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1
Chapter 1

Introduction

How do we characterize light? In a classical picture, any light we observe
corresponds to a superposition of electromagnetic waves, each with a cer-
tain electric field strength, frequency, and polarization. The human eye
is certainly of no use for a quantitative analysis of these physical parame-
ters. It is impossible for us to determine absolute values for the wavelength
or intensity of a light source with our bare eye, even if that light source
is monochromatic. By comparing different monochromatic light sources,
however, we can interpret different wavelengths as different colors and, for
example, easily distinguish a green solid-state laser at 532 nm from a red
helium-neon laser at 633 nm. Furthermore, we can also tell whether a light
source is brighter or darker in comparison to a light source of the same
wavelength and, thus, compare the modulus of the electric field strengths.

Different polarizations of light, on the other hand, remain mostly im-
perceptible to the human eye if we neglect small physiological effects like
Haidinger’s brush [1]. Despite our inability to see or determine the polariza-
tion state, polarized light plays an important role in everyday applications.
At radio frequencies, for example, not only the design but also the orientation
of the antenna is relevant when emitting or receiving electromagnetic waves.

Much more importantly today, polarizing components are implemented
in almost any electronic device with a display or screen. Liquid-crystal
displays are based on rotating and blocking linearly polarized light at visible
frequencies and have been a breakthrough technology in enabling mobile
electronics.

Polarized light, however, also appears naturally. Sailors fancy sunglasses
with polarizing filters, as they reduce glare from the reflected light on wa-
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1 introduction

ter, which is polarized, due to reflection at Brewster’s angle. Similarly, in
photography, linear polarizers enhance the contrast in images by decreasing
glare from unwanted reflections. Additionally, scattered light from the atmo-
sphere is also polarized and thus blocked, leading to a contrast-enhancing
darkening of the blue sky in the photograph.

For circularly polarized light, on the other hand, stereoscopy in movie
theaters is just one example of emerging applications. In order to create
a three-dimensional image, two images filmed with a certain parallax are
projected onto one polarization-conserving screen. The images are circularly
polarized by employing linear polarizers in combination with quarter-wave
plates. Low-cost glasses, given out to the viewers in the theater, use the same
combination but in reverse order as eyepieces, thus, discriminating the two
circular polarizations and transmitting only the correct image to each eye. In
contrast to a system with solely linear polarizers, circularly polarized light
allows the viewer to tilt his head without seeing parts of the wrong image.

Naturally, there is a much larger variety of applications for circularly
polarized light in scientific research. In many modern microscopy methods,
such as STED-microscopy for example, circularly polarized laser radiation is
required in order to achieve the desired intensity profiles in the focus [2].

While in microscopy single or few particles are examined, large ensembles
of particles and their collective properties can be measured with far-field
optical spectroscopy. A particular challenge is the discrimination of so-
called chiral molecules: molecules that lack any mirror symmetries and
therefore cannot be superimposed onto their mirror image. Inspired by the
most prominent macroscopic example for such objects, the word chirality
stems from the Greek word for “hand”: cheir (χειρ). Many biologically
important molecules, like sugars or proteins for example, are chiral and,
thus, come in two versions that are commonly called enantiomers. While
in the human body often only one enantiomer can be produced or utilized,
both enantiomers are produced in a laboratory environment. This must
be carefully monitored, for example, when synthesizing chiral molecules
for pharmaceutical applications. Due to the identical chemical composition,
these enantiomers cannot be distinguished by their mass, solubility, or
even their chemical reactivity in non-chiral environments. However, chiral
molecules exhibit chiro-optical responses and their respective concenctrations
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can therefore be determined by measuring, for example, a difference in
absorption for the two circular polarizations. This technique, referred to as
circular-dichroism spectroscopy, relies on characteristic spectral features at
UV wavelengths and has been introduced half a century ago [3, 4]. More
recently, circular-dichroism spectroscopy has attracted increasing attention
at infrared or terahertz frequencies where vibronic excitations of chiral
macromolecules are of particular interest [5, 6].

In the light of everyday life and scientific applications combined, it be-
comes obvious that there is a rapidly growing need for high-quality circular
polarizers. While linear polarization can be achieved by the use of wire-grid
polarizers that offer good performance over unmatched spectral bandwidths,
circular polarization has long relied on combinations of linear polarizers
and retardation wave plates. Especially the latter are not readily available at
infrared or terahertz frequencies. Furthermore, with chiro-optical responses
being low in natural materials, metamaterials have been moving into focus for
fabricating broadband circular polarizers for the desired frequency range.

While natural crystalline materials consist of atoms, ions, or molecules
arranged in a periodic lattice, metamaterials, in analogy, are periodic arrange-
ments of so-called meta-atoms. These substructures with sizes smaller than
the operating wavelength are tailored to create effective optical parameters,
either strongly enhancing certain optical effects or achieving ones that are not
found at all in natural materials. By creating chiral unit cells, chiro-optical
responses many orders of magnitude larger than those found in any natural
material have been realized [7]. However, it was not until the introduction of
metallic helical metamaterials, fabricated via direct laser writing (DLW) and
subsequent electrochemical deposition, that true broadband operation was
achieved [8]. With bandwidths of more than one octave and simultaneously
large extinction ratios, helical metamaterials seem like the perfect counter-
part to the wire-grid polarizer at first sight. However, conventional helical
metamaterials exhibit undesired circular-polarization conversions.

By composing complex helical-metamaterial unit cells, where a single-
helix serves only as a basic building block in a more sophisticated design,
one can eliminate these unwanted effects. Combining helices of different
handednesses on the other side, offers broadband asymmetric transmission.
Such more complex helical-metamaterial designs are however out of reach
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1 introduction

for fabrication with conventional direct laser writing.
The central topic of this thesis will therefore be the introduction of new

helical-metamaterial designs with the goal of either eliminating circular-
polarization conversions completely or to strongly enhance them for broad-
band asymmetric transmission. To achieve this goal experimentally, a novel
fabrication process based on diffraction-unlimited STED-inspired direct laser
writing is introduced and the operation at mid-infrared frequencies is demon-
strated.

Outline of this thesis

Chapter 2 in this thesis will cover the fundamentals to allow the reader a
thorough understanding of the discussion in the chapters thereafter.

In Chapter 3, I will first review conventional helical metamaterials as
they will serve as the basic building blocks for the following designs. I
will then introduce the concept of N-helical metamaterials and discuss their
fundamentally different principle of operation, as well as advantages and
limitations, using a symmetry-based theoretical analysis. Additionally, I
will discuss geometrical optimizations for these N-helical metamaterials by
analyzing numerical calculations. In the final section, I will then introduce a
different helical-metamaterial design for operation as a broadband circular-
polarization converter.

Thereafter, I will present the experimental methods that have been em-
ployed to fabricate helical metamaterials in the scope of this thesis in Chap-
ter 4. Furthermore, the entire fabrication process and the method of optical
characterization at mid-infrared frequencies is explained in detail.

In Chapter 5, experimental results for both N-helical metamaterials and
circular-polarization converters are presented. Furthermore, I will briefly
discuss an alternative fabrication route based on a double-inversion process.
The chapter is concluded by a discussion of the results and a comparison to
other fabrication approaches beyond laser lithography.

Finally, I will conclude and summarize my work in Chapter 6.
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2
Chapter 2

Fundamentals

Illustration of the electric field vector for circular polarization.

In this chapter I will discuss the theoretical groundwork in order to ensure the reader’s
understanding in the chapters following thereafter. First, the interaction of light with
matter, described by the macroscopic Maxwell’s equations is introduced. With these
equations at hand, the well-known Fresnel reflection and transmission coefficients
are derived. Additionally, I will give a detailed discussion of the polarization state
of light and its mathematical description via Jones formalism, both in linear- and
circular-polarization basis. Subsequently, the theory of uniaxial bianisotropic media
is discussed. Furthermore, I will highlight the importance of reciprocity and give a
short introduction to the metamaterial concept.
Derivations for most of the following equations or findings are found in any common
electrodynamics or optics text book. To the interested reader, I recommend References
[9–12] where appropriate.
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2 fundamentals

2.1 Light-Matter Interaction

The propagation of electromagnetic waves in free space, i. e., vacuum, is
described by Maxwell’s equations, first formulated in 1865 [13, 14]. In the
absence of free charges or currents, the electric field

Ñ

E and the magnetic field
Ñ

H are connected through these famous four equations,
Ñ

∇×
Ñ

E(
Ñr , t) = −µ0

∂
∂t
Ñ

H(
Ñr , t)

Ñ

∇×
Ñ

H(
Ñr , t) = ε0

∂
∂t
Ñ

E(
Ñr , t)

Ñ

∇ ·
Ñ

E(
Ñr , t) = 0

Ñ

∇ ·
Ñ

H(
Ñr , t) = 0,

(2.1)

with the vacuum permittivity ε0 ≈ 8.854 · 10−12 As
Vm and the vacuum perme-

ability µ0 = 4π · 10−7 Vs
Am [15]. Combining the first two equations, one can

easily derive the wave equation for the electric field in free space(
Ñ

∇
2 − 1

c2
0

∂2

∂t2

)
Ñ

E(
Ñr , t) = 0, (2.2)

with the vacuum speed of light c0 =
(√

ε0µ0
)−1. The corresponding wave

equation for the magnetic field is naturally of identical form. Due to charged
particles in media, e. g., electrons or ions, these fields induce displaced
charges and currents that in turn couple to the driving fields. Macroscopi-
cally, these microscopic charges and currents can be described as an effective
polarization

Ñ

P(
Ñ

E,
Ñ

H) and effective magnetization
Ñ

M(
Ñ

E,
Ñ

H), yielding the
electric displacement

Ñ

D and the magnetic displacement
Ñ

B:
Ñ

D(
Ñr , t) = ε0

Ñ

E(
Ñr , t) +

Ñ

P(
Ñ

E,
Ñ

H)
Ñ

B(
Ñr , t) = µ0

Ñ

H(
Ñr , t) + µ0

Ñ

M(
Ñ

E,
Ñ

H).
(2.3)

In this first section, we will neglect coupling of the electric field components
to the magnetic field components, thus, excluding chiral or bianisotropic
media (see Section 2.4). This simplifies the dependence to

Ñ

P(
Ñ

E,
Ñ

H) =
Ñ

P(
Ñ

E)
and

Ñ

M(
Ñ

E,
Ñ

H) =
Ñ

M(
Ñ

H). Furthermore, we limit our discussion to linear optics
by a series expansion of the polarization and magnetization in which we
neglect all terms of higher order. Generally, the polarization is then given by

Ñ

P(
Ñr , t) = ε0

∞∫
−∞

∞∫
−∞

Ø

χe(
Ñr ,Ñr ′, t, t′)

Ñ

E(
Ñr ′, t′)dt′d~r′, (2.4)
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2 .1 light-matter interaction

where Øχe denotes the electric susceptibility tensor. I will also only discuss
isotropic and homogeneous media in this first section. The former leads to
Ø

χe = χe
Ø

1 and the latter to χe(
Ñr ,Ñr ′, t, t′) = χe(t′, t). Without any particular

time dependence and, furthermore, exploiting causality, the polarization in
frequency domain can be simplified significantly to:

Ñ

P(ω) = ε0χe(ω)
Ñ

E(ω). (2.5)

Similarly, for the magnetization follows

Ñ

M(ω) = χm(ω)
Ñ

H(ω), (2.6)

with the magnetic susceptibility χm. Substituting these findings into equation
2.3, we find:

Ñ

D(ω) = ε0 (1 + χe(ω))
Ñ

E(ω) = ε0ε(ω)
Ñ

E(ω)
Ñ

B(ω) = µ0 (1 + χm(ω))
Ñ

H(ω) = µ0µ(ω)
Ñ

H(ω).
(2.7)

The material-specific parameters ε(ω) and µ(ω) are called electric permit-
tivity and magnetic permeability, respectively. In the absence of any free
charges or currents, we can now write Maxwell’s equations in frequency
domain in a more general form which includes the material’s response:

Ñ

∇×
Ñ

E(
Ñr , ω) = iω

Ñ

B(
Ñr , ω)

Ñ

∇×
Ñ

H(
Ñr , ω) = −iω

Ñ

D(
Ñr , ω)

Ñ

∇ ·
Ñ

D(
Ñr , ω) = 0

Ñ

∇ ·
Ñ

B(
Ñr , ω) = 0.

(2.8)

For every fixed frequency ω0, the first two equations can be combined to
yield wave equations for

Ñ

E and
Ñ

B in time domain:(
Ñ

∇
2 − 1

c2
∂2

∂t2

)
Ñ

E(
Ñr , t) = 0(

Ñ

∇
2 − 1

c2
∂2

∂t2

)
Ñ

B(
Ñr , t) = 0,

(2.9)

with the speed of light in the medium c(ω0) =
1√

ε0µ0ε(ω0)µ(ω0)
= c0

n(ω0)
.
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2 fundamentals

Here, we have introduced the refractive index of the material n(ω0) =√
ε(ω0)µ(ω0). The solutions to the wave equations can therefore be found

by using a plane-wave ansatz

Ñ

E(
Ñr , t) =

Ñ

E0 ei(~k·~r−ω0t)

Ñ

B(
Ñr , t) =

Ñ

B0 ei(~k·~r−ω0t),
(2.10)

yielding the dispersion

ω =
c0 |~k|
n(ω)

, (2.11)

from which group and phase velocity, cgr = ∂ω
∂k and cph = ω

k respectively,
can be calculated if n(ω) is known. In passing, I have introduced the wave
vector

Ñ

k that gives the direction of propagation of a plane wave. In fact, in
anisotropic media, the direction of energy flow, given by the Poynting vector
Ñ

S =
Ñ

E ×
Ñ

H, may not be parallel to that of the wave vector. As mentioned
previously, however, I will limit the discussion in this section to isotropic
media.

With the solution of the wave equations and Maxwell’s equations in
media at hand, we will examine what happens with plane waves at the
interface of two half-spaces, each with different material properties. This
allows us to introduce the Fresnel coefficients for reflection and transmission.
Taking the squared moduli of these coefficients will subsequently yield the
reflectance and transmittance, observables we have to rely on in many optical
experiments.

We consider one half-space from which the plane wave is originating with
material properties n1, ε1, and µ1. Correspondingly, we will call the material
properties of the second half-space n2, ε2, and µ2. With the use of Maxwell’s
equations, we can determine the angles of the reflected and the transmitted
waves, θr and θt, respectively, in dependence on the incident angle θi:

θr = θi sin θt =
n1
n2

sin θi. (2.12)

In all cases, θ denotes the angle between the normal of the interface and the
wave vector~k. These results could, in principal, also easily be obtained via
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2 .1 light-matter interaction

calculus of variation. Exploiting Maxwell’s equations further, we can also
calculate the reflected and transmitted fields [10]. We define the incident,
reflected and transmitted electric fields as

Ñ

E i(~r, t) =
Ñ

E0i ei(~ki~r−ωt)

Ñ

Er(~r, t) =
Ñ

E0r ei(~kr~r−ωt)

Ñ

Et(~r, t) =
Ñ

E0t ei(~kt~r−ωt),

(2.13)

respectively. A full discussion of polarized light will follow in Section 2.3.
Nevertheless, we will distinguish between two polarizations here already,
namely s- and p-polarization. For the former, the incident electric field
vector

Ñ

E0i is perpendicular to the plane defined by
Ñ

k i and
Ñ

k r. The index s is
inspired by the German word for perpendicular: senkrecht.

In order to calculate the complex reflection and transmission coefficients,
respectively, the reflected or transmitted field is divided by the incident field.
Exploiting Maxwell’s equations at the interface, this yields:

rs =
(
~E0r
~E0i

)
s
=

Z2 cos θi − Z1 cos θt

Z2 cos θi + Z1 cos θt

ts =
(
~E0t
~E0i

)
s
=

2Z2 cos θi

Z1 cos θi + Z2 cos θt
.

(2.14)

Here, we have introduced the impedance of the medium Zj =
√

µ0µj
ε0ε j

.

For p-polarization, in contrast to s-polarization, the electric field vector
Ñ

E0i

lies within the plane defined by ki and kr. Similarly to above, we get:

rp =
(
~E0r
~E0i

)
p
=

Z1 cos θi − Z2 cos θt

Z1 cos θi + Z2 cos θt

tp =
(
~E0t
~E0i

)
p
=

2Z2 cos θi

Z1 cos θt + Z2 cos θi
.

(2.15)

For normal incidence, i. e., where θi = 0, the reflection and transmission coef-
ficients for s- and p-polarization are trivially equal. The squared moduli of
the complex Fresnel coefficients yield the real reflectance R and transmittance
T:

R = |r|2 and T = |t|2 n2 cos θt

n1 cos θi
(2.16)

with T + R = 1.
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2 fundamentals

2.2 Dispersion in Natural Materials

In the previous section, we have introduced the macroscopic version of
Maxwell’s equations and with that the electric permittivity ε(ω) and mag-
netic permeability µ(ω). In almost all natural materials, one can set µ = 1 at
optical frequencies. Metamaterials, on the other hand, can exhibit effective
material parameters with µ 6= 1, as we will discuss in Section 2.6. Neverthe-
less, here we will focus on the electric permittivity and discuss two types of
natural materials and their corresponding dispersion models.

Lorentz Model

First, we take a look at the case of dielectrics, i. e., materials with locally
bound electrons. The driving electric field exerts a force on the electrons,
causing a displacement and thus a dipole moment. Displacements of the
atom nuclei can be neglected due to the much higher mass. The equation of
motion for each electron is then given by

m
d2x
dt2 + mγ

dx
dt

+ mω2
0x = −e E0 e−iωt, (2.17)

where we have set the direction of
Ñ

E along the x-axis, e the electronic charge,
m the mass of the driven charge, ω0 the resonance frequency, and γ the
damping [10]. The dipole density N of the induced dipole moments

Ñp = eÑx
leads to a macroscopic polarization

Ñ

P = ε0χe
Ñ

E = ε0
N e2

ε0mω2
0

ω2
0

ω2
0 −ω2 − iγω

Ñ

E. (2.18)

The complex electric permittivity can then be calculated as ε(ω) = 1+ χe(ω)

and yields:

<(ε(ω)) = 1 +
N e2

ε0m
ω2

0 −ω2

(ω2
0 −ω2)2 + γ2ω2

=(ε(ω)) =
N e2

ε0m
γ ω

(ω2
0 −ω2)2 + γ2ω2

.
(2.19)
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2 .2 dispersion in natural materials

The imaginary part =(ε(ω)) has a characteristic Lorentzian distribution cen-
tered at the resonance frequency ω0. We will see similar resonant behavior
for the effective material parameters of metamaterials in Section 2.6.

Drude Model

In contrast to the previously discussed Lorentz Model, applicable for di-
electrics where electrons are bound to the atom nuclei, I will now discuss
conductive materials. This includes metals and semiconductors – media
with free electric charges. Contrary to dielectrics, there is no restoring force,
collisions with the stationary atom nuclei, however, lead to damping. The
equation of motion is therefore similar, but lacks the restoring force term:

m
d2x
dt2 + mγ

dx
dt

= −e E0 e−iωt, (2.20)

where γ denotes the collision frequency which is dependent on the Fermi ve-
locity and the mean free path of the free charges [11]. The electric permittivity
results in

ε(ω) = 1−
ω2

p

ω2 + iγω
. (2.21)

Furthermore, we have introduced the plasma frequency

ωp =

√
N e2

m ε0
. (2.22)

We rewrite the permittivity, separating real and imaginary part, to

ε(ω) = 1−
ω2

p

ω2 + γ2 + i
γω2

p

ω(ω2 + γ2)
. (2.23)

Neglecting losses, we note that for frequencies below the plasma frequency,
ω < ωp, the electric permittivity is negative. As we continue to assume
µ = 1, this yields an imaginary refractive index n =

√
ε. As a result, we

obtain an evanescent field inside such materials and no propagating wave.
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2 fundamentals

2.3 Polarization and Jones Formalism

In the previous section I have discussed electromagnetic waves and their
propagation in media. Furthermore, we have introduced the complex Fresnel
coefficients for reflection and transmission at an interface. In that context, we
have already discussed the concept of polarization in passing, distinguishing
between s- and p-polarization. In this section, we will elaborate on different
polarizations and will also introduce the Jones calculus.

As we have already seen in equation 2.10, the solution to the electric wave
equation is given by:

Ñ

E(
Ñr , t) =

Ñ

E0 ei(~k~r−ωt). (2.24)

Using Maxwell’s equations, we can easily find that the vector
Ñ

E0 is perpen-
dicular to the direction of propagation:

Ñ

E0 ⊥
Ñ

k . (2.25)

Without loss of generality, we define
Ñ

k = |Ñk | êz. We can then rewrite
Ñ

E0

as
Ñ

E0 = E0x êx + E0y êy. The complex coefficients E0x = |E0x| exp(iϕx) and
E0y = |E0y| exp(iϕy), however, can be chosen arbitrarily and define the state
of polarization. Depending on the ratio of the moduli |E0y|/|E0x| and the
phase difference ϕ = ϕy − ϕx, three general cases are possible.

Linear polarization (ϕ = 0 or ϕ = π)

I have already briefly discussed this case in Section 2.1 in the form of s- and
p-polarization. These terms are, however, of no use under normal incidence.
We define linear polarization more generally by a vanishing phase difference
between E0x and E0y. For any point in space, we can then write the electric
field as

Ñ

E =

|E0x|
|E0y|

0

 e−iωt eiφ, (2.26)

where φ is an arbitrary phase. The electric field will therefore always be
parallel or anti-parallel to a fixed direction which is defined by |E0x| and
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2 .3 polarization and jones formalism

|E0y|, thus the name linear polarization.

