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We compute the decay rate of the Standard Model Higgs boson to bottom quarks to order ααs . We 
apply the optical theorem and calculate the imaginary part of three-loop corrections to the Higgs boson 
propagator using asymptotic expansions in appropriately chosen mass ratios. The corrections of order 
ααs are of the same order of magnitude as the O(α3

s ) QCD corrections but have the opposite sign.
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1. Introduction

After the discovery of a Higgs boson in run I of the CERN Large 
Hadron Collider it is one of the main tasks of run II to determine 
the properties of the new particle. Among them is the coupling to 
other particles. This is predominantly done by determining Higgs 
production cross sections and decay branching ratios, i.e. the ra-
tio of the partial decay width of the Higgs boson to the considered 
particles normalized to the total decay rate. The latter is domi-
nated by the partial decay rate to bottom quark, �(H → bb̄), which 
hence influences all branching ratios. Thus, �(H → bb̄) should be 
available as precisely as possible.

QCD corrections are known up to order α4
s (see, e.g., Refs. [1–7]) 

and first results of order α5
s induced by virtual top quarks have 

been obtained in Ref. [8]. Good convergence of the perturbative 
series is observed leading to a 0.1% contribution of the α4

s cor-
rections to �(H → bb̄). As far as electroweak corrections are con-
cerned only one-loop corrections are available which have been 
computed beginning of the nineties [9,10]. At two- and three-loop 
order only the leading M2

t corrections are available [11–14]. In this 
work we compute QCD corrections to the full O(α) result and thus 
obtain all contributions of order ααs to the partial decay rate of 
a Standard Model Higgs boson into bottom quarks. Analog cor-
rections to the decay rates of the Z and W bosons have been 
computed in Refs. [15–18], respectively.

We parametrize the corrections to the decay rate as follows

�(H → bb̄) = �(0)
(

1 + �(αs) + �(α) + �(ααs) + . . .
)

, (1)
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where the ellipses stand for higher order corrections in α and αs . 
It is convenient to split the electroweak corrections into a weak 
and a QED contributions which to our order are separately finite 
and gauge invariant:

�(α) = �(QED) + �(weak) ,

�(ααs) = �(QED,αs) + �(weak,αs) . (2)

The aim of this paper is the computation of the mixed corrections 
�(ααs) . In Eq. (1) �(0) denotes the Born decay rate which is given 
by

�(0) = Ncαm2
b MH

8s2
W M2

W

β3
0 , (3)

where Nc = 3 is the number of colours and sW is the sine of 
the weak mixing angle. β0 =

√
1 − 4m2

b/M2
H is the velocity of the 

produced bottom quarks which from now on we approximate to 
β0 = 1. As an alternative to Eq. (3) one can replace the fine struc-
ture constant by Fermi’s constant via

G F√
2

= πα

2s2
W M2

W

1

1 − �r
, (4)

where the finite quantity �r parametrizes the radiative corrections 
to the muon decay beyond QED corrections within the effective 
four-fermion theory [19]. This leads to

�(0) = Nc G F m2
b MH

4
√

2π
. (5)

For later reference we provide the Born decay rate including 
higher order terms in ε = (4 − d)/2 which are useful in the renor-
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malization procedure. For d �= 4 both (3) and (5) have to be multi-
plied by the factor1

f (ε) =
(

μ2

M2
H

)ε [
1 + ε + ε2

(
4 − π2

4

)
+O(ε3)

]
. (6)

For later convenience we also list the one-loop QCD corrections 
including terms of order ε

�(αs) = αs

π
C F

{
17

4
+ 3

2
ln

(
μ2

M2
H

)
+ ε

[
179

8
− 7π2

8
− 6ζ(3)

+23

2
ln

(
μ2

M2
H

)
+ 9

4
ln2

(
μ2

M2
H

)]}
, (7)

where C F = 4/3. To obtain this result the bottom quark mass has 
been renormalized in the MS scheme. The one-loop QED correc-
tions are obtained from �(αs) with the help of

�(QED) = αQ 2
b

C F αs
�(αs) , (8)

where C F = 4/3 and Q b = −1/3 is the charge of the bottom quark.
The remainder of the paper is organized as follows: In the next 

section we discuss the method we want to use for the three-loop 
diagrams of order ααs and apply it to the one-loop electroweak 
corrections. The O(ααs) corrections are presented afterwards in 
Section 3. In Section 4 we discuss the numerical effect, compare 
with the known QCD corrections and conclude.

