-orient a fiber preserving its length (Section 4.5.1).

This re-orientation only affects the correlation between the length and orientation distri-

butions but does not modify the orientation distribution itself. A reliable simulation of

the compression molding process under incorporation of a fiber fracture model would be

extremely helpful to further investigate this aspect. As mentioned before, such simulation

methods are current research topics.
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The application of a probabilistic approach represents an alternative way to treat the

uncertainty of the microstructure characteristics as demonstrated by Hohe et al. [Hoh15]:

The standard deviations of the local fiber orientation and density (volume fraction) were

described by stochastic variables and their effect on the distribution of the effective elastic

properties was evaluated by analytical homogenization.

6.1.5 Microstructure generation

The semi-automatic microstructure generation procedure (Section 4.5) needs to be clas-

sified as a tool to realize the given statistical data. It does not represent a profound

description of the physics which govern the mechanisms during the compression molding

of the material in reality. Nevertheless, it provides an approximation to the real structure

at a much more sophisticated level than conventional methods (e.g. analytical homog-

enization), which consider straight fibers and cannot capture fiber interactions like e.g.

fiber crossings or entanglements.

The fiber compression procedure (Section 4.5.2) is numerically implemented under appli-

cation of an extensive degree of mass scaling in order to be computable. In the explicit

FE simulation, the size of the stable time increment ∆t depends on the characteristic ele-

ment length l, the elastic constants E, ν and the mass density ρ: ∆t = l/
√
E/(1− ν2)ρ.

Due to the characteristic element length of the fibers (15.1 µm) being extremely small,

a significant, virtual increase in the material’s density is mandatory, which is performed

automatically by the the mass scaling algorithm of the FE software. The effects of inertia

are therefore strongly overestimated in the simulations. Additionally, the elastic modulus

of the fibers during the fiber compression simulation needed to be chosen significantly

below its real value (5000 MPa vs. 72000 MPa) to further increase the stable increment

size. Both procedures affect that the fiber waviness, which develops in the last step of the

compression (phase B, Section 4.5.2), features a characteristic bending radius significantly

smaller than the one which was experimentally observed. This phenomenon can be seen in

Fig. 89, where a characteristic slice of a CT scan is compared to the computer generated

structure. No remedy can currently be identified to avoid the mass scaling with today’s

computational resources. An exemplary study of a fiber compression scenario with a re-

duced degree of mass scaling and an increased elastic modulus of the fibers turned out to

be numerically unstable so that the simulation aborted at an early stage.

The characteristic bending radius of the fibers as observed in the CT scans (e.g. Fig. 89

left, the characteristic fibers are marked by the arrows) could be mimicked by assigning

respective initial stresses to the straight fibers at the beginning of the pressing process and

let the eigenstresses relax, resulting in a bending deformation. The change in orientation

distribution then needs somehow to be compensated.
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Figure 89: Exemplary slice of a CT scan (left) vs. generated structure (right).

In this work, no variation of fiber density or fiber agglomerations (Fig. 88) were analyzed

or incorporated into the models. The fiber generator tool (Section 4.5.1) could be modified

to account for such agglomerations by mimicking a nucleation process while generating

the seeds of the fibers. Most likely, the RVE dimensions then need to be chosen much

larger in particular in thickness direction in order to represent the gradient of fiber density

within the RVE. With the current computational resources, this is not technically feasible

due to the required size of the models.

6.2 Constitutive models

6.2.1 General aspects

The applied constitutive models, which are discussed in the following, represent appro-

priate descriptions of the mechanical behavior of the matrix, fibers and interface for the

investigated validation scenarios of the LFT model. However, they describe single as-

pects which were analyzed independently and isolated from each other. For arbitrary

loading conditions, some aspects cannot be treated as independent. This is in particular

important for the constitutive law of the matrix. Here, a comprehensive model would be

needed which describes the nonlinear viscoelastic behavior at different time scales together

with viscoplastic effects and progressive damage as a function of the variables stress σ,

strain ε, time t and temperature T . It needs to be emphasized that the investigated load

cases, which include quasi static tensile tests (e.g. Fig. 51) to characterize the plastic be-

havior besides creep and relaxation experiments (e.g. Fig. 44) to measure the viscoelastic

properties, represent idealized cases within the general framework of stress, strain, time

and temperature. Their position in the space of stress, strain and time at a constant tem-

perature is illustrated in Fig. 90, where the quasi static tensile tests can be described in

the isochronous plane (t = const.), the creep tests are associated with the iso-stress plane

(σ = const.) and the relaxation behavior lies within the iso-strain plane (ε = const.).

The application of a model which would accurately describe any arbitrary scenario in the
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three (T = const.) or four dimensional space represents a very complex task which could

not be treated in this thesis. It is therefore very important to be aware of the general

framework when single aspects of the models are evaluated in the following sections.

Figure 90: The three characteristic planes (isochronous, iso-stress and iso-strain) in the
space of stress σ, strain ε and time t at a constant temperature T to classify the investi-
gated load cases in the framework of an arbitrary viscoelastic viscoplastic response.

Furthermore, a varying structure of the polymer within the composite should be consid-

ered for the correct representation of the physical properties of the matrix. The degree of

crystallinity changes in the vicinity of a fiber due to the surface tension of the fiber which

acts as a nucleus for the crystallization process during solidification of the polymeric melt.

Hence, the mechanical properties vary locally within the matrix polymer, which cannot

be captured by the applied continuum models. To account for such phenomena, the crys-

tallization kinetics must be simulated within a multi-scale framework. Such models are

topics of ongoing research [Rua12,Rua11,Ben98,Meh93] and could not be treated within

the scope of this work.

6.2.2 Viscoelastic matrix model

Range of validity

In Fig. 91, the iso-stress plane of Fig. 90 is described in more detail to illustrate the

range of validity of the viscoelastic matrix model, which includes the linear and nonlinear

viscoelastic regime with respect to the stress axis and the range of the calibration exper-

iments with respect to the time axis (0 ≤ t ≤ 6 · 105 s). Depending on the corresponding

stress level of the creep curves, the figure can be divided into three characteristic regions:
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Figure 91: Range of validity of the viscoel. model (iso-stress plane of Fig. 90).

Within the linear viscoelastic regime, the time response is independent of stress. Thus,

the creep curves of different stress levels simply feature a parallel offset - the creep rate

of the second period (ε̇ ≈ const.) remains equal and independent of the stress level.

The nonlinear viscoelastic regime is characterized by increasingly spreading creep curves

with a growing stress level since the time response is no more independent of the load. The

nonlinearity usually affects exclusively the viscoelastic, time-dependent response [Sch69]:

The stress is still low enough to remain within the elastic part of a corresponding stress-

strain curve in the isochronous plane at t = 0.

The viscoplastic and damage regime can feature a tertiary creep period which is charac-

terized by an increasing creep rate after the second period, where the creep is stationary.

The corresponding stress levels would be outside the elastic and within the plastic region

of the stress-strain curves at t = 0. The tertiary creep period is associated with severe

inelastic deformations which finally induce creep fracture.

The time axis shows the range for which the model was experimentally calibrated. To

describe the mechanical behavior outside this range, it is in principle feasible to apply ex-

trapolation schemes such as the time-temperature superposition principle. For thermorhe-

ologically simple materials (e.g. unreinforced polymers as the polypropylene matrix) such

methods are widely used and justified, whereas they are in general not applicable to ther-

morheologically complex materials (e.g. fiber reinforced thermoplastics) [Bri08]. Since no

temperature-dependent data was available for the polypropylene matrix, no such extrap-

olation could be applied and thus, the use of the viscoelastic matrix model is restricted

to the range of time which is covered by the calibration experiments.
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Model choice and numerical implementation

The Burgers model was chosen for the representation of the viscoelastic effects of the

thermoplastic matrix. Its free dashpot effects the viscous behavior of the model to be

dominant, resulting in a constant creep rate during the second period (Fig. 20) and a irre-

versible strain component during the recovery phase. The model therefore represents the

continuous sliding of the polymeric chains of an amorphous or semi-crystalline thermo-

plastic. The creep curves of the calibration experiments could be described by the Burgers

model to a high degree of accuracy (Fig. 42) with only a single Kelvin-Voigt element. Fur-

thermore, the existence of an irreversible strain component of the recovery period of the

calibration experiments indicates that the feature of a free viscous dashpot in the model

representation is legitimated (Fig. 42). Thus, the model choice seems to be well justified.

Additionally, as supported by the validation scenario, the nonlinear modification of the

model is in general well able to reproduce the nonlinear viscoelastic, time-dependent defor-

mation behavior of the polypropylene matrix for the investigated load range and time scale

(Fig. 44). It needs to be emphasized that the model was calibrated with characteristic

specimens (Fig. 42), which were selected from the middle of the observed scatter band. In

contrast, a single specimen was investigated for validation (Fig. 44). Thus, the observed

deviation between the model prediction and the validation experiment can be considered

as low.

The formulation of the applied nonlinear viscoelastic matrix model (Section 4.1.8) is re-

stricted to small deformation theory which implies that the deformation of each element

remains sufficiently small compared to its reference configuration and that the engineer-

ing definition of stress and strain is sufficiently accurate. Deformations of glass-fiber

reinforced plastics are mostly considered as small because of the value of fracture strain

of the glass fibers (approx. 3.5 %) which delimits their application-relevant range of strain.

