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Abstract—Recursive filtering with multimodal likelihoods and
transition densities on periodic manifolds is, despite the compact
domain, still an open problem. We propose a novel filter for
the circular case that performs well compared to other state-
of-the-art filters adopted from linear domains. The filter uses a
limited number of Fourier coefficients of the square root of the
density. This representation is preserved throughout filter and
prediction steps and allows obtaining a valid density at any point
in time. Additionally, analytic formulae for calculating Fourier
coefficients of the square root of some common circular densities
are provided. In our evaluation, we show that this new filter
performs well in both unimodal and multimodal scenarios while
requiring only a reasonable number of coefficients.

Keywords—Directional statistics, density estimation, nonlinear
filtering, recursive Bayesian estimation.

I. INTRODUCTION

Although many users are unaware of the assumption, a
lot of results in Bayesian statistics rely on a linear topology
of the underlying domain. While a wide range of tools have
emerged in the field of estimation for linear domains, many
of them perform significantly worse on periodic domains. For
example, using a Kalman filter and thus ignoring periodicities
can lead to large errors, especially in regions close to the
border of periodicity. While there have been attempts to reduce
the severity of the problems arising, it is often impossible to
fully eliminate the error introduced by the incorrect underlying
assumption.

As a special case of periodic manifolds, we will regard
circular manifolds throughout this paper, which are by no
means rare. While the primary goal of tracking algorithms is
usually to estimate the position of an object, the secondary
goal is often to estimate its orientation, which is a 2π-periodic
quantity. Just as filtering with arbitrary likelihoods is an open
challenge on linear domains, the case is not settled in the
circular case. However, while periodicity introduces additional
complexity, there is the advantage of having a compact domain.
Our proposed filter takes advantage of this property and
constitutes an approach that is tailored to periodic domains.

A variety of work has been done on the topic of circular fil-
tering. Most methods assume that the posterior density belongs
to a specified class of circular densities. For example, Azmani
et al. introduced a filter using the von Mises distribution [1]
that only allows the use of identity system and measurement
models. Unfortunately, unlike in the case of linear domains
for which the Gaussian distribution can be used, there are no
distributions that are popular, useful, and yield a distribution of
the same class for both the multiplication and the convolution

Figure 1. A von Mises distribution with κ = 10 and corresponding
approximations using 7 Fourier coefficients.

operation. Therefore, approximations are necessary in either
the prediction or filter step to maintain such a representation.

Progress towards improved handling of more complicated
system and measurement models was made in [2], [3], [4] but
these approaches are still limited to unimodal densities. While
there are filters for multimodal cases [5], [6], multimodality
is only regarded if it is directly modeled by the distribution,
e.g., for antipodally symmetric densities such as the density
of the Bingham distribution. An easy approach would be to
use mixtures, but this would entail the need for component
reduction as in the Gaussian mixture case for linear domains.

Closely related work was done for phase estimation by
Willsky who suggested using Fourier series for applications
in communication scenarios [7]. He first theoretically derived
solutions for certain stochastic differential equations under
the assumption of using an infinite number of coefficients
and then described practical implementations [8]. He reported
obtaining poor results when using three Fourier coefficients
and suggested approximating the results using wrapped normal
densities. Fourier series were also considered by Fernández-
Durán [9] who approximated densities using Fourier series
and used an optimization constraint to ensure nonnegativity.
Bayesian filtering was not dealt with and thus important
challenges were not addressed.

The advantage of the approach presented in this paper is
that coefficient vectors can be efficiently truncated throughout
the filter steps while still maintaining the nonngeativity and
thus validity of the density. In Figure 1, we demonstrate the
effect of truncating a Fourier series approximating a density



directly and compare it to the effect on our proposed solution.
Our idea was inspired by an approach to nonlinear filtering on
linear domains that was presented in [10] and for the multi-
dimensional case in [11].

II. PREREQUISITES

Before we get to our contribution, we want to revisit
some basics of circular statistics and Fourier series. We refer
readers to the books [12] and [13] for more information about
directional statistics and, regarding Fourier series, to the classic
book by Zygmund about trigonometric series [14], books about
harmonic analysis (such as [15]), and the extensive literature
of the signal processing community.