2. Corrections of order α

Before discussing the computation of the genuine diagrams of 
order α we briefly elaborate on the counterterm contribution. We 
follow Ref. [20] and introduce one-loop counterterms for the Higgs 
boson wave function (δZ H ), the vacuum expectation value (δv) and 
the bottom quark mass (δmb ). This leads to the following countert-
erm contribution of �(weak)

�
(weak)
CT = �(0)

(
1 − 2

δv

v
+ δZ H − �r + 2δmb

)
, (9)

where �(0) is given in Eq. (5). We do not include the on-shell wave 
function renormalization of the quarks in �(weak)

CT since it is auto-
matically taken into account when using the optical theorem (see 
below). In the on-shell scheme the mass counterterm is defined 
through

m0
b = Mb

(
1 + δOS

mb

)
, (10)

with Mb being the on-shell mass. We take δOS
mb

from Refs. [21,22]
dropping all tadpole contributions. The divergent part of δmb de-

termines the MS counterterm δMS
mb

and is in our approximation (i.e. 
at most m2

b terms in the decay rate) given by

δ
(weak),MS
mb

= δOS
b

∣∣
1/ε pole

= α

π

(
− 3m2

t

32s2
W M2

W

+ 9 + 6s2
W − 8s4

W

96c2
W s2

W

)
1

ε
. (11)

The remaining terms on the right-hand side of Eq. (9) can be writ-
ten in the form [20]

1 Throughout this paper we adopt a MS-like convention and set γE and log(4π)

to zero.
vr ≡ −2
δv

v
+ δZ H − �r

= −�W (0)

M2
W

− �′H (M2
H ) − 2

sW cW

�γ Z (0)

M2
Z

− α

4π s2
W

(
6 + 7 − 4s2

W

2s2
W

ln(c2
W )

)

= α

π s2
W

{
− 1 + 2c2

W

8c2
W

1

ε
− 3(1 + 2c2

W )

32c2
W

+ 3(1 + 2c4
W )M2

Z

8c2
W M2

H

+ (13 − 2
√

3π)M2
H

32M2
W

+ (M2
H − 6M2

W )(M2
H + 2M2

W )

4M3
H

√
−M2

H + 4M2
W

arctan
MH√

−M2
H + 4M2

W

+ (M2
H − 6M2

Z )(M2
H + 2M2

Z )

8c2
W M3

H

√
−M2

H + 4M2
Z

arctan
MH√

−M2
H + 4M2

Z

+ (M2
H + 5M2

W )

48M2
W

ln

(
μ2

M2
H

)

+ (−1 + 11c2
W + 8c4

W )

48c2
W

ln

(
μ2

M2
Z

)

+ M2
H c2

W − M2
W (5 + 18c2

W + 8c4
W )

48M2
W c2

W

ln

(
μ2

M2
W

)

+ (M4
H − 5M2

H M2
W − 5M4

W )

48M2
W (M2

H − M2
W )

ln

(
M2

W

M2
H

)

+ (−5 + 8c2
W )(1 + c2

W + c4
W )

48c2
W s2

W

ln

(
M2

W

M2
Z

)

+ Nc

[
m2

t (8m2
t + M2

H )

16M2
H M2

W

+
m2

t (2m2
t + M2

H )

√
4m2

t − M2
H

4M3
H M2

W

× arctan
MH√

4m2
t − M2

H

]}
, (12)

where v is the vacuum expectation value and �W , �γ Z and �H

denote the two-point functions of the corresponding bosons in the 
notation given in Ref. [20]. The prime in the case of the Higgs 
boson two-point function denotes the derivative w.r.t. the external 
momentum squared, q2. Afterwards q2 = M2

