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“Since the Principia is one of those works
everyone talks of but no one reads, anything
said about it other than the usual honey-sauced
eulogy must stand up against righteous indigna-
tion from all sides. But it is a work of science,
not a bible. It should be studied and weighed -
admired, indeed, but not sworn upon. It has its
novelties and its repetitions, its elegant perfec-
tions and its errors, its lightning abbreviations
and its needless detours, its extraordinary
standards of rigor and its logical gaps, its elimi-
nation of stated hypotheses and its introduction
of unstated ones”.

(Truesdell 1968)

"Philosophiae Naturalis Principia Mathematica:
fundamental natural scientific treatise by Isaac
Newton from 1687 (Brewster 1840).

,Die Principia* ist ein wissenschaftliches
Werk und keine Bibel. Man sollte es studieren
und abwagen, bewundern - ja! - , aber nicht
darauf schwoéren. Man findet in ihm Neuigkeiten
und Wiederholungen, eine elegante Vollendung,
aber auch Irrtimer, erleuchtende Kiirze und
Uberfliissige Umwege, aulerordentliche An-
spriiche und Strenge, aber auch Liicken-
haftigkeit der Logik, das Aufrdumen mit friher
aufgestellten Hypothesen und die Einfihrung
unerklarter neuer Annahmen”.

(Truesdell 1968, Simonyi 2012)

“Philosophiae Naturalis Principia Mathematica:
grundlegende naturwissenschaftliche Abhand-
lung Isaac Newtons von 1687 (Brewster 1840).
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Abstract

Quartz is one of the most abundant rock-forming minerals within the Earth’s crust and used in numerous
modern technical applications. A profound knowledge of its physical properties, especially the complex
elastic behaviour, decisively influences our understanding of the subsurface, which is mainly based on
the interpretation of seismic waves. To quantify and to better understand the complex elastic properties
of quartz and quartz-bearing rocks dynamic mechanical laboratory experiments are performed in the
frequency range of seismic waves. In consequence to this, quartz shows a unique complex elastic behav-
iour in the vicinity of its a-f phase transition. This may help to estimate temperatures underground and
to clearly distinguish between a fully crystallised and a partly molten crust.

The laboratory experiments of this study comprise the determination of the complex Young’s moduli
of synthetic and natural quartz crystals, quartz-bearing rocks as well as fused silica as a function of fre-
quency and temperature in symmetrical three-point bending set-ups with support spacings of 20 and
40 mm. Plate-like specimens are loaded sinusoidally between 0.1 and 20 Hz. Dynamic stresses and
strains as well as their phase lags are recorded isothermally from ambient temperature across the o-f
transition in quartz to temperatures > 600 °C. For the interpretation of the observed mechanical behav-
iours, the samples are additionally investigated by differential thermal analysis, X-ray diffraction, X-ray
fluorescence, ultrasonic velocity measurements as well as by uniaxial and triaxial compression tests.

Dynamic mechanical analyses between ambient temperature and = 500 °C reveal that the complex
Young’s modulus of single-crystal a-quartz is anisotropic and frequency-independent, within the experi-
mental uncertainties. An increasing frequency dependence of the complex Young’s modulus of quartz is
observed at higher temperatures towards the a-f transition. The storage modulus (real part) increases
sigmoidally with frequency, while the dissipation modulus (imaginary part) reaches a maximum at = 1 Hz.
The dispersion of the storage modulus and the dissipation maximum are low (40 mm support spacing:
= 7.6 and = 2.6 GPa, respectively) parallel to the c-axis of the crystal and comparably high (40 mm sup-
port spacing: = 15.1 and = 7.1 GPa, respectively) perpendicular to it. The frequency dependence of the
complex Young’s modulus for f~quartz vanishes just a few degrees centigrade above the phase transi-
tion.

For the entire temperature range, the observed mechanical behaviour can be described by the Poyn-
ting-Thomson model within the experimental uncertainties. This model is composed of two mechanical
springs (E; and E;) and one dashpot (7). Compliance coefficients (S;) modelled by
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are used to determine the complex Young’s modulus as a function of frequency and temperature for all
crystallographic directions. At the o-f transition, model parameters of the compliance coefficients for
quartz, which is investigated with 40 mm support spacing, are: (S;1) E; =572 GPa, E,=70.0GPa,
n=64.6 GPas, (S:3) E; =127 GPa, E,=52.1GPa, 7=22.9GPas, (Sis) Ei1=204GPa, E,=37.5GP3,
n=26.4GPas, (S;») E;=612GPa, E,=106.7GPa, n=78.5GPas, (S13) E1=1,546 GPa, E, =284 GPa,
17 =200 GPas; S14 is nearly constant and = - 0.0024 GPa™.
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It is suggested that the mechanical observations are related to the formation and variation of Dau-
phiné twin domains due to dynamic reorientations of the crystal lattice in the vicinity of the a-f transi-
tion. The reorganisation of twin domains is promoted by low-frequency loading and relaxation, while it is
impeded by high-frequency loading and stress accumulation within the crystal lattice. The time constant
of the relaxation process is = 0.1 s. It is approximately isotropic and independent of temperature.

Modelling of the compressional wave velocity using the frequency-dependent stiffness coefficients at
the a-f transition (20 mm support spacing) yields a dispersion of = 0.38 km/s within seismic frequencies
for an isotropic quartz polycrystal. This is in agreement with observations for an elastically isotropic
quartzite, which also holds for the dissipation behaviour. Both frequency-dependent seismic wave veloc-
ities and their dissipation behaviour may be used to estimate temperatures and physical states of the
Earth’s crust, in places where it is thick and hot enough for the occurrence of the o-f transition in
quartz-rich rocks. Moreover, the significance of the frequency-dependent elastic properties of crystalline
SiO, is supported by the absence of this effect in fused silica.
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Zusammenfassung

Quarz ist eines der haufigsten gesteinsbildenden Minerale innerhalb der Erdkruste und wird in zahlrei-
chen modernen technischen Anwendungen genutzt. Eine fundierte Kenntnis seiner physikalischen Eigen-
schaften, insbesondere des komplexen elastischen Verhaltens, beeinflusst maRgeblich unser Verstandnis
des Untergrundes, welches vorwiegend auf der Interpretation seismischer Wellen beruht. Um die kom-
plexen elastischen Eigenschaften von Quarz und quarzhaltigen Gesteinen zu quantifizieren und besser zu
verstehen werden dynamisch mechanische Laboruntersuchungen im Frequenzbereich seismischer Wel-
len durchgefiihrt. Infolgedessen zeigt Quarz ein unverwechselbares komplexes elastisches Verhalten im
Bereich seiner a-f Phasenumwandlung. Dies konnte dabei helfen die Temperatur untertage abzuschat-
zen und klar zwischen einer vollstandig kristallisierten oder einer teilweise aufgeschmolzenen Kruste zu
unterscheiden.

Die Laboruntersuchungen dieser Studie beinhalten die Bestimmung der komplexen Elastizitditsmoduln
von synthetischen und natiirlichen Quarzkristallen, quarzhaltigen Gesteinen sowie Silikatglas als Funktion
der Frequenz und Temperatur in symmetrischen Dreipunktbiegezuganordnungen mit Auflageabstanden
von 20 und 40 mm. Plattchenférmige Probenkdrper werden sinusoidal zwischen 0,1 und 20 Hz belastet.
Dynamisch mechanische Spannungen und Verformungen sowie deren Phasenverschiebungen werden
ausgehend von Raumtemperatur iber den o~ Ubergang in Quarz hinweg bis zu Temperaturen > 600 °C
isothermal aufgezeichnet. Zur Interpretation der beobachteten mechanischen Verhaltensweisen wird
das Probenmaterial zusatzlich mittels Differential-Thermoanalyse, Rontgenbeugung, Rontgenfluoreszenz,
Ultraschallmessungen sowie uniaxialen und triaxialen Kompressionsversuchen untersucht.

Dynamisch mechanische Analysen zwischen Raumtemperatur und = 500 °C zeigen, dass der komplexe
Elastizitatsmodul von a-Quarzeinkristallen anisotrop und innerhalb der experimentellen Unsicherheiten
frequenzunabhingig ist. Bei héheren Temperaturen, hin zum - Ubergang, wird eine zunehmende Fre-
guenzabhangigkeit des komplexen Elastizitdtsmoduls von Quarz beobachtet. Der Speichermodul (Real-
teil) nimmt in sigmoidaler Form mit der Frequenz zu, wahrend der Verlustmodul (Imaginarteil) ein Ma-
ximum bei = 1 Hz aufweist. Die Dispersion des Speichermoduls und das Verlustmaximum sind parallel zur
c-Achse des Kristalls gering (jeweils = 7,6 und = 2,6 GPa) und senkrecht dazu vergleichsweise groR (je-
weils = 15,1 und = 7,1 GPa). Die Frequenzabhdngigkeit des komplexen Elastizitatsmoduls fir fQuarz
verschwindet nur wenige Grad Celsius oberhalb des Phaseniibergangs.

Das beobachtete mechanische Verhalten kann fiir den gesamten Temperaturbereich innerhalb der
experimentellen Unsicherheiten mit dem Poynting-Thomson Modell beschrieben werden. Dieses Modell
besteht aus zwei mechanischen Federn (E; und E;) und einem StoRdampfer (7). Elastizitdatskonstanten
(Sy) modelliert nach

E E) + 52772(022 E,n 5152772
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werden genutzt um den komplexen Elastizitatsmodul als Funktion der Frequenz und Temperatur fir
alle kristallographischen Richtungen zu bestimmen. Am a-f3 Ubergang sind die Modellierungsparameter
der Elastizitatskonstanten fir Quarz, welcher mit 40 mm Auflageabstand untersucht wird: (Si41)
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E; =572 GPa, E;=70,0GPa, 77=64,6GPas, (Ss3) E1=127GPa, E;=52,1GPa, 1=22,9GPas, (Su)
E; =204 GPa, E,=37,5GPa, n=26,4GPas, (S1;) E;1=612GPa, E;= 106,7 GPa, 7=78,5GPas, (Si3)
E; = 1.546 GPa, E, = 284 GPa, 1= 200 GPa s; S14 ist nahezu konstant und betragt = - 0,0024 GPa™.

Es wird angenommen, dass die mechanischen Beobachtungen mit der Bildung und der Veranderung
von Domdnen aus Dauphiné-Zwillingen aufgrund dynamischer Umorientierungen des Kristallgitters in
der Nihe des a-f3 Ubergangs einhergehen. Die Umordnung von Zwillingsdomanen wird durch eine nie-
derfrequente Belastung und Relaxation beglinstigt, wahrend sie durch eine hochfrequente Belastung
und den Aufbau mechanischer Spannungen im Kristallgitter behindert wird. Die Zeitkonstante des Rela-
xationsprozesses ist = 0.1 s. Sie ist ndherungsweise isotrop und temperaturunabhangig.

Eine Modellierung der Kompressionswellengeschwindigkeit aus den frequenzabhangigen Elastizitats-
konstanten am a-f3 Ubergang (20 mm Auflageabstand) ergibt eine Dispersion von =~ 0.38 km/s innerhalb
seismischer Frequenzen fiir einen isotropen Quarzpolykristall. Dies steht im Einklang mit Beobachtungen
an einem elastisch isotropen Quarziten, was auch fiir das Dadmpfungsverhalten gilt. Sowohl frequenzab-
hangige Geschwindigkeiten seismischer Wellen als auch deren Dampfungsverhalten kénnten genutzt
werden um Temperaturen und physikalische Zustdande der Erdkruste abzuschatzen, an Stellen wo diese
ausreichend dick oder heiR fiir das Auftreten des a-/ Ubergangs in quarzreichen Gesteinen ist. Dariiber
hinaus wird die Bedeutsamkeit der frequenzabhangigen elastischen Eigenschaften in kristallinem SiO,
durch die Abwesenheit dieses Effekts in Silikatglas untermauert.



Elasticity and Viscoelasticity of Solid SiO, as a Function of Frequency and Temperature

Table of contents

B 113 4 Yo [T o 4 T T JPUR TRt 19
. EXperimental MetROdS .......ccovveeeiiiiee ettt errrren e e e e ena e s s e nas s s s rennssesesennsseserannssanseenn 35
BT o T=Y ol 4 T=T S W LR o T A T o RIS 43

. EXPerimental r@SUILS.....cc.u iiiieeeciiireeeceirreeecerrreeneeerrennseeseennsseesseenasssessenassessrennsssssesansssessrennssnnseenn 49

. DISCUSSION .euuieuieniienireeitenirenereereeareseeessesscessersssensesssseasssssssssesssesssssssesssssssssssssssssnsssssssnsssssssnssnnssanses 59

e CONCIUSTIONS «.eeuiiieeiiiieeiiiieiiieeetteeeeteeeereeeietensestassesensssransssssnsesesssssenssssassesssnsssenssssensssssnsesennssssnssssnnns 83

. ACKNOWIEAZEMENL ...ttt e e eerer s sssssssesseeessennnsssssssssssssssssneeennnnnnsssssssssssnnns 85
e REFEIENCES ...ttt rrenes e s e e nne e s s e e s sssesseennsssssesansssssseennssssssesnssssssesnnssssssennanssnes 87

B Y« T =T 4 o 1 S 107






Elasticity and Viscoelasticity of Solid SiO, as a Function of Frequency and Temperature

List of figures

Fig. 1:

Fig. 2:

Fig. 3:

Fig. 4:

Fig. 5:

Fig. 6:

Fig. 7:

Fig. 8:

Fig. 9:

Phase diagram of crystalline silica polymorphs, focusing on the phase boundary between
the stability fields of the two quartz modifications (modified according to Schreyer
1976). The Mohorovici¢ discontinuity and geotherm (Appendix 1) are modelled for Ti-
betan crust (data from Herman et al. 2010, Mechie et al. 2004, Rudnick et al. 1998)................. 20

Habitus of natural right- (left) and left-handed (lower right) a-quartz single crystals as
well as of a synthetic a-quartz single crystal (upper right, modified according to Bor-
chardt-Ott 2009, GOZE 2009). ...cccutirriiriiieriieerieenieerieesrreessteesseessteesseessseesseesseessseenseesseessseesssen 21

Tetrahedral tilt versus Si-O-Si bond angle in quartz (left, modelled with data from Grimm
& Dorner 1975, Heaney & Veblen 1991, Kihara 1990, Lager et al. 1982, Levien et al.
1980, Miiser & Binder 2001, Thompson et al. 2011). Three-dimensional double helix of
interconnected silica tetrahedra in right-handed a-quartz under ambient conditions
(right, modelled with CrystalViewer, data taken from Kihara 1990)........ccccceeveevieenvennveccieeennn, 22

C-cut representation (top) and symmetry elements (bottom) of untwinned a-quartz
(left), Dauphiné twinned a-quartz (middle) and S-quartz (right). Silicon ions are located
at three different Z-levels, without oxygen (modified according to Okrusch & Matthes
2005, WENK €1 G 2003).....uvieiiieieeeiee sttt eiteeecteeecteestteesteeestaeesteeseteessseessaeestesensaesataessseessasesesssenans 23

Variation of the axial ratio for the quartz unit cell due to temperature and pressure vari-
ations (modified according to Kihara 1990, Angel et al. 1997).....cccveeereeeiiieeeeiee e e 24

Temperature dependence of the anisotropic Young’s modulus of quartz across the -4
transition (modified according to Perrier & De Mandrot 1923, Appendix 10). Minima due
to the a-f transition are calibrated to 573 °C. Off-axis crystallographic orientations are
referred to as “azimuth/polar diStaNCE” ..........oooveiieiiceiceece et e 27

Temperature dependence of different types of elastic wave velocities in single-crystal
quartz (modified according to Lakshtanov et al. 2007, Appendix 10): compressional
waves (diamonds), vertical (squares) and horizontal shear waves (circles) for [100]
(black), [010] (grey), and [001] (white). Minima due to the a-f transition are calibrated
Lo TEo 2 T N 28

Temperature dependence of the Young’s modulus of quartz perpendicular to the c-axis
of the crystal: modified according to Lakshtanov et al. (2007, black symbols) as well as
Perrier & De Mandrot (1923, white symbols). A potential frequency dependence of the
elasticity of a~quartz is observed close to the a-f transition (lines, Appendix 10). The
moduli of the S-phase are normalised to the measured value at = 900 °C........cccevevvvieercieennnnne 29

Anisotropic thermal expansion of a quartz single crystal with temperature across the o-f
transition at ambient pressure (modified according to Raz et al. 2002). Modelled data
(lines) are used in this study (APPENiX 10)......ccivuiiriiriieeiieeiieerieerie et e e sreesae et eereesreesaneen 30

11



Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

10:

11:

12:

13:

14.

15:

16:

17:

18:

19:

20:

21:

Elasticity and Viscoelasticity of Solid SiO, as a Function of Frequency and Temperature

Young’s moduli of isotropic silica polycrystals with tetrahedral coordination (Appendix 8)
and fused silica based on experimental and simulation data collected by Pabst & Grego-
FOVA (2013). 1iuiiiiiieeitieeiee et e et e st e et e e te e st e e sueeeba e e beeeateesaseeasseesseeenseeeasaesaseessseassseensaeenseesaseesssen san 31

Forced sinusoidal variation of stress and response in strain with a certain phase lag due
to viscoelastic effects (left). Complex Young’s modulus in the Gaussian representation
T4 1 SRR 36

Schematic view of a specimen in the symmetrical three-point bending experimental set-
U1 JR PP PPPPPTPP N 36

Thin sections of Dalsland quartzite (A-C, Beck 2010) and Lahr sandstone (6-8, Hirsch
2008) under parallel (6, A) and crossed polarisers (7-8, B-C). .....cccceeveiereciieeesiieeecieeeeciveeeevnenn 44

Diffraction pattern of Dalsland quartzite with (hk/) for quartz (wave length = 1.54051,
maximum intensity = 56,700 cts/s, speed = 0.25, time step = 4.8, width = 0.02, fixed slit,
10 %6 UNCEITAINTY). 1eveeeieeeiee et e stteetee et e ete e s tteesbeeesteesteesteeesbee e beessteesaseessaeeseeenteesnsaessseesseeansennnses 45

Diffraction pattern of Lahr sandstone with (hk/) for quartz (wave length = 1.54051, max-
imum intensity = 20,000 cts/s, speed = 0.5, time step = 1.2, width =0.01, variable slit,
10 % uncertainty). Mineral abbreviations according to Whitney & Evans (2010). .......c.ccccveeuen. 45

Calibrated temperature dependence of the corrected anisotropic storage (black sym-
bols) and dissipation moduli (white symbols) based on the observations for synthetic
quartz crystals at 2.57 Hz across the a-f transition with 20 mm support spacing in sym-
metrical three-point bending. Off-axis crystallographic orientations are referred to as
“AZIMUEN/POLAr QISTANCE” ..ottt et eee et e e et e e eete e e estaeeeentaeeesabeeeseseeeesnns 49

Temperature dependence of the anisotropic storage (black symbols) and dissipation
moduli (white symbols) of synthetic quartz crystals at 1 Hz across the a-f transition with
40 mm support spacing. Mean data from several specimens are shown. Off-axis crystal-
lographic orientations are referred to as “azimuth/polar distance”. .......ccccccoeveveevereecveeeennvenenns 50

Isothermal frequency dependence of the anisotropic storage (left) and dissipation
moduli (right) of synthetic quartz across the o-f transition at 40 mm support spacing.
Mean data are presented. Off-axis crystallographic orientations are referred to as “azi-
MUEH/POIAr QISTANCE” ..ottt ettt et et e st et e et e s beeste e beeabesaaesbeeteeasessseseens 50

Temperature dependence of the storage (black symbols) and dissipation moduli (white
symbols) of natural quartz at 10 Hz loading across the o-/f transition, with 20 mm sup-
(10T Y o =Tl o - SR TP TR PRTT 52

Isothermal frequency dependence of the storage (black symbols) and dissipation moduli
(white symbols) of natural quartz across the a-ftransition, at 20 mm support spacing............ 52

Temperature dependence of the storage modulus of Dalsland quartzite across the -8
quartz transition at a testing frequency of 10 Hz: heating (black symbols) and cooling
(WHITE SYMIDOIS). . tiiieietie ettt ettt e s te e sbaeesbe e e beesateesateessteebeeesessnseesnseanne 53

12



Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

22:

23:

24:

25:

26:

27:

28:

29:

30:

31:

32

33:

34.

35:

Elasticity and Viscoelasticity of Solid SiO, as a Function of Frequency and Temperature

Isothermal frequency dependence of the storage (black symbols) and dissipation moduli
(white symbols) of Dalsland quartzite across the o-f transition, with 20 mm support
LY o 1= o] 1 =25 USSP PPN 54

Temperature dependence of the storage (black symbols) and dissipation moduli (white
symbols) of Lahr sandstone across the a-f transition at 10 Hz loading frequency, with
20 MM SUPPOIT SPACINE . ceeieeiiiiiiteeeeiiiiteeeeessittteeeessstrrteeeesasbrtteeessassbateeessasssraaeeesssssseeeessasssseeaeessns 55

Temperature dependence of the storage (black symbols) and dissipation moduli (white
symbols) of fused silica at 3 K/min heating rate and 1 Hz loading frequency.........ccccceceevverenen.. 57

Isothermal storage (black symbols) and dissipation moduli (white symbols) of fused silica
at different frequencies and various elevated temperatures. ........ccceceeeriieiiniiee e 58

Frequency dependence of the storage modulus E’ (black symbols) and dissipation modu-
lus E” (white symbols) for a specimen of synthetic quartz at = 570 °C, cut parallel to the
g-axis of the crystal. Least squares fits according to models of Kelvin-Voigt (fine dashed
lines), Maxwell (coarse dashed lines), and Poynting-Thomson (solid lines, 2o = 0.3 GPa).......... 60

Fine-scale array of Dauphiné twin domains (central part of the photograph) in quartz at
the o-f transition observed by electron microscopy. Arrows indicate star patterns,
which are centres of strain linked to lattice defects (Van Tendeloo et al. 1976). .........cccceeveeneee. 62

Temperature dependence of the anisotropic dashpot viscosity obtained from isothermal
frequency-dependent fits (symbols) and modelled data according to a second-rank ten-
sor (lines) derived from equations (40) to (42). Error bars equal £+ 10 % and £ 2 K. ........ccccueeee. 63

Temperature dependence of the static (white symbols, Perrier & De Mandrot (1923) and
dynamic Young’'s modulus (black symbols, Lakshtanov et al. (2007), against high- (solid
lines) and low-frequency data (dashed lines) with 40 mm support spacing (Klumbach &
SCRIING 2004). oottt ettt e et e e et e e s bt e e bae e teeeateesaseeesbeeateaenseesasaessseessasentessasaesaseens 64

High- (solid lines) and low-frequency (dashed lines) temperature dependence of the
Young’s modulus of quartz across the o-f transition with 20 mm support spacing. Ac-
CONAING L0 FIg. 16, oottt ettt st e e et e e e bt e e s bbee e e bbeeseabeeessnbeeesneeeeas 64

High- (solid lines) and low-frequency (dashed lines) temperature dependence of the
compliance coefficients derived from data presented in Fig. 30. .....ccoeevireeereeieiiieeee e e 65

Three-dimensional diagram of the anisotropic Young’s modulus for a-quartz at 20 °C
(left) and S-quartz at 600 °C (right). Grid increment = 5° (modified according to Lak-
[ oY= [ Lo )V =4 e 1 A X 010 I A AU TROUPUPRRTRRP 66

Azimuthal variation of the anisotropic Young’s modulus for o~ (solid lines) and f-quartz
(dashed lines). Selected polar distances. According to Fig. 32. ....cccveveveeiiiieeeeirie e 66

Variation of the anisotropic Young’s modulus for a- (solid lines) and fquartz (dashed
line) with polar distance. Selected azimuthal angles. According to Fig. 32......ccccceevevvvvvrcieennnns 67

Three-dimensional diagram of the anisotropic storage (left) and dissipation modulus
(right) for a-quartz at = 572 °C and 1 Hz. Grid increment = 5°. ....cccvvvcieeevciee e 68
13



Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

36:

37:

38:

39:

40:

41:

42:

43:

44.