A. Basics of Circular Statistics

Circular distributions are distributions defined on the inter-
val [0, 2π). The regarded manifold is understood to be periodic,
with, visually speaking, the end of the interval being connected
to its beginning.

When regarding periodic manifolds, many concepts from
linear manifolds have to be adapted. Probability density func-
tions (pdfs) assuming an unbounded domain (such as the nor-
mal distribution and many others) cannot be directly utilized
and have to be modified for the use on circular domains.
We will deal with some common circular distributions in
Section IV-B. Another important concept for us are trigono-
metric moments that are also called circular moments. The k-th
trigonometric moment [12, Ch. 2.1] mk of a random variable
x with density f(x) is defined as

mk = E(eikx) =

2π∫
0

f(x)eikxdx ,

which can, in general, be complex valued. While the moments
are often split up into a real and an imaginary part, the
above representation is more convenient for us throughout
this paper. Trigonometric moments differ from the standard
(power) moments both in definition and intuition, e.g., the first
trigonometric moment is not only a measure of the location of
the density, but also of its spread. An important quantity used
for estimation that describes only the density’s location is the
circular mean, which is defined as

µ = atan2(I(m1),R(m1)) .

B. Fourier Series

Fourier series allow representing a variety of functions
by means of complex exponential functions. The speed of
convergence of the Fourier series depends on certain properties
that we will deal with in more detail later. For 2π-periodic
functions, the complex Fourier series (see [16, Ch. 4.1]
and [17, Ch. 4.1]) can be written in the form

f(x) =

∞∑
k=−∞

cke
ikx with ck =

1

2π

2π∫
0

f(x)e−ikxdx .

In this representation, ck are complex numbers, but when
expanding real functions, c−k = ck always holds. For real
functions, the concept can also be thought of as representing

the function using sine and cosine functions. This leads to an
alternative representation using only real coefficients. In the
following, we will only consider the complex representation
as this allows us to obtain easier formulae.

The calculation of Fourier coefficients is, as can be seen
by comparing the integration formulae, closely related to the
calculation of trigonometric moments via ck = m−k

2π . Since the
circular mean can be calculated using the first trigonometric
moment, we can also derive it directly from the Fourier
coefficients.

III. KEY IDEA

As common circular densities are 2π-periodic and square
integrable, Fourier series are well suited to represent them.
In fact, some popular densities are often written in a Fourier
series form or a form that closely resembles a Fourier series.
However, as their exact representation usually involves an
infinite amount of Fourier coefficients, truncation is necessary.
As we will see in Section V, truncation is also necessary for
the multiplication operation required for filter steps.

The truncation leads to an approximation error as the higher
coefficients are implicitly assumed to be zero. Crucially, in
regions where the density is close to zero, the approximation
can become negative (as can be seen in Figure 1), which
violates conditions for valid densities and can entail further
problems. Therefore, as done similarly in [10], we approximate
the square root of the density, rather than the density itself, by
a Fourier series. This ensures that the reconstructed prior and
posterior densities obtained by squaring the Fourier series yield
nonnegative values for any angle.

Working with a Fourier series approximation of the square
root of a density necessitates performing prediction and up-
date steps while maintaining (or restoring) this representation.
Details on this will be laid out in Section V. It is also useful to
be able to calculate Fourier coefficients of the square root of
common densities, which will be addressed in the following
section.

IV. APPROXIMATING COMMON CIRCULAR
DISTRIBUTIONS

Many popular circular distributions are derived from linear
distributions. One of the techniques to derive a circular distri-
bution from a linear one is called wrapping [12, Ch. 2.1]. If a
wrapped distribution is evaluated at a point x, the probability
of x+kπ for all k ∈ Z is summed up. It can be easily verified
that this procedure always returns a valid density on the circle.
In the following, we will regard several densities derived by
wrapping—the wrapped normal, the wrapped Cauchy, and the
wrapped exponential distribution—and the von Mises distribu-
tion, another commonly used circular distribution that can be
derived in a different manner.

These distributions and their moments are described in [13]
and [18]. For distributions obtained by wrapping, Fourier
coefficients can also be derived by evaluating the characteristic
function of the density being wrapped at integer arguments.
However, we require formulae for the Fourier coefficients
of the square root of the density, which cannot be derived
like this. A method to approximate the square root of an



arbitrary density using a Fourier series will be introduced in
Section V-C.