H is chosen.
For the evaluation of the decay rate �(H → bb̄) we use the 

optical theorem which for our application has the form

�(H → bb̄) = 1

MH
Im

[
�H (q2 = M2

H + iε)
]

, (13)

where �H (q2) is the Higgs boson two-point function which is 
evaluated on the Higgs boson mass shell. As a consequence we 
have to consider Feynman diagrams as shown in Fig. 1 to evalu-
ate the O(α) corrections. In this approach we automatically take 
into account the on-shell wave function renormalization which is 
the reason why we have not considered it in Eq. (9). Note that we 
neglect mb corrections except the leading m2

b factor and thus the 
contributing diagrams either contain Z bosons (possibly together 
with neutral Goldstone bosons) or W and/or charged Goldstone
bosons and top quarks.
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Fig. 1. Sample Feynman diagram contributing to the O(α) corrections of �(H → bb̄). External dashed lines denote the Higgs boson.
We express our final result in terms of the MS bottom quark 
mass which, as is well known, leads to a better perturbative be-
haviour of the decay rate. In this context we briefly want to dis-
cuss the tadpole contributions to the bottom quark propagator (see 
also discussions in Refs. [21,22]). In fact, besides the diagrams in 
Fig. 1 there are also contributions where a closed loop is con-
nected via a Z or Higgs boson to the bottom quark line, so-called 
tadpoles. These contributions are exactly cancelled by the on-shell 
counterterm contributions to the bottom quark mass. For this rea-
son we drop the tadpoles in both parts from the very beginning. 
Note, however, that after dropping the tadpole contribution in 
the counterterm δmb , it becomes dependent on the electroweak 
gauge parameters ξW /Z . The same is true for the contribution from 
the diagrams in Fig. 1. In the sum ξW /Z drops out. In case the 
bottom quark mass is renormalized in the MS scheme there is 
no cancellation and the final expression for �(H → bb̄) remains 
ξW /Z -dependent. Note, however, that also the numerical value of 
mb in the MS scheme (formally) depends on ξW /Z since in the ex-
traction of mb from the comparison of theoretical calculations and 
experimental data (see, e.g., Ref. [23]) no electroweak tadpoles are 
included. The ξW /Z -dependence in �(H → bb̄) and mb cancels.

In our calculation we adopt Feynman gauge in the electroweak 
sector but allow for general gauge parameter ξS in gluon propaga-
tor. In our final result ξS drops out which is a welcome check. Our 
Feynman integrals involve the mass scales MH , Mt , MW and M Z .

Before presenting numerical results let us fix our input param-
eters which are given by [23–25]

Mt = 173.34 GeV ,

MH = 125.09 GeV ,

MW = 80.385 GeV ,

M Z = 91.1876 GeV ,

mb(mb) = 4.163 GeV ,

G F = 1.1663788(6) × 10−5 GeV−2 ,

αs(M Z ) = 0.1185 (14)

where the four-loop QCD conversion [26] of the on-shell to the 
MS top quark mass leads to mt(mt) = 163.47 GeV and mt(MH ) =
166.97 GeV.

Let us in a first step discuss the contribution from the Feynman 
diagrams which do not involve top quarks. As massive particles 
they only contain Z bosons or neutral Goldstone bosons and thus 
they depend on q2/M2

Z where q2 = M2
H is the square of the exter-

nal momentum. At O(α) an exact calculation is possible, however, 
at O(ααs) the occurring integrals become complicated. Thus we 
evaluate this class of Feynman diagrams in the limit q2 � M2

Z and 
apply a Padé approximation to construct an approximation for the 
physical limit q2 = M2

H . In principle one could also imagine to con-
sider q2 	 M2

Z . However, this limit contains decays of the form 
H → Z Z which are kinematically forbidden. On the other hand, for 
q2 � M2

