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1 Introduction

The announcement of the discovery of a new boson by the LHC experiments ATLAS [1, 2]
and CMS [3, 4] has marked a milestone for particle physics. While the properties of this
particle are consistent with the Standard Model (SM) predictions, the uncertainties in the
experimental data still leave enough room for interpretations in extensions beyond the SM.
Among these, supersymmetric (SUSY) models [5-18] certainly belong to the best moti-
vated and most intensely studied ones. In particular the Next-to-Minimal Supersymmetric
Extension (NMSSM) [19-33] provides with the introduction of an additional complex su-
perfield S a dynamical solution to the p problem [34] when the singlet field acquires a
non-vanishing vacuum expectation value. Because of new contributions to the quartic cou-
pling A\, with which S couples to the Higgs doublet superfields H, and H, already present in
the Minimal Supersymmetric Extension of the SM (MSSM), the tree-level mass value of the
lighter MSSM-like Higgs boson is enhanced. In consequence less important radiative cor-
rections are required to shift the mass value to the measured value of 125 GeV and therefore
smaller stop masses and /or mixing are necessary, so that the fine-tuning is reduced [35-47].

After electroweak symmetry breaking (EWSB) the Higgs sector of the NMSSM consists
of seven physical Higgs bosons. In the CP-conserving case, which we assume to be valid
here, these are three neutral CP-even, two neutral CP-odd and two charged Higgs bosons.
The discovery of all Higgs particles is challenging though not impossible at the high-energy
option of the LHC. In [48] we investigated the discovery prospects for the NMSSM Higgs



bosons during the 13TeV run of the LHC and gave benchmark scenarios that feature
Higgs-to-Higgs decays.! If kinematically allowed also decays into supersymmetric particles
can become important, as is well known for the MSSM [81, 82]. The one-loop SUSY-QCD
corrections to the decays into stops and sbottoms of the MSSM Higgs bosons have been cal-
culated in [83-85] and can change the decay widths by more than 50%, especially near the
threshold. The SUSY-QCD corrections have been reanalyzed in [86]. The full electroweak
(EW) one-loop corrections to the pseudoscalar decays into squarks have been provided
in [87, 88] and have turned out to be significant. Equally, the decays of heavy squarks into
lighter ones and a Higgs boson can dominate in a wide range of the MSSM parameter space
due to the large Yukawa couplings and stop and sbottom mixings [89]. The SUSY-QCD
corrections at next-to-leading order (NLO) are of the order of a few ten percent [90] and
mostly negative. The one-loop EW corrections to the decays with a pseudoscalar in the
final state are significant [87, 88]. The full one-loop corrections to stop decays and to heavy
Higgs decays into sfermions in the complex MSSM have been discussed in [91-93].

The proper interpretation of the experimental data and, once SUSY has been discov-
ered, the aim to pin down the underlying model and distinguish e.g. the NMSSM from the
MSSM, require precise predictions both for the parameters of the model and for the ob-
servables like e.g. NMSSM Higgs boson production and decay rates [94]. The higher order
corrections to the CP-conserving NMSSM Higgs boson masses and self-couplings have been
given in [95-105] and [59], respectively. Additionally, there are several codes available for
the evaluation of the NMSSM mass spectrum from a user-defined input at a user-defined
scale, like NMSSMTools [106-108] which can be interfaced with SOFTSUSY [109, 110], the
interface of SARAH [104, 111-114] with SPheno [115, 116], and finally SARAH which has
been interfaced with the recently published package FlexibleSUSY [117, 118]. Recently,
NMSSMTools has been extended to include also the CP-violating NMSSM [119]. In our
Fortran package NMSSMCALC [120] we have included in the CP-conserving and CP-violating
NMSSM the full one-loop and the order O(azay) corrections to the NMSSM Higgs bo-
son masses [103, 121, 122] and the state-of-the-art higher order corrections to the decays.
These include in the CP-conserving case Higgs decays into stops and sbottoms with the
SUSY-QCD corrections of [86] which have been adapted from the MSSM to the NMSSM
case. Very recently, neutral Higgs production through gluon fusion and bottom-quark
annihilation including higher order corrections has been discussed in [123].

With this work we take another step in improving the predictions for the NMSSM
Higgs sector. We provide both the NLO SUSY-QCD and the full one-loop EW corrections
to the inclusive decay widths of a pseudoscalar NMSSM Higgs boson into stops as well as
to the decays of the heavier stop into the lighter one and a pseudoscalar.

The paper is organized as follows. In section 2 we introduce the NMSSM Higgs sector
and set our notation. The tree-level decay width of a pseudoscalar Higgs into stops is dis-
cussed in section 3, before we present in section 4 the order O(as) SUSY-QCD corrections
and in section 5 the one-loop EW corrections. In section 6 we give the results for the
SUSY-QCD and -EW corrections to the decays of a heavy stop into a pseudoscalar and a
light stop. The numerical analysis is performed in section 7. We conclude in section 8.

!For other recent studies on NMSSM Higgs boson phenomenology, see refs. [46, 47, 49-80].



2 The NMSSM Higgs sector

The NMSSM Higgs potential is obtained from the NMSSM superpotential, which we as-
sume to be scale invariant, the soft SUSY breaking terms and the D-term contributions,
which are the same as in the MSSM. In terms of the superfields H, and H,, coupling to
the up- and down-type quarks, respectively, and the singlet superfield S the superpoten-

tial reads
AAAAA 1 -

Winssm = Wassm — € ASHgH) + g/@S?’ (2.1)
where i, 7 = 1,2 are the SU(2), indices and we have introduced the totally antisymmetric
tensor €;; with €12 = 1. Working in the CP-invariant NMSSM, the dimensionless parame-
ters A and k are chosen to be real. The MSSM superpotential Wiysgn is given by

Wssm = €i5lye Hy L B + ya H)Q D¢ — y, H,Q U] (2:2)
with the quark and lepton superfields and their charge conjugates, indicated by the su-
perscript ¢, denoted by Q, U °, ﬁc,i} and E°. The color and generation indices have been
suppressed in eq. (2.2). We neglect generation mixing of the quarks, so that the phases of
the Yukawa couplings v4, v, and y., which in general are complex, can be reabsorbed by
a redefinition of the quark fields. The soft SUSY breaking NMSSM Lagrangian involving
the Higgs doublet and singlet component fields H,, H; and S reads

