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Abstract

Charge carriers in bilayer graphene behave as massive chiral fermions. The peculiar

band structure allows to tune the Fermi level within the conduction band or valence

band, depending on the applied electrical field. It is possible to form p-n junctions in

bilayer graphene. By applying a displacement field, the potentials in the top and bottom

layers are modulated independently, resulting in an interlayer asymmetry. As a result,

a band gap may open. Furthermore, the unique chirality of charge carriers in bilayers

gives rise to anti-Klein tunneling behavior for electrons facing a sharp potential barrier

in absence of an interlayer asymmetry.

In this work, we investigate bilayer graphene (BLG) p-n junctions. The devices are made

of hBN-BLG-hBN (hexagonal boron nitride) heterostructures, which enables ballistic

transport over long distances. Bilayer graphene is connected with two superconducting

leads (Ti/Al) from its edges, leading to very transparent metal-graphene interfaces.

Ballistic graphene p-n junctions are ideal Fabry-Pérot interferometers. By analysis of

the Fabry-Pérot fringes, we note that the conventional bilayer-like anti-Klein tunneling

transits into single-layer-like Klein tunneling when tuning the Fermi level towards the

band edges.

The proximity-induced superconductivity has been studied in bilayer graphene p-n junc-

tions. In highly clean samples, a large induced supercurrent can flow through a 1 µm

long channel. The corresponding IcRn product depends on the charge carrier density.

For example, we obtain 0.72∆/e at a density 2.23 × 1012 cm−2. The large IcRn prod-

uct indicates that the S/N interfaces are very transparent, which is attributed to the

one-dimensional edge contacts. In the presence of the p-n junctions, the supercurrent

is suppressed to a large extent because of the anisotropic transmission probability. Fur-

thermore, at the band edges, the supercurrent is effectively suppressed, which yields an

off-state of the superconductivity. By controlling the electrostatic field, we can switch

on and off the supercurrent.



Kurzzusammenfassung

Ladungsträger in zweilagigem Graphen (BLG) verhalten sich wie massebehaftete chirale

Fermionen. Die besondere Bandstruktur ermöglicht es, das Fermi-Niveau durch ein

angelegtes elektrisches Feld zwischen Leitungs- und Valenzband zu verschieben. Dadurch

ist es möglich, pn-Übergänge innerhalb des zweilagigen Graphens zu erzeugen. Durch ein

senkrecht zur Graphenebene angelegtes Verschiebungsfeld kann das elektrische Potenzial

in der oberen und unteren Graphenlage unabhängig voneinander eingestellt werden. Dies

führt zu einer Asymmetrie der beiden Lagen, und damit zur Öffnung einer Bandlücke.

Des Weiteren ermöglicht die Chiralität der Ladungsträger in zweilagigem Graphen Anti-

Klein-Tunneln von Ladungsträgern, die auf eine scharfe Potenzialbarriere treffen.

In dieser Arbeit untersuchen wir pn-Übergänge in zweilagigem Graphen. Die Proben

bestehen aus hBN-BLG-hBN-Heterostrukturen, welche ballistischen Transport über lange

Distanzen ermöglichen. Das zweilagige Graphen wurde mit supraleitenden Elektro-

den (Ti/Al) an den Kanten kontaktiert, wodurch ein besonders transparenter Metall-

Graphen-Übergang erzielt wurde.

Ballistische Graphenproben mit pn-Übergängen sind ideale Fabry-Pérot-Interferometer.

Durch die Analyse der Fabry-Pérot-Interferenzmuster konnten wir feststellen, dass das

für zweilagiges Graphen typische Anti-Klein-Tunneln in das für einlagiges Graphen mit

Klein-Tunneln erwartete Muster übergeht, wenn das Fermi-Niveau in die Nähe der Band-

kante rückt.

Weiterhin wurde durch den Proximity-Effekt induzierte Supraleitung in pn-Übergängen

in zweilagigem Graphen untersucht. In sehr sauberen Proben wurde ein Suprastrom

über einen bis zu 1 µm langen Kanal beobachtet. Das entsprechende Produkt aus kri-

tischer Stromstärke und Widerstand im normalleitenden Zustand IcRn ist abhängig von

der Ladungsträgerdichte. Bei einer Ladungsträgerdichte von 2.23× 1012 cm−2 erreichen

wir 0.72∆/e. Auch dieser relativ hohe Wert von IcRn ist ein Zeichen dafür, dass die

Supraleiter-Normalleiter Grenzfläche sehr transparent ist, was wir auf die eindimension-

ale Kontaktierung an den Kanten zurückführen. Bei Vorhandensein von pn-Übergängen

wird der Suprastrom aufgrund der richtungsabhängigen Transmissionswahrscheinlichkeit

reduziert und kann sogar - ebenso wie an den Bandkanten - komplett unterdrückt wer-

den. Wir können damit den Suprastrom durch Anlegen von elektrischen Feldern ein-

und ausschalten.
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3 Fabry-Pérot interference in bilayer graphene p-n-p heterojunctions 23

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Klein tunneling in single-layer graphene . . . . . . . . . . . . . . . 24

3.1.2 Anti-Klein tunneling in bilayer graphene . . . . . . . . . . . . . . . 28

3.1.3 Berry phase in single-layer and bilayer graphene . . . . . . . . . . 30

3.1.3.1 Berry phase in single-layer graphene and gapless bilayer
graphene . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.3.2 Berry Phase in gapped bilayer graphene . . . . . . . . . . 33

3.2 Sample description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Electrical transport in bilayer graphene p-n junctions . . . . . . . . . . . . 35

3.3.1 Electrostatic model . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.2 Interlayer asymmetry in bilayer graphene . . . . . . . . . . . . . . 39

3.3.3 Contact resistance for one-dimensional edge contacts . . . . . . . . 40

v



Contents vi
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Introduction

Graphene is a single-layer of carbon atoms arranged in hexagonal lattice, which is the

building block of graphite. This two-dimensional material has been studied theoretically

by P. R. Wallace [1] in 1947. However, the first isolated graphene has been found much

later by A. Geim and K. Novoselov in 2004 [2, 3]. The experimental investigations on

graphene show that the charge carriers can be tuned continuously between electrons and

holes up to high densities of ∼ 1013 cm−2. The mobility can exceed 200,000 cm2V−1s−1

at charge carrier densities of ∼ 2 × 1011 cm−2 on suspended graphene devices [4]. The

extraordinary electronic properties make graphene popular to investigate the ambipolar

electric field effect [5, 6]. In condensed-matter physics, graphene is an unusual material,

in which the charge carriers mimic the behavior of relativistic particles, which can be

described by Dirac equations [7]. Therefore, some quantum relativistic phenomena, like

Klein tunneling which has been theoretically predicted in high-energy physics, can now

be probed in graphene [8].

Bilayer graphene (BLG) consists of two coupled layers of graphene on top of each other.

Thus, both intralayer and interlayer transport is possible in bilayer graphene [9]. More

importantly, compared to single-layer graphene (SLG), which is gapless, a band gap

can be opened in bilayer by “simply” applying a displacement field, which induces an

asymmetry between the two layers [10]. The presence of an induced band gap may

strongly influence the quantum Hall regime [11] or quantum interference [12].

Despite the remarkable transport properties, it is challenging to obtain a pristine graphene

sheet without disorder in experiments. Great efforts have been made in the last decade

to improve the quality of the samples. Hexagonal boron nitride (hBN) has been found as

a good substrate material for graphene, allowing to preserve its intrinsic properties [13].

Wang et. al. [14] have improved the technique to encapsulate graphene between two

hBN multilayers, leading to an enhancement of the sample quality. This technique re-

news the life of graphene and enables us to investigate transport properties in ballistic

regime for large scale samples.

1



Introduction 2

In this work, we follow the sample fabrication method of Wang et. al. [14] in order

to obtain high quality devices, which are based on bilayer graphene heterostructures.

Bilayer graphene p-n junctions have been fabricated and their transport properties will

be discussed in the following.

In Chapter 1, we introduce the theoretical background, band structure, of the single-

layer and bilayer graphene based on the tight-bonding model [1, 9]. In particular, the

band spectrum at low energies are most interested. We also discuss the theoretical

background about the Landau levels of bilayer graphene.

In Chapter 2, we describe the sample fabrication procedure, in particular, the van der

Waals assembly process, which allows us to make clean devices. The electrical measure-

ment techniques at low temperatures are also described in details.

In Chapter 3, we discuss the normal-state properties for bilayer graphene p-n junctions.

The devices possess the configuration of Fabry-Pérot interferometers, which are use-

ful tools to detect the fundamental phenomena, such as Klein tunneling in monolayer

graphene [8]. Here, we first introduce Klein tunneling in monolayer graphene, anti-Klein

tunneling in bilayer graphene as well as the respective Berry phase. Then, we present

our measurement results on Fabry-Pérot interference and discuss anti-Klein tunneling,

especially when the interlayer symmetry between the top and bottom layers are broken.

In Chapter 4, we investigate the proximity-induced superconductivity in bilayer graphene

devices. The supercurrent is measured at zero and the low magnetic field (< 10 mT),

respectively. The interlayer asymmetry makes that the superconductivity in bilayer

graphene is of great interest. The reaction of supercurrent on the band gap is discussed.

Furthermore, anti-Klein tunneling at the normal states results in the selective trans-

mission probabilities. As a result, this affects the phase-coherent transport of Andreev

bound states.



Chapter 1

Theoretical background

In this chapter, we introduce the basics of graphene. First of all, we present the band

structures of single-layer and bilayer graphene at low energies. Then we discuss the

Landau levels of bilayer graphene in two situations: with and without the interlayer

asymmetry.

1.1 Band structure of single-layer graphene

Graphene is a single layer of carbon atoms arranged in a honeycomb lattice. The crystal

structure is shown in Figure 1.1a. a1 and a2 are the the primitive lattice vectors, which

are defined as

a1 =

(√
3a

2
,
a

2

)
, a2 =

(√
3a

2
,−a

2

)
, (1.1)

where a = | a1| = | a2| = 2.46 Å is the lattice constant. The distance between two

adjacent carbon atoms is aAB = a/
√

3 = 1.42 Å. In graphene, each unit cell consists

of two carbon atoms, which are non-equivalent in positions and therefore labeled as A

and B sublattices. The strong in-plane σ bonds, formed by the sp2 hybridization of

the valence electron orbitals px, py and s, are responsible for the stability of graphene,

but not for the electronic transport. The remaining electron with the pz orbital forms

the delocalized, covalent bond with its neighboring atoms, which makes up the π band.

Each carbon atom contributes one electron to the π bands. Thus, a unit cell contains

two valence electrons. The π band determines the electronic properties of graphene.

The reciprocal lattice of graphene is a hexagonal Bravais lattice, as shown in Figure 1.1b.

The primitive reciprocal lattice vector are given by

b1 =

(
2π√
3a
,
2π

a

)
, b2 =

(
2π√
3a
,−2π

a

)
. (1.2)
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a

A B

a
a1

a2

γ0

y

x

δ1

δ2δ3

b

K

K ′
Γ

M
kx

ky

b1

b2

Figure 1.1: Crystal lattices of single-layer graphene (a) and the corresponding recip-
rocal lattice (b). a1 and a2 are the primitive lattice vectors. b1 and
b2 are the primitive reciprocal lattice vectors. The shaded region in (b)
indicates the first Brillouin zone. The center is labeled as Γ. K and K ′

are two non-equivalent corners.

The two non-equivalent points K and K ′, located at the corners of the first Brillouin

zone, are the Dirac points of graphene.

The band structure of graphene is approximately calculated by the tight-binding model [1].

Within the nearest-neighbor hopping approximation, the Hamiltonian can be expressed

in the basis of the wavefunction amplitudes on the A and B sublattices, (ΨA,ΨB), that

is

H = −γ0

(
0

∑
j e

ik·δj∑
j e
−ik·δj 0

)
, (1.3)

where γ0 ≈ 3.16 eV is the nearest hopping parameter in the lattice plane, k is an

arbitrary wave vector in the Brillouin zone, and δj are the vectors connecting the nearest

neighbors, i.e.

δ1 =
a

2

(
1√
3
, 1

)
, δ2 =

a

2

(
1√
3
,−1

)
, δ3 =

a

2

(
− 2√

3
, 0

)
. (1.4)

The corresponding eigenvalues are given by

E(kx, ky) = ±γ0

√√√√3 + 4 cos

(√
3akx
2

)
cos

(
aky
2

)
+ 2 cos(aky). (1.5)

The plus and minus signs represent the conduction and valence bands, respectively.

The energy band spectrum of single-layer graphene is depicted in Figure 1.2a. The

cosine-like conduction and valence bands are symmetric, and connected at the Dirac

points. The conduction (or valence) band exhibits six valleys at the corners of the first

Brillouin zone. The energy bands exhibit conical structures near the Dirac points. The
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a
E

kx

ky
b

-0.8

-0.4

 0

 0.4

 0.8

-1 -0.5  0  0.5  1

E
 (

e
V

)

p (nm-1)

Figure 1.2: Band structure of single-layer graphene calculated with the tight-binding
model. (a) The description of the π-bands. The band structure exhibits
a large gap at the Γ point, but gapless at the corners of Brillouin zone.
(b)The linearly dispersed energies around the K and K ′ points. The low-
energy spectrum consists of two branches, denoted as red and blue curves,
respectively.

eigenvalues are degenerate at the Dirac points, i.e. E±(K) = E±(K ′) = 0, which is due

to the inversion symmetry of the honeycomb lattice.

In the low-energy range, the Hamiltonian of Equation (1.3) can be expanded with respect

to the K-points by introducing a momentum p = ~k − ~K, that is

H = vFσ · p. (1.6)

Here, vF =
√

3aγ0
2~ is the Fermi velocity, σ = (σx, σy) is the vector of the Pauli matrices

σx =

(
0 i

−i 0

)
σy =

(
0 1

1 0

)
σz =

(
1 0

0 −1

)
. (1.7)

The energy dispersion is linear at low energies, which is given by

E(p) = ±vF |p| . (1.8)

As shown in Figure 1.2b, the band structure consists of two linear branches (denoted in

red and blue, respectively), which originate from the sublattices A and B, respectively.

In single-layer graphene, the Hamiltonian of Equation (1.6) is formally identical to the

Dirac Hamiltonian for relativistic electrons [15]. From the linear dispersion relation

(Equation (1.8)), we note that quasiparticles in graphene behave as massless relativistic

particles with momentum p. Here, the Fermi velocity vF ≈ c/300 plays the role of

the speed of light. The quasiparticles in graphene are described by two-component
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wavefunctions (ΨA,ΨB), which take the contributions from the two sublattices A and

B into consideration. This description resembles that of by spinor wavefunctions in

quantum electrodynamics. But the role of spin is played by the two sublattices A and

B rather than the real spin of electrons. Therefore, σ is not the spin and is referred to

as pseudospin. The momentum is coupled to the pseudospin, which points in the same

direction for electrons and holes belonging to the same branch of the energy spectrum.

The pseudospin is parallel to the momentum for electrons but antiparallel for holes,

leading to the positive and negative chirality for electrons and holes, respectively.

Figure 1.3: An example of ambipolar transports in graphene. Resistances vary with
respect to back-gate voltages for single-layer graphene. The charge carri-
ers can be electrons or holes by tuning the gate. Figure from Ref. [16].

Graphene can be viewed as a semimetal. The Fermi level may be tuned from the

conduction band to the valence band; hence, the charge carriers can be electrons or

holes [16], as shown in Figure 1.3. At the Dirac point, the minimum conductivity is

finite, 4e2/h [16, 17] , which comes from the random network of charge puddles at low

charge carrier density. In ideal graphene, the minimum conductivity is 4e2

πh for width

over length ratio W/L > 3 [18]. Moreover, the peculiar chirality of charge carriers

in graphene gives rise to Klein tunneling behavior when a charge carrier faces a sharp

potential [8]. At high magnetic fields, graphene exhibits the integer quantum Hall effect,

but the quantized conductivity plateaus appear at the half-integer of 4e2/h due to the

Berry phase of π [3, 19]. The Klein tunneling and Berry phase are presented in more

detail in Chapter 3.

1.2 Band structure of bilayer graphene

Bilayer graphene consists of two coupled monolayer graphene sheets. In Bernal stacked

bilayer graphene, shown in Figure 1.4, the top layer is rotated 60 ◦ with respect to the
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B1

γ0

a

γ1
γ3

γ4

A2 B2

A1

Figure 1.4: Crystal lattices of bilayer graphene.

bottom one. A unit cell contains four carbon atoms, which are labeled by A1, B1 on

the bottom layer and A2, B2 on the top layer. The A2 sublattice sites directly on top

of the B1 sublattice, resulting in a relatively strong interlayer coupling. As a result, the

two atomic sites form ‘dimer’ sites. The other two atoms are referred to as ‘non-dimer’

sites. The tight-binding approach is employed to calculate the band structure of bilayer

graphene [9]. In the basis (ΨA1,ΨB1,ΨA2,ΨB2), the effective four-band Hamiltonian at

low energy is written as

H =


−u

2 vπ† −v4π
† v3π

vπ −u
2 γ1 −v4π

†

v4π γ1
u
2 vπ†

v3π
† v4π vπ u

2

 , (1.9)

where π = px + ipy, π
† = px − ipy, v =

√
3aγ0
2~ is the band velocity, v3 =

√
3aγ3
2~ and v4 =

√
3aγ4
2~ are the effective velocities, γi are the tight-binding parameters for graphite [9], and

u is the interlayer asymmetry parameter, which describes the difference in electrostatic

potentials between the two layers. u can be numerically calculated according to Equation

(3.29). Similarly to the case of monolayer graphene, γ0 represents the intralayer coupling

between electronic orbitals, i.e. γ0 = γA1B1 = γA2B2 ∼ 3.16 eV [20]. γ1 represents the

interlayer coupling between the ‘dimer’ sites, i.e. γ1 = γA2B1 ∼ 0.381 eV [20]. This term

results in the largest difference between bilayer graphene and monolayer graphene. The

interlayer coupling between the two ‘non-dimer’ sites is represented by γ3 = γA1B2 ∼
0.315 eV [21]. The term γ3 generates the trigonal warping only at very low energies [9].

The v4π term is proportional to γ4, which represents the interlayer coupling between

the ‘dimer’ and ‘non-dimer’ orbitals, A1 and A2 or B1 and B2. In the following, we

neglect the influence of the γ3 and γ4 terms in order to focus on a minimal model, which

is sufficient to understand the experiments in this thesis. The Hamiltonian of Equation
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(1.9) is then described as

H =


−u

2 vπ† 0 0

vπ −u
2 γ1 0

0 γ1
u
2 vπ†

0 0 vπ u
2

 . (1.10)
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Figure 1.5: Band structures of bilayer graphene near a Brillouin zone corner for u = 0

(a) and u 6= 0 (b). u is chosen to be γ1 in (b).

It is found that the band structure of bilayer graphene is linear at high energies. However,

the interlayer hopping parameter γ1 and asymmetry parameter u strongly affect the band

structure at low energies. Considering the simplified Hamiltonian of Equation (1.10),

the energies E = ±εα(p) (α = 1, 2) obey the following relation

ε2
α =

γ2
1

2
+
u2

4
+ v2p2 + (−1)α

√
(vp)2(γ2

1 + u2) +
γ4

1

4
. (1.11)

E = ±ε1 describes the low-energy bands, which are associated with the ‘non-dimer’ sites

A1, B2. While E = ±ε2 describes the higher energy bands that are split from zero energy

by the interlayer coupling γ1. The band structure for u = 0 and u 6= 0 are portrayed in

Figure 1.5a and Figure 1.5b, respectively. In the case of u = 0, the role of γ1 is revealed

by introducing the parabolic energy-momentum dispersion close to the K point. The

other effect of γ1 is found in the formation of the two split bands, which are associated

with the ‘dimer’ sites. When applying an electrical field perpendicular to the lattice
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plane, a finite asymmetry parameter is induced to the system, u 6= 0. The low-energy

bands exhibit a ‘Mexican hat’ shape with a band gap between the conduction and valence

bands. The experiments are usually carried out at low energies, i.e. |E| , |u| � γ0, γ1.

Hence, it is useful to describe the bilayer in the low energy range. By eliminating the

components related to the dimer sites in Hamiltonian of Equation (1.10), one obtains

an effective two-band Hamiltonian in the basis (ΨA1,ΨB2,ΨA2,ΨB1), that is

H2 =

−u
2

(
1− π†π

mγ1

)
− (π†)2

2m

− π2

2m
u
2

(
1 + ππ†

mγ1

) , (1.12)

where the effective mass m = γ1/2v
2. The eigenvalues of H2 is

E = ±
√

(
p2

2m
)2 +

(u
2

)2
. (1.13)

One can notice that H2 resembles to the Dirac-like Hamiltonian of single-layer graphene

but with off-diagonal terms that are quadratic in momentum [9]. Therefore, charge car-

riers in bilayer graphene are massive chiral fermions. The corresponding wave function

in the case of u = 0 is expressed as

Ψ =
1√
2

(
1

∓e2iφ

)
eip·r/~. (1.14)

As in monolayer graphene, the charge carriers in bilayer can be controlled by changing

Figure 1.6: Opening of a band gap in bilayer graphene by applying a displacement
field. Figure from Ref. [10].

the Fermi level. However, by applying a displacement field using top and back gates, it is

possible to break the symmetry between the top and bottom layers in bilayer graphene,

leading to the opening of a band gap [10, 22, 23]. Figure 1.6 shows an example of the

band gap opening in bilayer graphene, which have been observed by Oostinga et. al. [10].