45:

46:

47:

48:

Elasticity and Viscoelasticity of Solid SiO, as a Function of Frequency and Temperature

Azimuthal variation of the anisotropic storage (solid lines) and dissipation modulus
(dashed lines). Selected polar distances. According to Fig. 35. ....ccccvviiieiivciee e 68

Variation of the anisotropic storage (solid lines) and dissipation modulus (dashed line)
with polar distance. Selected azimuthal angles. According to Fig. 35.....cccccceiiiiiiiniieiiniiceennenn, 69

Three-dimensional diagram of the storage modulus dispersion for quartz: data at 573 °C
and 20 mm support spacing (left), data at =572 °C and 40 mm spacing (right). Grid in-
(o] =T 0 =T o L A PP PPPPPPPPPRPRRNt 70

Azimuthal variation of the storage modulus dispersion for data with 20 mm (dashed
lines) and 40 mm (solid lines) support spacing. Selected polar distances. According to
= < ORI 70

Variation of the storage modulus dispersion with polar distance for data measured with
20 mm (dashed lines) and 40 mm (solid lines) support spacing. Selected azimuthal an-
8leS. ACCOIAING 10 Fig. 38. ..uiiiiiiiiiiie ettt s sare e s e s sabe e e s sasee e sbeeessaraeesnnteeees 71

Frequency dependence of the compliance coefficients for quartz at = 572 °C with 40 mm
support spacing (left) and at = 570 °C with 20 mm support spacing (right).......cccceeeeeeeiiirveeeeennnns 72

Frequency dependence of the stiffness coefficients for quartz at =572 °C with 40 mm
support spacing (left) and at = 570 °C with 20 mm support spacing (right)......cccceecvervevrrerrirennnn. 73

Temperature dependence of the “compliance coefficients” for a-quartz at 40 mm sup-
port spacing between 500 °C and the a-f transition, expressed in terms of the spring
(oo 101} = | L A =5 TRt 74

Temperature dependence of the “compliance coefficients” for a-quartz at 40 mm sup-
port spacing between 500 °C and the a-f transition, expressed in terms of the spring
(oo T4 1] = ] | o = PNt 74

Temperature dependence of “compliance coefficients” for a-quartz at 40 mm support
spacing between 500 °C and the a-f transition, expressed in terms of the inverse dash-
POT VISCOSITY 77. ceiiiiiiiiiiiiiiiitee ettt e e e e s s et e e e s s ssrre e e e e s smnees 75

Three-dimensional diagram of the compressional wave velocity for a-quartz at high fre-
guency and ambient temperature (left) and 573 °C (right). Grid increment = 5° (modified
according to Lakshtanov €t al. 2007). .......oeceeecieeieeniiesie et siee st ste e saesbe e saveessse e saesseesnseas 76

Azimuthal variation of the compressional wave velocity for selected polar distances (left)
at ambient temperature (solid lines) and 573 °C (dashed lines) according to Fig. 46. C-cut
of the distortion between propagation and motion vectors of the wave under ambient
(oo Yo [ 4 oY AT (=4 1 RO USSP 76

Variation of the compressional wave velocity with polar distance for selected azimuthal
angles (left) at ambient temperature (solid lines) and at 573°C (dashed lines) according
to Fig. 46. Y-cut of the distortion between propagation and motion vectors of the wave
under ambient coNditions (FIZNT)......ccuueiiiiiii e e e e e e 77

14



Elasticity and Viscoelasticity of Solid SiO, as a Function of Frequency and Temperature

Fig. 49: Anisotropic frequency-dependent compressional wave velocities for quartz at = 572 °C
and 40 mm support spacing (left) as well as for quartz and quartzite at = 570 °C and
20 mm support spacing (right). Mean values are Voigt-Reuss-Hill averages. See text for

Fig. 50: Frequency dependence of the seismic quality factor (solid lines) and the internal friction
(dashed lines) for quartz at =572 °C and 40 mm support spacing (left) as well as for
quartz and quartzite (coarse dashed line) at = 570 °C and 20 mm support spacing (right)......... 79

Fig. 51: Frequency dependence of the storage modulus for an isotropic quartz polycrystal com-
pared to quartzite from measurements with 20 mm support SPacing. ......ccceccveeercveeviieeesniveennns 80

Fig. 52: Relative pressure dependence (line) of the static Young’s modulus for Lahr sandstone.
Data points (symbols) are from triaxial compression at ambient temperature.........cc..cceeuvneeee... 81

15






Elasticity and Viscoelasticity of Solid SiO, as a Function of Frequency and Temperature

List of tables

Tab. 1:

Tab. 2:

Tab. 3:

Tab. 4:

Tab. 5:

Tab. 6:

Tab. 7:

Tab. 8:

Modelling parameters for the thermal expansion of quartz as a function of temperature

across the a-ftransition at ambient pressure according to Fig. 9.....cevvvieveeneenenvieneenieeiee,

DMTA experimental parameters. Abbreviations used for the specimen names are:
s = synthetic, n = natural, f = fused, ¢ = ceramic, L-Sst = Lahr sandstone, D-Qtz = Dalsland
quartzite. The number of frequency and temperature data points is given in parenthe-

L

Relative to the main axes of synthetic single-crystal quartz and under ambient condi-
tions, travel times of compressional and shear waves along the mean distances s, are
given as t,, ty, and ty, respectively. Wave velocities with uncertainties are v,, vy, and v,

[ o o 1T a Lo [T ) TR OSSPSR

Normative main oxides in quartzite, sandstone, and fused silica, determined from obser-

vations by powder X-ray fluorescence (£ 1 t0 5 % uncertainty).....ccccccceeeeivveeeeeeccnveeeee e,

Normative mineral content in Dalsland quartzite and Lahr sandstone as obtained from
the previously presented X-ray fluorescence data (Tab. 4). Mineral abbreviations accord-
ing to Whitney & Evans (2010): Qtz = Quartz SiO,, Or = Orthoclase K[AISi;0g], Ab = Albite
Na[AlSi;Og], An = Anorthite CaAl,Si,Og, Kin = Kaolinite Al4[Si;010(0OH)s], Ms = Muscovite
KAI,[AISi3010(OH,F),], Mrg = Margarite CaAl,(Al,Si,)O19(OH),, Pg = Paragonite NaAl,[AlSi;
O10(OH),], Bt = Biotite K(Mg,Fe?*,Mn®*);[(Al,Fe**, Ti**)Si;010(OH,F),], Hem = Hematite Fe,

O3 (£ 0.1 WE% UNCEITAINTY) eeiiiee ettt et e et e e et ae e st e e e snteeesnbeeeesnsaeesnnnaeas

Observed travel times of the compressional and shear waves t, and t; over the distance s
as well as the wave velocities v, and v, of quartzite, sandstone, and fused silica under
ambient conditions and with experimental uncertainties, respectively (e.g. Kuchling
2004, Appendix 9). Measurements are made in three orthogonal orientations for the

(o TV o T=F- [T Y= o Yol S

Geometrical properties of specimens for DMTA. Abbreviated specimen names according
to Tab. 2. Orientations of the off-axis specimens are referred to as azimuth ¢ and polar
distance . Uncertainties of the specimen width and thickness are £ (0.02 + 0.01) mm

according to preparation and the precision of the calliper gauge, respectively. .......ccccuuu......

Physical properties of cylindrical specimens of Lahr sandstone (drilled perpendicular to

bedding) with uncertainties (APPENdIX 9). ..cceccieeiiiieicee e e e e e eaee e

17

...39

.47

...48

...56






Elasticity and Viscoelasticity of Solid SiO, as a Function of Frequency and Temperature

1. Introduction

Motivation

Quartz is an important mineral for technical applications due to its piezoelectric and optical properties
(e.g. Gotze 2009). It is also one of the most abundant rock-forming minerals within the Earth’s crust (e.g.
Ronov & Yaroshevsky 1969, Taylor 1964, 1967) and the basic component of many artificial silica com-
pounds (e.g. Okrusch & Matthes 2010). A profound understanding of its physical properties (e.g. Hofer &
Schilling 2002, Ogi et al. 2006), especially of its mechanical behaviour and underlying structural features
(e.g. Tucker et al. 2001), is essential to model geodynamic processes of the Earth’s interior (e.g. Schmidt
et al. 2003).

The Earth’s interior is commonly described by a shell model, consisting of oceanic and continental
crust as well as several layers beneath with a total depth of = 6370 km (e.g. Press & Siever 2000). This
model is based on direct and indirect information on the subsurface. Direct information is obtained from
observations in open and underground pits, caverns, tunnels, and wells. The lowermost well is the Rus-
sian Kola Superdeep Borehole with a vertical depth of = 12,260 m (e.g. Okrusch & Matthes 2005). Infor-
mation on greater depth is concluded indirectly from investigations of formerly deep-seated rocks that
were brought to the surface by tectonic uplift and erosion or volcanic eruptions. Apart from crustal ma-
terial, such rocks include mantle xenoliths and high-pressure mineral inclusions. Another major source of
indirect information is the interpretation of geophysical recordings, with naturally triggered seismicity as
well as reflection and refraction seismics being most important (e.g. Heier 1974). This means that travel
times and attenuation characteristics of elastic waves in rocks and melt are evaluated, typically in the
frequency range from = 0.0003 to > 30 Hz (Lay 2002). Physical and mineralogical interpretation of such
field data, however, requires reference values of elastic rock properties determined at the laboratory
(e.g. Belikov 1962, Birch 1955, Kern 1990, 2011, Mainprice et al. 1990).

Based on seismic recordings, Gutenberg (1951) attributes a decrease of the compressional wave ve-
locity with increasing depth in continental crust to the temperature dependence of the anisotropic
Young’s modulus observed for quartz in laboratory experiments (Perrier & De Mandrot 1923). This de-
pendence is caused by a displacive reorientation of the quartz crystal lattice, known as a-f phase transi-
tion. Beyond this, the stabilisation of the high-temperature phase causes a rapid re-increase of the
Young’s modulus (Perrier & De Mandrot 1923). Key features to better understand the Earth’s crust in this
way are the modelling of isotropic elastic properties for quartz polycrystals from anisotropic single-
crystal data and measurements of quartz-bearing rocks (e.g. Anderson et al. 1968). Fielitz (1971, 1976)
and Kern (1979), for instance, present high-pressure elasticity data of quartz and quartz-rich rocks across
the a-ftransition. Their observations can be used as an in-situ thermal detector to estimate the temper-
ature in the Earth’s continental crust that is assumed to be rich in quartz (e.g. Mechie et al. 2004).

Numerous seismic studies already consider the o-f transition in quartz as a potential reason of an
abnormally low Poisson’s ratio in the Earth’s continental crust (e.g. Kuo-Chen et al. 2012, Marini & Man-
zella 2005, Mechie et al. 2004, Sheehan et al. 2014, Shillington et al. 2013, Zandt et al. 1994, 1996).
Mechie et al. (2004), for instance, describe the presence of the a-ftransition in the Tibetan crust (Fig. 1).
It is most likely due to the occurrence of felsic rocks (e.g. Sharma & Gupta 2012, Sharma et al. 2011).
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Zandt et al. (1994, 1996) assume the a-f transition to be present in the Altiplano lower crust of the Bo-
livian Andes. Swenson et al. (2000) offer, however, various reasons that might explain the observations
of Zandt et al. (1994, 1996). One of them is partial melting that is subject of a petrophysical investigation
by Schmitz et al. (1997).
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Fig. 1:  Phase diagram of crystalline silica polymorphs, focusing on the phase boundary between the
stability fields of the two quartz modifications (modified according to Schreyer 1976). The Mo-
horovici¢ discontinuity and geotherm (Appendix 1) are modelled for Tibetan crust (data from

Herman et al. 2010, Mechie et al. 2004, Rudnick et al. 1998).

The complex Young’'s moduli of quartz and quartz-bearing rocks are determined by dynamic mechani-
cal experiments as a function of frequency and temperature. Knowledge about these complex Young’s
moduli may contribute to a clear interpretation of the a-f transition in seismic recordings, apart from
other reasons such as partial melting (e.g. Gordon & Davis 1968). The observed Young’s modulus of
quartz is therefore converted into the elasticity tensor and elastic wave velocities that are relevant for
seismic interpretations. Particularly the compressional wave velocity is supposed to also exhibit a fre-
guency-dependent behaviour due to its attenuation by viscoelastic effects in the quartz crystal lattice
that are associated with the o-f transition (Klumbach & Schilling 2012, 2014). The attenuation of com-
pressional waves is described by the inversed seismic quality factor Q"

Qo) = T2 (1
and can be related to different intra- and intercrystalline viscoelastic processes (e.g. Jackson & Anderson
1970, Karato & Spetzler 1990). The quality factor itself is defined by the ratio of stored and dissipated
energy during one oscillation period of the wave (e.g. Anderson 1967). In terms of the complex Young's
modulus, the seismic quality factor is expressed by the quotient of the storage modulus E’ and dissipa-
tion modulus E”, respectively equal to the real and the imaginary part of the complex number (e.g. Mav-
ko 2009). A high quality factor corresponds to a largely elastic behaviour of the material under investiga-
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tion, while a low quality factor indicates viscoelastic effects (e.g. Mitchell 1995). Intracrystalline attenua-
tion is generated by phase transformations, such as the o~/f transition in quartz, for instance (e.g. Car-
penter & Zhang 2011). Intercrystalline attenuation can be caused by grain boundary sliding, different
pore space fillings, and the development of micro-cracks.

Structural properties of quartz

Pure single-crystal quartz (Fig. 2) exclusively consists of silicon Si and oxygen O, ions that build a three-
dimensional framework silicate of interconnected SiO, tetrahedra (e.g. Press & Siever 2001). The tetra-
hedra are linked to each other by sharing all of their oxygen ions, resulting in an overall composition of
SiO,. Quartz is enantiomorphic, since right- or left-handed helices can be formed along the main axis of
the crystal (Fig. 3, right). Under ambient conditions (20 °C, 0.1 MPa), the Si-O bond lengths within the
tetrahedra vary between = 1.60 and = 1.64 A (e.g. Putnis 1992), while the Si-O bond angles range from
=108 to = 111° (Kihara 1990, 1993). The Si-O-Si angle @ basically varies from 120 to 180° between two
tetrahedra (e.g. Putnis 1992). It is = 143.6° (Kihara 1990, 1993), whereas the tetrahedra exhibit a tilt an-
gle ¢ of = 16.3° (Heaney & Veblen 1991) under ambient conditions (Fig. 3, left).

¢/Z[001]

Fig. 2:  Habitus of natural right- (left) and left-handed (lower right) a-quartz single crystals as well as of
a synthetic a-quartz single crystal (upper right, modified according to Borchardt-Ott 2009,
Gotze 2009).

Under ambient conditions, the stable phase of crystalline SiO, is defined as o~ or low quartz. It has a
trigonal crystal structure with a three-fold c-axis (main axis) as well as three two-fold axes parallel to the
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a-axes (Bragg & Gibbs 1925), which is equivalent to point group 32 (Fig. 4, left). The a-axes are oriented
perpendicular to the c-axis and form angles of 120°. Compared to the Cartesian coordinate system, the
Z-axis is oriented parallel to the c-axis and the X-axis is located parallel to an g-axis (Fig. 2). The unit cell
comprises three formula units. Its length is = 4.904 A along the g-axes and = 5.393 A along the c-axis of
the crystal (Saha et al. 1979). This yields an axial ratio of =1.1. Hence, the density of quartz is
= 2.65 g/cm? (e.g. Okrusch & Matthes 2005).
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Fig. 3:  Tetrahedral tilt versus Si-O-Si bond angle in quartz (left, modelled with data from Grimm &
Dorner 1975, Heaney & Veblen 1991, Kihara 1990, Lager et al. 1982, Levien et al. 1980, Miiser
& Binder 2001, Thompson et al. 2011). Three-dimensional double helix of interconnected silica
tetrahedra in right-handed a-quartz under ambient conditions (right, modelled with Crys-
talViewer, data taken from Kihara 1990).

Synthetic quartz crystals (Fig. 2, right) are several decimetres in size and hydrothermally grown from a
seed at high pressure and high temperature (e.g. Brice 1985, Brown et al. 1952, Moriya & Ogawa 1982a).
The elongation of a crystal corresponds to the Y-axis. Synthetic quartz contains lattice defects (e.g. Lang
& Miuscov 1967, Moriya & Ogawa 1978, 1980, 1982b), but exhibits significantly less irregularities than
natural crystals (e.g. Brown & Thomas 1960, Guzzo et al. 2004). The amount of water incorporated in the
crystals lattice may vary during the growth of the mineral (e.g. Aines et al. 1984).

Natural quartz is idiomorphic and transparent and known as berg crystal, mountain crystal, and rock
crystal. Lattice imperfections and impurities lead to numerous varieties (e.g. Rosler 1988). These include,
for instance, smoky quartz of brownish colour due to point defects caused by radiation and trace
amounts of aluminium incorporations. Structural defects, also caused by radiation, and incorporated iron
typically form yellow-coloured citrine (e.g. Nesse 2000). Inclusions of ferric iron produce a purple colour
found in amethyst, while titanium and manganese ions lead to pink-coloured rose quartz (e.g. Okrusch &
Matthes 2005). This study is exclusively based on transparent samples of synthetic single-crystal quartz
without macroscopically visible fluid inclusions and natural crystals of gem quality (Chapter 3).
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a, 622

Fig. 4:  C-cut representation (top) and symmetry elements (bottom) of untwinned a-quartz (left), Dau-
phiné twinned a~quartz (middle) and S-quartz (right). Silicon ions are located at three different
Z-levels, without oxygen (modified according to Okrusch & Matthes 2005, Wenk et al. 2003).

Untwinned a-quartz is piezoelectric. This means that an elastic deformation of the crystal lattice by
an external force leads to an electric potential. Vice versa this is known as indirect piezoelectric effect
(Curie & Curie 1880, 1881). Comprehensive scientific work is performed on natural and synthetic single
crystals already, since quartz is used as oscillator in a large variety of modern technical applications (e.g.
Bechmann 1958, Cambon et al. 2005, Cook & Weissler 1950, Engel & Krempl 1982, Haines et al. 2002,
Koga et al. 1958, Mullen 1969, Ohno 1990, Ogi et al. 2006, Uno & Noge 1999, Tarumi et al. 2007).

At = 573 °C and ambient pressure, a-quartz transforms into £ or high quartz by an enantiotropic dis-
placive phase transition as the result of a reorientation of its SiO, tetrahedra (e.g. Dove 1997, Dove et al.
1999, Ericksen 2001, Grimm & Dorner 1975, Miser & Binder 2001, Narayanaswamy 1948, Scott 1974,
Shen et al. 1993, Venkataraman 1979). Heating of a-quartz, the tetrahedral tilt angle ¢ decreases by

cos(p) = / %- cos(8) - % (2)

and the Si-O-Si bond angle fincreases by

cos(0) = % (cos((p) + %)2 (3)

with temperature (Fig. 3, left). Furthermore, the tilt angle increases and the Si-O-Si bond angle decreases
at elevated pressure (e.g. Hazen et al. 1989). The trigonal crystal structure gradually becomes unstable
due to the formation of Dauphiné twin domains below the transition temperature (e.g. Drebushchak &
Dementiev 1996, Heaney & Veblen 1991, Thompson et al. 2011). The Dauphiné twins both exhibit the
same chirality, rotated by 180° around the c-axis of the original crystal (Fig. 4, middle). Towards the tran-
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sition temperature, the number of twin domains increases with a decrease of their size. The transition is
additionally characterised by the appearance of an incommensurate phase between =573 and = 574.3
°C, where the twin domains vanish (e.g. Jacob & Cordier 2010, Kato 1986, Putnis 1992, Spearing et al.
1992, Yamamoto et al. 1988). The transition from a-quartz to the incommensurate phase is ranked as a
first-order transformation (e.g. Hochli 1970, Hochli & Scott 1971), whereas the transition between the
incommensurate phase and f-quartz is of second order, according to a discontinuity in the derivative
function for an observed physical property (e.g. Bachheimer 1980, Bachheimer & Dolino 1975, Dolino
1990, Heaney & Veblen 1991, Salje 1992). The incommensurate phase is studied intensively already (e.g.
Aslanyan & Levanyuk 1979, Aslanyan et al. 1983, 1998, Dolino et al. 1983, 1984a, Walker 1983, 1985).
However, it cannot be subject of this study, as the temperature uncertainty of the experimental set-up is
with >+ 1 K too large to focus on the comparably narrow temperature range of 1.3 K (Chapter 2).

The Bphase has a hexagonal crystal symmetry (Fig. 4, right) that is represented by point group 622
(Bragg & Gibbs 1925, Kihara 1993). This symmetry is higher than for the trigonal crystal system. It is
characterised by a six-fold c-axis (main axis) and six two-fold axes perpendicular to it. These correspond
to the three a-axes. The silica tetrahedra are still coiled (Fig. 3, left). If the f-phase is considered to be of
static nature, the tetrahedra are not tilted anymore, while the Si-O-Si angle is = 155.6° (Thompson et al.
2011). Otherwise, the tetrahedra are supposed to vibrate around their state of equilibrium (Heaney &
Veblen 1991). At 600 °C, for instance, Saha et al. (1979) observe = 5.01 and = 5.47 A for the length of the
a- and c-axes of the unit cell, respectively. Its axial ratio is lower than at ambient temperature, whereas
increasing pressure leads to an elongation of the unit cell (Fig. 5). Consequently, the subsurface occur-
rence of the Smodification is limited to an abnormally thick and hot crust. Its geotherm needs to exceed
the transition temperature of quartz above the Mohorovici¢ discontinuity (Fig. 1), since the presence of
quartz is usually excluded by the mineralogy of the Earth’s mantle.

665
f-quartz
573 {— =< ———————
a-quartz E
_ 505 - %
2 o
~ @
@ ° 2
2 345 1 %\\ 3
% 5
o, [o14]
3 2 £
2 ® £
185 A S
O
Ambient
conditions
25 . ™~ : 0
1.090 1.095 1.100 1.105 1.110

Axial ratio c/a

Fig. 5:  Variation of the axial ratio for the quartz unit cell due to temperature and pressure variations
(modified according to Kihara 1990, Angel et al. 1997).
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Anisotropic elastic properties of quartz

Hooke’s law (Hooke 1679), the basis of most considerations relating to mineral elasticity, is named after
the English polymath Robert Hooke, who lived from 1635 to 1703 (e.g. Andrade 1960). According to
Hooke’s law a mechanical stress o, which is the average force F per unit area A, is proportional to a re-
sultant strain £ under consideration of a material-related isotropic or anisotropic modulus of elasticity £
(e.g. Rosler et al. 2008)*. Hooke’s law, however, only holds for infinitesimally small strains (e.g. Wang &
Li 2009), excluding plasticity (e.g. Thurston et al. 1966). The modulus of elasticity is called Young’s modu-
lus after the English polymath Thomas Young, who lived from 1773 to 1829 (e.g. Peacock 1855).

Anisotropic elastic properties are expressed as a fourth-rank stiffness cj or compliance tensor s

€kl

Oij = Cijkl € =

(4)

that are inverse to each other (Appendix 6, e.g. Angel et al. 2009, Sadd 2005). A fourth-rank tensor basi-
cally consists of 81 coefficients, whereas the number of its independent coefficients is reduced due to

Sijkl

symmetrical second-rank stress and strain tensors. The elasticity in any crystallographic direction also
equals the value in the opposite direction according to Neumann’s principle by

Cijki = Cjikl = Cijik- (5)
Hence, the elasticity tensor of a triclinic crystal simplifies to 21 independent coefficients (e.g. Chung &
Buessem 1967, Hearmon 1946, 1956).

The elasticity tensor of an a-quartz single crystal has six independent coefficients

[C11 Cip Ci3 Ciy O O
Cip Cpp Ci3 -Cyp 0 O
Cy= Ci3 Ci3 C33 O 0 0 (6)
Ciy -Cipg 0 Cyp 0 O
0 0 0 0 Caus Cyy
L0 0 0 0 Cy Cg.

due to its trigonal symmetry, while the elasticity tensor of fquartz is described by five independent co-
efficients, as Cy4 and Sy14 vanish in the hexagonal crystal lattice (e.g. Nye 1992). For both modifications, Ceg
results from Cy; and Cy; (Appendix 5). The representation of the stiffness tensor by two indices as shown
here is based on a commonly used notation introduced by Voigt (1966). A simplified conversion between
stiffness and compliance for crystals of trigonal and hexagonal symmetry is presented by Mason (1943,
Appendix 7).

The anisotropic Young’s modulus of quartz is determined by a rotation of the compliance tensor

1

SijkI =0im ajn () alpsmnop (7)
in matrix notation. The rotation matrix a; results from rotations around two perpendicular axes in the
Cartesian coordinate system (Appendix 2) and has to be applied four times. The inverse of the coefficient

s;:then equals the anisotropic Young’s modulus E;

! Even though the correlation is called “Hooke’s law”, it is only a simplification, since it neglects higher-order elastic
behaviour, like it is described by the Birch-Murnaghan equation of state, for instance.
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Ej= —. (8)

Siiii
Further anisotropic mechanical properties, such as the shear modulus and Poisson’s ratio, also can be
determined in this way (e.g. Li 1976, Li & Chung 1978).

A simplification for the equations (7) and (8) for trigonal minerals by

El= (1—n§)2511+n§,1 Si3+n3(1-n2) (2S13+Su)+2n,n5(3n3-n3)Sy, )
reveals that the anisotropic Young’s modulus of a-quartz depends on Si;, Sa3, S13, Sas, and Si4. The term
including Sy4 is omitted for f~quartz (e.g. Cazzani & Rovati 2003). The anisotropic Young’s modulus of
quartz is independent of S;, and Sgs (e.g. Chou & Sha 1971, Ting 2005). In this context the unity vector n;
describes any crystallographic direction and depends on the azimuth ¢ and the polar distance
(Appendix 3). The anisotropic Young’s modulus of quartz can be determined completely by examining its
elastic properties in four independent crystallographic directions according to individual and combined
stiffness coefficients of the equation. The simplification by equation (9) is based on Savart’s (1829) work,
the first study of the anisotropic elastic behaviour of quartz in resonance experiments, and the interpre-
tation of his results by Voigt (1966). Parallel

Eye= C33 (C11+C1p)-2C3s -1 (10)

Cin+Cp S33

and perpendicular

2 1
EJ_C= C33 Cag = (11)

N
2 2
€33(C11+C1p)-2C13  C4q(C11-C1a)-2CTy

to the c-axis of the quartz crystal, the anisotropic Young’s modulus is given by the inverse of S33 and S,
respectively. Both cases are independent of the azimuth.

Static elastic properties of quartz

Perrier & De Mandrot (1923) are the first to investigate the static anisotropic Young’s modulus of quartz
as a function of temperature across the o-f transition (Fig. 6) in symmetrical four-point bending experi-
ments using plate-like specimens cut parallel and perpendicular to the c-axis of a single crystal. Perrier &
De Mandrot (1923) also measure two specimens cut with azimuthal angles of 90 and 270°, respectively,
and a polar distance of 50°.