Circular polarization (ϕ = ±π
2 , |E0x| = |E0y|)

Similar to above, we choose any point in space. We can then write the electric
field as

Ñ

E =

 1
±i
0

 |E0x| e−iωt eiφ, (2.27)

where φ is again an arbitrary phase. Let us now compare the real parts of
the x- and y-component of

Ñ

E:

<(Ex(t)) = +|E0x| cos(ωt)

<(Ey(t)) = ±|E0x| sin(ωt).
(2.28)

At any point in space, the electric field describes a circle over time with
radius |E0x|, thus the name circular polarization. Furthermore, if we instead
take a fixed point in time and set

Ñr =

0
0
z

 and
Ñ

k =

0
0
k

 , (2.29)

we obtain

<(Ex(z)) = +|E0x| cos(kz + φ)

<(Ey(z)) = ∓|E0x| sin(kz + φ),
(2.30)

where φ is again an arbitrary phase. The real part of the electric field de-
scribes a helix along the z-axis, that is either left-handed (+) or right-handed
(−), depending on the sign of the phase shift ϕ. We will therefore call these
two polarizations left-circular polarization (LCP) and right-circular polarization
(RCP), respectively. One must take care, as this nomenclature varies in
literature. Here, we follow the convention of Reference [9].
Both linearly and circularly polarized light are illustrated in Figure 2.1. For
right-circularly polarized light, as depicted in (b), it is crucial to note the
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different sense of rotation (right-handed) of the electric field in space along
the z-axis

Ñ

E(z, t=0) in contrast to the sense of rotation (left-handed) of the
electric field over time at a fixed point

Ñ

E(z=0, t). This often leads to confu-
sion in the definition of right-handed and left-handed polarization.

Ñ

E0 = E0√
2

 1
−i
0



Ñ

E0 = E0

cos α

sin α

0

a

b

x

y

z

x

y

z

α

Figure 2.1: Linear polarization (a) and right-handed circular polarization (b)
are depicted for a fixed point in time. In both cases the wave vector is in
the positive z-direction.
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Elliptical polarization

In any other case where
Ñ

E0 fulfills neither the requirements for linear, nor
for circular polarization, as discussed above, the plane wave is elliptically
polarized. At a given point in space the real part of the electric field vector
then describes an ellipse over time.

Jones Formalism

Under normal incidence onto a plane interface, the wave vectors of the
transmitted and reflected waves will be parallel and respectively anti-parallel
to the incident wave vector. In these instances, the polarization of the plane
waves can be described much more easily with the Jones formalism. As
we have seen in the preceding paragraphs, the z-component of the electric
field vector can be set to zero if an appropriate coordinate system is chosen
where êz is parallel or anti-parallel to the wave vector

Ñ

k . We will now
extend this approach by dropping the z-component of the electric field in
our notation altogether. The polarization will be described by a complex,
two-dimensional vector called the Jones vector

Ñ

J that lies within the plane
normal to the direction of propagation:

Ñ

J =

(
E1

E2

)
= E1 ê1 + E2 ê2. (2.31)

The two normalized base vectors can in principle be chosen arbitrarily,
but two orthonormal bases are most commonly used: linear and circular
polarization. In the former case, any two orthonormal, real polarization
vectors form such a basis. We will call these vectors Ñx and

Ñy . Any other
Jones polarization vector is then described by a superposition:

Ñ

J
lin

=

(
E1

E2

)
= E1

Ñx + E2
Ñy . (2.32)

We can now represent linear polarization with an arbitrary angle α to Ñx as

Ñ

J
lin
α =

(
cos α

sin α

)
(2.33)
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and left-circular polarization and right-circular polarization as

Ñ

J LCP = 1√
2

(
1
i

)
and

Ñ

J RCP = 1√
2

(
1
−i

)
, (2.34)

respectively. In this thesis, circularly polarized light plays a central theme
and representation of the polarization in a linear polarization basis is thus
far from optimal. Note that the vectors

Ñ

J LCP and
Ñ

J RCP in fact are also
orthonormal and can also be used to form a basis which we will call circular-
polarization basis, correspondingly:

Ñ

J
circ

=

(
EL

ER

)
= EL êLCP + ER êRCP. (2.35)

In order to switch from linear to circular-polarization basis or vice versa, we
introduce the basis-change matrix

Ø

S = 1√
2

(
1 −i
1 i

)
. (2.36)

We can now also carry out polarization operations by matrix multiplication.
A linear polarizer in linear polarization basis can thus easily be defined as

Ø

M =

(
1 0
0 0

)
. (2.37)

To obtain corresponding polarization operations in circular-polarization basis
Ø

M
circ

, we simply carry out a basis transformation:

Ø

M
circ

=
Ø

S
Ø

M
Ø

S
−1

. (2.38)

The total transmission
Ø

t of a system can easily be calculated by mere matrix
multiplication of the individual components

Ø

t =
Ø

t N ·
Ø

t N−1 · . . .
Ø

t 2 ·
Ø

t 1, (2.39)

where
Ø

t i denotes the transmission matrix of the ith component in the order
of propagation. The total reflection matrix Ør can be calculated accordingly.

We will exploit reciprocity and symmetry in the subsequent sections in
order to eliminate some of the coefficients of the Jones matrices. In general,
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2 .3 polarization and jones formalism

however, the four coefficients of the overall transmission or reflection matrix
are different, finite, and complex:

Ø

t =

(
txx txy

tyx tyy

)
Ør =

(
rxx rxy

ryx ryy

)
. (2.40)

In linear-polarization basis, the diagonal elements txx and tyy describe the
polarization-conserving transmittances, while tyx and txy denote the conver-
sion from x-polarized light to y-polarized light and vice versa. The Jones
matrices in circular-polarization basis can be written in dependence of the
linear coefficients by using Equation 2.38:

Ø

t
circ

=

(
tLL tLR

tRL tRR

)
=

(
(txx + tyy) + i(txy − tyx) (txx − tyy)− i(txy + tyx)

(txx − tyy) + i(txy + tyx) (txx + tyy)− i(txy − tyx)

) (2.41)

Ør circ =

(
rRL rRR

rLL rLR

)
=

(
(rxx + ryy) + i(rxy − ryx) (rxx − ryy)− i(rxy + ryx)

(rxx − ryy) + i(rxy + ryx) (rxx + ryy)− i(rxy − ryx)

)
.

(2.42)

Note that the diagonal elements of the reflection matrix in circular-polarization
basis surprisingly denote the normal reflectance from LCP to RCP and re-
spectively from RCP to LCP. The reason for this lies in the fact that the linear
polarizations are unchanged, but the direction of propagation is changed.
The coordinate system therefore changes from a normal right-handed to a
left-handed one. Nevertheless, these are the normal reflectances, while the
off-diagonal elements, i. e., reflection from LCP to LCP and RCP to RCP, de-
note polarization conversions. This can be understood intuitively by recalling
that for the normal reflectances, the phase shift between x- and y-polarized
light must be conserved. The changed direction of propagation changes the
coordinate system but not the phase shift in time or space.

The most important polarization states as well as a selection of polarization
operations are displayed in Table 2.1.
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Table 2.1: Some of the most important polarization states are shown in the
upper part of the table, both in linear- and circular-polarization basis. In
the lower part of the table, the Jones matrices of three commonly used po-
larization elements are shown. Arbitrary phase factors have been neglected
in all cases.

Linear Basis Circular Basis

Linear polarization parallel to Ñx
(

1
0

)
1√
2

(
1
+1

)

Linear polarization parallel to
Ñy

(
0
1

)
1√
2

(
1
−1

)

Linear polarization under angle α

(
cos α

sin α

)
1√
2

(
1

e2iα

)

Left-circular polarization 1√
2

(
1
+i

) (
1
0

)

Right-circular polarization 1√
2

(
1
−i

) (
0
1

)

Linear polarizer for x-polarization
(

1 0
0 0

)
1
2

(
1 1
1 1

)

Half-wave plate (45° axis)
(

0 1
1 0

) (
0 −1
1 0

)

Quarter-wave plate (45° axis) 1√
2

(
1 −i
−i 1

)
1√
2

(
1 −1
1 1

)
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2 .4 bianisotropic media and chiro-optical effects

2.4 Bianisotropic Media and Chiro-optical Effects

We will now extent our discussion to the more general case of bianisotropic
media, materials we have excluded in Section 2.1. A detailed discussion is
given in References [16] and [17], the lines of which we will follow here.

The most general case of a linear medium allows for anisotropic response
functions

Ø

ε 6= ε δij and
Ø

µ 6= µ δij. Furthermore, we examine coupling of the
electric to the magnetic field components, i. e.,

Ñ

D =
Ø

ε
Ñ

E +
Ø

ξ
Ñ

H
Ñ

B =
Ø

µ
Ñ

H +
Ø

ζ
Ñ

E.
(2.43)

In this case, the tensors
Ø

ε ,
Ø

µ ,
Ø

ξ , and
Ø

ζ are 3× 3 matrices. A discussion of
this very generalized medium is however beyond the scope of this thesis
and we will limit ourselves to uniaxial bianisotropic media. A significant
reduction in complexity would also be achieved by assuming isotropy of the
medium, leading to scalar response functions. This subclass of bianisotropic
media is called biisotropic. As the results obtained for axial propagation in
uniaxial bianisotropic media and biisotropic media are identical, we will
focus our discussion on the former.

In the case of uniaxial bianisotropic media, only one direction in space is
distinct, while the response functions are invariant under rotation around
that axis. By choosing the coordinate system appropriately and setting the
z-axis along that direction, without any loss of generality, the off-diagonal
elements of the four tensors

Ø

ε ,
Ø

µ ,
Ø

ξ , and
Ø

ζ are zero and the tensors take the
diagonalized form [16]

Ø

ε =

εt 0 0
0 εt 0
0 0 εz

 Ø

µ =

µt 0 0
0 µt 0
0 0 µz


Ø

ξ =

ξt 0 0
0 ξt 0
0 0 ξz

 Ø

ζ =

ζt 0 0
0 ζt 0
0 0 ζz

 .

(2.44)

Inspired by the metamaterial design that we will discuss in the scope of
this thesis, we focus on wave propagation along the z-axis. Any two eigenpo-
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larizations we choose for~k ‖ êz must be perpendicular to êz. Therefore, only
the transverse components will contribute. We introduce the transverse Telle-
gen parameter χt and transverse chirality parameter κt that will allow us to
differentiate easily between different subcategories of uniaxial bianisotropic
media [16]:

ξt = c0 (χt − iκt)

ζt = c0 (χt + iκt).
(2.45)

As the z-components of the tensors have been eliminated, the equations
obtained here are identical to those in biisotropic media [17]. The following
discussion is therefore valid for both propagation in biisotropic media and
axial propagation in uniaxial bianisotropic media. With χt and κt at hand, we
can now discuss three different subclasses of uniaxial bianisotropic media.

Non-reciprocal media (χt 6= 0):

The Tellegen parameter describes the reciprocity or non-reciprocity of the
medium. Non-reciprocal effects such as Faraday rotation occur for a non-
vanishing χt. We will, however, examine only reciprocal materials in the
scope of this thesis and will thus not go into further detail here. The term
reciprocity will be discussed in more detail in Section 2.5.

Normal anisotropic media (χt = κt = 0):

By setting both χt and κt to zero, we obtain a linear, aniisotropic medium.
However, as the z-components εz and µz do not contribute for axial propaga-
tion, we effectively obtain the same results as for an isotropic medium that
we have discussed in Section 2.1.

Uniaxial chiral media (χt = 0, κt 6= 0):

Chiral media are of particular interest for interaction with circularly polarized
light and we will therefore discuss this subclass of bianisotropic media in
more detail. The word chiral stems from the Greek word for hand cheir (χειρ).
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2 .4 bianisotropic media and chiro-optical effects

Similar to the human hand, chiral objects are defined by their lack of mirror
symmetry. Therefore, the mirror image cannot be brought into superposition
with the original image via translation or rotation. The existence of any
mirror-symmetry, regardless whether the normal of that mirror plane is
perpendicular or parallel to the z-axis, leads to κt = 0 [17].

We will focus not on macroscopic structures like the human hand, but
microscopic chiral objects. An intuitive example is an ensemble of very small
metal helices of only one handedness [16]. We will imagine a medium that
consists of many of these randomly distributed helices, all aligned parallel
to the z-axis, thus defining the special axis. If we “zoom out” far enough, we
will see a homogeneous, but anisotropic and chiral medium.

Solving for the wave numbers of the eigenpolarizations [16], one obtains

k± = ω
c0
(
√

εtµt ± κt), (2.46)

where (+) and (−) denote the right- and left-circularly polarized eigenwaves,
respectively. Therefore, we can deduce the complex refractive index of these
eigenpolarizations:

n± =
√

εtµt ± κt = nt ± κt. (2.47)

In contrast to the refractive index, the impedance is not dependent on the
polarization [17]:

Z± =

√
µ±
ε±

=

√
µt(1± κt)

εt(1± κt)
=

√
µt

εt
= Z. (2.48)

Therefore, uniaxial bianisotropic media will yield equal reflection for both
circular polarizations.

We do, however, expect effects on circularly polarized light for axial
propagation due to the difference in the complex refractive index n± =

n′± + in′′±. We will now distinguish between the terms optical activity and
circular dichroism. As the former is based on a difference in the real part of
the refractive index and the latter on a difference in the imaginary part, a
bianisotropic medium will always exhibit both effects due to Kramers-Kronig
relations [15]. Often, however, one effect can be neglected, while the other is
dominant.
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Optical Activity (n′+ 6= n′−):

A difference in the real part of the refractive index leads to a phase shift of
one circular polarization with respect to the other. As we have seen in Table
2.1, linearly polarized light under any arbitrary angle α with respect to the
x-axis can be represented by a superposition of LCP and RCP with a phase
shift of 2α. Thus, a difference in the real part of the refractive index will
yield a rotation αrot of the incoming linearly polarized light by

αrot =
ωd
2 c0

∆n, (2.49)

where ∆n = n′+ − n′− denotes the difference in the real parts of the refractive
index and d the propagation length in the medium. This principle has in fact
been used for a long time when determining the concentration of sugar in
solution. Glucose, like many other biologically important molecules, is chiral
and only one enantiomer, i. e., mirror-image, is found in nature. Due to the
random orientation and distribution of only one enantiomer, the solution
can be described as a biisotropic medium. The effect is far from negligible in
natural materials. For a saturated aqueous solution of glucose a propagation
distance of d ≈ 36 cm is sufficient to rotate linearly polarized at λ = 589 nm
by 90 degrees [18].

I emphasize at this point, that one must take care not to confuse the
principle of optical activity, where the rotation angle αrot is independent of
the orientation of the incoming linear polarization, with the operation of
a half-wave plate. In the latter case, the change in polarization is due to
linear birefringence and the angle of rotation as well as the polarization state
depend on the incident linear-polarization orientation.

Circular Dichroism (n′′+ 6= n′′−):

A difference in the imaginary parts on the other hand leads to a difference in
absorption. For a plane wave propagating along the z-direction, we obtain

Ñ

E =
Ñ

E±ei(n±k0z−ωt)

=
Ñ

E±e−n′′±k0z ei(n′±k0z−ωt).
(2.50)
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~ERCP = 1√
2

(
1
−i

)

~ELCP = 1√
2

(
1
+i

)

Figure 2.2: Illustration of the effect of circular dichroism. In this case, a
fictitious material with n′′+ > 0 and n′′− = 0 is depicted and therefore only
left-circularly polarized light is absorbed during propagation through the
material.

We then define the absorption coefficient proportional to the imaginary part
of the refractive index

α± =
2ω

c0
n′′±, (2.51)

yielding the intensity of the circularly polarized plane waves I± after propa-
gation over a distance d

I±(d) = I0 e−α±d, (2.52)

where I0 denotes the incident intensity. The effect is illustrated in Figure 2.2.
In contrast to optical activity, circular dichroism is much less pronounced in
natural materials.
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2.5 Reciprocity Constraints

In Section 2.3, we have defined the Jones transmission and reflection matrix
in their most general form. We will now introduce reciprocity, which allows
us to further simplify the Jones matrices. The term reciprocity has its origins
in acoustics and has first been introduced by Lorentz in 1896, however in a
slightly different form [19]. Even today, the term is used seldomly in text
books. Ambivalent and even contradicting definitions found in literature
have complicated the conception of the reciprocity principle. We will start
our discussion with Lorentz’s theorem. Let us assume two vector fields
described by

Ñ

E1 and
Ñ

H1 and respectively
Ñ

E2 and
Ñ

H2. For reciprocal media,
i. e., where the Tellegen parameter χ vanishes, Lorentz’s theorem states:∫

S

(Ñ
E1 ×

Ñ

H2 −
Ñ

E2 ×
Ñ

H1
)

dS = 0, (2.53)

where S denotes an arbitrary closed surface [20]. A more thorough derivation
and proof of the general reciprocity definition are beyond the scope of this
thesis and for the interested reader I refer to the literature, where a more
detailed discussion is given [17, 21]. We will limit ourselves to a discussion
of the reciprocity term as it was derived by de Hoop by exploiting Lorentz’s
theorem shown above [20]. De Hoop showed that reciprocity can be defined
via scattered fields and their projections for finite-sized scatterers. Figure
2.3 illustrates the situation that we will discuss in the following. We will
consider an electric field

Ñ

E1 with wave vector
Ñ

k 1 incident on a scatterer of
finite size, yielding scattered waves, one of which is in the direction of

Ñ

k 2

with field
Ø

M
Ñ

E1.
Ø

M denotes a general 3× 3 scattering matrix. Similarly, for a
wave propagating along −Ñk 2 with

Ñ

E2, one will obtain a scattered wave in
the direction of −~k1 with

Ø

Mr
Ñ

E2.
Ø

Mr here denotes the scattering matrix for
that reverse propagation direction. Note that all polarizations are arbitrary
at this point. De Hoop showed that for any reciprocal medium, i. e., where χ

vanishes, we obtain:
Ñ

E2 ·
Ø

M
Ñ

E1 =
Ñ

E1 ·
Ø

Mr
Ñ

E2. (2.54)

Because we are still considering general propagation directions and polariza-
tions, the conclusions from this finding are not intuitive at first. De Hoop
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b

a
Ñ

E1
Ñ

k 1

Ø

M
Ñ

E1

Ø

Mr
Ñ

E2

Ñ

k 2

−Ñk 2

−Ñk 1

Ñ

E2

Figure 2.3: Illustration of the model discussed in context of de Hoop’s
reciprocity: (a) Forward propagation direction: An incident wave with wave
vector

Ñ

k 1 and field strength
Ñ

E1 is scattered. The field strength of the wave
scattered into the direction of

Ñ

k 2 is
Ø

M
Ñ

E1. (b) Reverse propagation direction:
An incident wave with wave vector −Ñk 2 and field strength

Ñ

E2 is scattered.
The field strength of the wave scattered into the direction of −Ñk 1 is

Ø

Mr
Ñ

E2.

has shown, that the scattering amplitude for a wave in the direction of
Ñ

k 2

and polarized along
Ñ

E2 resulting from an incident wave polarized along
Ñ

E1

with wave vector
Ñ

k 1 is equal to the scattering amplitude of a wave in the
direction of −Ñk 1 and polarized along

Ñ

E1 resulting from an incident wave
polarized along

Ñ

E2 with wave vector −Ñk 2 [21].
Similar results were obtained by Born and Wolf. By assuming scalar fields

and thus, neglecting different polarizations one obtains

f (
Ñ

k 1,
Ñ

k 2) = f (−Ñk 2,−Ñk 1), (2.55)

where f (
Ñ

k i,
Ñ

k s) denotes the scattering amplitude for a wave incident with
wave vector

Ñ

k i and scattered into a direction
Ñ

k s [22]. As the state of polar-
ization is a central theme in this thesis, we will follow the more general form
of reciprocity as stated by de Hoop.
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We will now simplify the discussion significantly by considering solely
plane waves of normal incidence onto a slab of a reciprocal medium. The only
scattered waves that have to be considered in the following are therefore the
reflected (~k2 = −~k1) and the transmitted (~k2 =~k1) waves. This allows us to
discuss reciprocity in the Jones formalism, which we will exploit extensively
in this thesis. By applying de Hoop reciprocity to the Jones formalism one
finds

Ø

t r =
Ø

t
T and Ør r =

Ør T, (2.56)

where
Ø

t and
Ø

r denote the overall transmission and reflection matrices [23].
Correspondingly,

Ø

t r and
Ø

r r are the Jones matrices for reverse propagation
and can be calculated by simply taking the transpose. We emphasize that
reverse propagation means that the direction of the incident wave vector is
set anti-parallel to that of the scattered wave vector. While in the case of
transmission, where~k2 =~k1, this corresponds to an incident wave from the
opposing direction, in the case of reflection we obtain

−~k2 =~k1. (2.57)

As reverse propagation therefore denotes incidence on the identical system,
the reflection matrices in forward and backward propagation direction must
be equal, yielding

Ør =
Ør T. (2.58)

The Jones reflection matrix must thus be symmetric, a finding that will be
of importance in the following chapter. As we have mentioned previously,
one must be careful when discussing reflection in circular polarization
basis, in order not to confuse conversions with polarization-conserving
reflectances. In order to circumvent this problem in Jones notification, we
simply substitute our findings from a linear-polarization basis, i. e., ryx = rxy,
into Equation 2.42, which yields

rRL = rLR. (2.59)

For a reciprocal scatterer the normal reflectances are therefore identical.
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2.6 A Short Introduction to Metamaterials

In the previous sections, we have introduced the interaction of electromag-
netic waves with natural material through the complex material parameters
ε(ω) and µ(ω). These response functions are defined by the interaction
with charges on a microscopic scale. We have seen in Section 2.2 that we
obtain very different results for ε depending on the state of these charges,
i. e., whether they are bound to the atoms or not. At optical frequencies,
dielectrics exhibit electric permittivities with a real part approximately in the
range from 1 to 10. Values outside of this range are only observed in close
spectral proximity to resonances, where on the other side the imaginary part
is strongly increased. In contrast, materials with free charges, e. g., metals, ex-
hibit negative electric permittivities for frequencies below the corresponding
plasma frequency ωp.

