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Abstract: The multipolar decomposition of current distributions is used
in many branches of physics. Here, we obtain new exact expressions for
the dipolar moments of a localized electric current distribution. The typical
integrals for the dipole moments of electromagnetically small sources are
recovered as the lowest order terms of the new expressions in a series
expansion with respect to the size of the source. All the higher order
terms can be easily obtained. We also provide exact and approximated
expressions for dipoles that radiate a definite polarization handedness
(helicity). Formally, the new exact expressions are only marginally more
complex than their lowest order approximations.
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The multipolar decomposition of a spatially confined electromagnetic source distribution is a
basic tool in both classical and quantum electrodynamics [1–5]. On the one hand, the multipolar
coefficients determine the coupling of the source to external electromagnetic fields. This is
used in the study of molecular, atomic, and nuclear electromagnetic interactions. On the other
hand, there is a one-to-one correspondence between the multipolar components of the source
and the multipolar fields radiated by it. This is exploited in the understanding and design of
radiating systems. For example, in nanophotonics, the multipole moments of induced current
distributions are used to study optical nano-antennas and meta-atoms [6–9]. The multipolar
decomposition can be done in different ways, e.g. [2, Chap. 9] and [10, App. B, §4], resulting
in integral expressions for the multipolar coefficients. The exact expressions are considerably
simplified in the limit of electromagnetically small sources, but artificial scatterers at optical
frequencies are typically large enough to compromise the accuracy of the approximation.

1. Outline

In this article, we obtain new exact expressions for the source dipolar moments [Eqs. (20)-(22)].
In particular, they are valid for any source size. We start our derivation in momentum space ex-
ploiting the fact that the fields radiated by the source at a given frequency ω are determined
solely by its momentum components in a spherical shell of radius ω/c, where c is the speed
of light in the medium. We first obtain hybrid integrals in momentum and coordinate space for
all multipolar orders. In the dipolar case, we bring them to a form that is only marginally more
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complex than the typical integrals that give the dipolar moments of electromagnetically small
sources. The additional complexity is the appearance of spherical Bessel functions. We iden-
tify the spherical Bessel functions as the elements that perform the necessary selection of the
appropriate momentum shell. When the spherical Bessel functions are expanded around zero,
the typical approximations for the magnetic and electric moments of electromagnetically small
sources are recovered as the lowest order terms in the expansion. The toroidal dipole is recov-
ered as the second term in the electric case. All higher order corrections are easily obtained as
successive terms of the expansions. We include integral expressions for the magnetic correc-
tions of order k3 and the electric/toroidal corrections of order k4. We also provide exact and
approximated expressions for dipoles that radiate a definite polarization handedness (helicity)
[Eq. (40) and Eq. (41)].

2. Problem setting

We start by considering an electric current density distribution J(r, t) embedded in an infinite,
isotropic, and homogeneous medium characterized by real valued permittivity ε and perme-
ability μ . We assume J(r, t) to be confined in space so that J(r, t) = 0 for |r|> R. We consider
its energy-momentum Fourier representation

J(r, t) = R

[∫ ∞

0+

dω√
2π

exp(−iωt)Jω(r)
]

= R

[∫ ∞

0+

dω√
2π

exp(−iωt)
∫

d3p√
(2π)3

Jω(p)exp(ip · r)
]
,

(1)

and treat each ω term separately. The frequency ω and the three components of the momentum
vector p are real numbers. The lower limit of the integral in dω excludes the static case ω = 0,
which we do not treat in this paper. At each frequency ω , the transverse electromagnetic fields
outside the source are solely determined by the part of Jω(p) in the domain that satisfies |p|=
ω/c. This result was obtained by Devaney and Wolf [11]. We provide an alternative proof in
App. A.

We denote by J̊ω(p̂) the components of Jω(p) in the spherical shell of radius |p| = ω/c.
The symbol p̂ represents the angular part of the momentum vector p, i.e., the solid angle in the
spherical shell. As usual, we define k = ω/c.

We will expand J̊ω(p̂) in an orthonormal basis for functions defined in a spherical shell: The
three families of multipolar functions in momentum space [3, BI .3]

X jm(p̂) =
1√

j( j+1)
LYjm(p̂),

Z jm(p̂) = ip̂×X jm(p̂),

W jm(p̂) = p̂Yjm(p̂).

(2)

The Yjm(p̂) are the spherical harmonics and the three components of the vector L are the angular
momentum operators for scalar functions.