Under ambient conditions, quartz shows a higher stiffness parallel to the c-axis of the crystal than
parallel to the a-axis. The Young’s moduli obtained for the two specimens with off-axis orientations cor-
respond to the overall minimum and maximum stiffness of quartz for all crystallographic directions. In-
creasing temperature leads to a linear decrease of the anisotropic Young’s modulus, which is less pro-
nounced in the direction perpendicular to the c-axis of the crystal than in other orientations. Further
heating causes a strong non-linear development of Young’s modulus in the vicinity of the a-f transition.
It minimises at = 573°C and rapidly increases again for higher temperatures. The stiffness maximum of
the fphase is found parallel to the a-axis of the crystal, while the minimum is recorded parallel to the c-
axis, contrary to observations at ambient temperature. The two specimens with off-axis crystallographic
orientations exhibit the same stiffness. Such elastic anomalies can be described in terms of Landau’s
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theory for phase transformations according to the order of the transition, for instance (e.g. Carpenter &
Salje 1998, Carpenter et al. 1998, Cowley 1980, 2012, Landau & Lifshitz 1959, Liakos & Saunders 1982).
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Fig. 6:  Temperature dependence of the anisotropic Young’s modulus of quartz across the a-f transi-
tion (modified according to Perrier & De Mandrot 1923, Appendix 10). Minima due to the o-f
transition are calibrated to 573 °C. Off-axis crystallographic orientations are referred to as “az-
imuth/polar distance”.

Dynamic elastic properties of quartz

The relationship between the stiffness tensor ¢y and different types of elastic wave velocities in a solid is
given by Christoffel’s equation

Cijklgjg|',0V25ik =0, (12)

where p represents the density of the material and Jy is the Kronecker delta (Appendix 4). Furthermore,
the unit vector g corresponds to the propagation direction of the wave (e.g. Hausstihl 1983, 2007). The
determinant of Christoffel’s equation has three solutions corresponding to the compressional wave ve-
locity v, as well as the respective vertical and horizontal shear wave velocities v, and vs,. Parallel to the
c-axis of a quartz crystal, the compressional wave velocity depends on the density as well as on Cz3 by

v, [001] = % (13)
while it is related to C;; parallel to the ag-axis by
Cuy
v, [100] = - (14)

Parallel to the c-axis of the crystal, the two different shear waves exhibit the same velocity, which is cou-
pled to Cu4 by
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v, [001] = % (15)

A crystallographic orientation showing such an effect is denoted principal direction. Equations (13) to
(15) represent the simplest solutions of Christoffel’s equation. Vice versa, the stiffness coefficients can
be modelled from the elastic wave velocities (e.g. Mayer & Parker 1961).

A general review on the elastic properties of crystalline silica polymorphs and fused silica is made by
Pabst & Gregorova (2013). Under ambient conditions, elastic properties of natural and synthetic quartz
single crystals are presented by Heyliger et al. (2003), Hill & Burgess (1973) and Ohno et al. (1986), for
instance. High-temperature data are given by Atanasoff & Hart (1941), Kammer & Atanasoff (1942),
Kammer et al. (1948), Koga et al. (1958), Lakshtanov et al. (2007), Nakamura et al. (2012), Ohno et al.
(1995, 2006), Pelous & Vacher (1976) Smirnov & Mirgorodsky (1997), Tsuneyuki (1990), and Uno & Noge
(1999), among others. Lakshtanov et al. (2007), for instance, determine compressional and shear wave
velocities along the X-, Y-, and Z-axes in single-crystal quartz as a function of temperature by Brillouin
spectroscopy (Fig. 7) and obtain the stiffness tensor by solving Christoffel’s equation (12).

8 l
a-quartz | f-quartz
w I
S~
E 71 |
= I
> I
g : |
>
PN 6 4° - 4 s =s*
>°- \ g \ 4 v PY o
(%]
(]
B
o -
2 5
[
>
[
>
I
3 1 1 LI

0 200 400 573 600 800
Temperature T [°C]

Fig. 7:  Temperature dependence of different types of elastic wave velocities in single-crystal quartz
(modified according to Lakshtanov et al. 2007, Appendix 10): compressional waves (diamonds),
vertical (squares) and horizontal shear waves (circles) for [100] (black), [010] (grey), and [001]
(white). Minima due to the a-ftransition are calibrated to 573 °C.

Single-crystal elasticity data of quartz at low to ambient temperature are provided by Tarumi et al.
(2007), for example. Results of elasticity measurements at low temperature and high pressure are pub-
lished for instance by Mc Skimin (1962), Mc Skimin et al. (1965), and Wang et al. (1992). High-pressure
data at ambient temperature are presented by Calderon et al. (2007), Gregoryanz et al. (2000), Kimizuka
et al. (2007), Purton et al. (1992), Tse & Klug (1991), and Wang et al. (2011). Soga (1968) describes deriv-
atives for the velocities of the different elastic waves in isotropic a-quartz polycrystals for both high
temperature and high pressure. Fielitz (1971, 1976) and Kern (1978, 1982) are the first to experimentally
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determine the elastic properties of quartz-bearing rocks and quartz crystals (Kern 1979) across the o-f
transition at high pressure. Sato et al. (2004), however, recognise the need of combined velocity and
attenuation measurements at high temperature and simultaneously high pressure.

Wiedemann (1991) investigates the dynamic Young’s modulus of quartz in symmetrical three-point-
bending tests at = 0.08 Hz sinusoidal loading as a function of temperature with a heating rate of 1 K/min
across the a-f transition. Moreover, higher attenuation relating to the o-f transition are reported by
Nikitin et al. (2007). This is confirmed by Beck (2010) and Beck & Schilling (2010), who carry out a dynam-
ic mechanical thermal analysis of the complex Young’s modulus of Dalsland quartzite. As a part of this
study, Klumbach & Schilling (2012) present the first isothermal frequency-dependent data of quartz for
various temperatures below and above the a-ftransition. Peng et al. (2012) publish complex elastic data
of quartz loaded at 1 Hz for temperature changes of 2 and 0.1 K/min across the o-f transition. Peng &
Redfern (2013) also present data for quartz stressed at 2, 5, and 10 Hz as a function of temperature
across the a-ftransition as well as for novaculite and sandstone.
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Fig. 8: Temperature dependence of the Young’s modulus of quartz perpendicular to the c-axis of the
crystal: modified according to Lakshtanov et al. (2007, black symbols) as well as Perrier &
De Mandrot (1923, white symbols). A potential frequency dependence of the elasticity of o~
quartz is observed close to the a-f transition (lines, Appendix 10). The moduli of the fphase
are normalised to the measured value at = 900 °C.

According to equation (11) the stiffness coefficients from Lakshtanov et al. (2007) are used to model
the temperature dependence of Young’s modulus perpendicular to the c-axis of the crystal (Fig. 8). The
results are compared with the static bending observations made by Perrier & De Mandrot (1923). Both
data sets are consistent under ambient conditions and at high temperature in the stability field of the £
phase. Significant differences between the two data sets are found in the vicinity of the o~/ transition.
These differences might be explained by enhanced measurement precision during the 20™ century.

However, they might also be related to an viscoelastic behaviour linked to the phase transformation (e.g.
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Grimm & Dorner 1975, Dove 1997, Dove et al. 1999, Ericksen 2001, Miiser & Binder 2001, Scott 1974,
Venkataraman 1979). Isothermal frequency-dependent measurements in the vicinity of the o-f transi-
tion are supposed to prove whether this assumption is correct or not (Klumbach & Schilling 2014).

Thermal properties of quartz

The a-f quartz transition at = 573 °C is first observed by Le Chatelier (1889), who assumes an anisotropic
thermal expansion of single crystals to be the reason of predominantly developing macroscopic cracks in
silica ceramics during sintering. In dilatation experiments Le Chatelier (1889) discovers a higher expan-
sion coefficient of a~quartz parallel to the g-axis of the crystal than parallel to its c-axis (Fig. 9). This ef-
fect significantly increases with temperature and reaches its maximum at = 573 °C. The phase transfor-
mation is characterised by a discontinuity. Above the o-f transition, the expansion of f-quartz is found
to be nearly independent of temperature.
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Fig. 9:  Anisotropic thermal expansion of a quartz single crystal with temperature across the o-f tran-
sition at ambient pressure (modified according to Raz et al. 2002). Modelled data (lines) are
used in this study (Appendix 10).

The thermal expansion of natural and synthetic quartz is studied intensively already (e.g. Amatuni &
Shevchenko 1966, Banda et al. 1975, Gaskell 1966b, Jay 1933, Klement & Cohen 1968, Rosenholtz &
Smith 1941, Smirnov 1999). Raz et al. (2002) recently publish ambient and high-pressure data. Addition-
ally, Glover (1995) confirm the formation and propagation of micro-cracks caused by the o-f transition
by means of acoustic emission recordings. The development of macroscopic cracks can be prevented by
low heating rates, particularly in the vicinity of the phase transition.

In dynamic mechanical investigations as a function of temperature the thermal expansion of quartz or
any quartz-bearing specimen has to be taken into account. In contrast to this, the thermal conductivity
and heat capacity of quartz are not considered in this study, as adiabatic moduli are determined.
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Elastic properties of isotropic silica polycrystals

Due to its abundance, quartz is one of the most important rock-forming minerals within the Earth’s crust
(e.g. Press & Siever 2001). When knowing its anisotropic single-crystal properties, the behaviour of iso-
tropic quartz polycrystals and quartz-bearing rocks can be determined. The initial step from a single crys-
tal to a polycrystalline aggregate is made by twinning, which is described as the constitutional combina-
tion by contact or penetration of two or more crystals from the same point group, leading to a reduction
of the overall symmetry (e.g. Kleber et al. 1985). Different types of twins exist for quartz according to the
Dauphiné, Brazilian, and Japanese laws (e.g. Okrusch & Matthes 2005). Twinning can occur during crystal
growth or at phase transitions as well as by thermal treatment or mechanical deformation (e.g. Nesse
2000). The elastic properties of isotropic polycrystals are usually estimated from averaged anisotropic
single-crystal data, for instance, according to the Voigt-Reuss-Hill approximation (e.g. den Toonder et al.
1999, Doncieux et al. 2008, Hill 1952, Man & Huang 2011, Reuss 1929, Voigt 1889) or the Hashin-
Shtrikman approximation (e.g. Hashin & Shtrikman 1962, 1963, Peselnick & Meister 1965, Watt 1979,
1980, Watt et al. 1976, Watt & Peselnick 1980).

Under ambient conditions, the Young’s modulus Eygy of an isotropic a-quartz polycrystal is = 95.6 GPa
(Fig. 10). The Young’s modulus of an isotropic fquartz polycrystal is = 99.1 GPa at 600 °C, while the den-
sity reduces from = 2.65 to = 2.53 g/cm? (e.g. Pabst & Gregorova 2013). Beyond these, other silica modi-
fications exist at high pressure and high temperature that are metastable under ambient conditions.
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Fig. 10: Young's moduli of isotropic silica polycrystals with tetrahedral coordination (Appendix 8) and
fused silica based on experimental and simulation data collected by Pabst & Gregorova (2013).

Increasing pressure leads to lattice compaction and transformation of quartz into coesite and
stishovite, both with higher packing density and stiffness (e.g. Angel 1997, Fenner 1913, Kim-Zajonz
1999, Levien et al. 1980, Saika-Voivod et al. 2004, Stevens et al. 1997, Swamy et al. 1994). Coesite exhib-
its tetrahedrally coordinated silicon ions and a monoclinic crystal symmetry (e.g. Okrusch & Matthes
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2005). Under ambient conditions, its density is = 2.93 g/cm® and the Young’s modulus of an isotropic
polycrystal equals = 156.5 GPa (Weidner & Carleton 1977). Stishovite has a tetragonal crystal symmetry,
whereas the silicon ions are octahedrally coordinated (e.g. Akaogi et al. 1995, Angel et al. 2001, Bourova
et al. 2004, Dean et al. 2000). Its density is = 4.3 g/cm?® and the Young’s modulus of an isotropic polycrys-
tal reaches = 536.2 GPa under ambient conditions (Weidner et al. 1982).

Increasing temperature, by contrast, leads to an expansion of the crystal lattice and the formation of
other silica phases. At = 870 and = 1470 °C, f~quartz transforms into ftridymite and f-cristobalite (e.g.
Okrusch & Matthes 2005). The exact transition temperatures depend on the purity of the material. This
also holds for the a-f quartz transition (e.g. Ghiorso et al. 1979, Holmquist 1961, Kihara 1990). Metasta-
ble a~-modifications exist as well (e.g. Pabst et al. 2014). Pabst & Gregorova (2013) model the Young’s
modulus of an isotropic a- or low-tridymite polycrystal for ambient conditions with = 58.1 GPa, using a
density of = 2.26 g/cm3. Pabst & Gregorova (2013) also find a Young’s modulus of = 52.8 GPa for an iso-
tropic polycrystal of £ or high-tridymite with a density of = 2.22 g/cm3.

A tetragonal crystal symmetry and an ambient temperature density of = 2.35 g/cm? is found for a- or
low-cristobalite. The stiffness of a-cristobalite is determined experimentally and by molecular dynamic
simulations (Kimizuka et al. 2005, Yeganeh-Haeri et al. 1992), while the Young’s modulus of an isotropic
polycrystal is = 65.2 GPa under ambient conditions (e.g. Pabst & Gregorova 2013). Increasing tempera-
ture leads to a displacive phase transition due to tetrahedral rotation and the formation of /# or high-
cristobalite. It is comparable to the transition from o~ to f-quartz. fcristobalite is of cubic crystal sym-
metry with a density of = 2.20 gm/cm?3. Its isotropic high-temperature Young’s modulus is = 62.3 GPa.
This value is determined by molecular dynamic simulations (Kimizuka et al. 2000, Swainson & Dove
1995). The isotropic Young’s modulus is = 27 GPa at the phase transition close to = 776 °C (Kimizuka et al.
2003). A study of the high-temperature complex elastic behaviour of cristobalite is recommended.

Quartzite and sandstone

Rocks, including mono- and polycrystalline grains of quartz, are formed by magmatic, sedimentary or
metamorphic processes (e.g. Emmons et al. 1955). Elastic properties of those rocks are based on the
properties of quartz and other associated minerals. Size, shape, orientation, aspect ratio, and cementa-
tion of the grains as well as pore space and micro-cracks need to be taken into account as well (e.g.
Schon 1983). Usually, the experimentally observed elastic moduli of rocks are lower than expected from
polycrystalline models based on single-crystal data, which is due to micro-cracks and pores. This also
holds for the thermal expansion of rocks or their thermal transport properties (e.g. de Wit 2008, Van der
Molen 1981). By way of example a quartzite and a sandstone are investigated in this study (Chapter 3).

Quartzite serves as raw material for the silica industry. It is a nearly monomineralic metamorphic rock
made of quartz (e.g. Emmons et al. 1955). Common accessories are sheet silicates, aluminium silicates or
iron-bearing minerals (e.g. Okrusch & Matthes 2005). Consequently, the density of quartzite can be
higher than that of pure quartz. Moreover, quartzite is a medium- to fine-grained and non-porous rock
due to grain margin dissolution and re-crystallisation during its genesis out of a siliceous sandstone (e.g.
Sebastian 2009). Potentially isotropic or anisotropic physical properties of quartzite are linked to the
burial history and metamorphism. Quartzites of regional metamorphism at high pressure and low tem-

32



Elasticity and Viscoelasticity of Solid SiO, as a Function of Frequency and Temperature

perature likely exhibit a foliation with anisotropic physical properties. Highly impure sandstones would
form shists under these conditions (e.g. Emmons et al. 1955). In contrast to that, contact metamorphism
at high temperature and low pressure typically leads to the formation of physically isotropic quartzites
without any foliation. Compressional and shear wave velocities of quartzite are =5.5 and = 3.9 km/s,
respectively (e.g. Gupta & Sharma 2012).

Sandstone is a clastic sedimentary rock with grain sizes between 0.062 and 2 mm (e.g. Press & Siever
2001). It is formed by physical erosion of a source rock followed by aqueous, aeolian or glacial transport
and sedimentation (e.g. Leeder 2006). Its mineral content, particle shape, grain sorting, and bedding
structures depend on the transportation distance and the deposition environment (e.g. Sebastian 2009).
Due to its chemical resistance, quartz usually represents the main component in a sand deposit. Subsid-
ence of the loose sediment leads to its diagenesis, which is the consolidation of the material by compac-
tion, drainage, grain margin dissolution, and cementation. The cement of a sandstone can be made of
calcite, dolomite, clay, iron oxides, or re-crystallised quartz (e.g. Emmons et al. 1955). Accessory minerals
that are often found in sandstones are sheet silicates and clays from feldspar degradation (e.g. Okrusch
& Matthes 2005). Besides the mineralogical composition and cementation, the porosity and incorpo-
rated pore fluids affect the physical properties of sandstone. The porosity of sandstone is < 26 % because
of hexagonal grain packing as well as the previously mentioned properties of grains and cement. It is
often associated with high permeability, compared to unfractured quartzite. Whenever the pore space is
filled with oil and gas or even water, sandstone formations are of high interest to industry. Schén (1983),
for instance, collects a wide range of elastic data with compressional wave velocities of up to =5 km/s
and a ratio between shear and compressional waves of = 0.5. In laboratory experiments, velocities ob-
served perpendicular to the bedding are generally smaller than parallel to it (Schén 1983).

Fused silica

Fused silica is also called vitreous silica and silica glass or casually named quartz glass, which obviously is
an oxymoron. It is the amorphous solid of super-cooled SiO, melt (e.g. Bell & Dean 1972). Thus, it is
chemically identical with quartz, but structurally different. It is also used for a large scope of industrial
applications (e.g. Brickner 1970). A review of its physical properties is published for instance by Ojovan
(2008). The elastic properties of fused silica are well-known (e.g. Babcock et al. 1954, Fukuhara & Sanpei
1994, Fukuhara et al. 1997, Marx & Sivertsen 1953). Fused silica is elastically isotropic. Its stiffness tensor
is composed of two independent coefficients, C;; and Cy, (e.g. Levy et al. 2001). Its Young’s modulus is
= 73 GPa (Fig. 10) under ambient conditions (Spinner 1954) and increases with temperature (Spinner
1956). Contrary to quartz, a phase transition at = 573 °C does not exist, whereas Huang & Kieffer (2004a,
2004b) claim to recognize similarities to the o~/ transition in cristobalite at high pressure and high tem-
perature. The maximum stiffness of fused silica is recorded at = 1100 °C (Spinner 1962), while it is stable
at least up to = 1200 °C (e.g. Pine 1969, Spinner & Cleek 1960). At = 300 °C (Levelut et al. 2006) and close
to =-273 °C (e.g. Anderson & Bommel 1955, Bartell & Hunklinger 1982, Jackle 1972, Piché et al. 1974),
fused silica exhibits viscoelastic effects. In addition, its stiffness coefficients decrease for pressures
<2 GPa (Kondo et al. 1981) and re-increase above = 2 GPa (Suito et al. 1992). With = 0.55:10° K, the
coefficient for the linear thermal expansion of fused silica is small in comparison to quartz and most oth-
er materials (e.g. Gaskell 1966a, Otto & Thomas 1963, Smyth 1955).
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Summary and hypothesis

It is shown in terms of the Young’s modulus (e.g. Perrier & De Mandrot 1923) and the compressional
wave velocity (e.g. Lakshtanov et al. 2007) that the stiffness of single-crystal a-quartz anisotropically
decreases with increasing temperature towards a minimum at the o-f transition. The values recover
again in the stability field of the fphase. Various authors also find this effect in quartz-bearing rocks at
ambient (e.g. Beck 2010, Doncieux et al. 2008, Peng & Redfern 2013) and high pressure (e.g. Fielitz 1976,
Kern 1978), while it is lacking in fused silica (e.g. Spinner 1956).

High- (e.g. Lakshtanov et al. 2007) and low-frequency (e.g. Perrier & De Mandrot 1923) elastic data of
quartz differ significantly in the vicinity of the a-f transition. The Young’s modulus recorded by static
experiments is lower than values modelled from high-frequency stiffness coefficients at the same tem-
perature. Furthermore, the a-f transition is associated with intensified attenuation due to intra- (e.g.
Klumbach & Schilling 2012, Nikitin et al. 2007, Peng et al. 2012) and intercrystalline viscoelasticity.

This could have implications for the interpretation of seismic data from the Earth’s crust (e.g. Kuo-
Chen et al. 2012, Marini & Manzella 2005, Mechie et al. 2004, Sheehan et al. 2014, Shillington et al.
2013, Zandt et al. 1996). Isothermal frequency-dependent differences of the compressional wave veloci-
ty and the seismic quality factor derived from the complex Young’s modulus could be used to estimate
subsurface temperatures and distinguish between fully crystallised or partly molten crust. This gives rise
to the following hypothesis: the Young’s modulus of quartz becomes systematically frequency-
dependent in the vicinity of the - transition. The primary tool to test this hypothesis is a dynamic me-
chanical thermal analysis.
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2. Experimental methods

Dynamic mechanical thermal analysis (DMTA)

Dynamic mechanical thermal analysis (DMTA) serves to determine elastic and viscoelastic material prop-
erties at variable frequencies and temperatures®. This study uses the Eplexor DMTA system by Gabo
Qualimeter, which is equipped with a special furnace for temperatures from - 100 to 1500 °C. The speci-
men holder of the experimental set-up is therefore made of polycrystalline MoSi, (e.g. Chu et al. 1999).
The system also uses a 150 N load cell with a precision of 1.5-10° N. It covers a frequency range of 0.01
to 100 Hz for dynamic loading, whereas this study uses 0.1 to 20 Hz.

Prior to dynamic loading, the position of a specimen is fixed by a static force. In this study the maxi-
mum dynamic force is set to half the amount of the static force. While a sinusoidal stress o

o (t) = op sin(wt), (16)

is applied on the specimen, its time-dependent bulk deformation ¢

e(t) =&y cos(wt-J) (17)
is measured as a function of frequency in terms of the angular rate w. Stress and strain maxima are de-
noted as oy and &, respectively (Fig. 11, left). The dynamic strain of the specimen is measured by a dis-
placement transducer that has a precision of 1-107 m. All three parameters - stress, strain, and their
phase lag - are used to determine the complex Young’s modulus E*

E¥(w)=E'(w) +i E"(w). (18)
The complex Young’s modulus consists of the storage modulus E’ and the dissipation modulus E”, which

correspond to the real part and the imaginary part of the complex number (Fig. 11, right), respectively. In
the Gaussian representation the moduli form a rectangular triangle. Thus, they can be converted by

tan(0) = —. (19)

The two components also correlate to the amount of elastically stored and dissipated energy (e.g. Ferry
1961, Fliigge 1975, Lakes 2009, Menard 1999, Shaw & Mac Knight 2005). Furthermore, an intrinsic at-
tenuation of the apparatus causes an offset of the observed phase lag. This has to be taken into account
for the evaluation of the moduli. Thus, a calibration is made with a specimen of corundum ceramics
yielding a phase lag of = 0.02, which has to be subtracted from the observed data.

This study uses two specimen holders, both with a symmetrical three-point bending geometry, con-
sisting of an indenter from above and two supports from below with a spacing d of 20 and 40 mm
(Fig. 12). The flexure of an elongated plate-like specimen leads to compressional stresses in its upper
part and extensional stresses in its lower part. For the outer fibre in the lowermost part of the specimen,
the stress is determined by

3F(w)d
2wh?

o(w) = (20)

2 Here the term “viscoelastic” stands for the non-plastic deformation of a loaded specimen including energy dissi-
pation.
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and the strain equals

6hD(w)
dZ ’

e(w) =

whereas the thickness and the width of the specimen are defined as h and w, respectively. The parame-

(21)

ters F and D accordingly represent the dynamic force and the equivalent bulk deflection. The complex
Young’s modulus is derived from the frequency-depending notation of Hooke’s law

* O (22)
E*(w) = (o)
using equations (20) and (21)
%\ _  Fl@d® (23)
E (CO)— 4D (o) wh

according to the experimental geometry.
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Fig. 11: Forced sinusoidal variation of stress and response in strain with a certain phase lag due to vis-
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Fig. 12: Schematic view of a specimen in the symmetrical three-point bending experimental set-up.
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Calibration of DMTA temperature readings

During a DMTA measurement the experimental temperature T is not determined on the specimen sur-
face, since the contact with a thermocouple might affect its the bending. A Pt13%Rh-Pt thermocouple is
located near the heating element of the furnace (Fig. 12) and used to control and record the tempera-
ture. The temperature where the complex Young’s modulus reaches its minimum is abbreviated by T,
and found to be lower than the o-f transition temperature given in literature at = 573°C. For synthetic
quartz, the a-f transition is recorded at = 560 and = 538 °C for 20 and 40 mm support spacings, respec-
tively. Thus, the temperature readings need to be corrected with a linear temperature calibration ac-
cording to

573°C- Ty

T=T .
Taﬂ'TO

(24)

where T, corresponds to ambient temperature.

Cohen & Klement (1967), for instance, evaluate the temperature and pressure dependence of the o-f
transition in quartz by differential thermal analysis. Thereby temperature differences between a powder
specimen and a reference (corundum) are recorded. This study includes recordings from differential
thermal analysis and thermal gravimetric analysis (mass changes) of synthetic quartz and Dalsland
quartzite (Chapter 3) at ambient pressure, while the onset of the o-f transition is determined to take
place at =573 °C in both cases (Appendix 11, Appendix 12). The experiments are performed with a Ne-
tzsch STA 409 PC/PG system, which is equipped with a special furnace for temperatures up to 1650 °C. A
powder mass of = 64.80 mg is taken from synthetic quartz and of = 103.94 mg from the quartzite. The
masses of the powder references of corundum are = 100.35 mg and = 100.14 mg, respectively. Observed
minima in quartz and quartzite correspond to endothermic reactions, while an exothermic reaction
would exhibit a maximum. Mass changes in association with the o-f transition are determined neither
for quartz nor for quartzite. Natural quartz, Lahr sandstone and fused silica (Chapter 3) are not examined
with the differential thermal analysis system, since their observed a-f transition temperatures in DMTA
are consistent with quartz. The occurrence of the incommensurate phase is neglected, as it is beyond the
experimental precision of DMTA (Chapter 1).