An insulating state has been reached. It is important to note that the symmetry of the

system can also be broken by chemical doping [24].





Chapter 2

Experimental methods

The fabrication techniques, especially the transfer methods, for graphene samples have

been greatly improved in the last decade. As a result, ballistic transport in large scale

graphene can now be realized, e.g. a mean free path of 15 µm has been obtained at low

temperature, e.g. T=1.7 K, by Wang et. al. [14]. In the following, we present a sample

fabrication approach which is based on the assembly of two-dimensional materials linked

by van der Waals (vdW) forces. The transport properties of graphene bilayers-hBN vdW

heterostructures are probed at low temperatures (below 4 K). Details of the electrical

set-up are then described.

2.1 Sample fabrication

One of the prominent properties of graphene is the high carrier mobility, which may

exceed 200,000 cm2V−1s−1 on suspended devices [4]. However, this property cannot be

preserved for graphene samples on SiO2 substrates because of the strong scattering from

charged surface states and impurities, substrate surface roughness and optical phonons.

It is also a challenge to realize various functions of graphene devices with suspended

architectures. In addition, suspended graphene nanostructures are delicate to fabricate

and extremely fragile. A proper dielectric, hexagonal boron nitride(hBN), is used as

an alternative to SiO2, which allows to fabricate substrates supported graphene devices

without sacrificing the high mobilities. This is because the atomically smooth surface

of hBN is relatively free of dangling bonds and surface charge traps, and the surface

optical phonon modes of hBN have energies two times higher than similar modes of

SiO2, which indicates an improvement of the device performance at high-temperature

and high-electric field [13].

11
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Graphene-hBN devices are fabricated by manually transferring graphene from the sup-

ported substrate on the surface of hBN that is located on another substrate. Despite

the advantages of hBN as dielectric, new problems are introduced during the graphene

transfer process. One of the most severe problems is the chemical contamination from

polymers, such as polymethyl methacrylate (PMMA), methyl methacrylate (MMA) and

polydimethylsiloxan (PDMS), which are used as supporting mask during the transfer

process. Those polymers cannot dissolve completely in a solvent such as acetone, chlo-

roform, isopropanol, causing a layer of chemical residues on the surface of graphene. It

is hard to remove the chemical residues although many attempts were performed in the

past, such as thermal annealing in Ar/H2 atmosphere, mechanical cleaning with atomic

force microscope (AFM), or current annealing in vacuum. Another problem is that,

because strain develops between graphene and hBN during depositing, wrinkles and

bubbles appear on graphene after the transfer. These defects can degrade the mobility

and prevent from the study of the fundamental physics of graphene.

To solve the above mentioned problems, we develop a new layer assembly method which

was first proposed by Wang et. al. [14]. This method is based on the van der Waals

adhesion between two-dimensional materials.

2.1.1 Two-dimensional materials preparation and characterization

The sample is fabricated on a p-doped Si substrate with 300-nm thermally grown SiO2.

The Si substrate is first cleaned with acetone and isopropanol using ultrasonic bath in

order to get rid of chemical contaminants. Then a soft O2 plasma is applied to clean

the rest of the surface contaminants with the following parameters: 10 sccm O2, RF

power 30 W, pressure 100 mTorr, and duration 5 min. Since the substrate becomes

hydrophilic after the O2 plasma treatment, it is baked above 100 ◦C in air to evaporate

water molecules accumulated on the surface right before mechanical exfoliation.

The graphene flakes are exfoliated from natural graphite crystals on the surface of

Si/SiO2 substrates by the scotch tape technique [16]. The clean graphite flakes are

cleaved with a piece of scotch tape from the bulk graphite. The thickness of those

flakes are then reduced by cleaving with another tape. When the graphite flakes be-

come translucent, we place that part on top of a substrate and press for one minute.

After removing the tape, a number of graphite flakes randomly spread on the substrate.

Monolayer and bilayer graphene sheets are of a small minority (a five percent) amongst

thicker flakes.

Despite the fact that monolayer graphene (MLG) is difficult to observe in an optical mi-

croscope on most substrates, it becomes visible on Si substrates with 300-nm SiO2 owing
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a
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bilayer

graphite

b

13nm
19nm

33nm

>100nm

Figure 2.1: Two-dimensional materials obtained by mechanical exfoliation: (a) Opti-
cal image of monolayer graphene, bilayer graphene and graphite. (b) The
color difference of hBN flakes with different thickness, which is measured
with AFM.

to a change of interference color with respect to uncovered sections of the substrates [25].

Figure 2.1a shows monolayer and bilayer graphene (BLG) which are identified by the

optical contrast. The position of the graphene flake is located by the markers patterned

on the substrates. By means of mechanical exfoliation, about 100 µm long graphene

strips are achievable, which allows us to realize various devices for our investigations.
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Figure 2.2: Comparison of Raman spectra for monolayer graphene, bilayer graphene
and graphite. Laser wavelength 532 nm, power 2.5 mW, measurement
duration 20 s.

Graphene has a remarkable signature in Raman microscopy, which makes this character-

ization technique a fast and non-destructive tool [26, 27]. Figure 2.2 shows the typical

Raman spectra for exfoliated graphene samples on Si/SiO2 substrates. The samples are

characterized at room temperature in ambient condition using a RENISHAW inVia Ra-

man spectrometer at a wave length of 532 nm. The laser is focused by a 100× objective,

allowing precise measurement with a spot size of ∼1 µm2. We use an incident power of

2.5 mW to avoid overheating or damaging the samples. The Rayleigh scattering is sup-

pressed by using notch filters. Two prominent peaks are observed in Figure 2.2. One is
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at ∼1580 cm−1, called G peak, associated with the doubly degenerate E2g phonon mode

at zone center Γ. It is the first-order Raman scattering process governed by the funda-

mental Raman selection rule. On the contrary, another peak at ∼ 2700 cm−1, named 2D

peak, corresponds to an intervalley double-resonance Raman process at the zone bound-

ary, which does not satisfy the fundamental Raman selection rule. The double-resonance

process is directly linked to the details of the electronic band structure of graphene which

changes with increasing the number of layers and the stacking order. As a result, there

is only one possible intervalley double resonance process along the Γ−K −M −K ′−Γ

direction in MLG resulting in a single component of the 2D peak, whereas the observed

four components of the 2D peaks in Bernal-stacked bilayer graphene come from the four

possible double resonance processes due to the splitting of the electronic bands near the

K (K ′) point [26]. The D peak at ∼1350 cm−1 caused by double resonance of electronic

states with one phonon and one defect is missing, indicating the high quality of our

flakes.

By comparison of the Raman spectra of MLG, BLG with graphite, MLG and BLG can

be clearly distinguished from multi-layer graphite by the shape, width, position and

intensity of the 2D peak. In case of MLG, we observe a sharp 2D peak with an intensity

at least two times of the G peak. On the contrary, the 2D peak in BLG is a wide

band, and less intensive than the G peak. By fitting the 2D peak with a Lorentzian

function, we can prove that the 2D peak in the Raman spectrum of MLG only includes

one component, but the 2D peak for BLG consists of four components. The position of

the 2D peak upshifts with increasing number of layers, ∼ 2668 cm−1 for MLG, ∼ 2685

cm−1 for BLG, ∼ 2722 cm−1 for graphite.

a b

Figure 2.3: AFM images of a rough (a) and an atomically smooth (b) hBN surface.
Scale bar is 10 µm.

The hBN flakes are deposited on Si/SiO2 substrates with the same technique as graphene.

The flakes with 10 ∼ 40 nm thickness are first selected in the optical microscope by their

color appearance on the Si/SiO2 substrate, as shown in Figure 2.1b. A precise char-

acterization of hBN flakes is performed by using an AFM (BRUKER Dimension icon
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system) operating in a tapping mode. It does not only measure the thickness of a hBN

flake but also the surface morphology. In order to emphasize the surface morphology,

Figure 2.3 shows the AFM images of two different hBN flakes in the amplitude error

channel. It is obvious that the hBN flake in Figure 2.3b has an atomically smooth sur-

face compared with the one in Figure 2.3a where the surface was destroyed during the

mechanical cleavage process. Only the flakes with smooth and flat surfaces are used in

the following fabrication steps.

2.1.2 Van der Waals assembly process

The hBN-graphene-hBN heterostructure can be assembled using the van der Waals

adhesion of a graphene sheet to a hBN flake. Here we present our van der Waals

assembly method which has been modified with respect to that proposed by Wang et

al [14]. Figure 2.4 illustrates the procedure of the van der Waals material assembly.

A transparent polymer, 7 wt% poly-propylene carbonate (PPC) (Sigma-Aldrich, CAS

25511-85-7) dissolved in ethyl acetate, is spun on the substrate with a thin hBN flake.

The sample is then baked in a convectional oven at 80 ◦C for 10 min to evaporate

the solvent. At the same time, a transparent PDMS (poly dimethyl siloxane) stamp

is fixed on a clean microscope glass slide (Figure 2.4a). The substrate with the PPC

film is inverted and then attached on the surface of the PDMS lying on the glass slide

(Figure 2.4b). The substrate is removed manually from the stack, leaving the PPC film

sticked on the PDMS stamp with the hBN flake faced up (Figure 2.4c). About 90%

hBN flakes are transferred onto the surface of the PPC film. We mount the slide to

our home-made transfer set-up shown in Figure 2.5, where it is possible to move the

stack separately with respect to the target substrate. The hBN flake on the PPC film is

aligned over a graphene flake on the target substrate by using a long working distance

microscope and an x-y positioner (as shown in Figure 2.5). The hBN flake is then

brought into contact with the graphene sheet (Figure 2.4d). We keep the sample at a

temperature of 45 ◦C for 30 min to improve the van der Waals adhesion between hBN

and graphene (Figure 2.4e). Once the temperature of the sample is cooled below 30

◦C, the stack is lifted from the substrate (Figure 2.4f). Because graphene adheres more

strongly to hBN than to SiO2, graphene is lifted together with hBN. The process is then

repeated to place the hBN-graphene stack on top of a thick hBN flake (Figure 2.4g).

Once the hBN-graphene-hBN heterostructure is completed, we heat the sample up to

60 ◦C in order to soften the PPC film. The glass slide together with the PDMS stamp

is subsequently removed when keeping the PPC film melted(Figure 2.4h-i). The PPC is

dissolved in acetone afterwards, leaving the hBN-graphene-hBN stack on the substrate.
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This method provides an efficient way to build multi layer heterostructures just by

repeating steps d-f.

Si/SiO2

b

e

g h i

hBN

PDMS

glass

PPC

a

d

graphene

c

hBN

f

hBN

60◦C

45◦C
below 30◦C

Figure 2.4: Van der Waals assembly process of a hBN-graphene-hBN heterostructure.

Although graphene is encapsulated between two hBN flakes, annealing at high tempera-

tures is still necessary for the sake of cleaning the hydrocarbon absorbates on the surface

of graphene. The hydrocarbons are difficult to remove from an open graphene surface

even by annealing in vacuum. However, in a hBN-graphene-hBN heterostructure, the hy-

drocarbon molecules can be removed from the interfaces during thermal annealing [28].

When the sample is heated, van der Waals bonds between hBN and graphene develop.

As a consequence, the interfacial absorbates are squeezed out or diffuse to form micro-

meter-sized bubbles visible as bright spots in Figure 2.6a, resulting in atomically sharp

interfaces between hBN and graphene. In our case, the hBN-graphene-hBN sample is
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Figure 2.5: Transfer set-up. It consists of a long working distance microscope, a x-y
table and a hot-plate. The target sample is mount on the hot-plate, which
is right below object mirror of the microscope. The height of hot-plate
can be tuned in micron scale. The glass stack is attached to the x-y table,
which can move in the x-y directions with steps in a few micron. The
transfer mask and the target sample are aligned via the microscope.

baked in air at 250 ◦C for 3 h to remove the hydrocarbons sandwiched at each interface

as well as any PPC residues on the surface of top layer hBN.

After thermal annealing, AFM measurements are performed to check the flatness of the

heterostructure and the exact location of graphene within the sandwich. As shown in

Figure 2.6a, graphene (marked by the black dashed line) that is encapsulated between

two hBN flakes is flat, but wrinkles and bubbles appear in the part without constraint

from the top hBN layer (see Figure 2.6b). The area of the flat region depends on the

size and smoothness of the hBN as well as the humidity of the atmosphere. In our work,

we obtain flat areas of more than 10 µm2.

a

b

Figure 2.6: (a) A hBN-graphene-hBN heterostructure after thermal annealing. Scale
bar is 10 µm. The hBN flake on top of graphene is in orange, the bottom
one is in red. The black dashed line shows the edges of graphene encap-
sulated between two hBN flakes. Graphene within the yellow rectangle is
shown in (b). The edges and bubbles of graphene are more visible in (b).
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2.1.3 Contacting the hBN-graphene-hBN heterostructure

The only way to connect encapsulated graphene is from the edges. Figure 2.7 illustrates

the fabrication procedure for the edge contacts. At first, the edges of graphene devices

are exposed by reactive ion etching (RIE). We use the e-beam lithography to define the

etching mask with a two-layer resist, which consists of a 200 nm thick PMMA layer at

the bottom and a 100 nm hydrogen silsesquioxane (HSQ) layer on the top, as depicted

in Figure 2.7a. After the negative resist HSQ is developed in 25% TMAH for 4 min

and rinsed with distilled water, the positive resist layer, PMMA, is etched in an oxygen

plasma (Figure 2.7b). The etching rate for PMMA is about 45 nm/min setting the O2

flow rate of 15 sccm, the RF power of 30 W, the pressure of 60 mTorr in an Oxford ICP

80 system. Afterwards, the hBN-graphene-hBN stack is etched using plasma generated

from a mixture of O2 and CHF3 gases with flow rate of 4 sccm and 40 sccm respectively

(Figure 2.7c). The etch rate of the hBN is about 30 nm/min under 60 W RF power and

O2 etchingb CHF3/O2 etchingc

e-beam lithographye metal depositionf

a e-beam lithography

HSQ

PMMA

SiO2

Si

graphene

BN

d after lift-off HSQ

Figure 2.7: The process of one-dimensional edge-contact fabrication.

60 mTorr pressure. Since HSQ is a hard mask for reactive ion etching, the geometry

of the device remains the same after etching. Then, the HSQ layer is lifted-off by

dissolving the PMMA layer in acetone (see Figure 2.7d). Another e-beam lithography is

performed to pattern the mask for edge contact leads and a local top gate (Figure 2.7e),

and a thermal metal evaporation is conducted in the ultra high vacuum system (down

to ∼ 10−10 mbar) at a temperature below -120 ◦C (Figure 2.7f). Finally, we fabricate
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a lateral p-n-p junction with the Ti/Al (5 nm/85 nm) edge contacts and the Ti/Au (5

nm/75 nm) local top gate in the middle of the device. An AFM image of the final device

(sample BL9) is shown in Figure 2.8(a).

a b

Figure 2.8: AFM images of two p-n-p junctions made of hBN-BLG-hBN heterostruc-
tures. The edge contacts fabrication method in Figure 2.7 is used for de-
vices in (a) and the improved method in Figure 2.9 is used for the device
in (b). The white dashed lines indicate the contour of bilayer graphene.
The white dashed lines show the edges of graphene. Scale bar is 1 µm.

The disadvantage of the above method is that the edge contacts have to be fabricated in

two steps: (i) patterning the channel of the device; (ii) connecting the edges of graphene.

Hence an overlap of the edge contact on top of the heterostructure is required in order

to avoid misalignment in the second lithography step. We will see in the next chapter

that the overlap part induces doping to graphene underneath it. On the other hand, it is

difficult to reduce the length of the channel because of the limited space (see Figure 2.8a).

This method is improved by using just a layer of PMMA (without HSQ) as a mask both

for etching and edge-contact deposition, as shown in Figure 2.9. We use a heterostructure

including a graphite back-gate below the hBN-graphene-hBN stack and a local top gate

deposited in advance. The PMMA mask for edge contacts is defined by utilizing an

e-beam lithography at the beginning, as illustrated in Figure 2.9a. The exposed PMMA

is developed in a solution of MIBK:ISO 1:3 for 15 s and rinsed with ISO for 10 s. Then,

RIE is performed to etch the hBN-graphene-hBN stack with CHF3/O2 gas, as sketched

in Figure 2.9b. The etching duration is precisely controlled to make sure that the etch

depth is sufficient to expose the graphene edges but keep the bottom hBN as thick as

possible. Thereafter, a metal deposition is employed using the same PMMA mask for

etching, as presented in Figure 2.9c. The edge contacts are formed after lift-off the

metal in acetone, which is pictured in Figure 2.9d. Usually, an additional etching step

is essential to define the geometry of the device and to remove the unwanted graphene

around the edge contacts if necessary. Figure 2.8b displays the AFM image of a p-n-p

junction fabricated with the refined method. In general, this amended method requires

more efforts since the gates and edge contacts have to be deposited separately and a

second RIE etching is normally desired to shape the device.
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Figure 2.9: The improved method for making edge contacts.

2.2 Measurement techniques

The measurements are performed in a LD250 dilution refrigerator manufactured by

BlueFors (Helsinki, Finland), which allows quantum transport measurements at a tem-

perature down to 7 mK in high vacuum environment (∼ 10−6 mbar). The samples are

mounted on a PCB (printed circuit board) sample holder using GE vanish and connected

to the electric circuit by wire bonding. The sample holder is then fixed on the cold finger

of the cryostat which is attached to the mixing chamber plate (∼ 7 mK). The cold finger

is inserted in a NbTi superconducting magnet, which can provide a magnetic field at the

sample level up to 12 T . Figure 2.10 shows a diagram of the measurement circuit. The

sample is measured in two-terminal methods but with false four-lead configuration in

order to eliminate the resistance introduced from cables and RC filters. An AC voltage

is supplied by a SR830 lock-in amplifier at a low frequency of 9.776 Hz, combined with a

DC voltage provided by a BE2101 ultra low noise source (iTest Bilt System). A voltage

divider is used to apply a small excitation on the sample. On the other hand, the output

current is amplified by a DL1211 current preamplifier (DL instruments) and measured

with another SR830 lock-in amplifier for the AC component and multimeter (Agilent

34410A) for the DC component. The voltage drop across the sample is measured by two

additional lines. The AC and DC components are amplified by a low noise differential

preamplifier (Celians EPC1-B) and a LI-75A low noise preamplifier (NF), respectively.

Similarly, the AC and DC components of the voltage are recorded by a SR830 lock-in

amplifier and a multimeter (Agilent 34410A) separately.

In order to avoid high-frequency noise introduced by the room-temperature instruments

and the environment, a series of filters are added to each line at low temperatures.

The high-frequency noise (f > 1 GHz) is filtered by copper powder filters (CPF) on a

PCB [29], which consists of 24 lines encapsulated in a mixture of copper particles and

Stycast. Each line has a length of 3 m and a resistance of R = 43 ± 1 Ω. For lower-

frequency noise (f > 1 kHz), three-stage RC filters (RCF) are utilized. Twisted-pair
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wires are used to cancel electromagnetic interference (EMI) from external sources and

crosstalk between neighboring pairs.

The instruments are connected to GPIB cables, which are linked to a computer by

an optical fiber. The computer is isolated electrically from the measurement system.

All measurements are operated automatically with programs written in Python in the

QTLab environment.
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SR830

Stanford
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34410A
Agilent

VDC
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VAC
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DC
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RXS D
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C=100nF
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R2=100 Ω

R3=1 kΩ

Figure 2.10: Diagram of measurement circuit. CPF and RCF are the abbreviations
of copper powder filters and RC filters, respectively.





Chapter 3

Fabry-Pérot interference in

bilayer graphene p-n-p

heterojunctions

3.1 Introduction

In optics, the wave nature of photons is readily observed in the ubiquitous phenomenon of

interference. A commonly used interferometer called the Fabry-Pérot consists of a glass

with two semitransparent surfaces. The glass provides a cavity for photons bouncing

back and forth within it. At each bouncing, waves are partially transmitted. The

interference between the transmitted waves results in an intensity modulation, which

is viewed as the sign of phase coherence. In solid state physics, the phase-coherent

transport of electrons can be observed with an “electronic” Fabry-Pérot interferometer.

In graphene, an electronic cavity can be created between p-n junctions using electrostatic

fields.

The observation of Fabry-Pérot interferences requires ballistic transport. However, the

mean free path of the charge carriers is usually small, less than 500 nm [30], for graphene

on SiO2 substrates due to the existence of disorder. Ballistic transport for long distances

has been realized recently in the hBN-graphene-hBN heterostructures, where the mean

free path exceeds 15 µm [14]. In this chapter, we investigate the Fabry-Pérot interference

for a bilayer graphene p-n-p junction. From the amplitudes of the interference fringes,

we can analyze the quality of our devices.