By choosing the appropriate material or by mixing two materials, we can
find the electric permittivity ε(ω) fitting for most applications. Despite the
freedom we have in ε, we cannot pick a refractive index n independently
from the impedance Z. The reason for this is the magnetic permeability,
which can in good conscience be set to µ = 1 at optical frequencies. The
induced magnetization can be neglected at these high frequencies and the
magnetic susceptibility thus is 0:

Ñ

M(ω) = χm(ω)
Ñ

H(ω) ≈ 0. (2.60)

To overcome limitations of normal materials, metamaterials have been intro-
duced at the beginning of this millennium [24]. Many different definitions
of this term can be found in the literature, some of which emphasize on the
aspect of them being “man-made” materials. Others limit the definition to
periodic structures with all feature sizes much smaller than the wavelength
and here-from resulting effective material parameters. A precise and unam-
biguous definition of metamaterials is tricky and therefore we will use a very
general one in the scope of this thesis. The prefix “meta” stems from the
Greek word µετα, meaning “beyond” [12]. Metamaterials are thus “beyond”
normal materials, either in their constitution, their optical properties, or
both.

The first central defining property we require is periodicity. Similar to the
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atoms in a crystal, a metamaterial shall consist of a periodic substructure
that can be seen as an arrangement of “meta-atoms”. In contrast to normal
crystals, not only the constituent materials, but mainly the geometry of these
meta-atoms will define the optical properties of our metamaterial. In order
to distinguish metamaterials from photonic crystals, we furthermore require
the lattice periods of the metamaterial to be smaller than the operating
wavelength. This therefore excludes higher diffraction orders from which
one would be able to deduce the existence of a periodicity.

If the lattice period is much smaller than the operating wavelength, a� λ,
the scale of the inhomogeneities within each unit cell is so small that one
can introduce effective parameters εeff and µeff that accurately describe the
response of the metamaterial to an electromagnetic wave. By designing the
meta-atom carefully, effective parameters beyond those found in natural
materials can be achieved.

A paradigm building block for metamaterials with effective parameters
is the split-ring resonator that has appeared in many groundbreaking meta-
material publications [25–30]. As we we will see in Chapter 3, the split-ring
resonator has also been the inspiration for other more complex metamateri-
als.

The operation principle is illustrated in Figure 2.4. A split-ring resonator
consists, as the name suggests, of a conductive wire loop into which a small
gap has been introduced. The split-ring has a capacity C, due to the two
open ends, and, because of the finite length of the wire, an inductivity L. An
analogous circuit diagram is depicted in Figure 2.4(b). It is the well-known
LC circuit, for which the resonance frequency is given by

ωLC =

√
1

LC
. (2.61)

An oscillating current in the wire induces a perpendicularly oriented oscil-
lating magnetic dipole moment and vice versa. The entity of these magnetic
dipole moments for an arrangement of many split-ring resonators leads to
a macroscopic magnetization ~M. Therefore, if the driving magnetic field
has a non-zero component perpendicular to the plane of the split ring, one
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Figure 2.4: (a) Illustration of the operation principle of a split-ring resonator.
Both the driving electric field and magnetic field couple to the split-ring
resonator by inducing an oscillating current and an oscillating magnetic
dipole moment, respectively. (b) An analogue circuit diagram for the
split-ring resonator, assigning a capacity C to the two open ends and an
inductivity L to the wire loop.

observes resonant coupling to the external magnetic field:

Ñ

M = χm
Ñ

H. (2.62)

For the magnetic permeability we obtain [28]

µeff(ω) = 1 +
F ω2

ω2
LC −ω2 − iγω

. (2.63)

F denotes the filling fraction of the unit cell and γ the damping which is due
to Ohmic and radiative losses. Additionally, the driving electric field also
couples to the split-ring resonator in the configuration shown in Figure 2.4(a),
leading to electric dipole moments and the effective electric permittivity

εeff(ω) = 1 +
A · F

ω2
LC −ω2 − iγω

. (2.64)

The parameter A depends on the geometrical parameters of the split-ring
resonator. One should note that in the discussed configuration above, the
split-ring will in fact also exhibit bianisotropy [28].

For operation at optical or near-infrared frequencies, fabrication is chal-
lenging as noble-metal structures with feature sizes below 100 nm have to
be created. Electron-beam lithography (EBL) combined with subsequent
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Figure 2.5: Artistic illustra-
tion of a two-dimensional
metamaterial design based
on split-ring resonators with
lattice period a. Under
oblique incidence, as de-
picted, magneto-electric cou-
pling is observed.
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metal evaporation and lift-off procedures offers the necessary resolution but
can only deliver two-dimensional structures. Therefore, periodicity is only
possible within the plane of the split-ring resonator. Such an EBL-compatible
split-ring resonator design is depicted in Figure 2.5. As seen above, magnetic
coupling to split-ring resonators is only possible, if the driving magnetic
field is not in the plane of the resonator. For this metamaterial design, this
would be the case under normal incidence. For oblique incidence as depicted
here, on the other hand, magnetic coupling is observed.

Over the past decade, many other metamaterial designs have been intro-
duced and experimentally realized [31]. Fish-net and cut-wire pair designs
have allowed for magnetic coupling under normal incidence. By stacking
multiple layers of two-dimensional designs, more complex, bulk-like meta-
materials have been achieved. The realization of fully three-dimensional
metamaterial designs, however, remains a challenge [32].

Nevertheless, the ability to tailor the material parameters of metamaterials
has inspired many new applications. One of the most frequently discussed
applications in the context of metamaterials is perfect lensing [33]. The idea
is based on the possibility of achieving a negative refractive index, which
is the case when both the effective electric permittivity εeff and the effective
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2 .6 a short introduction to metamaterials

magnetic permeability µeff are negative:

neff =
√

εeff µeff < 0 if εeff < 0 and µeff < 0. (2.65)

A number of different metamaterial designs with a negative refractive index
have been proposed and also experimentally achieved [34–38]. As this is only
possible at resonance though, losses will not be negligible and operation is
limited to narrow bandwidths.

Another growing application has been the idea of cloaking objects, i. e.,
making them invisible [39]. Corresponding theoretical concepts were first
introduced in 2006 [40, 41]. As Maxwell’s equations are form-invariant under
coordinate transformations, it is possible to map a virtual transformation
onto a realizable spatial distribution of

Ø

ε (x, y, z) and
Ø

µ(x, y, z). Note that
in general, both ε and µ need to be anisotropic and inhomogeneous. Suc-
cessful cloaking has thus only been achieved at microwave frequencies with
narrowband operation [42]. Broadband operation has been demonstrated
for designs of reduced complexity [43–45] or in diffuse optics where the
characteristic propagation speed is far below the vacuum speed of light [46].

In the scope of this thesis, we will not consider the effective material param-
eters of metamaterials

Ø

ε eff and
Ø

µeff, but rather focus on chiral metamaterials.
These designs are characterized by their lack of mirror-symmetries and thus

ba

800 nm

400 nm

1 µm

200 nm

Figure 2.6: Scanning electron micrographs of two examples for chiral
metamaterials. (a) Two layers of differently oriented split-ring resonators
(adapted with permission from Reference [47]). (b) Two layers of twisted
crosses (adapted with permission from Reference [48]).
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exhibit strong chiro-optical effects like circular dichroism or optical activity,
similar to uniaxial bianisotropic media. In contrast to natural materials,
however, where these effects are normally very small, they can be many
orders of magnitude larger in chiral metamaterials. Chiral metamaterials
have on one side been proposed to be an alternative route to negative refrac-
tive indexes [49], but more importantly could offer efficient and broadband
control of circularly-polarized light. Furthermore, the scalability of meta-
materials could bring circular-polarization optics to frequency regimes that
have previously been difficult to access. Many designs have been proposed
and fabricated over the past decade, most of them based on the principle
of stacking multiple two-dimensional layers with different orientations [47,
48, 50–55]. Two examples are depicted in Figure 2.6. While the observed
chiro-optical effects are much larger than those found in any natural material,
their operation bandwidth is usually very small. In the next chapter we will
therefore discuss helical metamaterials, a class of chiral metamaterials with
broadband operation capabilities.
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3
Chapter 3

Theory of Helical

Metamaterials

Illustration of N-helical metamaterials with N = 4 and N = 3.

In this chapter, I will introduce the concept of helical metamaterials and discuss
their principle of operation. I will then point out the existence of performance-
diminishing circular-polarization conversions that are inherent to the conventional
helical metamaterial design due to linear birefringence.

To solve this dilemma N-helical metamaterials have been introduced. I will give a
very general theoretical analysis based on symmetry and reciprocity, proving that
the elimination of circular-polarization conversions causes a fundamentally different
principle of operation. This analysis will be followed by a discussion of N-helical
metamaterials and corresponding numerical calculations. I will also point out certain
geometrical optimizations that significantly improve polarizer performance.

Finally, I will discuss another helical-metamaterial design, serving as a broad-
band circular-polarization converter and exhibiting strong, broadband asymmetric
polarization conversions.
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3 theory of helical metamaterials

3.1 Conventional Helical Metamaterials

In the previous chapter I have already briefly introduced the concept of chiral
metamaterials, i. e., metamaterials that exhibit chiro-optical effects that are
many orders of magnitude larger than in natural materials. Naturally, this
inspires applications as a circular polarizers that have long relied on a com-
binations of linear polarizers and retardation wave plates. Many different
chiral metamaterial designs have been proposed and realized experimentally
over the past decade [7]. The majority of these designs is based on stacking
multiple achiral layers with varying lateral orientation or composition [27,
47, 48, 51, 53, 56]. Operation of most of these designs, however, is based
on single resonances, therefore yielding only small bandwidths. The same
disadvantage holds true for chiral photonic crystals [57–61]. Metamaterials
based on periodic arrays of metal helices allow for very strong extinction of
one circular polarization over a large bandwidth as we will see in this section.

The word helix stems from the Greek word ελιξ meaning “twisted” or
“curved” [62]. Mathematically, a helix can be described by a three-dimensional
parametric function

Ñr (t) =

 rH sin(2πt)
±rH cos(2πt)

Ht

 , t ∈ [0, Np]. (3.1)

In this instance, the axis of the helix has been chosen along the z-axis. The
parameters rH, H, and Np denote the helix radius, axial pitch, and number
of pitches, respectively. We will continue to use this notation in the following
chapters. The choice of sign yields either a left-handed (+) or a right-handed
(−) helix.

Helices appear in many instances in nature and everyday life. Screws and
springs are of helical geometry, for example. Spiral staircases have allowed
for space-efficient construction for centuries. Filaments in a conventional
light bulb are in fact formed by a helical path around which the actual
wire describes an additional helix. This so-called coiled coil leads to a
wire length that is orders of magnitude larger than the actual size of the
filament and, thus, increases the efficiency. In biology, an entire group of
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a

1 µm1 µm

b

Figure 3.1: Scanning electron micrographs of two examples for helical
metamaterials. (a) Conventional helical metamaterial based on gold helices
and fabricated via direct laser writing and subsequent electro-chemical gold
deposition (adapted with permission from Reference [8]). (b) Improved
helical-metamaterial design based on tapered gold helices (adapted with
permission from Reference [63])

molecules, helicenes, are named on the basis of their helical geometry. An
even more famous example is the double-helix geometry of deoxyribonucleic
acid (DNA), where two helices with a mutual axis are intertwined. Early
on, helical structures have also appeared in purely theoretical discussions of
chiral bianisotropic media as we have seen in Section 2.4.

Here, I will concentrate on helical metamaterials, i. e., periodic arrays of
metallic helical structures. These were the very first chiral metamaterial
design to exhibit both a large operation bandwidth and at the same time
pronounced extinction for one circular polarization, making them ideal as
broadband circular polarizers. Helical metamaterials can thus be seen as the
analogue to the common wire-grid polarizer for linear polarization. Scanning
electron micrographs in Figure 3.1 depict two possible helical-metamaterial
designs.

The unit-cell sizes that I consider are not much smaller than the operating
wavelength and I will therefore refrain from considering effective parameters.
I will, however, consider only wavelengths that are smaller than the lateral
lattice period a, thus eliminating higher diffraction orders entirely from the
discussion.

In this first section I review the operation principle of conventional helical
metamaterials as they have been proposed and experimentally demonstrated

39



3 theory of helical metamaterials

for the first time in 2009 [8]. I do so by considering numerically calculated
spectra for which I have employed the commercial software package CST
Microwave Studio and the therein implemented time-domain solver. In a
first step, the complex components of the linear Jones matrices in transmis-
sion and reflection were calculated. From here, exploiting Equation 2.41,
we can calculate the corresponding Jones matrices in circular-polarization
basis. The underlying substrate has been neglected in these calculations
as it only contributes to small spectral shifts, but not to any qualitative
changes. Furthermore, I only consider the total transmittance for each circu-
lar polarization in this section, not discriminating between different resulting
polarizations. These total transmittances are given by

TLCP = |tLL|2 + |tRL|2

TRCP = |tLR|2 + |tRR|2 ,
(3.2)

where tij denotes the complex entries of the Jones transmission matrix in
circular-polarization basis. The constituent metal is assumed to be gold
modeled by Drude parameters ωp = 1.37 · 1016 s−1 and γ = 1.2 · 1014 s−1.
Here, as well as in the following sections, I will use a set of standard
geometrical parameters with a lattice period of a = 1µm, a helix radius of
rH = 300 nm, a wire radius of rW = 50 nm, and where it applies an axial
pitch of H = 1µm.

In order to understand the basic principle of operation, we first consider
the split-ring resonator that I have introduced in Section 2.6. A unit cell
with a single split-ring resonator is of course achiral, as there exists a plane
of mirror symmetry, even in the presence of a substrate. Such a unit cell
and the corresponding spectra are depicted in Figure 3.2(a). Under normal
incidence, the transmittances for left-circularly polarized light (LCP) and
right-circularly polarized light (RCP) are therefore identical.

Two distinct resonances can be identified, corresponding to an “electric”
and “magnetic” mode for linearly-polarized light [25]. Note that under
oblique incidence so-called extrinsic chirality occurs for certain azimuthal
angles [64]. I will limit our discussion in this entire thesis to normal incidence
and, thus, the intrinsic chirality of the structures discussed.
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Figure 3.2: Numerically calculated transmittance spectra for both circular
polarizations are transmitted for three cases. In (a) the achiral split-ring
resonator yields no difference for RCP and LCP and therefore only one
line with two distinct resonances is visible. (b) By pulling one end of the
split-ring resonator up in space one creates a helix that exhibits a large
difference between LCP and RCP. (c) By increasing the number of pitches
a broad polarization band forms with a bandwidth of approximately one
octave.
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Figure 3.3: Calculated current densities along the helix wire under incidence
of left-circular polarization are illustrated. Two frequencies are depicted:
the left panel shows the current density at 70 THz and the right panel at
140 THz. The color indicates the sign of the current for this fixed moment
in time, while the thickness indicates the magnitude.

We now create a helical structure, by taking the left open end of the split-
ring resonator in Figure 3.2(a) and move it up in space. This left-handed
helix has approximately one pitch, depending on the size of the gap of the
split-ring resonator. As the mirror-symmetry is now broken, this unit cell is
chiral. Figure 3.2(b) illustrates the unit cell together with the corresponding
transmittance spectra. In contrast to the split-ring resonator spectra, the
transmittances for LCP and RCP are considerably different. Circularly
polarized light with matching handedness, i. e., LCP for this left-handed
helix, couples to this helix, induces a current, and is reflected. Similar to the
spectra in (a), two distinct resonances are observed, corresponding to the
fundamental and first harmonic mode, i. e., induced current distributions
with no nodes and one node, respectively. We have calculated these current
distributions, using the commercial software package COMSOL Multiphysics,
at the resonance frequencies f0 = 70 THz and f1 = 140 THz under normal
incidence of left-circular polarization. In Figure 3.3 the results are depicted.
Coupling of right-circularly polarized light, on the other hand, is much less
pronounced (not shown here) leading to high transmittance for RCP.

Figure 3.2(c) furthermore demonstrates that by increasing the number of
pitches to merely two, a broad polarization band with a bandwidth of more
than one octave is achieved. In all instances where I discuss the bandwidth,
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I will refer to the relative bandwidth in octaves defined by

B = log2

(
fmax

fmin

)
, (3.3)

where fmax and fmin denote the high- and low-frequency end of the oper-
ation band, respectively. This broad operation band originates from the
superposition of different modes, for which the number of nodes in the
current distribution increases with increasing frequency [8]. To illustrate this,
we have calculated the current distribution again, however, at a frequency
of f = 100 THz, where for a helix with only one pitch, coupling is weak.
The left panel in Figure 3.4 clearly shows that under normal incidence of
left-circular polarization a mode with two current nodes is excited. This
mode cannot be excited for a helix of only one pitch, due to the boundary
conditions given by the ends of the helix wire. When right-circular polariza-
tion is incident on this left-handed helix coupling is much less pronounced
and the currents are much lower as can be seen in the panel on the right.

For a more detailed discussion, I have plotted the moduli of the individual
Jones transmission and reflection matrices for a single-helix unit cell with
one pitch in Figure 3.5. Furthermore, to examine the effect of losses, we
have carried out additional calculations, where the constituent metal of the
helix was modeled as a perfect electric conductor (PEC). The results of are
shown in the left panels. As the lateral lattice period is smaller than the
wavelength, no higher diffraction orders other than the zeroth orders exist.
Therefore, without losses any light that is blocked from transmission is
reflected. As expected from Equation 2.59, the normal reflectances |rRL|2
and |rLR|2 are identical. The difference in transmission is therefore based
on a difference between |rLL|2 and |rRR|2, the polarization conversions in
reflection. In particular the conversion |rLL|2 reaches values of up to 95 %.

Conversions are also not negligible in transmission where |tRL|2 and |tLR|2
reach values of approximately 10%. For a polarizer application these conver-
sions are unwanted, as they will yield the undesired circular polarization,
even when only the desired polarization is incident. As we have neglected
the substrate in our calculations, our sample is invariant under inversion
of direction of propagation. Therefore, the Jones transmission matrix will
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Figure 3.4: In analogy to Figure 3.3, calculated current densities along
the helix wire are shown, here for a frequency of 100 THz. Both incident
circular polarizations, i. e., LCP and RCP are shown in the left and in the
right panel, respectively. The color indicates the sign of the current for this
fixed moment in time, while the thickness indicates the magnitude.

be symmetric (see Equation 2.56). In general, however, these conversions
will not be identical, especially in the presence of a substrate. While opti-
mized geometrical parameters might lead to slightly decreased conversions
in transmission, they cannot be fully eliminated for conventional helical
metamaterials as I will discuss in the next section. Such optimized geometri-
cal parameters have been discussed for conventional helical metamaterials
in detail through numerical calculations [65, 66].

From the right panels it becomes clear that losses lead to minor quantitative
changes, but are neither improving, nor hindering the performance of the
metamaterial significantly. We will see in the following section that this can
be fundamentally different for more complex helical metamaterials.

Instead of only varying geometrical parameters, more complex helical
metamaterial designs lead to even further improved performance. When
searching for such an improved design that yields a larger bandwidth or
a higher extinction ratio TRCP

TLCP
, nature delivers one inspiring and prominent
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Figure 3.5: (a) The squared moduli of the individual entries of the Jones
transmission matrix are depicted for the lossless case modeled by a perfect
electric conductor (left panel) and for finite losses modeled by a Drude
metal (right panel). The solid lines denote the normal transmittances and
the dashed lines denote polarization conversions. (b) In analogy to (a), the
squared moduli of the Jones reflection matrix are depicted.
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example, namely the DNA double helix. By intertwining two helices within
one unit cell, Yang et al. showed numerically that the performance of helical
metamaterials based on gold or aluminum double helices can be improved
considerably [67, 68]. This leads to a strong increase in bandwidth with a
slightly decreased average extinction ratio though.

To circumvent this trade-off, a different approach to increase the bandwidth
was introduced by Gansel et al. where the helix radius was tapered along
the helix axis, as depicted in Figure 3.1 [63]. The bandwidth in this design
was enlarged to values of approximately 1.5 octaves. At the same time, the
extinction ratio was improved. Care must however be taken, as this design is
not invariant with regard to the direction of propagation. Due to inherent
circular polarization conversions, the transmittance spectra for incoming
circular polarization are different depending on the direction from which
light impinges, making the design for a certain orientation optimal as either
a circular polarizer or a circular-polarization analyzer.