Correction of results from DMTA by thermal expansion

The Young’s moduli obtained from DMTA are basically affected by the thermal expansion u of the width
and the thickness of a specimen. For this reason, all moduli observed at elevated temperature are over-
estimated. The storage and dissipation moduli as a function of temperature are corrected on the basis of
thermal expansion data published by Raz et al. (2002, Fig. 9, Tab. 1) with

aa
Tg-T

2
Ugy= +by(Ty-T) +cy(T,-T)+d, (25)
and
Uﬁ:GﬂT'l'bﬁ (26)

for a- (25) and B-quartz (26), respectively. In this context T is the calibrated temperature, while a,, b, ¢,
dw Te, Gg and bgare the modelling parameters of the anisotropic fits for the two quartz phases.
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Tab.1: Modelling parameters for the thermal expansion of quartz as a function of temperature across
the o~ transition at ambient pressure according to Fig. 9.

Ui d, ba Cy da T, ag bﬂ
[%] [Cl  [°c] [°’c1 %] €l [%/°C'l [%]
Uy 555 2.7-107 -1.810% 0.93 653 2.110* 1.63
u;; 214 3.1-107 -1.4-10° 0.70 656 4.5:10* 0.73

The anisotropic thermal expansion of a triclinic material is described by a second-rank tensor uj; that
has six independent coefficients (e.g. Nye 1992). For trigonal and hexagonal crystal symmetries, the ten-
sor is simplified and three coefficients remain. These are us; and uy; that are oriented parallel and per-
pendicular to the c-axis of the crystal, respectively, while u,, equals uy1. Thus, the inverse of the square
root of the thermal expansion is three-dimensionally represented by a rotationally symmetrical ellipsoid.
For any crystallographic direction it is

Ugy=UgNT+Uqns+usng, (27)
where n; to ns3 are the directional cosines. The thickness of an elongated plate-like DMTA specimen at
elevated temperature is corrected by the thermal expansion that is oriented at an angle of 90° to the
polar distance along which the specimen was formerly cut. Hence, the thickness of the specimen is cor-
rected by u,,, for a quartz specimen cut parallel to the c-axis of the crystal. The thickness is corrected by

us3, for quartz cut perpendicular to the c-axis. The width of a specimen is always corrected using u;1. The
correction of the moduli is made by

3
e (i) (o)
h+hu gy, W WU gy,

with reference to the experimental geometry.

Theoretically, the thermal expansion of the support spacing and the elongation of the indenter need
to be corrected as well. Regarding single-crystal MoSi, with a tetragonal symmetry, the anisotropic
thermal expansion is found to be significantly lower than that of quartz (e.g. Clark 1966, Zhao et al. 2004,
Zhu et al. 2009). Thus, the expansion of the support spacing can be neglected, since its influence on the
results is beyond the precision of the experiments.

DMTA experimental parameters

Both static and dynamic forces of the DMTA experiments are removed, while the specimen is heated to a
certain temperature in order to minimise the residual stress and to better control the development of
micro-cracks (Tab. 2). Temperature steps of up to 25 K are used. In the vicinity of the a-f transition, the
steps are reduced to 5 to 3 K. The dynamic measurements are made under isothermal conditions. Prior
to the recordings, between 180 and 300 s are allowed for temperature equilibration of the specimen and
the experimental set-up. Usually, the data points for different loading frequencies are distributed loga-
rithmically. In addition, some experiments are performed with a constant heating rate of 3 K/min using
sinusoidal stress with a constant frequency of 10 Hz.

The force applied to a specimen should not exceed the elastic limit of the material from which it is
made of. Hence, several specimens of quartz with the same crystallographic orientation are tested by
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DMTA at different loads. Test are also carried out for three different crystallographic directions and it is
found that the dynamic stresses and strains correctly exhibit linear relations according to the anisotropic
Young’s modulus, respectively (Appendix 13).

Tab. 2: DMTA experimental parameters. Abbreviations used for the specimen names are: s = synthetic,
n = natural, f = fused, ¢ = ceramic, L-Sst = Lahr sandstone, D-Qtz = Dalsland quartzite. The num-
ber of frequency and temperature data points is given in parentheses.

Measure- Specimen Spacing Staticforce Dynamicforce Frequency Temperature
ment name [mm] range [N] range [N] range [Hz] range [°C]

1 5-5i0,-01 20 39- 4.1 20- 20 05-20(10) 29-615 (52)

2 5-Si0,-02 20 38- 4.1 19- 20 0.5-20(10) 27 -615 (52)

3 5-Si0,-03 20 39- 4.1 19- 20 0.5-20(10) 29-615 (52)

4 5-Si0,-04 20 59- 6.1 29- 3.0 0.5-20(10) 23-615 (52)

5 5-Si0,-05, 20 49- 5.2 29- 3.1 0.1-20(14) 534-587 (18)

6 5-Si0,-05;, 20 49- 52 29- 3.1 0.1-20(14) 535-586 (18)

7 5-Si0,-06 40 33- 43 0.7- 1.1 1.0-20 (5) 53-577 (39)

8 5-Si0,-07 40 3.1- 3.8 0.6- 0.8 1.0-20 (5) 53-567 (37)

9 5-Si0,-08 40 45- 6.5 1.5- 2.2 1.0-20 (5) 53-621 (47)
10 5-Si0,-09 40 49- 7.0 1.7- 25 1.0-20 (5) 53-572 (38)
11 5-Si0,-10 40 4.4- 7.7 1.6- 29 1.0-20 (5) 53-572 (27)
12 5-Si0,-11 40 40- 6.7 14- 24 1.0-20 (5) 53-572 (26)
13 5-Si0,-12 40 42- 8.1 14- 36 1.0-20 (5) 53-609 (33)
14 5-Si0,-13 40 42- 59 1.2- 2.0 1.0-20 (5) 53-610 (45)
15 5-Si0,-14 40 44- 6.3 1.3- 2.1 1.0-20 (5) 53-573 (38)
16 5-Si0,-15 40 39- 57 1.2- 1.9 1.0-20 (5) 53-577 (39)
17 5-Si0,-16 40 44- 6.4 1.4- 22 05-20 (5) 53-577 (39)
18 n-Si0,-01 20 5.8- 6.0 3.0- 31 10 (1) 33-669 (121)
19 n-Si0,-02 20 5.8- 6.0 3.0- 3.0 0.5-20(10) 35-575 (35)
20 D-Qtz-01, 20 59.7 -60.2 30.0-30.0 10 (1) 34 -663 (121)
21 D-Qtz-01, 20 59.8 - 60.1 29.9-30.0 10 (1) 648- 32(121)
22 D-Qtz-01, 20 59.7 -60.2 29.9-30.0 10 (1) 420-639 (71)
23 D-Qtz-01, 20 59.9 - 60.2 29.9-30.0 10 (1) 628-412 (71)
24 D-Qtz-01, 20 5.0- 5.1 29- 3.1 0.1-20(14) 533-576 (15)
25 D-Qtz-01, 20 5.0- 5.2 29- 3.0 0.1-20(14) 534-571 (13)
26 D-Qtz-01, 20 49- 6.0 29- 3.0 0.1-20(14) 534-586 (18)
27 L-Sst-01 20 19.9-20.2 14.5-15.0 10 (1) 131-630 (51)
28 f-Si0,-01 20 5.0- 5.1 29- 3.0 1.0-21 (9)' 41-718 (34)
29 f-S5i0,-02 20 5.9- 6.0 29- 3.0 0.5-20(10) 25-615 (52)
30 c-Al,03-1 20 3.6- 4.1 20- 2.0 0.5-20(10) 51-616 (52)

'linear distribution of data points

Ultrasonic experiments

Ultrasonic frequencies range between 20 kHz and 10 GHz, out of the human acoustic spectrum (e.g.
Blumenauer 1994). Investigations with ultrasonic waves are non-destructive and commonly applied for
quality control purposes (e.g. Deutsch et al. 1999). Ultrasonic waves also can be used to evaluate the
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elastic properties of minerals and rocks, which usually increase with density and pressure (e.g. Brocher
2005, Christensen 1996, Kanamori & Mizutani 1965) and decrease with temperature (e.g. Fig. 7). The
determination of elastic material properties is based on logging the travel times of ultrasonic waves (e.g.
Borgnis 1955, Brugger 1965, Castagnéde et al. 1990). The compressional wave velocity v, is fastest, fol-

|II

lowed by the slower velocities vy, and vy, of shear waves oscillating “parallel” and “perpendicular” to
their propagation direction, respectively. In the principal directions of an anisotropic crystal as well for
isotropic materials, only one shear wave is observed. In porous rocks different types of stored fluids sig-
nificantly affect the elastic wave velocities and their attenuation properties (e.g. Castagna et al. 1985).
Most ultrasonic studies of quartz-bearing rocks are limited to temperatures far below the a-f transition

(e.g. Hughes & Cross 1951, Hughes & Maurette 1956).

Ultrasonic testing is carried out using piezoelectric sensors. There are two fundamental modes of op-
eration, the transmission of signals and reflection of signals, which is also called impulse-echo method.
The transmission method requires two identical transducers, one acting as a pulser and one as a sensor
to receive the signal. These are connected to the specimen by a couplant and adjusted opposite to the
polished specimen faces in consideration of a parallel alignment. The velocity v of an elastic wave is de-
termined from its travel time t;,, over a distance s by

S

v= (29)

Eirg-tsys’
taking into account the reaction time of the system t,. The reaction time depends on the ultrasonic
device and the installed sensors. It is determined for all sensors used in this study (Appendix 17) by travel
time recordings for several distances (Appendix 15) in an aluminium specimen (Appendix 14) using the
linear regression method (Appendix 16).

In contrast to this, the impulse-echo method is based on the simultaneous emission and the detection
of a signal with a single transducer by interface wave reflection. The wave velocity is given by

2s

v= (30)

Eerg-tsys
The reaction time for ultrasonic transmission measurements is equal to the reaction time of recordings
form the impulse-echo method. Due to wave refraction and interference, the impulse-echo method is
less suitable for shear wave investigations (e.g. Kushibiki et al. 2002, Liu et al. 2002).

The full determination of the elastic properties of any anisotropic material requires measurements
along different crystallographic orientations (e.g. Alshits & Lothe 2006, Bechmann 1934, Huntington
1947, Mayer & Parker 1961, Naumenko 1996, Waterman 1959). The square sum R;; of the different wave
velocities in a particular direction is given by

2
p

2

v +VSV+V_§h=Rij (31)

and simplifies - concerning the shear wave velocity in principal directions - to

v2 (32)

2vs=[R b-

ij”

It is described by a second-rank tensor. The anisotropic Young’s modulus is determined from ultrasonic
measurements by solving Christoffel’s equation (12) and using the resultant elasticity coefficients for the
tensor rotation (7). The Young’s modulus of an isotropic solid can be obtained from a simplification that
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uses the velocities two of the two different wave types and the density of the material (e.g. Zisman
1933) in the way of

2 2 2

E _ PVSvRH BV vRH -4V vRK) 33
VRH = 2 - (33)
o VRH =V 5 VRH

This study uses an Olympus PR5058 ultrasonic pulser-receiver system that is connected to a DSO-X
3024 A digital storage oscilloscope made by Agilent Technologies and transducers by Panametrics NDT in
the transmission mode. The compressional wave velocities of a synthetic quartz single crystal and a spec-
imen made of Dalsland quartzite (Chapter 3) are examined with a pair of V125 transducers (0.375” diam-
eter, 2.25 MHz frequency maximum, 1 MHz high-pass filter, 3 MHz low-pass filter, = 0.28 ps reaction
time). Specimens of Lahr sandstone (Chapter 3) are investigated with V102 transducers for their com-
pressional wave velocities (1” diameter, 1 MHz frequency maximum, 0.3 MHz high-pass filter, 3 MHz
low-pass filter, = 0.13 pus reaction time). The shear wave velocities in quartz are determined with V153
transducers (0.5” diameter, 1 MHz frequency maximum, 0.3 MHz high-pass filter, 3 MHz low-pass filter,
= 0.39 ps reaction time). V154 transducers are used to evaluate the shear wave velocities in quartzite
(0.5” diameter, 2.25 MHz frequency maximum, 1 MHz high-pass filter, 3 MHz low-pass filter, = 0.27 us
reaction time). The shear wave velocities in the sandstone specimens are measured with V152 transduc-
ers (1” diameter, 1 MHz frequency maximum, 0.3 MHz high-pass filter, 3 MHz low-pass filter, = 0.1 us
reaction time).

Coupling of the sensors to synthetic quartz and quartzite is accomplished with a gel-type couplant
and a shear gel, both of which are provided by Sonotech. A thin layer of humid potter’s clay is used as
couplant to determine the elastic wave velocities in sandstone. The maximum amplitude of the signal
observed in every measurement is adjusted to the full screen of the oscilloscope by regulation of the
voltage for the initial pulse and the attenuation of the signal. The travel times of the elastic waves are
measured at the flank of the signal’s first arrival.

Uniaxial and triaxial compression tests

In contrast to ultrasonic testing, the mechanical properties of synthetic and natural rocks (e.g. Brace &
Jones 1971, Hallbauer et al. 1973) as well as of polycrystals and single crystals (e.g. Coe & Paterson 1969,
Scholz 1972) can be investigated destructively with compression tests (e.g. Jaeger et al. 2008). Usually,
cube-shaped or cylindrical specimens are loaded via two coplanar plates. This leads to axial shortening
and lateral widening of the specimen (DIN EN 1926) as long as the Poisson’s ratio of the material is posi-
tive (e.g. Gercek 2007, Lethbridge et al. 2010). The strength of a material ¢, is determined from the max-
imum force F,, on the specimen face A prior to macroscopic failure by

Fmax
o, = T (34)

The Young’s modulus and Poisson’s ratio of a specimen can be determined using displacement trans-
ducers to observe the axial shortening and the lateral widening of a specimen (e.g. Hirsch 2006,
Klumbach 2008, 2010). In this study Lahr sandstone (Chapter 3) is examined. Only the axial deformation
of the specimens is recorded. On this basis the Young’s modulus and the rock strength could be identi-
fied. The Young’s modulus is obtained between = 40 to = 60 % of the maximum stress. Differences be-
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tween statically and dynamically determined Young’s moduli might be expected - even under ambient
conditions (Ide 1936).

Besides uniaxial compression tests, a triaxial experiment is performed with a cylindrical specimen of
Lahr sandstone. A confining pressure on such a cylindrical specimen corresponds to a biaxial rather than
to a triaxial state of stress (DIN 18137-2). Generally, the lateral widening of a specimen is restrained,
while both the Young’s modulus and the strength of the material increase. Triaxial experiments also yield
the internal friction angle and the cohesion of the material (e.g. Stiiwe 2000). Furthermore, the residual
strength and the tensile strength of the material are determined.

In uniaxial and triaxial compression tests, a specimen is usually loaded and unloaded cyclically with a
stepwise increase of the axial stress and the confining pressure. First loading leads to the closure of lat-
erally oriented micro-cracks and the reduction of pore space within the specimen. This results in a non-
linear shape of the deformation curve during loading and a residual strain is observed after unloading. At
the end of each loading or unloading phase, the stress is kept constant temporarily, as creeping might
occur within the material. If the stress exceeds the elastic limit of the material axial micro-cracks are
formed. This is again associated with a non-linear development of the loading curve (e.g. Blumenauer
1994) and the emissions of acoustic signals, which is known as the Kaiser effect (e.g. Mayr et al. 2011).

Results from the uniaxial compression of natural rocks vary quite often. Consequently, a minimum of
five specimens should be examined, in order to determine reliable mean values of the previously intro-
duced parameters. Since the basal faces of a specimen cylinder are affected by shear forces due to the
contacting loading plates, the axial ratio of a specimen should be at least 2.5:1 in order to guarantee
uniaxial stress inside (e.g. Wittke 1984). For smaller ratios, the compressional strength needs to be cor-
rected (e.g. Obert & Duval 1967) according to

8oy,

Ored = T 54" (35)
2/

This also holds for the specimens that are investigated in this study (Tab. 8). Analogously, a correction of
the Young’s modulus is recommended.
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3. Specimen description

Properties and preparation of quartz

Synthetic quartz single crystals are bought from Maicom Quarz. The amounts of impurities and lattice
defects are not examined, as these are in agreement with the industrial standard for technical applica-
tions (DIN EN 60758). To figure out crystallographic orientations, the elastic properties of quartz are ex-
amined by the transmission of ultrasonic waves. A cube-shaped specimen with polished faces is used,
including a seed from the hydrothermal growth of the crystal (Tab. 3, Appendix 18 - Appendix 21).

The complex elastic properties of quartz as a function of temperature across the o-f transition are
obtained by DMTA for differently oriented specimens (Tab. 2, Tab. 7). For this purpose, elongated plate-
like specimens are ground and polished to a thickness < 1 mm. Furthermore, natural quartz crystals of
gem quality are prepared for DMTA and examined in the same way as synthetic quartz.

Tab. 3: Relative to the main axes of synthetic single-crystal quartz and under ambient conditions, trav-
el times of compressional and shear waves along the mean distances s, are given as t,, ts, and
tn, respectively. Wave velocities with uncertainties are v,, v, and v,, (Appendix 9).

Orientation s,*As, t,xAt, v,*Av, t,tAt, vytAv, t,*At;, vstAvy Rj:AR;

[mm] [us]  [km/s] [us] [us] [km/s]  [km/s] [km?/s?]
Il c-axis 20.68 3.25 6.36 4.35 4.754 4.35 4.754 86
+0.07 +0.02 +0.05 +0.02 +0.025 +0.02  +0.025 +4
Il g-axis 22.10 3.82 5.79 4.32 5.116 6.68 3.31 71
+0.10 +0.028 +0.04
Il Y-axis 20.723 3.46 5.99 04.486" 5.35 3.873 71
+0.028 +0.04 +0.025 +0.022

"according to (31)

Properties and preparation of quartzite and sandstone

The quartzite examined in this study is from the Amal province in southwestern Sweden and known as
Dalsland quartzite. It is flesh-coloured, homogeneous, fine-grained, and = 1.000 Ma old (Johansson
1985). According to Beck (2010), it has an extremely weak texture and a bimodal grain size distribution
between =5 um and = 1 mm (Fig. 13, A - C). This indicates its genesis might be related to contact meta-
morphism. The composition of Dalsland quartzite is examined by X-ray powder diffraction (Fig. 14), with
an X-ray beam being refracted by the crystal lattice (e.g. Nesse 2000), and X-ray fluorescence (Tab. 4),
where X-rays are triggered by electron excitement due to radiation (e.g. Tertian & Claisse 1982).

The sandstone investigated in this study is from Lahr in southwestern Germany. It is classified as part
of the Triassic Bausandstein formation sus (Fig. 13, 6 - 8). A detailed characterisation is presented by
Hirsch (2008). Results of three out of four specimens from that study are in agreement with the observa-
tions made in this study. The rock is red-coloured due to an iron-bearing cement, homogeneous, well-
sorted, and well-rounded with medium- to coarse-grained quartz sand. Bedding is weakly developed.
Thin section countings by Hirsch (2008) yield =90 % of mono- and polycrystalline quartz grains. X-ray
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fluorescence (Tab. 4) and X-ray diffraction data (Fig. 15) are collected by Muhlbach et al. (2013). In addi-
tion, Rietveld refinements are performed with fullprof using ICSD and COD data (Allmann & Hinek 2007,
Belsky et al. 2002, Brown & Mc Mahon 2002, Downs & Hall-Wallace 2003, Downs et al. 1994, Grazulis et
al. 2009, 2012, Kaduk 2002, Le Page & Donnay 1976, Mc Cusker et al. 1999, Toby 2006).

Fig. 13: Thin sections of Dalsland quartzite (A-C, Beck 2010) and Lahr sandstone (6-8, Hirsch 2008) un-
der parallel (6, A) and crossed polarisers (7-8, B-C).
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Fig. 14: Diffraction pattern of Dalsland quartzite with (hk/) for quartz (wave length = 1.54051, maximum
intensity = 56,700 cts/s, speed = 0.25, time step = 4.8, width = 0.02, fixed slit, 10 % uncertainty).
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Fig. 15: Diffraction pattern of Lahr sandstone with (hk/) for quartz (wave length = 1.54051, maximum
intensity = 20,000 cts/s, speed = 0.5, time step = 1.2, width = 0.01, variable slit, 10 % uncertain-
ty). Mineral abbreviations according to Whitney & Evans (2010).
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While the interpretation of X-ray diffraction data confirms that quartz is the main component of both
Dalsland quartzite and Lahr sandstone, normative X-ray fluorescence data are used to estimate the
amount of secondary minerals. Dalsland quartzite consists of = 99 % quartz and a minor amount of ac-
cessory sheet silicates. These are composed of = 70 % muscovite?/illite and = 30 % biotite. Beck (2010)
also observes partial degradation of the biotite.

Tab.4: Normative main oxides in quartzite, sandstone, and fused silica, determined from observations
by powder X-ray fluorescence (+ 1 to 5 % uncertainty).

Material Si0, AlLO; Fe,0; K,O TiO, Na,O Cao MgO Ignition
[wt%] [wt%] [wt%] [wt%] [wt%] [wt%] [wt%] [wt%] [wt%]
Quartzite' 98.70 0.39 0.31 0.17 0.02 0.02 0.01 0.37
Sandstone'” 94.75 2.55 0.45 1.73 0.03 0.07 0.07 0.03 0.29
Sandstone* 94.60 2.88 0.25 1.62 0.03 0.07 0.05 0.05 0.38
Fused silica®* 99.98 unkn.

"Beck (2010) ""Miihlbach et al. (2013) ¥ mean data from Hirsch (2006) ** GVB (2014)

In contrast to that, the X-ray fluorescence data of Lahr sandstone reveals that it consists of >93 %
quartz, with minor amounts of feldspar, plagioclase, and various accessory minerals. = 70 % of musco-
vite/illite and =30 % of biotite are identified (Tab. 5). The X-ray diffraction pattern of Lahr sandstone
(Fig. 15) also exhibits secondary illite and kaolinite, which most likely result from the degradation of mica
and feldspar, respectively. Hirsch (2008) notes a bulk density of = 2.63 g/cm3, which is close to that of
pure quartz.

Tab.5: Normative mineral content in Dalsland quartzite and Lahr sandstone as obtained from the pre-
viously presented X-ray fluorescence data (Tab. 4). Mineral abbreviations according to Whitney
& Evans (2010): Qtz = Quartz SiO,, Or = Orthoclase K[AISi;Og], Ab = Albite Na[AlSi;Og], An = An-
orthite CaAl,Si,0s, KIn = Kaolinite Als[SizO19(OH)g], Ms = Muscovite KAI,[AlSizO14(OH,F),], Mrg =
Margarite CaAl,(Al,Si;)O0:0(OH),, Pg = Paragonite NaAl,[AlSi;010(0OH),], Bt = Biotite K(Mg,Fe®",
Mn?*);[(Al,Fe**, Ti**)Si;01 (OH,F),], Hem = Hematite Fe,0; (+ 0.1 wt% uncertainty).

Material Qtz Or Ab An Kin Ms Mrg Pg Bt Hem
[wt%] [wt%] [wt%] [wt%] [wt%] [wt%] [wt%] [wt%] [wt%] [wit%]

Quartzite* 99.0 - - - - 0.4 0.1 0.1 0.3
Sandstone® 931 5.0 0.3 0.3 0.2 0.6 - - 0.2 0.2
¥ potential chloritisation of mica ¥ contains accessory apatite and dolomite

Elastic properties of quartzite, sandstone and fused silica

Cube-shaped specimens are prepared both from Dalsland quartzite and Lahr sandstone to investigate
their elastic properties by ultrasonic wave transmission with compressional and shear waves under am-
bient conditions. Approximately isotropic velocities of both compressional and shear waves are observed
within the experimental uncertainties (Tab. 6). Elongated plate-like specimens for DMTA are prepared

3 . . . .
Muscovite is used here as a collective term for all transparent micas.
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analogously to quartz. However, the thickness of the specimens is larger in case of the two rock types,
especially for Lahr sandstone (Tab. 7).

Fused silica is bought from Glasvertrieb Braun. Its quality meets industrial standards (DIN EN ISO
9001). A list of its physical and chemical (Tab. 4) properties is published in the Internet (latest download
from www.g-v-b.de/File/quarzplatten d(1).pdf on 02 October, 2014, abbreviated as “GVB 2014” in
Tab. 4 and in the following text).

Tab. 6: Observed travel times of the compressional and shear waves t, and t; over the distance s as
well as the wave velocities v, and v, of quartzite, sandstone, and fused silica under ambient
conditions and with experimental uncertainties, respectively (e.g. Kuchling 2004, Appendix 9).
Measurements are made in three orthogonal orientations for the quartz-bearing rocks.