The Fabry-Pérot interferometer is a useful tool to detect the phase shift of the electron

waves. Young et al. have found a sudden phase shift of π in the interference pattern

23
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at low magnetic fields, indicating the occurrence of the Klein tunneling in a single layer

graphene p-n-p junction, where the top gate is about ∼ 20 nm wide. [8]. For bilayers,

Varlet et al. have reported that, in the presence of the interlayer asymmetry, the non-

trivial Berry phase shows a breaking of anti-Klein tunneling [12]. However, in their case,

the quality of the device limited their study in the high-energy range, where the Fermi

level is far from the band edge. In the present work, we benefit from high-quality devices,

which enable the investigation of the Fabry-Pérot interference at both low energies and

high energies. The phase shifts of the interference fringes are studied while tuning the

Fermi level from the band edge to high energies.

3.1.1 Klein tunneling in single-layer graphene

The physics of a particle scattered from a finite potential step is a canonical problem in

quantum mechanics, which has been studied for a long time. For a classical particle, it

is forbidden to pass through a potential barrier with an energy higher than the energy of

the particle. In the non-relativistic quantum mechanics regime, a quantum particle with

energy E incident on a barrier of height V0 > E and width L, has a finite probability

to propagate through the potential barrier as an evanescent wave. The transmission

probability decays exponentially with distance, T ∼ exp(−βL), where β =

√
2m(V0−E)

~ .

In the case of a wide or high potential, the transmission probability decays rapidly. One

year after the discovery of the Dirac equation [15], Oskar Klein has found that relativistic

particles can tunnel through a potential barrier with a transmission probability that is

independent of L [31]. For V0 � E, the transmission probability is given by T =

(E2−m2c4)/(E2− 1
2m

2c4). In the case of E � mc2, T ≈ 1 so that the potential barrier

becomes transparent. The difference between the non-relativistic and relativistic cases is

that non-relativistic particles propagate through the barrier as evanescent waves, while

relativistic particles tunnel through the barrier as their anti-particles because of the

charge-conjugation symmetry.

However, the experimental demonstration of Klein tunneling is difficult since it is hard

to achieve an atomically sharp potential. If the width d of the potential step over

which the potential varies is comparable to or smaller than the Compton wavelength

λC = h/(mc), the tunneling is possible. Otherwise, the transmission probability will

decay exponentially as demonstrated by Sauter [32]. In particle physics, the sharp

interface can be attained in high-energy collisions, but the emergence of new particles

becomes a dominant phenomenon. However, graphene provides a condensed-matter

realization of Klein tunneling [8, 33], since the charge carriers in graphene are massless

Dirac fermions.
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x
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V0

−a a

L C R

φ θ

Figure 3.1: A sketch of a sharp potential barrier created by dual-gates in the npn
regime. The height of the potential is V0 and the width is 2a. The electron
waves are incident from the left side of the potential. The transmitted
waves are measured in the lead on the right side.

Klein tunneling in single-layer graphene and anti-Klein tunneling in bilayer graphene

have been calculated by Katsnelson et al. [7]. In this section, we follow the same methods

to give a simple introduction of Klein physics in graphene. More details and a full

description of this theory is available in either the book of Katsnelson [34] or the review

paper of Tudorovskiy et al. [35].

Figure 3.1 shows a sketch of an electron incident on a sharp potential barrier in a n-p-n

junction. The potential consists of two sharp p-n interfaces separated by a distance of

2a. We assume that the potential steps are extremely sharp, i.e., smaller than the Fermi

wavelength, but larger than the lattice constant, so that Umklapp scattering between

different valleys of graphene is prohibited. The spatial distribution of the potential

profile along the x axis is given by

V (x) =

V0, |x| < a,

0, |x| > a.
(3.1)

The incident electrons reach the left side of the potential, where x < −a. In the local

potential barrier (−a < x < a), the holes act as positrons. The transmitted electron

waves propagates on the right side of the potential (x > a). In the low-energy limit, the

Hamiltonian of the system reads [36].

H = −i~vFσ ·∇ + V (x, y), (3.2)

where V (x, y) is the potential energy. The wave vector outside the potential is denoted

as k, and the one within the potential is written as q. At zero magnetic field, the y-

component of the momentum is conserved. Thus, at the interface, we obtain the relation
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between the incident angle φ and the refraction angle θ as

k sinφ = ky = qy = q sin θ. (3.3)

The refractive angle is then defined as θ = arcsin(ky/q). The wave functions in the three

regions are expressed as follows:

ΨL(x, y) =

(
1

seiφ

)
ei(kxx+kyy) + r

(
1

−se−iφ

)
ei(−kxx+kyy), x < −a, (3.4)

ΨC(x, y) = a

(
1

s′eiθ

)
ei(qxx+kyy) + b

(
1

−s′e−iθ

)
ei(−qxx+kyy), |x| < a, (3.5)

ΨR(x, y) = t

(
1

seiφ

)
ei(kxx+kyy), x > a. (3.6)

Here, s = sgn(E) and s′ = sgn(E − V0), k = E/~vF and q = (E − V0)/~vF are the wave

vectors outside and inside the potential barrier, respectively. The x-components of the

wave vectors are kx = k cosφ and qx = q cos θ. r reprents the reflection amplitude on the

left side of the potential barrier, while t is the transmission amplitude on the right side

of the potential barrier. a and b are the amplitudes for the transmitted and reflected

waves, respectively, inside the potential barrier. Since the wave function is continuous at

the interfaces x = ±a, we obtain the reflection amplitude from the boundary conditions

r = 2eiφ−2ikxa sin(2qxa)
sinφ− ss′ sin θ

ss′ [e−2iqxa cos(φ+ θ) + e2iqxa cos(φ− θ)]− 2i sin(2qxa)
. (3.7)
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Figure 3.2: The angular transmission probabilities in single-layer graphene for a sharp
potential barrier. The potential barrier with a length of 100 nm is con-
sidered. The Fermi energy of the incident electron is E = 100 meV. Two
potential barriers with different heights are considered. The red curve is
related to V0 = 215 meV, while the blue curve corresponds to V0 = 300
meV.

The transmission probability T = |t|2 = 1− |r|2 is calculated from Equation (3.7). For

normal incidence (φ = 0), the transmission probability is unity regardless of the height
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of the potential barrier. The perfect tunneling is unique for massless Dirac fermions,

for which the pseudospin flip is forbidden. Hence, a right moving electron can only be

scattered by the potential barrier as a left moving hole state. This is the Klein tunneling

in single-layer graphene. The angular dependent transmission probabilities are shown

in Figure 3.2. The Fermi energy of the incident electron is chosen as E = 100 meV. The

right moving electrons face a potential field with a length of L = 2a = 100 nm. The

red and blue curves are calculated for potential heights of V0 = 215 meV and V0 = 300

meV, respectively. It is evident that Klein tunneling for φ = 0 is independent of the

potential heights. In addition, T = 1 is also reachable at certain angles which satisfy

the condition qxa = N π
2 , where N is an integer.

The transmission probabilities in Figure 3.2 are based on sharp potentials. However, the

potential steps are usually smooth in realistic experiments, regarding the finite thick-

ness of the dielectric layer which determines the sharpness of the potential step. The

transmission probability for a smooth potential is given by [37]

T = |t|2 = e−πkF d sin2 φ, (3.8)

where d is the length on which the potential varies from 0 to V0. Equation (3.8) is valid

for φ� π/2. The corresponding transmission probabilities are shown in Figure 3.3. The

Klein tunneling occurs at normal incidence even though the potential step is smooth,

whereas the transmission probabilities vanish exponentially at finite incident angles.

This is known as “Klein collimation”.
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Figure 3.3: The angular transmission probabilities in single-layer graphene for a
smooth potential barrier. The width of the potential step is d = 20
nm. The incident energy of the electrons is 100 meV. The height of the
smooth potential V0 is chosen as 300 meV.
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3.1.2 Anti-Klein tunneling in bilayer graphene

In bilayer graphene, anti-Klein tunneling is expected instead of Klein tunneling when

the electrons are scattered by a sharp potential barrier in the absence of a band gap. For

A-B stacked bilayer graphene, the effective Hamiltonian at the low-energy excitations is

written as [35]

H = − ~2

2m

(
0 (kx − iky)2

(kx + iky)
2 0

)
+ V (x), (3.9)

where m = γ1/2v
2 = 0.0355m0, m0 is the free electron mass. γ0 and γ1 are the in-plane

and interplane hopping parameters. We consider that an electron faces a sharp potential

barrier with an angle φ. This is similar to the case described in Figure 3.1. The wave

vectors outside and inside the potential barrier are defined as

k =

√
2mE

~
, (3.10)

q =

√
2m(V0 − E)

~
. (3.11)

As the y-components of the wave vectors are constant, the wave function is expressed as

Ψ(x, y) = Ψ(x)eikyy. We thus obtain the one-dimensional solution Ψ(x) of the equation

HΨ(x, y) = EΨ(x, y), which is given by(
d2

dx2
− k2

y

)2
Ψi(x) =

(
2m(E−V (x))

~2

)2
Ψi(x), i = 1, 2. (3.12)

In the limit of V0 > E +
~2k2y
2m , the solutions of Equation (3.12) in the three different

regions are found [35]:

ΨL(x) =

(
1

se2iφ

)
eikxx + b1

(
1

se−2iφ

)
e−ikxx + c1

(
1

−sh1

)
eκxx, (3.13)

ΨC(x) = a2

(
1

s′e2iθ

)
eiqxx + b2

(
1

s′e−2iθ

)
e−iqxx + c2

(
1

−s′h2

)
eλxx + d2

(
1

−s′/h2

)
e−λxx,

(3.14)

ΨR(x) = a3

(
1

se2iφ

)
eikxx + d3

(
1

−s/h1

)
e−κxx. (3.15)

Here, kx = k cosφ, ky = k sinφ, qx = q cos θ, qy = q sin θ = ky, κx = k
√

1 + sin2 φ,

λx = q
√

1 + sin2 θ, s = sgn(E), s′ = sgn(E − V0), h1 = (
√

1 + sin2 φ − sinφ)2, h2 =

(
√

1 + sin2 θ − sin θ)2.

The amplitudes ai, bi, ci and di are calculated by the continuity of the wave function

Ψi and its derivative dΨi/dx at the interfaces x = ±a. By numerically solving the
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Figure 3.4: The transmission probabilities as a function of the electron incident angle
in bilayer graphene for a potential barrier with a length of 50 nm (a),
100 nm (b), 150 nm (c), and 400 nm (d). The Fermi energy of incident
electron is E = 20 meV. Two potential barriers with different heights are
considered. The red curve is related to V0 = 50 meV, while the blue curve
corresponds to V0 = 100 meV.

boundary conditions, we obtain the transmission probabilities for various incident angles

(see Appendix A). Figure 3.4 shows the transmission probabilities as a function of the

incident angles. The angular transmission depends on the length of the potential barrier.

Four examples are presented in Figure 3.4a, Figure 3.4b, Figure 3.4c and Figure 3.4d

for potential barrier lengths of L = 50, 100, 150, 400 nm, respectively. The transmission

probabilities of electrons with an energy of 20 meV tunneling through a barrier with a

height of V0 = 50 or 100 meV are shown in red or blue in each plot. At certain incident

angles, the potential barrier becomes transparent, which is similar to the situation of

single-layer graphene. At the normal incidence, the transmission probability is expressed

analytically, that is

T = |a3|2 =

∣∣∣∣ 4ikqe2ika

(q + ik)2e−2qa − (q − ik)2e2qa

∣∣∣∣2 . (3.16)
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If a goes to infinity, the transmission probability approaches zero, which is the contrary

in the case of single-layer graphene. This is the anti-Klein tunneling in bilayer graphene.

3.1.3 Berry phase in single-layer and bilayer graphene

The Berry phase of electron wave function affects the electronic transport properties

in many aspects, such as electric polarization [38], quantum Hall effect [39], orbital

magnetism [40], and quantum charge pumping [41]. Berry has demonstrated that a

quantum system acquires a geometrical phase factor eiγn when the eigenstate undergoes

a cyclic adiabatic evolution [42, 43]. In this process, the external parameter R changes

slowly in the Hamiltonian H(R). The Berry phase is a gauge invariant quantity, which

is expressed as a closed path integral in the parameter space, which reads

γn =

∮
C
dR ·An(R) (3.17)

Here An(R) is the Berry connection or Berry vector potential, which is given by

An(R) = i〈n(R)|∇R|n(R)〉, (3.18)

where |n(R)〉 is the basis function for the Hamiltonian H(R) in the parameter space.

From Equation (3.17) and Equation (3.18), it is noted that the Berry phase only depends

on the geometrical aspect of the closed path integral. In analogy to electrodynamics, we

define the Berry curvature as [43]

Ωn(R) = ∇R ×An(R). (3.19)

According to Stokes’s theorem, the Berry phase is expressed as a surface integral

γn =

∫
S
dS ·Ωn(R). (3.20)

Here, the Berry curvature Ωn(R) is analogous to the magnetic field.

3.1.3.1 Berry phase in single-layer graphene and gapless bilayer graphene

In graphene, the direction of motion is coupled to the orientation of the pseudospin.

The chiral nature of charge carriers has profound effects on transports, for example,

the Berry phase. In the low-energy limit, the Hamiltonians for single-layer and bilayer
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Figure 3.5: Sketch of a polarization vector P on a Bloch sphere. A quantum state
|Ψ〉 is described by P .

graphene are written as [9]

HSLG = vF

(
0 π+

π 0

)
,

HBLG = − 1

2m

(
0 (π+)2

π2 0

)
,

(3.21)

respectively. π = px + ipy is the momentum operator. In the case of bilayer graphene,

HBLG is the effective low-energy Hamiltonian that describes the effective hopping be-

tween the non-dimer sites, A1-B2. The two-component spinors are (ΨA,ΨB)T for single-

layer graphene and (ΨA1,ΨB2)T for bilayer graphene. The eigenstates are described as

follows:

|Ψ±SLG〉 =
1√
2

(
±e−iφ

1

)
,

|Ψ±BLG〉 =
1√
2

(
±e−2iφ

1

)
.

(3.22)

In general, to understand the adiabatic evolution of the eigenstates, we first define a

polarization vector P for a spin-1
2 quantum state |Ψ〉 = (e−iφ cos θ2 , sin

θ
2)T , as sketched

in Figure 3.5, that is [44]

P =


〈Ψ|σx|Ψ〉
〈Ψ|σy|Ψ〉
〈Ψ|σz|Ψ〉

 =


sin θ cosφ

sin θ sinφ

cos θ

 , (3.23)

with θ ∈ [0, π] being the polar angle and φ ∈ [0, 2π] being the azimuthal angle. The

vector P with the length of 1 generates a Bloch sphere. A quantum state |Ψ〉 is rep-

resented by a superposition of the two basis states |+〉 = (1, 0)T and |−〉 = (0, 1)T as

|Ψ〉 = e−iφ cos θ2 |+〉+sin θ
2 |−〉. Then, the pseudospin orientation of |Ψ〉 is pointing in the
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direction of P on the Bloch sphere. We obtain the polarization vector P for single-layer

and bilayer graphene by substituting the eigenstates of Equation (3.22) into Equation

(3.23), resulting in [9, 44, 45]

PSLG =


cosφ

sinφ

0

 , PBLG =


cos 2φ

sin 2φ

0

 . (3.24)

a b

Figure 3.6: Pseudospin projections of electrons along the constant energy contours in
single-layer (a) and bilayer graphene (b). The center of each plot is the
K point. The pseudospin projections are independent of energy.

There are no z-components in P for both single-layer and bilayer graphene, which il-

lustrates that P varies in the equatorial plane of the Bloch sphere. As a consequence,

the pseudospin rotates in the same plane, where θ = π/2. In graphene, when the elec-

tronic wave vector experiences one full rotation around the Dirac point, the number

of rotations that the pseudospin rotates is defined as winding number. From Equation

(3.24), we notice that the winding number is 1 for single-layer graphene but 2 for bilayer

graphene. Therefore, in the case of single-layer graphene, the pseudospin rotates with

the same speed of the wave vector so that it is normal to the constant energy contours,

as shown in Figure 3.6a. In gapless bilayer graphene, the pseudospin winds twice for a

2π rotation of the wave vector, as shown in Figure 3.6b. The processes are independent

of energies in both cases.

We utilize Equation (3.17) and Equation (3.18), and calculate the Berry phase for single-

layer and bilayer graphene in the spherical coordinate system. For the eigenstate |Ψ+
SLG〉,

the Berry connection is A(φ) = 〈Ψ+
SLG|i

∂
∂φ |Ψ

+
SLG〉 = 1/2, and the associated Berry phase

γ =
∫ 2π

0 A(φ)dφ = π. Similarly, in the case of bilayer graphene, we have A(φ) = 1 and

γ = 2π.
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3.1.3.2 Berry Phase in gapped bilayer graphene

In bilayer graphene, the inversion symmetry of the lattice can be broken by applying

external gate voltages, which gives rise to non-trivial diagonal components in HBLG,

that is

HBLG =

(
−u

2 − (π+)2

2m

− π2

2m
u
2

)
. (3.25)

The presence of the diagonal terms results in the z-component of the polarization vector,

which induces an energy-dependent pseudospin rotation out of the equatorial plane, as

described in Figure 3.7. Near the band edge, the pseudospin is highly polarized along

z-axis, as shown in Figure 3.7a. Hence, the chirality is broken. The Berry phase is zero

since the pseudospin does not round a circuit. At high energies, the in-plane motion

of the pseudospins is asymptotically recovered, so that the chirality is restored. When

the pseudospin returns to the equatorial plane, the Berry phase is 2π again. Thus, the

Berry phase takes values from 0 to 2π in the presence of a interlayer asymmetry.

a

|−〉

|+〉

P

x

y

z
b

Figure 3.7: Pseudospin in gapped bilayer graphene. (a) Sketch of the polarization
vectors in gapped bilayer graphene. P represents the pseudospin po-
larization. The z-component of pseudospin is recovered in the presence
of a interlayer asymmetry. Close to the band edges, the pseudospin is
completely polarized. (b) The pseudospin projections along the constant
energy contours. The color of the arrows corresponds to the pseudospin
polarization in (a). The pseudospin is energy-dependent in gapped bilayer
graphene.

3.2 Sample description

The samples are fabricated using the procedures described in Chapter 2. Figure 3.8

shows the schematic and AFM image of bilayer graphene p-n-p junctions. In Figure 3.8a,

the layout of a device is presented. The Si substrate is used as a global back-gate.

The SiO2 layer is 317 ± 1 nm thick, measured with the FILMETRICS spectrometer.

Bilayer graphene is encapsulated with two atomically flat hBN flakes. The top one

has a thickness of 14 nm and the bottom one is 35.5 nm. The thin top dielectric
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a

b

Figure 3.8: Sample description of bilayer graphene p-n-p junctions. (a) Schematic
of a bilayer graphene p-n-p junction. Bilayer graphene is encapsulated
between two hBN flakes and connected with Ti/Al contacts from the
edges. (b) The AFM image of the two devices measured in this thesis.
The white dashed lines show the edges of bilayer graphene. Scale bar is
1 µm. The sample BL12C (right one) is 1 µm × 5 µm and the sample
BL12D (left one) is 0.8 µm × 4 µm. The channel of each device is divided
into four regions, i.e. L, C, R, M. Bilayer graphene under the top gate is
denoted as C, the areas on the left and right side of the top-gated region
are marked as L and R, and the area below the metal contact is labeled
as M.

enables us to create a relatively sharp potential barrier by placing a local top gate. Two

devices are connected with Ti/Al (5 nm/84 nm) leads from the same hBN-BLG-hBN

heterostructure. Figure 3.8b shows the AFM image of the two devices. The white dashed

lines mark the edges of bilayer graphene. The right one (sample BL12C) has a channel

length of 1 µm and width of 5 µm. The one at the left (sample BL12D) possesses the

same W/L ratio of 5 as the sample BL12C, but with a shorter channel length of 0.8 µm.

In the middle of the two devices, the top gates are deposited with Ti/Au (5 nm/73 nm).

Both gates have a width of ∼ 150 nm. According to the configuration of the device, the

channel can be divided into four regions, bilayer graphene under the top gate (denoted
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as C), the areas on the left and right side of the top-gated region (marked as L and R,

respectively), and the area below the metal contact (denoted as M).

3.3 Electrical transport in bilayer graphene p-n junctions

The devices are characterized at 4.2 K with the methods described in Section 2.2. Fig-

ure 3.9a presents the colormap of the conductance of the sample BL12C measured as a

function of both Vbg and Vtg at zero magnetic field. The two horizontal blurred lines at

Vbg = −7.51 V and Vbg = −25.9 V, indicate the conductance minima. These positions of

the conductance minima are independent of the top-gate voltages, and only determined

by the back-gate voltages. They correspond to the charge neutrality points of bilayer

graphene that are only tuned by the back-gate, for example, bilayer graphene in areas

L, R, and M (see Figure 3.8). Along the white arrow, we observe the third line of the

conductance minimum, which is tuned using both the top-gate and back-gate voltages

simultaneously. Thus, it indicates the charge neutrality point of bilayer graphene under

the top gate, i.e. area C. The low conductance line determines the displacement field D

axis, denoted as the white arrow. When increasing the D field, the conductance along

the D axis decreases. Although an insulating state has not been reached, the increasing

width and distance of the diagonal line indicates the opening of a band gap.

