KIT | KIT-Bibliothek | Impressum | Datenschutz

Bayesian Fusion of Empirical Distributions Based on Local Density Reconstruction

Hanebeck, Uwe D. 1
1 Institut für Anthropomatik und Robotik (IAR), Karlsruher Institut für Technologie (KIT)

Abstract:

Fusing two random vectors is simple, when they are characterized by continuous probability functions.
According to Bayes‘ law, fusion then consists of multiplying the two densities. When only empirical distributions
are given and a resulting empirical distribution is desired, Bayes‘ law is no longer applicable. Obviously,
fusion could now be performed by reconstructing the underlying continuous densities, subsequent multiplication,
and sampling of the result. As this is overly complicated, our goal is to perform a direct Bayesian fusion of the
two given empirical distributions. We devise a generalized multiplication procedure that mutually reweights appropriate
points of one density by local density values of the other density. The density values are efficiently estimated locally
by nearest neighbor operations. The method is symmetric in the sense that it uses points from both densities.


Originalveröffentlichung
DOI: 10.1109/MFI.2015.7295821
Scopus
Zitationen: 2
Dimensions
Zitationen: 2
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2015
Sprache Englisch
Identifikator ISBN: 978-1-4799-7772-7
KITopen-ID: 1000051040
Erschienen in Proceedings of the 2015 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI 2015), 14-16 Sept. 2015, San Diego, CA, USA
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Seiten 227-282
Nachgewiesen in Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page