Material StAs t,tAt, v,xAvy, ttAt; v,xAy, Vp/ Vs
(direction) [mm)] [us] [km/s] [us] [km/s]  *Av,/v,[-]
Quartzite 31.16 5.34 5.84 7.80 3.995 1.466
(1) +0.05 +0.04 +0.05 +0.04 +0.022 +0.013
Quartzite 31.95 5.42 5.89
(2 L1)
Quartzite 42.76 7.32 5.84
(3L211) +0.04
Sandstone 212 73.3 2.89 110.6 1.917 1.508
(1) +3 +0.5 +0.05 0.5 +0.029 +0.013
Sandstone 192 63.9 3.00 102.0 1.88 1.596
(2L1) +0.06 +0.04 +0.015
Sandstone 273 89.6 3.05 137.2 1.990 1.533
(3L211) 1+ 0.04 +0.024 +0.011
Fused silica 5.93 3.74 1.586

Fused silica is elastically isotropic and well-known. Under ambient conditions, the Young’s modulus
equals = 72 GPa, while Poisson’s ratio is = 0.17 (GVB 2014). Elastic wave velocities are derived from these
data (Tab. 6) for a density of 2.2 g/cm?3 (e.g. Schdn 1983). The compressional strength is specified to be
> 1.1 GPa and the tensile strength is measured to be = 48 MPa. This is approximately one order of magni-
tude higher than for natural rocks.

Again, elongated plate-like specimens of fused silica are prepared for DMTA. Their dimensions are
comparable to those of the quartz specimens (Tab. 7). The temperature readings from DTMA are cali-
brated analogously to quartz, assuming a hypothetical occurrence of the a-f transition. The observed
Young’s moduli are corrected by the thermal expansion coefficient, which is = 0.55-10° K™ between 25
and 300 °C (GVB 2014). These corrections are also made for Dalsland quartzite and Lahr sandstone with
the same temperatures that are used for quartz and the isotropic thermal expansion of quartz.

Geometrical properties of specimens for DMTA

Elongated plate-like specimens with parallel planes are required for the measurements in the symmet-
rical three-point bending experimental set-up of the DMTA apparatus (Chapter 2). The thicknesses and
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the widths of the specimens are measured with a digital calliper gauge and a precision of £ 0.01 mm.
However, variations due to the preparation process are usually larger (Tab. 7).

Tab.7: Geometrical properties of specimens for DMTA. Abbreviated specimen names according to
Tab. 2. Orientations of the off-axis specimens are referred to as azimuth ¢ and polar distance w.
Uncertainties of the specimen width and thickness are + (0.02 + 0.01) mm according to prepa-
ration and the precision of the calliper gauge, respectively.

Specimen Orientation Length/ Thicknessh Widthw

name (0/47) > [mm] [mm] [mm]
s-Si0,-01 Il c-axis 20 0.63 10.35
s-Si0,-02 Il a-axis 20 0.62 10.61
5-5i0,-03 90°/40° 20 0.63 10.13
s-Si0,-04 90°/30° 20 0.63 10.00
5-5i0,-05 Il a-axis 20 0.79 12.61
5-Si0,-06 Il c-axis 40 0.64 12.48
5-Si0,-07 Il c-axis 40 0.59 12.54
s-Si0,-08 Il c-axis 40 0.79 12.76
5-Si0,-09 Il c-axis 40 0.59 12.54
s-Si0,-10 Il a-axis 40 0.82 12.83
s-Si0,-11 Il a-axis 40 0.83 12.74
5-Si0,-12 Il a-axis 40 0.84 12.53
5-5i0,-13 90°/30° 40 0.78 12.49
s-Si0,-14 90°/30° 40 0.79 12.38
5-S5i0,-15 90°/30° 40 0.77 12.45
5-Si0,-16 Il c-axis 40 0.78 12.45
n-Si0,-01, Il c-axis 20 0.80 12.63
n-Si0,-02;, Il c-axis 20 0.68 12.62

L-Sst-01 random 20 6.05 9.63
D-Qtz-01, random 20 4.16 9.06
D-Qtz-01, random 20 1.04 9.02
f-Si0,-01 random 20 0.75 11.10
f-Si0,-01 random 20 0.77 11.17
c-Al,03-1 random 20 6.03 11.91
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4. Experimental results

Results obtained from synthetic quartz

The complex Young’s modulus of synthetic quartz is determined as a function of frequency and tempera-
ture across the a-f transition with 20 mm (Fig. 16) and 40 mm (Fig. 17, Fig. 18, Klumbach & Schilling
2012, 2014) support spacings in symmetrical three-point bending. The temperature readings are cali-
brated to 573 °C using the minimum of the observed storage modulus (Chapter 2). Temperature uncer-
tainties are assumed to be <+ 2 K. The observed storage and dissipation moduli are corrected for an
anisotropic expansion of each specimen based on the previously calibrated temperature.
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Fig. 16: Calibrated temperature dependence of the corrected anisotropic storage (black symbols) and
dissipation moduli (white symbols) based on the observations for synthetic quartz crystals at
2.57 Hz across the a-f transition with 20 mm support spacing in symmetrical three-point bend-

ing. Off-axis crystallographic orientations are referred to as “azimuth/polar distance”.

Under ambient conditions, the storage modulus parallel to the c-axis of the crystal is = 20 % larger
than that perpendicular to it (Fig. 16, Fig. 17). A potential frequency dependence of the complex Young’s
modulus is not observed (Fig. 18), whereas it might exist below the detection limit of the experimental
set-up. The dissipation moduli are = 1 to 3 % of the corresponding storage moduli, which is indeed close
to the detection limit of the experimental set-up (Chapter 2).

At elevated temperature, minor deviations from the expected literature trends (e.g. Kimizuka et al.
2003, Lakshtanov et al. 2007, Ohno et al. 2006, Perrier & De Mandrot 1923, Zubov & Firsova 1962) are
observed. The complex Young’s modulus becomes frequency-dependent at = 500 °C for recordings with
a support spacing of 40 mm and at = 550 °C for 20 mm. This frequency dependence gradually increases
with temperature towards the a-f transition. At = 573 °C, the minimum of the storage modulus is ac-
companied by a maximum of the dissipation modulus.
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Fig. 17: Temperature dependence of the anisotropic storage (black symbols) and dissipation moduli
(white symbols) of synthetic quartz crystals at 1 Hz across the o-f transition with 40 mm sup-
port spacing. Mean data from several specimens are shown. Off-axis crystallographic orienta-
tions are referred to as “azimuth/polar distance”.
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Fig. 18: Isothermal frequency dependence of the anisotropic storage (left) and dissipation moduli
(right) of synthetic quartz across the o-f transition at 40 mm support spacing. Mean data are
presented. Off-axis crystallographic orientations are referred to as “azimuth/polar distance”.
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Isothermal frequency-dependent recordings in the vicinity of the a-f transition show low-frequency
loading correlating with low storage moduli and low dissipation moduli, while high-frequency loading
corresponds to high storage moduli and low dissipation moduli (Fig. 18). A maximum of the dissipation
modulus is observed at = 1 Hz, linked to a strongly increasing storage modulus. The dispersion of the
storage modulus and the maximum of the dissipation modulus are low parallel to the c-axis of the crystal
(= 7.6 and = 2.6 GPa, respectively) and high perpendicular to it (= 15.1 and = 7.1 GPa, respectively).

Above the a-f transition, the storage modulus increases anisotropically, as expected from the litera-
ture data presented (e.g. Perrier & De Mandrot 1923), while the dissipation modulus decreases. The
complex Young’s modulus loses its frequency dependence within a temperature range of < 10 K. Since
the o-f transition is described as enantiotropic transformation (Chapter 1), repeated frequency- and
temperature-dependent measurements with the same specimen lead to similar results (Tab. 2).

Results obtained from natural quartz

The complex Young’s modulus of natural quartz is investigated as a function of frequency and tempera-
ture across the o-f transition in dynamic symmetrical three-point bending experiments with 20 mm
support spacing. Both the temperature readings and the specimen expansion with increasing tempera-
ture are corrected analogously to the results of synthetic quartz (Chapter 2).

The high-temperature development of the storage modulus of natural quartz at 10 Hz cyclic loading is
in agreement with the observations made for synthetic quartz. Under ambient conditions, however, the
storage modulus of natural quartz is lower and its decrease with rising temperature is apparently strong-
er than one might expect. A pronounced increase of the storage modulus is observed between = 250 and
= 350 °C, probably linked to a decrease of the dissipation modulus between = 300 and = 400 °C (Fig. 19).

At the o-f transition, a minimum of the storage modulus and a maximum of the dissipation modulus
are observed as well although the dissipation modulus is merely as large as for temperatures < 300°C.
Both the storage modulus and the dissipation modulus of the fphase also meet the expectations based
on the observations made for synthetic quartz. The dissipation modulus of natural f-quartz corresponds
to the value observed below its o-f transition, between = 400 to = 500 °C, according to a combination of
the intrinsic attenuation of the apparatus and quartz itself. The storage and dissipation moduli found
below = 400 °C might be due to crystal twining. Results of isothermal dynamic loadings of natural quartz
show that the complex Young’s modulus becomes frequency-dependent at =550 °C, while =559 °C
seems to be the highest temperature, where the complex Young’s modulus is recorded for the a-phase
(Fig. 20). The data measured at = 575 °C, which is the temperature closest to the a-f transition in this
case, potentially corresponds to the fphase already.

It is further observed that the first data point of the isothermally recorded storage moduli is always
higher than expected. This is an artefact because of the combination of the temperature intervals and
the time available for the thermal equilibration of the apparatus prior to specimen loading (Chapter 2).
The equilibration time is supposed to be too short to compensate an ongoing thermal expansion of the
loading axis of the machine. Theoretically, this effect is also influenced by the time needed for the dy-
namic measurement, which corresponds to the inverse loading frequency. The effect is observed for
data of synthetic quartz at 20 mm support spacing as well.
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Fig. 19: Temperature dependence of the storage (black symbols) and dissipation moduli (white sym-

bols) of natural quartz at 10 Hz loading across the a-f transition, with 20 mm support spacing.
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Fig. 20: Isothermal frequency dependence of the storage (black symbols) and dissipation moduli (white
symbols) of natural quartz across the a-ftransition, at 20 mm support spacing.

Results obtained from Dalsland quartzite

The complex Young’s modulus of a specimen of Dalsland quartzite is investigated as a function of tem-
perature across the a-f quartz transition at 10 Hz cyclic loading and 20 mm support spacing. Tempera-
ture readings are calibrated analogously to synthetic quartz (Chapter 2). Thermal changes of the speci-

52



Elasticity and Viscoelasticity of Solid SiO, as a Function of Frequency and Temperature

men width and thickness are corrected by the volume expansion of quartz, as Dalsland quartzite can be
considered an isotropic rock (Chapter 3). Hence, its storage and dissipation modulus may be expected to
meet the averaged elastic data of quartz for an isotropic polycrystal.

Under ambient conditions, the storage modulus of Dalsland quartzite is = 85.1 GPa. When a frequen-
cy dependence of the elastic properties is excluded, this storage modulus nearly is identical to a Young's
modulus of =90.2 £ 1.2 GPa, which is derived from ultrasonic measurements (Tab. 6) and a density of
2.65 g/cm® for an isotropic solid (33). For comparison, the average Young’s modulus of an isotropic
quartz polycrystal is = 95.6 GPa according to the Voigt-Reuss-Hill approximation (Chapter 1). It is sup-
posed to be different from the storage modulus of Dalsland quartzite due to grain boundaries and the
intercrystalline presence of micro-cracks. This assumption seems to be supported by a single stepwise
change of the storage modulus to = 80.0 GPa due to heating and micro-crack development.
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Fig. 21: Temperature dependence of the storage modulus of Dalsland quartzite across the a-f quartz
transition at a testing frequency of 10 Hz: heating (black symbols) and cooling (white symbols).

During heating, the temperature dependence of the storage modulus of Dalsland quartzite qualita-
tively agrees with the observations made for quartz (Fig. 21). It also exhibits a minimum at the o-f tran-
sition. The storage modulus of the Bphase is consistent for both heating to = 650 °C and cooling to am-
bient temperature at the rate of 3 K/min. Below the a-f transition the storage modulus recorded during
cooling is =20 to 30 % lower than during heating. This difference is attributed to the formation and
propagation of micro-cracks in the specimen, particularly in the vicinity of the o~/ transition, where a
strong and highly anisotropic thermal expansion occurs (Chapter 1). A dissipation maximum related to
the o~ transition is not observed, as the testing frequency is 10 Hz.

However, the specimen of Dalsland quartzite is found to be macroscopically intact after the experi-
ment. It is once more heated and cooled across the a-f transition in the same temperature range. Re-
sults from this correlate with the data from the first cooling cycle, since further micro-crack development
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does not take place until the temperature is > 650 °C. Again, no increasing dissipation is measured at the
o-fBtransition and the specimen is found to be macroscopically intact afterwards.

The thickness of this used specimen made of Dalsland quartzite is reduced (Tab. 7) and it is subjected
to isothermal sinusoidal loading at different frequencies and temperatures in the vicinity of the o-f
guartz transition. The frequency range is chosen to be equal to that of quartz (Tab. 2). Storage and dissi-
pation moduli are determined for temperatures > 520 °C across the a-f transition (Fig. 22). As observed
for quartz, the complex Young’s modulus of Dalsland quartzite shows a frequency dependence in the
vicinity of the o~f transition. The dispersion of the storage modulus starts at = 520 °C and maximises at
= 573 °C. Simultaneously, the dissipation modulus also maximises at the o-f transition, as one might
already expect from the previously presented quartz data.

Isothermal frequency-dependent measurements at = 571 °C show that the dispersion of the storage
modulus between 0.1 and 20 Hz reaches = 16.4% according to high-frequency observations. The dissipa-
tion modulus maximises at = 0.8 Hz, which is slightly lower than in quartz, where it is found around
= 1Hz. It is = 2.95 GPa, which is = 11.6 % of the storage modulus at the same frequency.
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Fig. 22: Isothermal frequency dependence of the storage (black symbols) and dissipation moduli (white
symbols) of Dalsland quartzite across the a-ftransition, with 20 mm support spacing.

Results obtained from Lahr sandstone

Lahr sandstone is found to be elastically isotropic by ultrasonic measurements (Tab. 6). A Young’s modu-
lus Egyn of = 19.6 GPa is derived from equation (33) using the travel times of elastic waves and the density
p of =2.2 g/cm® (Tab. 8). Uniaxial compression tests yield a static Young’s modulus Eg, of =20.4 GPa
(Appendix 22 - Appendix 30). Both results are in agreement within the experimental uncertainties, as it is
known from quartz that a frequency dependence of the elastic properties is lacking at ambient tempera-
ture. Hence, the mean Young’s modulus of Lahr sandstone equals = 19.8 GPa.
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The mean uniaxial compressional strength o, of Lahr sandstone is = 64 MPa (Tab. 8). It is corrected
according to equation (35), because the cylindrical specimens exhibit a length:diameter ratio of <2.5:1
(Chapter 2). However, a reduction of the uniaxial compressional strength is supposed to affect the corre-
sponding Young’s modulus derived from the observed strain. The Young’s moduli obtained from uniaxial
compression is modified analogously to the rock strength by introducing the correction factor ng,
(Tab. 8).

Measurements at 10 Hz dynamic loading and 20 mm support spacing yield a complex Young’s modu-
lus <5 GPa, which is clearly different from the results of the other two methods. This difference results
from the fact that the deformation in symmetrical three-point bending is impeded by a large specimen
thickness compared to quartz and quartzite (Tab. 7). However, the chosen thickness is necessary as the
sandstone grains are bound weakly in contrast to quartzite. Furthermore, the tensile rock strength is
= 7.1 MPa (Appendix 30). Since symmetrical three-point bending results in tensile stress in the lower part
of the specimen (Chapter 2), the sandstone is prone to fail.

Temperature readings from investigations of Lahr sandstone with DMTA are calibrated analogously to
quartz. The storage modulus exhibits decreasing values towards the a-f quartz transition. A re-
increasing stiffness above 573 °C is interrupted by failure of the specimen at = 600 °C (Fig. 23). It is evi-
dent that the dynamic symmetrical three-point bending data of this sandstone poorly reflect the obser-
vations made for quartz and quartzite. In the vicinity of the o-f transition no isothermal frequency-
dependent elastic data are collected for Lahr sandstone.

In addition, a voluntary water absorption of = 4.2 wt% is measured. Both the density and the volun-
tary water absorption found in this study are consistent with data presented by Hirsch (2008), who also
determines an average porosity of = 16.2 %.
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Fig. 23: Temperature dependence of the storage (black symbols) and dissipation moduli (white sym-
bols) of Lahr sandstone across the o-f transition at 10 Hz loading frequency, with 20 mm sup-
port spacing.
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Tab. 8: Physical properties of cylindrical specimens of Lahr sandstone (drilled perpendicular to bedding) with uncertainties (Appendix 9).
Specimen [+Al dtAd I/dt prAp t,xAt, V,EAv, trAt; viAv,  Vp/vit  Eu tAEy, ExatAEg, Oyt AC,  Neo
name [mm] [mm] Al/d ][] [g/cm?] [us] [km/s]  [us] [km/s] Av,/v, [] [GPa] [GPa] [MPa] [-]
MKC-021 100.89 50.07 2.0150 2.212 32.7 3.09 51.1 1.974 1.57 19.9
+0.12 £0.03 +0.0027 +0.005 +0.5 +0.06 0.5 £0.022 +0.04 +1.2
MKC-022 101.96 50.10 2.0351 2.207 33.4 3.05 51.0 1.999 1.53 19.8 19.7 60.0 0.973
+0.03 +0.04 +0.0018 +0.05 +0.021 +1.0 +0.5 +0.8
MKC-023 102.45 50.083 2.0456 2.2053 33.6 3.05 52.0 1.970 1.55 19.5
+0.09 +0.017 +0.0020 *0.0026
MKC-024 103.18 50.08 2.0603 2.204 33.8 3.05 52.0 1.984 1.54 19.7
+0.07 £0.03 +£0.0019 +0.004
MKC-025 99.64 50.08 1.990 2.192 33.0 3.02 52.1 1.912 1.58 18.7 20.3 66.6 0.969
+0.18 +0.004 +0.006 +0.06 +0.022 +1.2 +0.9
MKC-026 103.83 50.08 2.0733 2.213 33.9 3.06 51.5 2.016 1.52 20.1 21.2 69.2 0.975
+0.12 +0.0027 +0.005 +0.05 +1.0
MKC-027 103.54 50.095 2.0661 2.211 33.8 3.06 53.1 1.949 1.57 19.5 20.8 66.2 0.975
+0.10 +0.024 +0.0023 +0.004 +0.021 +1.1
MKC-028 101.23 50.08 2.021 2.210 33.1 3.06 51.5 1.966 1.56 19.6 19.8 59.8 0.971
+0.11 +0.05 +0.003 +0.006 +0.022
MKC-029 101.22 50.068 2.0217 2.2159 33.1 3.06 51.1 1.981 1.54 19.8
+0.07 +0.024 +0.0018 +0.0028 +0.021 +1.0
MKC-030 102.54 50.063 2.0482 2.2017 33.6 3.05 51.6 1.987 1.53 19.7
+0.09 +0.017 +£0.0020 =*0.0026 +0.022
MKC-031 100.53 50.11 2.0062 2.215 31.8 3.16 53.0 1.897 1.66 19.5
+0.07 +0.06 +0.0028 +0.006 +0.06 +0.020 +0.05 +1.3
MKC-032 101.19 50.11 2.019 2.204 32.5 3.11 51.4 1.969 1.58 19.9
+0.16 +0.08 +0.005 +0.009 +0.023 +0.04
MKC-033 101.28 50.078 2.0224 2.2067 33.0 3.07 53.1 1.907 1.61 19.0
+0.03 +0.017 +0.0010 #*0.0018 +0.05 +0.019 +1.1
MKC-038 100.12 50.17 1.9956 2.196 321 3.12 50.0 2.002 1.56 20.2
+0.04 +0.04 +0.0018 =*0.005 +0.021
Mean 2.207 3.072 1.965 1.564 19.64 20.4 64
+20 +0.004 +0.021 +0.021 +£0.022 +0.23 +0.8 5
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Results obtained from fused silica

The complex Young’s modulus of fused silica is investigated as a function of temperature across 573 °C at
10 Hz cyclic loading and 20 mm support spacing by symmetrical three-point bending. The temperature
readings are calibrated analogously to quartz (Chapter 2). Observed storage and dissipation moduli are
corrected according to a comparably low isotropic thermal expansion of the material (Chapter 3). Under
ambient conditions, the storage modulus of fused silica is found to be independent of the loading fre-
guency, consistent with the literature data (Chapter 1). The storage modulus is determined to be
= 76.1 GPa, while the equivalent dissipation modulus is = 3.7 % of this value.

The temperature dependence of the 10 Hz complex Young’s modulus of fused silica clearly differs
from the results previously obtained for quartz and quartz-bearing rocks. Literature data published by
Spinner (1956), for instance suggest a linearly increasing Young’s modulus with temperature (Chapter 1).
A gain in stiffness as a function of temperature is generally in agreement with the observations of this
study. Below = 250 °C, however, the storage modulus of fused silica appears to be nearly independent of
temperature (Fig. 24).

= 90
©
& Stability field of a-quartz : f-quartz
W g5 4 |
g L S
3 >
3 voven ‘,0.0
S 80 - JppeeTs t
*
& . hd | ~ a
§ 75 - oot te. o | - 4 S
[%2) ~~ \ Py i
~~ l "
=]
o I i =
i | 3
S o, e | o° E
0000 <> ; ‘-o_ o O-O. 0-0 O_. - g
L3 i 3 O =
"-°.<>'° 0'00.?000 §
1 T T T 1 -g)
0 200 400 573 600 800 a

Temperature T [°C]

Fig. 24: Temperature dependence of the storage (black symbols) and dissipation moduli (white sym-
bols) of fused silica at 3 K/min heating rate and 1 Hz loading frequency.

Around = 300 °C, the storage modulus increases by = 5 GPa, which is associated with a maximum of
the dissipation modulus of = 3.1 GPa. This seems to be comparable to viscoelastic effects in quartz that
are described at =300 °C (e.g. Cook & Breckenridge 1953, Dodd & Fraser 1965) and at - 223 °C (e.g.
Bommel et al. 1956) and attributed to lattice defects (e.g. King 1959) and impurities (e.g. Fraser 1964,
Lewis & Patterson 1967, Maris 1963). The behaviour around =300 °C may also result from structural
relaxation of in-situ stresses due to the reorientation of SiO, tetrahedra.

For temperatures > 350 °C, the storage modulus increases approximately linearly. At =700 °C, it
amounts to = 83.5 GPa. Neither a minimum of the storage modulus nor a maximum of the dissipation
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modulus is detected around 573 °C. The dissipation modulus potentially increases at temperatures
> 600 °C, whereas the observed values are close to the detection limit of the experimental set-up (Chap-
ter 2).

From the clearly different 10 Hz temperature dependence of the storage and dissipation moduli in
comparison to quartz, it is expected that the complex Young’s modulus of fused silica does not exhibit
any frequency dependence in the vicinity of the a-f transition temperature for quartz. This is confirmed
by isothermal dynamic data of fused silica recorded in the same frequency range as for quartz and
quartzite (Fig. 25). However, a minor frequency dependence seems to exist between = 200 and = 400 °C,
which would be in agreement with the potential material effects mentioned above.

Beyond that the thermal expansion of the loading axis of the apparatus continues during the dynamic
measurement and especially affects the moduli recorded at low frequency, which is also observed for
quartz. This effect interferes with a potential frequency dependence of the complex Young’s modulus.
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Fig. 25: Isothermal storage (black symbols) and dissipation moduli (white symbols) of fused silica at
different frequencies and various elevated temperatures.
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5. Discussion

Frequency-dependent elastic behaviour

At ambient temperature, no frequency dependence of the complex Young’s modulus between 0.1 and
20 Hz is found for quartz and quartz-bearing rocks (Chapter 4). This also holds for the fphase at tem-
peratures above = 600 °C. In both cases, a potential viscoelasticity of the material is below the detection
limit of the experimental set-up (Chapter 2). Hence, the mechanical properties of quartz are approximat-
ed well to be linear elastic, comparable to the behaviour of a mechanical spring with a spring constant
equal to the anisotropic Young’s modulus (e.g. Courtney 2000).

The anisotropic complex Young’s modulus of quartz and quartz-bearing rocks becomes significantly
frequency-dependent in the vicinity of the o-f phase transition (Chapter 4) because of the occurrence of
elastic and viscoelastic mechanical effects. Combined elastic and viscoelastic material properties are
usually approximated by networks of elastic and viscous elements or springs and dashpots, respectively
(e.g. Schiessel et al. 1995). The simplest combination of springs and dashpots, which may explain the
experimental data of this study, is presented below.

Elementary networks consist of one spring with a Young’s modulus E and one dashpot that is defined
by a viscosity 7. Two combinations result from either parallel or serial arrangement of these elements
(e.g. Casula & Carcoine 1992). The parallel layout is known as Kelvin-Voigt model (Appendix 31a, e.g.
Grau et al. 1983). It is characterised by a storage modulus

E'(w)=E (36)

that is independent of frequency and a dissipation modulus
E'(w)=nw (37)
that increases linearly with frequency. A least squares approximation shows that the Kelvin-Voigt model

fits neither the storage modulus nor the dissipation modulus observed for quartz (Fig. 26) and quartz-
bearing rocks.

In contrast to this, the serial arrangement of a spring and a dashpot, which is known as Maxwell mod-
el (Appendix 31b), exhibits an increasing storage modulus

Ef]zwz

Blo)= e (38)
with frequency until a constant value is reached, while the dissipation modulus decreases by
" E2no

The modelled behaviour of the storage modulus roughly approximates the experimental data, but the
dissipation modulus is clearly in disagreement at low frequencies. Hence, the Maxwell model also is in-
appropriate to describe the results of the complex Young’s modulus for quartz (Fig. 26) and quartz-
bearing rocks.