The map can be divided into six regions by the three charge neutrality lines. Each

region has a unique charge polarity combination. The combinations are labeled on the

conductance map as nnnn, npnn, pnpn, pnpp, pppn and pppp, corresponding to the

charge types in the sequential regions L, C, R, M. In the unipolar regime, the charges in

the top-gated region C have the same polarity as their counterparts in the neighboring

regions L and R, i.e. nnnn, pppn, pppp, in contrast to the bipolar regime, such as npnn,

pnpn, pnpp.

Figure 3.9b shows the resistance along the yellow dashed line in Figure 3.9a, where

Vtg = 0 V. Three resistive peaks appear at the voltages of Vbg = 6.69 V, -7.51 V, -25.9

V, indicating the charge neutrality points in different regions. From the shift of the

charge neutrality points, we note that the intrinsic doping in each region is different.

Bilayer graphene in the areas L and R is equally doped. The peak at Vbg = −7.51 V

indicates that bilayer graphene is n-doped in the areas L and R. The n-doping may come

from the residue of hydrocarbons which enter the sample during the fabrication process

done in ambient conditions. Although we have annealed the sample to get rid of the

hydrocarbons, a small amount of hydrocarbons may remain in the sample [28]. In the

area M, the contact is overlapping on top of bilayer graphene with a spacer, i.e. the

top hBN layer. The presence of the overlapped contact induces an additional n-doping
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in bilayer graphene, which gives rise to the peak at the Vbg = −25.9 V. The peak at

Vbg = 6.69 V is linked to the area C, in which bilayer graphene is p-doped. If we tune

the back-gate voltage, the Fermi level in the four regions is changed simultaneously. In

Figure 3.9d, the band diagrams are shown for each region. The yellow and blue filled

areas indicate the occupied states in the conduction and valence bands, respectively.

The red solid line shows the intrinsic potential profile along the channel. The dotted

line shows the Fermi level. As the back-gate voltage decreases, the Fermi level reduces

and passes through the charge neutrality point in the regions C, L and R, M in sequence,

as sketched in the top, middle, bottom panels in Figure 3.9d.

In Figure 3.9c, the resistance is presented as a function of the Vtg with Vbg = 0 V,

which corresponds to the green dashed line in Figure 3.9a. The charge neutrality point

is observed at Vtg = 0.41 V. The resistances are asymmetrical between the electron and

hole sides. The reason is that a n-p-n junction is formed on the hole side since bilayer

graphene outside the top-gated region is intrinsically n-doped.
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Figure 3.9: Characteristic of a bilayer graphene p-n-p junction (sample BL12C). (a)
Conductance as a function of the top-gate voltage Vtg and back-gate volt-
age Vbg. The white arrow indicates the displacement field D axis. (b) The
resistance versus Vbg along the yellow dashed line in (a), where Vtg = 0 V.
(c) The resistance varies with respect to the Vtg at zero back-gate volt-
age, which is along the green dashed line in (a). The measurements have
been done at 4.2 K and zero magnetic field. (d) The low energy spectrum
for quasiparticles in four different regions (L, C, R, M). The dotted line
shows the Fermi level. The yellow and blue filled areas indicate the oc-
cupied states in the conduction and valence bands, respectively. The red
solid line shows the profile of the potential barrier. The top, middle, and
bottom panels depict the positions of the Fermi energy, corresponding to
the charge neutrality points in the region C, L & R, and M, respectively.
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3.3.1 Electrostatic model

We utilize the parallel-plate capacitor model to calculate the electrostatic field for dual-

gated bilayer graphene devices. The device is viewed as three plate capacitors in series,

i.e. the one between the top gate and the top layer of bilayer graphene, the one between

the top and bottom layers of bilayer graphene, and the one between the bottom layer of

bilayer graphene and the bottom-gate. Thus, the top-gate and back-gate capacitances

are given by Ctg = ε0εhBN
r

d
(top)
hBN

, Cbg =

(
d
(bot)
hBN

ε0εhBN
r

+
dSiO2

ε0ε
SiO2
r

)−1

, respectively, where ε0 is the

vacuum permittivity, εhBNr and εSiO2
r = 3.9 is the dielectric constants of the hBN and

SiO2, respectively. d
(top)
hBN = 14 nm and d

(bot)
hBN = 35.5 nm are the thickness of the top

hBN and the bottom hBN, respectively. dSiO2 = 317 nm is the thickness of the SiO2

layer.

By operating the dual-gates, the displacement field in the area C is tuned. We define

the displacement field as

D̃ =
D

ε0
= −Ctg

ε0
(Vtg − V (0)

tg ) +
Cbg
ε0

(Vbg − V
(0)
bg ), (3.26)

where V
(0)
tg and V

(0)
bg are the top-gate and back-gate voltages applied to overcome the

intrinsic doping in the dual-gated region (area C), respectively. They are chosen as

V
(0)
bg = −7.51 V and V

(0)
tg = 0.94 V. The charge carrier density in the region C is given

by

nC =
Ctg
e

(Vtg − V (0)
tg ) +

Cbg
e

(Vbg − V
(0)
bg ), (3.27)

where e is the charge of an electron. In the case of nC = 0, Equation (3.27) expresses the

function of D axis. The ratio of the top-gate capacitance to the back-gate capacitance

Ctg/Cbg = 15.3 is obtained from the slope of the D axis in Figure 3.9a. Therefore, we

obtain εhBNr = 2.2 for our devices. Then, Ctg = 139.13 nF/cm2 and Cbg = 9.09 nF/cm2

are calculated. Finally, the charge carrier density in each region can be expressed as

nX(Vtg, Vbg) =


Ctg

e Vtg +
Cbg

e Vbg + n0
X X = C

Cbg

e Vbg + n0
X X = L,R,M

, (3.28)

where n0
X denotes the intrinsic doping in each region. n0

X is calculated from the position

of the charge neutrality points in Figure 3.9b and Figure 3.9c. We obtain n0
L = n0

R =

4.26×1011 cm−2 and n0
M = 14.69×1011 cm−2 from the position of the charge neutrality

points in Figure 3.9b. And n0
C = −3.56 × 1011 cm−2 is obtained from the position of

the charge neutrality point in Figure 3.9c.
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3.3.2 Interlayer asymmetry in bilayer graphene

The application of a voltage to the top- and back-gates introduces an asymmetry between

the two layers of bilayer graphene. The asymmetry parameter u expresses the difference

in the on-site energies of the orbitals on the two layers, which is defined as [9]

u

γ1
=

Λ(nb − nt)
n⊥

[
1− Λ

2
ln

(
|n|

2n⊥
+

1

2

√
(
n

n⊥
)2 + (

u

2γ1
)2

)]−1

. (3.29)

nt and nb are the charge carrier densities generated by the top-gate and back-gate

voltages, respectively. n is the total charge carrier density, i.e. n = nt + nb. The

characteristic carrier density is n⊥ =
γ21

π~2v2F
, and the screening parameter is Λ = c0e2n⊥

2γ1εrε0
.

γ1 stands for the nearest-neighbor hopping between the two layers, i.e., the interlayer

coupling. c0 is the interlayer spacing. εr is the effective dielectric constant between the

two layers of bilayer graphene. The parameter u can be obtained by numerically solving

Equation (3.29). The corresponding size of the band gap is given by

ug =
|u| γ1√
γ2

1 + u2
. (3.30)

However, in our experiments, the applied displacement field does not fully open a gap

between the conduction and valence bands. As shown in Figure 3.10, the resistance

is tuned by the top gate for a number of constant back-gate voltages. The resistance

along the displacement field axis, where nC = 0, is shown by the black curve. Since an

additional Dirac peak, originating from the contact overlapped region M, exists around

Vbg = −26 V in our measurements, resistances at the charge neutrality points do not

increase with the displacement field for Vbg < −7.5 V. However, it is obvious that the

displacement field leads to an increase of resistances and widths of the Dirac peaks for

Vbg > 0 V, which is the sign of a band gap opening. Finally, a insulating state has

not been reached, therefore, the band gap is not fully open in our measurements. We

calculate that the displacement field is D̃ = 0.84 V/nm at Vbg = 34 V and Vtg = −1.75

V, and the corresponding resistivity is only 3 kΩ/�.

According to Equation (3.30), a band gap of 63.1 meV is expected for D̃ = 0.84 V/nm.

The large gap predicted theoretically is hardly realized in transport experiments. Apart

from this, some experimental groups have reported an insulating state with a gap size

about a few meV [10, 23, 46], while the others have found that samples exhibit good

metallic properties [12] as we have observed. The reasons that affect the gap opening are

under debate. At high temperatures (2 K ∼ 100 K), the suppression of the gap size can

be attributed to thermal activation [10, 23, 47]. In an ideal defect-free bilayer graphene,

the maximum resistance in high displacement fields varies with the temperature as
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Figure 3.10: Resistance versus top-gate voltage for various back-gate voltages. The
black curve shows resistances along the displacement field axis, i.e. nC =
0.

Rmax ∝ exp(ug/2kBT ) [10, 23, 48], where kB is Boltzmann’s constant. An energy of

ug/2 is needed for the carrier to be activated from the Fermi level in the metal lead to the

conduction band or valence band of graphene. At low temperatures, the mechanisms are

different. In diffusive graphene, the presence of disorder may account for the suppression

of the gap [23, 49, 50]. The charge carriers are localized in mid-gap states which are

created by disorder and smear out the gap. Hopping processes between those localized

states dominate the transport. Recently, a new explanation was put forward. In pristine

bilayer graphene, there are stacking walls between AB and BA stacked domains [51]. Ju

et. al. have reported that the chance to open a band gap is small in the presence of

stacking walls but large when measuring within the same domain [52]. However, San-

Joe et. al. have measured an insulating state in their suspended device with stacking

walls [53]. Koshino et. al. have predicted theoretically that the stacking boundary is

either insulating or highly transparent depending on the crystallographic direction of the

boundary [54]. In the low-energy region, the boundary is almost insulating in armchair

AA stacking and zigzag SP stacking (atoms in two layers do not overlap) while it is highly

transparent in armchair SP stacking and zigzag AA stacking. Further investigations are

needed to reveal the mechanisms of gap opening in bilayer graphene.

3.3.3 Contact resistance for one-dimensional edge contacts

Benefiting from the one-dimensional edge contacts, we observe a low contact resistance.

In two-terminal measurements, the contact resistance can be estimated from the min-

imum resistance Rmin at high charge carrier density. For example, we obtain 41.1 Ω

as the minimum resistance for sample BL12C at a density of n = −2.9 × 1012 cm−2.

The corresponding contact resistance Rc is normalized by the width of the channel, i.e.
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Rmin/2 × W ≈ 102 Ω µm, in order to compare with the other devices. The contact

resistances of the two devices are about 93 ∼ 103 Ω µm at n ∼ −3× 1012 cm−2, which is

roughly half of the contact resistance measured on the surface connected graphene [55].

The reduction in the contact resistance comes from the shorter bonding distance in Ti-

O-C edge contacts. The oxygen on the edge of graphene comes from the O2 etching,

which is performed before the metal deposition for the edge contacts, as described in

Chapter 2. The oxygen improves the binding as well as the transmission at the inter-

faces. Comparing to the first paper on edge contacts [14], we obtain a much lower Rc,

which is attributed to the ultra high vacuum during metal deposition (∼ 10−9 mbar).

The contact resistances we have extracted include the quantum resistance RQ = h
4e2

1
M ,

where M = int(2W
λF

) is the number of the conduction modes. We exclude the RQ from

the Rc and obtain the extrinsic contact resistances (Rc −RQ/2) ∼ 60− 70 Ω µm, which

depend on the transparency of the contact interfaces.

3.4 Fabry-Pérot interference in ballistic bilayer graphene

p-n-p junctions

Fabry-Pérot interference is expected to occur in ballistic graphene p-n junctions, where

the mean free path of charge carriers is larger than the length of the cavity. The mean

free path of our devices, fabricated with encapsulated bilayer graphene, reaches 8.8 µm

at a density of −3.3 × 1012 cm−2. Hence, our samples should be suitable to study

phase-coherent transport in bilayer graphene.

We investigate the Fabry-Pérot interference by measuring the conductance. Figure 3.11a

shows the color plot of the conductance versus Vtg and Vbg for the sample BL12D, which is

shorter in length than sample BL12C. The conductance map is similar to that of sample

BL12C shown in Figure 3.9a. The two horizontal lines at Vbg = −4.3 V, -27.3 V indicate

the charge neutrality points in only-back-gated regions L and R (bare bilayer graphene),

and M (metal contact overlapped bilayer graphene), respectively. The additional line at

Vbg = −27.3 V originates from the overlapped contact in the region M and gives rise to

n-doping. The diagonal line corresponds to the charge neutrality point in the dual-gated

region C. It also determines the axis of the displacement field.
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Figure 3.11: Fabry-Pérot interference observed in conductance measurements. (a)
Colormap of the conductance as a function of the Vtg and Vbg for sam-
ple BL12D. The measurements have been performed at 4 K and zero
magnetic field. (b) Transconductance of (a). The purple and green solid
lines show the interference fringes induced by the back-gate only and
dual-gate, respectively. The interference pattern in the pppn and pppp
regimes are highlighted in (c).
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In Figure 3.11a, we observe strong conductance oscillations in the bipolar regime, which

are due to Fabry-Pérot interferences. The Fabry-Pérot fringes are nearly parallel to the

diagonal charge neutrality line, indicating that the interference takes place in the dual-

gated region C, where the Fermi level is affected by both the top- and back-gates. The

intensity of the interference can be inferred from the visibility of the Fabry-Pérot fringes.

In general, the amplitudes are large in ultra-clean devices, where the disorder-induced

backscattering is weak. In our case, the high visibility of the interference patterns

indicates the high quality of our device.

In order to analyze the fine interference patterns, especially for the unipolar regime,

we remove the non-uniform conductance profile by using the transconductance dG/dVtg.

The corresponding dG/dVtg for the conductance in Figure 3.11a is shown in Figure 3.11b.

In the following, we explain the formation of Fabry-Pérot fringes in the six different cases.

Fabry-Pérot interference in the unipolar regime

Resonance in the nnnn regime. In Figure 3.11b, no interference patterns are visible

in the nnnn regime. The Fabry-Pérot interference vanishes. To understand this phe-

nomenon, we sketch the potential profile together with the band diagrams in Figure 3.12.

The four regions of the device, i.e. L, C, R, M, are portrayed within the grey dashed

rectangle. The two outer regions, labeled as edge, describe the edges of bilayer graphene

that contacted by the metal leads. These edges are heavily n-doped because of the metal

leads. The Fermi level for each region is shown in the band spectrum. In the case of the

nnnn regime, depicted in Figure 3.12b, the charge carriers have the same polarity n in

all regions. Therefore, there is no p-n interface formed anywhere. Therefore Fabry-Pérot

interference cannot appear due to the absence of cavity.

Resonance in the pppp and pppn regimes. In Figure 3.11b, we observe weak

conductance resonances in the pppp and pppn regimes. The interference fringes are

parallel to the purple solid lines. For a better visibility, we zoom into the pppp and

pppn regions and show the patterns explicitly in Figure 3.11c. In the case of the pppp

regime, the potential profile is shown in Figure 3.12e. As the Fermi level in the edges

is approximately constant as in the metal leads, the edge regions are always heavily n-

doped. On the other hand, the Fermi level of the entire device is tunable by modulating

the back-gate voltages Vbg. When we tune the Fermi level to the valence band in the

entire device, two p-n junctions are formed along the two edges of the device. A large

cavity is formed between the two p-n interfaces. As indicated by the purple arrows in

Figure 3.12e, the cavity covers the whole device, i.e. the regions L-C-R-M. Since this

cavity is much larger than the one in the dual-gated region C, the interference patterns

are less visible in the pppp regime, because the charge carriers are partially scattered

when traveling within the cavity, leading to the low amplitudes of the conductance
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Figure 3.12: The potential profiles and the band diagrams in the cases of different
charge polarity combinations. According to Figure 3.11a, 6 combinations
are npnn (a), nnnn (b), pppn (c), pnpn (d), pppp (e) and pnpp (f). In
each sketch, the different regions in the sample are labeled at the bottom,
the corresponding charge polarities are denoted at the top. The device
consists of four regions, i.e. L, C, R, M, which are arranged in the grey
dashed rectangular. Outside the rectangular, two regions are labeled
as edge, which describe the edges of bilayer graphene that contact the
metal leads. The metal leads induce nearly constant n-doping in the
edge regions. The gey dotted line marks the position of the Fermi level.
The red solid line shows the potential profile. The green arrows denote
the cavity created in the dual-gated region, while the purple arrows label
the cavities that are tuned by the back-gate voltages.

resonances. In the case of the pppn regime, the formation of the interference fringes is

similar to the situation in the pppp regime. In Figure 3.12c, the cavity is also marked

with the purple arrows which go through three regions L-C-R. The interference patterns

have the same orientation as the ones in the pppp regime because the Fermi levels are

tuned by the back-gate in both cases. However, since the cavity L-C-R in the pppn

regime is smaller than L-C-R-M in the pppp regime, the visibility of the interference

fringes is better, as presented in Figure 3.11c.

Fabry-Pérot interference in the bipolar regime

Resonance in the npnn regime. In the bipolar regime, the Fabry-Pérot fringes in
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the npnn regime are simple in contrast to the ones in the pnpp or pnpn regimes. In

the npnn regime, the resonance lines are nearly parallel to the displacement field axis,

marked by the green lines in Figure 3.11b. Thus, the resonance patterns depends on

both the back-gate and top-gate voltages. As shown in Figure 3.12a, a cavity is formed

by tuning the Fermi level in the region C to the valence band, and the Fermi level in

the other regions to the conduction band. The cavity is labeled by the green arrows.

Resonance in the pnpp and pnpn regimes. The Fabry-Pérot fringes in the pnpp

or pnpn regimes are more complicated. As shown in Figure 3.11b, there are two sets of

resonance lines existing in these two regimes. One set is denoted by the purple lines,

which is similar to the resonance lines in the pppp and pppn regimes. Another set

is parallel to the displacement field axis, labeled as the green lines. This set is most

prominent and formed by the same cavity as in the npnn regime. The corresponding

potential profiles are shown in Figure 3.12f and Figure 3.12d for the pnpp and pnpn

regimes, respectively. In the region C, a cavity, marked by the green arrows, is created

by applying top-gate voltages to tune the Fermi level within the conduction band, where

the charge polarity is opposite to it in the neighboring regions. This cavity is responsible

for the interference patterns parallel to the green lines in Figure 3.11b. In the pnpp

regime, three cavities marked by the purple arrows, i.e. L, R-M, L-C-R-M, determine

the resonance lines along the direction of the purple lines in Figure 3.11b. Although

those three cavities have different lengths, they are tuned by the back-gate at the same

time. Hence, the patterns induced by each cavity have the same orientation, but different

period and amplitude. The shorter the cavity is, the larger are the period and amplitude.

In the pnpn regime, the patterns along the purple lines arise from three cavities, L, R,

L-C-R, as shown in Figure 3.12d. The difference between pnpp and pnpn regimes lies

in two cavities, R-M in the pnpp regime and R in the pnpn regime. Both of them

correspond to the resonance lines parallel to the purple lines. But the length of R is

much shorter than the length of R-M, which resulting in the enhanced visibility for the

resonances along the purple lines in the pnpn regime.

In this section, we have presented the results on the Fabry-Pérot interference. We di-

rectly observe the Fabry-Pérot interference on conductance measurements both in the

unipolar and bipolar regimes. This implicates that the devices are clean and ballis-

tic. Until now, ballistic Fabry-Pérot interference has only been realized on monolayer

graphene p-n junctions by Young et. al. [8], Rickhaus et. al. [56], and on bilayer

graphene p-n junctions by Varlet et. al. [12]. However, most of their results show weak

conductance oscillations which are only visible in the transconductance. Only Rickhaus

have observed the interference fringed directly in conductance measurements for a sus-

pended graphene p-n junction. But the suspended devices are limited for applications.

The devices, made with encapsulated bilayer graphene, have a good quality comparable
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with the suspended devices, but provide more possibilities to design devices for various

applications.

Periods of Fabry-Pérot interference

The Fabry-Pérot interference is a phase-coherent effect. The amplitudes of the conduc-

tance are determined by the phase difference between the two transmitted waves, that

is ∆θ = 2∆kLcavity. The constructive peaks occur when ∆θ = 2jπ with j being an

integer. An example of Fabry-Pérot interference is shown as red curve in Figure 3.13.