In contrast, the matrix polymers feature very high strains to failure. Analysis of the mi-

croscopic strains within an exemplaric LFT structure revealed a maximum value of the

local equivalent deviatoric strain of approx. 5 % after a creep period of 6 · 105 s at the

highest investigated stress level of 40 MPa (Fig. 78). The hydrostatic strain was found

to be significantly lower (Fig. 79). Thus, the application of the small deformation theory

seems to be well justified for the investigated load range.

A second restriction of the model concerns the limitation to a single relaxation time (only

one Kelvin-Voigt element is considered). A semi-crystalline thermoplastic is character-

ized by a spectrum of relaxation times, where each value of relaxation time corresponds

to a specific length of a polymeric chain (Section 2.1.5). Depending on the time pe-

riod or frequency of the loading, a different relaxation time of the spectrum is activated.

In order to generalize the model to arbitrary time scales, the whole spectrum of relax-

ation times must be screened e.g. by means of dynamic-mechanical-analysis (DMA). The
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spectrum of relaxation times is then implemented by means of a generalized viscoelastic

model, where several units of the respective model are connected in parallel and each

sub-unit represents a single value of relaxation time (e.g. the generalized Maxwell model,

Fig. 45). The latter can be addressed numerically by using a Prony series of relaxation

times rather than a single value (Eq. 122). If the Burgers model based on the form pre-

sented in Section 4.1.8 is extended to a generalized formulation, this results in 9 history

variables of decoupled deviatoric and volumetric strain components at each integration

point per relaxation time or element of the Prony series. For the analysis of the large

structures of this work, this would require an extensive amount of memory: For example,

10 elements of the Prony series would result in 90 floating point variables per integration

point of 10 million elements and thus, a total of 900 million state variables. In order to

keep the computational cost as low as possible, only one relaxation time was implemented,

which corresponds to the time scale of the creep scenarios (6 · 105 s). Thus, the model

cannot describe other time periods or frequencies without re-calibration. This partially

affects the validation sequence of Fig. 44: The time period of each sequence of constant

stress or constant strain was chosen somewhat smaller than the calibration period of

6 · 105 s, with the shortest investigated period being 3 · 104 s. Thus, precision is lost with

respect to the reproduction of the curvature of the creep curves (Fig. 92).

Figure 92: First two phases of the matrix validation sequence (Fig. 44, left) and close-up
of the beginning of the second phase (right).

As mentioned in Section 4.1.7, the third restriction of the model concerns the applicability

to fast variations of load. Due to the chosen scheme of time integration, a global non-

linear viscoelastic load history is approximated by a series of sectional linear viscoelastic

increments, represented by constant model parameters for each increment. Hence, the

model is not suited for load scenarios with a fast variation of load as e.g. cyclic loading,

whereas applicability to creep scenarios with a constant external load and rather slow re-

distribution of stresses within the microstructure is not problematic. This is supported by

the validation scenario (Fig. 44). Furthermore, the size of the time increments was varied

in an exemplary study (Fig. 76). The results were found to be insensitive with respect
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to the increment size. This supports that the variation of load of the investigated creep

scenarios is sufficiently small to ensure the validity of the applied model formulation.

Effects of stress redistribution due to nonlinear viscoelasticity

Two variants of stress redistribution are active within the LFT structures under creep

load: The stress redistribution from the matrix to the fibers is caused by the creep of

the matrix (an increasing compliance over time) and applies to both linear and nonlin-

ear viscoelastic matrix behavior, whereas the stress redistribution within the matrix is

exclusively effected by nonlinear viscoelasticity. Here, the stress redistribution causes a

stabilization of the material, since the regions under higher stress relax faster, so that the

load is transferred to other regions and hot spots vanish over time. In the end, the redistri-

bution of stresses within the matrix due to its nonlinear viscoelastic behavior decelerates

the effective creep response of the composite. To investigate the extent of this effect,

two variants of the model formulation were applied: For the pseudo nonlinear model, the

stress-dependent parameters are determined at the beginning of the simulation, where the

elastic load is applied. They are set to their respective values in dependence of the value

of the indicator stress (Eq. 55) at each integration point. Then, the model parameters are

kept constant over the creep period and thus, stress redistribution within the matrix was

deactivated. In contrast, for the fully nonlinear model, the parameters are determined

for each time increment anew and the effects of nonlinear viscoelasticity are fully active.

The results of the pseudo nonlinear and the fully nonlinear model are compared in

Fig. 74 for the highest investigated stress level of 40 MPa and an exemplary structure of

PPGF30. The observed extent of stress redistribution is indeed significant and mostly

affects the creep rate of the second creep period (where the creep rate is stationary). The

increase in creep rate of the pseudo nonlinear compared to the fully nonlinear model

was found to amount approx. 37 %. Comparison with the experimental data shows that

even the fully nonlinear model slightly overestimates the creep rate in this specific case

(Fig. 74). The pseudo nonlinear model therefore represents a conservative estimate, which

could be sufficiently accurate for engineering purposes containing a safety margin. A com-

putationally very efficient implementation of such a model would be in principle feasible

as here, the time-dependency can be separated from the load (as for linear viscoelastic-

ity). In contrast, the fully nonlinear variant is necessary when accurate information of

the microscopic stress and strain state is mandatory, which can exclusively be provided

by this variant of the model. For example, such information would be required if the

microstructural model would be extended to account for a tertiary creep period at higher

loads, which would induce local damage at the microstructural scale.

As further simplification, results generated under application of the linear viscoelastic

model variant (constant and equal model parameters at every integration point) were

compared for different, prescribed values of model parameters specified in the form of a
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given value of indicator stress (Eq. 55). The same exemplary structure of PPGF30 under

the highest stress level was investigated as for the pseudo nonlinear and fully nonlinear

variant. The resulting creep curves presented in Fig. 75 vary over a rather broad range

(the difference in creep rate between the boundary curves amounts to approx. 365 %) and

deviate significantly from the experimental curve. Therefore, a purely linear viscoelastic

material model with constant and equal parameters at each integration point cannot be

applied within acceptable precision.

To conclude the investigations of the influence of the nonlinear viscoelastic behavior of

the matrix, it can be stated that:

- the linear viscoelastic model is not applicable within reasonable accuracy,

- the pseudo nonlinear model represents a conservative estimate of the effective creep

behavior of the composite which is suitable for engineering applications,

- the fully nonlinear model is mandatory when precise information about the micro-

structural stress-strain state is required.

Three dimensional formulation, deviatoric vs. volum. deformation

In contrast to the creep mechanisms of most metals, the viscoelastic behavior of ther-

moplastics is not based on the motion of dislocations, which can in general be consid-

ered as independent of hydrostatic stress. In particular, the amorphous regions of the

semi-crystalline matrix material (polypropylene) can actually feature a viscoelastic be-

havior which is explicitly dependent on hydrostatic stress. As a consequence, the applied

model formulation considers an indicator stress which is chosen to the von Mises stress

or the hydrostatic stress, respectively, based on the maximum absolute value of both

(Section 4.1.8, Eq. 55). Additionally, both the deviatoric and the volumetric components

of the inelastic deformation were assumed to be time-dependent, resulting in a constant

Poisson’s ratio over time (Section 4.1.6). (In contrast, the time-dependent deformation

of metals is commonly assumed to be incompressible, i.e. only the deviatoric components

are time-dependent). For the load case of uniaxial tension (all creep scenarios), the value

of hydrostatic strain was never larger than the equivalent deviatoric strain within the

analysis section of the investigated structures (within L0 of Fig. 32). Exemplary contour

plots at the time of the load application and at an advanced stage of the creep scenarios

can be seen in Fig. 78 and 79. It can be clearly observed that the equivalent deviatoric

strain is significantly larger than the hydrostatic strain at any location and anytime within

the investigated structure. For severely deformed elements at the RVE border, where the

displacement boundary conditions were applied (outside L0, see Fig. 32), a larger value of

the hydrostatic strain than the equivalent deviatoric strain could be sporadically found.

This indicates that volumetric deformations at the microscopic level might become sig-

nificant for multiaxial load states, whereas they have apparently only negligible effect for

the load case of uniaxial tension.
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6.2.3 Plastic matrix model

Model choice and simplifications

Due to the lack of a generally accepted plasticity model for thermoplastics, the classical

von Mises model (Section 4.2) was chosen for the explicit simulations of the quasi static

deformation and damage behavior of LFT (denoted by plasticity and damage). Thus, the

plastic deformation is assumed to be purely deviatoric. As discussed in Section 6.2.2, this

assumption is not necessarily adequate for the polypropylene matrix material. However,

the negligence of a volumetric part of the inelastic deformation can be justified with the

results from the viscoelastic modeling, where the volumetric component was found to be

rather negligible within the matrix of LFT structures for loading in uniaxial tension. If the

range of application is extended to arbitrary load states, this simplification might become

inappropriate and a plasticity model should be chosen which accounts for a volumetric

component of inelastic deformation. Furthermore, a tension-compression asymmetry of

the matrix material could then become significant. Such effects were reported by Rybicki

and Kanninen [Ryb73] for investigations on polypropylene. However, no significant com-

pressive stress is expected for the investigated structures under tensile loading.