Adding a second spring parallel to a Maxwell element yields the Zener model (Appendix 31d, Zener
1948). The serial arrangement of a Kelvin-Voigt element and a spring is known as Poynting-Thomson

model (Appendix 31c, e.g. Qaisar 1989). These two models are equivalent to each other and also widely
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known as standard linear solid model (e.g. Meidav 1964). Their parameters can be converted into each
other (Appendix 31e). The Poynting-Thomson model is used in this study. Modelling by Poynting-
Thomson fits to the observed storage and dissipation moduli of quartz and quartzite over the entire
temperature and frequency range investigated in this study.
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Fig. 26: Frequency dependence of the storage modulus E’ (black symbols) and dissipation modulus E”
(white symbols) for a specimen of synthetic quartz at = 570 °C, cut parallel to the g-axis of the
crystal. Least squares fits according to models of Kelvin-Voigt (fine dashed lines), Maxwell
(coarse dashed lines), and Poynting-Thomson (solid lines, 2c= 0.3 GPa).

In the Poynting-Thomson model, the storage modulus exhibits a sigmoidal shape with increasing fre-
quency (Fig. 26). The storage modulus E’

£1f +E (a)r)2
E'(w) = EatEp 2 (40)

1+(wr)2

shows a steep slope at = 1 Hz, while the dissipation modulus £ (41)

Eq1Ept
E”(a)) _ a)(Elz+r(-wET1)+ZEZ) (41)
exhibits a maximum. The spring constant E, equals the high-frequency limit of the storage modulus.
Moreover, the inverse of the sum of the inverse spring constants E; and E, represents its low-frequency
limit. Dividing the viscosity of the dashpot by the sum of the two spring constants yields the time con-
stant 7 of the relaxation process:

_ 7
r= E1+Ey° (42)

In comparison to that, the spring constant £5 equals the lower limit of the storage modulus E’

EX+(EX+EX)(w7)?
1+(a)r)2

E'(w) =

(43)
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under static conditions or low-frequency loading, while the spring constant £} corresponds to its disper-
sion AE’ in the Zener model. Thus, the sum of both spring constants is correlated with the upper limit of
the storage modulus at high-frequency loading. The dissipation modulus E” is then given by

" - E?I(. oT
E'0)= oo (44)
and the time constant 7 by
n
TR (45)

o-f transition: structural explanation of the observations

When heating quartz to the temperature of its a-f transition, multiple domains of Dauphiné twins are
produced (e.g. Van Tendeloo et al. 1976). Dauphiné twins are basically developed by the rotation of do-
mains of silica tetrahedra without breaking the atomic bonds of the structure (e.g. Putnis 1992). Instead,
the a-f transition is a displacive phase transformation (Chapter 1). All Dauphiné twin domains are ori-
ented parallel to the c-axis of the crystal (Fig. 4).

When approaching the a-f transition from temperatures lower than 573 °C, the number of Dauphiné
twin domains increases continuously, while their size decreases (Fig. 27). This modification of the crystal
lattice culminates in the occurrence of the incommensurate phase, when a structural assignment to nei-
ther a-quartz nor the Bphase is possible (Chapter 1), as the size of individual Dauphiné twin domains
cannot be resolved anymore (e.g. Armstrong 1946, Berge et al. 1984, 1986, Bethke et al. 1987, Dolino et
al. 1984b, Van Landuyt et al. 1985). The Dauphiné twin domains are finally lost, as soon as the hexagonal
symmetry of the Sphase is fully established.

Single-crystal a-quartz shows piezoelectricity (Chapter 1). However, natural quartz is often twinned
and, hence, not piezoelectric. Sometimes, this is also true for synthetic crystals. In order to make them
usable for industrial purposes, the Dauphiné twin domains are removed from the crystal lattice by heat-
ing the quartz across its a-f transition and controlling the cooling rate. Since twinning is a time-
depending process, it is promoted by slow cooling and suppressed by fast cooling. Fast cooling generates
stress in the crystal lattice and the formation of cracks becomes more likely (e.g. Frondel 1945).

Dauphiné twin domains can be formed at = 500 °C by temperature differences of 15 to 25 K (lliescu &
Chirila 1995). Such temperature gradients are observed in this study as well (Chapter 2). In addition,
twinning is also possible at low temperatures, when a laser beam is applied to a quartz specimen in or-
der to produce temperature differences (Noge & Uno 2000). The formation of Dauphiné twin domains is
known to be stress-induced (e.g. Markgraaff 1986, Moore 1986, Thomas & Wooster 1951), especially in
symmetrical three-point bending (Wooster et al. 1947).

Based on the published elastic properties (Chapter 1) and the complex Young’s modulus determined
in this study, a structural model is presented in this chapter to explain the temperature- and frequency-
dependent behaviour of quartz. At high-temperature, particularly when approaching the o-f transition,
the Young’s modulus of quartz decreases and the crystal lattice becomes unstable (e.g. Dolino & Bach-
heimer 1982). When a specimen of a-quartz is stressed at low frequency and temperatures close to the
o transition, Dauphiné twins evolve due to the temperature differences in the experimental geome-
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tries. The observed storage modulus is low, since twinning is associated with intracrystalline defor-
mation, which is related to the elastic energy that is necessary to produce the Dauphiné twin domains.

Fig. 27: Fine-scale array of Dauphiné twin domains (central part of the photograph) in quartz at the o~
transition observed by electron microscopy. Arrows indicate star patterns, which are centres of
strain linked to lattice defects (Van Tendeloo et al. 1976).

In contrast to this, twinning is retained, when the relaxation time of the deformation process de-
scribed by (42) or (45) for the time constant is larger than the inverse applied frequency. Hence, there is
not sufficient time at high frequency to develop the Dauphiné twin domains and the measured storage
modulus is comparably higher. Therefore, the frequency-dependent loading of quartz leads to a disper-
sion of its storage modulus, as observed in this study. Furthermore, the maximum of the dissipation
modulus represents the disequilibrium between those two states and reflects the dynamic instability of
the Dauphiné twin domains. The dissipation modulus is strongly influenced by the dashpot viscosity of
the Poynting-Thomson model (Fig. 28).

The dashpot viscosity of the Poynting-Thomson model is found to be anisotropic. A higher viscosity is
observed parallel to the c-axis of the crystal, than perpendicular to it. At =572 °C and 40 mm support
spacing the viscosities are for instance = 65 and = 23 GPa s, respectively. Interpolations between 500 and
573 °C suggest a linear decrease of the viscosity towards the a-f transition, which is seen most clearly
perpendicular to the c-axis (ay.=-12.33GPasK®, b, =7131GPas, a,=-4.76GPasK", b, =
2732 GPas). Theoretically, the viscosity would be correctly described by a fourth-rank tensor as well.
Within the experimental uncertainties, however, it is sufficiently represented by a second-rank tensor.
The time constant of the relaxation process is = 0.11 + 0.02 s (20). It is nearly isotropic and almost inde-
pendent of temperature, since the spring constants of the model also decrease with increasing tempera-
ture. When this time constant is taken for the evaluation of all isothermal frequency-dependent data
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sets with different crystallographic orientations, an approximation of similar quality is reached within the
experimental uncertainties.

The complex elastic behaviour of quartz can be regarded an interplay of its coiled structure and the
tetrahedra stiffness. In a first approximation, the latter might be estimated from the Young’s modulus of
an isotropic coesite polycrystal (Chapter 1). As a consequence, another serial spring would have to be
added to the Poynting-Thomson model. However, this cannot be measured with the experimental set-up
used in this study. Moreover, no significant improvement of the fits is achieved by adding further model
elements (e.g. Akyildiz et al. 1990, Casula & Carcoine 1992, Du & Tscheuschner 1986, Liu et al. 1976).
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Fig. 28: Temperature dependence of the anisotropic dashpot viscosity obtained from isothermal fre-
quency-dependent fits (symbols) and modelled data according to a second-rank tensor (lines)
derived from equations (40) to (42). Error bars equal £ 10 % and + 2 K.

Temperature-dependent elastic behaviour

The temperature dependence of the complex Young’s modulus of quartz at temperatures > 500 °C and
across the o-f transition is modelled using both high- and low-frequency data from the isothermal fits.
The development of the storage modulus with temperature can be described by

a

E =
a Tat

2
— +b(To-T) +c(T,-T)+d (46)
for the a-phase, while a to d and T, are fit parameters, and by
f
Eg=e|T-Ty| +Eq (47)
for f-quartz with the fit parameters e, f, and T

The high-frequency storage modulus is normalised to data from Lakshtanov et al. (2007) and Zubov &
Firsova (1962). The frequency-dependent dispersion, increasing as a function of temperature towards
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the a-ftransition, is taken from this study (Fig. 29, Fig. 30). The low-frequency storage modulus is found
to be in agreement with the static Young’s modulus presented by (Perrier & De Mandrot (1923). Within
the experimental uncertainties, this effect can be explained by the occurrence of Dauphiné twin domains
rather than by an enhanced measurement precision in the 20™ century (Chapter 1).
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Fig. 29: Temperature dependence of the static (white symbols, Perrier & De Mandrot 1923) and dy-

namic Young’'s modulus (black symbols, Lakshtanov et al. 2007), against high- (solid lines) and
low-frequency data (dashed lines) with 40 mm support spacing (Klumbach & Schilling 2014).
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Fig. 30: High- (solid lines) and low-frequency (dashed lines) temperature dependence of the Young’s
modulus of quartz across the a-fFtransition with 20 mm support spacing. According to Fig. 16.
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The temperature dependence of both high- and low-frequency compliance coefficients is modelled
with a least squares fit using equation (9). Contrary to the Young’s modulus, the compliance coefficients
reach a maximum at the o-f transition and exhibit high values at low frequency and low values at high
frequency (Fig. 31). A starting value for S, is taken from Zubov & Firsova (1962) and refined during the
modelling. It is found that in this case a frequency-dependent discrimination can be neglected. For fre-
guency-dependent modelling of Si1, S33, and the combination of Si5 and Sa4, only three differently orient-
ed data sets are required. Hereinafter, data obtained with 40 mm support spacing are used.
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Fig. 31: High- (solid lines) and low-frequency (dashed lines) temperature dependence of the compli-
ance coefficients derived from data presented in Fig. 30.

Anisotropy of the Young’s modulus

Three-dimensional diagrams of the anisotropic Young’s modulus of quartz are produced with an in-house
python script that is based on equation (7) and a systematical variation of the azimuth and polar dis-
tance. Various published data sets can be used as input parameters for the elasticity tensor (e.g. Lak-
shtanov et al. 2007, Ohno et al. 2006, Perrier & De Mandrot 1923, Zubov & Firsova 1962). The Young's
modulus of quartz is modelled for both the a-phase under ambient conditions (Fig.32, left, Si; =
0.01273 GPa™, S;3=-0.00123 GPa™, S;4=-0.00436 GPa™, S;;=0.00968 GPa™, S, =0.01941 GPa™) and
the S-phase at 600 °C (Fig. 32, right, Si; = 0.00952 GPa™, S;3 = - 0.00285 GPa™, S14 = 0, S35 = 0.01109 GPa™,
Si =0.02801 GPa™). Each of the figures indicates the crystal symmetry of the respective quartz phase
with identical moduli in opposing crystallographic directions according to Neumann’s principle (Chap-
ter 1).

Under ambient conditions, a maximum of the Young’s modulus is found at a polar distance of = 48°
and an azimuth of 90° (Fig. 33). Two further maxima occur at the same polar distance for 120° azimuthal
rotation around the Z-axis [001]. This is equivalent to the three-fold c-axis of the crystal (Fig. 4, lower
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left). The maximum modulus is = 131.2 GPa (Fig. 33). Three minima of the Young’s modulus are located
in-between the maxima at a polar distance of = 70°, they each amount to = 70.0 GPa. The largest change
of the Young’s modulus by variation of the azimuth is = 53.4 GPa and observed at a polar distance of
= 54°, Moreover, the Young’s modulus is = 103.3 GPa parallel to the c-axis of the crystal, while it is
= 78.6 GPa perpendicular to c-axis, where it is also invariant.

Young's modulus E - 7 [GPa]

Fig. 32: Three-dimensional diagram of the anisotropic Young’s modulus for a-quartz at 20 °C (left) and
[-quartz at 600 °C (right). Grid increment = 5° (modified according to Lakshtanov et al. 2007).
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Fig. 33: Azimuthal variation of the anisotropic Young’s modulus for - (solid lines) and #quartz (dashed
lines). Selected polar distances. According to Fig. 32.
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Since Fig. 32 is point symmetrical, the moduli observed for polar distances <90° are found for polar
distances > 90° again. The maxima of the a-phase occur at = 132° polar distance, the minima at = 110°
(Fig. 33). Their respective azimuth is rotated by 60° compared to polar distances < 90°. For a fixed azi-
muth, each maximum at a polar distance <90° corresponds to a minimum at a polar distance >90°
(Fig. 34) because of the two-fold axes perpendicular to the c-axis of the crystal (Fig. 4, lower left).

140

30° x 90°

130

120

110

100

90

80

Young's modulus E [GPa]

70

60 1 T T 1 1
0 30 60 90 120 150 180

Polar distance [°]

Fig. 34: Variation of the anisotropic Young’s modulus for a- (solid lines) and f~quartz (dashed line) with
polar distance. Selected azimuthal angles. According to Fig. 32.

Based on the increase of the crystal symmetry through the o-f transition, the three-dimensional dia-
gram of the anisotropic Young’s modulus for fquartz at 600 °C is less complex than for the a-phase
(Fig. 32, right). Alternating maxima and minima as present in a-quartz do not exist for f-quartz, since
C14 =0 (Fig. 33). Hence, the anisotropic Young’s modulus depends on the polar distance only (Fig. 34). In
contrast to ambient temperature, the Young’s modulus parallel to the c-axis of the crystal at 600 °C is
smaller than perpendicular to it, it reaches = 90.2 and = 105.0 GPa, respectively.

a-f transition: the complex Young’s modulus

Equation (9) is transferred into a python script, which provides three-dimensional diagrams of the aniso-
tropic complex Young’s modulus of a-quartz, for instance, at = 572 °C. The script uses data from this
study, which is collected at 1 Hz and with 40 mm support spacing (Fig. 18). Generally, the storage modu-
lus (40) and dissipation modulus (41) for a particular crystallographic orientation and a distinct frequency
are given by the same set of Poynting-Thomson elements. However, real and imaginary compliance coef-
ficients are necessary to describe the three-dimensional distribution of the storage modulus (Fig. 35, left,
$11=0.02218 GPa™, S35 = 0.01549 GPa™, 2515 + S44 = 0.03841 GPa™, S1, =- 0.00212 GPa) and the dissipa-
tion modulus at a certain frequency (Fig. 35, right, iS;; = 0.14135 GPa™, iS3; = 0.38389 GPa™, 2iS;3 + iSs =
0.50631 GPa, iS;, = - 0.00097 GPa™).
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Fig. 36: Azimuthal variation of the anisotropic storage (solid lines) and dissipation modulus (dashed
lines). Selected polar distances. According to Fig. 35.

At the a-f transition, the anisotropic storage modulus of a-quartz exhibits significantly lower values
(Fig. 35, left) than under ambient conditions (Fig. 32, left). Even though the trigonal symmetry of
a-quartz is less pronounced at = 572 °C, it can still be identified (Fig. 35, left). Secondary maxima and
primary minima of the storage modulus are shifted by 60° azimuthal rotation for polar distances < 90 and
> 90°, while a circular section is found at 90°. The primary minima amount to = 43.9 GPa at polar distanc-
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es of = 75 and = 105 °C. The primary maximum of = 64.6 GPa is located parallel to the c-axis of the crystal
(Fig. 36). Perpendicular to that axis, the storage modulus is = 45.1 GPa. Largest changes of the storage
modulus by variation of the azimuth reach = 6.6 GPa. This is observed at a polar distance close to = 56°.
Variations with polar distance for fixed azimuthal angles show that the storage modulus has a mirror
symmetry perpendicular to the c-axis at an azimuth of 0° according to the two-fold axes of the crystal
(Fig. 37). Hence, this symmetry is repeated by an azimuthal rotation of 60° between the mentioned max-
ima and minima.
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Fig. 37: Variation of the anisotropic storage (solid lines) and dissipation modulus (dashed line) with
polar distance. Selected azimuthal angles. According to Fig. 35.

The three-dimensional diagram of the dissipation modulus is clearly different from the storage modu-
lus (Fig. 35, right). Parallel to the c-axis of the crystal, where the storage modulus of quartz is relatively
high, the dissipation modulus is with = 2.6 GPa comparably low (Fig. 36). Perpendicular to the c-axis, the
dissipation modulus is high, where the storage modulus of quartz is low. In this case, the dissipation
modulus reaches = 7.1 GPa (Fig. 37). Moreover, the dissipation modulus is nearly independent of the
azimuth, as its changes are found to be < 0.1 GPa.

a-f transition: dispersion of the storage modulus

The difference between the storage modulus loaded at high frequency and the storage modulus
loaded at low frequency is referred to as its dispersion. This dispersion is found to be anisotropic and is
modelled in three dimensions for 573 °C, whereas the temperature is interpolated from data recorded at
20 mm support spacing (Fig. 38, left, high-frequency parameters: S;; = 0.02216 GPa™, S35 = 0.01517 GPa™,
2513+ S44=0.03370 GPa™, S;,=-0.00213 GPa™, low-frequency parameters: S;;= 0.02893 GPa™,
$33=0.01667 GPa™, 2S5 + S4y = 0.03717 GPa™, Si, =-0.00213 GPa™). It is also modelled from data de-
termined at =572 °C and 40 mm support spacing (Fig. 38, right, high-frequency parameters: Si; =
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0.01920 GPa™, S33=0.01428 GPa™, 2 S;3+ S44 = 0.03374 GPa™, Sy, =-0.00240 GPa™, low-frequency pa-
rameters: Si; = 0.02705 GPa™, S3; = 0.01603 GPa™, 2 Si3 + Sy, = 0.03988 GPa™, Sy, =- 0.00240 GPa?). The
two three-dimensional diagrams are qualitatively equal and minor differences can be seen in the contour
plots only. However, the dispersion resulting from 40 mm recordings is clearly larger than from 20 mm.

Hence, a size effect of the observed behaviour might be assumed.
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Fig. 38: Three-dimensional diagram of the storage modulus dispersion for quartz: data at 573 °C and
20 mm support spacing (left), data at = 572 °C and 40 mm spacing (right). Grid increment = 5°.
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Perpendicular to the c-axis of the crystal, the dispersion of the storage modulus is high, while the
storage modulus itself is low. The dispersion modelled from data measured at 20 and 40 mm support
spacing is = 10.6 and = 15.1 GPa, respectively (Fig. 39, Fig. 40). The primary dispersion maximum occurs
at polar distances close to = 68 and = 72° and amounts to = 11.8 and = 16.3 GPa, respectively. Largest
changes of the dispersion by variation of the azimuth are = 3.3 and = 4.0 GPa for polar distances of = 58
and = 61°, respectively. The dispersion minimum is located parallel to the c-axis of the crystal and
amounts to = 5.9 and = 7.6 GPa, respectively.
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Fig. 40: Variation of the storage modulus dispersion with polar distance for data measured with 20 mm
(dashed lines) and 40 mm (solid lines) support spacing. Selected azimuthal angles. According to
Fig. 38.

a-f transition: frequency dependence of the elasticity tensor

The determination of the full elasticity tensor of quartz from the Young’s modulus technically is not pos-
sible. This is shown by the inversion of data according to equation (9) and explained in chapter 1 already.
A frequency-dependent assessment of the compliance coefficients for quartz and the equivalent stiffness
coefficients at = 572 °C and 40 mm support spacing as well as at = 570 °C and 20 mm support spacing is,
however, made on the basis of the observed storage modulus and a set of boundary conditions. The
latter rely on data from Lakshtanov et al. (2007), whereas the following elasticity tensors are not normal-
ised to this reference.

Contrary to the storage modulus (Fig. 18, left), the compliance coefficients exhibit high values at low
frequencies and low values at high frequencies (Fig. 41). S;; equals the inverse of the storage modulus
perpendicular to the c-axis of the crystal (11). Its frequency dependence is described by equation (43) of

the Poynting-Thomson model (51'1 40 mm: E; =572 GPa, E,=70.0 GPa, 77=64.6 GPa; Sli 20mm: E; =
314 GPa, E, =52.4 GPa, 17=20.9 GPa s). S35 equals the inverse of the storage modulus parallel to the c-
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axis (10). Its frequency dependence is described in the same way (53'; 40 mm: E; =127 GPa, E; =

52.1 GPa, 7=22.9 GPas; 53; 20 mm: E; = 1,627 GPa, E, =73.7 GPa, 11=124 GPas). Sy, is relatively small
compared to the other coefficients and can be considered approximately frequency-independent
(40 mm: Sy, = - 0.0024. 20 mm: Sy, = - 0.0027 GPa™). At the a-ftransition, the ratio between S;5 and Sy is
= 0.132. If this ratio is assumed to be frequency-independent as well, the inverse of the corresponding

coefficients can also be described by the Poynting-Thomson model. Si3 (Sl'; 40 mm: E; = 1,546 GPa,
E,= 284 GPa, 77= 200 GPas; S;; 20 mm: £; = 1,711 GPa, E, = 267 GPa, 7= 273 GPa s) and S (S;; 40 mm:

E; =204 GPa, E, =37.5GPa, 7=26.4 GPas; Séa 20 mm: E; =223 GPa, E;=35.2 GPa, n7= 37.2 GPas) are
determined from “2S:3+ S4” (9). Since Si, does not contribute to the Young’s modulus (Chapter 1), a
potential frequency dependence cannot be determined with the experimental set-up. It is estimated

from the mean values of the model parameters used for the other coefficients (Sl_; 40 mm: E; = 612 GPa,
E;=106.7 GPa, 7=78.5 GPa s; 51; 20 mm: £; =969 GPa, E, = 107.1 GPa, 7= 114 GPas).
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Fig. 41: Frequency dependence of the compliance coefficients for quartz at = 572 °C with 40 mm sup-
port spacing (left) and at = 570 °C with 20 mm support spacing (right).

As a result, strong frequency dependences are observed for S;; and S44. S33 as well as the off-axis coef-
ficients S;, and Sy3 are less frequency-dependent. The stiffness tensor is given by the inversion of the
compliance tensor (Fig. 42, Appendix 6, Appendix 7). Analogously to the storage modulus, its coefficients
show low values at low frequency and high values at high frequency. C;3 and particularly C;, exhibit op-
posite trends, while the inversion of the elasticity tensor might inherit large systematic errors depending
on the C;,/Cyy relationship (Ledbetter et al. 1981). Another experimental set-up is therefore recom-
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mended, for instance, the logging of travel times of infrasonic elastic waves. Moreover, the parameters
could be used to model the frequency-dependent viscoelasticity tensor (44).
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Fig. 42: Frequency dependence of the stiffness coefficients for quartz at = 572 °C with 40 mm support
spacing (left) and at = 570 °C with 20 mm support spacing (right).

Frequency and temperature dependence of the elasticity tensor

It is demonstrated already that the Poynting-Thomson model is also valid for describing the elastic
and viscoelastic properties of quartz between =500 °C and the o-f transition. Thus, the anisotropic
complex elastic properties of quartz can be derived as a function of frequency for the entire temperature
range, if the elements E; (Fig. 43), E, (Fig. 44), and 7 (Fig. 45) are expressed as “compliance coefficients”.

The “compliance coefficients” in terms of the spring E, correspond to the elastic high-frequency limit,
with the measured Young’s moduli calibrated to data published by Lakshtanov et al. (2007) or Zubov &
Firsova (1962), for instance. Again, “S1,” and “Ss3” are inverted directly from the Young’s modulus per-
pendicular and parallel to the c-axis of the crystal, respectively. Since the frequency dependence of the
off-axis coefficients “S;,”, “S13” and “S14” is found to be of minor importance at the a-ftransition, “S,” is
now supposed to contain the residual amount of the observed viscoelasticity. The compliance coeffi-
cients in terms of the spring constant E; consequently are reduced to “S;,”, “S33”, and “S,,” (Fig. 44). Val-
ues for “Sy,”, “Si3”, and “S14” are taken from Zubov & Firsova (1962). The dashpot viscosity 77is described
in sufficient approximation by a second-rank tensor composed of 771; and 7733. These are modelled from
the equivalent complex Young’s modulus perpendicular and parallel to the c-axis of the crystal, respec-

tively (Fig. 45). The coefficients “S1;” and “Ss3” are directly inverse to 7711 and 7733.
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Fig. 43: Temperature dependence of the “compliance coefficients” for a-quartz at 40 mm support
spacing between 500 °C and the a-ftransition, expressed in terms of the spring constant E,.

0.008
a-quartz | S-quartz
© 0.006 -
[a
)
LLIH
€
S 0.004 -
[%)]
[
o
(&)
oo
£
s 0.002 -
(%]
I|533I|
0 T
500 520 540 560 573 580 600

Temperature T [°C]

Fig. 44: Temperature dependence of the “compliance coefficients” for a-quartz at 40 mm support
spacing between 500 °C and the a-ftransition, expressed in terms of the spring constant £;.