PR |
Loty = Lsots, mssm — mz|S|* + <eij)\A,\SHfiH1{ — §mx,.ﬁi‘ + h.c.> (2.3)
with the soft SUSY breaking MSSM Lagrangian
Esoft,MSSM = _m%{dHchHd — m%{quHu — m%QTQ — m%fﬁf} — m?}Rﬂ}}be — m%RLi}}CZR
—m Eper — (€ijlyeApHyL € + yaAp HyQ djy — yu Av Hy Q7 @] + h.c.)
1 - L -
— §(M1BB + MoWi Wy, + M3sGG + h.C.) . (2.4)
The gaugino fields are denoted by B, W), (k=1,2,3) and G, and the left-handed squarks
and sleptons are arranged in doublets denoted by Q = (ip,dr)”, L = (91,ér)" while
the right-handed fields are denoted by ur, dgr and ér. The soft SUSY breaking mass
parameters mg((R) of the scalar fields X = S, Hy, H,,Q,U,D,L,E are real, while the
gaugino mass parameters M, Mo and Mz and the soft SUSY breaking trilinear couplings
Ay (Y = A\ k,U, D, E) are in general complex. In the CP-conserving case assumed here,
they are, however, real. Again, the respective quark and lepton superfields are understood
to refer to all three fermion generations. Note that we have set soft SUSY breaking terms
linear and quadratic in the singlet field S to zero.

After expanding the Higgs fields around their vacuum expectation values (VEVs) v,
vq and vg, chosen to be real and positive,

| (a+ ha +iaq)/V2 B ht s+ hs +iag
Hd_( hy ) = ((vu+hu+iau)/x/§> T
(2.5)



the Higgs mass matrices for the three scalar, two pseudoscalar and the charged Higgs bosons
can be derived from the tree-level scalar potential. The mass matrix decomposes into two
mass matrices for the CP-even and the CP-odd Higgs fields. The squared 3 x 3 mass matrix
M?Z for the CP-even Higgs fields can be diagonalized through a rotation matrix R* which
yields the CP-even mass eigenstates H; (i = 1,2,3) as

(Hy, Ho, H3)T = RS (hg, hu, hs)T . (2.6)

The H; are ordered by ascending mass, My, < Mgy, < Mg,. In order to obtain the CP-
odd mass eigenstates A1, As and the massless Goldstone boson G first a rotation RE to
separate G is applied, and then a rotation RY to obtain the mass eigenstates

(A1, Ao, )T =R (a,a,,G) = RPR (ag, ay,as)” (2.7)

which are ordered such that My, < May,.

The minimization of the Higgs potential V' requires the terms linear in the Higgs
fields to vanish in the vacuum. The corresponding coefficients, which are called tadpoles,
therefore have to be zero. The tadpole conditions for the CP-even fields can be exploited
to replace m%{u, qud and m% by the tadpole parameters tj,,t,, and ?;,. Replacing the
SU(2)1, and U(1)y gauge couplings g and ¢’ and the VEVs v, and v, by the electric charge
e, the gauge boson masses My, Mz and by tan g3, the tree-level NMSSM Higgs sector can
then be parameterized by the twelve parameters

thu, thd, ths, e, MI%V, M%, A, K, A)\, Am tanﬂ: <H3>/<H3> and Ueft = )\<S> . (2.8)

The VEVs of the neutral components of the Higgs fields are denoted by the brackets around
the corresponding fields. The sign conventions for A and tan 3 are chosen such that they
are positive. The k, Ay, A, and peg on the other hand can have both signs. Note also, that
the parameter Ay can be traded for the charged Higgs boson mass M+, which we will do
in the following. From now on we will drop the subscript ‘eff’. Note that the inclusion of
higher order corrections requires also the soft SUSY breaking mass terms for the scalars
and the gauginos as well as the trilinear soft SUSY breaking couplings.

3 The tree-level decay width

We start by discussing the tree-level decay width of a pseudoscalar Higgs boson A; (i = 1,2)
into a pair of stops. The stop mass matrix in the interaction basis (f1,%z) reads

M2 = (miL miR) (3.1)

m%{L m%{R
with
2 2 2 2 1 2,
Mmiy, = mg +mg + M7 cos 23 3~ 3sin Ow (3.2)
2
m%{R = mth + mf + 3 %cos 20 sin? Ow (3.3)
mig = miy, = my(A;r — pcot ) (3.4)



in terms of the soft SUSY breaking mass parameters me and m;, , the soft SUSY breaking
trilinear coupling Ay, the higgsino mixing parameter pu, the top and the Z boson masses
my and Mz, the mixing angle 5 and the Weinberg angle 0y,. The p parameter is generated
dynamically in the NMSSM and given by

AUy
Iu =

(3.5)

=

The stop mass matrix is diagonalized by

»i_ ( cos 07 81n95> (3.6)

— sin 07 cos 67
yielding the stop mass eigenstates #; (i = 1,2) as
f = RLI, (3.7)

where s = L, R and for the squark masses we have m; < mg, by convention. The mixing
angle 07 and the squark masses are given by

2
2mLR

tan 07 = (3.8)

0 o2 25 2 2 4
MLy, — MRR \/ (miy —mggr)* +4mLg

and

1
mtgm =3 |:m%,L +mig F \/(m%L —mip)? + 4mﬁR} . (3.9)

In case of the pseudoscalar only the coupling to two different stop mass eigenstates is
non-vanishing. For the tree-level decay width T we have

2

SAV2(M3E  m2 m2) | 2
it Tt 12
> z,GY (3.10)
j=1

87TM§L

PLO(AZ' — 1?17?2) =

where \(z,y,2) = (x —y — 2)? — 4yz is the two-body phase space function and the coupling
ij (7 = 1,2) of the pseudoscalar A; to the stops reads

