KIT | KIT-Bibliothek | Impressum | Datenschutz

ListNet-based MT Rescoring

Niehues, Jan ORCID iD icon 1; Do, Quoc-Khanh; Allauzen, Alexandre; Waibel, Alex 1
1 Institut für Anthropomatik und Robotik (IAR), Karlsruher Institut für Technologie (KIT)

Abstract:

The log-linear combination of different features is an important component of SMT systems. It allows for the easy integartion of models into the system and is used during decoding as well as for n-best list rescoring. With the recent success of more complex models like neural network-based translation models, n-best list rescoring attracts again more attention. In this work, we present a new technique to train the log-linear model based on the ListNet algorithm. This technique scales to many features, considers the whole list and not single entries during learning and can also be applied to more complex models than a log-linear combination. Using the new learning approach, we improve the translation quality of a largescale system by 0.8 BLEU points during rescoring and generate translations which are up to 0.3 BLEU points better than other learning techniques such as MERT or MIRA.


Verlagsausgabe §
DOI: 10.5445/IR/1000051087
Veröffentlicht am 06.06.2025
Originalveröffentlichung
DOI: 10.18653/v1/W15-3030
Scopus
Zitationen: 8
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2015
Sprache Englisch
Identifikator ISBN: 978-1-94164-332-7
KITopen-ID: 1000051087
Erschienen in Proceedings of the 10th Workshop on Statistical Machine Translation (WMT), September 17-18 2015, Lisboa, Portugal
Veranstaltung 10th ACL Workshop on Statistical Machine Translation (WMT 2015), Lissabon, Portugal, 17.09.2015 – 18.09.2015
Verlag Association for Computational Linguistics (ACL)
Seiten 248-255
Externe Relationen Siehe auch
Nachgewiesen in Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page