KIT | KIT-Bibliothek | Impressum | Datenschutz

Adaptive Lower Bounds for Gaussian Measures of Polytopes

Hanebeck, Uwe D. 1; Dolgov, Maxim 1
1 Institut für Anthropomatik und Robotik (IAR), Karlsruher Institut für Technologie (KIT)

Abstract:

In this paper, we address the problem of probability mass computation of a multivariate Gaussian contained within a polytope. This computation requires an evaluation of a multivariate definite integral of the Gaussian, whose solution is not tractable for higher dimensions in a reasonable amount of time. Thus, research concentrates on the derivation of approximate but sufficiently fast computation methods. We propose a novel approach that approximates the underlying integration domain, namely the polytope, using disjoint sectors such that the probability mass contained within the sectors is maximized. In order to derive our main algorithm, we first propose an approach to approximate volume computation of a polytope using disjoint sectors. This solution is then extended to the computation of the probability mass of a Gaussian contained within the polytope. The presented solution provides a lower bound on the true probability mass contained within the polytope. Because the initial optimization problem is highly nonlinear, we propose a greedy algorithm that splits the sectors with the highest probability mass.


Scopus
Zitationen: 1
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2015
Sprache Englisch
Identifikator ISBN: 978-0-9824-4386-6
KITopen-ID: 1000051029
Erschienen in Proceedings of the 18th International Conference on Information Fusion (Fusion 2015), 6-9 July 2015, Washington, DC, USA
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Seiten 1489-1496
Nachgewiesen in Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page