12 gmy Ay p A 1 _p
_ P AU L 11
Ry 2Myy [(tanﬂ + M) Rin+ ﬂtanﬁRﬂ] (3:.11)

where v is the VEV given by v? = v2 + vg and Rfk are the elements of the rotation matrix

defined in eq. (2.7). In particular, they are the tree-level mixing matrix elements. In the
kinematics of the decay, however, i.e. for the external Higgs field, we use the two-loop
corrected Higgs boson masses at order O(a;a;), which include the full EW corrections at
one-loop order. The renormalization of the Higgs fields and the computation of the mass
corrections have been described in refs. [103, 121, 122]. We follow the conventions of these
papers, to which we refer the reader for more details. In order to ensure the on-shell prop-
erties of the external Higgs field, which in the calculation of the Higgs mass corrections



has been renormalized in the mixed on-shell-DR scheme, the finite wave function renor-
malization factors Z [124] have to be taken into account. The application of the factor Z
to the tree-level matrix R (in G}fj) leads to the rotation matrix R™ which, modulo the
Goldstone boson G, rotates the interaction eigenstates a and as to the loop corrected mass
eigenstates A; and Asg, cf. [103],

Rf;l = ZZ]Rfl Z?] = A17A27G l = CL,CLS,G . (312)

These and the loop-corrected masses are taken from the Fortran code NMSSMCALC [120], in
which we choose the on-shell (OS) renormalization for the top/stop sector in order to be
in accordance with the renormalization scheme chosen later on both in the SUSY-QCD
corrections and in the electroweak corrections.

In eq. (3.10) we have summed over both possible final states #;t5 and tit. In the
MSSM, i.e. leaving out the singlet contribution o A in the coupling 0}421_, the decay width
is proportional to m7(u + A¢/tan 8)2/M,,. For small values of tan 8 and not too heavy
pseudoscalars, the decay into stops can compete with and even dominate over the decays
into top quarks and into charginos and neutralinos. In the NMSSM, this statement has to
be taken with caution, however, as the singlet component in the coupling G}fi, depending
on the scenario, can come with both signs and hence increase or decrease the decay width.

The importance of the pseudoscalar Higgs decays into lighter stops depends on the
size of the pseudoscalar Higgs coupling to stop pairs and the available phase space as well
as the magnitude of other possible pseudoscalar decay widths. Due to the large amount of
parameters entering already the tree-level Higgs sector, the identification of regions in the
multidimensional parameter space that lead to large branching ratios is a non-trivial task.
In general, the pseudoscalar decays discussed in this paper are important for NMSSM set-
ups with a heavy pseudoscalar, not too heavy stops and where the decays of pseudoscalars
into SM particles and electroweakinos are suppressed. Such mass configurations appear in
scenarios with large charged Higgs masses and stop sectors with large mixing and/or small
soft SUSY breaking stop masses. Furthermore, small values of tan /3 increase the Higgs
couplings to stop pairs. The investigated stop decays on the other hand are interesting
for scenarios with large stop mass splitting, not too heavy pseudoscalars and suppressed
decays with electroweakinos in the final states. Light pseudoscalars can be realized through
small values of xKA,.

4 SUSY-QCD corrections

The SUSY-QCD corrections for the NMSSM pseudoscalar A; decay width differ from the
ones of the MSSM [83-85] solely in the tree-level coupling to the stops G}fi. We shortly
repeat them here for completeness and in order to introduce our renormalization scheme.

The virtual corrections at order O(ay) to the pseudoscalar Higgs decays into stops
consist of loop diagrams with a gluon, respectively, gluino exchanged in the A;t;ty vertex
and of a contribution involving the four-squark vertex, cf. figure 1 (upper). Note that the
mixing contributions due to off-diagonal self-energies are absent in the case of pseudoscalar
Higgs decays, as A; only couples to different stop mass eigenstates. The computation of
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Figure 1. Diagrams contributing at NLO SUSY-QCD to the virtual (upper row) and real correc-
tions (lower row) of the decay T'(4; — t1t2).

the virtual diagrams leads to ultraviolet (UV) and infrared (IR) divergences. We work in
dimensional reduction [125, 126], which preserves SUSY at the one-loop level. The fields
and couplings are then treated in 4 dimensions while the loop integral is performed in
D =4 — 2¢ dimensions. The UV divergences appear as poles in € and are canceled by the
wave function counterterms and the counterterm renormalizing the A;t;t, interaction. The
IR divergences are regularized by the introduction of a fictitious gluon mass ¢.> The IR
divergences left over after renormalization are canceled after adding the real corrections.
These consist of the radiation of an additional gluon off the final state stops and are shown
in figure 1 (lower).
The one-loop corrected decay amplitude can be written as

1
TR =TO 4+ TH)y (4.1)
with
A2(M2 m2 m2) [ 2 2
1 Air ’ * * o CD
T = Re 477th1 D ZHCR | T Do Zua (4.2)
i j=1 k=1

where again the Z factors appear to ensure the on-shell properties of the external loop-
corrected Higgs field. The A%SD are given by the sum of the virtual, real and counterterm
contributions AX , Aﬁ and AgT, respectively,

k k k

C
AP =AY +AGT+ AR (4.3)

From now on a factor Cras/(4m) with Crp = 4/3 is factorized out and already included
in eq. (4.2). The virtual corrections receive contributions Aik from the gluon exchange

2This is justified as we are working effectively in an Abelian theory, i.e. our calculation does not involve
any three-gluon vertex.



diagram, Aik from the gluino exchange diagram and A% from the diagram involving the
4-squark vertex. They are given by

A%, =GR [Bo(m?:Comy,) + Bo(m2; Cmg,) — Bo(M3,m,, mz,)

—I—2(m%1 + mi — MAk)C’O(m{l,Mik, mtgg; ¢, mgl,m&)} (4.4)
for the gluon exchange,
RP
A%k = % [(m —my sin(265)) Bo(mgl;mg,mt)—i—(mg—i—mt sin(26;)) Bo(m f MG, M)
- (sin(295)mt(mt2 )+mgMAk) Co(m MAk,m2 mg, My, mt)] (4.5)
for the gluino exchange, and
A4 G BO(MAk7mt17mt2) (46)

for the 4-squark vertex diagram, where By and Cj are the Passarino-Veltman scalar two-
and three-point functions [127, 128], cf. appendix A for their definitions.