Z we neglect contributions from H → Zbb̄, which are, how-
ever, strongly phase–space suppressed. Furthermore, it is possible 
to experimentally distinguish this final state from H → bb̄. Note 
that the decay H → Zbb̄ is not included in the result of Ref. [10].
Table 1
Coefficients Dk from Eq. (15) for μ2 = MH .

k Dk

0 −0.008768
2 −0.000847
4 −0.000196
6 +0.000269
8 −0.000534

10 +0.000894
12 −0.001515
14 +0.002568
16 −0.004383

Table 2
Numerical results for �(weak,Z) obtained 
from the construction of Padé approxima-
tions using the coefficients in Table 1. The 
last row contains the exact result from 
Ref. [10].

Padé approximant �(weak,Z)

[3/3] −0.009744
[3/4] −0.009746
[4/3] −0.009747
[4/4] −0.009746

Exact −0.009747

In the limit q2 � M2
Z we obtain for �(weak,Z) the expansion

�(weak,Z) =
∑
j≥0

d2 j

(
M2

H

M2
Z

) j

=
∑
j≥0

D2 j , (15)

where the coefficients Dk are given in Table 1. �(weak,Z) includes 
all relevant contributions from �

(weak)
CT and is thus finite in the 

limit ε → 0. The bottom quark is renormalized in the MS scheme. 
The counterterm contribution is not expanded in M2

H /M2
Z and is 

contained in the coefficient D0. Furthermore, we choose μ2 = M2
H

for the renormalization scale.
In a next step we use the results in Table 1 and construct vari-

ous Padé approximations. The results are shown in Table 2 where 
also the exact result for �(weak,Z) from Ref. [10] is displayed. The 
deviation of the numerical approximation based on the [4/4] Padé 
expression and the exact result [10] is about 0.01% which justifies 
the use of this method at order ααs .

Let us next turn to the contribution involving top quarks and a 
W and/or charged Goldstone bosons. To simplify the integrals and 
to obtain simple final expressions we assume one of the following 
hierarchies

(A) M2
H � 4M2

W � 4M2
t ,

(B) M2
H � 4M2

W ≈ 4M2
t . (16)

We stress that the O(α) corrections can be computed without any 
assumptions on the relative size of the involved mass scales. How-
ever, at order ααs the hierarchies in Eq. (16) significantly simplify 
the calculation.

In Eqs. (16) the strong hierarchy (“�”) means that we apply an 
asymptotic expansion [27] in the corresponding mass ratio. In the 
case of an approximation sign we Taylor-expand the integrand in 
the mass difference. As a result we obtain �(weak) in the form
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Table 3
Coefficients C (A)

k as defined in Eq. (17) (middle column). In the nth row of the right 
column the sum including the first n terms is shown. On the top part we adopt 
the MS and below the on-shell definition for the top quark mass. The Z boson 
contribution is marked by |Z .

k C (A)

k (MS) �(weak)

−2 +0.005146 +0.005146
0 −0.004506 − 0.009746|Z −0.009106
2 −0.000166 −0.009272
4 −0.000100 −0.009372
6 −0.000105 −0.009477
8 −0.000088 −0.009565

10 +0.000048 −0.009517
12 −0.000029 −0.009546
14 +0.000001 −0.009545

Exact −0.009549

k C (A)

k (on-shell) �(weak)

−2 +0.004842 +0.004842
0 −0.004754 − 0.009746|Z −0.009659
2 −0.000145 −0.009804
4 −0.000095 −0.009899
6 −0.000078 −0.009977
8 −0.000065 −0.010042

10 +0.000029 −0.010012
12 −0.000018 −0.010031
14 +0.000000 −0.010030

Exact −0.010034

�(weak) =
∑

i≥−1

c(A)
2i

(
M2

W

M2
t

)i

=
∑

i≥−1

C (A)
2i ,

=
∑

i≥−1

c(B)
2i

(
M2

t − M2
W

M2
t

)i

=
∑

i≥−1

C (B)
2i , (17)

where the coefficients c(A)

k and c(B)

k are expansions in M2
H/(4M2

W ). 
Note that by definition C (A)

