KIT | KIT-Bibliothek | Impressum | Datenschutz

OSPA Barycenters for Clustering Set-Valued Data

Baum, Marcus 1; Balasingam, B.; Willett, P.; Hanebeck, U. D. 1
1 Karlsruher Institut für Technologie (KIT)

Abstract:

We consider the problem of clustering set-valued observations, i.e., each observation is a set that consists of a finite number of real vectors. For this purpose, we develop a $k$-means algorithm that employs the OSPA distance for measuring the distance between sets. In particular, we introduce a novel alternating optimization algorithm for the OSPA barycenter of sets with varying cardinalities that is required for calculating cluster centroids efficiently. The benefits of clustering set-valued data with respect to the OSPA distance are illustrated by means of simulated experiments in the context of target tracking and recognition.


Scopus
Zitationen: 4
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2015
Sprache Englisch
Identifikator ISBN: 978-0-9824-4386-6
KITopen-ID: 1000051027
Erschienen in Proceedings of the 18th International Conference on Information Fusion (Fusion 2015), 6-9 July 2015, Washington, DC, USA
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Seiten 1375-1381
Nachgewiesen in Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page