Effects of strain rate

It needs to be emphasized that the applied plasticity model which is included in the ex-

plicit FE software package (Abaqus Explicit) is independent of the viscoelastic model of

the previous section (which was implemented into an implicit FE framework by a user sub-

routine). The plasticity model therefore does not feature a dependence on strain rate. To

overcome this issue in a pragmatic way, the nominal strain rate was chosen equally for the

calibration experiments (matrix substance specimens) and validation experiments (LFT

specimens) to approx. 7 · 10−4 1/s. Nevertheless, due to the inhomogeneous strain field at

the microstructural level, the microscopic strain rate can also vary. No such strain-rate

dependency is considered by the current plasticity model. The initial stiffness, the yield

stress and the hardening behavior of the stress-strain curves of the matrix specimens is

likely affected by the strain rate. To investigate the extent of this dependency, the strain

rate of several experiments on matrix substance specimens was varied over three orders

of magnitude (Section A.3). The plasticity model was then calibrated with the three

different experimental stress-strain curves and the effect on the response of the compos-

ite was investigated by an exemplary microstructural simulation (Fig. 97). The effects

can be assessed as weak, in particular under consideration that the change of strain rate

everywhere within the matrix represents a rather extreme assumption. Furthermore, the

response in Fig. 97 refers to a sample structure which is loaded in 90◦ direction, where the

matrix properties are dominant (for a load direction of 0◦, the effect can be expected to

be even weaker). By comparison of Fig. 97 with Fig. 83, one can clearly observe that the
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deviations of the stress-strain curves due to the variation of the strain rate are within the

range of experimental scatter. Due to these facts and the excellent agreement between

LFT validation experiments and microstructural simulations (under consideration of a

constant strain rate, see e.g. Fig. 80 and 81), the negligence of a strain rate dependency

of the plasticity model seems to be appropriate as long as a very slow effective strain rate

(corresponding to the quasi static case) is existent. Of course, strain-rate dependent ma-

terial parameters are of great importance for the simulation of highly dynamic processes,

such as the load case of crash.

6.2.4 Fiber fracture model

For the simulations of plasticity and damage of the multidirectional LFT structures, the

fibers were assigned to a brittle fracture model with a uniform value of failure stress. Val-

ues of fiber strength in the literature vary over a range from approx.

1800 to 3500 MPa [Kim98,And02,Tho14,Zha00a,Zha00b,Wan97] for the type of E-glass

(the fibers of the investigated material). A mean value of 2500 MPa from the middle of

this range was therefore considered for the simulations of this work. Furthermore, this

value is commonly assumed if a mean, uniform value of strength needs to be specified

[Kim98,Adv14]. More comprehensive investigations of fiber strength were carried out by

Andersons et al. [And02] amongst others. A variation of the gauge length of the single

fiber tests revealed a dependence of the strength from fiber length according to Weibull’s

weakest-link theory (the larger the volume of a brittle material, the higher the probability

that it contains a flaw which will cause catastrophic failure). Such dependence could

be implemented into the simulations in future to represent the fiber strength properties

more accurately. A similar approach was made by Mishnaevsky to include the effects of

a strength distribution for particle reinforced composites [Mis07].

6.2.5 Interface model

The interface properties were assigned to the cohesive zone elements between the fibers and

the matrix in the form of a traction-separation law. The traction-separation model needs

to be considered as a simplified approach to mimic the effective behavior of the interface.

The model is not based on a physical background and cannot be transferred to other

material systems without re-calibration. Furthermore, no mode-dependent parameters

could be determined with the fiber push-out experiments, since they are restricted to

shear loading of the interface. It was therefore necessary to assume equal parameters for

the normal and both shear deformation modes. Another micromechanical testing method

would be necessary to determine the parameters in normal direction (e.g. the Broutman

test [Age99,Bro69]).
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6.3 Multidirectional LFT structure

6.3.1 General aspects

In this chapter, the general suitability of the LFT model to describe different mechanical

properties is discussed with respect to elasticity, viscoelasticity and plasticity and damage.

The most fundamental aspects are highlighted for each property in no particular order.

More specific problems will then be treated in a more systematic way within the following

chapters.

Elasticity

For all three investigated materials with varying fiber fractions (PPGF10, PPGF20,

PPGF30) and two respective load directions, the LFT model is suitable to reproduce

the experimental results within a maximum error below 10 % which can in general be

rated as very promising (Table 12, Fig. 59) and represents a necessary precondition to

apply the model to predict mechanical properties beyond linear elasticity. The deviation

to the analytical approach is somewhat higher with the analytical values of E1 systemat-

ically being smaller than the numerical results and E2 being larger. This is likely caused

by a certain degree of underestimation of E1 and overestimation of E2, respectively, by the

Halpin-Tsai equations [Hal76], which was reported by Tucker and Liang for aspect ratios

larger than 10 by systematic comparison of the results of analytical and numerical models

of unidirectional fiber composites [Tuc99]. A similar behavior could be observed for the

FE models of an unidirectional fiber arrangement of this work (Fig. 53). For the exact

value of 13.22 % fiber volume fraction, the Halpin-Tsai equations clearly underestimate

the FE results, whereas a slightly increased value of 15 % yields good agreement. These

results support the findings of Tucker and Liang and in the end the assumption that the

minor deviations between analytical and numerical results of the LFT model are caused

by inaccuracies of the Halpin-Tsai equations.

Viscoelasticity

The viscoelastic LFT simulations were validated against characteristic creep experiments

of all three investigated materials under two load directions at multiple stress levels

(Fig. 64 - 69). Two sets of parameters of the viscoelastic matrix model were considered.

The original parameters are exclusively based on experimental findings (Section 5.2.1),

whereas the modified parameters were determined inversely to compensate the observed

effects of the coarse matrix mesh to a certain amount (Section 5.2.3). Overall, a good

agreement between the simulations and the validation experiments can be observed in

Fig. 64 - 69. The initial offset of the curves is governed by the elastic stiffness which has

found to deviate less than 10 % from the experiments (previous paragraph). Furthermore,

the creep behavior of the first period up to the relaxation time of the Kelvin-Voigt element
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(0 ≤ t ≤ 2 · 105 s), characterized by a decreasing strain rate and a high curvature of the

graphs, deviates from the experiments only to a minor degree, as it can be seen in the

figures. A more complex situation exists for the second creep period after the relaxiation

of the Kelvin-Voigt element (2 · 105 ≤ t ≤ 6 · 105 s), characterized by an approximately

constant creep rate:

In 0◦ load direction, the creep rates of the low and medium stress levels of the three

materials are well reproduced, whereas the creep rate of the highest stress level of each

material is significantly overpredicted by the LFT model. A possible explanation is that

the stress dependency of the creep rate is overestimated by the matrix model for higher

stresses: As it can be seen in Fig. 42, the experimental data of the highest stress level of

12.5 MPa (which was used to calibrate the model) is fragmentary. In this context, it needs

to be mentioned that the depicted creep curves were manually selected from the middle

of the scatter band of multiple experiments per stress level. It was observed that the ex-

perimental scatter drastically increased for the higher stress levels. It is therefore possible

that the experimental data which was chosen to calibrate the model is not completely

representative, even if the middle curves of the scatter band were selected. More creep

experiments with finer increments for the higher stress levels (e.g. 10, 10.5, 11, 11.5, 12,

12.5 MPa) would be helpful to identify possible inaccuracies of the model. Furthermore,

the validation sequence of the matrix model does not contain the highest stress level of

12.5 MPa (Fig. 44). As a consequence, a possible inaccuracy of the model at higher stress

levels cannot be detected by the validation scenario.

In 90◦ load direction, the creep rates are in general overpredicted to a higher degree for

all investigated materials and stress levels. This is likely caused by the anisotropic RVE

dimensions: The length of the RVEs is shortened to 1.5 mm (PPGF30) and 2.75 mm

(PPGF10, PPGF20) in transverse direction in contrast to the length of 50 mm in longitu-

dinal direction. As it can be seen in Fig. 70, the creep rate is strongly affected by a varia-

tion in RVE size (the study revealed approx. 30 % deviation for a size reduction from 50 to

5 mm). Therefore, it is very likely that the elongated RVEs are not suitable for an ac-

curate prediction of the creep rate in transverse load direction. In contrast, the elastic

properties are only weakly affected by a change in length of the RVEs (Fig. 60).

The difference in creep behavior of the original and modified model parameters is in gen-

eral small (Fig. 64 - 69). In detail, the respective curves feature a very similar shape and

creep rate, but a significant offset. This offset is larger for 90◦ than for 0◦ load direction

since in transverse direction, less fibers are aligned in load direction and therefore, the

properties of the matrix are more dominant. This agrees well to the results with respect

to the elastic properties, where a significant mesh influence could exclusively be detected

in 90◦ load direction (Section 5.6.5). Overall, the use of the modified parameters yields
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a slightly better agreement to the experiments. Furthermore, the modified model tends

to overpredict the time-dependent strain of the experiments slightly and is thus more

conservative than the original variant.

Plasticity and damage

The investigated LFT material features a very complex deformation and damage be-

havior which is characterized by a high degree of nonlinearity in transverse direction

(where less fibers are aligned in load direction and thus, the matrix properties become

dominant which are the source of the nonlinearity). In contrast, the behavior in lon-

gitudinal direction is effected by the significantly higher amount of long fibers parallel

to the load (Fig. 36) and thus features a clearly increased stiffness and strength of the

stress-strain curves with a smaller degree of nonlinearity, as it can be seen in Fig. 82

and 83. Furthermore, the effects of the fiber-matrix interface damage need to be consid-

ered since the bonding between the thermoplastic matrix and the glass fibers is in general

rather weak because of the absence of covalent bonds (Section 2.1.5). The broad fiber

length distribution, reaching from fragments well below 1 mm length up to very long fibers

of approx. 50 mm (Fig. 37) affects that their failure behavior is quite complex and not

uniform, since short fibers will fail by fiber pullout, whereas fibers with a sufficient length

will fail by normal fracture. Below that critical length, the point of failure by fiber pull-

out is reached earlier for shorter fibers and further delayed for longer ones. Moreover, the

complex mechanical behavior of the thermoplastic matrix plays an important role. Be-

sides its significant strain-rate dependency due to its viscoelastic and viscoplastic nature,

the influence of hydrostatic pressure and the material’s tension-compression asymmetry

might be relevant for the investigation of arbitrary load cases. Again, it is worth noting

that the applied modeling approaches feature severe restrictions in this respect, as men-

tioned in Section 6.2.