The counterterm corrections consist of the renormalization of the external squark wave
functions ijfj (j = 1,2) and the renormalization of the Aty interaction vertex. Note
that the wave function renormalization of the pseudoscalar does not contribute at order
O(as) and hence to the SUSY QCD corrections. The parameters A, v, vs, tan 8, My, My
and e are not renormalized by the strong interaction, so that the counterterm reads

1 oG2 oG?
AGY = 3G, (0731, +0%7,) + 5 k0me + —5 2e54, (4.7)

leading to

12 O0my gmy Rkpl
A my 2Myy tan 3

1

C

ALy = 3G (0245, +023,1,) + G SA; . (4.8)
The counterterm §A; of the trilinear coupling is given by the quark and squark mass
counterterms, dm; and dmy, ,, and the mixing angle counterterm 40,

SA, = [(mg 2 )<2cos(29 150, — sin(20,) 2™
th

t1 my

> + 28in(20z) (mz, omg, — mt~2(5mi~2)} :

(4.9)
In the (s)quark sector we adopt OS renormalization with the quark and squark masses
defined as the poles of their respective propagators and the squark wave function renor-
malization constants defined such that the residues of the poles are equal to one. Defining
the following structure for the quark self-energy, where Pr, r denote, respectively, the left-
and right-chiral projector,

Zt(pQ) = ;'SZtL(pQ)PL + 7525(}92)773 + mtELS(pz)PL + mtERS(pQ)PR (4.10)

we have for the top quark mass counterterm

1
omy = iRe (thtL(mf) + mtEﬁ(mf) + E%s(m?) + Efs(m?)) . (4.11)
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Figure 2. Diagrams contributing at NLO SUSY-QCD to the squark self-energies (upper row) and
to the quark self-energies (lower row).

The squark mass and wave function counterterms are given by (j = 1, 2)

5m§j = ReX; ;. (miz']) (4.12)
0%z 7. (p°)
5ijfj = —Re # (4.13)
C
j

In eq. (4.12) the Efjfj denote the diagonal parts of the squark self-energies. The diagrams
contributing at order O(as) to the squark and quark self-energies are depicted in figure 2
(upper) and (lower), respectively.

The mass counterterms read

om
O Re[2By(msme, €) + Bilm: mg mi,) + By(miimg, m,) + 4Bo(m?sme, )
t
. mg
+ sin(26;) mi (Bo(mf; mg, mgl) — Bo(m?; mg, m,gQ)) } (4.14)

1
mz, dm;, = Re {2mtm§ sin(20£)Bo(mtgl;mt, mg) + 3 [(1 4 cos*(26;)) Aog(mg,)
+sin®(20;) Ao (my,)] — 2mt31 Bo(mtg1 smg,, C) — Ao(mg) — Ao(my)

+ (m?1 — mf — mg)Bo(mgl; my, mg)} (4.15)

1
mg,0mg, = Re{ — 2mymg sin(265)Bg(m§2;mt, mg) + 3 [(1+ cos?(265)) Ag(mg,)
+sin?(26;) Ag (mg)] — 2mt22 By (mi; mz,, () — Ao(mg) — Ao(my)
+ (mtg2 — mf — m%)Bo(m%Q; my, mg)} (4.16)

where B is the coefficient of the two-point tensor integral of rank one and Ay denotes the
scalar one-point function, cf. appendix A. The wave function corrections can be cast into

the form
0Z;;, = Re[ —dmymg sin(205)B6(m§1 My, mg) + 2(mf~7 +m? — 7‘11%1)3(')(771%1 My, M)
+2Bo(mZ ;mz,, ¢) — 2Bo(m3 ;my, mg) + 4mZ By(m? ;my, ) (4.17)



0737, = Re [4mtm§ sin(26;) B, (mi; me, mg) + 2(m§ +m? — mtgz)Bé (mi; me, mg)
+ ZBo(mi; mz,, () — QBo(mi;mt, mg) + 4mt2236(mt22;mt~2, Q)| - (4.18)

Here B(’)(k‘Q; mq,m2) denotes the derivative with respect to k2. The mixing angle countert-
erm is renormalized as

50; = %(52 —57; !

t~1t~2 tzfl) = 2(mg o mg )

where Zgﬂgj denotes the respective squark self-energies, so that

1 :
80; = mRe [81n(29t~) cos(26;) (Ao(mt%) - Ao(mtgl))
i 23
+2mymg cos(26;) (Bg(mi; mg, mg) + Bo(m? ;M mg))} . (4.20)

The real corrections finally in terms of dilogarithms read

2G12

CM 4, mz m;
ko A1/2 |:(]\4Ak—7ng —mt~2)<—210g/80]0gw

A
~ log? B — log? B + 2Lis(1 — A3) — Lia(1 = ) — Lia(1 - 83))

AR = + 21og? fo

M, m;z m;
+2/\1/210g<k)\t1t2+4)\1/2 (QMAk—i—m —|—m ) log Bo
+ (M3, +2m? ) log B2 + (M3, + 2m? ) log By (4.21)

where in the two-body phase space function A\(M Ak,mz mtg ) we have neglected the argu-

ments for better readability. We have furthermore introduced

M3 —m2 —m2 4+ \/2

BO = - b 2 ’
2mt~1mt~2
2 2 2 1/2
8, = M3, =i, +miy =X (4.22)
QMAkmg2 ’

MAk+m~ —m~ )\1/2
N QMAkmtl

We explicitly checked that the dependence on the fictitious gluon mass drops out in the
final result, as it should be.

We have cross-checked our results against the ones available in the literature for the
MSSM [83, 84], both on the analytical and on the numerical level. For the former we
performed the MSSM limit of our formulae, and for the latter we took the MSSM limit of
the input parameters to evaluate the decay widths.