A. Handling the Parameter µ

Three of the considered circular distributions commonly
use µ as a parameter to specify the circular mean of the
distribution. To rotationally shift a function by µ towards the
positive border of periodicity (e.g., for [0, 2π), towards 2π),
we can simply multiply all coefficients by e−kiµ. Thus, it is
sufficient to derive formulae for µ = 0 as we can obtain the
formulae incorporating µ by using this additional factor.

B. Convergence of the Fourier Series

The convergence of the complex Fourier coefficients is
easy to show. However, as we want to approximate the
entire density, it is more important to regard how the squared
integrated difference between the true function and the approx-
imation behaves when increasing the number of coefficients.
As all considered densities and their square roots are square
integrable over [0, 2π], we know from the Hausdorff–Young
inequality [14, Vol. 2, Ch. XII] that for the Fourier coefficient
vector csqrt

∞∑
k=−∞

|csqrtk |2 <∞

holds. Let us denote the truncated Fourier series of the square
root of the density that only considers coefficients from −n
to n with gn. Using the theorem of Fischer–Riesz, we can
deduce [14, Vol. 2, Ch. XII] that for m < n

‖gn − gm‖2 ≤

√√√√ n∑
m+1

|csqrtk |2 → 0

as m → ∞ and n → ∞, proving the convergence of gn to√
f in L2(0, 2π). Using a similar argument, we can also show

that g2
n converges to f in L2(0, 2π).

C. Von Mises Distribution

The von Mises distribution is a popular distribution that is
sometimes referred to as the circular normal distribution. Its
density is given by

fVM (x;µ = 0, κ) =
eκ cos(x)

2πI0(κ)
.

Its trigonometric moments and thus, with little effort, the
Fourier coefficients of the non-rooted density cidk are given
by

∀k ∈ Z : cidk =
1

2πI0(κ)
I|k|(κ) ,

with Ik(·) being the modified Bessel function of the first kind.
To obtain the Fourier series for the square root, we can rewrite√
f(x;µ = 0, κ) in the following way√

eκ cos(x)

2πI0(κ)
=
eκ/2·cos(x)√

2πI0(κ)
=

2πI0(κ/2)√
2πI0(κ)

· e
κ/2·cos(x)

2πI0(κ/2)
.

The factor in blue is the density of a von Mises distribution
fVM (x;µ = 0, κ̃) with κ̃ = κ/2, of which the Fourier coef-
ficients can be calculated using the above described formula.

Multiplying the resulting Fourier coefficients with the factor
in green yields

∀k ∈ Z : csqrtk =
1√

2πI0(κ)
I|k|(κ/2) .

The effect of increasing |k| in I|k|(0.5κ) can be analyzed by
using the definition of the modified Bessel function of the first
kind

I|k|(κ/2) =

∞∑
n=0

(κ4 )2n+|k|

n! Γ(|k|+ n+ 1)
,

in which we can observe an exponential increase (or decrease,
depending on κ) in the numerator, whereas there is an increase
in the order of a factorial in the denominator due to the gamma
function. Therefore, asymptotically, the Fourier coefficients are
decreasing in the order of (|k|!)−1.

D. Wrapped Normal Distribution

The density of the wrapped normal distribution is obtained
by wrapping the density of a Gaussian distribution around the
circle, yielding

fWN (x;µ = 0, σ) =
1

σ
√

2π

∞∑
k=−∞

exp

(
−(x+ 2πk)2

2σ2

)
.

A wrapped normal distribution with a certain first trigonomet-
ric moment is similar to the von Mises distribution with the
same moment. The Fourier coefficients of the wrapped normal
distribution are easily derived from its trigonometric moments.
From the trigonometric moments, we get

∀k ∈ Z : cidk =
1

2π
e−σ

2k2/2

as Fourier coefficients for the original density. So far, a closed-
form expression for the Fourier coefficients of the square root
of the density is not known.

E. Wrapped Cauchy Distribution

The wrapped Cauchy distribution is obtained by wrapping
the density of the Cauchy distribution

fWC(x;µ = 0, a) =

∞∑
k=−∞

a

π(a2 + (x+ 2πk)2)
.

The Fourier coefficients for the density, derived from the
trigonometric moments, are

∀k ∈ Z : cidk =
1

2π
e−|k|a .