The curve is measured at Vbg = −14 V in the pnpn regime on sample BL12D. The

conductance G is a function of the charge carrier density nC in the dual-gated region

C. nC is determined by nC = sgn(E)k2/π. We differentiate nC with respect to k and

obtain ∆nC = sgn(E)2k∆k/π. If we take the relations k =
√
π |nC | and ∆k = π/Lcavity

into consideration, we deduce that the period of the constructive oscillations are tied to

the length of the cavity by ∆nC = 2
√
π |nC |/Lcavity.
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Figure 3.13: Conductance oscillations in the pnpn regime measured on sample
BL12D. The conductance is presented with respect to the charge carrier
density nC in the dual-gated region C. The back-gate voltage is fixed
at Vbg = −14 V. The red curve shows the experimental data, while the
blue curve is obtained from fitting of the experimental data using the
discrete Fourier transformation. The blue curve corresponds to a cavity
length of 151 nm.

We employ discrete Fourier transformation to determine the length of the cavity, which

is related to the period in Figure 3.13. For convenience, we change the variable from nC

to k. The Fourier transformation is performed from k space to the Lcavity space. The

dominant periodicity in Figure 3.13 is related to a cavity size of ∼ 151 nm, which is very

close to the width of the top gate 150 nm. The fitting result is plotted as the blue curve

in Figure 3.13.

In the bipolar regime, the periods of the oscillations are not constant, as noticed in

Figure 3.14a. The conductance is taken at Vbg = 0 V. The distance ∆nC between
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two neighboring peaks is enhanced at high charge carrier density. In Figure 3.14b, we

extract the periods ∆nC for a number of conductance curves taken at different back-gate

voltages in Figure 3.11a. The resulting periods ∆nC are presented as a function of the

displacement field. As the the displacement field increases, the height of the potential

profile rises. As a consequence, the cavity in the dual-gated region reduces its length,

leading to a larger ∆nC ∼ 1
Lcavity

.
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Figure 3.14: The periods of conductance oscillations in the bipolar regime (npnn).
(a) An example of the conductance oscillation varies with nC . The data
is taken at Vbg = 0 V. The oscillation periods are not constant. (b) The
oscillation period ∆nC increases with the displacement field.

The discrete Fourier transformation has been used to analyze the cavity size in the

unipolar regime, i.e. pppp and pppn. For sample BL12D, we obtain Lcavity = 721 nm

for the pppp regime and Lcavity = 536 nm for the pppn regime, respectively. On the other

hand, we have measured the lengths of the cavity according to the AFM measurements.

In the pppp regime, the cavity L-C-R-M is about 800 nm long. And in the pppn regime,

the length of the cavity L-C-R is about 603 nm. Therefore, the cavity length extracted

with the Fourier transformation is consistent with the geometry of the sample.

The amplitudes of the conductance oscillations depend on the transmission probability

of the cavity. The oscillations are visible as long as the reflection and transmission

probabilities are comparable at the p-n interface. If the interface is very transparent for

electrons, there will be no trapped electrons in the cavity. On the contrary, the electrons

will not enter the cavity if the p-n interface is too reflective. For bilayer graphene with

an atomically sharp potential barrier, the electron undergoes perfect reflection at the

normal incident angle in the absence of a band gap. Hence, an oblique p-n interface

assists the quasiparticle interference due to the selective transmission with respect to

the incident angles. In the bipolar regime, the application of the top gate generates

two oblique potential steps between the n- and p- type charge carriers. The non-zero
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incident angles give rise to the high visibility of the Fabry-Pérot resonances. However,

in the unipolar regime, the situation is different. The p-n junctions are only available in

the cases of pppn or pppp regimes. The potential steps created by the heavily n-doped

leads are relatively sharp because the potentials decay rapidly close to the leads. Thus,

a large number of incident carriers with angles close to 0 are reflected. The resulting

amplitudes of the Fabry-Pérot resonances are small.

3.5 Fabry-Pérot oscillations at low magnetic fields

Anti-Klein tunneling is expected to occur at normal incidence in bilayer graphene, as

shown in Figure 3.4. However, the conductance at zero field is an integration of all

possible incident angles. It is possible to study anti-Klein tunneling using a Fabry-Pérot

interferometer at low magnetic fields [8, 33], where the quantum Hall regime has not yet

emerged. When a low magnetic field is applied, the trajectories of electrons are bent

because of the Lorentz force, and follow cyclotron orbits. The radius of the cyclotron

motion is larger than the length of cavity in the low magnetic fields, therefore quan-

tum interference can occur. The Fabry-Pérot resonances appear if the phase difference

between the neighboring transmitted waves satisfies

∆θ = θWKB + θAB + θBerry = 2nπ, n ∈ Z. (3.31)

Here, θWKB = 1
~
∫ a
−a px(x′)dx′ is the Wentzel–Kramers–Brillouin (WKB) phase. The

closed loop formed by different paths encloses an area δA and gives rise to an Aharonov-

Bohm phase θAB = eBδA/~. θBerry is the Berry phase that is illustrated in Section 3.1.3.

The Fabry-Pérot oscillations in a low magnetic field are shown in Figure 3.15. The

measurements have been performed at Vbg = 20 V. Figure 3.15 presents the variations

of dG/dVtg as a function of the top-gate voltage Vtg and the magnetic filed B. It is

evident that the fringes disperse with B and behave differently at Vtg far away from the

charge neutrality point (CNP) (< −2.3 V) and at Vtg close to CNP (−2.3 ∼ −1 V).

In the region away from the CNP, the fringes disperse parabolically with respect to B,

while the fringes change linearly with B in the region close to the CNP. When tunning

the Fermi level away from the CNP, a shift in Fabry-Pérot fringes occurs at a certain B

in the range of 100 mT ∼ 300 mT. We note that the shift in period increases with Vtg,

and reaches a half-period at Vtg ≈ −1.4 V, which indicates that a Berry phase of π exists.

This is similar to the case of single-layer graphene, as demonstrated by Young et al. [8].

Then, the shift in period decreases as we continuously tune the Vtg away from the CNP.

The shift almost disappears at the left-most fringe , where the Berry phase is nearly

2π. Therefore, by tuning the Fermi level with the top gate, the Berry phase changes
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Figure 3.15: Effect of low magnetic fields on Fabry-Pérot oscillations (sample BL12C)
at 4.2 K. The transconductance are shown as a function of Vtg and
magnetic field B. The map is measured at Vbg = 20 V in the npnn
regime.

continuously from 0 to 2π. This is inconsistent with the conventional Berry phase of

2π in gapless bilayer graphene. However, in gapped bilayer graphene, the Berry phase

can take values from 0 to 2π, as we discussed in Section 3.1.3.2. Varlet et. al. [12] have

observed the Berry phase of 1.22 ∼ 1.46π in gapped bilayer graphene.

Figure 3.16: The angular transmission probability for a sharp potential. In the pres-
ence of a band gap, anti-Klein tunneling transits to Klein tunneling.
Figure from Ref. [12].

The Berry phase in bilayer graphene differs from that in single-layer graphene. In

single-layer graphene, the Berry phase of π requires that the trajectories of the reflected

electrons form closed loops that enclose the origin in the momentum space. This is not

the case as the electrons bounce back and forth between two parallel interfaces at zero

or very small magnetic field, which is possible when the magnetic field is strong enough,

but still weak in comparison with the quantum Hall regime [33]. At this magnetic field,

the phase suddenly jumps by π. Thus the Berry phase in single-layer graphene depends
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on the magnetic field. However, in bilayer graphene, a non-trivial Berry phase can be

picked up even in zero magnetic field as long as the interlayer symmetry is broken by

gating. The Berry phase is 2π only in the absence of the interlayer asymmetry. It is

predicted that the interlayer asymmetry disrupts the anti-Klein tunneling [12], as shown

in Figure 3.16. Anti-Klein tunneling evolves into Klein tunneling at the normal incident

angle as the asymmetry parameter varies. Since the transmission becomes finite, the

paths of electrons can pass k = 0 even at B = 0. The Berry phase is independent of the

magnetic field, and ranges from 0 to 2π depending on the asymmetry parameter u.

3.6 Conclusion

In conclusion, we have investigated a device consisting of a hBN-BLG-hBN heterostruc-

ture and two edge contacts. The device is characterized at 4.2 K. We observe strong

conductance oscillations due to the Fabry-Pérot interference at zero magnetic field. At

low magnetic fields, we perform conductance measurements in the npnn regime. The

phase shifts appear when tuning the Fermi level close to the band edge. On the contrary,

the phase shifts vanish at high charge carrier density. This illustrates a transition from

anti-Klein tunneling to Klein tunneling in the presence of interlayer asymmetry. The

corresponding Berry phase ranges from 0 to 2π.



Chapter 4

Proximity-induced

superconductivity in bilayer

graphene p-n-p junctions

4.1 Introduction to proximity-induced superconductivity

In 1911, the Dutch physicist H. Kamerlingh Onnes observed an abrupt vanishing of the

resistivity of solid mercury at T=4.15 K, which is referred to as superconductivity [57].

J. Bardeen, L. Cooper, and J. R. Schrieffer showed that superconductivity is due to the

formation of Cooper pairs, bound electron pairs of (in most cases) opposite momentum

and spins. The Cooper pairs in a superconductor obey Bose-Einstein statistics and form

a coherent superconducting condensate that can be characterized by a single macroscopic

wave function ψ = |ψ| eiϕ, with a common phase ϕ. When placing a normal metal close

to a superconductor, a finite amplitude of the pair function can be induced in the normal

metal, which is referred to as the proximity effect. The mechanism of proximity effect

in normal metals can be interpreted as Andreev reflections.

In the following, we specify the theoretical background of proximity-induced supercon-

ductivity in the conventional as well as the graphene-based Josephson junctions.

4.1.1 Josephson effect

The Josephson effect was predicted by Brian D. Josephson in 1962 [58] in the basis of the

BCS theory. When two superconductors are connected by a weak link [59], a Josephson

junction is formed, as depicted in Figure 4.1. Such a weak link can be a geometric

51
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superconductor superconductor

| ψ1 | eiθ1

| ψ2 | eiθ2

weak link

Cooper pair

Figure 4.1: Sketch of a Josephson junction. The two superconductors are connected
with a weak link, which can be a micro-constriction, an intermediate
normal metal, or a semiconductor.

constriction point contact, an intermediate normal metal and even a semiconductor. In

the original work of Josephson, a thin insulating barrier is used, but the Josephson effect

has been generalized for different types of weak links. If two superconductors are placed

close enough, the macroscopic wave functions of the two superconductors overlap, so that

Cooper pairs can be transferred via the weak link which in turn induces a supercurrent

flow between the superconductors with zero voltage drop. The supercurrent is related

to the phase difference between the two coupled superconductors, which is obtained by

the following current-phase relation

Js = Jc sinϕ. (4.1)

Equation (4.1) is known as the first Josephson equation. The supercurrent density Js

oscillates sinusoidally with the phase difference ϕ = θ2 − θ1 across the junction in the

absence of any scalar and vector potentials. The second Josephson equation defines the

voltage-phase relation, reading
∂ϕ

∂t
=

2eV

~
. (4.2)

The Josephson effect is governed by Equation (4.1) and Equation (4.2). For zero voltage,

i.e. V = 0, the phase difference is a constant, leading to a current density up to a

critical current density Jc. This is called the d.c. Josephson effect. For V 6= 0, the phase

difference ϕ varies with time, according to the second Josephson equation, it has the

analytical solution ϕ = ϕ0 + (2e/~)V t. Thus, the supercurrent in the first Josephson

equation is written as

Js = Jc sin(ϕ0 + (2e/~)V t), (4.3)

which is alternating with a frequency of ω = 2eV/~. This is known as the a.c. Josephson

effect.
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R CI IcsinϕV

Figure 4.2: Equivalent circuit for the resistively and capacitively shunted junction
(RCSJ) model.

4.1.2 The resistively and capacitively shunted junction model

Under a current bias, a classic Josephson junction is equivalent to a resistively and

capacitively shunted junction (RCSJ) [60], as sketched in Figure 4.2. The resistor R

represents the normal state resistance, and the capacitor C is taken as the capacitance

of the Josephson junction. At finite voltage, the total current in a Josephson junc-

tion consists of three major components: the Josephson current Is, the normal current

IN , and the displacement current ID. Here we neglect the fluctuation current IF in-

duced by noise since its contribution is small at low temperatures. In contrast to the

Josephson current, the normal current originates from quasiparticles tunneling at the

finite voltage-state. The displacement current is due to the finite capacitance of the

Josephson junction. The total current is expressed as

I = Ic sinϕ+
V

R
+ C

dV

dt
. (4.4)

With the consideration of the voltage-phase relation Equation (4.2), the current is de-

scribed by the following differential equation

I = Ic sinϕ+
~

2eR

dϕ

dt
+

~C
2e

d2ϕ

dt2
. (4.5)

The equation of motion defined by Equation (4.5) is analogous to that of a particle with

mass
( ~

2e

)2
C and damping

( ~
2e

)2 1
R moving in a potential ~Ic

2e (1 − cosϕ − I
Ic
ϕ). This

potential is called the tilted washboard potential. We define the Stewart-McCumber

parameter βC as the ratio of the time constant τRC = RC to the characteristic time

constant τc = ~
2eIcR

that is associated with the phase evolution across the junction. The

relation between βC and the quality factor Q is expressed as βC = Q2. By using the

Stewart-McCumber parameter βC = 2e
~ IcR

2C and the normalized time τ = t
2eIcR/~ ,

Equation (4.5) is rewritten as

I

Ic
= βC

d2ϕ

dt2
+
dϕ

dt
+ sinϕ. (4.6)
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ϕ

U

I = 0

I < Ic

I = Ic

I

ωp

Figure 4.3: The damped motion of a quasiparticle in the tilted washboard potential,
models the evolution of the phase difference between the 2 superconduct-
ing leads of a Josephson junction.

The motion of the quasiparticle in a tilted washboard potential is depicted in Figure 4.3.

If the bias current is zero, i.e. I = 0, the particle oscillates with the plasma frequency

ωp =
√

2eIc
~C around a minimum of the periodic horizontal potential. The washboard

potential tilts with increasing bias current, as schematically shown in Figure 4.3. As

long as I < Ic, the particle stays in the minimum of the potential, which corresponds

to the zero-voltage state. When I reaches Ic, the particle starts to move out because

there is no minima in the potential, which corresponds to a finite voltage state. It

is noteworthy that, for I < Ic, the particle can escape from the potential by thermal

excitation and by (macroscopic) tunneling.

The competition between the viscous damping and the inertia of the particle plays

an important role in the hysteresis behaviour of the I − V curves in the case of I <

Ic. The hysteresis is described by the Stewart-McCumber parameter βC . Figure 4.4

illustrates the I−V curves for βC in three different limits. For an overdamped Josephson

junction (βC � 1), the capacitance and/or resistance of the junction are small. In the

tilted washboard model, this regime is equivalent to the mass of the particle being

small and the damping large, since the mass is proportional to the capacitance C and

the damping is inversely proportional to the resistance R. The junction immediately

switches to the zero-voltage state as I decreases below Ic due to the small inertia of the

particle. In this situation, the time required for the charge on the capacitor to relax

is almost instantaneous compared to the time scale τc. There is no hysteresis on the

I − V characteristics. However, for an underdamped Josephson junction (βC � 1), the

capacitance and/or resistance of the junction are large and the damping is small. A bias

current, which is much smaller than Ic, is required to stop the particle moving down the

potential. In this case, the time scale τc is much shorter than the time required for the

charge on the capacitor to relax. A strong hysteresis of the I − V curves is observed.
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For an intermediate regime, the amount of hysteresis is determined by the damping

parameter βC .

-4

-3

-2

-1

 0

 1

 2

 3

 4

-100  0  100

βC=0.25 βC=4 βC=100

I 
(µ

A
)

V (µV)

    

    

    

    

    

    

    

    

    

-100  0  100

βC=0.25 βC=4 βC=100

V (µV)

    

    

    

    

    

    

    

    

    

-100  0  100

βC=0.25 βC=4 βC=100

V (µV)

Figure 4.4: The hysteresis behaviour of the I − V curves for various βC . As the βC
increases, the I−V curve realize a non-hysteresis to hysteresis transition.

It is important to note that the critical current depends on the temperature. As the

temperature increases, the current fluctuation induced by the thermal background has

to be taken into account. By adding a noise current IF in parallel to the resistor R in

the RCSJ model, the system is described by the stochastic differential equation

I

Ic
+
IF
Ic

= βC
d2ϕ

dt2
+
dϕ

dt
+ sinϕ. (4.7)

The random fluctuations of the current cause variations in the average slope of the tilted

washboard potential. This makes it possible for a particle to escape from the minimum

of the potential even before the critical current is reached. In the underdamped limit, the

particle gains a velocity that is determined by the damping of the junction after it escapes

from the potential well, so that it can roll down the tilted washboard potential. These

fluctuations give rise to a premature critical tilt below which the particle is trapped,

and a reduced critical current Ic. In the overdamped limit, the particle escapes from the

potential maximum but does not obtain a velocity since the strong damping slows down

the particle and traps it in a nearby potential. This process of escaping and retrapping

leads to a diffusive behavior of particles with a finite average velocity. In the RCSJ

model, this corresponds to a phase diffusion with a finite voltage supercurrent. In this

process, the maximum supercurrent is reduced below the critical current.

4.1.3 Fraunhofer diffraction pattern

When placing a rectangular Josephson junction in a perpendicular magnetic field ~B = (0,

0, Bz), a magnetic flux Φ penetrates an area, enclosed by the contour of the dashed blue
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Figure 4.5: Sketch of Fraunhofer diffraction pattern in an extended Josephson junc-
tion. (a) Sketch of a Josephson junction in the magnetic field perpendic-
ular to the plane of the junction. (b) Josephson current density along the
superconducting leads. (c) Fraunhofer diffraction pattern for a homoge-
neous current density. Figures refers to Ref.[57].

line limited in y direction roughly by the thickness of the N and two times of the London

penetration depth λ, as sketched in Figure 4.5a. The gauge invariant phase difference ϕ

along the superconducting leads (x-axis) becomes non-uniform, but homogeneous in the

direction parallel to the magnetic field (z-axis). In the junction plane, the total phase

change along a closed contour equals 2nπ, resulting in a phase difference along the x-axis

obeys the following function

ϕ(x) =
2π

Φ0
Bz(L+ 2λ)x+ ϕ0 =

2πΦ

Φ0
+ ϕ0. (4.8)

Here, Φ0 is the flux quantum, L is the length of the normal metal, ϕ0 is the phase

difference at x = 0, and Φ = Bz(L+ 2λ)x.

The supercurrent density Js(x) = Jc(x) sinϕ(x) oscillates sinusoidally along the x-axis

with a period of ∆x = Φ0
Bz(L+2λ) , which is dependent on the magnetic field, as depicted

in Figure 4.5b. Thus, the magnetic flux within a single period is equivalent to one

magnetic flux quantum, Φ = Bz(L + 2λ)∆x = Φ0. As an example, Figure 4.5b shows

the case of Φ = 5
2Φ0. The net supercurrent cancels to zero over a complete oscillation

period, therefore, only one odd half-period contributes to the net supercurrent through

the junction, which is given by

Ic(Bz) =

∫ W/2

−W/2
Jc(x) sin(ϕ(x))dx. (4.9)

The integration in Equation (4.9) can be extended to the limit x→ ±∞ because Jc(x) is

zero outside the junction, i.e. Jc(x) = 0 for |x| > W/2. The expression is then rewritten

as

Ic(Bz) = eiϕ0

∫ ∞
−∞

Jc(x)eikxdx, (4.10)
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where k = 2π
Φ0
Bz(L + 2λ). The phase factor eiϕ0 has no influence on the magnitude of

the supercurrent so that the maximum Josephson current Imc (Bz) is given by

Imc (Bz) =

∣∣∣∣∫ ∞
−∞

Jc(x)eikxdx

∣∣∣∣ , (4.11)

which is the Fourier transform of the Josephson current density Jc(x). For a homoge-

neous spatial distribution of the maximum Josephson current density, i.e. Jc(x) = Jc,

the dependence of the maximum supercurrent on the magnetic field obeys the following

relationship

Imc (Φ) = Ic(0)

∣∣∣∣∣sin
πΦ
Φ0

πΦ
Φ0

∣∣∣∣∣ . (4.12)

Here, Φ = BzW (L + 2λ) is the magnetic flux through the junction and Ic(0) = JcW

is the maximum supercurrent at zero magnetic field. This function forms the well-

known Fraunhofer diffraction pattern, as shown in Figure 4.5c, which is analogous to

the diffraction pattern of light passing trough a narrow slit. The minima of Imc refers to

a number of full oscillation periods of the Josephson current density, which fits into the

junction. Each period has a flux of Φ0.