,10,



5 The one-loop electroweak corrections

The NLO electroweak corrections consist of the virtual corrections to the vertex and the
counterterm contributions to cancel the UV divergences. The top and stop fields as well
as the parameters specified below need to be renormalized. For the external Higgs boson
we use the two-loop corrected Higgs boson mass at order O(ayas), including the full EW
corrections at one-loop order, so that we also need to renormalize the Higgs field. In the
loops, however, the tree-level masses for the Higgs bosons have to be used so that the UV
divergences are canceled properly.
For the NLO EW corrections, in addition the mixings

SMyl s = SMi (A — Do) (5.1)
of the decaying CP-odd Higgs boson A; with the Z boson and the Goldstone boson G have
to be included. The matrix element for the EW corrected pseudoscalar Higgs decay into
stops hence reads

M(Ai = Tifa) = Y Ziy (G + A5V ) + oM. (5.2)

mix,s
Jj=1

where AE}N represents the sum of the 1-particle irreducible (1PI) diagrams AX’J_EW con-

tributing to the EW virtual corrections of the vertex and of the counterterms ASJ’EW,

ARW = AREW L ATHEW (5.3)

Due to massless photons in the loops we also encounter IR divergences. These are canceled
by adding the real corrections A®EW where a photon is radiated off the final state stop
lines. We hence have for the EW corrected decay amplitude

2
NLO : - A2 : 12 ; 12 * - REW
Pew (Ai = titg) = 8rM3 > 2G|+ > :Z;‘ijAj > Zal,

i j=1 j=1 k=1

2 2
—2Re | Y Z;GR" (Z Zy ARV + 5M§;§i> . (5.4)
j=1 k=1

Again we have dropped the arguments in the two-body phase space function A. In the
following we will discuss the individual contributions. The virtual corrections consist of
the 1PI diagrams given by the triangle diagrams with scalars, fermions and gauge bosons
in the loops, as shown in the first two rows of figure 3, and of the diagrams involving four-
particle vertices, cf. figure 3 (last row). For better readability, for the scalars S appearing
in the loops we only list the particle types but not the combination of scalars that are
allowed by the theory for the various vertices. Let us remark, however, that in the four-
particle vertices the scalar-Higgs—Goldstone-boson—2-stops coupling H; — G — t; — t5 and
the scalar—pseudoscalar—2-stops coupling H; — A, —t; —ts (I = 1,2,3, p = 1,2) are new
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compared to the MSSM. The former is due to the singlet admixture in Hj, the latter is
proportional to the NMSSM specific coupling A. The diagrams have been generated with
the Mathematica package FeynArts 3.6 [129, 130] and evaluated with FormCalc 7.3 [131,
132] in two independent calculations. The integrals have been computed with LoopTools
2.7[131, 132]. The numerical results of both calculations agree and have been cross-checked
numerically against a third calculation, that did not use any of the tools to evaluate and
simplify the amplitudes, and which takes the loop functions from HDECAY [133-135] and
SDECAY [136, 137]. The UV divergences encountered in the computation of the virtual
corrections are canceled by the counterterms that are the sum of the stop wave function
corrections and of the counterterm renormalizing the Ajflfg interaction,

CT,EW _ A CTw CT,v
AAJ_ = AA]_ + AAJ_ (5.5)
Because of the antisymmetric G}fj coupling the stop wave function corrections are given by
12

w G4
AGHY = — S (0257, +0Z;z,) - (5.6)

212

The stops are renormalized on-shell, with the renormalization conditions given in eqs. (4.12)
and (4.13). The diagrams, that contribute to the here required electroweak self-energies
are displayed in figure 4 (upper two rows).

For the one-loop EW corrections the vertex counterterm reads

M A A

my My B 2 My A tan 8 /) tan (8
A dv  dtanp Av P]
+|{~+—- Rial| - 5.7
<)‘ v tan 8 > V2tan 3 72 (5.7)

The individual counterterms are derived from the renormalization of the input parameters.
We follow ref. [103] and apply the same renormalization scheme which mixes OS and DR
conditions as defined there. For the vertex counterterms the relevant input parameters are
the W and Z boson masses My, and My, the electric charge e, tan 3, A and v,.? The
parameters that can be related to physical quantities are renormalized OS, the remaining
ones DR. Together with the OS-renormalized top/stop sector, we have the following set of

parameters to be renormalized,

tan 8, A, vs, Mz, My, e, my, mz ,my,, 07 . (5.8)
_— ~
DR scheme OS scheme

The coupling g and the VEV v appearing in eq. (5.7) are given in terms of these parame-
ters by

M
g= L and v = 1-— 2 (5.9)
(&
o MZ — M2, z

3 Additionally, for the renormalization of the Higgs sector in the computation of the higher order cor-

rections to the Higgs boson masses, we have the tadpole parameters, the mass of the charged Higgs boson
M+, the NMSSM parameter « and the trilinear coupling A, which need to be renormalized at loop level,
cf. [103].
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[2) fg

Figure 5. Generic one-loop diagrams contributing to the mixing (5Mgi’f ; of a pseudoscalar A; with
the Z and Goldstone boson.

from which their counterterms can be derived. The details of the renormalization of the
counterterms for the first six input parameters can be found in [103], so that they are
not repeated here. The formulae for the OS renormalization of the top and stop masses
are given in eqs. (4.11)—(4.13). The squark and quark self-energies for the EW one-loop
corrections are depicted in figure 4. At EW one-loop order the counterterm for A; now reads

5A, = <5“ _ dtanf ) 41 [(m% —m?2) (2505008(295)—sin(29£)6mt>

- tanB \ g tanf 2my t my

+2sin(20;) (mg, dm;, — m£25m52)} . (5.10)

The counterterm for the mixing angle 6; is renormalized as in eq. (4.19), however with the
self-energies given by the diagrams shown in figure 4 (first two rows).

The diagrams for the contributions to the electroweak corrections stemming from the
mixings of the pseudoscalar A; with the Z boson and the Goldstone boson, 5Mgi’)f ;» are
shown in figure 5. Using the Slavnov-Taylor identity [138, 139], on can obtain the mixing
contributions through

G112
M = 3 Sz ((ar)?) (5.11)

where 3 A,z denotes the renormalized A;-Z mixing self-energy and GIG2 is the Goldstone
boson coupling to the stops,

12 gmg 1%
= — A, — . 12
e 2 My < ¢ tanﬂ) (5:12)

Note, in particular that the external momenta have to be set to the tree-level mass Mﬁg)

in order to ensure gauge invariance.

The last piece which is missing in the decay, in order to get also an IR finite result, is
the real corrections term AZEW. This is the same as for the QCD corrections, but with
the gluon replaced by the photon. In the formula for the QCD corrections, eq. (4.21), this
means that the coupling and color factors have to be replaced accordingly, i.e.