The Fourier coefficients of the square root of the density were
derived with the help of a computer algebra system and some
manual reformulations. For all k ∈ Z, we get

csqrtk =

√
1

2π
tanh

(a
2

)
3F2( 1

2 ,
1
2 , 1; 1− k, 1 + k; sech2(a2 ))

Γ(1− k)Γ(1 + k)

=

√
1

2π3
tanh

(a
2

) ∞∑
n=0

Γ2( 1
2 + n)sech2n(a2 )

Γ(1− k + n)Γ(1 + k + n)
,

with tanh(·) being the hyperbolic tangent and sech(·) the
hyperbolic secant. The form in the second line is useful as
it can be used as an easy and numerically more benign way



to implement the expression if the regularized hypergeometric
function 3F2(a, b, z) · (Γ(b1)Γ(b2))−1 is not available as a
library function. In this representation, it is also more evident
that the dominating term, depending on the sign of k either
Γ(1+k+n) or Γ(1−k+n), is in the denominator and causes
an asymptotic convergence in the order of (|k|!)−1.

F. Wrapped Exponential Distribution

The density of the wrapped exponential distribution, intro-
duced in [18], is given by

fWE(x;λ) =

∞∑
k=0

λe−λ(x+2πk) .

As in general limx↘0 fWE(x) 6= limx↗2π fWE(x), the
wrapped exponential density is not continuous. We can easily
derive its Fourier coefficients from its trigonometric moments
and get the formula

∀k ∈ Z : cidk =
1

2π

λ2 − λki
λ2 + k2

.

As can be derived using computer algebra systems, the Fourier
coefficients of the square root are given by

∀k ∈ Z : csqrtk =

√
λ

π(λ+ 2ki)

(eπλ − 1)√
e2πλ − 1

.

The convergence is significantly slower than for other densities
as the denominator is merely growing approximately linearly
faster than the numerator.

V. PREDICTION AND FILTER STEPS

Our aim is to approximate the posterior density of our
random variable xt for the state at time step t, given all
observed measurements y1, . . . , yt. In other words, we aim to
approximate the posterior density fet (xt) = f(xt|y1, . . . , yt).
Dealing with the whole density in Bayesian statistics allows
us to build credible sets and quantify the probability that the
state is in a specified region [19, Ch. 9]. On linear domains,
the mean of the posterior density is of special interest as
it constitutes the (Bayesian) minimum mean squared error
estimator [20, Ch. 10]. In general, obtaining the correct mean
over multiple time steps necessitates keeping track of the
whole density. The prediction step for probabilistic models is
described by

fpt+1(xt+1) =

∫
Ωx

fTt (xt)f
e
t (xt)dxt

with transition density fTt (xt) = f(xt+1|xt), predicted density
fpt+1(xt+1) = f(xt+1|y1, . . . , yt), and sample space Ωx, while
the Bayesian update step is given by the Bayes formula

fet (xt) =
fLt (xt)f

p
t (xt)∫

Ωx
fL(xt)fp(xt)dxt

∝ fLt (xt)f
p
t (xt)

with the likelihood function fLt (xt) = f(yt|xt). Since deter-
mining and representing the whole density after prediction and
filter steps is only feasible in special cases, a lot of effort in the
field of nonlinear filtering for linear domains is geared towards
estimating the mean of the true posterior density for every time
step with minimal effort. However, the simplifications used can
reduce estimation quality in less benign cases. Universal filters

such as the particle filter [21] try to take the whole shape of
the density into account.

Two efficient ways to estimate the posterior mean on
periodic domains are the von Mises filter [1] and the wrapped
normal (WN) filter [4] that aim to keep track of the posterior
mean by approximating the predicted and posterior densities
using von Mises or wrapped normal densities. While the WN
filter correctly captures the mean after any single step, the
resulting density does (even when the likelihood is a wrapped
normal density), in general, not match the true posterior
after filter steps, leading to imprecision in future time steps.
Likewise, the same problem applies to prediction steps of
the von Mises filter. Furthermore, these two filters do not
take multimodality into account, significantly impeding the
performance when the true posterior is multimodal.