0 and C (B)
0 contain the contribution from 

�(weak,Z) .
We show our results for hierarchy (A) in Table 3 adopting again 

μ2 = M2
H and the MS definition for the bottom quark mass. For the 

top quark mass both the MS and on-shell mass value is used.
Note that �(weak) ∼ 1/x as x → 0. For this reason we show in 

Fig. 2 the quantity x�(weak) as a function of x = M2
W /M2

t and com-
pare the expansion obtained for the hierarchies (A) and (B) with 
the exact result [10].2 For the plot we use the on-shell definition 
of the top quark mass and set μ2 = M2

H . The numerical values 
are obtained by keeping MW fixed and varying Mt . We take into 
account expansion terms up to k = 12 (see Table 3) which corre-
sponds to the expansion depth which is available at order ααs (cf. 
Section 3). One observes that for x � 0.4 a perfect description is 
obtained from hierarchy (A) (red, dashed curve) and above x ≈ 0.4
the result from hierarchy (B) (blue, dotted curve) agrees perfectly 
with the exact result (black line). For the physical value x ≈ 0.215
one obtains

�
(weak)
B ≈ −0.009525 , (18)

which has to be compared with the results in Table 3 in the lower 
panel. There is a notable deviation of about 5% to the exact re-
sult which has its origin in the divergent behaviour proportional 
to 1/x for x → 0. For this reason we concentrate in Section 3 on 
hierarchy (A).

2 There is a typo in the quantity �T10+11 in Eq. (A.2) of [10]: the minus sign in 
front of m2

f ′ should be a plus sign.
Fig. 2. Comparison of x�(weak) as obtained for the hierarchies (A) and (B) with the 
exact result as a function of x = M2

W /M2
t . The black (solid) curve shows the exact 

result, the (red) dashed curve the expansion for x → 0 and the (blue) dotted curve 
the expansion around x = 1. The vertical line indicates the experimental result for 
x ≈ 0.215. For the renormalization scale of the bottom quark μ2 = M2

H has been 
chosen. Note that x�(weak) behaves as log(x) for x → 0. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version 
of this article.)

3. Corrections of order ααs

In this section we consider the quantity �(ααs) of Eq. (1). An 
analytic expression for �(QED,αs) can easily be obtained from the 
O(α2

s ) QCD corrections (see, e.g., Ref. [28]) after adopting the 
colour factors. It reads

�(QED,αs) = Q 2
b
ααs

π2
C F

[
691

32
− 3

4
π2 − 9

2
ζ(3)

+ 105

8
ln

(
μ2

M2
H

)
+ 9

4
ln2

(
μ2

M2
H

)]
. (19)

To obtain �(weak,αs) we proceed as follows:

• We consider the imaginary part of the three-loop propagator-
type diagrams which are obtained by dressing the O(α) dia-
grams (cf. Fig. 1 for examples) in all possible ways with one 
gluon. This part can be split, in analogy to the O(α) cor-
rections, into a contribution involving Z or Goldstone bosons 
and into a contribution involving W and/or charged Goldstone 
bosons and top quarks.

• The bare bottom quark mass in the Born result has to be re-
placed by the MS renormalized counterpart using corrections 
of order ααs . The corresponding counterterm is available from 
Refs. [22,29] which we have checked by an independent calcu-
lation. It is given by

δ
(weak,αs),MS
mb

= C F
ααs

π2

[
1

ε2

(
− 1

16
− 7

128c2
W

− 9

128s2
W

+ 9m2
t

64M2
W s2

W

)

+ 1

ε

(
1

96
+ 31

768c2
W

+ 27

256s2
W

− 3m2
t

32M2
W s2

W

)]
. (20)

Note that δ
(weak,αs),MS
mb

contains poles up to order 1/ε2 and 
thus the Born result is needed up to order ε2 terms.

