KIT | KIT-Bibliothek | Impressum | Datenschutz

OSPA Barycenters for Clustering Set-Valued Data

Baum, Marcus 1; Balasingam, B.; Willett, P.; Hanebeck, U. D. 1
1 Karlsruher Institut für Technologie (KIT)

Abstract:

We consider the problem of clustering set-valued observations, i.e., each observation is a set that consists of a finite number of real vectors. For this purpose, we develop a k-means algorithm that employs the OSPA distance for measuring the distance between sets. In particular, we introduce a novel alternating optimization algorithm for the OSPA barycenter of sets with varying cardinalities that is required for calculating cluster centroids efficiently. The benefits of clustering set-valued data with respect to the OSPA distance are illustrated by means of simulated experiments in the context of target tracking and recognition.

Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2015
Sprache Englisch
Identifikator ISBN: 978-0-9824-4386-6
KITopen-ID: 1000051027
Erschienen in Proceedings of the 18th International Conference on Information Fusion (Fusion 2015), 6-9 July 2015, Washington, DC, USA
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Seiten 1375-1381
Nachgewiesen in Scopus

Scopus
Zitationen: 4
Seitenaufrufe: 23
seit 18.05.2018
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page