2
REW _ € R
Ar T 16p2 T (5.13)

with Aik given in eq. (4.21).
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The full NLO decay width including the SUSY-QCD and -EW corrections is then
given by

NLO, full _ PNLO | Fg()}D (5.14)

where Fg{fvo, defined in eq. (5.4), includes the leading order decay width and FS)CD has

been defined in eq. (4.2).

6 Stop decays at NLO SUSY-QCD and SUSY-EW

The calculation of the higher order corrections to the pseudoscalar Higgs decays into a
stop pair can easily be transferred to the decay of a heavy stop into a pseudoscalar and
the light stop,

ty = A;+ 1t i=1,2. (6.1)

The LO decay width is obtained from eq. (3.10) by adapting the kinematic factor and
dividing by the color factor 3 and the factor 2 due to the summation of the two charge
conjugated stop pair final states,

Lo - )\1/2(m~ Mf‘ ?
Oty — Ady) = 167Tm3 Z Z,;G%| - (6.2)
The NLO SUSY-QCD decay width can be written as
INLO (8 — Aifh) = TVO(fy — Ad) + Tl (B2 — Aiy) (6.3)
where
Thlp (B2 = Aif1) = Re Vm 5 4;5’%" Zz G & (Zz kAQCD> , (6.4)

with the correction factor

AQQD — AV + ACT + AR

his ks Wiy (6.5)

The virtual corrections? and the counterterms are given by the same expressions as for the
pseudoscalar decay presented in section 4, i.e.

Vo _ AV CT _ ACT
Ak,fg = AAk and Ak,fg = AAk . (66)
In the real corrections, though, the roles of Aj and t5 have to be interchanged,

Akaz = AR (M3, © m§2) (6.7)

4The diagrams are the same as in figure 1, but with > in the initial and A; in the final state.
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with Aﬁk given in eq. (4.21). The NLO SUSY-EW corrections are composed of the same
electroweak virtual corrections to the vertex,? the same counterterms and the same mixing
contributions of the pseudoscalar with the Z and Goldstone boson, AEW and 5Mg1XZ 5>

in the pseudoscalar decay. In the real corrections, however, again M3 A, and mi have to be
interchanged. We hence have

)\1/2

16mm

PNLO(tQ — A; t1>

2 2
j= =

it

2

2 2
—2Re [ Y Z,G 12*<ZzzkA +<5M$1XZZ> . (6.8)
j=1 k=1

with
A2 = N2 (m2 M, m?) (6.9)
and

2
REW €
APV —
kita 1672

A3, < m?) (6.10)

and AEW and M ; given in section 5. The full NLO decay width including SUSY-QCD

le
and EW corrections is given by

NLO, full _ pNLO | F((Q%D (6.11)

with Fg()}D given by eqs. (6.4)~(6.7) and TR&® by eq. (6.8).

7 Numerical analysis

For our numerical analysis we first perform a scan in the NMSSM parameter space in order
to find scenarios that are in accordance with the LHC Higgs and SUSY data. The compati-
bility with the LHC Higgs data has been checked by using the programs HiggsBounds [140—
142] and HiggsSignals [143]. The effective couplings of the NMSSM Higgs bosons, normal-
ized to the corresponding SM values, as well as the masses, the widths and the branching
ratios of the NMSSM Higgs bosons, which are required as inputs for these programs, have
been obtained from the Fortran code NMSSMCALC [120]. The loop induced Higgs coupling
to gluons normalized to the corresponding coupling of a SM Higgs boson with same mass
is obtained by taking the ratio of the partial widths for the Higgs decays into gluons in the
NMSSM and the SM, respectively. These include the QCD corrections up to next-to-next-
to-next-to leading order in the limit of heavy quarks [144-153] and squarks [154, 155], taken
over from the SM, respectively, MSSM case, while the EW corrections are unknown for the
SUSY case and hence consistently neglected also in the SM decay width. The stop mass

°In the Feynman diagrams of figure 3 simply the #» leg has to be crossed to the initial state and the A;
leg to the final state.
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values have been chosen such that they are not excluded by present ATLAS [156-163] and
CMS [164-170] searches. The squark masses of the first two generations are heavy enough
not to be in conflict with LHC data. The SM input parameters that we use are [171, 172]

a(My) =1/128.962, oMS(My) =0.1184, My =91.1876 GeV, (7.1)
My = 80.385 GeV, my = 173.5 GeV, mMS(mM) = 4.19 GeV .

MS

The running oe?fR used in NMSSMCALC is obtained by converting the o™, that is evaluated

with the SM renormalization group equations at two-loop order, to the DR scheme. The
light quark masses, which have only a small influence on the loop results, have been set to

my =2.5MeV, mg=4.95MeV, ms=100MeV and m,= 142 GeV . (7.2)

We choose the same renormalization scale pgr as the one used in the calculation of the
loop-corrected Higgs boson masses, that enter the decay widths. It is given by the SUSY
scale M, which we set

Mg = | /ma mi, = pr - (7.3)

7.1 Pseudoscalar Higgs boson decays into stop pairs

In this subsection we present the impact of the SUSY-QCD and -EW corrections on the
decay of a heavy pseudoscalar Higgs boson into a pair of stop quarks. We will investigate
the corrections as a function of m; and mg. They have the largest impact on the genuine
corrections to the decay widths. The impact of the other parameters is either tiny or they
enter the Higgs sector already at tree level with a large impact on the pseudoscalar mass
value, so that the genuine effect of the higher order corrections on the decay widths cannot
be disentangled any more. The parameter point, which we have chosen from the set of
parameter points that survive the LHC constraints, is given by the soft SUSY breaking
masses and trilinear couplings

Migir = Mg, 5, = MG, , = Mp, , = Megjip = 3 TeV, mg, = 536.43 GeV,
meg, = 594.61 GeV , mp, = 1285 GeV, mj. = 255.53 GeV, mgz, = 1499 GeV,
A = 1418 GeV, A, .=1435 GeV, Aysp = —66.68 GeV, A. ), = —91.76 GeV ,
M; =111.73 GeV, My =395.86 GeV, M3 = 1370 GeV (7.4)

and NMSSM specific input parameters

A =0.629, Kk =0.223, A, = —543.53 GeV, jior = 452.61 GeV ,
tan B = 1.969, Mpy+ = 1024 GeV . (7.5)

This results in the two-loop corrected mass My, of the heavy pseudoscalar Ay and the stop
masses m; .,

My, = 1012 GeV  mj = 280.78 GeV and m;, = 709.07 GeV . (7.6)
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Figure 6. Upper: the partial decay width T'(Ay — #115) as a function of mg, at LO (blue/lower
dotted), including the NLO QCD (green/upper dotted), the NLO EW (red/dashed) and both the
EW and QCD corrections (black/full). Lower: the relative correction A = (I'}F© — I'©)/TLO in
per cent for X =QCD (green/dotted), EW (red/dashed) and the full NLO corrections (black/full).
The pink line shows the position of the parameter point defined in eqs. (7.1)—(7.5).