The optimized designs described above, namely intertwining two helices
within one unit cell and tapering the helix radius along the helix axis, can
be combined to yield a tapered double helix, introduced by Zhao et al. [69].
Here, extinction ratio and bandwidth were also improved simultaneously.
Nevertheless, all of these designs exhibit circular-polarization conversions, a
problem that we will tackle in the next section.
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3 .2 theory of n-helical metamaterials

3.2 Theory of N-Helical Metamaterials

In the previous section, I have introduced conventional helical metamaterials
that offer high extinction ratios and a large bandwidth. Undesired circular-
polarization conversions, however, cannot be fully eliminated. Here, I will
discuss a more complex class of helical-metamaterial designs that allows for
a complete elimination of these conversions, while at the same time offering
strong, broadband circular dichroism [70, 71]. Before we look at numerical
calculations, I introduce a symmetry-based analysis that is valid not only for
helical metamaterials but for all chiral metamaterials with certain symmetry
properties.

a

H

Figure 3.6: Unit cell with a single helix. The rotational symmetry is broken
and linear birefringence in introduced, indicated by the small black line,
leading to circular-polarization conversions.

Circular-polarization conversions are due to the fact, that the two circular-
polarization states are not eigenstates of the system. By taking a closer look
at the unit cell which is depicted in Figure 3.6, we can intuitively understand
this fact. The end of the helix wire together with the axis or center of the
helix define a direction in space that breaks the rotational symmetry and
thus introduces linear birefringence, indicated by the thin black line here.
Examining Equation 2.41, we see that the off-diagonal elements are caused
by linear birefringence, i. e., txx 6= tyy [72].

Recovering full rotational symmetry is, however, impossible if we want to
discuss metamaterials based on periodic arrays. Instead, we show that
by recovering any N-fold rotational symmetry, where N ≥ 3, circular-
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polarization conversions are completely eliminated. For this, we require
the linear Jones transmission and reflection matrices to be invariant under
rotations of ϕN = 2π

N . We use the rotation matrix

Ø

MN =

(
cos ϕN − sin ϕN
sin ϕN cos ϕN

)
(3.4)

and require N-fold rotational invariance for the Jones transmission matrix

Ø

t =
Ø

MN ·
Ø

t ·
Ø

M
−1
N . (3.5)

Solving this, yields two independent equations:

(txx − tyy) sin2 ϕN + (txy + tyx) sin ϕN cos ϕN = 0 (i)

(txx − tyy) sin ϕN cos ϕN − (txy + tyx) sin2 ϕN = 0 (ii)
(3.6)

For N ∈ {1, 2} the solution is trivial and no further knowledge on tij is
gained. On the other side, for any integer N larger than two sin ϕN is not
equal to zero. We can therefore divide the first equation by tan ϕN and after
adding (i) and (ii), we obtain txy = −tyx. This furthermore yields txx = tyy

and we end up with a simplified Jones matrix [70–72]:

Ø

t =

(
txx txy

−txy txx

)
. (3.7)

If
Ø

t is invariant under rotations of 2π
N for N ≥ 3,

Ø

t is also invariant under
rotations of any other angle. Clearly, linear birefringence has therefore been
eliminated. However, we are much more interested in the Jones transmission
matrix in circular-polarization basis and thus exploit Equation 2.38, which
yields

Ø

t
circ

=

(
txx + itxy 0

0 txx − itxy

)
. (3.8)

Therefore, I have shown that it is not necessary to recover full rotational
symmetry but any N-fold rotational symmetry with N ≥ 3 will completely
eliminate circular-polarization conversions [70, 71, 73]. In the same way, the
Jones reflection matrix can be derived. Furthermore, we know that due to
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reciprocity (see Equation 2.59) the diagonal elements of the reflection matrix
in circular-polarization basis are equal. As the off-diagonal elements have
been eliminated, this leaves a reflection matrix that is proportional to the
unity matrix:

Ør circ = rxx

(
1 0
0 1

)
. (3.9)

This is already an important finding, significantly different from what we
have seen for conventional helices. Any difference in circular-polarization
transmittances must therefore be due to a difference in absorption, as we
have also eliminated all conversions and reflectance is equal for both circular
polarizations. Furthermore, no higher diffraction orders than the zeroth
orders exist, as λ > a. For lossless media, one would therefore expect abso-
lutely no circular-polarizer effect.

Let us summarize these general findings:

• N-fold rotational symmetry for N ≥ 3 eliminates all circular-polarization
conversions, both in transmission and reflection.

• By further assuming only reciprocal constituent media, one obtains
polarization-independent reflectance.

• For lossless media no circular-polarization effect can occur, due to
conservation of energy.

Independently of the actual geometry, not only the unit cell must fulfill
N-fold rotational symmetry, but the overall structure. As we are considering
periodic arrays for which N-fold rotational symmetries with N = 5, 7, 10, . . .
do not exist, I will limit the discussion in the following to multiples of N = 3
and N = 4.

First of all, it is interesting to point out the difference to linear polarizers
here. The famous wire-grid polarizer, for example, does not exhibit any
linear-polarization conversions. Despite the lack of polarization conversions,
both in reflection and in transmission, the undesired linear polarization
can be blocked by simply being reflected. Therefore, even without or with
negligible losses a high extinction ratio can be achieved. No matter what
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we choose as our metamaterial design, the identical principle of operation
cannot be achieved with constituent reciprocal materials.

a a

Figure 3.7: Larger unit cell with four individual rotated single helices, thus
recovering 4-fold rotational symmetry.

Even though these are general findings that are valid for all chiral-metamat-
erial designs, I now turn back to helical metamaterials. There is more than
one way to recover N-fold rotational symmetry for helical metamaterials.
One example is depicted in Figure 3.7 where the lateral size of the unit cell
has been double to 2a and four helices are respectively rotated by 0, 90, 180,
and 270 degrees. The drawback of this design is the increased lattice period
that also leads to an increase of minimum wavelength by a factor of two.

Instead, I will discuss unit cells of unchanged lateral sizes in which N
helices with one mutual have been intertwined, calling the resulting design N-
helical metamaterial [70, 71, 74]. This might seem like a minor modification
to conventional helical metamaterials. Due to our symmetry-based analysis,
we however expect fundamental differences.

At first we consider N = 4, i. e., quadruple helices, in the same quadratic
array that I have discussed in the previous section. The corresponding unit
cell is depicted in Figure 3.8. We have carried out numerical calculations,
corresponding to those for conventional helical metamaterials, again for the
cases of a lossless constituent metal, modeled by a perfect electric conductor,
and the case of a Drude model for gold with finite losses (ωp = 1.37 · 1016 s−1,
γ = 2 · 1014 s−1). The former case, depicted in the left panels of 3.9, is fun-
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a

Figure 3.8: N = 4 helical-metamaterial design where four helices with a
mutual helix axis have been intertwined within one unit cell, thus recovering
4-fold rotational symmetry.

damentally different from conventional helical metamaterials. Conversions
have been fully eliminated, both in reflection and in transmission which was
the original goal. Furthermore, not only the normal reflectances but also the
normal transmittances are equal. The former results from reciprocity and
the latter is therefore due to conservation of energy.

Let us consider the more realistic case of a Drude metal with finite losses,
depicted in the right panels. Conversions are nevertheless zero as it results
solely from N-fold rotational symmetry. Furthermore, the reflection spectra
exhibit only minor quantitative differences to the lossless case.

More importantly, circular-polarization transmittances are different and
show strong circular dichroism over a large frequency range. Here, the term
circular dichroism is appropriate, as the difference in transmittance is due to
a difference in absorption, just as I have defined the term in Section 2.4.

In this context, I note that these results are well known and expected for
uniaxial bianisotropic and biisotropic media. However, as the operation
wavelength is not much larger than the lattice period, one cannot simply
apply these results. Our symmetry-based analysis does not assume effective
materials and is therefore also valid for wavelengths close to Wood’s anomaly.

While certainly much stronger than in natural materials, circular dichroism
observed in N = 4 helical metamaterials with only one pitch is insufficient
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Figure 3.9: In analogy to Figure 3.5, the squared moduli of the Jones trans-
mission (a) and reflection (b) matrix have been plotted. Qualitative differ-
ences are visible for the case of a lossless constituent metal as depicted in
the left panels in comparison to a Drude metal as shown in the right panels.
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Figure 3.10: The polarization-conserving transmittances are plotted for an
increasing number of pitches, i. e., for Np = 1, Np = 2, Np = 3, and Np = 6.
The yellow shaded region indicates the polarization band forming for high
numbers of pitches. Conversions have been neglected in these plots as they
are strictly zero.

for polarizer applications. Similar to the case of conventional helical metama-
terials, we slowly increase the number of pitches as depicted in Figure 3.10.
Even though the extinction ratio is increased successively, a much larger
number of pitches is necessary in order to obtain similar performance. This
is expected, as the undesired circular polarization cannot simply be reflected
but must be absorbed. For the case of Np = 6 pitches a large extinction is
achieved with a bandwidth of 1.8 octaves, indicated by the yellow-shaded
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Figure 3.11: Comparison of N-helical metamaterials with N = 4 (left panels)
and N = 3 (right panels). In the latter case an underlying hexagonal lattice
is necessary to eliminate circular-polarization conversions. Corresponding
numerical calculations depicting the polarization-conserving transmittances
are depicted below. In the right diagram the spectra for N = 4 have been
added as grey lines as guide to eye.

region and unmatched by any other chiral metamaterial.
Before I will discuss geometrical optimizations for N-helical metamate-

rials in the next section, we first consider the case of N = 3 which is the
lowest degree of discrete rotational symmetry that fully eliminates circular-
polarization conversions. In contrast to N = 4, only three helices have to be
intertwined within one unit cell, thus facilitating fabrication for operation at
visible or near-infrared frequencies considerably. As mentioned previously,
the underlying translational lattice must fulfill the same discrete rotational
symmetry. Otherwise, the entire system will inherently exhibit linear bire-
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fringence and thus circular-polarization conversions again [75]. Therefore,
we will consider N = 3 helices arranged in a hexagonal lattice, as depicted
in Figure 3.11.

For comparison, the case of N = 4 is depicted on the left-hand side. Corre-
sponding numerical calculations are depicted below, showing no qualitative
changes, especially for the transmittance of RCP (blue line). The extinction
ratio for N = 3 is slightly lower, which is to be expected, due to the lower
filling fraction and thus decreased absorption. Conversions are not shown in
the diagrams as they are dead zero, supported by our symmetry arguments.

In conclusion, we have found that we can eliminate undesired circular-
polarization conversions with N-helical metamaterials, while at the same
time achieving strong and broadband circular dichroism with unmatched
bandwidths. However, this is not simply a minor adjustment, but care must
be taken as certain limitations apply due to the different principle of opera-
tion. More complex unit cells and a much higher number of axial pitches
is required to achieve extinction ratios comparable to those of conventional
helical metamaterials. In the next section geometrical improvements for
N = 3 helices will therefore be discussed.
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3.3 Optimizing N-Helical Metamaterials

So far I have discussed the effect of recovering N-fold rotational symmetry
and we have seen that while circular-polarization conversions are eliminated,
the extinction ratio of N-helical metamaterials is inferior to that of conven-
tional helical metamaterials. Until now I have only discussed one set of
standard geometrical parameters that yielded good results for single helices.
The question that naturally arises is: can we find different geometrical pa-
rameters for N-helical metamaterials? For this we again have considered
the case of N = 3. The following numerical calculations have been carried
out in the scope of a cooperation with the group of S. Burger (Zuse Institute
Berlin) using JCMsuite (JCMwave), which is based on a frequency-domain
finite-element method [71].

The most crucial geometrical parameter is the helix radius rH. In the case
of conventional helical metamaterials an increasing helix radius has led to
both a better extinction ratio and a larger bandwidth [65]. The only downside
here was a strong increase of polarization conversions in transmission to
values of up to 16%. As circular-polarization conversions are, however,
strictly zero for N-helical metamaterials an increasing helix radius should
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Figure 3.12: Numerically calculated spectra for different helix radii rH.
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intuitively be a win-win situation.
The following calculations have been carried out for the same geometrical

parameters as before, however with Np = 6 pitches and varying the helix
radius from 100 nm to 400 nm. For a small number of selected values, the
transmittance spectra for left-circular (LCP) and right-circular polarization
(RCP) are depicted in Figure 3.12.

Let us first examine the case of LCP in the left panel. Here, the bandwidth
is strongly increased to previously unmatched values of more than two oc-
taves, spanning across almost the entire mid-infrared spectrum. Additionally,
the transmittance is also slightly decreased as desired. When examining
the transmittance for RCP on the other hand, we observe a strong decrease
here too. Even though a similar behavior was found for conventional helices
in Reference [65], it is much more pronounced here. Therefore, increasing
the helix radius does not lead to an improved extinction ratio for N-helical
metamaterials.

As a variation of the axial pitch or the diameter of the helix wire have much
smaller impact on the transmittance spectra, I will not discuss them here in
detail. Instead, I consider a geometrical optimization that had also lead to
significant improvement in the case of conventional helical metamaterials:
tapering the helix radius along the helix axis. In contrast to Reference [63],
the radius rH(z) along the helix axis is increased linearly:

rH(z) = (r2 − r1)
z

NpH
+ r1. (3.10)

We keep r1 fixed at 100 nm, the minimum value that I have previously
discussed for non-tapered triple-helices, and introduce the taper ratio η = r2

r1
:

rH(z) = (η − 1)
z r1

NpH
+ r1. (3.11)

For selected values of η, the corresponding transmittance spectra are depicted
in Figure 3.13. By increasing the taper ratio η similar bandwidths are
achieved as before for the largest radius in the non-tapered case. This
strongly suggests that the bandwidth is governed mainly by the maximum
radius, rather than the radius function rH(z).
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Figure 3.13: Numerically calculated spectra for tapered helices with different
taper ratios r2/r1.

In order to analyze the results more quantitatively, I have first normalized
the transmittance of LCP to that of RCP and have then fitted a box function
to extract a value for the relative bandwidth for operation. Furthermore,
the transmittances were averaged inside that frequency range. The ratio
of the two averaged transmittances then yields the extinction ratio 〈TRCP〉

〈TLCP〉
.

These extracted values are plotted in Figure 3.14 for the non-tapered case
on the left-hand side and for the tapered case on the right-hand side. In
the non-tapered case, the bandwidth increase to values of up to 2.7, but the
extinction ratio shows now significant enhancement for larger helix radii.
On the contrary, in the tapered case the increasing taper ratio leads to an
enhancement simultaneously for the extinction ratio and the bandwidth.
Note, that the opening angle of the depicted tapered triple-helix is strongly
exaggerated. All calculations have been carried out for Np = 6 pitches. The
maximum taper ratio therefore corresponds only to an opening angle of 2.9◦.
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Figure 3.14: A summary of extracted values for the case of non-tapered (left
panels) and tapered helices (right panels) are shown. In the upper diagrams,
the corresponding averaged transmittances are shown in dependence of the
helix radius or the taper ratio, respectively. Below, extinction ratio (purple)
and the relative bandwidth (turquoise) are shown.

Finally, I will briefly discuss the effect of an increasing number of pitches
Np. Neglecting reflections and boundary effects and, thus, assuming only the
effect of bulk absorption, one would expect the square of the transmittance
when the number of pitches is increased by a factor of two. To examine this,
we compare transmittance spectra for Np = 12 and η = 4 to the squared
previously calculated spectra (Np = 6). The original calculation with Np = 6
is depicted in black and our simple approximation is shown by the grey
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dashed line. The numerical calculation for the case of Np = 12 is depicted
by a red and a blue line, respectively for LCP and RCP. Clearly, especially
for LCP the calculation is in very good agreement with the approximation.
In the case of RCP, however, the approximation yields lower transmittances.
This is due to the additional reflectances in the approximation that are not
present for a bulk. Note that this really is only a rough estimation as we
have kept the taper ratio constant, but have increased the number of pitches
and have therefore also varied the opening angle of the taper. As I have
discussed before, however, especially the bandwidth is mainly governed by
the maximum radius along the tapered helix. This is well reproduced, seeing
that the bandwidth remains nearly the same when doubling the number of
pitches.
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Figure 3.15: The effect of an increasing number of pitches is illustrated
for tapered triple-helices with taper ratio r2/r1 = 4. Spectra are shown
for Np = 6 and Np = 12 pitches. Furthermore, the transmittances for six
pitches have been squared to give a rough approximation for a pure bulk
effect, depicted by the dashed grey line.

In conclusion, I have shown in this section that for non-tapered N-helical
metamaterials the bandwidth and extinction ratio cannot be optimized si-
multaneously, in large contrast to conventional helical metamaterials. By
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introducing tapered N-helices, however, we have managed to achieve previ-
ously unmatched bandwidths of more than two octaves while at the same
time enhancing the extinction ratio. Despite this improvement and the com-
plete absence of polarization conversions, the polarizer performance is below
that of conventional helical metamaterials and many orders of magnitude
worse than what is achievable with wire-grid polarizers for linearly polarized
light. Here, even more complex designs might bring the extinction ratio of
helical metamaterials with N-fold rotational symmetry to competitive values.

We have to keep in mind though, that due to the fundamentally differ-
ent principle of operation, i. e., absorption of the undesired polarization
instead of reflection, the polarization effect is based on true circular dichro-
ism. Compared to other chiral metamaterials with N-fold symmetry and
especially in comparison with natural chiral materials, such pronounced
circular dichroism over a bandwidth of more than two octaves is unmatched.
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3.4 Designs beyond Polarizer Applications

In this final theoretical section, I will look at other possible applications for
helical metamaterials beyond the simple broadband polarizer. For exam-
ple, N-helical metamaterials have recently been proposed to serve as chiral
near-field sources [76]. For this, N = 4 helices are not excited by circularly
polarized, but by linearly polarized light, propagating in a direction orthogo-
nal to the helix axis as depicted. The induced currents in the helices lead to a
magnetic field in the enclosed volume that is either parallel or antiparallel to
the electric field, depending on the handedness of the helices, thus, leading
to strong chiral near-fields within the helical volume that could be employed
for sensing of chiral molecules.

Here, we turn away from N-helical metamaterials for the scope of this
section and instead introduce a completely different helical-metamaterial
design where we do not eliminate circular-polarization conversions but
rather enhance them purposefully.

We start by a small gedankenexperiment: Let us assume, that we let light
propagate through an array of left-handed single gold helices and after a
distance d, that shall be sufficiently large, through an array of right-handed
gold helices with identical geometrical parameters. Both, left-handed and
right-handed helices shall consist of 1.5 axial pitches each and from what we
have learned in Section 3.1, over a broad frequency band we expect mainly
right circularly polarized light after passage through the first array, as left-
circularly polarized light couples to the left-handed helices and is reflected.
As the second array, however, consists of right-handed helices, we expect
the remaining light to be also reflected in that frequency band, due to the
matching handedness. Similar to the case of two crossed linear polarizers one
would therefore expect very little transmission for both circular polarizations.

What happens though if we move these two arrays of helices closer and
closer together until they are finally connected? The resulting unit cell is
depicted on the right-hand side in Figure 3.16. A small connection arc
with radius rC has been added to ensure a continous gold wire without
any sharp bends. Furthermore, a set of geometrical parameters feasible
for later on fabrication was used in the scope of the following numerical
calculations. The parameters are a lattice period of a = 2µm, a helix radius
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of rH = 500 nm, a wire radius of rW = 250 nm, and an axial lattice period of
H = 2µm. If we examine the total transmittances for LCP and RCP we find
that LCP is blocked, as we would have expected, but the transmittance for
RCP is unexpectitely high and on the order of approximately 80 %.
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Figure 3.16: The novel helical-metamaterial design consisting of two coupled
helices with opposite handedness is depicted on the right. For the indicated
direction of propagation, the total transmittances for LCP and RCP have
been calculated and are depicted in the diagram on the left. Surprisingly,
high total transmittance for RCP is observed.

The reason for this lies in the circular-polarization conversion from RCP to
LCP as we can see if we examine not the total transmittances but the squared
moduli of the four individual elements of the Jones transmission matrix in
circular-polarization basis. These are depicted in Figure 3.17. The normal
transmittances are low, as expected for the case of orthogonal polarizers.
In contrast to all previous metamaterial designs we have seen so far, the
circular-polarization conversion from RCP to LCP is surprisingly high over a
large band where it reaches values of 70 to 80 %.

Inspired by the asymmetry of the Jones matrix, i. e., the large difference of
the off-diagonal elements, the term asymmetric transmission has been coined.
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Figure 3.17: Squared moduli of the Jones transmission matrix are depicted.
While the diagonal elements are low, the polarization conversion from RCP
to LCP reaches values of up to 80 %.

One must however be careful not to confuse this term with the principle
of an optical isolator, where by the use off non-reciprocal media, the total
transmittance for unpolarized light varies depending on the direction of
propagation. As I discuss reciprocal constituent materials only, the sum of
all normal transmittances and conversions will always be equal for forward
and reverse propagation direction, independent of the chosen polarization
basis, as can easily be verified by Equation 2.56. Let us, however, take a
closer look at the total transmittances for both directions of propagation. In
forward direction these are given by

TLCP = |tLL|2 + |tRL|2 ,

TRCP = |tLR|2 + |tRR|2 ,
(3.12)

as I have introduced them at the beginning of this chapter. For the reverse
propagation we can exploit Equation 2.56 to substitute the coefficients of

Ø

t r

with those of
Ø

t :

TLCP,r = |tLL,r|2 + |tRL,r|2 = |tLL|2 + |tLR|2 ,

TRCP,r = |tLR,r|2 + |tRR,r|2 = |tRL|2 + |tRR|2 .
(3.13)
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So let us now examine the difference in the transmittances for each circular
polarization depending on the direction of propagation:

∆TLCP = TLCP − TLCP,r = |tRL|2 − |tLR|2 ,

∆TRCP = TRCP − TRCP,r = |tLR|2 − |tRL|2 .
(3.14)

By exploiting reciprocity we find that an asymmetry in the Jones matrix also
leads to a difference in transmission for each circular polarization depending
on the direction of propagation. Possible applications like diode-like devices
have been proposed for metamaterials with such asymmetric Jones matrics
[77].