4.1.4 Andreev reflection

The proximity-induced superconductivity exists in a NS or SNS junction, where Cooper

pairs in the superconductor can diffuse into the normal metal as phase correlated

electron-hole states. This proximity effect is well understood by introducing the An-

dreev reflection. For electrons with an excitation energy of ε > ∆, the incident electrons

on the N/S interface reflect and transmit as normal quasiparticles. In the case of ε < ∆,

the incident electron from the normal metal cannot enter the superconductor unless it

binds with another electron with opposite spin, forming a Cooper pair. This process

gives rise to a hole retro-reflected back to the normal metal. The mechanism of An-

dreev reflection is schematically depicted in Figure 4.6. Since the incident electron and

the reflected hole maintain the phase-coherent properties of Cooper pairs, the following

conservation principles govern in the Andreev reflection processes:

i) Charge is not conserved. A charge of 2e is missing in the normal metal and transferred

to the superconductor as a Cooper pair.

ii) Energy is conserved. The incident electron has an excitation energy of ε above the

Fermi energy, and the reflected hole has the same excitation energy below the Fermi

energy.
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Figure 4.6: The schematics of a Andreev reflection process. (a) The Andreev reflec-
tion process at the N/S interface. An incident electron with spin-up (red
filled circle) is reflected as a hole (green empty circle) with spin-down by
the pairing potential. At the same time, a Cooper pair transfers into the
superconductor. (b) The corresponding energy diagram.

iii) Spin is conserved. The spin of the reflected hole is opposite to that of the incident

electron.

v) Momentum is approximately conserved at small excitation energy. The momentum

of the reflected holes is defined as ~kh = ~kF − ~δk, and the momentum of the incident

electrons is denoted as ~ke = ~kF + ~δk, where δk = ε/~vF . In the case of ε = 0, the

momentum is conserved, so that the reflected hole exactly traces back the path of the

incident electron.

The Andreev reflection is time-reversal symmetric, so that an incident hole can be re-

flected as an electron as well. Furthermore, the process of the Andreev reflection is

phase coherent, thus the phases of the reflected hole θh and the reflected electron θe are

defined as

θh = θe + ϕ− arccos(ε/∆),

θe = θh − ϕ− arccos(ε/∆),
(4.13)

where ϕ is the phase difference of two superconductors. In the case of a NS junction, ϕ

can be chosen to be zero by an appropriate gauge transformation. For charge carriers

at the Fermi energy (ε = 0), we have the relation: arccos(ε/∆) = π/2.

4.1.5 Blonder-Tinkham-Klapwijk (BTK) theory

The BTK theory is commonly used to describe the I − V characteristics in a NS junc-

tion [61]. We assume that the NS junction consists of an infinite normal metal and an

infinite superconductor in the electrical contact at the N/S interface. The conduction
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model in the NS junction is described by the Bogoliubov-de Gennes equations(
−(H + µ) ∆(x)

∆(x) H + µ

)(
Ψe(x, t)

Ψh(x, t)

)
= ε

(
Ψe(x, t)

Ψh(x, t)

)
, (4.14)

where H = − ~2
2m∇

2 is the Hamiltonian of free electrons in a normal metal. ε > 0 is

the excitation energy, and µ is the chemical potential or Fermi energy in the normal

region. ∆(x) is the spatially varying superconducting pairing potential, i.e. ∆(x) = 0

in the normal region but ∆(x) = ∆ in the superconductor. Ψe(x, t) and Ψh(x, t) are

the electron and the hole wave functions, respectively. The solution of Equation (4.14)

bears the form

Ψ(x, t) =

(
Ψe(x)

Ψh(x)

)
e−iεt/~. (4.15)

The four types of quasiparticle waves for a given energy are described as

Ψ±k+ =

(
u

v

)
e±ik

+x, Ψ±k− =

(
v

u

)
e±ik

−x. (4.16)

Here, k± =
√

2m(µ ±
√

(ε2 −∆2))1/2, u(k > kF ) and v(k < kF ) are the electron-like

and hole-like components of the two wave functions, respectively. According to the BCS

theory, we have the following relationship

u2 =
1

2

[
1 +

√
ε2 −∆2

ε

]
, (4.17)

v2 =
1

2

[
1−
√
ε2 −∆2

ε

]
, (4.18)

ε2 =

(
~2k2

2m
− µ

)2

+ ∆2. (4.19)

We consider an incident electron at the N/S boundary, the incident electron wave Ψinc,

the reflected electron wave Ψref and the transmitted electron wave Ψtran are expressed

as

Ψinc(x) =

(
1

0

)
eiq

+x, (4.20)

Ψref (x) = a

(
0

1

)
eiq
−x + b

(
1

0

)
e−iq

+x, (4.21)

Ψtran(x) = c

(
u

v

)
eik

+x + d

(
v

u

)
e−ik

−x. (4.22)
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where k± and q± are the wave vectors in the superconducting and normal sides, respec-

tively. ~q± =
√

2m
√

(µ± ε).

The N/S interface is usually not transparent, and the interfacial scattering is taken into

account by introducing a repulsive potential Hδ(x) at the interface. A dimensionless

parameter is used to describe the barrier strength Z = H/~vF . The boundary conditions

require the continuity of the wave functions at the interface x = 0: ΨN = ΨS and that

the derivative of the wave functions satisfies (~/2m)(Ψ
′
S−Ψ

′
N ) = HΨ(0) at the boundary.

By applying the boundary conditions, we obtain the probability A(ε) of the Andreev

reflection as a hole, the probability B(ε) of the normal reflection as an electron, the

probability C(ε) of the transmission through the interface with a wave vector on the

same side of the Fermi surface (q+ → k+), and the probability D(ε) of the transmission

crossing through the Fermi surface (q+ → −k−). In the case of ε < ∆, we have the

following relationships

A(ε) =
∆2

ε2 + (∆2 − ε2)(1 + 2Z2)2
, (4.23)

B(ε) = 1−A, (4.24)

C(ε) = D(ε) = 0. (4.25)

For a transparent interface, Z = 0, A(ε) = 1, the incident electrons are completely

reflected as holes. At a finite Z, the incident electrons are partially Andreev reflected

as holes (0 < A(ε) < 1) and partially normal reflected as electrons (0 < B(ε) < 1).

Figure 4.7: The reflection and transmission coefficient at the N/S interface for various
barrier strength Z. Figure from Ref. [61].
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In the case of ε > ∆, the probability coefficients are expressed as

A(ε) =
u2v2

γ2
, (4.26)

B(ε) =
(u2 − v2)2Z2(1 + Z2)

γ2
, (4.27)

C(ε) =
u2(u2 − v2)(1 + Z2)

γ2
, (4.28)

D(ε) =
v2(u2 − v2)Z2

γ2
, (4.29)

where γ2 = (u2 + Z2(u2 − v2))2. The energy-dependent transmission and reflection

coefficients are shown in Figure 4.7.

The current is conserved in the junction, thus it is simple to calculate the current in

the N side, where all current is carried by the single particles. The total current flow

through the junction reads

INS = 2N(0)evFS

∫ ∞
−∞

(f(ε− eV )− f(ε))(1 +A(ε)−B(ε))dε, (4.30)

where S is the cross section area, N(0) is the one-spin density of states at Fermi energy,

and f(ε) = (e(ε−µ)/kT + 1)−1 is the Fermi-Dirac distribution. From Equation (4.30), the

I−V curves for an arbitrary barrier strength are obtained, as shown in Figure 4.8. With

an increase of the barrier strength Z, the I−V characteristic changes continuously from

metallic to tunneling limit.

Figure 4.8: Current versus voltage for various barrier strength Z at zero temperature.
Figure from Ref. [61].

In the normal state, where both sides of the interface are normal metals, the probability

of the Andreev reflection is A = 0, and the probability of transmitted electrons is
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C = 1 − B = (1 + Z2)−1. The current of the normal state is obtained from Equation

(4.30) as

INN =
2N(0)e2vFS

1 + Z2
V =

V

RN
. (4.31)

At high voltages (eV � ∆), INS is linearly dependent on V with a slope of RN . However,

there is a constant displacement INS − INN , which is denoted as an excess current Iexc.

On the I−V curve, the excess current is found by extrapolating back to the V = 0 axis.

The excess current is given by

Iexc = (INS − INN ) (eV � ∆)

=
1

eRN (1−B(∞))

∫ ∞
0

(A(ε)−B(ε) +B(∞))dε,
(4.32)

where B(∞) = Z2/(1 + Z2) is the reflection probability of electrons in the normal

state. Equation (4.32) implies that the excess current is due to superconductivity. In

Figure 4.8, the dashed line illustrates the dependence of INN on V. The excess current

is larger for a relatively transparent N/S interface. For Z = 0 and ∆� kT , we have

Iexc =
4∆

3eRN
tanh

eV

2kT
. (4.33)

4.1.6 Multiple Andreev reflection

In a SNS junction, multiple Andreev reflection (MAR) is possible. Figure 4.9 schemati-

cally shows the multiple Andreev reflection process. When an electron is injected from

the left superconductor SL into the normal metal with an energy of ε, it gains an energy

of eV when it arrives at the N/SR interface because of the difference of the chemical

potential µL − µR = eV . A hole is then reflected back and passes through the normal

metal. In this process, the hole also obtains an energy of eV , since it has the opposite

charge with respect to the electron. At the SL/N interface, the hole is reflected as an

electron owing to the time-reversal symmetry of the Andreev reflection. By repeating

this process, the charge carrier gains an energy of neV , where n is the number of reflec-

tions. Once the energy of the charge carrier is larger than 2∆, the charge carrier enters

the quasiparticle continuum.

With an increase of the bias voltage, the particle reaches an energy of 2∆ with fewer

reflections. The multiple Andreev reflection process induces an excess current similar to

the Andreev reflection, which is described by Klapwijk et al. [62] with the BTK theory.

For ∆� kT and ∆� eV with transparent interfaces, the excess current is given by

Iexc =
8∆

3eRN
tanh

eV

2kT
, (4.34)
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Figure 4.9: The process of multiple Andreev reflection in a SNS junction. The dif-
ference of the chemical potentials between the left and the right super-
conductor is eV . The quasiparticles pass through the SNS junction after
accomplishing n = 2∆/eV Andreev reflections.

which is twice of the value calculated for the Andreev reflection in a NS junction [61].

The multiple Andreev reflection gives rise to the non-linearity of I − V characteristics,

which is clearly visible in the differential conductance dI/dV (or differential resistance

dV/dI) versus bias voltage V curves. A series of peaks at voltages of 2∆/ne, called

subharmonic gap structure, are observed, as shown in Figure 4.10.

Figure 4.10: The differential resistance versus eV/∆ simulated for various tempera-
tures. Figure from Ref. [63].



Chapter 5. Proximity-induced superconductivity in dual-gated bilayer graphene 64

4.1.7 Andreev reflection in magnetic field

In the presence of a magnetic field, the Andreev reflection is modified because of the

cyclotron motion of the electrons or holes. In a low magnetic field, where the cyclotron

radius is much greater than the channel length, i.e. rc � L, the supercurrent is mediated

by Andreev bound states as long as the phase shift between the electron and the reflected

hole is small, δθ < L/rc cos θ, which is equivalent to a critical field B∗ ∼ ∆
eLvf

[64]. This

process is depicted in Figure 4.11b. The Andreev reflection for B < B∗ are similar to

the zero-field situation, in which a small phase shift δθ < ∆ tan θ/εF is allowed by the

Andreev reflection, as described in Figure 4.11a. For B < B∗, the interference between

Andreev states from different paths causes a periodic suppression of the supercurrent

when the flux Φ is a multiple of a flux quantum Φ0. The maximum supercurrent exhibits

a Fraunhofer pattern as the flux changes, which is described by the Josephson effect in

Section 4.1.3.

a
N SS

b
N SS

B

c
N SS

B

d
N SS

B

Figure 4.11: Andreev reflection in zero magnetic field B = 0 (a), low magnetic field
B < B∗ (b), intermediate magnetic field B < B∗ (c), high magnetic
field B � B∗ (d). Figures adapted from Ref. [64].

In a sufficiently high magnetic field (B � B∗), the quantum Hall effect occurs and the

cyclotron orbits are small (rc < L/2) so that the motion of the reflected hole bends in

the same direction as that of the incident electron along the N/S interface, as shown in

Figure 4.11d. In the clean limit, the electron-hole pairs can retain phase-coherence after

several Andreev reflections. The conversion of electron and hole along the N/S interface

forms the Andreev edge states, which destroy the backscattering of the standard Andreev

reflection, resulting in the suppression of the supercurrent [65]. The conductance in a

SNS junction is strongly affected by the Andreev edge states. A conductance step

of 2e2/h is predicted for a transparent N/S interface [66, 67]. For a finite-scattering

interface, the conductance exhibits an oscillatory behavior. The Andreev edge states can

be detected by using a superconductor with a high critical field Hc, e.g. Niobium [64, 68].

In the intermediate field B > B∗, the trajectories of the electron-hole pair cannot develop

closed loops, as sketched in Figure 4.11c. The electron returns to the incident interface

after a few Andreev reflections, therefore the supercurrent is not able to pass the bulk
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metal. There is an exceptional case that the supercurrent can pass through the junction

when the Andreev reflections at the edge of the normal region transfer Cooper pairs.

4.1.8 Proximity-induced superconductivity in graphene

Proximity-induced superconductivity in graphene — in our case induced by supercon-

ducting Al leads — draws special attention because the electrons in graphene are inter-

preted as massless relativistic particles described by the Dirac equation. The process

of the Andreev reflection explains the proximity effect in an SNS (or NS) junction and

is quantum mechanically described by the Bogoliubov-de Gennes equation. The two

unrelated fields, the relativistic physics and the physics of many-body ground states, are

linked together in a superconductor-graphene-superconductor (SGS) junction, which are

expressed in the Dirac-Bogoliubov-de Gennes (DBdG) equation [69],

(
H − EF ∆

∆∗ EF − T HT −1

)(
Ψe

Ψh

)
= ε

(
Ψe

Ψh

)
. (4.35)

H is the single-particle Hamiltonian in graphene that is

H =

(
H+ 0

0 H−

)
(4.36)

with H± = −i~v(σx∂x ± σy∂y) + U . U is the electrostatic potential and T is the time-

reversal operator, which interchanges the valleys. The Hamiltonian is time-reversal

invariant for zero magnetic field, T HT −1 = H. The pair potential ∆(x) is zero in the

normal metal but bears the form of ∆0e
iϕ in the superconductor. For a uniform system,

an eigenstate of the DBdG equation is chosen as a plane wave (u, v) exp(ikxx + ikyy).

The dispersion relation for an impurity-free graphene-superconductor junction is

ε =
√
|∆|2 + (EF − U ± ~v(k2

x + k2
y)

1/2)2, (4.37)

in which the two branches of the excitation spectrum correspond to the conduction

band and the valence band. The projection of the momentum parallel or normal to the

interface are ky and kx, respectively.

The Andreev reflection is special in graphene as the two valleys are needed for a single

Andreev reflection process [69]. Because of the time-reversal symmetry (Ψ∗A−,−Ψ∗B−) =

T (ΨA+,ΨB+) (A, B denote the two sublattices, and ± label the two valleys of the

band structure), an electron in one valley is reflected as a hole in the other valley. In

Figure 4.12a, a schematic of the Andreev reflection in graphene is depicted. The incident
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a b

Figure 4.12: Andreev reflection in graphene. (a) The intraband reflection and
interband reflection for the excitation energy ε < EF and ε >
EF ,respectively. (b) The intraband reflection is the Andreev retro-
reflection, and the interband reflection is the specular Andreev reflection.
Figure from Ref. [70].

electrons are in the conduction band (filled state) from one valley. Given the fact that

the Fermi level of graphene can be continuously tuned by applying a gate voltage, two

different Andreev reflection processes may occur. For ε < EF , the reflected hole is in

the conduction band since the energy has to be conserved during the Andreev reflection.

This intraband reflection is similar to the situation of the traditional NS junctions. For

ε > EF , however, the reflected hole is an empty state in the valence band. The Andreev

reflection is an interband process, which most likely takes place in the vicinity of the

Dirac point.

In the Andreev reflection process, the momentum ky and the excitation energy ε are

conserved at the interface. Thus, Equation (4.37) is solved at given ky and ε. In the

graphene side, U = ∆ = 0, the x component of the velocity is defined by the derivative

vx = ~−1dε/dkx, which is positive for the reflected states. There are two possible kx

values corresponding to the positive slope vx in the dispersion relation. One is for the

reflected electron state (normal reflection) and the other is for the reflected hole state

(Andreev reflection). Since a hole in the conduction band moves in a direction opposite

to its wave vector, both vx and vy change sign if ε < EF . Therefore, the intraband

Andreev reflection is a retro-reflection. If ε > EF , a hole in the valence band moves

in the direction of its wave vector. The reflection changes the sign only of vx, while vy

remains unchanged. This Andreev reflection is specular which is related to interband

reflections, as shown in Figure 4.12b.

By applying the Dirac-Bogoliubov-de Gennes equation, Titov and Beenakker [71] predict

the existence of a supercurrent at the Dirac point and give a formula for the critical

supercurrent in the ballistic limit at zero temperature

Ic = 1.22
e∆0

~
µW

π~v
. (4.38)
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At finite temperatures, the supercurrent in SGS junction has been independently simu-

lated by Hagymási et al. [72] and Sarvestani et al. [73].

a b

Figure 4.13: Bipolar supercurrent. (a) A schematic of a SGS junction. The two elec-
trons in a Cooper pair pass graphene through two different K-valleys,
denoted by the red and blue cones. (b) An example of the bipolar super-
current. The supercurrent is carried by electrons or holes in graphene.
Figures from Ref. [74].

The proximity-induced superconductivity in graphene has firstly been experimentally

investigated by Heersche et al. [74]. The supercurrent was measured in a Ti/Al-graphene-

Ti/Al Josephson junction. The authors found that the supercurrent can be carried by

either electrons in the conduction band or holes in the valence band. By changing the

charge carrier density with a back-gate, the supercurrent is tunable and reaches a value

of 140 nA at high density. Furthermore, the supercurrent still exists at the Dirac point,

where the charge carrier density is zero. Choi et al. [75] claim that the supercurrent can

be switched off by creating a p-n potential barrier in graphene. The multiple Andreev

reflection is also expected in the SGS junction. The corresponding subharmonic gap

structure up to n = 6 in diffusive graphene has been observed by Du et al. [76], which

indicates the highly transparent SG interfaces. Apart from using Al as electrodes, high

temperature superconductors, i.e. Ta (Tc = 2.5 K) [77], Pb (Tc = 2 K) [78], PbIn

(Tc = 4.8 K) [79], TiNb (Tc = 8.5 K) [80], have been used as electrodes to investigate

the superconductivity in SGS junction. The critical field Hc is much higher in the high-

Tc superconductor, which allows to examine the quantum Hall effect of graphene in the

superconducting state [80]. In the presence of Andreev edge states, the quantum Hall

plateau conductance has been enhanced compared to the normal state. The previous

results mentioned above are mainly limited to the diffusive regime, preventing to probe

the intrinsic properties of graphene. Although in ballistic graphene, the supercurrent

has been studied theoretically for a long time, it has been observed in recent experiments

only [64, 68] benefiting from the great improvement of the sample quality.
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So far, most investigations on the proximity effect of graphene Josephson junctions focus

on monolayer graphene and only a few works take bilayer graphene into consideration.

Muñoz et al. [81] utilize the tight-binding Bogoliubov-de-Gennes model to simulate the

Josephson current in a bilayer-graphene-based Josephson junction. The proximity effect

for bilayer graphene is similar to that for monolayer graphene in many cases, especially

for a undoped short junction [82]. However, a few differences have been predicted. For an

undoped junction, the supercurrent is not homogeneously distributed within each layer

although the average current is constant in the normal region [81]. Therefore, a weak

interlayer current is expected. By applying a displacement field to bilayer graphene, the

supercurrent can be switched off due to the gap opening if the length of the junction

is larger than the Fermi wavelength. Takane et al. [82] derive an analytic solution for

the supercurrent in bilayer graphene SGS junction, which has a simple form at the zero

temperature

Ic = e
2µW

πγ0

√
γ1

µ

Γ
2 ∆0

∆0 + Γ
2

, (4.39)

where µ is the chemical potential, γ0 is the nearest-neighbor in-plane transfer integral,

γ1 is the nearest-neighbor vertical coupling, and Γ is the strength of the tunnel coupling.

In sharp contrast to monolayer graphene, bilayer graphene is peculiar because of the

possibility to open a band gap and the anti-Klein tunneling of charge carriers in the

presence of a potential barrier. In the following, we present the measurement results on

proximity-induced superconductivity in a bilayer graphene Josephson junction with a

potential barrier.

4.2 Normal state resistance

In this section, we characterize the normal-state resistances for two devices at low tem-

perature of 4.2 K where conductance maps were already shown in Figure 3.9a and

Figure 3.11a. The transport properties have been discussed in Chapter 3. Here, Fig-

ure 4.14 presents the resistance measurement of two devices as a function of the top-gate

voltage Vtg and the back-gate voltage Vbg. The two devices are both fabricated from

the hBN-BLG-hBN heterostructure. The ratios of W/L for both devices are set to be

5, but the lengths of the devices L are 1 µm and 0.8 µm for the sample BL12C and

BL12D, respectively. The two resistance maps are measured separately for two different

cool-downs. Because of the thermal cycling between the two measurements, the intrinsic

doping has been slightly changed for the sample BL12D at the second cool-down, thus

we observe a small shift of the charge neutrality point on the resistance map, as observed

in Figure 4.14b.
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Figure 4.14: Resistance as a function of Vtg and Vbg at the normal state for the sample
BL12C (a) and BL12D (b), respectively. The two samples are both
measured at a temperature of 4.2 K but for two different cool-downs.