We follow the SLHA format [173, 174], in which the parameters \, k, Ay, e, tan 5 as well
as the soft SUSY breaking masses and trilinear couplings are understood as DR parameters
at the scale up = M,.% whereas the charged Higgs mass is an OS parameter. As input
for our computation we take the soft SUSY breaking trilinear stop coupling A;, however,
consistently as an OS parameter. The conversion from the DR to the OS scheme is done
within NMSSMCALC and yields”

A9S = 1435 GeV . (7.7)
The leading order width obtained in this scenario amounts to
L0 (4y — f1ty) = 15.72 GeV (7.8)

where again we have summed over both charge conjugated stop pair final states. The LO
width differs by 2.7% from the value obtained at tree level with NMSSMCALC, where the
Fermi constant G instead of « is used as input parameter.

In figure 6 (upper) we show the partial decay width I'(As — #1£3) at LO, including
the EW and the QCD corrections, and the NLO width with both the QCD and EW

SFor tan 3 this is the case only, if it is read in from the block EXTPAR. Otherwise it is the DR parameter
at the scale M.

"Note, however, that the conversion is done through a counterterm that involves, as required for the
order O(aia) corrections computed in NMSSMCALC, order O(as) corrections and no EW corrections.
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corrections taken into account, as a function of mj , which is varied around the parameter
point defined in egs. (7.1)~(7.5) with m; ~ 281 GeV.® Note, that stops can still be rather
light [162, 163, 170, 175, 176], down to about 240 GeV for arbitrary neutralino masses [163]
and even lower when taking into account the actual #; branching ratio [176]. The figure
illustrates the effect of the higher order corrections, although the thus obtained parameter
configurations are not all in accordance with the applied constraints anymore. The lower
plot displays the relative corrections

F)N(LO _ Lo

A= s X = QCD, EW, QCD+EW (7.9)

in per cent. The plots show that both the QCD and the EW corrections are significant
and come with opposite sign. The QCD corrections increase the LO width by ~ 40 —120%
in the investigated range, depending on the value of m; , whereas the EW corrections are
almost independent of mj and decrease the cross section by 40%. At m; = 192 GeV the
QCD and EW corrections are of same size and cancel each other. The full corrections
hence increase the width between ~ 0 — 80%, cf. figure 6 (lower). And for our parameter
point the total correction is

ATQCPHEW (4 s §189) = 41% . (7.10)

This plot demonstrates that both the inclusion of the EW and the QCD corrections is
required in order to properly predict the decay width.

In figure 7 we show the branching ratios corresponding to the widths of figure 6. They
have been obtained by replacing in NMSSMCALC the corresponding width with our loop
corrected width.? The higher order corrections to the remaining decay modes needed in
the computation of the total width for the branching ratio, are the ones as implemented
in NMSSMCALC. In particular they include the dominant higher order QCD corrections. The
decays into a bottom quark pair furthermore take into account the higher order SUSY-
QCD and the approximate SUSY-EW corrections up to one-loop accuracy. The decays
into a strange quark pair include the dominant resummed SUSY-QCD corrections and
the ones into a 7 pair the dominant resummed SUSY-EW corrections. For details, we
refer the reader to ref. [120] and the references therein. The branching ratio at LO of our
investigated parameter point amounts to

BRYC(Ay — #11y) = 40.8% . (7.11)

8The variation of mgz, between 170 and 300 GeV corresponds to a variation of APS between 1371 and
1721 GeV.

9In NMSSMCALC the SUSY QCD corrections to the decays into squarks, as derived from [86], are taken
into account. These include improvements in the decays into sbottoms, which are required in parts of the
parameter space, that are not relevant for us. Furthermore, we include the EW corrections. We therefore
consistently turned off the corrections implemented in NMSSMCALC in the decays into squarks and included
instead our corrections. The formulae for the NLO SUSY-QCD and SUSY-EW corrections to the decays of
CP-odd NMSSM Higgs bosons into stops shall be included in NMSSMCALC and will be made publicly available
in a future release of the program.
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Figure 7. Same as figure 6, but for the branching ratios.

The net effect of the NLO EW and QCD corrections is an increase of the branching ratio by
ABROPHEW (4y 5 111) = +20.8% . (7.12)

In the plot of figure 7 we again vary m;, around the chosen parameter point, illustrated
by the pink line in the plot. As can be read off the lower plot the total NLO corrections
increase the branching ratio by up to a bit more than 40% in the shown my, range. Thus
this decay remains the most important one also after the inclusion of the NLO corrections.

Figure 8 finally shows the dependence of the higher order corrections on the gluino
mass. The EW corrections of course do not depend on mg, while the QCD corrections
show a very mild dependence on the gluino mass, apart from the region around mg =~
535GeV. The kink that appears here, arises in the 5 self-energy at the threshold where

m,

, = Mg+ M.