The determination of the “compliance coefficients” in terms of the model elements for the Poynting-
Thomson layout is performed by a least squares fit according to equation (9) for data determined at
40 mm support spacing. Equations describing the respective temperature dependences do not exist, but
the data can be approximated by equation (46), for instance. Instead, the complex elastic behaviour of
quartz as a function of frequency and temperature can be approximated more elegantly using the Point-
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ing-Thomson model with an isotropic time constant of = 0.1 s for the relaxation process, which can be
considered independent of temperature within the experimental uncertainties of this study.
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Fig. 45: Temperature dependence of “compliance coefficients” for a-quartz at 40 mm support spacing
between 500 °C and the a-ftransition, expressed in terms of the inverse dashpot viscosity 7.

Anisotropy of the compressional wave velocity

The anisotropic elastic wave velocities of quartz are modelled three-dimensionally with the help of an in-
house python script based on the solutions of Christoffel’s equation (12). The stiffness coefficients pub-
lished by Lakshtanov et al. (2007) are taken exemplarily as input parameters. Systematic variations of the
azimuth and polar distance yield all three elastic wave velocities (Chapter 1), whereas the following con-
siderations are limited to the compressional wave velocity.

The three-dimensional distribution of the compressional wave velocity (Fig. 46) is similar to the three-
dimensional diagram of the anisotropic Young’s modulus (Fig. 32) due to the trigonal crystal symmetry of
a-quartz. Under ambient conditions (Fig. 46, left), for instance, three maxima and three minima shifted
by an azimuthal rotation of 60° are observed for both polar distances <90 and > 90°. This can also be
found for high temperatures up to the o-f transition at 573°C (Fig. 46, right), whereas the velocity de-
creases as the Young’s modulus (Fig. 35, left). For the fphase, a lower compressional wave velocity is
found parallel to the c-axis of the crystal than perpendicular to it, while the maxima and minima ob-
served for the a-phase vanish as well. The compressional wave velocity is independent of the azimuth.

A significant difference of the three-dimensional diagrams for the compressional wave velocity and
the Young’s modulus, however, appears perpendicular to the c-axis of the crystal. In this case, the com-
pressional wave velocity shows a six-fold symmetry instead of a circular section, which is due to a distor-
tion between the direction of wave propagation and the direction of wave motion (Appendix 4). The
maximum distortion perpendicular to the c-axis is = 25.9°. It occurs at an azimuth of 30° and a rotation of
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60° around the c-axis. The distortion vanishes in principal directions according to the crystallographic a-
and c-axes (Fig. 47, right). A section of the XZ-plane also shows strong variation of the distortion (Fig. 48,

right).
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Fig. 46: Three-dimensional diagram of the compressional wave velocity for a-quartz at high frequency
and ambient temperature (left) and 573 °C (right). Grid increment = 5° (modified according to
Lakshtanov et al. 2007).
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Fig. 47: Azimuthal variation of the compressional wave velocity (left) for selected polar distances at
ambient temperature (solid lines) and 573 °C (dashed lines) according to Fig. 46. C-cut of the
distortion between propagation and motion vectors of the wave under ambient conditions
(right).
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The compressional velocity parallel to the c-axis of the crystal is = 6.36 km/s (Fig. 47, left, Fig. 48, left).
Its primary maximum is = 7.09 km/s and found at an azimuth of = 29° and a polar distance of = 49°. The
minimum is = 5.34 km/s and it is observed close to = 108° polar distance. The largest change in the com-
pressional wave velocity by variation of the azimuth occurs at polar distances of =68 and = 112°. It
amounts to = 1.48 km/s. Perpendicular to the c-axis, the compressional wave velocity varies between
= 5.77 km/s parallel to the X-axis/a-axis and = 6.06 km/s parallel to the Y-axis. These values are modelled
for a density of 2.65 g/cm3 under ambient conditions (e.g. Okrusch & Matthes 2005).

In contrast, the density of quartz at the a-f transition is given by = 2.53 g/cm? (e.g. Ohno et al. 2006).
The compressional wave velocity parallel to the c-axis of a-quartz is = 5.52 km/s. The primary maximum
of the compressional wave velocity is = 5.70 km/s and found at polar distances of = 55 and = 125°. The
minimum is = 4.70 km/s, it is observed at polar distances at = 63° and = 117°. The largest change of the
compressional wave velocity by variation of the azimuth amounts to = 0.99 km/s at polar distances of
= 62° and = 118°. Variations from = 5.16 to = 5.28 km/s are observed parallel to the X-axis/a-axis and Y-
axis, respectively.
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Fig. 48: Variation of the compressional wave velocity with polar distance for selected azimuthal angles
(left) at ambient temperature (solid lines) and at 573°C (dashed lines) according to Fig. 46. Y-cut
of the distortion between propagation and motion vectors of the wave under ambient condi-
tions (right).

o-f transition: dispersion of the compressional wave velocity and the seismic quality factor

The anisotropic dispersion of the compressional wave velocity in a-quartz at the o-f transition is
modelled parallel to the c-axis (13) and parallel to the g-axis of the crystal (14) on the basis of the previ-
ously presented frequency-dependent elasticity coefficients for 40 mm (Fig. 42, left) and 20 mm support
spacing (Fig. 42, right). A density of 2.53 g/cm3? (Ohno et al. 2006) is used in both cases. The high-
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frequency compressional wave velocities are normalised to data published by Lakshtanov et al. (2007).
At 40 mm support spacing, the dispersion of the anisotropic compressional wave velocity between 0 to
10 Hz is = 0.31 km/s parallel to the c-axis of the crystal and = 1.07 km/s parallel to the a-axis (Fig. 49,
left). At 20 mm support spacing, it is = 0.10 and 0.49 km/s, respectively (Fig. 49, right).
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Fig. 49: Anisotropic frequency-dependent compressional wave velocities for quartz at =572 °C and
40 mm support spacing (left) as well as for quartz and quartzite at = 570 °C and 20 mm support
spacing (right). Mean values are Voigt-Reuss-Hill averages. See text for details.

The dispersion of the mean compressional wave velocity for an isotropic quartz polycrystal is mod-
elled using the Voigt-Reuss-Hill approximation (Appendix 8) to derive the mean Young’s modulus (Eyzy
40 mm: E; =199 GPa, E;=58.9GPa, n =31.4GPas; Ewxgy 20mm: E; =429 GPa, E;=589GPa, 7=
34.4 GPas) from the frequency-dependent stiffness tensor (Fig. 42). Again, the high-frequency limit is
normalised to the value published by Lakshtanov et al. (2007), which is very close to the compressional
wave velocity parallel to the ag-axis of a quartz crystal. The resultant mean dispersion is = 0.72 km/s at
40 mm support spacing and = 0.38 km/s at 20 mm support spacing.

The high-frequency storage modulus for Dalsland quartzite is normalised to the isotropic Young's
modulus of quartz at the o-f transition, which is =57.7 GPa (Lakshtanov et al. (2007). A density of
2.53 g/cm3 and a Poisson’s ratio of - 0.3 are used to convert the Young’s modulus into the compressional
wave velocity (Appendix 8). A dispersion of = 0.39 km/s resulted. This is in agreement with the expecta-
tions based on quartz. The time constant of the relaxation for Dalsland quartzite is = 0.24 s, which is
more than twice the observed relaxation time for quartz. Hence, the relaxation process is assumed to be
dominated by intergranular effects, such as grain boundary sliding. When the intra- and intergranular
complex elastic properties of Dalsland quartzite correspond to a serial layout of two Poynting-Thomson
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models, 51.7 and 43.2 GPa are the high- and low-frequency limits of the grain boundary effect, respec-
tively.

The seismic quality factor equals the ratio between the storage modulus and the dissipation modulus
according to equation (1). It is generally dimensionless and anisotropic in case of a trigonal crystal like o-
quartz. The inverse of the seismic quality factor corresponds to the internal friction and is equivalent to
the phase lag between sinusoidal stress and strain amplitudes (19). The seismic quality factor and inter-
nal friction are modelled both parallel and perpendicular to the c-axis of a quartz crystal from the com-
plex Young’s moduli observed at = 572 °C and 40 mm support spacing (Fig. 50, left) as well as at = 570 °C
and 20 mm support spacing (Fig. 50, right).
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Fig. 50: Frequency dependence of the seismic quality factor (solid lines) and the internal friction
(dashed lines) for quartz at = 572 °C and 40 mm support spacing (left) as well as for quartz and
quartzite (coarse dashed line) at = 570 °C and 20 mm support spacing (right).

From 0 to 10 Hz, the seismic quality factor exhibits a minimum, while the internal friction exhibits a
maximum at the same frequency. Both show stronger changes at frequencies below the extremes than
above. The maxima recorded with 40 mm support spacing are = 0.058 at = 1.5 Hzand = 0.172 at = 1.0 Hz
parallel and perpendicular to the c-axis of a quartz crystal, respectively. The maxima observed for 20 mm
support spacing are = 0.022 at = 2.1 Hz and = 0.077 at = 2.1 Hz. The maximum of the mean internal fric-
tion in an isotropic quartz polycrystal is = 0.130 at = 1.1 Hz and = 0.064 and = 2.1 Hz for 40 and 20 mm
support spacings, respectively. In comparison, a maximum internal friction of =0.079 is found for
Dalsland quartzite at = 0.6 Hz.

In consequence, it is proposed to use the frequency- and temperature-dependent elastic properties
of quartz and quartzite, especially in the vicinity of its -/ transition, as an additional tool to estimate
temperatures within the Earth’s crust. This could help to better distinguish between a fully crystallised
and a partly molten crust. This might be tested with high-resolution seismic methods in a hot, thick, ra-
ther dry, and quartz-rich continental crust. Strongly frequency-dependent seismic wave velocities related
to a strong and frequency-dependent attenuation of the waves could be used. In a quartz-rich crust a
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maximum attenuation of seismic waves is expected at = 1 Hz, whereas at lower and higher frequencies
the attenuation should decrease. This would provide an independent proof of the crustal models pro-
posed, for instance, by Mechie et al. (2004) and Marini & Manzella (2005), which assume a quartz-rich
crust, e.g. beneath Tibet and the Tuscany.

Differences between quartz and quartzite

Approaching the a-f transition in a quartzite, cracks will form and propagate (e.g. Mc Knight 2008) as a
results of the anisotropic thermal expansion of quartz (Chapter 1). For Dalsland quartzite, this is associ-
ated with a permanent reduction of the Young’s modulus due to the development of micro-cracks (Chap-
ter 4). In comparison to intact quartz, a so-called crack density (e.g. O’Connell & Budiansky 1974) or
damage factor (e.g. Doncieux et al. 2008) can be assigned to the rock. Thus, close to the a-ftransition at
= 570 °C, the high-frequency Young’s modulus of Dalsland quartzite is = 50 % lower than the Young’s
modulus of a modelled isotropic quartz polycrystal (Fig. 51). At ambient temperature, the crack density
results in a lower Young’s modulus of = 33 % (Fig. 21).
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Fig. 51: Frequency dependence of the storage modulus for an isotropic quartz polycrystal compared to
quartzite from measurements with 20 mm support spacing.

One might speculate that the lower relaxation time of Dalsland quartzite in comparison to a single
crystal quartz specimen with a time constant of = 0.24 s and = 1 s, respectively, might be due to a tem-
perature uncertainty of the experiment. Intercrystalline viscoelastic effects, however, need to be taken
into account in polycrystals (Chapter 1). These are pores, which could be approximated as a spring low
Young’s modulus in an equivalent mechanical model, and grain boundary sliding that is often represent-
ed by a Kelvin-Voigt element (e.g. Mosher et al. 1976). In a model representation, these intercrystalline
effects can be added in series to the Poynting-Thomson model describing the intracrystalline part, when
the bulk deformation of the specimen is modelled. As Dalsland quartzite has a negligible porosity, mainly
grain boundary sliding needs to be considered.
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Pressure dependence of elasticity

Rising pressure leads to linearly increasing stiffness coefficients of a-quartz (e.g. Calderon et al. 2007) by
compaction of the crystal lattice (Fig. 5) that is linked to an enlargement of the tetrahedral tilt (Fig. 3,
left). Compared to ambient pressure, higher temperatures are necessary to rotate the tetrahedra from
the given trigonal symmetry of the a-phase to the hexagonal configuration of the f-phase (Fig. 4). The
combination of physical conditions meeting the a-f transition (Fig. 1, Appendix 1) is described by the
Clausius-Clapeyron relation, which is verified experimentally by e.g. de Boer (1996). As a consequence,
both the Young’s modulus and compressional wave velocity also increase with pressure (e.g. Fielitz 1971,
Kern 1979).

These intracrystalline considerations also hold for quartz-bearing rocks. Their stiffness first increases
non-linearly due to the closure of pore space and micro-cracks. This is reflected by a triaxial compression
of Lahr sandstone (Fig. 52). Its non-linear pressure-dependent elastic behaviour is approximated by

E(G3)=S‘(S'Eo)eko_3. (48)
This exponential function needs to be expanded by a linear term with a slope positive for even higher

pressures, as they occur deep in the Earth’s crust. In equation (48) o3 stands for the confining pressure,
while Ey and S represent the lower and upper limits of the relatively increasing Young’s modulus, respec-

tively.
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Fig. 52: Relative pressure dependence (line) of the static Young’s modulus for Lahr sandstone. Data
points (symbols) are from triaxial compression at ambient temperature.

Peng & Redfern (2013) show by dynamic torsion at ambient pressure that the shear modulus of no-
vaculite is nearly frequency-independent at the a-f transition. This is in disagreement with a dispersion
of = 11.5 GPa for the isotropic shear modulus in this study. Dynamic forced torsion experiments at high
temperature and high pressure by Lu & Jackson (1998) reveal intensified attenuation of the complex
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shear modulus of Cape Sorell quartzite and Delegate aplite at the a-f transition. The dissipation modulus
at high pressure is approximately one order of magnitude lower than observed in this study. Lu & Jack-
son (1998) also do not determine a frequency dependence of the storage modulus. Hence, it may be
speculated that the dynamic variation of Dauphiné twin domains could be largely inhibited at elevated
pressure. Further considerations would require dynamic triaxial experiments, which is beyond the scope
of this thesis.
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6. Conclusions

Initially, the following hypothesis is made: the Young’s modulus of quartz becomes systematically fre-

qguency-dependent in the vicinity of the a-f transition. The results obtained from dynamic mechanical

thermal analysis of this study support this hypothesis. The frequency dependence of the elastic proper-

ties of quartz is caused by gradual softening of the crystal lattice in the vicinity of the a~f transition. In
detail, the following conclusions are drawn:

At a constant loading frequency, the storage modulus of quartz exhibits a minimum at the o-f
transition, while the equivalent dissipation modulus shows a maximum at = 1 Hz.

Isothermal variations of the loading frequency lead to a frequency dependence of the complex
Young’s modulus of quartz, most clearly at 573 °C. It vanishes below = 500 °C as well as above the
transformation.

The storage modulus of quartz sigmoidally increases with frequency. Including the dissipation
maximum, the complex elastic behaviour can be fully described by the mechanical Poynting-
Thomson model, within the experimental uncertainties.

The frequency dependence of the complex Young’s modulus for quartz is explained by the tem-
poral formation of Dauphiné twin domains, whereas the high-temperature elastic data of fused sil-
ica are free from such a viscoelastic effect.

Discrepancies for several published data sets of the high-temperature Young’s modulus of quartz
close to the a-f transition are in agreement with the observations in this study. These discrepan-
cies can be explained as the result of a frequency dependence of the Young’s modulus.

The frequency dependence of the complex Young’s modulus is found to be anisotropic. Perpen-
dicular to the c-axis of the crystal, the dispersion of the storage modulus and the dissipation
modulus are large, while both are comparably small parallel to the c-axis, respectively depending
on the experimental geometry.

The anisotropic viscosity resulting from the Poynting-Thomson model decreases linearly with in-
creasing temperature towards the a-ftransition. It can be fully described by a second-rank tensor,
within the experimental uncertainties. Measurements close to = 572 °C at 40 mm support spacing
yield viscosities of = 65 GPa s parallel to the c-axis of the crystal and = 23 GPa s perpendicular to it.
The isotropic temperature-independent time constant of the relaxation processis = 0.1 s.

A frequency-dependent elasticity tensor of quartz is determined. Its stiffness coefficients are used
to model the dispersion of the compressional wave velocity of = 6 % parallel to the c-axis of the
crystal and = 20 % parallel to the a-axis with 40 mm support spacing.

Observations for synthetic quartz at 20 mm support spacing also hold for natural crystals and
quartz-bearing rocks at the same experimental geometry. The dispersion of the mean compres-
sional wave velocity of quartz is in agreement with the observations for isotropic Dalsland quartz-
ite, it is = 0.39 km/s. The internal friction of quartzite is slightly higher than for an isotropic quartz
polycrystal due to grain boundary sliding, which also slows down the relaxation process.

Pressure has the opposite effect on the elastic properties of brittle rocks, such as the quartz-rich
Lahr sandstone, than temperature. The influence of pressure on the frequency dependence of the
elastic properties of quartz and quartz-rich rocks remains an open question.
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= A symmetrical three-point bending geometry is suited for the examination of crystals and fine-
grained rocks, such as Dalsland quartzite. Medium- to coarse-grained rocks, such as Lahr sand-
stone, can be investigated more precisely by uniaxial loading.

It is proposed to use the frequency- and temperature-dependent elastic properties of quartz in the vi-
cinity of its a-f transition as an additional tool to estimate temperatures within the Earth’s crust and to
distinguish between a fully crystallised and a partly molten crust.
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Appendix 1:

Appendix 2:

Appendix 3:

Phase boundaries for silica phases at pressure p and temperature T (Fig. 1): a-f quartz
transition (1), quartz-coesite transition (2) and quartz-tridymite transition (3). The geo-
therm (4) is modelled with a surface temperature T, of 0 °C, a surface heat flow g, of
72.5 mWm™, a thermal conductivity of 2.5 Wm™K?, and a radiogenic heat production of
1 uWm™. A density of 2.8 g/cm3 is used for the conversion between depth and lithostatic
pressure in first approximation.

p =0.0041 T-2.3887 (1)

p =0.0010 T + 2.0992 (2)

p =0.0005 T +0.4015 (3)
qs2 _ Az?

T,=Ty+
z7 70 K 2K

(4)

Rotation matrices for rotations around the X- (1), Y- (2), and Z-axis (3) of a Cartesian coor-
dinate system according to the azimuth ¢ and the polar distance y of any specimen orien-
tation. In this study the rotation matrix from combined rotations as shown below is used
(4).

[ 1 0 0
ay=|0 cos(y) -sin(y) (1)
[0 sin(y)  cos(y) |
[ cos(y) 0 sin(y) |
ay= 0 1 0 (2)
| -sin(y) 0 cos(y) |
cos(¢) -sin(¢) O
az=1sin(¢) cos(g) O (3)
0 0 1

cos(y) cos(¢)
sin(g)
-sin(y) cos(g)

-cos(y) sin(¢) sin(y)
cos(¢) 0
sin(y) sin(¢) cos(y)

yz= (4) from (2) & (3)

Directional cosines n; to n; based on the azimuth ¢ and the polar distance .

n, = cos(g) sin(y) (1)
n, = sin(g) sin(y) (2)
ns = cos(y) (3)

(4)

ni+ni+ni=1
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Appendix 4: Derivation from Christoffel’s equation: simplified determination of the elastic wave veloci-
ties v, (19), vy, (17), and vy, (18) as well as the distortion vectors (to { See chapter 1 for
the definition of further varibles. Also given: the angle ybetween two vectors.

g1 41 013 C1j1|gjg| CljZlgjg| Clj3|gjg|

ay =921 0 0G| =|C2u9;9; €229;9, C239;9,[=0 (1)
031 03 033 C3u9;9, €3219;9, C339;9,
01102 033+013073031+031021033-01302031-01702303-01302033=0 (2)
011=5€111191971%€1112919,%+C11139,93%+C1211 9,9, + ... (3)
012=€11219,9,+C11229, 9, + - (4)
aq3=.. (5) - (11)
Ki=aq+0ay,+as; (12) from (1) - (11)
Ky=a1051+02303+013031-01102-011033-0033 (13)
K3=03101,053-01107303;-03101302-021015033+01102033+02101303 (14)
R,=4K3K5-K3K3+18K K, K5-4K3+27K3 (15)
2=4K1K3-K1 K5 1K K3 2 3
15
Ri= (5 V3 (K1+3K,)") (2K3+9Ky1 K, +27K;) (16)
an'lR—1

%/K%+3K2 sin(t ER2)>+%
Vsh = o (17)

an’1—1+7z

L2 [k3+3k, sin(t (g) )
Ve = 5 (18)

an_lﬂ+£

% K%+3K2 cos<t('?%>+%
vV, = 19
b - (19)
‘§1=013(022'p‘/;27)'023012 (20)
52:023(011'/0%%)'021013 (21)
Ey=anan-(an-pvp)(au-pvp) (22)
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5"1=012(C733'PV§v)'013032 (23)
§2=al3031-(all-pv§‘,)(033-pv§‘,) (24)
§3=C’32(C’11'pV§v)‘021C’31 (25)
§1=032023‘(033'PV§h)(C’zz‘pvgh) (26)
§2=C’21(C’33'pV§h)'031023 (27)
53:031(022'PV§/))'032021 (28)
HE / El+ o &7 (29)

+é
cos(y) = 7> (30)

HE

Appendix 5: Simplification of a second-rank tensor T;, e.g. the thermal expansion, a third-rank tensor
Py, e.g. the direct piezoelectric effect, and a fourth-rank tensor, e.g. the stiffness C; and
compliance tensor S, in Voigt notation (except for T; and the first index of P;) and for dif-
ferent crystal symmetries. The representation of P; is equivalent to S; and for P factor 2
reduces to 1 if the tensor of the converse piezoelectric effect is considered (e.g. Nye 1992).

a) Triclinic crystal system (crystal classes: 1, 1, represents the general case for all crystal classes):
Tin T Ti3
Ti=|Twz Ta T (1)

Pi=1Pa P Paz Pu Pas Py (2)

C.= 3
U1 Cua Coy C3p Cag Cys Cye )

S= (4)
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b) Monoclinic crystal system (crystal classes: 2 (6) & (7), m (8) & (9), %, e.g. coesite, a-tridymite):

0 Ty 0
Tiz 0 Ta3

Tiu 0 Tg3
Ty = (5)

0 0 0 Py O Py
Pij=1Pa P2 Pz 0 Py O (6)
| O 0 0 Py 0 Pyl

Pij = O 0 O P24 P25 O (7)

P;j=| 0 0 0 Py 0 Py (8)

Pij=1Paun P Pz 0 0 Py (9)

Cyj= (10)

i1 0 0 0 Su 0 S 1)
515 525 535 545 555
0 0 0 Sz 0 Se
c¢) Orthorhombic crystal system (crystal classes: 222 (13), mm2 (14), mmm, e.g. rocks):
T4 O 0
Tij=[ 0 Ty, O l (12)
0 0 Ts3
000 P, O O
piJ.:[o 00 0 Py O ] (13)
000 0 0 Py
0 0 0 0 Py O
Pij=[ 0 0 0 Py O ol (14)
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Cy; Cip Ci3 O 0 0
Cyy Cypy Cyy O 0 0
Ci3 Cp C3 0 0 O
il o 0 0 C4u 0O O (15)
lo o o o cyx O]
l 0 0 0 0 0 Cg J
[ Si1 S Si3 O 0 0 1
[S12 S22 Sa3 O 0 0 |
Sz Sy;3 S33 O 0 0
il 0 0 0 Su 0 O (16)
0 0 0 0 Si O
0 0 0 0 0 S
d) Tetragonal crystal system (crystal classes: 4 (18), 4 (19), %):
0 Tj;
0 0 0 Py Pz O
Pij 0 0 0 Py -Py O (18)
0 0 P Pys O
Pij 0 0 -P1s Py O (19)
P31 -P3 0 0 Pz
[C1n Cio Cis 0 Cie
Cip Cux Cy3 0 -Ci
Cy=[C1m Ciz Gz 0 0 0 (20)
0 0 0 Cy O 0
0 0 0 0 Cyy 0
[S11 S Sis 0 S16
S12 Su Si3 0 -5
Sij = 513 513 533 0 O O (21)
0 0 0 S, O 0
0 0 0 0 Su 0
[ S5 -S1is O 0 0 Ses
e) Tetragonal crystal system (crystal classes: 422 (22), 4mm (23), 42m (24), %mm, e.g. a-cristobalite):
0 0 0 Py, 0 0
P;j=10 0 0 0 -Py O (22)
0 00 O 0 0
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0 0 0 0 Py O
Py= [ 0 0 0 Py O ol (23)
000 P, O O
Py= [o 00 0 Py O ] (24)
000 O 0 Py
[Cll C12 C13 0 0 0 —l
|C, Ciu Ci3 O 0 O |
Ciy3 Ci3 C3s 0 0 0
Ci=l 0 0 0 Cu O O (25)
0 0 0 0 Cu O
0 0 0 0 0 Cg
S11 S1p S35 O 0 0
S S11 Sz O 0 0
| S13 S13 S33 O 0 0
il 0 0 0 Su 0 O (26)
0 0 0 0 Su4 O
0 0 0 0 0 Sg
f) Trigonal crystal system (crystal classes: 3, 3):
T4 O 0
Tij = [ 0 Tll O l (27)
0 0 Tj3
Piy -Pun 0 Py Pis -2Pp
Pij= 'P21 P21 0 P15 'P14 -ZPll (28)
Cu Cpp Ciz Cyy -Cyps 0
Cip Cy1 Ciz -Cyy Cys
C3 Ciy3 Ca3 0 0 0
Cij = (29)
Ciy -Cyy O Cua 0 Cos
-Cyps Cps 0 Cua Cia
1
| 0 0 0 Cp Ciu 5 (Cu-Cun)l
[ S11 S Sus S1a -5 0
S12 Suu S13 -Su S5 0
S13 Si13 S33 0 0 0
Si= (30)
S14 -S4 O Saa 0 255
=-S5 S O 0 Su 254,
0 0 0 2S,5 2S5 2(S11-512) ]
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g) Trigonal crystal system (crystal classes: 32 (31), 3m (32) & (33), 3m, e.g. a-quartz):