Strong asymmetric transmission has been achieved experimentally for
linear polarization with broadband operation [78, 79] and many more de-
signs have been proposed [80–84]. For circularly polarized light very few
metamaterial designs with asymmetric transmission have been reported so
far, with generally either small operation bandwidth or small asymmetry ∆T
[85–89].

But how can we understand this very high, asymmetric polarization
conversion? From our gedankenexperiment earlier, we can already deduce, that
it must be due to some sort of coupling between the two oppositely-handed
helices. To examine this effect in detail, we have employed the commercial
software package COMSOL Multiphysics to calculate the currents along
the metal wire and we have done so at a frequency in the operation band,
namely at 75 THz. In Figure 3.18(a) the current density is depicted for the
case of a unit cell with a single right-handed helix with 1.5 pitches. I have
already discussed similar calculations in Section 3.1. Nevertheless, I want to
focus on a particular detail that we have previously ignored. As intuitively
expected, incident left-handed circular polarization (LCP) does not couple
to the helix and currents are rather small along the entire helix wire. On
the contrary, when the handedness of the incoming circular polarization
matches that of the helix, in this case RCP, pronounced coupling to the helix
is present and strong currents are observed. The crux, however, is that the
currents are mainly large in magnitude at the end of the helix from where
the light impinges.

With this in mind, let us now examine our new design, the two coupled
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Figure 3.18: Similar to the calculations before in Section 3.1, the current
densities along the helix wire have been calculated. In (a) the case of a
single helix with 1.5 pitches is depicted under incident LCP (left panel) and
incident RCP (right panel). Again, the color indicates the sign of the current
for this fixed moment in time, while the thickness indicates the magnitude.
In a similar way, in (b) the current densities have been calculated for the
converter design.
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helices within one unit cell. We therefore add a left-handed helix on top
of the previously existing right-handed helix. On the left-hand side, again
LCP is incident. There is no real surprise here, as the incident left-circularly
polarized light couples to the left-handed helix and is reflected. As large
currents are almost entirely limited to the very top of the structure, the
bottom, right-handed helix does not play a role at all.

Let us now look at incident right-circular polarization, for which we expect
strong conversions to left-circularly polarized light based on our numerically
calculated spectra. The incident RCP couples to the lower right-handed helix,
but as currents are now large in close vicinity to the connection arc, coupling
between the two helices is evident and strong currents are also present in the
left-handed helix. We have therefore excited the left-handed helix which will
now emit into the far-field and it will do so with its respective handedness,
i. e., LCP, due to time-reversal symmetry [90].

Finally, the direction of this emission is also of importance for a complete
understanding. As currents in the left-handed helix have been excited only
in close vicinity to the connection arc, emission into the reverse direction,
i. e., reflection is blocked from the upper part of the helix. It will therefore
emit only into the forward direction, thus completing the conversion from
RCP to LCP.

To further illustrate the effect and necessity of coupling, we have carried
out a series of numerical calculations, where the helical structure has been cut
into two halves at the center of the connection arc. The circular-polarization
conversion from RCP to LCP was then calculated for different separation
distances between the two halves, starting at 0 nm, i. e., connected helices,
and going up to 1µm. The results are depicted in Figure 3.19. Clearly,
for most of the operation band, the conversion quickly decreases even
for small separation distances. Therefore, most of the coupling can be
assigned to direct coupling of the currents. Interestingly, however, at lower
frequencies the conversion remains above 50 % even at separation distances
of 1µm. Keeping in mind that the fundamental mode is excited at 45 THz
which also leads to a strong magnetic dipole moment, similar to a split-
ring resonator, one possible explanation for this effect could be long-range
magnetic coupling.
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Figure 3.19: False-color plot depicting the conversion from RCP to LCP for
a seperated converter structure with a certain separation distance.

Additional numerical parameter sweeps are included in the Appendix A
to illustrate the effects of varying for example the number of pitches or the
helix radius.

To conclude this section, we recall that a metamaterial consisting of both
right-handed and left-handed helices must not necessarily exhibit equal
transmission for left- and right-circularly polarized light. While the normal
transmittances are in fact equal – minor differences occur only due to the
presence of the substrate – the modulus of the two circular-polarization
conversions can in fact be very different, leading to strong asymmetric
transmission. We have seen that the introduced design exhibits such circular-
polarization conversions and asymmetric transmission of around 80 % over
a large bandwidth of approximately one octave, unmatched by any other
reported design. I have explained this behavior by numerical calculations
and have assigned it to a particular coupling effect based on electric coupling,
but also possibly magnetic-dipole coupling.
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With this, I also conclude the chapter on the theory of helical metamateri-
als. I have introduced a number of different helical-metamaterial designs,
all predicated on the basic building block, the single helix. By combining
multiple helices within a unit cell, be it by intertwining them or by con-
necting oppositely-handed helices, new chiro-optical effects have arisen.
Circular-polarization conversions are not merely a side-effect anymore. We
can either fully eliminate them for conversion-free polarizer operation or
specifically enhance them to allow for strong asymmetric transmission. In
the same way that these new features are appealing, fabrication of even
more complex helical-metamaterial designs is challenging. In the following
chapter the experimental methods for fabrication and characterization are
introduced, before we get back to the different metamaterial designs that we
have fabricated for operation at mid-infrared frequencies.
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Chapter 4

Experimental Methods

Illustration of the general direct laser writing workflow.

In this chapter, I will first review the principle of direct laser writing and briefly
touch upon the diffraction limit for three-dimensional laser lithography. Furthermore,
I will explain the concept of stimulated-emission-by-depletion-inspired direct laser
writing (STED-DLW). Subsequently, the fundamentals of electrochemical deposition
of metals will be explained, as well as the electrochemical gold deposition process
employed in the scope of this thesis. I will introduce a novel fabrication approach for
helical metamaterials, based on STED-DLW. Finally, the optical characterization at
mid-infrared frequencies is explained.
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4.1 Laser Lithography

4.1.1 Fundamentals of Direct Laser Writing

The success story of metamaterials was mainly possible, because fabrication
techniques, for example, electron-beam lithography were already well es-
tablished and have allowed for realizing complex metallic structures with
sub-micron feature sizes, thus enabling operation at visible or infrared fre-
quencies. Nevertheless, fabrication processes based on electron-beam lithog-
raphy can only yield two-dimensional metamaterials, therefore limiting not
only possible effects and applications to one spatial direction. Creating bulk-
like metamaterials by self-assembly techniques has been proposed, with the
advantages of scalable fabrication and unmatched feature sizes [91]. On the
downside, however, self-assembly is limited in design freedom.

By successively applying electron-beam lithography with subsequent
metal-evaporation processes, multiple layers of a two-dimensional metamat-
erial can be stacked to form bulk-like metamaterials. Despite the possibility
to vary the design from layer to layer, this rather time-consuming approach
does not yield full three-dimensional freedom. Geometrical structures like
helices cannot be realized by such layered metamaterial designs. The fab-
rication of three-dimensional metamaterials therefore remains a challenge
[32].

Here, we will employ a technique called “direct laser writing” (DLW) that
can be seen as the high-resolution analogue to conventional macroscopic
3D printing [92, 93]. DLW allows for the fabrication of almost arbitrary
three-dimensional structures with sub-micron feature sizes [94–96]. The high
resolution is achieved by a strongly focused laser that leads to a change in
solubility inside a liquid or solid photoresist. Before examining details and
limitations of direct laser writing, I will first discuss the general principle
and workflow.

Figure 4.1 illustrates the workflow of direct laser writing in three basic
steps. In a first step, a photoresist is either spin-coated or drop-cast onto a
substrate. The laser is then tightly focused into the photoresist, where in
the focal volume it will induce a change of solubility. I will consider almost
exclusively negative-tone photoresists in which this change in solubility is
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cba

Figure 4.1: Illustration of the general workflow of direct laser writing. (a)
A substrate is first covered by a liquid or solid photoresist, by either drop
casting or spin coating, respectively. (b) By strongly focusing a laser into the
photoresist, local polymerization is initiated. Three-dimensional structures
can be created by moving the focus relatively to the substrate. (c) Rinsing
the sample in a solvent washes away unexposed photoresist, while the
polymerized resist remains.

achieved by local polymerization of a monomer contained in the photoresist.
By then moving the relative position of the focus with regard to the substrate,
almost arbitrary three-dimensional structures can be created. Apart from
limitations due to resolution that will be discussed later on, the choice of
geometry is only limited by the fact that free-floating structures cannot be
created. In a final step, the remaining, unexposed photoresist is washed
away with a solvent, leaving only the insoluble three-dimensional polymer
structure. The individual components and fabrication steps will now be
explained in more detail.

The Photoresist

The photoresists that I will consider in the scope of this thesis shall consist
of a transparent monomer, usually based on multi-functional acrylates that
can undergo radical-based polymerization. Furthermore a photo-sensitive
initiator molecule, the photoinitiator, is added to the monomer. The excitation
energy of the photoinitiator molecule is on the order of 3 eV. After excitation
the molecule will decay, giving rise to two or more radicals that in turn
initiate the chain reaction. Most photoresists, exhibit a reasonably high
threshold, meaning that a certain minimum exposure dose must be reached
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in order to obtain the necessary degree of insolubility.

The Exposure Laser

The large majority of direct laser writing approaches is based on multi-
photon exposure. To understand the necessity of this nonlinear absorption
process let us first consider a purely linear excitation and polymerization
process. This also implies excitation of the photoinitiator via one-photon
absorption (1PA). The wavelength of the laser λ1PA must thus be chosen so
that it corresponds to the excitation energy of the initiator molecule ∆E

λ1PA =
hc
∆E

. (4.1)

In this case, low photoinitiator concentrations are crucial, as otherwise
the intensity would strongly decrease along the optical axis. We choose
a coordinate system where the z-axis is parallel to the optical axis. The
intensity of the laser shall be denoted as I(z). I use the term intensity
here synonymous for the squared modulus of the electric field |ÑE|2. This
is not completely accurate, as the intensity which is the time-averaged
Poynting-vector

〈Ñ
E ×

Ñ

H
〉

is in general different from the time-averaged
squared modulus of the electric field

〈
|ÑE|2

〉
. For the sake of convenience,

however, I will use the terms interchangeably here, as it is often done in
literature.

The number of photons absorbed in a volume element at (x, y, z) is pro-
portional to the intensity I(x, y, z), which reaches maximal values at the
focus. The integral of the intensity in each z-slice, however, is constant as we
assume low photoinitiator concentration and therefore constant transmitted
power along the optical axis:∫

I(x, y, z)dx dy = P(z) = const. (4.2)

Therefore the number of absorbed photons is also constant in each z-slice.
If we now were to write a simple plane with large enough dimensions,
located at z = z0, points below and above that plane would experience the
exact same exposure and we would not write a plane but rather a block.
Nevertheless, direct laser writing based one-photon absorption can still yield
certain three-dimensional designs, due to the threshold behavior or the
nonlinearity of subsequent processes leading to polymerization [97].
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To allow for full three-dimensional writing capability, nonlinear multi-
photon excitation is employed. While it is not clear how large the degree of
nonlinearity is precisely in many photoresists, I will limit my discussion here
to the case of two-photon excitation (2PA), as the findings are qualitatively
the same for multi-photon excitations of higher order. The laser wavelength
is chosen such, that

λ2PA = 2
hc
∆E

. (4.3)

Here, ∆E must denote the fundamental energy transition, as otherwise, the
normally very weak two-photon absorption would be dominated by much
stronger one-photon absorption. The exposure dose, i. e., the number of
absorbed photons, is now proportional to the square of the intensity. In
contrast to what we have seen before, the integrated exposure dose in each
z-slice is not constant: ∫

I(x, y, z)2 dx dy 6= const. (4.4)

This, in combination with the previously discussed threshold behavior, allows
for localized polymerization in all three dimensions and therefore arbitrary
three-dimensional designs.

In reality, two-photon absorption cross sections are very small and the
one-photon absorption cross section is never completely negligible. Pulsed
excitation lasers with tightly confined focuses in time on the order of a
few hundred femtoseconds, yield high peak intensities and are therefore
favorable for direct laser writing applications.

Focusing Optics

High-numerical aperture objective lenses, typically on the order of NA =

1.2− 1.4, are used to achieve sub-micron resolution. Lower numerical aper-
tures lead to a large increase in the axial dimension of the focus. Therefore,
one obtains also a worsened aspect ratio, defined as the ratio of axial to lat-
eral dimension of the focus. Naturally, a high aspect ratio of the point-spread
function also translates to a high aspect ratio of the polymerized volume ele-
ment, that we will call voxel in style of the word pixel for a two-dimensional
picture element. I will discuss the term resolution and the importance of a
high numerical aperture of the focusing optics in more detail in Section 4.1.2.
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a

40 µm

b

10 µm

Figure 4.2: Scanning electron micrographs of two examples for polymer
structures created with direct laser writing. (a) Mechanical metamaterial
exhibiting a negative Poisson’s ratio. The scale bar in the inset corresponds
to 5µm (courtesy of T. Bückmann). (b) Waveguide and disc resonator,
created with direct laser writing, both containing nanodiamonds that serve
as single-photon sources.

Some examples of three-dimensional polymer structures created via direct
laser writing are depicted in the scanning electron micrographs in Figure 4.2.
In the left-hand image a mechanical metamaterial with a negative Poisson’s
ratio is depicted [98]. In this case, so called “Dip-in” direct laser writing was
employed, where instead of immersion oil the photoresist itself was used as
an immersion medium into which the objective lens was immersed. This
allows us to eliminate height-dependent abberations and height limitations
due to the finite working distance. In Figure 4.2(b) nanodiamonds with
inherent nitrogen-vacancy centers have been dispersed in the photoresist
[99]. These function as single-photon emitters that can be included via
direct laser writing in integrated-optics designs. We see that the possible
applications for direct laser writing are numerous [93]. Nevertheless, in
the following section I will discuss certain limitations with regard to the
achievable resolution.
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4.1.2 Breaking the Diffraction Limit

In the previous section, I have discussed the general workflow of direct laser
writing and have seen that via multi-photon absorption it is possible to create
arbitrary three-dimensional structures. I have furthermore briefly mentioned
the threshold of the photoresist that causes polymerization only in a confined
volume where the intensity of the excitation laser is sufficiently high. In
principal, one can slowly decrease the power of the excitation laser so that
the maximum intensity in the focus approaches the threshold intensity. The
exposed volume will then also decrease to arbitrarily small sizes. In reality,
however, small fluctuations in either the laser power or in the threshold
intensity, due to thermic effects for example, will not allow arbitrarily small
structures. Nevertheless, there is no fundamental lower limit for the feature
size, e. g., size of a voxel or line.

One could now be inclined to think that if it is possible to write arbitrarily
small features, one can also place them arbitrarily close together. We will
see, however, that there is a minimum distance when placing two voxels or
lines next to each other, below which the two objects cannot be distinguished
anymore. A very similar concept was formulated for imaging in microscopy
more than 150 years ago by Ernst Abbe in his famous equation often called
Abbe’s diffraction limit:

axy =
λ

2NA
(4.5)

Abbe’s formula states that when imaging a grid of lines, the minimum
distance between those lines axy for which they can still be seen as seperate
lines is proportional to the imaging wavelength λ and inversely proportional
to the numerical aperture NA. While the results are very similar, one cannot
simply use Abbe’s formula when discussing the resolution of direct laser
writing based on two-photon absorption.

First, we must clarify why there is a lower limit at all. A thorough
discussion can be found in References [100] and [101]. Here, I will outline
the most important findings to give the reader a basic understanding of
the involved mechanisms in diffraction-limited and -unlimited direct laser
writing.

While simultaneous exposure of two parallel lines is similar to the case
of imaging, subsequent exposure of two parallel lines does not seem to be
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bound by diffraction limits. This would in fact be true, if the photoresist
lacked any form of “memory”, i. e., any region that had previously been
exposed only to intensities below the threshold intensity, would still be
in its initial state. However, due to good agreement of experiments and
calculations for the expected lower limit, photoresists do tend to have this
memory effect.

One can partially explain the threshold behavior for example, by a mini-
mum chain length or cross linking in the polymerized structure in order to
yield the necessary insolubility of the final structure. In the regions exposed
with intensities below the threshold intensity, polymerization still occurs, but
the degree of insolubility is not achieved after a single exposure. By exposing
a volume several times with intensities below threshold intensity, the expo-
sure doses add up and the volume will be polymerized. To determine the
minimum lateral distance for two voxels to be separated, one can calculate
the electric field E(x, y, z) in the focus and then add up the moduli by the
power of four, as we assume two-photon absorption, for a voxel placed at
(0, 0, 0) and one placed at (axy, 0, 0). Folliwing Sparrow’s criterion, we define
the critical distance as the distance where the added squared intensities
|E(x, y, z)|4 + |E(x− axy, y, z)|4 yield a flat-top profile around x = axy/2. For
common experimental parameters (λ = 800 nm, NA = 1.4, and circular
polarization), one obtains a critical distance, which we will from now on
call lateral resolution of axy = 200 nm. Similarly, the axial resolution can be
calculated to az = 500 nm [101].

It is also possible to adapt Abbe’s diffraction limit to the case of two-
photon absorption, by assuming Gaussian intensity distributions. Two-
photon absorption then should lead to an increased confinement by a factor
of
√

2, thus giving

axy =
λ

2
√

2NA
= 202 nm

az =
λ ·AR

2
√

2NA
= 505 nm

(4.6)

where AR denotes the aspect ratio of the focal volume. Clearly, these
values are very close to the ones calculated numerically via the generalized
Sparrow criterion for two-photon absorption and are therefore a very good

78



4 .1 laser lithography

approximation for the resolution of a lithography system.
While in mechanics, biology, or integrated optics the resolution of direct

laser writing is more than sufficient, it restricts operation for photonic crystals
and optical metamaterials to near-infrared or mid-infrared frequencies. In
order to break this diffraction limit, we add a second laser to the direct laser
writing setup that is used for stimulated emission depletion (STED) of the
excited photoinitiator molecules.

STED-microscopy was first introduced by Stefan Hell in 1992 [102]. In
microscopy, a fluorescent dye molecule is excited via one-photon absorption
with a first laser, the excitation laser. Before the molecule can fluoresce, a
second laser, which we will call the depletion laser, with a wavelength at
the short-wavelength edge of the fluorescence spectrum, brings the molecule
back into the ground state by stimulated emission. By shaping the depletion-
laser focus appropriately, fluorescence can be confined to a much smaller
volume. By spectral filtering, one can finally easily discriminate between
the desired fluorescence and the depletion wavelength. With this, lateral
resolution down to values of 5 nm has been demonstrated [103].

In STED-inspired direct laser writing on the other hand, the goal is to con-
fine radical formation by the photoinitiator molecule to a small volume. The
focal shapes of the two employed lasers are depicted in Figure 4.3(a). Just as
in the case of conventional direct laser writing, a near-infrared femtosecond
laser is used for two-photon excitation. The displayed squared modulus of
electric field has been calculated for a wavelength of λexc = 810 nm and a
numerical aperture NA = 1.4, using the focus calculation method described
in Reference [100]. After two-photon excitation into some higher state, the
molecule will relax non-radiatively to the S1 state as depicted in the Jablonski
diagram in Figure 4.3(b). From here, without the presence of a depletion
laser, the molecule can on one hand go back down to the ground state by
spontaneous emission. On the other hand, it can also undergo intersystem-
crossing into an excited triplet state, from which it decays to form radicals
and initiate polymerization. In the same way that fluorescence has been
suppressed in STED-microscopy, we now suppress both fluorescence and
inter-system crossing by stimulated emission depletion of the excited pho-
toinitiator molecule, thus also suppressing polymerization. Of course, we do
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Figure 4.3: (a) Calculated squared moduli of the electric field |ÑE|2 for
excitation and depletion focus for an objective lens with numerical aperture
NA = 1.4. The left and right panels depict x-y and x-z cuts for the the
excitation laser at λ = 810 nm and the depletion laser at λ = 532 nm,
respectively. A cylindrical disk-shaped phase mask is used to achieve the
point-spread function of the depletion focus. (b) Jablonski diagram of a
basic model for two-photon excitation, subsequent inter-system-crossing
(ISC) to a triplet state (T1) and radical (R∗) generation. The depletion path
from the lowest electronically excited state (S1) to a vibronically excited
state (S0

∗) is also indicated. (c) Illustration of the depletion principle in
one dimension. Without the depletion laser, a line width corresponding to
the width of the grey box would be achieved. Through depletion on the
outskirts of the focus, the line width is reduced to the width of the blue
box.
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not want to suppress polymerization entirely. For this, the depletion laser
passes through a phase mask prior to focusing that induces a phase shift ϕ

of

ϕ =

{
π for r ≤ rmax/

√
2

0 for r > rmax/
√

2
(4.7)

where rmax denotes the radius of the opening aperture at the microscope
objective lens. The resulting squared modulus of the electric field is also
depicted in Figure 4.3 for a wavelength of λ = 532 nm. This focal shape, also
called “bottle focus”, leads to depletion laterally around the focal point and
to even stronger depletion along the optical axis above and below the focal
point. Therefore, not only lateral and axial resolution, but also the aspect
ratio, i. e., the ratio of axial to lateral dimensions of a voxel, will be enhanced
[104]. Employing STED-inspired direct laser writing, three-dimensional
resolution well below the diffraction limit has been achieved experimentally:

axy = 175 nm with donut-focus depletion

az = 373 nm with bottle-focus depletion
(4.8)

With this enhanced resolution applications such as complete photonic bandgaps
or carpet cloaks have become possible at visible frequencies [45, 105].