The size of the higher order corrections sensitively depends on the scenario. Thus we
find for the scenario defined by

Mg = My 50 = MG, , = M, , = Mepjin = 3 TeV, my, = 714.25 GeV
me, = 1035 GeV, my =2776 GeV, mj = 2156 GeV, msz, = 1755 GeV,
3 R 3
Ay = 1246 GeV, A, .=1347 GeV, Ajsp = —1651 GeV, A, = 769.08 GeV,

My = 460.61 GeV, My = 381.55 GeV, Mz = 2296 GeV (7.13)
and
A =0.552, k= 0.030, A, =—173.51 GeV,  peg = 446.80 GeV,
tan 8 = 3.005, Mpy+ = 1460 GeV (7.14)
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Figure 8. Upper: the partial decay width T'(Ay — #13) as a function of mg. The color and line
style code is the same as in figure 6. Lower: the relative correction A = (I'Y*© — T'FO)/TLO i
per cent for X =QCD (green/dotted), EW (red/dashed) and the full NLO corrections (black/full).
The pink line shows the position of the parameter point defined in eqs. (7.1)—(7.5).

resulting in
My, = 1461 GeV  mj = 353.02 GeV  my, = 927.56 GeV (7.15)
and an LO decay width of
TO(Ay — t1ty) = 15.24 GeV (7.16)

NLO QCD and EW corrections that amount to AQCP = 23.4% and AFW = —10.2%,
respectively, resulting in a total correction of

AQCDTEW (4 5 1115) = 13.2% . (7.17)

This can also be inferred from figure 9 which shows the NLO corrections to the decay
widths as a function of mz . As demonstrated in the lower plot, the NLO QCD corrections
are of the order of 20-25%, while the EW corrections range between about -17% and -8%,
leading to an overall increase of the cross section between 3% and 17% due to the combined
NLO corrections.

7.2 Stop decays into a pseudoscalar

Decays of the heavy stop into a pseudoscalar and the light stop can occur and become
important when there is a large mass splitting between the two stop mass eigenstates.
Stop decays into a SM-like Higgs boson final state have recently been discussed in [177]
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Figure 9. Same as figure 6, but now for the initial scenario (marked by the pink line in the plot)
given by eqgs. (7.13)—(7.14).

and the production of NMSSM Higgs bosons in squark cascade decays in [76, 178]. In order
to show the impact of the SUSY-EW and -QCD corrections on the stop decay width we
chose the following parameter set, which leads to an NMSSM Higgs and SUSY spectrum
in accordance with the LHC data:

Migin = My 50 = MGy, = My, = Megjin = 3 TeV, mg, = 748.07 GeV,
mp. = 1259 GeV, m; =1709 GeV, m; = 1637 GeV, mz, = 1618 GeV ,
Q3 bR Ls R
Ay =1589 GeV, A,.=1675 GeV, Agsp = —669.04 GeV, A, =179.93 GeV,
My = 645.51 GeV, My =272.11 GeV, M3 = 2511 GeV (7.18)

and the NMSSM specific input parameters

A= 0.588, k=0378, A.=—67573CGeV, per = 385.90 GeV,
tan B = 1.520, M+ = 639.08 GeV . (7.19)

This results in the two-loop corrected mass M4, of the lighter pseudoscalar A; and the

stop masses myz, ,,
Ma, = 63740 GeV  m; = 342.76 GeV and mj, = 1153 GeV . (7.20)
And for the stop soft SUSY breaking trilinear coupling in the OS scheme we get

A5 = 1675 GeV . (7.21)
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Figure 10. The decay width I'(f; — Ajf1) as a function of m; at LO (blue/upper dotted),
including the NLO QCD (green/lower dotted), the NLO EW (red/dashed) and both the EW and
QCD corrections (black/full). Lower: the relative correction A = (I'Y© —Tt9) /L0 in per cent for
X =QCD (green/dotted), EW (red/dashed) and the full NLO corrections (black/full). The pink
line shows the position of the parameter point defined in eqgs. (7.18)—(7.19).

Figure 10 (upper) shows the decay width I'(fo — A;t1) at LO, including the NLO EW,
the NLO QCD and both NLO corrections, as a function of my , varied around the chosen
parameter point, marked by the pink line in the plots. The LO decay width reaches

FLOGQ — Alfl) =9.26 GeV . (7.22)

In the whole investigated m;, range, the EW and QCD corrections are significant, decreas-
ing together the LO width by ~ 12 — 15%. Both corrections are of similar size, where,
depending on the parameter point, once the QCD, once the EW corrections are more im-
portant. At our starting parameter point both corrections are almost equal resulting in a
decrease of

ATQCPHEW — 171 7% (7.23)

cf. figure 10 (lower). Our results demonstrate that also in the stop decays both the QCD and
EW corrections have to be considered for a meaningful prediction of the stop decay width.
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8 Conclusions

The search for New Physics is one of the main tasks at the LHC. In the absence of any
direct sign of new resonances so far, the precise investigation of the Higgs sector becomes
more and more important. Physics beyond the SM might reveal itself in modified Higgs
decay rates compared to the SM expectations or in the discovery of additional Higgs bosons,
unambiguous sign of a non-SM Higgs sector. In view of the complexity of the experimental
analyses and the plethora of still possible New Physics extensions, it is evident that the
success of this research program depends on the precise predictions of parameters and
observables from the theory side. In this paper we have calculated the NLO SUSY-EW
and -QCD corrections to the decays of a pseudoscalar NMSSM Higgs boson into stop pairs
and of the heavier stop into the lighter stop and a pseudoscalar Higgs boson. Both processes
can become important in certain regions of the parameter space and hence contribute to the
discovery channels of either the pseudoscalar Higgs boson and /or the stop quarks. The NLO
corrections turn out to be important and, depending on the scenario, the EW corrections
can be of same size as the QCD corrections and also come with opposite sign. Therefore
not only the inclusion of higher order corrections is important but also the consideration
of both the QCD and the EW corrections is indispensable for making reliable predictions.
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A The loop functions

The D dimensional one-loop integrals encountered in the calculation are the scalar one-,
two- and three-point functions Ag, By and Cj as well as the coefficient of the two-point
tensor integral of rank one, B;. They are defined as

Ag(m) = 1672*=P / Pq 1 (A.1)
’ o ienP (@ —m?) '
dPq 1
Bo(p?;m1,mg) = 167r2,u4_D/ - A2
o 1, ma) RSP R s B
2 2 2. 2 4-D qu
Co(plap2ap12amlam27m3) = 167 M Z(27T)D
1

X A3
@—mDlarmP-mllarp—my P
puB1(p*;ma, ma) = 167r2u4D/ % L (A.4)

a Y i(2m)P (¢ —mi)[(q +p)? —m3]’

where

D12 = p1+ P2 (A.5)
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with p, p1, p2 denoting the external momenta, which are taken as incoming, and m, m,
ms, mg the masses of the loop particles.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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