The few available universal filters for periodic domains are
approaches adopted from linear domains such as discrete (grid)
filters and the particle filter. To derive a new universal filter for
periodic domains, we need to be able to perform the necessary
operations for the prediction and filter steps. Another basic
requirement for any new filter is that the number of parameters
must not increase indefinitely. For our proposed filter, in which
we represent densities by approximating their square root as a
Fourier series, this necessitates further approximations.

As we will see in the following subsections, it would be
possible to perform the filter step in an exact fashion, but
this would result in an increase in the number of parameters.
Therefore, an approximation is necessary to limit the number
of parameters. As we do not provide an exact formula for the
prediction step, there is always an approximation involved.
These are the two reasons why our proposed filter, while
universal, is still an approximation even if all fLt , all fTt , and
the initial prior fp0 can be represented using a limited number
of Fourier coefficients.

Until Section V-C, we will assume that we have a Fourier
series approximation of the square root of fTt and fLt . If they
belong to one of the densities described above, a Fourier series
approximation can be derived using the respective formula. If
they are arbitrary functions or non-rooted Fourier series, we
need an additional step described in Section V-C that allows
us to obtain an approximation with n Fourier coefficients
in O(n log n). If the likelihood is time-invariant except for
shifting operations, the coefficients calculated once can be
reused in future steps using the shifting operation described
in Section IV-A.

A. Filter Step

To perform a Bayes update, we need to be able to multiply
two densities and normalize the result. Having both the square
root of the likelihood and the prior density as Fourier series,
obtaining the corresponding posterior density only requires
simple operations. Multiplying two functions in Fourier series
representation equals a discrete convolution of the Fourier
coefficients ([16, Ch. 4.4]). As the square root of the posterior
can be obtained by multiplying the square root of the prior
and the square root of the likelihood, this property can also
be used for the square root representation. In other words, the



relationship √
fet ∝

√
fpt f

L
t =

√
fpt

√
fLt

holds. Thus, the Fourier coefficient vector ce,sqrt for the
unnormalized, rooted posterior can be calculated from the
coefficient vectors of the square root of the prior cp,sqrt and
of the likelihood cL,sqrt via a discrete convolution

ce,sqrt ∝ cp,sqrt ∗ cL,sqrt .

As the discrete convolution leads to an increased length of
the coefficient vector, the vector usually needs to be truncated
to prevent an exponential increase in parameters over time.
At this point, it should be noted that we implicitly assume
that all coefficients with higher indicies are zero as they
would otherwise affect those with lower indices as part of the
convolution operation.

The second necessary operation for the Bayes update, the
normalization, is also easy to perform. As integrating sines and
cosines with a frequency that is an integer multiple of 2π from
0 to 2π yields zero, only c0 is needed to integrate a Fourier
series. For real functions, c0 is real-valued and the integral
becomes a multiplication by 2π. As a pdf is supposed to
integrate to 1, dividing a non-rooted density by 2πce,id0 , which
can be achieved by dividing all Fourier coefficients by 2πce,id0 ,
ensures normalization. For the square root form, we have to
keep in mind that we want to normalize the actual density and
not its square root. Therefore, we first have to calculate ce,id0 ,
one element of the convolution result, from ce,sqrt, which can
be achieved in O(n). Then, we have to divide the Fourier

series by
√

2πce,id0 to ensure that the reconstructed density is
normalized.

All in all, assuming we have
√
fLt as a Fourier series, the

asymptotic run time complexity when dealing with n Fourier
coefficients is O(n log n) due to the discrete convolution
required.

B. Prediction Step

Convolving Fourier series is usually not a problem as
the convolution of two Fourier series can be obtained by
calculating the Hadamard (element-wise) product of the coef-
ficient vectors and then multiplying all coefficients by 2π [16,
Ch. 4.4]. However, we are not interested in

√
fet ∗

√
fTt , the

convolution of the square roots, but rather in the square root
of the actual predicted density for the next time step t + 1.
Written as formulae, due to the inequality√

fpt+1 =
√
fet ∗ fTt 6=

√
fet ∗

√
fTt ,

working with the square root form requires extra effort.

To obtain a valid density for fpt+1, we only require the
posterior and transition densities in their square root form.
We first square both functions individually by convolving
each Fourier coefficient vector with itself to obtain coefficient
vectors representing two valid densities. Afterwards, we can
calculate the convolution using the Hadamard multiplication
(denoted as ◦) of the Fourier coefficients to obtain

cp,id = 2π(ce,sqrt ∗ ce,sqrt) ◦ (cT,sqrt ∗ cT,sqrt) .