Against this background, it is remarkable that the experimental stress-strain curves can

be reproduced by the LFT model quite accurately under application of very simple consti-

tutive laws (the strain rate independent von Mises plasticity model, a mode independent

traction-separation interface model and a brittle fracture model of the fibers). The re-

sulting curves of the simulations which account for all investigated mechanisms (matrix

plasticity, fiber-matrix debonding, post-debonding friction and fiber failure) agree very

well with the validation experiments and are located at the middle of the observed scatter

band (Fig. 82 and 83). It is worth noting that these results were generated under con-

sideration of a matrix behavior which was determined at the same effective strain rate

as the LFT validation experiments. At lower nominal strain rates (quasi-static case) this

assumption is obviously justified because of the good agreement between the simulations

and validation experiments. Furthermore, an exemplary study of the strain rate depen-
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dency of the matrix revealed a rather weak effect for the investigated range of strain rates

(Section 6.2.3, Paragraph ’Effects of strain rate’ ).

6.3.2 Effects of RVE size

In this section, the variation of the RVE size is discussed with respect to different mechan-

ical properties. If the effective properties of the RVEs are not significantly affected by a

change in size, the structures are likely sufficiently large to be representative, since the

mechanical properties in general tend to converge to a saturation value with increasing

RVE size. Because of the extreme aspect ratio of the fibers of the investigated material,

it is not possible to generate arbitrarily large structures due to the related computational

cost. Thus, a variation of the RVE size can only be performed within a rather small range

which likely excludes the value of saturation. To circumvent this systematic problem in

a pragmatic way, the numerical values can be compared to the experimental data, where

it can be assured that the structures are large enough to be representative.

Elasticity

The variation of the RVE size in x1-direction (flow direction) was systematically inves-

tigated in the range of 5 to 50 mm with the result that the effective stiffness is rather

weakly affected (Fig. 60 and Table 13). A maximum deviation of approximately 4 %

for E1 could be observed. An increase in stiffness with decreasing RVE length would be

reasonable, since every fiber long enough to connect the analysis node sets (L0 of Fig. 32)

contributes to the effective stiffness in the same way as an endless fiber and the shorter

the RVE, the larger the overestimation of fibers which are shorter than the saturation

length (Fig. 53). In contrast, an opposite trend can be observed in Fig. 60), where the

compliance increases with smaller dimensions. This is likely because the smallest RVE

investigated (5 mm edge length and 4 mm reference length L0) is still close to the the sat-

uration fiber length (E4mm/E∞ = 0.93 according to the Halpin-Tsai equations [Hal76]).

Thus, statistical effects of the microstructure predominate the effective stiffness and the

effects of pure fiber length are rather negligible. This is a direct consequence of Hill’s

rule [Hil51,Bis51] and in particular, Eq. 10: Even for the largest investigated RVEs with

50 mm length, the condition is not met: Here, the RVE length LRVE is just equal to the

microstructural characteristic length Lmicro, which can be considered as the maximum

fiber length of 50 mm. To satisfy the condition, the RVE dimensions would have to be

significantly larger. This was not technically feasible since RVEs larger than 50 mm are

currently not computable with the available resources.
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The effect of a varying reference length L0 within the 5 to 50 mm long RVEs was also

studied to quantify the fluctuation of the value of stiffness within these RVEs. No sig-

nificant influence could be observed for different ratios of reference length to RVE length

L0/LRVE for the 50 and 20 mm long RVEs (Fig. 61, right): They appear both to be

large enough so that statistical fluctuations of the microstructure, which would result in a

locally varying stiffness value, are rather weak. The RVEs with a length of 10 and 5 mm

show a different behavior (Fig. 61, left). In this case, the results indicate that fluctuations

of stiffness within these RVEs are significant.

It can be concluded that although even the largest investigated structures are too small

to be representative in a strict statistical sense according to Hill’s condition, the effect of

the RVE size on the elastic properties is rather weak and within an acceptable precision

for engineering applications (< 5 %). The weak sensitivity is likely caused by the fact

that even rather short fibers are close to the saturation length of the elastic stiffness and

therefore, a cropping of the long fibers as necessary for the small RVEs has only a neg-

ligible effect. A different situation exists for the fluctuation of the stiffness values within

the RVEs. Here, a significant increase of the range of variation can be observed for the

small structures.

Viscoelasticity

The influence of the RVE size on the viscoelastic properties was investigated by the same

scenario as for the elastic properties. The effect of a varying RVE length (Fig. 70) is sig-

nificantly larger than observed for the elastic properties. In detail, the relative deviation

of the normalized creep rate reaches values up to 30 % for the smallest RVE with 5 mm

length compared to a deviation of max. 4 % of the normalized elastic compliance. Besides

the variation in creep rate, the respective creep curves (Fig. 71) feature a significant offset

which is larger than the one resulting from their difference in initial stiffness, which is,

as mentioned before, very low. A possible explanation of the large effect lies in the dif-

ference in the saturation lengths of the fibers with respect to the elastic and viscoelastic

properties, because - as mentioned in the last paragraph - the reduction of the RVE size

affects that the longer fibers are cropped to fit inside the RVE boundary. Whereas the

saturation fiber length with respect to the elastic properties can be estimated based on the

Halpin-Tsai equations (amongst other homogenization methods), no common approach

exists for the viscoelastic properties, which motivates the FE studies on a unidirectional

fiber arrangement (Section 5.5). These investigations imply that the saturation length

of elastic stiffness is at least one order of magnitude smaller than the one of the creep

behavior: A saturation aspect ratio of approx. 100 (corresponding fiber length of approx.

2 mm), which furthermore agrees well to the Halpin-Tsai predictions, was found for the

elastic properties, whereas the saturation AR for creep amounts to approx. 2000 (cor-

responding fiber length of approx. 40 mm) according to Fig. 56. Therefore, it seems to
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be reasonable that the 50 mm RVEs agree well with the creep experiments, whereas a

reduction in RVE size results in quite considerable deviation in viscoelastic properties.

Investigations under variation of the ratio of reference length to RVE length L0/LRVE to

quantify the fluctuation of the creep rate within the structures revealed a very similar

behavior for the normalized creep rate (Fig. 72) as for the elastic compliance. The creep

rate does not significantly vary within the larger RVEs, whereas considerable variation

can be observed within the smaller ones.

It can be concluded that the RVE dimensions need to be chosen significantly larger to

accurately predict the creep behavior than necessary for an accurate prediction of the

elastic properties. With respect to the viscoelastic properties, the maximum investi-

gated RVE length of 50 mm represents the lower limit which is necessary to yield a

reasonably accurate prediction of the creep rate, since the saturation length for creep

(approx. 40 mm) is very close to the RVE length. Therefore, no reduction in RVE size

is acceptable if accurate results should be obtained - in contrast to the elastic properties,

where even the shortest RVE of 5 mm length yields very reasonable results.

Plasticity and damage

No such systematic investigations of the effects of RVE size as for the elastic and viscoelas-

tic properties were carried out for the deformation and damage behavior. Nevertheless,

two different RVEs of 50 and 5 mm length were analyzed (Fig. 84). The simulations were

conducted under activation of all treated mechanisms (matrix plasticity, fiber-matrix in-

terface debonding, post debonding friction and fiber failure). As it can be seen in the

figure, the composite strength is rather weakly affected, whereas a significant effect on

the fracture strain can be observed. Furthermore, the slope of the stress-strain curve of

the smaller RVE is significantly reduced for the second half of the graph (yielding an

underprediction of the experimental curve), whereas its initial elastic stiffness is almost

identical to the one of the large RVE. This agrees well to the elastic results, where a

deviation in stiffness of approx. 4 % was found for the decreased RVE dimensions, which

can certainly not be visually observed in the graph. The deviation toward the end of the

curves can be explained by a higher extent of fiber-matrix debonding for the small RVE

due to its shorter fibers which will debond at a lower value of effective composite strain

than the ones of the large RVE: The load transfer between the matrix and the fibers after

the debonding is exclusively conducted by friction, and therefore, a higher fraction of

debonded fibers results in a decrease in effective stiffness of the material. With respect to

Schemme’s graph of fiber effectiveness (Fig. 6), it seems furthermore to be reasonable that

the results are somehow affected for RVE dimensions of 5 mm because here, the length

is significantly smaller than Schemme’s value of saturation fiber length with respect to

strength, which is approx. 10 mm.

138



6 DISCUSSION 6.3 Multidirectional LFT structure

6.3.3 Effects of fiber length

In order to further simplify various kinds of LFT models, the substitution of a fiber length

distribution by a uniform mean length is of great interest. This motivates the investiga-

tions which are discussed in the following. Here, the fiber length distribution was replaced

by fibers of a uniform length equal to the number average mean fiber length l̄n (Eq. 11)

and the volume average or weighted mean fiber length l̄w (Eq. 12) of the length distri-

bution. Because of the constant fiber cross section, the volume average means the same

as the average with respect to the fiber length. If the deviation between the respective

modeling results under incorporation of the uniform fiber length and the length distribu-

tion is sufficiently small, a substitution of the fiber length distribution by a uniform fiber

length can be justified.

