KIT | KIT-Bibliothek | Impressum | Datenschutz

Stripping Adjectives: Integration Techniques for Selective Stemming in SMT Systems

Slawik, Isabel 1; Niehues, Jan ORCID iD icon 1; Waibel, Alex 1
1 Institut für Anthropomatik und Robotik (IAR), Karlsruher Institut für Technologie (KIT)

Abstract:

In this paper we present an approach to reduce data sparsity problems when translating from morphologically rich languages into less inflected languages by selectively stemming certain word types. We develop and compare three different integration strategies: replacing words with their stemmed form, combined input using alternative lattice paths for the stemmed and surface forms and a novel hidden combination strategy, where we replace the stems in the stemmed phrase table by the observed surface forms in the test data. This allows us to apply advanced models trained on the surface forms of the words. We evaluate our approach by stemming German adjectives in two German→English translation scenarios: a low-resource condition as well as a large-scale state-of-the-art translation system. We are able to improve between 0.2 and 0.4 BLEU points over our baseline and reduce the number of out-of-vocabulary words by up to 16.5%


Verlagsausgabe §
DOI: 10.5445/IR/1000051102
Veröffentlicht am 10.06.2025
Scopus
Zitationen: 2
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2015
Sprache Englisch
Identifikator KITopen-ID: 1000051102
Erschienen in Proceedings of the 18th Annual Conference of the European Association for Machine Translation (EAMT 2015), May 1-13 2015, Antalya, Turkey. Ed.: İ. El-Kahlout
Veranstaltung Annual Conference of the European Association for Machine Translation (EAMT 2015), Antalya, Türkei, 01.05.2015 – 13.05.2015
Verlag European Association for Machine Translation (EAMT)
Seiten 129-136
Externe Relationen Siehe auch
Abstract/Volltext
Nachgewiesen in Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page