Calculating the Fourier coefficients of the square root of a
function is no trivial matter. One approach would be attempting
to find cp,sqrt for which cp,sqrt ∗ cp,sqrt = cp,id holds.
However, especially as taking the square root can lead to higher
frequencies, this is a considerably hard problem. As finding
the optimal solution would still require an approximation in
form of the truncation of the coefficient vector, we will instead
introduce a cheap approximation in the next subsection that
yields satisfactory results and is in O(n log n) for n coeffi-
cients. Taking this additional effort into account, we obtain a
total asymptotic run time complexity of O(n log n) caused by
the discrete convolution and the rooting step involved.

C. Obtaining Fourier Coefficients of the Square Root

Being able to obtain a Fourier series approximation of
the square root of a density is a vital part for the prediction
step and for dealing with arbitrary transition densities and
likelihood functions. For an odd integer n, we can approxi-
mate the complex Fourier coefficients with indices −n−1

2 to
+n−1

2 using n equally spaced function values at [0, 2π
n , 2 ·

2π
n , . . . , (n − 1) · 2π

n ]. Using these function values, we can
approximate the coefficients using a discrete Fourier transform,
e.g., the very efficient method called fast Fourier transform
(FFT) [17]. Although the FFT can only handle inputs with
a size of a power of two (often necessitating zero padding),
its run time complexity is always in O(n log n). It should be
noted that the coefficients obtained are only approximations as
higher frequencies are disregarded, entailing aliasing.

To optimize the run time needed for n function evaluations,
we have to distinguish between two cases: the case, in which
the cost of the function evaluation is independent from the
number of coefficients and thus in O(1) and the other case in
which it is dependent on the number of Fourier coefficients.
The latter applies when we aim to approximate the Fourier
coefficients of the square root of a Fourier series as in
Section V-B.

In the first case, obtaining n function values is in O(n) and
thus does not pose a problem. However, what we need to avoid
in the latter case is a naïve calculation of n function values
of a Fourier series with n coefficients as this would result
in an unnecessarily high asymptotic run time complexity of
O(n2). Just as we are able to approximate Fourier coefficients
from function values, we can use the inverse FFT to calculate
the function values at equidistant points from the Fourier
coefficients in O(n log n). After obtaining the function values,
we calculate the square root to obtain the function values of
the square root of the density and afterwards use the FFT to
approximate the Fourier coefficients. The procedure is shown
as a diagram in Figure 2.

It is important to note that squaring the function values of
the new Fourier series at arbitrary angles will, in general, not
be equal to the values of the original Fourier series. This is
because higher frequencies can result from taking the square
root. This is apparent when regarding a sine function. While a
sine function can be represented by three Fourier coefficients,
the square root of a sine function cannot be represented using
only these coefficients. All in all, the asymptotic run time
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Figure 2. Diagram showing our method to obtain the Fourier coefficients for
the square root of a density from the coefficients of the actual density.

complexity is in O(n log n) as one FFT and at most one inverse
FFT is required.

An entirely different and less versatile approach to obtain
Fourier coefficients for approximating the square root of a
density would be to approximate the distribution by one of the
distributions described in Section IV and use the given formu-
lae to calculate the desired number of Fourier coefficients.

VI. EVALUATION

To evaluate our new filter, we performed two simulative
evaluations. They were designed to be fundamentally different
and regard both the estimation quality of the mean, as well
as the quality of the approximation of the density or distri-
bution, which is a useful benchmark for bimodal densities.
In both cases, an object moves along a circle for 40 time
steps with an approximately known, time-varying velocity of
uk ∼ WN (µ = 0.3, σ = 0.5) radians per time step. In other
words, the state represented by the angle behaves according
to xk+1 = (xk +uk) mod 2π. The main difference between
the two scenarios lies in the choice of the (simulated) sensor
as this choice determines the likelihood function.