I note, that the choice of wavelength for the depletion laser is not trivial.
At longer wavelengths the oscillator strength decreases and therefore also
the depletion is less efficient. At shorter wavelengths, on the other side, one-
photon absorption of the depletion laser increases which ultimately leads
to a worse resolution than without depletion. Also one must emphasize,
that the model shown in Figure 4.3(b) is a crude simplification of reality.
On one hand, higher-order effects than only two-photon absorption play
an important role for most photoinitiators [106]. Furthermore, the effect of
quenching molecules, in particular dissolved oxygen, plays an important
role and has been neglected from discussion here [107].
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Figure 4.4: Schematic illustration of the lithography setup used in the scope
of this thesis. A femtosecond pulsed titanium-sapphire laser serves as the
excitation laser. A frequency-doubled continous-wave (CW) neodymium-
YAG laser is used for depletion. Acousto-optical modulators (AOM) allow
for convenient control over the laser power. The sample is moved with
respect to the focus in three-dimensions with a piezo scanning stage.

4.1.3 Lithography Setup

The lithography setup employed in this thesis is described in detail in Refer-
ence [100] and is depicted schematically in Figure 4.4. A titanium-sapphire
laser (Spectra Physics MaiTai HP) at λexc = 810 nm with pulse lengths
of approximately 100 fs was used as the excitation laser. The depletion
laser is a frequency-doubled continuous-wave neodymium-doped yttrium-
aluminium-garnet laser (Spectra Physics Millennia X) at λdepl = 532 nm.
Acousto-optical modulators (AOM) are used for convenient and quick con-
trol of the transmitted laser power. The focusing objective lens has a nu-
merical aperture of NA = 1.4 (Leica HCX PL APO 100x Oil). The sample is
mounted onto a piezoelectric stage (Physik Instrumente P-527.3CL) allowing
for precise translation in all three dimensions during exposure. The piezo-
electric stage is furthermore mounted onto a motorized stage (Märzhäuser
Wetzlar, SCAN IM 120 x 100) so that the writing field of the piezoelectric
stage, 200µm× 200µm× 20µm, can be moved across the entire sample.
Throughout this thesis a photoresist containg the monomer pentaerythritol
triacrylate (PETA) and 0.25 wt% 7-diethylamino-3-thenoylcoumarin (DETC)
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as photoinitiator was used [104, 108]. After excitation of DETC radicals are
generated that initialize polymerization of the monomer PETA. As the latter
is a multi-functional monomer, i. e., a monomer with more than one acrylate
groups, a cross-linked polymer network is created that is insoluble.
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4.2 Electrochemical Deposition of Metals

4.2.1 Fundamentals of Electrochemical Deposition

In the previous sections, I have discussed conventional and STED-inspired di-
rect laser writing, lithography methods that can both yield three-dimensional
structures with sub-micron feature sizes. While for photonic crystals or ap-
plications in transformation optics the constituent polymer suffices, for
metamaterial applications and in particular for helical metamaterials we re-
quire metallic structures. Metallization of polymer templates can be achieved
via physical vapour deposition (PVD) [109]. While PVD offers good and
propably unmatched metal quality, due to the anisotropic evaporation pro-
cess true three-dimensional metallization is impossible. Furthermore, the
underlying will also be metallized which therefore impedes operation in
transmission. The same problem is at hand when utilizing chemical vapour
deposition (CVD). In contrast to PVD, however, CVD allows for isotropic
deposition. Three-dimensional polymer templates can therefore be truly
reproduced [110]. On the downside, metal quality is usually much lower,
leading to an increase in losses.

In the scope of this thesis, electro-chemical deposition of gold from aque-
ous solution was employed that had previously been introduced already
for the fabrication of conventional helical metamaterials [8]. Good metal
quality and deposition within almost arbitrarily structured templates are
the biggest advantages of this approach. However, as will be discussed in
the following section, electro-chemical deposition poses higher demands at
either the geometry or the chemical properties of the polymer template.

Before I introduce the electrochemical process employed in this work, I
first discuss some fundamentals of electrochemical deposition of metals from
aqueous solutions. For a more detailed discussion of the topic, I recommend
Reference [111], which has also inspired certain figures within this section.

To fully understand the deposition of metals from aqueous solution, we
must first discuss how metals are brought into solution. In contrast to
molecular matter like sugar for example, metals are insoluable in water. Via
redox-reactions, however, metals can form salts in the presence of either
an acid or a non-metal. Salts are crystalline, ionic compounds of the two
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cation
anion water molecule

solvated ion
in hydration shell

Figure 4.5: Schematic depiction of a ionic crystal and its solvation in water.
The water molecules form a hydration shell around a solvated ion, due to
the dipole moments, indicated by the plus and minus symbols.

corresponding ions. For the metal atom the number of electrons is usually
decreased, i. e., it is oxidized, leaving the positively charged anion. Similarly,
the non-metal atom is reduced and one obtains the negatively charged cation.
We are familiar with these reactions as they appear in the form of corrosion
in everyday life.

A schematic illustration of such an ionic crystal is shown in Figure 4.5.
Many of these salts are soluble in water. The reason for this lies in the polar
configuration of the water molecule that originates from the high electroneg-
ativity of oxygen. The charged ions are separated from the crystal lattice
and interact with the polarized water molecules that then form hydration
shells around the ions, as shown for the solvated ion on the right-hand
side. Due to the hydration shell, multiple ions cannot aggregate anymore
which would in turn cause percipitation. In reality, the situation is more
complex. Water molecules are not only oriented in the hydration shell, but
also partially in close proximity to it. Furthermore, due to attractive forces
between oppositely charged ions, ion pairs with mutual or shared hydration
shells occur. Here, I however restrict the discussion to this simple picture.

Let us now imagin a metal electrode M that has been immersed into such
a solution with metal ions M+. The processes at the interphase between
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the aqueous solution and the electrode are very complex, due to potential
differences and the interaction of bound metal atoms, solvated ions, and
the hydration shells. The details are described by the Grahame triple-layer
model, which is a extension to Helmholtz’s compact double-layer model and
Stern’s model [111]. The latter includes the presence of a diffuse layer as
described in the Gouy-Chapman model. A small fraction of metal atoms
from the electrode will go into solution and some solvated ions in turn will
adsorb to the metal electrode. Let us assume that the former direction of ion
movement is dominant, leaving behind an excess of electrons at the surface.
The negatively charged surface in turn repels the negatively charged anions
and attracts additional hydrated metal ions. Therefore, the metal electrode
has an effective negative charge close to the interface, while the solution in
close proximity to the electrode is effectively positively charged.

Directly at the negatively charged metal interface this leads to an overall
orientation of the water molecules, due to their electric dipole moment. The
volume defined by the water molecules is called the “inner Helmholtz layer”.
Metal ions that appear here, are either already partially or fully dehydrated.

Further away from the metal-solution interface the “outer Helmholtz
layer” is formed by the closest possible distance for still hydrated ions.
The distribution of these positive ions is homogeneously spread across
the electrode interface, thus forming a effectively positively charged plane
parallel to the negatively charged metal interface. Similar to a parallel-plate
capacitor, the potential will therefore decrease linearly in this region.

Even further away from the electrode there still exists an excess of posi-
tively charged, solvated ions due to attraction from the negatively charged
metal surface. The excess concentration decreases exponentially with increas-
ing distance from the interface which in turn also causes an exponentially
decreasing potential. The dimensions of the diffuse layer depend on the con-
centration and for very high concentration the diffuse layer can be neglected.

The three layers are illustrated in Figure 4.6 together with a qualitative
depiction of the potential. The dissociation, solvation, and hydration energies,
as well as factors like temperature will define the final equilibrium state.
One possible application for such interfaces are galvanic cells where two of
such metal-solution interfaces lead to an electrical current which can then be
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Figure 4.6: The triple-layer model is depicted. In close proximity to the
metal surface, oriented water molecules form a densily packed layer (inner
Helmholtz layer). Stationary adsorbed, but still hydrated ions form the
outer Helmholtz layer. Here the potential, as depicted below, decreases
linearly. Further away from the interphase in the diffuse layer, an excess of
positively charged ions is present, leading to a exponential decrease of the
potential. Far away from the interphase, i. e. in the bulk liquid, the sum of
all charges is zero.
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used to drive an electrical load.
Here, we are more interested in the case of an electolytic cell, where we

apply a certain voltage to two metal electrodes, both immersed in the same
solution. The situation is illustrated in Figure 4.7. Note that the elements
constituting the anode and cathode do not have to be the same as the one
of the ions respectively, as we will see later in the case of electrochemical
gold deposition. For now, we simply assume that both electrodes consist of a
noble metal that is considered insoluble in water. At the negatively charged
cathode one will now observe the following equilibrium reaction:

Mz+ + z e− −−⇀↽−− M (4.9)

where z denotes the electric charge of a single metal cation in units of
elementary charge.

By applying a voltage, this equilibrium reaction is pushed towards the
right, leading to a deposition of metal atoms on the cathode and a current

U ~j

Cathode

Anode

Electrolyte

- +

Figure 4.7: Principle of an electrolytic cell. By applying a voltage across
two immersed electrodes, a current results that is carried by ion movement
in the solution. The positively-charged metal anions move to the cathode,
where they are reduced – provided that the potential is chosen appropriately
– and metal is deposited.
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supported by ion movement in the electrolyte. Neglecting any other possi-
bly involved ions, by simple conservation of charge one can calculate the
deposited metal mass mM for a given current I and deposition time t by
exploiting Faraday’s laws of electrolysis [112]:

mM =
I · t ·M

F · z (4.10)

where F = NA · e denotes Faraday’s constant and M is the molar mass of the
metal. If furthermore the surface area A of the cathode is given, the equation
above can be divided by A and one obtains the change in deposited material
thickness over time:

dM

t
=

j ·M
F · z · ρ . (4.11)

In passing, I have introduced the current density j = I
A and the bulk

metal density ρ. While this is certainly only a rough estimation, not taking
into account the electrode efficiency or participation of other ions, we will
see that it yields very precise results for our system. The accuracy of this
approximation is however strongly dependent on the current. The electrode
efficiency, i. e., the ratio of the actually deposited mass to the calculated
deposited mass, can decrease significantly if the current is chosen to large,
as currents in the electrolyte might be diffusion limited. Furthermore, metal
quality may decrease with increasing currents, especially on electrodes of a
different material. When ions are adsorbed at the metal-solution interface
they are not stationary, but can undergo subsequent surface diffusion. Lower
currents lead to prolonged surface-diffusion timescales and thus larger grain
sizes.

In this work gold has been deposited from aqueous solution in a process
where a constant current was applied. In situations, where not only the
deposition of the metal, but also the metal-salt is possible, the driving
voltage must be controlled very precisely. A more thorough discussion of
electrochemistry is necessary to fully understand the finer details of the
deposition mechanism and to determine the potentials when depositing in
such a voltage-controlled environment. As it does not apply here, I refer to
literature for the interested reader [111].
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4.2.2 Gold Deposition in Polymer Templates

After having discussed the fundamentals of electrochemical deposition of
metals, I will now give a detailed description of our process with which
we have successfully deposited gold in nanostructured polymer templates
previously fabricated via STED-inspired direct laser writing. The general
procedure has been introduced by J. K. Gansel and we have employed the
same process with some adjustments [113].

The electrolyte was provided by K. Bade from Institute of Microstructure
Technology (KIT). As individual gold ions are not stable in aqueous solutions,
the gold is bound in sulfite complex ions [Au(SO3)2]3−. The corresponding
anions are sodium ions. The complex ions are disassociated to Au+ and
(SO3)2− at the cathode during deposition. In a subsequent reaction step
atomic gold precipitates:

[Au(SO3)2]
3− −−⇀↽−− Au+ + 2 (SO3)

2− (4.12)

3 Au+ −−→ 2 Au ↓ + Au3+ (4.13)

In solution the complex ions can undergo the same reactions. To prevent
the resulting precipitation of gold in solution, the sulfite concentration is in-
creased by adding sodium sulfite to the solution. This pushes the equilibrium
to the left and hinders the formation of free gold ions. The other components
of the electrolyte are listed in Table 4.1. Titriplex (C10H16N2Na2O8×2 H2O)
is added to increase conductivity and furthermore bind other metallic ions
to ensure high gold purity. In a similar way ethylene diamine (C2H4(NH2)2)
is added to bind free gold ions Au+ that form an equilibrium in solution.
The pH-value of the electrolyte is set to pH = 7.5 and the temperature was
set to T = 57◦ C.

A platinum mesh electrode serves as the anode in solution. Here, sulfite
ions are oxidized to dithionite and sulfate ions. Similar to Reference [113],
a sample holder made of polytetrafluoroethylene is used. The opening
is however smaller, thus exposing a smaller area of the substrate to the
electrolyte (A = 28.26 mm2). This is necessary, as gold will be deposited
on the majority of the accessible substrate surface. Larger surface areas
lead to an undesirably high electrical current for a fixed current density.
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4 .2 electrochemical deposition of metals

Table 4.1: Chemical components in the gold
electrolyte and respective concentrations used
in this work.

Component Concentration

Sodium gold sulfite 25 g/l
Sodium sulfite 20 g/l
Titriplex 30 g/l
Ethylene Diamine 22 ml/l

Furthermore, the current density was slightly reduced to j = 2.68 µA
mm2 by

empirical optimization. The current is supplied by a constant-current source
(6221 AC and DC current source, Keithley Instruments GmbH).
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4.3 Fabrication Process

Having covered the fundamentals of both, STED-inspired direct laser writing
and electrochemical deposition of gold, I will now go through the fabrication
procedure step by step. The process is based on a very similar approach by
Gansel et al. from 2009, where conventional direct laser writing in a positive-
tone photoresist was employed to yield voids that were subsequently filled
gold via electrochemical deposition [8]. The achievable axial resolution is
insufficient to fabricate more complex helical metamaterials as they have been
discussed in Sections 3.2 and 3.4. The fabrication procedure was therefore
modified, basing it on polymer structuring with STED-inspired direct laser
writing that offers the necessary axial resolution but lacks the existence of
compatible positive-tone photoresists. The entire process is also illustrated
in Figure 4.8.

4.3.1 Substrate Preparation

Conventional microscopy glass cover slips with dimensions of 22 mm ×
22 mm and a thickness of 170µm serve as the underlying substrate. The
required conductivity of the substrate for electrochemical deposition is
ensured by depositing a thin film (25 nm) of indium-tin oxide (ITO) onto
the glass substrate via electron-beam evaporation. To ensure transparancy of
the ITO film, the substrate is subsequently tempered in a tube furnace at air
atmosphere and a temperature of 450◦ C for 33 hours.

To improve adhesion of direct laser written polymer structures on bare
and ITO-covered glass substrates, the substrates were silanized with a
methacrylate-based silane. This increases the adhesion significantly as
the molecule, covalently attached to the substrate, can be incorporated
in the cross-linked polymer network during lithography. For this, an oxy-
gen plasma etching was applied to the samples for 30 minutes, leading to
hydroxy-groups at the surface. The formation of these necessary hydroxy-
groups is easily achieved on bare glass substrates for which this silanization
process was designed. Nevertheless, ITO-films can also form these groups
under plasma exposure [114].
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Figure 4.8: Illustration of the major steps during the fabrication process for
helical gold metamaterials via STED-inspired direct laser writing (STED-
DLW). A glass substrate (a) is covered by a thin film of indium-tin-oxide
(ITO) and subsequently tempered and silanized (b). A polymer shell of the
desired gold structure is written with STED-DLW (c). Without intermediate
development, a second STED-DLW step is carried out to fabricate a polymer
floor around the previously fabricated polymer structures (d). Gold is
deposited inside the hollow polymer shells via electrochemical deposition
(e). Finally, the polymer shell is removed with oxygen-plasma etching (f).
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Following the plasma exposure, the substrates are immersed in a solution
of 3-(trimethoxysilyl)propyl-methacrylate in toluene with a concentration of
1 mM. After one hour the samples are rinsed in demineralized water and
blown dry with nitrogen.

Other approaches, based on the functionalization of the ITO film with
phosphoric-acid-2-hydroxyethyl-methacrylate ester was also examined, how-
ever with no significant improvement of the polymer adhesion [115].

4.3.2 STED-inspired Direct Laser Writing

In contrast to previous publications, no positive-tone photoresist can be
used. To avoid a much more challenging fabrication approach with multiple
inversion steps, that will be discussed in Section 5.4, we instead write a
polymer shell of the actual, desired structure. Figure 4.8(c) illustrates this for
the case of a single helix with one pitch. The writing path is chosen such that
z-component is increased continously but slowly, while x-y-movement of
the piezo stage serves to create the desired three-dimensional geometry. To
allow for high writing speeds on the order of 60µm/s the piezo movement
was overcompensated with a self-designed Fourier-based algorithm.

To furthermore prevent unwanted deposition of gold, before development,
a polymer floor was written on top of the bare ITO film, covering the
entire area between the shell structures. Additionally, the polymer-floor
dimensions extended 30µm into any lateral direction from the edge of an
array. This is necessary as, in contrast to Reference [113] where the positive-
tone photoresist prevented gold deposition anywhere but in the written
voids, here gold is subsequently deposited also on the entire substrate. The
polymer floors were fabricated by meandering along the area with writing
velocities of up to 200µm/s leaving holes only where the polymer shell
structures had previously been created. The high speeds lead to signficant
lags of the piezo which in turn leads a lateral displacement of holes and
shell structures, as illustrated in Figure 4.9(a). These lateral shifts were
compensated by measuring the corresponding lateral shift from a piezo-
coordinate readout.

After having written both, shell structures and floor, the samples were
developed in the commercial solvent mr-Dev 600 (micro resist technology
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GmbH) for a minimum of 15 minutes. Subsequently, the samples were
rinsed with acetone and super-critically dried in carbon-dioxide (Leica EM
CPD030). Super-critical drying prevents damages to the polymer templates
due to capillary forces.

a

1 µm1 µm1 µm

b c

Figure 4.9: Scanning electron micrographs of a demonstration structure
at different stages during fabrication. (a) Polymer strutcures after STED-
inspired direct laser writing and development. The hollow polymer tube
and the polymer floor are slightly misaligned in this instance for demonstra-
tion purposes. (b) After electrochemical deposition gold is visible (bright
white), emerging from the top of the polymer structure. (c) After oxygen-
plasma etching only the gold structure remains.

4.3.3 Electrochemical Gold Deposition

As the employed electrolyte is an aqueous solution, wetting of the polymer
channels with diameters of well below one micron and depths of up to ten
microns is a challenge. The reason for this is the low solubility of nitrogen in
the electrolyte, in large contrast to the solubility of carbon-dioxide. Therefore,
the samples were exposed to a pure carbon-dioxide atmosphere for a period
of up to one hour and then immersed into demineralized water. The carbon-
dioxide dissolves in the water and thus the water is pulled into the small
voids. Subsequently, the samples were transferred into the electrolyte.

Alternatively, directly after development the samples were rinsed in ace-
tone, isorpropyl alcohol, and water and then transferred to the electrolyte
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without intermediate drying, thus eliminating capillary forces and circum-
venting the problem of wetting all together. On the downside, intermediate
characterization of these samples with far-field optical microscopy was not
possible.

After a period of 20 minutes allowing on one hand for the water in the
voids to be replaced by the electrolyte and the other hand for the temperature
to be settled at 57◦ C, a current of I = 0.758 mA was applied, corresponding
to a current density of j = 2.68 µA

mm2 . Here, I have assumed that the area
is fixed at (A = 28.26 mm2) which is only an approximation as it should
be corrected by the area covered by the polymer floor. As the area of the
bare ITO film exposed to the electrolyte is two to three orders larger than
that of the polymer floor, I have neglected this correction. With the current
density given, the growth rate can be approximated from Equation 4.11 and
yields for bulk gold (z = 1, M = 197 g

mol , ρ = 19.3 g
cm3 ) a growth rate of

dAu
t ≈ 190 nm

min .
Figure 4.9(b) depicts a similar polymer template as in (a) after electrochem-

ical gold deposition. The desired height in this finger exercise was 5µm
and the deposition time was therefore set to 26.3 minutes. After polymer-
removal, which is discussed in the following paragraph, a scanning electron
microscope was used to determine the actual height to 5.169µm. The error
of the actual growth rate in that situation was therefore below 5 %. However,
the growth rate does depend heavily on the geometrical parameters of the
polymer structure and the nearby environment. For smaller polymer-shell
diameters, the growth rate decreases, as diffusion of complex ions to the elec-
trode surface is hindered. Furthermore, for densely packed arrays a smaller
growth rate is observed, as the supply of new complex ions is consumed
over a larger area. Therefore, for each set of geometrical parameters, an
empirical growth rate was determined. Nevertheless, the deviation from the
approximation in Equation 4.11 remained small.