• �(0)�(α) has to be available up to order ε and the bottom 
and top quark masses have to be renormalized using one-loop 
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counterterms of O(αs) which are given by

δ
(αs),OS
mq = mbare

q

Mq
− 1 = −αs

π
C F

(
3

4ε
+ 1 + 3

4
ln

μ2

M2
q

)
, (21)

with q = b, t . The corresponding MS counterterm is obtained 
by dropping the finite part on the right-hand side of the above 
equation.

• �(0)�(αs) has to be available up to order ε and the bottom 
quark mass has to be renormalized using one-loop countert-
erms of O(α) which is given in Eq. (11) .

• There is a contribution where vr from Eq. (12) multiplies 
�(0)�(αs) . Since the latter is finite we do not need the O(ε)

part of vr . On the other hand, since vr contains 1/ε poles 
�(0)�(αs) is needed including O(ε) terms.

• The fermion-loop contributions to vr [see Eq. (12)] receive 
two-loop QCD corrections which are multiplied by the Born 
decay rate. Since the fermionic contribution to �γ Z (0) van-
ishes only �W (0) and �′H (M2

H ) get correction terms of order 
ααs . We compute them in the limit of a heavy top quark and 
obtain in the MS scheme

−�W (0)

M2
W

− �′H (M2
H )

∣∣∣∣∣
O(ααs)

= Ncααs

π2s2
W

{
m2

t

M2
W

[
19

72
+ 7

24
ln

(
μ2

m2
t

)
− 1

12
ζ(2)

]

− M2
H

M2
W

61

3240

+ M4
H

m2
t M2

W

[
− 503

100 800
+ 3

560
ln

(
μ2

m2
t

)]

+ M6
H

m4
t M2

W

[
− 9523

15 876 000
+ 1

630
ln

(
μ2

m2
t

)]

+ M8
H

m6
t M2

W

[
− 100 687

2 514 758 400
+ 1

2464
ln

(
μ2

m2
t

)]

+ M10
H

m8
t M2

W

[
154 559

19 423 404 000
+ 1

10 010
ln

(
μ2

m2
t

)]

+O
(

M12
H

m10
t M2

W

)}
, (22)

where mt = mt(μ).

The individual terms develop poles up to order 1/ε2, which cancel 
in the sum.

We are now in the position to present results for the order ααs

corrections. In analogy to Eqs. (15) and (17) we introduce

�(weak,αs,Z) =
∑
j≥0

d2 j

(
M2

H

M2
Z

) j

=
∑
j≥0

D2 j ,

�(weak,αs) =
∑

i≥−1

c(A)
2i

(
M2

W

M2
t

)i

=
∑

i≥−1

C (A)
2i (23)

where for convenience �(weak,αs,Z) is added to the coefficient C (A)
0 .

In the case of �(weak,αs,Z) we proceed as at order α: we com-
pute nine expansion terms for the (formal) limit q2 � M2

Z and 
set q2 = M2

H . After including the corresponding counterterm con-
tributions we obtain the expansion coefficients listed in Table 4. 
Table 4
Coefficients Dk from Eq. (23) for μ2 = M2

H .

k Dk

0 −0.001692
2 −0.000032
4 −0.000547
6 +0.000836
8 −0.001347

10 +0.002183
12 −0.003604
14 +0.006033
16 −0.010223

Table 5
Numerical results for �(weak,αs ,Z) obtained 
from the construction of Padé approxima-
tions using the coefficients in Table 4.

Padé approximant �(weak,αs ,Z)

[3/3] −0.001955
[3/4] −0.001954
[4/3] −0.001960
[4/4] −0.001953

Table 6
Coefficients C (A)

k at order ααs as defined in Eq. (23). In the nth row of the right 
column the sum including the first n terms is shown. On the top part we adopt the 
MS and below the on-shell definition for the top quark mass.

k C (A)

k (MS) �(weak,αs)

−2 −0.000479 −0.000479
0 −0.000514 − 0.001953|Z −0.002946
2 −0.000044 −0.002990
4 +0.000018 −0.002972
6 +0.000003 −0.002970
8 +0.000005 −0.002964

10 +0.000004 −0.002960
12 +0.000002 −0.002959

k C (A)

k (on-shell) �(weak,αs)