Pi=l o o0 0 0 -Py -2Py (31)
O 0 0 0 O 0

0 0 0 0 Py -2Py]
Pij=|-Py Py 0O Py O 0 (32)
| P3y P3; P33 O 0 0

[Py, Py, O 0 Py 0

Pi=l 0 0 0 Py 0 -2pPy (33)
[ P3; P3; P33 O 0 0
-Cll ClZ C13 C14 0 0
C12 Cll C13 _C14 0 0
¢ Cis Cyi3 Ci3 0 0 0 )
Ciy -Cyy O Csue O 0
0 0 0 0 Cu Cra
[0 0 0 0 ¢y s(cu-Cu)l
-511 512 513 514 0 0
512 511 513 _514 0 0
5= |SB S Sm 0 0 0 (35)
S1a -S1a 0S4 O 0
0 0 0 0 Sy 254,

[ 0 0 0 0 251 2(511-S12) .

h) Hexagonal crystal system (crystal classes: 6 (37), 6 (40), %, %mm, 622 (39), 6mm (38), 6m2 (41) & (42),
e.g. f-quartz):

Tq1 0 0
Ty=1 0 T O (36)
0 0 T3

0 0 0 Py Py O
Pi=f o o 0 Py -Py O (37)

P;=| 0 0 0 P O O (38)

[O 0 0 0 Pgs Ol
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000 Py, O O
P;=10 0 0 0 -Py O (39)
0 00 O 0 0

Pi=l-Py, P,y 0 0 0 -2Py, (40)
O 0 000 O

Pi=1-P,y Py 0 0 0 (41)

o

Pi=l o o 0 0 -2P, (42)

o

(€11 Cip Ci3 O 0 0 ]
Cip €y Ci3 0 O 0
Ciz Ci3 C33 0 O 0
Ci=l 0 0 0 C4u O 0 (43)
0 0 0 0 Cu 0
1
[0 0o 0 0 0 S(cu-Cy))
S11 S S35 O 0 0
[512 S Si3 0 0O 0 ]
Si3 S13 S33 O 0 0
il 0 0 0 S4u O 0 | (44)
| 0 0 0 0 Su 0 |
lo o 0o o0 0 2(54-5u)l
h) Cubic crystal system (crystal classes: 23 (47), 43m (47), m3, 432 (46), m3m, e.g. S-cristobalite):
T, 0 0
Ty = [ 0 Ty O l (45)
0 0 Tn4
0O 000 0O
P;=10 0 0 0 0 O (46)
0O 000 OO
000 P, O O
Py= [o 00 0O Py O ] (47)
000 O O Py
Cyy Cp Cpp O 0 0
Cyp Ciy Cpp O 0 0
| €12 Cip Ci1 O 0 0
Gl 0" 0 0 Cu 0O O (48)
0 0 0 0 Cyu O
0 0 0 0 0 Cu
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Sy S, S, 0 0 0
S12 Su1 S 0 0 O
¢ |52 S Su 0 0 0
J 0 0 0 S4 O O
0 0 0 0 S4 O
0 0 0O O0 © 544J
i) Isotropic (e.g. polycrystals, rocks):
Tu 0 0
T'J_ 0 Tll O
0 0 Ty
000 O0O0O
P;=]0 0 0 0 0 O
0 00O0O0O
_Cll ClZ ClZ 0 0 0
Cy, Cy Cop 0 0 0
Ci, Ciyp Cyg 0 0 0
1
cg=| 0 0 0 7(c11-c12) 0 0
o 0 0 0 < (Cu-Cp) 0
0 0 o 0 0 < (Cuu-Cu) |
_511 512 512 0 0 0
S, Suu S 0 0 0
S, S1 Su 0 0 0
Si=1l 0 0 0 2(5;4-S51) 0 0
0 0 0 0 2(511-S15) 0
0 0 © 0 0 2(511-51,) |

j) Conversion between the Voigt notation and matrix notation.
11=1111
22 =2222
33=3333
44 =2323
55=1313
66 =1212

12 =1122
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(53)

(54)
(55)
(56)
(57)
(58)
(59)
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Appendix 6: Matrix inversion explained for the stiffness G; and compliance tensor §; in Voigt notation
and vise versa (Python command: “S = np.linalg.inv(C)”, Microsoft Excel command: “S =
minv(C)”). M equals the Kronecker delta.

1 0 0 0 0O
[O 1 0 0 O Ol
0 01 0 0 O
CiSi=Mi=1o 9 0 1 0 0 (1)
0 0 001 O
0 0 0 0 0 1
Cin Cip Ci3 Cyy Ci5 Cg1 0 0O O O O R4
Cap Cp Cp3 Cy Cps C|0 1 0 O O O R,
s —c.m.=|C3n €32 C33 Ca C3s C36(0 0 1 0 0 0)_|Rs (2)
U v Car Cap Cu3 Caa Cys Cyef0 O O 1 0 O R4
|C51 Csp Cs3 Cs4 Cs5 Cs6|/0 O O O 1 0| [Rs
|-C61 Ce» Cez3 Cea Cos Cgl0O 0 0 O O 1J Rs
o R
Rqi= ™ (3)
Ry;=R,-R1Cy (4)
R3=R3-R;Cy (5)
Ry= (6)
"o R,
Ry= o (7)
R1=R1-R3Cy (8)
R3=R3-R;C3 (9)
R4 = (10)
[1 0 00 0 O01S11 S12 S13 Sus S 516] Rl]
0 1 0 0 O OfS21 S22 Saz Sosa S5 Su R>
0 01 0 O OfS31 S3a2 S33 Sz S35 Sz R3
=S M. = =
€y =3y M 0 0 0 1 O OS54 Sar Saz Sas Sas S R4 (39)
lO 0 0 0 1 0|Ss1 Ss2 Ss3 Ssa Sss 556J [RSJ
0 0 0 0 0 1'S61 Se2 Ses Ses Ses Ses Re
Ry = =L (40)
S1u
Ry=Ry-R1Sx (41)
R3=R3-R1S3 (42)
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Appendix 7:

R4=...

" R,
5=
S»

Ri=R1-RyS1
R3=R3-R;S3

"

R4:...

(43)

(44)

(45)
(46)

(47)

Simplification of the matrix inversion for the stiffness G; and compliance tensor S; with a

trigonal (Appendix 5g) and a hexagonal symmetry in Voigt notation.

S S
2C11=%+i
9

S S
2C12=i_i

f g
Crz= =2
Cia= 5g14
Cas S11;:512
Cas = 511;]512
Cep = C11-C1 Sas

f=S33(511+51,)-25%;
9=544(S11-512)-25%,
Cs33 Caq

25, = 2 4 8
11 f q'

c C
251z=i'_4,4
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C11+C1p
S =
33 f
C11-C1
S =
44 pr
2Cyq
Se6=2(S11-S12) = —;

f=C33(Cyy+Cyp)-2CH5

g'=Cu (Cll 'Clz) -2C1y

(14)

(15)

(16)

(17)

(18)

Appendix 8: Determination of elastic mean values for an isotropic polycrystal or an isotropic rock after

Voigt-Reuss-Hill. The bulk K, shear G and Young’s moduli E are modelled from the stiffness

G; and compliance coefficients S; in Voigt notation. 4, v, v, and v, correspond to a Lamé

constant, the Poisson’s ratio, the compressional and shear wave velocities, respectively.

_ (C11+Cp+C33)+2(C1p+Co3+Cq3)

K
4 9
G, = (C11+Cp+C33)-(C1p+Cp3+C13) +3 (Caa + Cs5+Cop)
v 15
1
KR=
(S11+S22+533) +2(S12+S23+S13)
15
GR=
4(S11+522+533)-4(S12+S523+513) +3(S44+S55+Se6)
Ky+Kp
K = ——
VRH 2
Gy+Gp
G =
VRH 2

E _ G (3M-4Gw) _ Gy BAven+2Gvar) _
VRH — -

M -G gy A veH *+ G vrH

Avrn (L+ vygn) (1 -2 VVRH)

VVRH

3 Kvry *+ G vrH

Avey (1+ vyry) _

4 2
KVRH=M'?GVRH=/1VRH+?GVRH= 3 vom

E Ry - E vrH G vrH
3(1-2 VVRH) 3 (3GVRH’EVRH)

Avan (1- ven) _ 3Kveu (1- vign) _

VVRH 1+ Vygy

M= 2gy+2Gypy =

Evgr (1- vvgn) _ G vt (4G van - Evgr)
@+ vvaw) (1-2 vigy) 3Gvry - Evru

4
KVRH"’?GVRH:

_ _ 3KvRH VVRH _ 2 _
Aven=M-2Gypy=—"—= =Kypy- 5 Gupy =
VRH
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=3 Kyry (1 -2 VVRH) = S tvmOven

(1)

()

(3)

(4)

(5) from (1) & (3)

(6) from (2) & (4)

(7)

(8)
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E VRH VVRH _ Guypy (E vrr - 2 G yry)
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G _ Aven (1-2viey) _ 3Kupn (1-2vigy) E vrH
VRH 2 Vyry 2(1+ vygry) 21+ vigy)

M-2Gyry A VRH _ 3KwH-2Gwry _ Ewrne

V = =
VRH = 5 (M- G yay) 2 (Avpy + G vrH) 2 (3K vRrH * G vrH) 2Gyry

v _ | Aven*2G vy =\/ E vrr (1- vign) _ M
p VRH P P+ viry) (1-2 vign) P
y - Gven  _ E vgH
s VRH P 2p(1+ Vyra)

VpVRH _ ) 1-Vygy
Vs VRH \ 1-2 vypy

Vo Ve 2
2 P
v _ VpVWRH ZVswRH _ Vs VRH
VRH — 2 2 - 2
2("pVRH‘VsVRH) 2 "pVRH_1
Vs VRH

(10)

(11)

(12)

(13)

(14)

(15)

(16)

Appendix 9: General determination of the experimental uncertainty Ax of a directly measured parame-
ter x from its systematic and random errors Ax; and Ax,, respectively. For any indirectly de-
termined parameter F the uncertainty AF is determined by a linear and a quadratic propa-
gation of the errors of the directly determined parameters, when either systematic or ran-
dom errors dominate. n is the number of repeated measurements and t corresponds to a

confidential interval of 95 % (2 o).
Ax=|Ax | +|Ax,|=]|Ax | +5s%
IAXsl >Sx
oF
AF= |E AX| + ...

|Axs| <Sx

AF=\/(% Ax)2 ,o

se= | 77 20 (R

t

Sx= 7 Sx= AX
n 1 2 3 4 5 6 7 8 9
t 12.70 4.30 3.18 2.78 2.57 2.45 2.36 2.31 2.26
n 10 12 14 16 18 20 30 50 100
t 2.23 2.18 2.14 2.12 2.10 2.09 2.04 2.01 001.98
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Appendix 10: Initial modelling parameters for a least squares approximation of various figures presented in the text (Chapter 1).

Fig. Eq. Para- Orientation a, b, Co d, T, ag bg Tg Xo Reference
meter [var.] [var.] [var.] [var.] [°C] [var.] [[1 [°C] [var.]
7 32(a), E Il c-axis 139  4.0-10° 5.0-10% 85 578 11 0.50 98  Perrier & De
37(#) [GPa] Mandrot 1923
1 c-axis 443 2.0-10° 2.0-10% 75 583 49 0.20 135
90°/50° 460 2.0-10% 69 59 62 0.10 145
270°/50° 1270 7.0-10° 9.0-10° 102 594 62 0.10 145
8 32(a), Vp Il c-axis 52 5.0-10" 6 649 3 0.41 570 7 Lakshtanov
37(8) [km/s] et al. 2007
Il a-axis 0017 6 995 4 0.13 572 9
(0°/90°)
1 c-axis 23 2.0-10™ 6 605 5 0.48 569 8
(90°/90°)
32 (o), Vsy Il c-axis 0014 9.0-10" 4 598 6 0.20 195 5
33(f) [GPa]
Il a-axis 3 2.010* 5 579 1 0.01 573 5
33 (o), 1 c-axis 4 2 0.02 573 6
37 (p)
32 (a), Vsh Il a-axis 6 3 711
37(H) [GPa]
33 (), 1 c-axis 4
37(P)
9 Eayn 1 c-axis 661 1.0-10° 80 594 53 0.40 573 120 Lakshtanov
[GPa] etal. 2007
Estq 1 c-axis 0554 4.010° 6.0.10° 78 585 60 0.20 573 138 Perrier & De
[GPa] Mandrot 1923
10 32(a), u 1 c-axis 55.5 2.7-107 -1.8-103 0.93 653 2.1-10* 1.63 Raz et al.
33(8 (%] 2002

Il c-axis 0021.4 3.1-107 -1.4-10° 0.70 656 4.5:10* 0.73
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Appendix 11: Thermal and gravimetric differences of synthetic quartz across the a-f transition (3 K/min
heating rate, with baseline correction, £ 1 K temperature uncertainty, +2 ug uncertainty of

the mass).
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Appendix 12: Thermal and gravimetric differences of Dalsland quartzite across the o-f transition
(3 K/min heating rate, without baseline correction, + 1 K temperature uncertainty, +2 ug
uncertainty of the mass).
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Appendix 13: Linear correlation of the elastic stress and strain. Averaged data from three-point bending

at = 53 °C and 40 mm support spacing is presented.

Appendix 14: Dimensions of a stair-shaped aluminium specimen (+ 0.005 mm nonius error).

Measure- Stepl Step2 Step3 Stepd4d Step5 Stepb6
ment [mm] [mm] [mm] [mm] [mm] [mm]
1 30.000 25.050 20.060 15.075 10.055 5.055
2 30.010 25.045 20.060 15.070 10.065 5.040
3 30.000 25.045 20.055 15.065 10.070 5.030
4 30.010 25.045 20.050 15.075 10.055 5.050
5 30.010 25.050 20.060 15.070 10.065 5.045
6 30.000
Mean 30.005 25.047 20.057 15.071 10.062 5.044
20 +0.006 +0.004 £0.006 +0.005 +£0.008 +0.012

Appendix 15: Travel times of the compressional wave in the aluminium specimen (Appendix 14) under
ambient conditions from impulse-echo experiments with a Panametrics V125 transducer.

Measure-  t[ps] t [us] t [us] t [us] t [us] t [ps]
ment Stepl Step2 Step3 Step4d Step5 Stepb6

1 9.70 8.14 6.55 4.98 3.42 1.89

2 9.69 8.14 6.56 4.99 3.44 1.87

3 9.71 8.14 6.56 4.98 3.41 1.88

4 9.69 8.13 6.55 4.99 3.42 1.88

5 9.69 8.12 6.56 4.99 3.42 1.87
Mean 9.696 8.134 6.556 4.986 3.422 1.880
+20 +0.011 +0.011 +0.007 +0.007 +0.013 +0.010
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Appendix 16: Determination of the reaction time of the ultrasonic testing system (V125) by a linear cor-
relation of the distance and the travel time of the wave (Appendix 14 & Appendix 15).

Appendix 17: Travel times of compressional and shear waves in the aluminium specimen (Appendix 14)
under ambient conditions from impulse-echo experiments with various transducers.

Sensor t[us] t[ps] t[us] t[pus] t[ps] t[us]
Step1l Step2 Step3 Stepd Step5 Step6
V102 9.54 7.98 6.42 4.86 3.29 1.71
V152 4.83 4.05 3.26 2.48 1.69 0.90
V153 5.12 4.33 3.55 2.79 1.98 1.17
V154 5.01 4.22 3.44 2.65 1.86 1.07

Appendix 18: Dimensions of a cube-shaped specimen from single-crystal synthetic quartz (+ 0.01 mm
uncertainty of the calliper gauge).

Measure- Direction1l Direction2 Direction3

ment [mm] [mm] [mm]
1 20.69 22.09 20.79
2 20.72 22.07 20.77
3 20.62 22.06 20.60
4 20.67 22.07 20.73
5 20.68
Mean 20.68 22.073 20.71
+20 +0.06 +0.018 +0.09
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Appendix 19: Electric potential as a function of travel time of the compressional wave parallel to the a-
axis of a synthetic quartz single crystal under ambient conditions.
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Appendix 20: Electric potential as a function of travel time of the compressional wave parallel to the Y-
axis of a synthetic quartz single crystal under ambient conditions.
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Appendix 21: Electric potential as a function of travel time of the compressional wave parallel to the c-
axis of a synthetic quartz single crystal under ambient conditions.
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Appendix 22: Dimensions of the cylindrical specimens of Lahr sandstone with random errors due to irregularities from specimen preparation.
Moreover, systematic errors are: £ 0.01 mm for the used calliper gauge error, £ 0.1 g for the used scales.

Specimen I, I, I3 ls Its;® d, d, d; d, dts;® m, m, ms; m,
name [mm] [mm] [mm] [mm] [mm] ([mm] [mm] [mm] [mm] ([mm] [g] [g] [g] [g]
MKC-021 100.93 100.98 100.83 100.83 100.89 50.06 50.07 50.09 50.06 50.070 439.8 439.5 4394 4395
+0.11 +0.020

MKC-022 101.96 101.95 101.98 101.95 101.96 50.12 50.11 50.09 50.09 50.103 444.1 443.7 443.7 443.7
+0.02 +0.021

MKC-023  102.38 102.48 102.43 102.49 102.45 50.08 50.08 50.08 50.09 50.083 445.6 445.1 445.0 4451
+0.08 +0.007

MKC-024 103.18 103.21 103.21 103.13 103.18 50.10 50.08 50.08 50.07 50.083 448.9 448.1 448.0 448.0
*+ 0.06 +0.018

MKC-025 99.56 99.54 99.80 99.67 99.64 50.08 50.07 50.07 50.10 50.080 431.5 430.5 4304 4303
+0.17 +0.020

MKC-026 103.73 103.89 103.88 103.80 103.83 50.07 50.10 50.07 50.08 50.080 453.5 4525 4524 4525
+0.11

MKC-027 103.59 103.59 103.49 103.48 103.54 50.09 50.09 50.11 50.09 50.095 452.6 451.2 4511 4511
+0.09 +0.014

MKC-028 101.25 101.14 101.23 101.30 101.23 50.07 50.11 50.05 50.08 50.08 443.4 441.6 440.6 440.7
+0.10 +0.04

MKC-029 101.28 101.18 101.21 101.21 101.22 50.06 50.06 50.07 50.08 50.068 445.4 441.7 4416 4416
*+0.06 +0.014

MKC-030 102.47 102.59 102.51 102.57 102.54 50.06 50.06 50.06 50.07 50.063 446.9 4445 4444 4444
+0.08 +0.007

MKC-031 100.53 100.48 100.58 100.52 100.53 50.11 50.13 50.12 50.06 50.11 452.7 439.3
+0.06 +0.05

MKC-032 101.09 101.24 101.31 101.10 101.19 50.08 50.18 50.11 50.07 50.11 440.0
+0.15 +0.07

MKC-033 101.28 101.30 101.27 101.27 101.28 50.08 50.07 50.08 50.08 50.078 453.0 440.2
+0.02 +0.007

MKC-038 100.09 100.13 100.13 100.12 100.118 50.16 50.15 50.19 50.17 50.168 434.5
+0.027 +0.024

% The standard deviation s of the mean values T and d is presented for a confidence level of 95 % (20). For the total error of both parameters
the systematic error of the calliper gauge has to be added (Tab. 8).
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Appendix 23: Loading curve from the uniaxial compression test of the specimen MKC-022 (0.05 mm/min
axial shortening, 120 s equilibration time, ambient temperature). See chapter 2 for the
definition of further variables.
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Appendix 24: Loading curve from the uniaxial compression test of the specimen MKC-025 (0.05 mm/min
axial shortening, 120 s equilibration time, ambient temperature). See chapter 2 for the

definition of further variables.
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Appendix 25: Loading curve from the uniaxial compression test of the specimen MKC-026 (0.05 mm/min
axial shortening, 120 s equilibration time, ambient temperature). See chapter 2 for the
definition of further variables.
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Appendix 26: Loading curve from the uniaxial compression test of the specimen MKC-027 (0.05 mm/min
axial shortening, 120 s equilibration time, ambient temperature). See chapter 2 for the
definition of further variables.
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Appendix 27: Loading curve from the uniaxial compression test of the specimen MKC-028 (0.05 mm/min
axial shortening, 120 s equilibration time, ambient temperature). See chapter 2 for the
definition of further variables.
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Appendix 28: Loading curve from the triaxial compression test of the specimen MKC-024 until failure
(0.05 mm/min axial shortening, 120 s equilibration time, ambient temperature). o, and
oue correspond to the confining pressure and the maximum axial stress, respectively. See
chapter 2 for the definition of further variables.
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Appendix 29: Post-failure loading curve from the triaxial compression test of the specimen MKC-024
(0.05 mm/min axial shortening, 120 s equilibration time, ambient temperature).

90
¢ =33.8°

75 ¢ = 4.8 MPa
o, < 7.1MPa

60 -

45 A

30 A

Shear stress o, [MPa]

15 A

0 20 40 60 80 100 120

Normal stress o, [MPa]

Appendix 30: Mohr-Coulomb criterion of the specimen MKC-024 from its post-failure triaxial compres-
sion (Appendix 28). See chapter 2 for the definition of further variables.
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Appendix 31: Derivations of the tested mechanical models.

a) Kelvin-Voigt model:

E
o o
& — &
n
o=0110)
E=E1 =&y
O-leg
0_2:776:

o=Eec+né
e(t) =¢gq cos(wt)

T=gge't
& =ggime’t
o(t) = oy cos(wt- )

E(t) - O_Oeiéeiwt

ope'P=Esqg+negiw=gq(E+niw)

(1)

(2)

3)

(4)

(5) by (3) & (4) in (1)
(6)

(7)

(8)

(9)

(10)

(11) by (7), (8) & (10) in (5)

(12)

(13) by (12) in (11)

(14)

(15)

(16) by (12) in (14) & (15)

(17) from (16)

(18 from (16)
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b) Maxwell model:

AW

O0=01=0)
d=é1=0"2
E=&1t+ &
E=él+éy
& _U
17 ¢

PO
17 ¢

e(t) =¢gq cos(wt)
Z=gge't

& =gpime'®t

o(t) =0y cos(wt- )
G(t)=o0peldel®t

G=0gime %t

. s E , .
coiwe P+ — opel9=EFEgyim
0 , 00 0

i5_ Eiw
%o0€ = %o £+ia)
n
2
. Ew?+int=
io— n
Op € =&p 2 X
i
72
=

(1)
(2)
(3)
(4)
(5)

(6)

(7)

(8) by (6) & (7) in (4)
(9) equivalent to (8)
(10)

(11)

(12)

(13)

(14)

(15)

(16) by (12), (14) & (15) in (9)
(17) equivalent to (16)

E .

(18) by (17), times +—
—-l®
n

(19)
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c) Poynting-Thomson model:

E=g.+&
E=é1+ &,
£1=6,=&p

Op=T1¢&1
O

81= o
Eq

z.2
(20) by (19) in (18), timesj

(21)
(22)
(23)

(24) by (21) in (22) & (23)

(25) from (24)

(26) from (24)
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(5)
(6)
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(8)
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O'0I.a)eI.6+El—:7EZO'03i5=E2 80[6()"' FLF! &o (22)
s E1E2+ia)E2
Op e' =&p W (23)
—’7 @
. 5152(1521*52)+w252+iw(m_%) %-ia)
io_ 7] i _—
ope'’=¢g (El+52)2+w2 (23) times FvE
7 n
__n
T OB +E, (25)
) E1f2 4 p2E,vie(E2 - ELE2 2
goe’§= £o e i E 2 1 ) (25 in (24), timesT—z
—to v
o
E=— (27)
EX=E'+iE" (28)
E*_ O-Oei5 _ EE11+EEZZ +E2 (0)1')2+i0)(52 T_%) (29)
- &0 - 1+(a)z')2
E‘:—1+‘:—E2 +E2(wr)2
E'(w) = L+ > (30 from (29)
1+(w7)

138



Elasticity and Viscoelasticity of Solid SiO, as a Function of Frequency and Temperature

d) Zener model:
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o=E,&+E4 (g-gb):(E1+E2)5—E15b

(31) from (29)
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coiwe O+ 571 Goe 9= (EL+E,y) eqim+ ElnEZ g0 (17),(18), (20) & (21) in (15)

) E182 i w(EL+Ey)
ooe'’=¢g T (23)
—+l®
n
' —Eigz+a)2(El+Ez)+iw<(El+Ez)ETl'—El,]E2> LA
opeid= g, , (23) times +2—
(E2)+ 02 0,
7 n
—
=4 (25)
. E—2+w2(E +E )+ia)i 2
coeld= gy 2 Llwzz : (25) in (24), times —
2
(o
E=— (27)
E*=E'+iE" (28)
i 2,
%_ 0o0e _ Ey+(E1+E)) (wr) +imwTEy .
E*= e o) (29) by (26) in (27) & (28)
2
E'(o) = 222 EatEdlor) (30) from (29)
1+(w7)
" _ Eiort
E'(®) = o (31) from (29)

e) Conversion of Poynting-Thomson model elements and Zener model * elements:
E)Z( b3 b3
E1=E_§(E1+E2) (1)
E,=E%+E} (2)
_ *(E’{+E§)2 (3)
n=n £
n=—" (4)
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EX=E,-E} (5)
. 1,1
E5= £ + s (6)
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