Elasticity

The resulting values of effective stiffness (Table 14) indicate that the volume average fiber

length represents a legitimate substitute for the length distribution with a small deviation

(< 5 %) between the stiffness values of the RVEs containing fibers with a varying length

and a constant length, respectively. This agrees to the numerical studies of injection-

molded LFTs which were carried out by Nguyen et al. [Ngu08], who justify the use of the

weighted (or volume related) distributions with the fact that the process of averaging over

the fiber length essentially represents a volume average. In contrast, Hine et al. found the

number average fiber length to be the most accurate substitute for a length distribution

of unidirectional short fiber composites [Hin02]. However, the current studies reveal that

for the investigated LFT material, the use of the number average length clearly under-

estimates the value for E1 by approx. 20 % (Table 14). It is worth mentioning that the

results need to be interpreted as related to the investigated material with a specific fiber

length distribution. Generality and transferability to other materials with arbitrary fiber

length distributions cannot be ensured.

In order to identify the principle effect of the fiber length, an unidirectional fiber arrange-

ment was also studied (Section 5.5). The results of the FE models were found to be

in good agreement to the Halpin-Tsai equations, if they are fed by a slightly increased

value of fiber volume fraction as discussed before (Section 6.3.1, Paragraph ’Elasticity’ ).

A fiber aspect ratio of saturation was defined as the saturation threshold of the elastic

stiffness in accordance with Schemme’s notation of fiber effectiveness (Fig. 6). The satu-

ration aspect ratio of the UD fiber structures amounts to approx. 100 (Fig. 56), whereas

Schemme reports a value of approx. 50. An identical value cannot be expected since

Schemme’s value was determined by experimental investigations of multidirectional lam-

inates (Section 2.1.4). Because of the validation by the Halpin-Tsai equations (Fig. 53),

the numerical value can be considered as reliable.
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Furthermore, these findings also agree to the results of the multidirectional LFT models

with a uniform fiber length (which were discussed shortly before): The number average

mean fiber length of the distribution (l̄n = 1.2 mm, corresponding AR of 60) is significantly

smaller than the saturation threshold of the unidirectional structures of 100. Therefore,

a significant deviation to the RVE with implemented length distribution can be observed

(Table 14). In contrast, the weighted mean fiber length (l̄w = 15 mm, corresponding AR

of 750) exceeds the saturation limit significantly and thus, the deviation in stiffness is

very weak.

Viscoelasticity

The effect of the substitution of the fiber length distribution by the mean weighted fiber

length of 15 mm and the number average length of 1.2 mm can be evaluated based on

the data shown in Fig. 73. A moderate deviation is visible between the creep curves of

the RVEs with the mean weighted fiber length and the length distribution. The deviation

affects both the offset between the curves and the change in creep rate (approx. 16 %).

For the number average fiber length, the offset between the creep curves is drastically

increased. The difference in creep rate is affected in a similar manner (an increase of

approx. 94 %). Therefore, the mean weighted fiber length can be chosen as a substitute

of the length distribution within significant, but moderate deviations, whereas the number

average fiber length yields improper results. In the end, the findings and their interpreta-

tion are similar to the ones with respect to the elastic properties (last paragraph) with the

restriction that use of the weight average fiber length yields significantly more deviation

for the creep rate (16 %) than for the elastic stiffness (< 5 %).

For principle investigations, the unidirectional fiber arrangement was also analyzed with

respect to its viscoelastic behavior (Section 5.5). As it is shown in Fig. 56, a saturation

fiber length is dependent on the stress level and not general as for the elastic properties.

Therefore, a range of stress which represents a reasonable area of application of the virtual

material was investigated (5 to 50 MPa). Finally, a fiber length of saturation with respect

to the creep rate could be identified in the range of 32 to 52 mm with a corresponding

aspect ratio of 1600 to 2600 (see also Section 6.3.2, Paragraph ’Viscoelasticity’ ). The

saturation threshold for the creep rate is therefore at least one order of magnitude larger

(with a mean AR of approx. 2000) than for the elastic properties (with an AR of approx.

100).

For the multidirectional LFT structures, these findings might also explain that the use of

the mean weighted fiber length of 15 mm (corresponding AR of 750) yields significantly

more deviation for the creep rate than for elasticity: For elasticity, the mean weighted

fiber length is much larger than the saturation threshold (750 � 100), whereas for the

creep rate, it is significantly smaller (750 < 2000).
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Plasticity and damage

Both RVEs with a uniform fiber length (1.2 mm and 15 mm) were also analyzed with

respect to their deformation and damage behavior (Fig. 85). In accordance with the

elastic results, the effect on the initial stiffness of the stress-strain curves is negligible for

the mean weighted fiber length and significant for the number average fiber length. The

nonlinear deformation of the second half of the stress-strain curve as well as the values

of fracture stress and strain are in good agreement for the RVEs with implemented fiber

length distribution and the mean weighted length of 15 mm under consideration of all

damage mechanisms (matrix plasticity, fiber-matrix interface debonding, post-debonding

friction and fiber fracture). In contrast, use of the number average fiber length of

1.2 mm yields a significant underprediction of the slope of the curves as well as the

fracture stress. Again, the use of the mean weighted fiber length as a substitute for

the length distribution is well justified and furthermore supported by the conclusions of

Schemme: The mean weighted length of 15 mm is significantly larger than Schemme’s

cricital fiber length with respect to static strength (approx. 10 mm, Fig. 6), whereas the

number average length (1.2 mm) is much smaller.

The same LFT structures (length distribution, mean weighted length, number average

length) were also simulated under activation of matrix plasticity and interface debonding,

but no post-debonding friction and fiber fracture (thin lines in Fig. 85). It can be seen

that the structures now fail catastrophically by fiber pullout instead of normal fiber frac-

ture. This effect is in particular pronounced for the RVE with a uniform fiber length of

1.2 mm. The interface damage then localizes at the weakest point of the structure as it

can be observed in Fig. 86. The failure stress drops to approx. half of its initial value for

the variant which considers friction (Fig. 85). In contrast, no such drastic degree of fiber

pullout can be observed if friction is activated. Then, the friction stabilizes the debonding

and no localization occurs, so that finally the fiber fracture stress can be reached. For the

variants with the fiber length distribution and a mean fiber length of 15 mm, respectively,

the point of catastrophic fiber pullout of the variant which considers no friction (thin

lines) is very similar to the point of fiber fracture under activation of friction (bold lines).

For these RVEs, the point of fracture can obviously be reached without the additional

load transfer by post-debonding friction because the fibers are sufficiently long.

It can be concluded that the substitution of the length distribution by the mean weighted

fiber length (15 mm) yields very accurate results for the damage modeling and therefore

agrees well with the findings for the elastic stiffness and - under restrictions - with the

viscoelastic results. In contrast, the number average length of 1.2 mm yields a strong

underestimation of the failure stress and distorts the shape of the nonlinear part of the

stress-strain curve. It is therefore inappropriate.
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6.3.4 Effects of the finite element mesh

The numerical results are affected by the relatively coarse mesh of the RVEs and in par-

ticular the representation of the matrix by linear tetrahedral elements which were chosen

for computational efficiency. These elements are known to be less accurate at stress and

strain concentrations which arise e.g. at the end of a fiber. This results from the element’s

linear shape function and the existence of only one integration point for the calculation

of the stress and strain values. Thus, no variation of stress and strain can be described

within the element and only by using a multitude of such elements, an accurate solution

can be obtained. This is partially addressed by the meshing algorithm which decreases

the element size in regions close to a fiber and increases the size toward regions of low fiber

density, where no strain concentrations are present (Fig. 29). Nevertheless, the influence

of the finite element mesh needs to be investigated in order to ensure the validity of the

results.

Due to the enormous size of the models (10 million elements for the largest, 50 mm long

RVEs), such element studies could not be performed with implicit FE simulations since

here, a direct relation between the size of the model and the required memory exists. A

mesh refinement would shift the value of memory outside the range of available computa-

tional resources. The use of quadratic elements instead of linear ones has the same effect

due to more nodes per element, resulting in more DOFs of the quadratic elements.

As a consequence, two separate approaches to carry out element studies were made:

Implicit studies on small structures

For an exemplary structure of 1 x 1 mm2, element studies (varying element size and

type) could be performed with the implicit FEM. The results are presented together

with the derivation of the modified parameters for the viscoelastic matrix model in

Section 5.2.3. It is shown that convergence is obtained for either the coarse mesh with

quadratic elements (which can capture linear variations of stress and strain within the

element due to the use of quadratic shape functions and four integration points) or a re-

fined mesh with 16 linear elements over the fiber cross section, resulting in much smaller

matrix elements in the vicinity of a fiber. The results of both variants deviate approx.

10 % in effective elastic strain from those of the coarse mesh with linear elements, which

was also applied to analyze the 50 mm long RVEs. Because of the extensively reduced

dimensions of the small RVE, on which the element studies were performed, the results

are not significant for the effective behavior of the real material, because the structure is

not statistically representative (Section 6.3.2).

Explicit studies on full-size structures

Since the size of the model has no such drastic effect on the calculation time of explicit

FE simulations, element studies were technically feasible on the full-size, 50 mm long

142



6 DISCUSSION 6.3 Multidirectional LFT structure

structures with the drawback that the results can be distorted by the effects of inertia.