A comparison of the resistance for the two devices at the same density shows that the

resistance of the sample BL12C is higher than of BL12D in the npnn, pnpp, pnpn, pppp

and pppn regions wile it reaches similar values in the nnnn region. Since the two samples

have the same W/L ratio, the resistances in the nnnn region are 42 Ω and 48 Ω at a

charge carrier density of −2.55×1012 cm−2 for sample BL12C and BL12D, respectively.

The reason is as follows: the transmission for the two devices is similar in the absence of

the p-n interfaces in the nnnn region. However, it is much lower for the shorter device

in the npnn, pnpp, pnpn, pppp and pppn regions where p-n interfaces exist. The p-n

interfaces for the pppp region come from the edges of graphene which are n-doped by

the source/drain contacts.

In the following, we use the resistance map shown in Figure 4.14a as the normal state

resistance for the sample BL12C, since the normal state and superconducting state (25

mK) are measured during the same cool-down. For the sample BL12D, the normal state
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resistance is extracted from the linear part of the I − V curves which are measured

independently at a temperature of 15 mK.

4.3 Ballistic Josephson current in S-BLG-S junctions

In this section, we investigate the Josephson effect of two junctions with a length L of 1

µm and 0.8 µm, respectively. Al leads are used as superconductors. For bulk aluminum,

the energy gap is 2∆ ∼ 340 µeV at T = 0 K and the transition temperature Tc is ∼ 1.18

K [83]. For the junction of L = 1 µm, we estimate the mean free path lm from the

normal state conductivity as

lm =
π

2
vF
σm0

ne2
∼ 8.78 µm. (4.40)

Here, vF ≈ ~kF /0.035m0 is the Fermi velocity of bilayer graphene, m0 is the rest mass

of electrons, n is the charge carrier density, σ is the conductivity. In the clean limit,

the phase coherence length ξ = ~vF
2πKBT

is approximately 51 µm, where vF is the Fermi

velocity of bilayer graphene. Thus, the length of the junction is much smaller than the

mean free path and the phase coherence length, L < lm < ξ. The similar relation holds

for the shorter junction as well. Hence, the transport properties in the junctions are

within the ballistic short-junction regime.

As illustrated in Figure 4.15, we observe the Josephson current in a ballistic bilayer

graphene p-n-p junction at a temperature of 25 mK. The supercurrent can be tuned by

operating the top and bottom gates. The two quadrants in Figure 4.15a for Vbg > −7.5

V correspond to the nnnn and npnn regions. As shown in Figure 4.15b, the I − V

characteristics shows a sharp jump from the normal current to the Josephson current in

the nnnn regime. The supercurrent increases monotonically with the back-gate voltage

at a constant top-gate voltage Vtg = 2 V, and a maximum Ic of 1.72 µA has been reached

for a channel length of 1 µm in the first cool-down. We note that Ic slightly changed

after thermal cycles to room temperatures. On the contrary, in the npnn regime for

Vtg = −2 V, the maximum of Ic appears at a back-gate voltage of 5 V, as pictured in

Figure 4.15d. As long as the electron density in the n region or the hole density in the

p region is low, the value of Ic is small. The maximum value in the npnn side is reached

only when the hole or electron densities are both large.

We further observe that Ic in the npnn region is one order of magnitude smaller than in

the nnnn region. The reason is that in the presence of p-n interfaces, the transmission

probabilities of charge carriers in the npnn region are dramatically reduced. Moreover,

it is found that Ic in both nnnn and npnn regimes can also be tuned by the top-gate
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voltage, as shown in Figure 4.15c. The supercurrent increases with the top-gate voltage,

which is due to the increase of the charge carrier density in the local gated region. When

the charge carrier density in the local gated region is larger than the parts outside the

potential, Ic becomes saturated.
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Figure 4.15: Supercurrent tuned by dual-gates for the sample BL12C. (a) The super-
current Ic as a function of Vtg and Vbg at 25 mK. The Ic is extracted
from the I − V curves which is measured by varying Vtg and Vbg with
steps of 0.2 V and 2.5 V, respectively. (b) The dependence of Ic on Vbg
in the nnnn region with a fix of Vtg at 2 V. (c) Vtg dependence of Ic for
Vbg = 5, 10, 15, 25 V. (d) Vbg dependence of Ic in the npnn region for
Vtg = -2 V.

Figure 4.16 shows an I − V curve measured on the device BL12D at Vbg = 40 V and

Vtg = 3.5 V for a constant current bias. As expected for an underdamped Josephson

junction, a small hysteresis is observed. The transition from a zero-voltage state to a

finite-voltage state always occurs for high currents. The difference between the critical

current and the retrapping current is small even at high density. We employ the RCSJ

model to fit the I − V curve with the following parameters: Ic = 1.55 µA and R = 33.7

Ω. We obtain a junction capacitance of C = 2.35× 10−13 F, the corresponding plasma

frequency of ωp = 1.42× 1011 Hz, and the Stewart-McCumber parameter of βC = 1.26.

Therefore, the junction is slightly underdamped. At the finite voltage, the critical current
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obtained from the experiment is lower than the calculated value because the multiple

Andreev reflection is not considered in the RCSJ model.
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Figure 4.16: The voltage-current relation measured at Vbg = 40 V and Vtg = 3.5 V
for the device BL12D at a temperature of 15 mK (blue), and the cor-
responding simulation using the RCSJ model (red). A small hysteresis
illustrates that the junction is slightly underdamped.

4.4 Multiple Andreev reflections

In a SNS junction where multiple Andreev reflection occurs, the subharmonic gap struc-

ture and excess current will be discussed in the following.

Figure 4.17a shows the I − V characteristics at Vtg = 1 V in the nnnn region. The

I−V curves switch from a linear behavior to a non-linear style as the back-gate voltage

Vbg increases. For Vbg > −2.5 V, the current remains linear in the high-voltage limit,

but does not extrapolate back to zero at zero voltage, as sketched in Figure 4.17a. The

interception on the V = 0 axis is referred to as the excess current Iexc. Since the current

is conserved along the junction, we can calculate the current in the normal region, which

has three contributions: incident electrons to the N/S interface, electrons resulting from

Andreev reflection of holes, and electrons injected into the normal metal from incident

quasiparticles in the superconductor. The excess current originates from the multiple

Andreev reflection process in the SNS junction. When an incident electron reaches to

the N/S interface and is reflected as a hole, a current flows through the junction. The

excess current is approximately 2.59 µA at Vbg = 25 V, which is larger than Ic = 1.67

µA.
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Features induced by MAR are more visible in differential conductance dI/dV (see Fig-

ure 4.17a and Figure 4.17d) than in I − V curves (see Figure 4.17a and Figure 4.17c).

Figure 4.17b displays the differential conductance dI/dV as a function of the voltage V

for different back-gate voltages Vbg. In the nnnn region, a series of maxima in dI/dV is

observed. This is due to the multiple Andreev reflection at the N/S interfaces. Theoret-

ically, the subharmonic gap structure are expected to locate at voltages of V = 2∆/ne.

However, heating effects may distort the shape as well as shift the position of MAR fea-

tures [84]. As shown in Figure 4.17e, the positions of peaks shift slightly towards lower

voltage when the temperature increases to 455 mK. At the same time, the amplitudes

of the peaks increase. Therefore, the subharmonic gap structures are more visible as the

temperature is close to Tc, which is also true for a high barrier strength [63].

In a ballistic junction, the amplitudes of MAR features can be tuned by the applied

gate voltages [85]. A comparison between Figure 4.17d and Figure 4.17b shows that the

peaks are more pronounced in the npnn region than in the nnnn region. This is because,

in the npnn region, the transmission probabilities of charge carriers are much lower in

the presence of p-n interfaces [63, 85]. By comparing the dI/dV curves at different

back-gate voltages within the npnn region, we see that the amplitudes of the peaks at

2∆/e and ∆/e increase when the charge carrier density becomes lower. In addition, the

amplitudes of the peaks decrease if the number of reflections increases [62].

From the dI/dV versus V curves, we extract the superconducting gap of the electrodes

2∆ according to the positions of subharmonic gap structure induced by MAR. The

obtained superconducting gap of the electrodes is 2∆ ≈ 210 µeV for both nnnn and

npnn regions, which is in good agreement with the data reported in Ref. [75]. Given

∆ = 1.76kBTc in the BCS theory, a critical temperature Tc of 692 mK is expected.

The experimentally measured Tc, at which the transition from the superconducting to

normal state occurs, is in the range of 692 to 934 mK, as shown in Figure 4.17f. Thus

the experimentally obtained value ∆ ≈ 105 µeV is consistent with the BCS theory.
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Figure 4.17: Excess current and subharmonic gap structure (sample BL12C). I − V
characteristics in the nnnn region at Vtg = 1 V (a) and in the npnn
region at Vtg = −2 V (c). The black dotted line in (a) indicates the
excess current Iexc for I − V curve taken at Vbg = 25 V. Differential
conductance dI/dV versus bias voltage V curves changes with the Vbg
in the nnnn (b) and npnn (d) regions. The dI/dV value is normalized
by the normal state resistance Rn of each Vbg. ∆ = 105 µm. (e) Tem-
perature dependence of dI/dV versus V curve measured at Vbg = 5 V
and Vtg = −2 V in the npnn region. (f) Resistances as a function of the
temperature.
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4.5 IcRn product

The supercurrent in a Josephson junction is correlated to the normal-state resistance .

The IcRn product is usually used to characterize the quality of Josephson junctions. Fig-

ure 4.18 shows the IcRn product that is normalized by ∆/e. The IcRn product depends

on both back-gate and top-gate voltages. Figure 4.18a shows that eIcRn/∆ increases

with the back-gate voltage for both nnnn and npnn regions, which are described by

the red-filled and blue-empty diamonds, respectively. In the unipolar regime, eIcRn/∆

(∆ = 105 µeV) increases monotonically and reaches a maximum of 0.72 at Vbg = 25 V.

In the bipolar regime eIcRn/∆ saturates after reaching its maximum of 0.19 at 5 V. The

oscillations above 5 V can be attributed to Fabry-Pérot interferences (see Section 4.7).

Figure 4.18b presents the dependence of eIcRn/∆ on Vtg for a constant back-gate volt-

age Vbg = 5 V. The value of eIcRn/∆ in the npnn region is less than 50% of that in the

nnnn region, which indicates that the diffusion of the Andreev bound state is partially

suppressed by the presence of the p-n interfaces. When tuning the Fermi energy away

from the Dirac point in the middle of the device, a saturation of eIcRn/∆ is observed

in the npnn region.
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Figure 4.18: The normalized IcRn product eIcRn/∆ for sample BL12C tuned by the
back-gate voltage Vbg (a) and the top-gate voltage Vtg (b). In (a), the
red-filled and blue-empty diamonds represent the data in the nnnn and
npnn regimes, respectively.

The IcRn product is related to the length of the channel. Ben Shalom et al. [64] measured

the supercurrent in devices with different lengths and showed that the relation between

the eIcRn/∆ and the channel length exhibits a 1/L dependence in the ballistic regime.

A maximum value of 0.43 is obtained for a device of 150 nm, while the value of eIcRn/∆

is below 0.1 for a device longer than 1 µm. In the present work, we obtain a maximum

IcRn of 0.72 for a 1-µm long device, which is by far the highest value reported so far. The
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theoretical IcRn products are usually estimated for a fully transparent N/S interface.

For example, IcRn = 2.44∆/e has been calculated for ballistic short junctions (sample

length L� ξ) [69]. If we take the 1/L dependence into consideration, our result is close

to the ballistic limit, which indicates that the N/S interfaces are highly transparent in

the unipolar regime. In the npn region, the reduction of the IcRn product is due to the

finite transmission probability of the p-n interfaces.

4.6 Temperature dependence of the supercurrent

If the temperature increases, the supercurrent decreases. Figure 4.19a shows the tem-

perature dependence of supercurrent. The blue and red dots denote the supercurrent

in nnnn and npnn regions, respectively. The measurements have been performed up to

T = 455 mK because it is more complicated to run the cryostat above 500 mK. Ic in

the npnn region decreases to 27 nA at T ≈ 455 mK, while it remains at ∼ 0.8 µA in the

nnnn region. Additionally, in the unipolar regime, the Ic changes slowly for T < 200

mK. This is consistent with the theoretical predictions for SGS short junctions based on

single-layer graphene [73], as shown in Figure 4.19b. The theoretical results also present

a temperature dependence for various ratios of sample lengths L to the phase coherence

length ξ. In our case, we have tried to fit our data with Eilenberger theory for ballistic

junctions according to Galaktionov and Zaikin [86]. Although the model was developed

for ballistic junctions and has explained some experiment results [87], the predicted Ic is

one order of magnitude smaller than observed in the unipolar regime. A suitable model

is required to explain this discrepancy.
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Figure 4.19: Temperature dependence of the supercurrent (sample BL12C). (a) The
supercurrent versus Temperature curves for nnnn and npnn regions, de-
noted in blue and red, respectively. (b) The theoretical simulations of
Ic(T ) curves for SGS junctions in the short junction limit. The simula-
tions are carried for different L/ξ ratios. Figure from Ref. [73].
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4.7 Critical current oscillations due to the Fabry-Pérot in-

terference

The critical current oscillates at a constant value of Vbg when tuning the top-gate voltage

in the npnn region, as shown in Figure 4.20a. The value of dV/dI is measured with

respect to the top-gate voltage Vtg and the current I at a constant value of the back-

gate voltage Vbg = 10 V. The oscillations of Ic correspond to the resistance oscillations

in the normal state due to the Fabry-Pérot interference. When the resistance passes

through a minimum, Ic has a maximum. Figure 4.20b shows the evolution of dI/dV as

a function of the top-gate voltage Vtg and the voltage V at Vbg = 5 V. The amplitude of

the subharmonic gap structures at voltages 2∆/ne, follows the conductance oscillations

in the normal state as well. However, the positions of these features do not fluctuate

with quantum interference, indicating that ∆ does not oscillate. Thus, the oscillations

of Ic are solely attributed to the transmission resonances of Fabry-Pérot interference.

a b

Figure 4.20: Critical current oscillations originating from Fabry-Pérot interferences
(sample BL12C). (a) The differential resistance as a function of the top-
gate voltage Vtg and the current. The deep blue represents the Josephson
current. (b) The differential conductance versus the top-gate voltage
Vtg and the voltage. The subharmonic gap structures, marked with the
white dashed lines, are located at voltages of 2∆/ne.

4.8 Switching off the supercurrent

In this section, we describe three ways to switch off the supercurrent in a dual-gated

graphene Josephson junction. Figure 4.21 shows that the resistance varies with Vtg and

Vbg for two devices, i.e. BL12C and BL12D. The two samples are very similar. Both

have a W/L ratio of 5 and a top-gate length of ≈ 150 nm. But there is one difference,

which is the length of the channel, i.e. 1 µm for sample BL12C and 0.8 µm for sample

BL12D. The resistance maps of these samples as a function of Vtg and Vbg are shown in
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Figure 4.21: The color scaled plots of Resistances as a function of Vtg and Vbg for
the sample BL12C (a) and the sample BL12D. The measurements have
been done at superconducting state (T = 15 mK).

Figure 4.21. The two devices are measured at a temperature of 15 mK and within the

same cool-down. It is important to note that both were cooled down the same number

of times, and that they have been fabricated from the same bilayer graphene flake. In

Figure 4.21a, we observe that the sample BL12C is superconducting in the nnnn, npnn,

pppn, pppp regimes, but resistive in the pnpn, pnpp regimes as well as at the charge

neutrality lines while the sample BL12D only becomes superconducting in the nnnn

regime as shown in Figure 4.21b. Hence we can control the on- and off-states of the

supercurrent by manipulating the two gates. In both devices, the supercurrent can be

switched off by tuning the gates to the horizontal charge neutrality lines, diagonal charge

neutrality line (gap region), and pnpp or pnpn regions.

In the normal state, the resistances in the nnnn region are smaller than in the npnn

and pppp regions, i.e. Rnnnn < Rnpnn and Rnnnn < Rpppp. This is due to the angular

transmission probabilities of p-n junctions in the npnn and pppp regions. Note that there
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are two p-n junctions formed at the edges of the sample because the contacts induce

n-doping at the edges. These p-n junctions at the edges are sharper than the ones

created by the top gate in the npnn region, leading to lower transmission probabilities.

In the superconducting state, the selective transmission of p-n junctions also affects the

supercurrent for sample BL12C, yielding to Innnnc > Inpnnc > Ippppc .

Switch off the supercurrent in the presence of a potential barrier. The critical

current in the nnnn region decreases with increasing the length of the channel, which is

consistent with the BCS theory. The maximum critical current is 1.63 µA for sample

BL12D and 1.49 µA for sample BL12C. The IcRn product is 0.65∆/e in sample BL12D,

which is larger than 0.48∆/e in sample BL12C. Note that the IcRn products measured

for sample BL12C in this cool-down are lower than the values displayed in Section 4.5

because the Al contacts have degraded after five months. On the contrary, in the npnn

region, the supercurrent is off in sample BL12D, but on in sample BL12C. This is

unexpected according to the BCS theory. The difference between the nnnn and npnn

regions is that a potential barrier exists in the npnn region and affects the transmission.

However, the selective transmission of p-n junctions (see Section 3.1.2) cannot account

for the off state of the supercurrent in device BL12D because MAR, a consequence

of phase-coherent propagation of electron and hole pairs, remains visible in the npnn

region for both samples. This means that the electron and hole pairs can undergo phase-

coherent transport at finite DC bias voltages even in the presence of p-n junctions. The

difference may lie in the zero-voltage state (DC bias voltage V = 0), where the electron

and hole pairs break up in sample BL12D, but survive in sample BL12C. This problem

needs better understanding and further discussions.

Figure 4.22: Sketch for the specular-like Andreev reflection near Dirac point. Figure
from Ref. [88].

Switch off the supercurrent at Dirac points. The two horizontal lines at the

resistance maxima indicate the Dirac points of graphene that we tuned only by the

back-gate. The off-state of the supercurrent may arise from the specular-like reflection

of the electron-hole pairs along the contour of the charge puddles, as claimed in Ref. [88]

and illustrated in Figure 4.22. It is known that graphene conducts as a random net-

work of electron and hole puddles around the charge neutrality point. The electron

and hole puddles are separated by insulating regions. At the boundary of the puddles,
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the electron-hole pairs break due to a specular-like reflection, which impedes supercon-

ductivity. Further experiments with better samples should clarify the possible role of

inhomogeneities on the supercurrent at the Dirac point.
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Figure 4.23: Suppression of the supercurrent in the band gap (sample BL12C). (a)
I−V curve measured at the Dirac point of the bipolar region with Vbg =
40 V and Vtg = −3 V. (b) The corresponding differential conductance
dI/dV versus voltage V .

Switch off the supercurrent within the band gap. By applying a displacement

field, it is possible to open a band gap in the bilayer graphene band structure. When the

Fermi level of the charge carriers is tuned within the band gap, the supercurrent can be

switched off. In our measurements, we observe that the supercurrent can be turned off

even before the gap is opened completely. Figure 4.23a shows the I − V characteristic

measured with Vbg = 40 V and Vtg = −3 V. The supercurrent is suppressed in the

top-gated region, whereas a missing Coulomb blockade close to zero voltage indicates

that the gap is not open. In this situation, the multiple Andreev reflection is smeared,

as shown in Figure 4.23b.

4.9 Fraunhofer diffraction pattern

In this section, we investigate the dependence of the critical current Imc on the magnetic

field in a bilayer graphene Josephson junction. The measurements have been performed

at Vbg = 20 V and Vtg = 1.5 V. As depicted in Figure 4.24a, for B < 1 mT, the

oscillation of the current Imc exhibits the Fraunhofer diffraction pattern, indicating a

homogeneous supercurrent density distribution. The first four side lobes are plotted

in Figure 4.24b, where the line is drawn according to Equation (4.12) and the points

are extracted from experiments. The observed pattern of Imc quantitatively coincides
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with the theoretical prediction [89]. The period of each lobe corresponds to a flux

quantum. The experimentally measured value for the period is 0.25 ± 0.05 mT, which

has a good agreement with the theoretically predicted value 0.26 mT according to ∆B =

Φ0/(L+2λ)W . The parameters used in the calculation are as follows: λ = 0.38 µm [75],

L = 1 µm, and W = 5 µm. The London penetration depth of Al we used is consistent

with the values reported in literatures (200 ∼ 500 nm) [75, 90, 91].
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Figure 4.24: Fraunhofer diffraction pattern (sample BL12C). (a) The dependence of
the critical current on the magnetic field. The color scaled plot is the
differential resistance with respect to the magnetic field B and the cur-
rent I. The dark region corresponds to the superconducting state. The
measurements have been done at Vbg = 20 V and Vtg = 1.5 V. (b)
Comparison of the theoretical and experimentally measured maximum
critical currents in the range of B = −1 ∼ 1 mT. The black-filled cir-
cles are the experimental data and the red solid curve is according to
Equation (4.12).

For B > 1 mT, the current Imc can survive but does not obey the theory given by

Equation (4.12). A remnant of Imc is observed for B > 1 mT (vanishes completely ∼ 5

mT).