−2 −0.000481 −0.000481
0 −0.000382 − 0.001953|Z −0.002816
2 −0.000032 −0.002848
4 −0.000006 −0.002854
6 −0.000008 −0.002862
8 +0.000011 −0.002851

10 −0.000010 −0.002861
12 +0.000002 −0.002860

Afterwards we construct several Padé approximants and obtain the 
results in Table 5. We observe a similar stability as at O(α) and es-
timate the final result as

�(weak,αs,Z) = −0.00195(1) , (24)

which has an uncertainty of about 0.5%, an accuracy sufficient for 
all foreseeable applications.

In Table 6 we present the results for the coefficients C (A)

k . We 
observe a continuous decrease of the magnitude leading to a sta-
ble result with two significant digits after including six expansion 
terms, a similar behaviour as at order α. The seventh and eighth 
terms confirm this approximation. It is also interesting to note that 
the contribution from the Z boson diagrams amounts to about 
65% of the total result. Furthermore, the leading m2

t contribution 
amounts to less than 20% of �(weak,αs) but to more than 50% of 
the W boson diagrams, i.e., �(weak,αs) − �(weak,αs,Z) .

4. Numerical results and conclusions

In Table 7 we summarize our results for the O(α) and O(ααs)

corrections where the electroweak part is split into QED and weak 
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Table 7
Numerical result for the QCD, QED and weak one-loop and mixed two-loop correc-
tions for μ2 = M2

H . Note that �(weak) and �(weak,αs) contain the contributions from 
�(weak,Z) and �(weak,αs ,Z) , respectively.

�(αs) �(α2
s ) �(α3

s ) �(α4
s )

QCD 0.2040 0.0378 0.0020 −0.0014

�(QED) �(QED,αs)

QED/QCD 0.0011 0.0001

�(weak) �(weak,αs) �(weak,Z) �(weak,αs ,Z)

Weak/QCD −0.0100 −0.0029 −0.0097 −0.0020

corrections. The contribution from the Z boson diagrams is listed 
for completeness; their contribution is contained in �(weak) and 
�(weak,αs) , respectively. For comparison also the QCD corrections 
up to O(α4

s ) [6] based on computations of the imaginary part of 
the massless Higgs correlators are shown in Table 7. Top quark 
induced QCD corrections due to an effective Hbb̄ coupling, which 
are in general small (see, e.g. Eq. (14) of Ref. [8]), are not shown.

Both at one- and two-loop order the weak corrections are neg-
ative whereas the QED corrections are positive. One furthermore 
observes that the weak corrections are about an order of magni-
tude larger than the QED terms. For μ2 = M2

H the weak correc-
tions amount to about −1% which is significantly smaller than the 
one-loop QCD correction (+20%), however, it is of the same order 
of magnitude as the two-loop O(α2

s ) corrections obtained from 
the massless Higgs correlator, which amount to +3.8% (see, e.g., 
Ref. [6]). At the same value of μ the correction term �(weak,αs)

amounts to about −0.3% which is a factor three larger than the 
one-loop QED corrections and which is of the same order of mag-
nitude, but with the opposite sign, as the three-loop QCD correc-
tions. It is interesting to note that the four-loop QCD corrections 
are −0.1%.

Finally, it is interesting to comment on the assumption the QED 
and QCD corrections factorize, an approach often chosen in case 
O(ααs) terms are missing. To do this we define

�(ααs,non-fact.) = �(ααs) − �(α)�(αs) , (25)

which shall be small in case the factorization approach works. 
From the numbers in Table 7 we obtain

�(ααs,non-fact.) = −0.000831 , (26)

which corresponds to about 30% of �(ααs) .
To summarize, in this letter we have computed the complete 

O(ααs) mixed corrections to the decay rate �(H → bb̄). They pro-
vide a negative shift of about −0.3% to �(H → bb̄) which corre-
sponds to about 30% of the one-loop electroweak corrections and 
which is of the same order of magnitude as the three-loop QCD 
corrections.
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