To exclude such issues, the degree of mass scaling of the simulations, which directly influ-

ences the kinetic energy of the models, was varied for the results presented in Section 5.6.5

and found to be insignificant. Additionally, the stiffness values of the coarse, linear

mesh agree very well between explicit and implicit simulations (less than 1 % deviation,

Table 15). The explicit simulations seem therefore to be reliable enough to carry out

element studies. Simulations of a quadratic mesh variant of the 50 mm long structure

reveals equal values of effective stiffness to the coarse, linear mesh in x1 direction (flow

direction), whereas in x2 direction (transverse direction), a significant deviation exists

(approx. 10 %, Table 15). Thus, the coarse, linear mesh can be considered as convergent

in x1 direction, where a multitude of long fibers govern the deformation behavior and

the influence of the matrix is rather weak. In contrast, the matrix properties are more

dominant in transverse direction (x2), where less fibers are aligned in load direction and

consequently, a weak effect of the coarse mesh can be observed. This agrees well to the

findings with respect to the viscoelastic properties (application of original and modified

model parameters), which were discussed in Section 6.3.1, Paragraph ’Viscoelasticity’.

6.3.5 Deformation and damage mechanisms

Within this section, the effects of progressive damage of the LFT structure are discussed.

It is important to mention that the underlying results were generated with the explicit

FEM and are therefore completely independent of the elastic and viscoelastic modeling

(implicit FEM). The range of validity and the limitations of the applied constitutive mod-

els (plastic matrix model, fiber-matrix interface model, fiber fracture model) are specified

in Section 6.2.

Mechanism-based interpretation of the stress-strain curves

With the microstructural simulations presented in Section 5.6.11, it is possible to relate

the individual results of the calibration experiments of each mechanism (matrix plasticity,

calibrated with tensile tests, fiber-matrix interface debonding and friction, fed by exper-

imental data of fiber push-out tests and fiber fracture, which considers an experimental

value from the literature). The resulting effective stress-strain curves of the simulations

can then be compared to those of the LFT validation experiments, enabling an interpre-

tation with respect to the active mechanisms at the microstructural level. In Fig. 80 and

81, the numerical stress-strain curves are shown together with those of a validation exper-

iment for both load directions of 0◦ and 90◦. Several numerical variants were investigated,

in which different mechanisms were accounted for. The remaining mechanisms were then

deactivated. The different mechanisms are the plastic deformation of the matrix, which

was always active, the damage of the cohesive zone elements between fiber and matrix,

which represents the fiber-matrix debonding, the post-debonding friction captured by a
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contact formulation and a friction coefficient and the brittle fracture of the fibers. The

effects are illustrated in Fig. 93 for two exemplary numerical variants under 90◦ load di-

rection. The simulation labeled realistic interface accounts for all mechanisms, whereas

the variant perfect interface considers no fiber-matrix debonding and no post-debonding

friction. The deviation in fracture strain and stress between both curves can be inter-

preted as the potential increase of the respective property if the composite would feature

an imaginary, perfect interface.

Figure 93: Interpretation of the different deformation and damage mechanisms based on
the data of Fig. 81 (PPGF30, 90◦ load direction).

Effects of matrix plasticity

At the point where the stress-strain curve significantly deviates from its initial slope

(Fig. 93), the effects of the plastic flow of the matrix become significant for the effective

behavior of the composite. The numerical curve features a significant amount of oscillation

due to the explicit simulation (this aspect was further analyzed by examination of energetic

issues in Section 5.6.5). Thus, the point of onset of plastic flow is difficult to observe.

During the further progress of the variant with a perfect interface, the shape of the curve

becomes linear again and the simulation deviates significantly from the experiment. This

is also the case for a load direction of 0◦ (Fig. 80) although here, the effect is weaker. At

the point where the curve reaches linearity, all matrix elements which are in the vicinity of

a fiber and are therefore loaded beyond their initial value of yield stress, have completed

the process of hardening as specified by the plastic matrix model (Section 5.3) and have

reached the final value of yield stress. The load is then predominantly carried by the

fibers which govern the deformation of the composite by their linear elastic behavior until

the fracture stress of the fibers is reached. In contrast, matrix elements far away from

any fibers do not reach the initial value of yield stress and therefore remain elastic.
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Fiber-matrix debonding and load transfer within the fiber structure

At the point where the curves of the variants realistic interface and perfect interface de-

viate for the first time, the effect of interface damage becomes visible in the mechanical

response of the composite. During the further progress of fiber-matrix debonding, the

area fraction of intact interface decreases steadily diminishing the load transfer from the

matrix to the fibers. As a consequence, the shorter fibers are debonded at first and the

load is transferred to the longer fibers, where a larger part of the interface is still intact.

Successively more and more fibers are debonding and finally, only the fibers above the

critical fiber length can carry the load. These fibers feature a length which is large enough

so that their circumferential area available for load transfer causes the interfacial stresses

to be small enough that no debonding occurs. The critical length LKT = σfD/2τ after

Kelly and Tyson [Kel65] is defined by the quotient of normal fiber strength σf , the fiber

diameter D and the interfacial strength τ . Fibers of super-critical length will break in

normal tension mode whereas fibers of sub-critical length will be pulled out (this is also

discussed in Section 2.1.4). The brittle failure of the super-critical fibers determines the

end of the stress-strain curve. The range of validity of the simulations ends here, as due

to the varying element size of the matrix mesh, no failure of matrix elements can be im-

plemented, so that the fracture of the material over the complete cross section cannot be

captured. The simulations were therefore aborted when fiber fracture occurred (Fig. 87).

The point of first fiber fracture, which was considered as the strength of the composite, is

reached significantly faster for the variants which consider debonding, because here, fibers

of sub-critical length are pulled out and are not available for load transfer in contrast to

the variants with the perfect interface. Consequently, the pullout of the sub-critical fibers

causes a redistribution of load to the super-critical fibers and the fracture stress within

the super-critical fibers is reached at a lower composite stress and strain than for the

variants with a perfect interface. This is supported by the stress-strain curves of the LFT

validation experiments, which agree very well to the fracture stress and strain values of

the numerical variants accounting for debonding. Furthermore, a significant amount of

fiber pull-out can be observed in SEM images of fracture surfaces of the LFT specimens

(Fig. 40 - 41).

Influence of post-debonding friction

Two approaches were considered to model the interface properties. The more basic variant

only accounts for the fiber-matrix debonding by means of cohesive zone elements which

will be degraded in stiffness to model their damage evolution, calibrated with the fiber

push-out experiments presented in Section 5.4, Fig. 52. The plateau after the force peak in

the push-out curve of the indenter force against the indenter displacement is then ignored.

This plateau can be accounted for in the model by the second variant, which considers an

additional contact formulation capturing the friction between fiber and matrix after the
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cohesive zone elements were deleted from the mesh. The friction also affects the shape of

the curve before the force peak, because the cohesive zone elements fail successively (start-

ing from the fiber ends), and as soon as an element is deleted, a part of the load which

was initially carried by the element is now partially transferred by friction. Therefore, the

damage evolution parameters of the cohesive zone law had to be modified for the variant

accounting for friction, because otherwise, the maximum force in the push-out-curves was

overestimated. The respective values of the traction-separation law of the cohesive zone

elements and the friction formulation, respectively, can be found in Table 9. Fig. 52 shows

no significant deviation in shape and size of the force peak for both variants, whereas the

plateau after the peak is obviously only captured by the variant accounting for friction.

The effect on the stress-strain curve of the LFT structure with implemented fiber length

distribution is shown in Fig. 80 and 81 for both variants (only debonding / debonding

and friction) and is indeed significant. The additional load transfer because of the post-

debonding friction affects the redistribution of stresses within the fiber structure in a way

that also fibers with a sub-critical length can carry a specific amount of load transferred

by friction. Consequently, the mechanism of load transfer to fibers with a super-critical

length is less pronounced and the fracture stress within these fibers is reached at a later

point of the stress-strain curve. Also the curves of the variants which do not account for

fiber fracture are shown in the figures. The thin lines represent the theoretical progress of

the stress-strain curves for all three variants (perfect interface, only debonding, debonding

and friction), if no fiber fracture occurs. The stress-strain curves (accounting for friction

but no fiber failure) are then monotonically increasing, even though their stiffness is sig-

nificantly reduced compared to the variants accounting for a perfect interface.

In 0◦ load direction (Fig. 80) where the majority of fibers is aligned in load direction,

the stress-strain curve of the variant considering post-debonding friction almost coincides

with the variant of a perfect interface, which implies that the fibers are sufficiently long

and the potential increase in composite strength, which could be exploited by an enhanced

interface strength, is rather low.

In 90◦ load direction (Fig. 81), more fibers are transversely aligned and consequently

loaded normal to their interface. Thus, friction has no effect for these fibers and only

applies to those which are aligned in load direction, which are significantly less compared

to the variant of 0◦ load direction. Therefore, the consideration of post-debonding fric-

tion has a negligible effect on the composite properties and the results of the variants

accounting for debonding only / debonding and friction are very similar. The potential

increase in composite strength by comparison with the variant of a perfect interface seems

therefore to be relatively large and could be exploited by enhancement of the interface

strength. In this context, it needs to be emphasized that the interface strength in normal

direction, which is dominant here, was assumed to be equal to the shear direction, because
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only fiber push-out experiments were available which exclusively provide data in shear

mode. Thus, the validity of the simulations is not ensured and needs to be further sup-

ported by experimental data of the interface properties in normal direction (as discussed in

Section 6.2.5).