The first scenario features only unimodal densities and is
therefore well suited for the use of the WN filter [4] that can
handle additive, unimodal noise well. This scenario demon-
strates that our proposed filter can also handle easy scenarios
well and with little effort. The second scenario, in which the
(true) posterior can become bimodal, is more complicated. In
this scenario, our proposed filter significantly outperforms the
(unsuited) WN filter and two nonlinear filters adopted from
linear domains: a discrete (grid) filter and a particle filter. All
filters use the same transition densities and likelihood functions
that were derived from the generative model. The particle
filter was implemented as a simple SIR particle filter that
restores equal weights using resampling after every filter step.
As the evaluation criteria for the bimodal scenario were more
expensive, we used fewer different numbers of coefficients,
grid points, and samples and simulated fewer runs than in the
first scenario.

A. Unimodal Scenario

In the first scenario, all measurements are angular measure-
ments with measurement equation yk = (xk + vk) mod 2π
and vk ∼ WN (µ = 0, σ = 0.3). We performed R = 1000
runs and evaluated the performance at the end of the 40th
time step. To judge the performance, we calculated the angular

RMSE between the circular mean and the ground truth over
all runs using

ARMSE(xe, xtrue) =

√√√√ 1

R

R∑
r=1

d(xer, x
true
r )2 ,

with d(α, β) being the smaller of the two arclengths between
α and β [12, Ch. 1.3.2]

d(α, β) = min(α− β, 2π − (α− β)) .
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Figure 3. ARMSE of the filters for several numbers of coefficients, grid
points, and particles.

The results are shown in Figure 3. In this scenario, pre-
diction steps can be performed optimally by the WN filter,
whereas an approximation is necessary in the filter step.
However, since this filter handles such scenarios very well,
we use it as a baseline to evaluate the performance of the
other filters.

The universal filters differed in their convergence behavior.
The performance of the discrete filter deviated less than 1%
from baseline when 13 or more grid points were used. Our
proposed Fourier-based approach attained this quality using 11
coefficients. This performance was not attained by the particle
filter, even when using 500 particles. So all in all, the discrete
filter and our Fourier-based approach attained good quality in
this easy scenario, while the particle filter showed very slow
convergence.

B. Bimodal Scenario

In the second and more complicated scenario, we obtain
distance measurements instead of angular measurements. The
scenario is shown in Figure 4a: the object moves along a
known path shown as a blue circle. The sensor node at a fixed
point 2.5 units away from the center of the blue circle can
only measure the distance to the object. Based on a single
distance measurement, all points on a whole circle in green
are, if we disregard noise, possible positions of the measured
object. All distance measurements are perturbed by Gaussian
noise v ∼ N (µ = 0, σ = 0.3). This additional uncertainty
leads to a multimodal likelihood when restricted to the circle.
The likelihood can be seen for one time step in Figure 4b.
The distance between the modes depends on the position of
the object, with the modes fusing when the object is close to
the point with the smallest or the largest distance to the sensor.
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Figure 4. Overview over the bimodal scenario and the occurring likelihood.

The scenario was run 100 times and the performance
was evaluated at the end of the 40th time step. To handle
the bimodal likelihood, the WN Filter had to be used in its
extended form for nonlinear problems [4]. For a comprehensive
evaluation, we used two different criteria involving the pdf and
the cumulative distribution function (cdf), allowing for better
evaluation in this multimodal scenario. In both cases, we used
a discrete filter with 1000 grid points as ground truth. We
chose to use a definitely converging filter with a high number
of components other than the Fourier filter to prevent any
effects that may be favorable to our proposed filter. As the
ground truth was created using 1000 grid points, we limited
our evaluation to at most 500 grid points to prevent that the
grid-based approach benefits too much from the fact that the
filter and the approximation of the ground truth deviate from
the actual true density in a similar fashion.

a) Kullback–Leibler Divergence: As the first criterion,
we used the Kullback–Leibler divergence (KLD)

DKL(fgt||fapprox) =

∫ ∞
−∞

fgt(x) ln

(
fgt(x)

fapprox(x)

)
dx

between the (approximate) ground truth fgt and the approxi-
mation fapprox.

In order to calculate the KLD using numerical integration,
we require continuous densities. While a continuous density
can always be derived for the Fourier-based approach, the
discrete filter and the particle filter require some kind of
conversion. To obtain a continuous density from the discrete
filter, we derived a piecewise constant function from the
discrete values. Matters are more difficult for the particle filter
as there is no inherent continuous density associated with the
filter result. Out of different approaches considered, we chose
to use the conversion that we deemed to be the most favorable
to the particle filter. First, we merged particles at numerically
indistinguishable angles by replacing them with one particle
that subsumes their weight. Then, we built Voronoi regions
around the particles and distributed their weight evenly on the
resulting intervals.