After deposition, the samples were amply rinsed with demineralized water
to ensure that no electrolyte was left in any of the voids. Finally, the samples
were dried under a nitrogen stream. In some instances, super-critical drying
was applied at this point instead. However, the stability of the hybrid gold-
polymer structure is usually high enough to withstand capillary forces and
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a

500 nm500 nm

b

Figure 4.10: Scanning electron micrographs of fabricated gold structures
before (a) and after (b) wet-etching with KI/I2-based aqueous etchant. In
(a) residual gold is evident around the gold structures. After etching, no
residual is visible anymore in (b).

super-critical drying is therefore not necessary.

4.3.4 Polymer Removal and Post-processing

In order to remove the polymer template that would diminish optical perfor-
mance, the samples were place upside down in a watch glass and exposed
to oxygen plasma for a minimum of 16 hours. For densely packed arrays
plasma-etching was repeated if necessary.

Despite silanization of the ITO-covered substrate prior to lithography,
adhesion of the polymer structures is far from perfect. Especially for densely
packed arrays the great number of tall, freestanding polymer structures
in combination with the small polymer patches in between pose a great
challenge. Even though still stable, very little detachment from the substrate
surface is enough for gold electrolyte to diffuse into the created voids and
form small gold particles during deposition. These particles, visible in the
scanning electron micrograph in Figure 4.10(a) have a size on the order of
approximately 50 nanometers. Due to the random distribution this would
lead to scattering, a signifcantly lower transmission and, thus, to a strongly
diminished optical performance. A wet-etching procedure was therefore em-
ployed. However, as the polymer template is already removed, the structures
are highly vulnerable to capillary forces. Furthermore, one must ensure that
the surface tension of the etchant does hinder wetting of the entire array.
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The latter challenge was tackled by again exposing the sample to a carbon-
dioxide atmosphere. In contrast to the procedure before electrochemical
deposition, the sample was not immersed into water, but ethanol which has
a comparable solubility for carbon-dioxide [116], but a much lower surface
tension [117]. From ethanol, the samples were transferred to water and
subsequently etched in a commercial KI/I2-based etchant (MicroChemicals
TechniEtch ACI2) that had been diluted with water in a ratio of 1:9. The etch
rate of approximately 6 nm

min was determined experimentally by measuring
the thicknesses of larger gold structures before and after etching. Total etch
times of 400 seconds were sufficient to completely remove the undesired gold
residue as can be seen from Figure 4.10(b). The samples were subsequently
rinsed in water, then transferred consecutively to water, isopropyl alcohol,
and acetone and finally super-critically dried.
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4 .4 circular-polarization infrared spectroscopy

4.4 Circular-Polarization Infrared Spectroscopy

In the final section of this chapter I will briefly discuss the method by
which we characterize our fabricated metamaterials optically. As we are
looking at lattice periods in the range of a few microns (a = 1.5− 3µm)
supported by a glass substrate with refractive index n ≈ 1.5, the minimum
operation wavelengths where no higher diffracted orders occur are respec-
tively λmin = 2.25− 4.5µm. With bandwidths of typically more than one
octave, the frequency range of interest therefore spreads across a large part
of the midinfrared spectrum. Spectroscopy at these wavelengths is a partic-
ular challenge, as special optics are required for detection, focussing, and
polarizing.

Here, we employ a commercial fourier-transform infrared (FTIR) spectrom-
eter (Tensor 27, Bruker Optik GmbH) with a liquid-nitrogen cooled mercury-
cadmium-telluride detector, that allows for detection of wavelengths of up
to 13µm. However, glass strongly absorbs at wavelengths of approximately
6.5µm and above. In order to obtain the best possible signal, 36× Cassegrain
objectives are used due to their lack of glass components. The opening
angle of these objectives is however between 15◦ and 30◦. To ensure normal
incidence, we therefore tilt the samples by 22.5◦ and reduce the full opening
angle of the Cassegrain objective with an off-centered small diaphragm to
approximately 5◦ which corresponds to a numerical aperture of 0.044 [118].
The optical paths for both, reflection and transmission measurements are
depicted in Figure 4.11.

Despite the use of reflecting optics only, the maximum wavelength for char-
acterization in transmission is at approximately 6.5µm due to the supporting
glass substrates. The use of semiconductor substrates, e. g., silicon would
allow characterization over even larger bandwidths. Due the opacity at
visible wavelengths, however, this would also require a modified fabrication
process [61].

To achieve circular polarization for incoming light, we used a commercially
available linear wiregrid polarizer (Thorlabs GmbH) in combination with
a custom-built superachromatic MgF2-based quarter-waveplate (B. Halle
Nachfl. GmbH). The wave plate has a phase error below 5% in the spectral
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Figure 4.11: Optical paths for transmission and reflection measurement
are depicted. In the former case, unpolarized light is incident from below.
The aperture reduces the opening angle to 5 % and a sample tilt of 22.5 %
ensures close to normal incidence. A combination of a linear polarizer
and a quarter wave-plate before the first Cassegrain objective are used to
achieve circular polarization. After the second Cassegrain objective the
same combination in reverse order is used to discriminate between different
circular polarizations. For reflection measurements, a beam splitter is added
and light is coupled in from a side port above the sample. The remaining
beam path is equivalent to that of transmission.
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range of interest from 3µm to 6µm. The linear polarizer and wave plate
are combined in a home-built holder that is inserted into the respective slot,
depending on whether reflection or transmission is measured. The same
combination in reverse order is used for analyzing the polarization after
the sample and allows for a discrimination between polarization-conserving
transmittances and conversions. Both are normalized to the polarization-
conserving transmittances on the bare ITO-covered glass substrate.
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Chapter 5

Experimental Results

Scanning electron micrograph of N = 3 helical metamaterial.

In this chapter, I will present our experimental achievements in fabricating complex
helical metamaterials for operation at mid-infrared frequencies. For this we have
employed the fabrication process that was introduced in the previous chapter. Fur-
thermore, I will present spectroscopic data showing broadband measurements for
all elements of the Jones transmission and reflection matrices. I will first describe
the results for the case of N-helices, here N = 3, followed by circular-polarization
converters as they have been introduced in Section 3.4. I will also briefly discuss
an alternative fabrication route, based on STED-inspired direct laser writing and
a subsequent double-inversion process. Finally, I will conclude this chapter with a
short overview on alternative fabrication approaches beyond laser lithography and a
general discussion of the corresponding advantages and disadvantages.
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5.1 Triple-helical Metamaterials

In Section 3.2 we have discussed N-helical metamaterials and their principle
of operation. Here, I will now demonstrate the fabrication and spectroscopic
data of such N-helices. The lowest degree of rotational symmetry that still
fully eliminates circular-polarization conversions is N = 3. Therefore, we
will focus on triple-helices arranged in a hexagonal lattice in the scope of
this section, as it significantly facilitates fabrication.
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Figure 5.1: Illustration of a unit cell with indications of the geometrical param-
eters a = 2.5 µm, H = 2.66 µm, rH = 750 nm, and rW = 270 nm. On the right
the corresponding numerical transmittance spectra are shown for a constituent
Drude gold model. Circular-polarization conversions are not shown, as they are
zero for symmetry reasons. Adapted from Reference [119].

The geometrical parameters discussed in Section 3.2 are despite STED-
inspired lithography out of reach for our fabrication process. Therefore,
more realistic geometrical parameters have been the target for fabrication.
We will first take a look at numerically calculated spectra with geometrical
parameters that have been achieved for N = 3 helices. The lateral lattice
period is a = 2.5 µm, the helix radius rH = 750 nm, the pitch height H =

2.66 µm, and the wire radius rW = 270 nm. We have again assumed a
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constituent Drude metal (see Chapter 3). The number of axial pitches is
assumed to be Np = 2 in the calculation. While a higher number of pitches
would certainly also yield an improved optical performance, the challenge
in fabricating such high structures rapidly increases. This aspect will be
discussed in more detail in Section 5.3.

The corresponding transmittance spectra for the geometrical parameters
described above are depicted in Figure 5.1. Pronounced circular dichroism is
visible for frequencies from 10 THz to 75 THz, thus spanning across almost
two octaves and the entire mid-infrared. Polarization conversions have been
neglected in the diagram as they are zero.

Employing the fabrication procedure as it was described in the previous
chapter, we fabricate hexagonal arrays of triple-helices with an overall foot-
print of 60µm× 60µm. The individual phases during fabrication are shown
in Figure 5.2. For demonstration purposes a sample was developed after
lithography and examined in the scanning electron microscope instead of
further processing. The polymer template is depicted in Figure 5.2(a). Care
must be taken, when designing the writing path for N-helices, as one might
be tempted to create one helix after the other within one unit cell.

Due to proximity effects, however, the effective threshold would decrease

a

2 µm2 µm2 µm

b c

Figure 5.2: Scanning electron micrographs of a fabricated polymer template
after development for demonstration purposes (a), the final N = 3 gold helices
after removal of the polymer template (b), and single helices (N = 1) fabricated
for a fair comparison on the same sample with identical geometrical parameters
(c). Adapted from Reference [119].
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a

10 µm 10 µm

b

Figure 5.3: Scanning electron micrographs of the entire helical-metamaterial
array viewed under an oblique angle (a) and from above (b). The periodicity
and structural quiality are underlined. In (a) the macroscopically large gold
film that was grown next to the polymer floor is visible in the background.

slightly with every helix, leading to different exposure of each polymer
shell, and therefore different wire thicknesses. By repetition in all unit cells,
linear birefrigence would be introduced and one would again obtain circular-
polarization conversions. This could in fact be solved by choosing a random
sequence for each unit cell. While 3-fold rotational symmetry would then
be broken in each unit cell, the overall symmetry for many unit cells would
be recovered. Here, we have instead used an approach allowing for 3-fold
rotationally invariant unit cells, by writing a closed-loop path that creates
the shell of all three helices simultaneously.

After electrochemical deposition and removal of the polymer templated via
oxygen and wet-etching in order to remove the gold residue, the templates
in 5.2(b) are obtained. As we have seen in the previous chapter, the height to
which gold is deposited after a given time can be calculated very accurately.
Due to the closely packed array and the helical path, the time was determined
emperically with a series of identical samples. The desired height of two
pitches was clearly met for this sample.

Furthermore, hexagonal arrays of single helices were fabricated as depicted
in 5.2(c). This is important for a fair comparison of the achieved suppression
of conversions. As I have briefly mentioned in Chapter 3, the magnitude
of circular polarizations can be varied to a certain extent by varying the
geometrical parameters. Therefore, on the same sample we have written
additional arrays of N = 3 helix templates. In contrast to the ones described
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above, the polymer floor was designed in such a way that two of the hollow
tubes within a unit cell were sealed off. After subsequent electrochemical
deposition and oxygen plasma etching, we obtained arrays of single helices
with truly identical parameters.

Before we examine the optical spectra, let us first take a look at the period-
icity and rotational symmetry of the fabricated arrays. From the scanning
electron micrographs in Figure 5.3 it is evident that the periodicity in these
arrays is superb. Furthermore, no difference between the individual helix
wires within one unit cell can be seen with the bare eye.

We have characterized these arrays by mid-infrared circular-polarization
far-field spectroscopy as I have introduced it in Section 4.4. In the following
measurements, light impinges from the air side onto the helices. Spectra have
been recorded for frequencies from 45 THz to 80 THz. For lower frequencies
the supporting glass substrate is opaque. At higher frequencies, higher
diffracted orders are present which are not part of the discussion here.
Despite these restrictions, the measurement range still spans across almost
one octave, a bandwidth that is already very challenging for achieving and
analyzing circular polarization.

Let us now first take a look at the spectra in transmission for single helices,
i. e., N = 1 as depicted in Figure 5.4. In the left panels, corresponding
numerical calculations are depicted. As expected for this array of left-
handed helices, transmittance for left-circularly polarized light (LCP) is
strongly suppressed, while the transmittance for right-circularly polarized
light (RCP) is high. Circular-polarization conversions are depicted in the
panel below and reach values of up to 7 %. In the corresponding right
panels the experimental data are depicted. Evidently, the qualitative and
quantitative agreement between theory and experiment is good.

A grey dashed line, shown with the experimental conversions, depicts the
measured polarization conversions on a bare substrate and is therefore a
measure for the polarization error of the employed polarization optics. The
measured polarization conversions are well above this line across the entire
measurement range.

For N = 3 helices the calculated and measured spectra are depicted in
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Figure 5.5. The calculations in the left-hand panels are the same as shown
previously at the beginning of this section, but cropped to the frequency
range of interest here. Note that circular-polarization conversions are indi-
cated by dashed lines in the bottom panel. As expected, they are strictly zero.
The experimental transmittances follow the trends nicely. There are some
surprising features, especially for RCP. Fabrication imperfections might be
one possible explanation. Furthermore, at 70 THz vibrational excitations of
carbon-dioxide lead to very low signals and therefore measurement artifacts
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Figure 5.4: Calculated and measured transmittances are shown for the case of
single helices, i. e., N = 1 with two pitches. Numerically calculated spectra and
measurement data are depicted in the left and right panels, respectively. The
cross-polarizations of the bare substrate are indicated by a grey dashed line.
Adapted from Reference [119].
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Figure 5.5: Calculated and measured transmittances are shown for the case
of N = 3 helices with two pitches. Numerically calculated spectra and mea-
surement data are depicted in the left and right panels, respectively. The
cross-polarizations of the bare substrate are indicated by a grey dashed line.
Adapted from Reference [119].

as the one seen here. Much more importantly, however, is the fact that
circular-polarization conversions have successfully been suppressed to a
degree where they cannot be distinguished from the polarization errors of
the employed optics anymore (grey dashed line).

We have also measured the reflectance spectra that are depicted in Figure
5.6 for an array of single helices (a) and an array of N = 3 helices (b). Here,
the effect of suppressing polarization conversions is even more striking.
For N = 1, the blocked left circular polarization is reflected with the same
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Figure 5.6: (a) Calculated and measured reflectances (solid lines), as well as
conversions (dashed lines), are shown for the case of single helices, i. e., N = 1
with two pitches. Numerically calculated spectra and measurement data are
depicted in the left and right panels, respectively. (b) In analogy to (a) the
corresponding spectra are shown for N = 3 helices. Adapted from Reference
[119].
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handedness, leading to a high conversion |rLL|2 of more than 80 %. Again,
the experimental data follow the trends nicely. The normal reflectances are
slightly higher. For reciprocity reasons, they should furthermore be equal
independent of any fabrication imperfections. This measurement artifact can
therefore possibly be assigned to a sample tilt deviating from the targeted
22.5◦ which results in non-normal incidence. This could also explain the
small peak that is visible at approximately 75 THz.

For N = 3 helices, circular-polarization conversions, i. e. |rLL|2 and |rRR|2,
are close to zero as expected from the numerical calculations shown in the left
panel and from our symmetry-based analysis in Chapter 3. Furthermore, the
diagonal elements are close to equal, as expected from reciprocity reasoning.

In conclusion, I have shown in this section that we have successfully fabri-
cated N = 3 helical metamaterials for operation at mid-infrared frequencies
with very good structural quality and overall periodicity. The good agree-
ment of the experimental data with the numerical calculations based on
a constituent Drude metal furthermore suggests good metal quality – an
advantage over some other fabrication approaches discussed in Subsection
5.4.2. I have furthermore shown experimental data for the squared moduli of
the Jones transmission and the Jones reflection matrix in circular polarization
basis for a frequency range of almost one octave. In the following section we
will see how circular-polarization converters, as they have been introduced
in Section 3.4, were fabricated in a similar way.
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5.2 Broadband Circular-Polarization Converters

In this section, I will present the experimental achievements in fabricating
circular-polarization converters, as we have introduced them in Section 3.4.
The therein discussed geometrical parameters shall also serve as the targeted
parameters for fabrication here, i. e., a lattice period of a = 2µm, a helix
radius of rH = 500 nm, a wire radius of rW = 250 nm, a connection arc radius
rC = 400 nm, and an axial lattice period of H = 2µm. Employing the same
fabrication process as before, polymer templates were first fabricated on an
ITO-covered glass substrate as depicted in the scanning electron micrograph
in Figure 5.7(a). In order to compensate for inaccurate deposition times, the
top half of the polymer template has two axial pitches instead of the targeted
1.5 pitches. The good structural quality and periodicity is evident.

a

1 µm 1 µm

b

Figure 5.7: Scanning electron micrographs of circular-polarization converting
helical metamaterial at different stages during fabrication. (a) Polymer templates
after development. (b) Final gold structures after polymer removal. Adapted
from Reference [118].

After electro-chemical gold deposition and subsequent removal of the
polymer template, the gold structures in (b) were achieved. The lower right-
handed helix has the targeted number of 1.5 axial pitches and the connection
arc exhibits no sharp bends or variations in the wire thickness. The upper
left-handed helix, however, has only one axial pitch. As shown in the
numerical calculations in Appendix A, this does not affect the performance
for circular-polarization conversion significantly. It does lead to a slightly
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increased transmittance from LCP to LCP as can be intuitively understood,
as the reflection of left-circularly polarized light is slightly decreased.
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Figure 5.8: Calculated and experimental spectra are shown in the left and right
panels, respectively. For the experimental spectra, a grey box has been added to
indicate the spectral region in which the underlying glass substrate is opaque.
Conversions are depicted in the top row, normal transmittances correspondigly
in the bottom row. Reprinted from Reference [118].

Let us take a look at the experimental data. In Figure 5.8 I have plotted the
corresonding numerical calculations on the left-hand side and the measured
spectra respectively on the right. The squared moduli of the off-diagonal
elements of the Jones transmission matrix in circular-polarization basis are
depicted in the top row, the diagonal elements correspondingly in the bottom
one. As before, we have restricted the measurments to frequencies above
47 THz due to absorptions of the glass substrates at longer wavelengths. This
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is indicated by the grey box in the experimental spectra.
Examining the polarization conversions, one finds very good agreement

with the theroetical spectra, both qualitatively and quantitatively. At 70 THz
we again observe small deviations due atmospheric carbon-dioxide absorp-
tion. The squared moduli of the diagonal elements also show generally
good agreement with the numerically calculated spectra. As previously
mentioned the larger polarization-conserving transmittance for LCP is due
to the slightly lower number of pitches of the upper helix in comparison to
theory.

We recall furthermore that the observed difference in the two conver-
sion spectra corresponds to the transmission asymmetry for each circular
polarization with regard to forward or reverse propagation. With a band-
width of one octave and conversions as well as asymmetry on the order
of 60 % to 80 %, these results pose new benchmarks circularly polarized light.

We have therefore successfully demonstrated additional applications for
our newly-developped fabrication process, allowing for record-breaking
asymmetric circular-polarization conversions. As we have discussed in
Section 3.4, coupling plays an important role for operation of this helical-
metamaterial design. With the employed fabrication procedure the necessary
resolution is at hand to allow for such feature sizes as the crucial connection
arc. The geometrical paramater discussed in this and the previous section
were chosen such that reproducible fabrication was ensured. For down-
scaled geometrical parameters the reproducibility and therefore the overall
structure quality and periodicty would suffer.

In the next section I will summarize the experimental achievements with
regard to fabrication and will furthermore point out the advantages our the
novel fabrication approach, as well as certain limitations.
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5.3 Discussion

The actual improvement for the newly introduced fabrication process is not
easily quantifiable in terms of resolution or feature size. For pure STED-
inspired direct laser writing (STED-DLW) of polymer structures, actual
numbers of resolution improvement can be deduced from photonic crystal
spectra [104]. However, these numbers cannot simply be adopted here. On
one hand, feature sizes of previously fabricated designs were not limited
by the resolution of the employed optics during lithography, but by the
chemistry of the positive-tone photoresist [8, 63]. On the other hand, a fair
comparison would require fabrication on the same sample and identical
geometrical parameters.

In order to discuss the actual improvement yielded by this novel fabrication
method (see Section 4.3), I will therefore compare metamaterials as they have
been fabricated within in the scope of this thesis with previous publications
on helical metamaterials [8, 63] qualitatively. The latter is shown in the
scanning electron micrograph in Figure 5.9(a). Furthermore, the N = 3
helical metamaterial and the circular-polarization converters, both discussed
in the previous sections, are shown in (b) and (c), respectively.

a b c

2 µm2 µm2 µm

Figure 5.9: (a) Scanning electron micrographs of helical metamaterial fabricated
by conventional direct laser writing in a positive-tone photoresist. Adapted
from Reference [8]. Scanning electron micrographs of (b) N = 3 helical meta-
material and (c) circular-polarization converters fabricated by STED-DLW based
approach.

115



5 experimental results

It should be noted, that this comparison is not completely fair, as one
should also examine helical metamaterials fabricated by conventional direct
laser writing in a negative-tone photoresist similar to our STED-DLW based
approach. I neglect this comparison, though, and instead refer to previ-
ous publications where the enhanced resolution of STED-DLW has been
demonstrated [104]. From Figure 5.9, the improved aspect ratio and radius
of the helix wire is evident. Simply by comparing the scanning electron
micrographs, it is apparent that without this improvement, fabrication of
these more sophisticated designs would not be possible for a fixed lattice
period.

As we have discussed for N = 3 helices in Section 3.2, competitive extinc-
tion ratios can only be reached by increasing the number of axial pitches
signficantly. So far, we have only discussed the case of Np = 2. Larger num-
bers of Np are, however, challenging. With an increasing number of axial
pitches, the distance z from the substrate also increases, leading to strong
abberations of the excitation and depletion focus. This effect is illustrated in
Figure 5.10, where a polymer template with Np = 3.5 was created.

1 µm5 µm

a b

Figure 5.10: (a) Scanning electron micrographs of polymer template for N = 3
helical metamaterial with Np = 3.5 axial pitches. (b) Zoom-in for the same
polymer template. Under-exposed areas due to abberations are clearly visible.