6.3.6 Current limitations and future developments

In this section, the current limitations of the modeling of the investigated loading scenar-

ios, which are mostly independent of each other, are elaborated by separate paragraphs.

In the end, the potential to join the partial aspects to form a holistic model, is evaluated.

Elasticity

As discussed in Section 6.3.2, Paragraph ’Elasticity’, the investigated structures are too

small to be representative in a strict statistical sense. Although the effects are rather

weak and negligible for engineering applications, the computation of even larger structures

would be beneficial to further validate the current findings. Furthermore, the microstruc-

ture generation procedure should be modified to account for a periodic fiber arrangement

as well as to consider periodic boundary conditions. Even with the capabilities of state-

of-the-art finite element software, the computation of such gigantic structures cannot be

considered to be technically feasible. Current developments in alternative calculation

methods, such as FFT based solvers, seem to be promising in this respect [Kab14].

Viscoelasticity

The viscoelastic studies were conducted under the assumption of a perfect interface and

no presence of viscoplastic and/or damage effects. The stress levels of the validation ex-

periments were chosen within a range which is relevant for the application of the materials,

but are sufficiently small that no fracture occurred during the load period of 6 · 105 s. To

extend the model to higher stress levels, the phenomena of a tertiary creep period and

creep fracture will become significant. These cannot be captured by the applied implicit

FE simulations since a stiffness reduction to describe the effects of damage would cause

an excessive reduction of the increment size, prohibiting the computation of such mod-

els. As a consequence, the modeling of degradation and damage effects was pursued by

explicit simulations (next paragraph). The stress levels of the implicit creep simulations

were therefore chosen significantly smaller than the stresses for which the first occurrence

of damage could be observed in the stress-strain curves of the explicit simulations (the

points, where the curves of the simulations with and without consideration of interface

damage deviate the first time in Fig. 80 and 81). Thus, the negligence of damage phenom-

ena and the choice of a perfect fiber-matrix interface is well justified for the investigated

creep scenarios. Other limitations of the viscoelastic modeling of LFT mostly affect the

constitutive model of the matrix and were already discussed in Section 6.2.2.
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Plasticity and damage

Current limitations with respect to the modeling of the deformation and damage behavior

of LFT mostly affect the reproduction of the damage evolution of the matrix. The applied

explicit FE simulations are in general suitable to describe such effects since the computa-

tional cost per time increment is much smaller than for implicit simulations. Therefore,

the modeling of a damage evolution, described by a stiffness degradation is in principle

feasible, since the resulting, very small increments can be accepted. However, the rep-

resentation of the matrix by tetrahedral elements with a strongly varying element size

(Fig. 29) would result in strong fluctuations of the damage energy within the mesh, which

is physically incorrect. In contrast, the fibers and interface elements are not affected,

since here, the element size and shape is constant. To incorporate a damage model of the

matrix in future, respective sub-models could be generated with a significantly refined

and uniform mesh. The weakest region of each RVE, where the damage is expected to

be localized, could be identified by the current techniques and regenerated with a locally

refined mesh, whereas the use of the refined mesh throughout the full size structures

seems not to be feasible due to the drastically increased element count, which would even

be problematic for the explicit simulations. Another promising area of enhancement is

the extension of the model to higher strain rates to describe highly dynamical processes,

such as crash and impact. As mentioned in Section 2.1.4, the systematic investigation of

the relation between impact energy and fiber length by realistic microstructural models

would represent an important topic of future research. Therefore, the constitutive mod-

els would have to be modified to account for strain rate effects, as discussed in Section 6.2.

Combination of the partial models

As discussed in the previous paragraphs, the different modeling approaches of the inves-

tigated load cases are currently independent of each other mainly due to the application

of different simulation techniques (implicit and explicit FEM). Although the implicit ap-

proach offers advantages with respect to the elastic and viscoelastic properties mainly

because of its higher accuracy, all attempts to include material degradation and damage

into the implicit simulations have failed (the models were not computable). With respect

to this situation, the transformation of the viscoelastic matrix model to the explicit FEM

would likely represent a solution to overcome the current limitations and to extend the

viscoelastic modeling to account for damage effects. For this purpose, it would be neces-

sary to scale the time of the creep experiments down to a reasonably small period, which

is not expected to be problematic. Furthermore, the viscoelastic matrix model would

have to be extended to account for viscoplastic and damage effects and most certainly to

be transformed to large deformation theory, which is mandatory to describe highly dis-

torted, damaged elements. A comprehensive model would then be obtained which would

be suitable for the investigation of quite complex scenarios as described in Section 6.2.1.
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7 Conclusions

A novel microstructure modeling procedure was presented which is suitable for the gener-

ation of LFT structures with a maximum fiber aspect ratio of approx. 5000. The resulting

mesh represents the fibers by a single element over their cross-section. The LFT model

therefore closes the gap between conventional three dimensional finite element models

of discontinuous fiber composites which describe each fiber by a multitude of elements

over their cross section (high level of detail, computationally costly) and simplified mod-

els which use one dimensional truss elements for the representation of fibers, permitting

fiber interpenetration (low level of detail, computationally efficient). The proposed model

combines the advantages of both conventional approaches and allows the analysis of com-

parably large structures within state-of-the-art computational resources, but keeps the

level of detail sufficiently high to include the detailed interactions of the microstructure.

It also allows the analysis of fiber-matrix debonding phenomena under incorporation of

cohesive zone elements.

Representative volume elements were generated for three material variants with varying

fiber fractions, based on the experimentally measured fiber orientation and length distri-

butions. The RVEs were then validated with respect to their elastic behavior as the most

fundamental mechanical property. Excellent agreement between the model predictions

and experimental results was found. Furthermore, an established, analytical homogeniza-

tion scheme was applied under incorporation of the same microstructural information and

constituent properties and resulted in very similar effective properties. Significant, but

relatively weak effects of the coarse mesh could be observed in 90◦ load direction, whereas

they were negligible in 0◦ orientation. The influence of the size of the LFT structures as

well as the effects of fiber length were investigated. It was shown that the elastic prop-

erties are relatively insensitive to the length of the structures, as long as their minimum

dimension is chosen larger than the fiber length of saturation in accordance to the lit-

erature. It is remarkable that substitution of the fiber length distribution by a uniform

mean length yields negligible deviation in elastic stiffness if the volume or length average

is used. Substitution by the number average length was found to be inappropriate.

As second part of the investigations, creep scenarios were modeled. The viscoelastic be-

havior of the matrix was characterized by experiments on substance specimens, which

revealed a strong nonlinear viscoelastic response. A classical Burgers model was modified

to account for the observed stress dependency by means of variable parameters. The

model was implemented into the finite element framework as a user material subroutine

and validated with respect to its suitability to reproduce an exemplary load history. The

three dimensional formulation was compared to the behavior of a commercially imple-

mented viscoelastic model. LFT simulations of all three investigated fiber fractions were
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validated against respective LFT experiments under two different load directions and sev-

eral stress levels, which were chosen in an industrial relevant range, but below the loads,

where damage mechanisms and a tertiary creep period become significant. The influence

of a varying RVE size and fiber length was found to be considerably different from the

elastic behavior. The cause was found to lie in a significantly increased fiber length of

saturation, which is at least one order of magnitude larger for the viscoelastic properties

than for elasticity. This is supported by principle investigations on a unidirectional fiber

arrangement. Furthermore, the effect of stress redistribution within the matrix due to

its nonlinear viscoelastic behavior was studied and found to be indeed significant for the

highest investigated stress level.

Finally, the modeling of the quasi static deformation and damage behavior of LFT was in-

vestigated by explicit simulations accounting for different mechanisms, which are the plas-

tic deformation of the matrix, the fiber-matrix interface debonding, the post-debonding

friction and the brittle failure of the fibers. Each individual part of the model was cali-

brated independently with respective experimental data or values from the literature. The

interface properties, represented by a traction-separation law assigned to cohesive zone

elements between fibers and matrix, were fed by single fiber push-out experiments. The

friction between fibers and matrix during their pullout after debonding was accounted

for by a contact formulation, which was also calibrated with the fiber push-out tests.

The failure stress of the fibers was estimated based on data from the literature. Vir-

tual tensile tests of the material with the highest fiber fraction could be reproduced with

good accuracy. The mechanisms of interface debonding and post-debonding friction were

found to have significant effects on the mechanical response of the material. Furthermore,

the potential increase in composite strength and fracture strain for an imaginary, per-

fect fiber-matrix interface could be evaluated. The difference between the stress-strain

curves of finite and infinite interface strength represents the potential of optimization of

the material, which could be exploited by an improved bonding between the fibers and

the matrix. The influence of RVE size and fiber length was also studied and agreement

with models from the literature was found. A current limitation is the lack of a suitable

damage model for the matrix due to a strongly varying element size. This issue could be

addressed in future by the introduction of sub-models with a refined and uniform mesh.