The results are shown in Figure 5 with logarithmic scales
on both axes. The particle filter does not show definite conver-
gence towards the ground truth while both the discrete filter
and our proposed Fourier-based approach converged to the
true density. Due to numerical issues and the lack of an exact
ground truth, the Fourier filter could not improve beyond an
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Figure 5. Mean of the KLD between the densities derived from the discrete
filter with 1000 grid points and the densities derived from the respective filter
results.

average KLD of approximately 5 · 10−5. This performance is
already achieved using only 17 Fourier coefficients, whereas
the discrete filter is still not as close of an approximation with
500 grid points. The WN filter did not perform well, which was
to be expected as the density is approximated by a unimodal
WN in every time step.

b) Comparison of the Squared Integrated Difference
of the Cumulative Distribution Function: Since deriving a
cdf in one dimensional spaces is more straightforward for
particle filters than generating a pdf, we performed a second
evaluation comparing the squared integrated difference of the
cdfs. However, to derive a cdf on periodic domains, it is
necessary to specify a point at which the integration of the
probability mass is started. As probability mass close to the
border of periodicity plays a significant role when comparing
cumulative distributions on periodic domains, we searched the
probability mass function of the discrete filter used as the
ground truth for a region of low probability mass. Out of the
1000 grid points, 101 subsequent points were searched that
sum up to the lowest mass and the center was used as the
starting point of the cumulation. Using this starting point, the
cdfs for the discrete filter and for the particle filter were step
functions that cumulate the weights from the starting point on.
The cdf for the Fourier filter was obtained by using appropriate
integration rules. The calculation of the squared integrated
difference between the resulting cdfs of the ground truth and
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Figure 6. Mean of the squared integrated difference between the cdfs derived
from the discrete filter with 1000 grid points and the cdfs derived from the
respective filter results.

of the filter results was performed using numerical integration.

The results are shown, again using log scales, in Figure 6.
Again, our proposed Fourier filter achieves what we believe to
be optimal performance with only 17 Fourier coefficients. This
is neither achieved by the discrete filter with 500 grid points
nor by the particle filter with 500 particles.

All in all, our proposed filter needs far fewer coefficients
than grid points are needed by the discrete filter and particles
are needed by the particle filter. Since the discrete filter is not
cheap when dealing with arbitrary densities, the Fourier filter
with 17 components is far superior to the discrete filter with
500 grid points, while still achieving better results for both
criteria. In our evaluation, the particle filter performed very
badly per particle for the KLD and was orders of magnitude
worse when the cdfs were compared. While a detailed run time
analysis is out of scope for this paper, our unoptimized Matlab
code was already fast enough for many real time applications.
On a desktop PC with an Intel® Core™ i7-2700K, a test ran at
483 iterations of predictions and filter steps per second when
using 101 Fourier coefficients.

VII. CONCLUSIONS AND DISCUSSION

In conclusion, filtering based on Fourier series approx-
imations of the square root of densities allows obtaining
valid, continuous approximations of the true posterior density.
We showed that many common densities can be represented
well in this form as their Fourier coefficients fall off rapidly
asymptotically. The proposed filter is fully deterministic and
can handle even multimodal densities well.

As a limitation, the quality of the filter depends on how
well the density can be approximated using truncated Fourier
series. This depends, for example, on how narrow the peaks
of the distribution are and can result in a need for more
coefficients for densities with lower variance. However, these
densities are also hard to approximate using grid-based ap-
proaches while the particle filter also suffers from particle
degeneracy in these cases. As the proposed approach has an
asymptotic run time complexity of O(n log n) and requires
significantly fewer coefficients than the discrete filter requires
grid points, we deem it to be the more efficient solution for
estimating the entire density.

While the Fourier filter outperformed the other filters in
regard to run time in our implementation, a more thorough
evaluation of the computational effort when using reasonable
numbers of coefficients, grid points, and particles could be
performed as future work. As the need for high performance
filters is even greater for higher dimensions, we plan to publish
an extension of the proposed filter for higher dimensions.
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