Especially in the zoom-in, shown in (b), underexposed areas are clearly
visible (compare Figure 5.2(a)). Compensating the power in dependence of
the z-position yields some improvement, but compensation factors must be
determined empirically. In contrast, Dip-in STED-DLW allows for abberation-
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free lithography [61]. Furthermore, heights of the fabricated structures are
not limited by the working distance of the objective lens. Therefore, Dip-in
STED-DLW could possibly allow for a much larger number of axial pitches
in the future.

In the following section I will briefly outline a different fabrication ap-
proach, also based on STED-inspired direct laser writing that could allow
for even smaller feature sizes. Furthermore, I will discuss fabrication tech-
niques for helical metamaterials by other groups and their advantages and
disadvantages in comparison to our method.
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5.4 Alternative Fabrication Approaches

5.4.1 Double-Inversion of Direct Laser Written Templates

Even though our fabrication method is based on STED-inspired direct laser
writing (STED-DLW) which yields a signficantly improved resolution, a
major drawback is the necessity to first create polymer shell templates. The
need for a closed surface does not only increase the writing times, but also
leads to a decrease in resolution again, due to proximity effects. Especially
metamaterial designs with sharp bends are therefore challenging for this
approach.

Here, I will briefly discuss an alternative approach that was developed in
the scope of J. Qu’s master thesis in our group and is also based on the cre-
ation of a polymer-template written via STED-DLW. Subsequently, however,
the gold structures are achieved by a double-inversion process consisting
of atom-layer deposition, reactive-ion etching, and electro-chemical gold
deposition.

In a first step, the substrates were preprocessed as described in Section 4.3.1.
By conventional direct laser writing polymer plane parallel to the substrate
was written and supported by pillars and side-walls. To decrease process
times significantly, the commercial direct laser writing setup Nanoscribe
Professional GT (Nanoscribe GmbH) was used that allows for quick scanning
of the laser focus by galvo-pivoted mirrors. Subsequently, using either
conventional direct laser writing or STED-DLW – both in a negative-tone
photoresist – arrays of the desired polymer structures were created below but
in contact with the previously written roof-like structure. In contrast to our
previously described approach, not the polymer shells but the positive of the
desired structures were written, significantly decreasing writing times and
proximity effects. Via atom-layer deposition the polymer samples, as well as
the entire substrate were conformally covered with aluminum-oxide (Al2O3)
with a thickness on the order 100 nm. Anisotropic reactive-ion etching was
used to remove the top layer of aluminum-oxide from the roof and also from
the bare ITO-covered substrate. After removing the polymer from within
the Al2O3-shell via oxygen plasma etching, electro-chemical gold deposition
was used to fill the shells with gold. Finally, the aluminum-oxide shell was
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removed in a wet-etching procedure with potassium hydroxide solution. The
intermediate steps of the procedure are illustrated in the scanning electron
micrographs in Figure 5.11 for an array of single helices where conventional
direct laser writing was employed.

a b c

1 µm 1 µm 1 µm

Figure 5.11: Scanning electron micrographs of helical metamaterial fabricated
via an alternative fabrication approach. (a) Polymer template written with con-
ventional direct laser writing. (b) Aluminum-oxide covered polymer template.
(c) Final gold structures after removal of the aluminum-oxide via wet-etching.
(courtesy of J. Qu).

This alternative approach has the advantage of exploiting the full achiev-
able resolution of STED-inspired direct laser writing and, furthermore, allows
for more freedom in the choice of the geometrical designs. Reproducibility of
the process, as well as structure quality and periodicity of the final structures
still requires improvement. Nevertheless, double-inversion approaches could
offer true STED-DLW resolution improvement in the future.

5.4.2 Fabrication Approaches beyond Direct Laser Writing

In this final section, I will discuss approaches by other groups in fabricating
helical metamaterials for operation at visible or infrared frequencies. I will
put the corresponding advantages and disadvantages into perspective. Parts
of this section have previously been submitted for publication in Reference
[120].
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Focused-ion-beam induced deposition

An alternative promising method for fabricating three-dimensional metallic
metamaterials is decomposition of a gaseous precursor initiated by either a
focused electron beam or a focused ion beam [121, 122]. As the basic principle
of focused-ion-beam induced deposition (FIBID) and focused-electron-beam
induced deposition (FEBID) is very similar, I will limit the discussion here to
the former. Both methods, however, have been employed successfully for the
fabrication of helical metamaterials [123].

The principle of FIBID is based on an ion beam that is focused onto a
substrate covered with a platinum-based precursor. Fabrication has been
demonstrated on silicon and gallium-nitride covered sapphire substrates,
with the latter being transparent at visible frequencies and, thus, favorable
for applications. Due to surface-charge effects, bare glass substrates cannot
be used. The decomposition of the precursor leads to deposition of the solid
metal, e. g., platinum on the substrate. By slowly moving the position of the
ion beam such that the subsequent exposure volume has an overlap with
previously deposited material, three-dimensional structures can be created.
Therefore, FIBID and FEBID are slightly more limited in the choice of the
geometry in comparison to direct laser writing, as horizontal elements are
inherently not possible. For most helical-metamaterial designs, this is not a
limiting factor though. Advantageous on the other hand, is the enhanced
resolution making feature sizes well below 100 nm and lattice constants for
helical metamaterials down to 400 nm possible [123, 124].

Due to the complex interactions of ion beam, precursor, substrate, and
already deposited nanostructure, deposition parameters have to be adjusted
empirically to yield optimal structure quality. These deposition parameters,
however, lead to a deteriorated composition of the constituent material, i. e.,
an increase in carbon concentration and a decrease in platinum concentration
[123]. This in turn, can lead to an inferior optical performance. Furthermore,
one must note that the generally slow deposition speed on the order of tens
of nanometers per second is reduced even further, due to local pressure
reduction of the precursor. Therefore, for large-scale arrays so-called “refresh
times” on the order of minutes have to be introduced after each individual
helix to allow for precursor diffusion.

More recently, by exposing not an entire helix successively, but only thirds
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of a pitch at a time, N = 3 helical metamaterials have been fabricated via
FIBID [125]. This method can be extended to any arbitrary number of
intertwined helices, limited only by the resolution.

Focused-ion-beam induced deposition is a promising candidate for future
fabrication of complex helical metamaterials. While resolution and design
freedom are two distinct advantages, slow writing speeds, the need for high-
index substrates, and, most of all, inferior metal quality are the downside.

Glancing-angle deposition

While both, direct laser writing and focused-ion-beam induced deposition,
offer great design freedom, fabrication of metamaterials on large-scale ar-
eas is out of reach. Parallelization of the fabrication can for example be
achieved by physical vapor deposition under a glancing angle. With this
technique porous films and metamaterials can be fabricated with feature
sizes below one hundred nanometers. At the same time, the fabrication
speed is increased by many orders of magnitude, as areas corresponding to
the entire supporting wafer or substrate can be structured simultaneously.
Glancing-angle deposition (GLAD) is based on inhomogeneous nucleation
and, subsequently, a shadowing effect for physical vapor deposition under
an oblique angle [126]. When rotating the substrate during evaporation,
helical structures are formed. Furthermore, by structuring the template prior
to GLAD, e. g., via electron-beam lithography, growth can be restricted to
certain periodic points on the substrate leading to an improved periodicity
and structural quality. Until recently, however, GLAD was limited to di-
electrics, as especially noble metals have high surface mobility, leading to
atom diffusion and thus hindering the creation of complex three-dimensional
structures [127]. The Ghosh group in 2013 circumvented this problem, by
first creating a dielectric helical template via GLAD, which was subsequently
covered with gold or silver nanoparticles by physical vapor deposition under
a small tilt angle [128]. Due to self-shadowing and diffusion of the deposited
metal atoms, no film of metal but isolated small metal islands are created.
This leads to a strong chiro-optical response that can be further increased by
increasing the thickness of the silver nanoparticles. On the downside, the
overall transmittance will successively decrease and scattering losses due to
randomly distributed metal nanoparticles are to be expected.
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The Fischer group tackled the direct deposition of noble metals, by cooling
the supporting substrate to a temperature of 170 K, therefore hindering atom
diffusion [127, 129]. Furthermore, prior to GLAD, a self-assembly-based pro-
cess was employed, in order to create periodically placed gold nanoparticles
with controllable size on the substrate. Therefore, structuring with time-
consuming electron-beam lithography is needless. Subsequently, the gold
helices with two pitches were removed from the supporting substrate and
suspended in aqueous solution. Corresponding circular-polarization trans-
mission measurements exhibit strong circular dichroism at visible frequen-
cies, despite the random spatial orientation of the helices. The bandwidth,
on the other hand, is well below one octave.

By varying the composition of the evaporation flux, helical structures of
different constituent materials or alloys can be created. With this, circular
dichroism for silver-copper alloy helix arrays before removal from the sup-
porting glass substrate has been demonstrated [129]. However, one must
note, that in this case unwanted circular polarization conversions will again
play a role and diminish the achievable extinction ratio. Similarly, the Zhao
group has recently reported the fabrication of titanium-silver composite
helices via GLAD [130].

In conclusion, glancing angle deposition has been shown to produce high
quality metal helices with feature sizes on the order of tenth of nanometers,
bringing circular dichroism to visible frequencies. Due to the parallel fabri-
cation approach on the entire substrate or wafer, fabrication speeds surpass
those of DLW, FIBID, and FEBID by many orders of magnitude. Slightly
more complex designs and even the fabrication of composite structures
consisting of more than one metal have been demonstrated.

For compact periodic helical metamaterials, GLAD approaches will al-
ways yield linear birefringence and, thus, circular polarization conversions.
Furthermore, complex designs, as intertwined helices or super lattices for
example, are inherently not possible with GLAD.

DNA-based self-assembly

Self-assembly techniques are unrivalled in resolution by any top-down
approach and are thus attractive for creating metamaterials for operation at
visible frequencies. Furthermore, as fabrication can be parallelized to a large
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extent, process times can be reduced considerably. For many years, however,
self-assembly of metallic nanostructures has been limited to the fabrication
of very simple designs. Over the past decade though, molecular linking of
plasmonic nanoparticles has allowed for the fabrication of nanostructures
that are more complex and in particular DNA has emerged as a paradigm
linker for more sophisticated designs [131].

Recently, DNA-based self-assembly has also been employed to create heli-
cal nanostructures [132]. In a first step, DNA origami-folded helix-bundles
were created. Gold nanoparticles (AuNPs) with a diameter of 10 nm were
synthesized in solution and subsequently conjugated with thiolated ssDNA
strands. These DNA-coated AuNPs were hybridized to the DNA origami
structure, yielding either right-handed or left-handed helix formations of
gold nanoparticles.

With this, resonant circular dichroism was observed for visible wave-
lengths with an amplitude, however, only on the order of millidegrees and
thus orders of magnitude smaller than for GLAD approaches. The optical
performance can, however, be enhanced by electroless gold deposition. This
step increases the sizes of the nanoparticles and leads to a small, expected
red-shift of the peak, but mostly increases the amplitude of the signal by a
factor of approximately 400 [132].

Furthermore, composite shells, consisting of an alloy of gold and silver, can
also be created, yielding the possibility to finely tune the spectral position
and the amplitude of the CD signal. Nevertheless, helical nanostructures
fabricated via DNA-based self-assembly show rather weak circular dichroism
and small bandwidth, compared to the methods discussed in the previous
paragraphs, resulting from the disconnected nanoparticle design. Further-
more, the formation of compact, periodic metamaterials is impossible. For
solution-based applications, however, DNA-based self-assembly is a promis-
ing method. Parallelized large-scale fabrication of more complex designs is
fundamentally possible and feature sizes presented so far are out of reach for
top-down approaches like DLW and FIBID and even challenging for GLAD.

To conclude this section, I have summarized the three methods discussed
above together with direct laser writing approaches Table 5.1 together with
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Table 5.1: Fabrication approaches for helical metamaterials at optical or infrared
frequencies. The corresponding publications and typical operation ranges are
given, as well as general advantages and disadvantages.

Method Spectral range Advantages Disadvantages

(STED-)DLW
[8, 63, 118, 119]

Mid-infrared
high metal quality

highest degree of
design freedom

limited resolution

low writing speeds

FIBID / FEBID
[123–125]

Near-infrared
improved resolution

large design freedom

low metal quality

low writing speeds

GLAD
[127–130]

Visible

small feature sizes

fabrication of composites

wafer-scale fabrication

low structural quality

small bandwidths

limited design freedom

DNA-based
self-assembly
[132]

Visible
small feature sizes

easily scalable
fabrication volume

small chiro-optical
responses

narrow bandwidths

no ordered media

the characteristic strengths and weaknesses. Furthermore, a typical spectral
range is given at which operation has been demonstrated for the correspond-
ing technique.

With steadily increasing complexity of helical-metamaterial designs at
a same time a demand for more advanced micro- and nanofabrication
techniques. We have reviewed the recent advances in laser lithography
and focused-ion-beam induced deposition. Both methods allow for the
fabrication of highly complex three-dimensional metallic nanostructures
for operation at mid- and near-infrared frequencies. On the other hand,
fabrication techniques for wafer-scale fabrication have been introduced in the
form of glancing-angle deposition and DNA-based self-assembly, bringing
giant chiro-optical effects even to visible frequencies.
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Chapter 6

Conclusions and

Outlook

In the scope of this thesis, I have demonstrated both experimentally and the-
oretically that helical-metamaterial designs and applications are not limited
merely to arrays of single helices and to operation as broadband circular
polarizers. More sophisticated unit cells can be created where helices are
used as the basic building blocks.

The theoretical aspects of more complex helical metamaterials were cov-
ered in Chapter 3. While arrays of single helices inherently exhibit undesired
circular-polarization conversions, that stem from linear birefringence, I have
shown theoretically that by recovering discrete rotational symmetry these
conversions can be eliminated. With the analysis in Section 3.2, which is
based on reciprocity and symmetry arguments, I have proven that there is a
fundamental difference in the operation principle of any chiral metamaterial
with discrete rotational symmetry in comparison to conventional helical
metamaterials. Most importantly, losses are inherently necessary to achieve
conversion-free circular-polarization capability as there simply cannot be
any difference in reflection if only reciprocal constituent materials are at
hand. This is in large contrast to the common wire-grid polarizer for linear
polarization

I have furthermore discussed N-helical metamaterial designs where mul-
tiple intertwined helices within one unit cell recover the needed discrete
rotational symmetry. Numerical calculations clearly support the previous
theoretical arguments. Despite the fundamental difference of operation of
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N-helical metamaterials in comparison to conventional helical metamaterials,
strong circular dichroism is observed over similar or even larger bandwidths.
The elimination of conversions, however, comes at a price of an inferior ex-
tinction ratio. In Section 3.3, I have demonstrated that competitive extinction
ratios can be achieved by increasing the number of axial pitches. Addition-
ally, tapering the helix radius along the helix axis allows for simultaneous
enhancement of the extinction ratio and the relative bandwidth.

Instead of eliminating circular-polarization conversions, one can also aim
at strongly enhancing one conversion and suppressing the other, leading
to asymmetric transmission as I have shown in Section 3.4. Here, a helical-
metamaterial design based on two coupled helices of opposite handedness
was introduced, leading to record-breaking asymmetric circular polarization
conversions over a bandwidth of approximately one octave. The operation
principle, as well as the importance of coupling was discussed and illustrated
via numerical calculations.

In Chapter 4, the experimental methods were introduced with which we
have tackled the fabrication. The increased complexity of the proposed
unit cells naturally also requires an improved resolution that conventional
direct laser writing cannot offer. For this, I have reviewed the basics of
diffraction-unlimited stimulated-emission-by-depletion inspired direct laser
writing (STED-DLW). Furthermore, electro-chemical metal deposition was
introduced. Based on these, I have described a novel fabrication approach al-
lowing for a strongly enhanced resolution, in particular in the axial direction.
Additionally, post-processing of the samples via subsequent chemical wet-
etching to improve structure quality and optical performance was introduced
and demonstrated.

I have illustrated the characterization method, employing broadband
mid-infrared circular polarization optics and fourier-transform infrared spec-
troscopy.

Finally, in Chapter 5, I have presented our experimental achievements
in fabricating the previously proposed helical-metamaterial designs for op-
eration at mid-infrared frequencies. First, I have shown the successfull
realization of N = 3 helices with very good structural quality and overall
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periodicity. Two axial pitches were demonstrated and corresponding optical
measurements were in very good agreement with theory. The fabricated
metamaterials exhibit strong circular dichroism over a large relative band-
width of more than one octave and circular-polarization conversions were
suppressed entirely.

Employing the same fabrication approach, the helical metamaterial design
previously discussed in Section 3.4 was realized and asymmetric circular-
polarization conversions of up to 80 % over a relative bandwidth of one
octave in the mid-infrared were measured. Up to date, this is the highest
value achieved experimentally by a metamaterial design for broadband
polarization conversion of circularly polarized light.

For both these metamaterial designs, fabrication based on conventional
direct laser writing in a positive-tone resist does not offer the resolution
needed to achieve the corresponding crucial features, namely intertwined
helices and a connection arc with small bending radius, respectively.

Lastly, in Section 5.4, I have reviewed alternative fabrication approaches
for helical metamaterials and the respective advantages and disadvantages.

Even though helical metamaterials can be seen as the analog to the well-
known wire-grid polarizer for linear polarization, conversion-free broadband
polarization capability is much more challenging. Driven by important appli-
cations like vibrational circular-dichroism spectroscopy, the ever-increasing
number of helical-metamaterial designs in combination with newly emerg-
ing and constantly improving micro- and nano-fabrication approaches will
bring true circular-polarization capabilities to visible, infrared, and terahertz
frequencies. Furthermore, very little research has covered the effects of non-
reciprocal constituent media – found in commonly used Faraday rotators and
optical isolators – for helical metamaterials. In general, such a non-reciprocal
metamaterial would allow for polarization-sensitive reflectance, even if circu-
lar polarization-conversions have been surpressed. It remains to be seen in
the future, whether further improvements for reciprocal metamaterials or a
non-reciprocal approach will allow for easily accessible circular polarization,
the same way as the wire-grid polarizer has allowed for linear polarization.
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A
Appendix A

Numerical Parameter

Sweep

We have examined the effects of varying geometrical parameters via extensive
numerical calculations for the circular-polarization converters, as they have
been introduced in Section 3.4. The squared moduli of the Jones transmission
matrix are depicted on the following pages in dependence of three crucial
parameters, the helix radius rH, the axial pitch H, and the number of pitches
Np.
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a numerical parameter sweep

Variation of the Helix Radius rH

Figure A.1 shows the effects of different helix radii. As intuitively expected,
this yields mainly a spectral shift. The targeted helical radius was chosen
such that bandwidth and asymmetric conversion for circularly polarized
light were both enhanced.

C
o

n
v

er
si

o
n

s
T

ra
n

sm
i�

an
ce

s

Frequency in THz

H
el

ix
 R

ad
iu

s 
r

 i
n

 n
m

�

RCP to LCP

40 60 80 100
300

400

500

600

0

0.2

0.4

0.6

0.8

1

Frequency in THz

LCP to RCP

40 60 80 100

Frequency in THz

H
el

ix
 R

ad
iu

s 
r

 i
n

 n
m

�

RCP to RCP

40 60 80 100
300

400

500

600

0

0.05

0.1

0.15

0.2

0.25

Frequency in THz

LCP to LCP

40 60 80 100

Figure A.1: Top row shows the circular-polarization conversion spectra
for incoming RCP and LCP, respectively. The bottom row corrispondigly
shows the polarization-conserving transmittances for incoming RCP and
LCP, however, plotted on a different color scale. A white, dashed line
was added in all plots at rH = 500 nm to indicate the desired geometrical
parameter for optimized optical performance. Reproduced from Reference
[118] (Supporting Online Information).
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Variation of the Axial Pitch H

Figure A.2 shows the effects of different pitch heights H. The optimal pitch
height is found for H = a, where a is the lateral lattice period.

C
o

n
v

er
si

o
n

s
T

ra
n

sm
i�

a
n

ce
s

0

0.2

0.4

0.6

0.8

1

0

0.05

0.1

0.15

0.2

0.25

Frequency in THz

A
x

ia
l 

P
it

ch
 H

 i
n

 µ
m

RCP to LCP

40 60 80 100
1.5

2

2.5

Frequency in THz

LCP to RCP

40 60 80 100

Frequency in THz

A
x

ia
l 

P
it

ch
 H

 i
n

 µ
m

RCP to RCP

40 60 80 100
1.5

2

2.5

Frequency in THz

LCP to LCP

40 60 80 100

Figure A.2: Top row shows the circular-polarization conversion spectra
for incoming RCP and LCP, respectively. The bottom row corrispondigly
shows the polarization-conserving transmittances for incoming RCP and
LCP, however, plotted on a different color scale. A white, dashed line
was added in all plots at H = 2µm to indicate the desired geometrical
parameter for optimized optical performance. Reproduced from Reference
[118](Supporting Online Information).
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Variation of the Number of Pitches Np

Figure A.3 shows the effects of the number of pitches Np of each helix. For
any Np broadband circular-polarization conversions are observed.
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Figure A.3: Top row shows the circular-polarization conversion spectra
for incoming RCP and LCP, respectively. The bottom row corrispondigly
shows the polarization-conserving transmittances for incoming RCP and
LCP, however, plotted on a different color scale. A white, dashed line
was added in all plots at N = 1.5 to indicate the desired geometrical
parameter for optimized optical performance. Reproduced from Reference
[118] (Supporting Online Information).
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