The presented model provides a powerful tool to support the development and the vali-

dation process of new effective material models. These models will allow the simulation

of LFT components in an industrial scope under incorporation of the mechanisms which

were investigated by micromechanical simulations. Furthermore, the micromechanical

model can be employed in a virtual laboratory to enable the design and optimization of

new materials, precisely adapted to their respective application.
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A Appendix

A.1 Derivation of viscoelastic matrix model

A.1.1 Differential equation

The derivation of the one dimensional constitutive equation in differential form can be found

in various lecture books (e.g. by Brinson [Bri08]). To derive the ODE, the total strain εtot is

decomposed into an instantaneous elastic part εe, a viscous part εv and a viscoelastic part of

the Kelvin-Voigt branch εve:

εtot = εMaxwell + εKelvin−Voigt = εe + εv + εve . (127)

The stress σ remains constant in both branches of the model:

σ = σMaxwell = σKelvin−Voigt . (128)

The stress for the Kelvin-Voigt element equals the sum of the dashpot’s and spring’s contri-

butions:

σKelvin−Voigt = E1ε
ve + η1ε̇

ve . (129)

The derivative is formed to proceed:

σ̇ = E1ε̇
ve + η1ε̈

ve . (130)

The viscoelastic strain component εve is substituted by the remaining parts:

σ̇ = E1

(
ε̇tot − ε̇e − ε̇v

)
+ η1

(
ε̈tot − ε̈e − ε̈v

)
. (131)

The elastic and viscous strain of the Maxwell element spring resp. dashpot are expressed by

the stress and their parameter E0 resp. η0:

σ̇ = E1(ε̇tot − σ̇

E0

− σ

η0

) + η1(ε̈tot − σ̈

E0

− σ̇

η0

) . (132)

Expansion gives:

σ̇ = E1ε̇
tot − E1

E0

σ̇ − E1

η0

σ + η1ε̈
tot − η1

E0

σ̈ − η1

η0

σ̇ . (133)

Rearrangement yields the final form of the ODE:

E1

η0

σ +

(
1 +

E1

E0

+
η1

η0

)
σ̇ +

η1

E0

σ̈ = E1ε̇+ η1ε̈ . (134)
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A.1.2 Hereditary integral

If a sudden change in stress ∆σ0 is applied at the time t0, the time-dependent strain ε(t) can

be expressed by

ε(t) = C(t− t0)∆σ0 , (135)

with C(t − t0) being the creep compliance which describes the time-dependency of the ma-

terial [Bri08].

A complex load history σ(t) can be approximated by a sum of sudden load increments ∆σi

as follows:

σ(t) =
n∑
i=1

∆σi . (136)

The response of the material is then given by

ε(t) =
n∑
i=1

C(t− ti)∆σi . (137)

Generalization to infinitesimal time steps yields the so-called memory function of viscoelas-

ticity given by the convolution integral

ε(t) =

σ(t)∫
σ(0)

C(t− τ) dσ(τ) =

t∫
0

C(t− τ)σ̇ dτ , (138)

where σ̇ denotes the stress rate at time τ and τ the time integration variable.

A.1.3 Incremental form

The derivation of the incremental form of the linear viscoelastic Burgers model as carried out

in the following was described by Woldekidan [Wol11]. In analogy to the derivation of the

differential form (Section A.1.1), the total strain εtot is decomposed into an instantaneous

elastic part εe, a viscous part εv and a viscoelastic part εve:

εtot = εMaxwell + εKelvin−Voigt = εe + εv + εve . (139)

In the following, the incremental form ∆ε of each individual component ε is derived. The

total strain increment ∆εtot can then be obtained by re-combination of the components:

∆εtot = ∆εe + ∆εv + ∆εve . (140)
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For the derivation of the incremental components, the memory function (Eq. 17) is applied

to each strain component ε(t):

ε(t) =

t∫
0

C(t− τ)σ̇ dτ . (141)

The overall creep compliance Ctot (Eq. 16) is divided into its individual components in a

similar manner as the strain components:

Ctot = Ce + Cv + Cve . (142)

The components are then obtained by:

Ce =
1

E0

, (143)

Cv =
t

η0

, (144)

Cve =
1

E1

[
1− e

−t
τr

]
. (145)

� Elastic component ∆εe

The solution for the time-independent elastic part is trivial:

∆εe = Ce∆σ =
∆σ

E0

. (146)

� Viscous component ∆εv

The contribution of the serial dashpot is obtained by

εv(t) =

t∫
0

Cv(t− τ)σ̇ dτ =

t∫
0

[
Ċv(t− τ)

]
σ(τ) dτ , (147)

with

Cv(t− τ) =
t− τ
η0

(148)

and

Ċv(t− τ) =
dCv(t− τ)

d(t− τ)
=

1

η0

. (149)
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Substitution and dividing the integral into two parts yields:

εv(t) =
1

η0

 t−∆t∫
0

σ(τ) dτ +

t∫
t−∆t

σ(τ) dτ

 . (150)

The first integral corresponds to the viscous strain of the previous time step:

1

η0

t−∆t∫
0

σ(τ) dτ = εv(t−∆t) . (151)

Thus, the incremental form ∆εv(t) can be obtained by combining Eq. 150 and 151:

∆εv(t) = εv(t)− εv(t−∆t) =
1

η0

t∫
t−∆t

σ(τ) dτ . (152)

The above expression can be approximated by a trapezoidal rule and the incremental

form of the viscous strain component ∆εv is finally given by

∆εv(t) =
∆t

η0

[
σ(t−∆t) +

∆σ

2

]
. (153)

� Viscoelastic component ∆εve

To derive the incremental form of viscoelastic strain of the Kelvin-Voigt element ∆εve,

the memory function is applied to the viscoelastic creep compliance Cve:

εve(t) =

t∫
0

Cve(t− τ)σ̇ dτ =

t∫
0

1

E1

[
1− e

−(t−τ)
τr

]
σ̇ dτ . (154)

The above expression is divided into a so-called instantaneous εi and inherited part εinh

as follows:

εve(t) = εi(t)− εinh(t) =
1

E1

t∫
0

σ̇ dτ − 1

E1

t∫
0

[
e
−(t−τ)
τr

]
σ̇ dτ . (155)

After transformation of each component to its incremental form as carried out below,

the viscoelastic strain increment can then be obtained by

∆εve(t) = ∆εi(t)−∆εinh(t) . (156)
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The solution for the instantaneous part is trivial:

εi(t) =
1

E1

t∫
0

σ̇ dτ =
σ(t)

E1

. (157)

Thus, the incremental form of the instantaneous component is obtained by

∆εi =
∆σ

E1

. (158)

Under consideration of a time step ∆t, the second integral εinh(t) can be divided into

two parts:

εinh(t) =
1

E1

t∫
0

[
e
−(t−τ)
τr

]
σ̇ dτ =

1

E1

 t−∆t∫
0

[
e
−(t−τ)
τr

]
σ̇ dτ +

t∫
t−∆t

[
e
−(t−τ)
τr

]
σ̇ dτ

 . (159)

The first part can be simplified to the following recursive formulation:

1

E1

t−∆t∫
0

[
e
−(t−τ)
τr

]
σ̇ dτ = e

−∆t
τr εinh(t−∆t) . (160)

To transform the second part, a constant stress rate σ̇ = ∆σ
∆t

= const. is assumed during

the incremental time step ∆t:

1

E1

t∫
t−∆t

[
e
−(t−τ)
τr

]
σ̇ dτ =

1

E1

∆σ

∆t
τr

[
1− e

−∆t
τr

]
. (161)

By substitution of both integrals in Eq. 159 one obtains the recursive expression for

the inherited strain component εinh:

εinh(t) = e
−∆t
τr εinh(t−∆t) +

1

E1

∆σ

∆t
τr

[
1− e

−∆t
τr

]
. (162)

The increment of inherited strain ∆εinh can be calculated as

∆εinh(t) = εinh(t)−εinh(t−∆t) =
[
e
−∆t
τr − 1

]
εinh(t−∆t)+

1

E1

∆σ

∆t
τr

[
1− e

−∆t
τr

]
. (163)

Finally, the viscoelastic strain increment ∆εve caused by a stress increment ∆σ is

obtained by superposition of the incremental components according to Eq. 156:

∆εve(t) =
∆σ

E1

−
[
e
−∆t
τr − 1

]
εinh(t−∆t)− 1

E1

∆σ

∆t
τr

[
1− e

−∆t
τr

]
. (164)
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A.2 Additional fiber length data

In Fig. 94, the fiber length distribution as implemented into the RVEs is compared

to the data of a second analysis. Both measurements were carried out on PPGF30

(13.22 vol-%) using the same parameters. The mean fiber length (number and volume

average, respectively) of both distributions are compared in Table 16.

Figure 94: Comparison between the implemented fiber length distribution (first analysis)
and the repeated measurement (second analysis) in cumulative depiction.

Length Mean length Mean length
distribution (by number) l̄n [mm] (weighted) l̄w [mm]
first analysis 1.2 15.0
second analysis 1.9 13.1

Table 16: Characteristic values of first and second analysis of fiber length.

A.3 Variation of matrix strain rate

No strain rate dependence was considered for the LFT simulations accounting for plasticity

and damage. To assess the effect of varying strain rate in a pragmatic way, the matrix

model was calibrated with substance specimens which were tested at strain rates of 7·10−5,

7 · 10−4 and 7 · 10−3 1/s (Fig. 95). Also the apparent softening of the matrix substance

specimens was considered (Fig. 96). In Fig. 97, the effects of the different constituent data

on the effective behavior of RVE LD7 (PPGF30, 90◦ load direction) is shown (a perfect

interface was considered).
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Figure 95: Stress-strain curves of matrix substance specimens under variation of strain
rate and calibration of the plastic matrix model.

Figure 96: Stress-strain curves of matrix substance specimens (strain rate 7 · 10−4 1/s)
and model calibration with and without consideration of softening.

Figure 97: Effect of varying strain rate and softening on the stress-strain curve of RVE
LD7 (PPGF30, 90◦ load direction).
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