As described in Section 4.1.7, the trajectories of the electron or hole bend in the magnetic

field. The Andreev reflection cannot sustain in the bulk when the magnetic field is

larger than the critical value of 1 mT. Because the phase difference between the incident

electron and the reflected hole is large enough, the reflected hole does not trace back

the path of the electron (see Figure 4.11c) [64]. The Andreev reflection only occurs at

the edge of the graphene flake, which gives rise to the random pockets in Figure 4.24a

for B > 1 mT. The suppression of the Andreev reflection in a higher magnetic field is

further observed in the evolution of the subharmonic gap structure in the magnetic field,

as shown in Figure 4.25. As the magnetic field increases, the peaks located at 2∆/3e,

2∆/2e, 2∆/e vanish in sequence. The dependence of the multiple Andreev reflection on
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Figure 4.25: The evolution of the subharmonic gap structures in the low magnetic
field (sample BL12C).

the magnetic field is in good agreement with the variation of Imc in the magnetic field,

as seen in Figure 4.24a.

The spatial distribution of the critical current density Jc(x) can be determined by mea-

suring the dependence of Imc on the magnetic field [92]. Here, we perform a complex

Fourier transform to derive the current distribution Jc(x) according to Equation (4.11).

It is essential to recover the complex supercurrent Ic from the measured Imc [90], which

can be approximately realized when the current density Jc(x) is symmetrical with re-

spect to the midpoint of the junction. This assumption requires that the value of Imc at

each minimum goes to zero, so that the imaginary part of Im(Ic) vanishes and the real

part becomes dominant Ic = Re(Ic). Then, Ic is restored approximately by multiply-

ing Imc with a flip function that changes sign between the adjacent lobes, as shown in

Figure 4.26a. Applying the inverse Fourier transform to Ic, we obtain the supercurrent

density

Jc(x) =

∣∣∣∣∣ 1

2π

∫ W/2

−W/2
Ic(k)e−ikxdk

∣∣∣∣∣ . (4.41)

The spatial distribution of the supercurrent density Jc(x) is depicted in Figure 4.26b.

The codes for calculation is attached in Appendix B. The critical supercurrent density

shows a plateau around 0.3 ∼ 0.35 µA µm−1 within the range of the junction and de-

creases to nearly zero out of the junction. The half width of the plateau is consistent

with the junction width of 5 µm.



Chapter 5. Proximity-induced superconductivity in dual-gated bilayer graphene 83

a

-0.5

 0

 0.5

 1

 1.5

 2

-1 -0.5  0  0.5  1

-1

 1

I cm
 (

µ
A

)

F
lip

 f
u

n
ct

io
n

B (mT)

Ic
m

Re(Ic)

Im(Ic)

Flip function

b

 0

 0.1

 0.2

 0.3

 0.4

-10 -5  0  5  10

J s
 (

µ
A

/µ
m

)

x (µm)

Figure 4.26: The critical current density along the junction. (a) Principle of the
complex Fourier transformation. The complex critical current is recov-
ered by apply a flip function (blue curve)to the experimentally measured
maximum current (black curve). The real and imaginary components
of the recovered critical current are shown by the red and green curves,
respectively. (b) The critical current density obtained using Equation
(4.11).

4.10 Resistance peaks above 2∆

Figure 4.27a and Figure 4.27b present the I−V curve and the corresponding differential

resistance dV/dI, respectively. The experimental data are measured at Vbg = 20 V and

Vtg = 1.5 V. The I − V curve exhibits a non-linear behavior before it reaches its linear

limit at high bias voltage. The non-linear characteristic is shown more clearly in the

differential resistance dV/dI versus V curve. For V < 2∆/e, the non-linearity originates

from the multiple Andreev reflection, which displays as a series of resistance minima at

V = 2∆/ne. For V > 2∆/e, a few highly resistive peaks occur near V = ±0.4 mV.
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Figure 4.27: (a) The I − V curve measured for the sample BL12C with Vbg = 20
V and Vtg = 1.5 V. (b) The corresponding differential resistance versus
voltage.
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To figure out the origin of these resistive peaks above 2∆ in Figure 4.27b, we examine

the dependence of the peaks on the magnetic field. Figure 4.28 illustrates the differential

resistance as a function of the bias voltage V and the magnetic field B, which is measured

at Vbg = 20 V and Vtg = 1.5 V. With increasing magnetic field, the series of the peaks at

high voltage firstly diverge and cross with each other, then converge, and finally vanish

around B = 10 mT. It is interesting to note that the peaks disappear together with the

induced superconductivity, which has a critical field of ∼ 10 mT. This phenomenon has

been observed in SNS junctions using single-layer graphene [93], bilayer graphene [94],

and InN [95].

Figure 4.28: The differential resistance as a function of the magnetic field and the
voltage for the sample BL12C.

We further investigate the effect of Vbg and Vtg on the resistive peaks. Figure 4.29a shows

the differential resistance versus voltage for various back-gate voltages with a constant

top-gate voltage of Vtg = 2 V. The curves are measured for the sample BL12D in the

nnnn regime. We note that, with an increase of the back-gate voltage, the positions of the

resistive peaks move close to V = 2∆/e and the separation between each peak decreases

slightly. The positions of the three-most pronounced peaks as a function of the back-

gate voltage is portrayed in Figure 4.29b. It shows that the back-gate voltage strongly

affects the positions of those peaks rather than their separation. The trend that the

positions of the peaks vary with the back-gate voltage is similar to the relation between

the normal state resistance Rn and Vbg. In addition, a comparison of Figure 4.29a with

Figure 4.27b shows that the number of the peaks is sensitive to the length of the samples.

More peaks occur in the shorter sample BL12D in comparison with the sample BL12C.

In addition, the previous results, reported by Bordaz [94], show that more than ten

peaks are observed for a shorter device with a length of 310 nm.

In a conventional Josephson junction, similar phenomena have been found and termed

Tomasch resonance [96, 97] and McMillan-Rowell resonance [98, 99]. Both are related
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Figure 4.29: (a) The differential resistance versus voltage curves for various back-gate
voltages with the Vtg fixed at 2 V (Sample BL12D). (b) The positions of
the three-most pronounced peaks in (a) vary with respect to the back-
gate voltage.

to the geometry of the junction. Tomasch resonance originates from the interference

of quasiparticles in the S side. An electron-like quasiparticle is incident on the S/N

interface and reflected back as a hole-like quasi-particle due to the local perturbation of

the energy gap. The interference occurs between the incident electron-like quasiparticle

and the reflected hole-like counterpart. This gives rise to a series of resistance peaks at

voltages [97]

eVn =
√

(2∆)2 + (nhvSF /2ds)
2, (4.42)

where n is an integer, vSF is the Fermi velocity in the superconductor, and ds is its thick-

ness. The McMillan-Rowell resonance originates from the interference in the normal

metal. The incident electron from the normal side goes through the first Andreev reflec-

tion at the N/S interface. The reflected hole cannot interfere with the incident electron,

so that it is reflected as a hole at the opposite interface. When the reflected hole arrives

at the N/S interface again, it undergoes the second Andreev reflection and returns to the

electron state, which interferes with the incident electron. The interference generates

the resistive peaks with the spacing [98]

∆V = hvNF /4edN , (4.43)

where vNF is the Fermi velocity in the normal metal and dN is its thickness.

Unfortunately, neither Tomasch resonances nor McMillan-Rowell resonances can explain

the resistance peaks observed in the present work. In the case of Tomasch resonances, the

positions of the peaks predicted by Equation (4.42) do not fit to our measurement since

they are independent of the gate voltage. In the case of McMillan-Rowell resonances,

∆V increases with vNF in bilayer graphene which can be tuned by the gate voltage. Thus
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Figure 4.30: The schematics of the Tomasch resonances (a) and the McMillan-Rowell
resonances (b). Figures adapted from Ref. [100].

both models fail to describe the resistance resonance in our experiment. We therefore

assume that the resistance peaks are due to the interference from the graphene side,

which is similar to the McMillan-Rowell resonances, since the number of the resistance

peaks is linked to the length of bilayer graphene and their positions are associated with

the normal state resistance. Nevertheless, a new model is required to determine the

resonances in a Josephson junction using graphene as the normal metal.

4.11 Conclusion

The induced supercurrent has been observed in ballistic Josephson junctions based on

bilayer graphene. The largest IcRn product of 0.72∆/e is realized for a 1 µm long

distance. The supercurrent density is homogeneous along the junction, which is demon-

strated by the measurement of the Fraunhofer diffraction pattern. The on- and off-

states for the supercurrent are controlled by operating the dual-gates. The influence of

anti-Klein tunneling on the suppression of the supercurrent is most likely to govern the

proximity-induced superconductivity in bilayer graphene. In addition, we have discussed

the resistive peaks at higher energies (> 2∆) and have noticed that they are associated

with the induced superconductivity.



Conclusions

In this thesis, we have investigated the transport properties of bilayer graphene p-n-p

junctions at cryogenic temperatures. We benefit from the advanced sample fabrication

techniques, in particular the van der Waals assembly of graphene between two hBN

films, which allows us to produce high quality devices. This type of devices enables

ballistic transport over long distances, L & 8.8 µm in our case, enabling us to probe a

variety of quantum transport phenomena in the ballistic regime.

Fabry-Pérot interference of electrons has been directly observed from conductance mea-

surements. The amplitudes of the oscillations are large, which is the signature of ballistic

interference in p-n junctions. At low magnetic fields, i.e. when no quantum Hall effect is

observed, we have studied the influence of the interlayer asymmetry on the Fabry-Pérot

interference. We found that the phase shifts in the interference patterns occur at low

energies, but vanish at high energies. This corresponds to that the Berry phase has

changed from π to 2π when tuning the Fermi level from the band edge to high energies.

Therefore, it is evident that a transition from the single-layer-like Klein tunneling to

bilayer-like anti-Klein tunneling takes place .

The samples are contacted with Ti/Al leads, allowing to probe the induced supercon-

ductivity in bilayer graphene p-n junctions. In the unipolar regime, a large supercurrent

Ic has been observed, reaching 1.72 µA at the charge carrier density of 2.23× 1012 cm2.

The corresponding IcRn product is 0.72∆/e, which is very high for a 1-µm long de-

vice. At finite voltages, we observe multiple Andreev reflections. In the bipolar regime,

the angular transmission probability of charge carriers affects the phase coherent An-

dreev reflections as well. Hence, the supercurrent decreases or even switches off. By

modulating the electrical field, we tune the Fermi level to the band edges. The su-

perconductivity is completely suppressed because of a band gap opening. Hence, we

can realize the supercurrent on- and off-state by controlling the electrical field, which is

crucial for applications of superconducting transistors.

In this thesis, we have revealed some questions whose answers need further understand-

ing. In p-n junctions, multiple Andreev reflection is reduced dramatically due to the
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small angular transmission probability. Yet, the very existence of multiple Andreev

reflection illustrates that the phase-coherent Andreev reflection can survive in the p-n

junctions. The break-down of the Andreev bound states, for example in the bipolar

regime of the Sample BL12D, only occurs at the zero-voltage state. This phenomenon

remains presently unexplained. Another question may call for theoretic explanation as

well. We found that the I − V curves exhibit highly resistive gate-tunable peaks at

finite voltage where V > 2∆. The peaks may be related to the interactions between

this highly tunable superconducting circuits and the electromagnetic environment of the

samples. However, this needs further investigations.



Appendix A

Matlab codes for calculating

angular transmission probabilities

in bilayer graphene

The following codes has been used to calculate the angular transmission probabilities

in gapless bilayer graphene in Chapter 3. The corresponding results are presented in

Figure 3.4.

clear all

clf

%---------------parameters------------

me = 9.1093821545e-31; %unit Kg

h_bar = 1.05457172647e-34; %unit J*s

m = 0.0355*me;

E = 20e-3*1.60217656535e-19; % unit J

V0 = 50e-3*1.60217656535e-19; % unit J

a = 200e-9; %unit nm

M = zeros(8,8);

b = zeros(8,1);

k = sqrt(2*m*E)/h_bar;

q = sqrt(2*m*abs(V0-E))/h_bar;

i = sqrt(-1);
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fp=fopen(‘‘output.dat’’,‘w’);

for phi=(-pi/2):(pi/2000):(pi/2)

a3=zeros(8,1);

kx = k*cos(phi);

ky = k*sin(phi);

theta = asin(ky/q);

qx = q*cos(theta);

kappax = k*sqrt(1.0 + sin(phi)*sin(phi) );

lambdax = q*sqrt(1.0 + sin(theta)*sin(theta) );

s = sign(E);

s1 = sign(E-V0);

h1 = (sqrt(1.0 + sin(phi)*sin(phi)) - sin(phi) )^2;

h2 = (sqrt(1.0 + sin(theta)*sin(theta)) - sin(theta) )^2;

%------matrix M----------

% b1 c1 a2 b2 c2 d2 a3 d3

% 1 2 3 4 5 6 7 8

M(1,1) = e^(-i*kx*(-a));

M(1,2) = e^(kappax*(-a));

M(1,3) = -e^(i*qx*(-a));

M(1,4) = -e^(-i*qx*(-a));

M(1,5) = -e^(lambdax*(-a));

M(1,6) = -e^(-lambdax*(-a));

M(1,7) = 0.0;

M(1,8) = 0.0;

M(2,1) = -i*kx*e^(-i*kx*(-a));

M(2,2) = kappax*e^(kappax*(-a));

M(2,3) = -i*qx*e^(i*qx*(-a));

M(2,4) = i*qx*e^(-i*qx*(-a));

M(2,5) = -lambdax*e^(lambdax*(-a));
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M(2,6) = lambdax*e^(-lambdax*(-a));

M(2,7) = 0.0;

M(2,8) = 0.0;

M(3,1) = s*e^(-i*(2.0*phi + kx*(-a)) );

M(3,2) = -s*h1*e^(kappax*(-a));

M(3,3) = -s1*e^(i*(2.0*theta + qx*(-a)) );

M(3,4) = -s1*e^(-i*(2.0*theta + qx*(-a)) );

M(3,5) = s1*h2*e^(lambdax*(-a));

M(3,6) = (s1/h2)*e^(-lambdax*(-a));

M(3,7) = 0.0;

M(3,8) = 0.0;

M(4,1) = -i*kx*s*e^(-i*(2.0*phi + kx*(-a)) );

M(4,2) = -kappax*s*h1*e^(kappax*(-a));

M(4,3) = -i*qx*s1*e^(i*(2.0*theta + qx*(-a)) );

M(4,4) = i*qx*s1*e^(-i*(2.0*theta + qx*(-a)) );

M(4,5) = lambdax*s1*h2*e^(lambdax*(-a));

M(4,6) = -lambdax*(s1/h2)*e^(-lambdax*(-a));

M(4,7) = 0.0;

M(4,8) = 0.0;

% b1 c1 a2 b2 c2 d2 a3 d3

% 1 2 3 4 5 6 7 8

M(5,1) = 0.0;

M(5,2) = 0.0;

M(5,3) = e^(i*qx*a);

M(5,4) = e^(-i*qx*a);

M(5,5) = e^(lambdax*a);

M(5,6) = e^(-lambdax*a);

M(5,7) = -e^(i*kx*a);

M(5,8) = -e^(-kappax*a);

M(6,1) = 0.0;

M(6,2) = 0.0;

M(6,3) = i*qx*e^(i*qx*a);

M(6,4) = -i*qx*e^(-i*qx*a);
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M(6,5) = lambdax*e^(lambdax*a);

M(6,6) = -lambdax*e^(-lambdax*a);

M(6,7) = -i*kx*e^(i*kx*a);

M(6,8) = kappax*e^(-kappax*a);

M(7,1) = 0.0;

M(7,2) = 0.0;

M(7,3) = s1*e^(i*(2*theta + qx*a));

M(7,4) = s1*e^(-i*(2*theta + qx*a));

M(7,5) = -s1*h2*e^(lambdax*a);

M(7,6) = -(s1/h2)*e^(-lambdax*a);

M(7,7) = -s*e^(i*(2*phi + kx*a));

M(7,8) = (s/h1)*e^(-kappax*a);

M(8,1) = 0.0;

M(8,2) = 0.0;

M(8,3) = i*qx*s1*e^(i*(2*theta + qx*a));

M(8,4) = -i*qx*s1*e^(-i*(2*theta + qx*a));

M(8,5) = -lambdax*s1*h2*e^(lambdax*a);

M(8,6) = lambdax*(s1/h2)*e^(-lambdax*a);

M(8,7) = -i*kx*s*e^(i*(2*phi + kx*a));

M(8,8) = -kappax*(s/h1)*e^(-kappax*a);

b(1,1) = -e^(i*kx*(-a));

b(2,1) = -i*kx*e^(i*kx*(-a));

b(3,1) = -s*e^(i*(2*phi + kx*(-a) ));

b(4,1) = -i*kx*s*e^(i*(2*phi + kx*(-a) ));

b(5,1) = 0.0;

b(6,1) = 0.0;

b(7,1) = 0.0;

b(8,1) = 0.0;

a3=inv(M)*b;

t=abs(a3(7,1));

T=t**2;



Appendix A. Matlab codes for calculating angular transmission probabilities in bilayer
graphene 93

fprintf(fp,‘%e %e\n’, phi, T);

endfor

fclose(fp);





Appendix B

Matlab codes for extracting the

Josephson current density

The spatial distribution of Josephson current along the junction is calculated with the

complex Fourier transformation. The resulting Josephson current density is shown in

Figure 4.26b.

clear all;

%Filp the Ic to obtain complex Ic

%read data

M1=dlmread(‘Ic_B.dat’);

a1=size(M1);

%Ic minima position

N=[];

p=0;

for q=0:1:a1(1)

if (M1(k,2)<1e-9)

p=p+1;

N(p,1)=q;

end

end

%flip Ic

b=size(N);
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i=1;

j=1;

flip=1;

fp1=fopen(‘Ic_flip.dat’, ‘w’);

while (i<=a1(1))

while (i<=N(j))

Icflip=M1(i,2)*flip;

fprintf(fp1,‘%e %e %e \n’,M1(i,1), M1(i,2), Icflip);

i+=1;

end

j+=1;

flip=-1*flip;

end

fclose(fp1);

%Fourier transformaton of complex Ic to obtain the real and imaginary

%components

clear all;

M2=dlmread(‘Ic_flip.dat’);

a2=size(M2);

fp2=fopen(‘Fraunhofer_f.dat’, ‘w’);

for k=0:1:(a2(1)-1)

Xk_real = 0;

Xk_imag = 0;

for n=0:1:(a2(1)-1)

xn = M2(n+1,3); %xn=Ic

Xk_real = Xk_real + xn*cos(2*pi*k*n/a(1));

Xk_imag = Xk_imag - xn*sin(2*pi*k*n/a(1));

end

fprintf(fp2,‘%e %e %e %e\n’,k, Xk_real, Xk_imag,

sqrt(Xk_real^2+Xk_imag^2));

end
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fclose(fp2);

% Inverse fourier transformation to recover Ic together with its real

%and imaginary components

clear all;

M3=dlmread(‘Fraunhofer_f.dat’);

a3=size(M3);

fp3=fopen(‘Ic_B_DFTfit.dat’, ‘w’);

for n=0:1:299

xn_real = 0;

xn_imag = 0;

for k=0:1:(a3(1)-1)

Xk_real = M3(k+1,2);

Xk_imag = M3(k+1,3);

xn_real = xn_real + Xk_real*cos(2*pi*k*n/300)/300;

xn_imag = xn_imag - Xk_imag*sin(2*pi*k*n/300)/300;

end

xn = xn_real+xn_imag;

ampxn = sqrt(xn_real**2+xn_imag**2);

B=n*0.02; %0.02 is measurement step for B

fprintf(fp,‘%e %e %e %e %e %e\n’,n, xn_real,xn_imag, xn, ampxn, B);

end

fclose(fp3);

% Calculate the current density Jc

clear all;

M4=dlmread(‘Ic_B_DFTfit.dat’);

a4=size(M4);

fp4=fopen(‘current_density.dat’, ‘w’);

L=1e-6;

lambda=0.38*1e-6;
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h=6.62606957*1e-34;

e=-1.602176565*1e-19;

Phi0=h/2/e;

alpha=2*pi*(L+2*lambda)/Phi0;

for n=0:1:1000

x=(n-500)*1e-8; %unit m

%the origin of x is in the center of the junction

J_real=0;

J_imag=0;

for k=1:1:a4(1)

B = M4(k,6)*1e-3;

Ic_real = M4(k,2)*1e-6; % unit A

Ic_imag = M4(k,3)*1e-6; % unit A

J_real = J_real + (Ic_real*cos(alpha*B*x)+Ic_imag*sin(alpha*B*x))*

(alpha*2*1e-5)/(2*pi);

J_imag = J_imag + (Ic_imag*cos(alpha*B*x)-Ic_real*sin(alpha*B*x))*

(alpha*2*1e-5)/(2*pi);

end

J = sqrt(J_real**2+J_imag**2);

fprintf(fp4,‘%e %e %e %e \n’,x, J_real,J_imag, J);

end

fclose(fp4);
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