Each of the vector multipolar functions in the three families is an eigenstate of the total
angular momentum squared J2 and the angular momentum along one axis q̂, for which we
choose q̂ = ẑ. With Q jm(p̂) standing for any of the {X jm(p̂),Z jm(p̂),W jm(p̂)}:

J2Q jm(p̂) = j( j+1)Q jm(p̂), JzQ jm(p̂) = mQ jm(p̂), (3)

where j and m are integers, and m =− j . . . j. For X jm(p̂) and Z jm(p̂), j takes integer values in
j > 0, while for W jm(p̂), j = 0 is also possible.
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The functions in Eq. (2) are also eigenstates of the parity operator [12]:

ΠX jm(p̂) =−X jm(−p̂) = (−1) j+1X jm(p̂),

ΠZ jm(p̂) =−Z jm(−p̂) = (−1) jZ jm(p̂),

ΠW jm(p̂) =−W jm(−p̂) = (−1) jW jm(p̂).

(4)

The polarization of X jm(p̂) and Z jm(p̂) is transverse (orthogonal) to p̂, and the polarization
of W jm(p̂) is longitudinal (parallel) to p̂, as depicted in Fig. 1. In coordinate (r) space, this
distinction corresponds to the distinction between divergence free (transverse) and curl free
(longitudinal) fields.

With the scalar product

〈A|B〉=
∫

dp̂ A†(p̂)B(p̂), (5)

where † denotes hermitian transpose, and p̂ runs over the entire spherical shell, the three families
together form an orthonormal basis for functions defined on any spherical shell in momentum
space.

We expand J̊ω(p̂) in this basis:

J̊ω(p̂) = ∑
jm

aω
jmZ jm(p̂)+bω

jmX jm(p̂)+ cω
jmW jm(p̂), (6)

where, with qω
jm standing for any of the {aω

jm,b
ω
jm,c

ω
jm},

qω
jm = 〈Qjm|J̊ω〉=

∫
dp̂Q†

jm(p̂)J̊ω(p̂). (7)

The {aω
jm,b

ω
jm,c

ω
jm} coefficients contain all the information about J̊ω(p̂) so they must also

contain all the information about the fields produced by it. As shown in [11], the {aω
jm,b

ω
jm}

determine the transverse electromagnetic field radiated by the sources at frequency ω outside a
spherical volume enclosing them: They are the coefficients of the expansion of the transverse
fields in outgoing electric and magnetic multipoles, respectively [2, Eq. 9.122]. Therefore, the
transverse components of J̊ω(p̂) determine the transverse components of the electromagnetic
field at frequency ω outside the source region. The longitudinal electric field with |p| = ω/c
is zero outside the source region. While the longitudinal degrees of freedom of J̊ω(p̂), i.e. the
cω

jm, are not necessarily equal to zero, the field that they generate outside the source region is
canceled by the field generated by the charge density. This can be seen in [13, §13.3 p1875-
1877], and in [14, App. C] where the cancellation is shown to be a consequence of the continuity
equation. We will keep the cω

jm in the discussion both for completeness and because they play
an important role in understanding the split of the aω

jm into electrical and toroidal parts [15–17],
which we discuss in [14].

The {aω
jm,b

ω
jm} coefficients are a valuable source of information in many branches of physics.

In molecular, atomic and nuclear physics, the {aω
jm,b

ω
jm} coefficients are used to describe the

interaction of systems of charges with external electromagnetic fields, e.g. [4, Chap. 10], [3,
IV.C.2c)] and [5, Chap. 7]. In classical electrodynamics they are used to describe radiation by
source distributions, e.g. [1, Chap. 9] and [2, Chap. 9]. In nanophotonics, they are used to study
and design the response of individual artificial nanostructures.

Given Jω(r), there exist exact expressions for the {aω
jm,b

ω
jm} as coordinate space integrals,

e.g. [5, Eq. (7.20)]
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Fig. 1. The electromagnetic field radiated by a confined monochromatic current den-
sity Jω (r) with Fourier transform Jω (p) only depends on the components of Jω (p)
in a spherical shell of radius |p| = ω/c. The relevant part of Jω (p) can hence be ex-
pressed as a linear combination of the momentum space vector multipolar functions
{X jm(p̂),Z jm(p̂),W jm(p̂)}, which form an orthonormal basis for functions defined on the
shell. The polarization vectors of X jm(p̂) and Z jm(p̂) are tangential to the surface of the
shell, i.e., orthogonal (transverse) to the momentum vector p. The polarization vector of
W jm(p̂) is normal to the surface of the shell, i.e., parallel (longitudinal) to p.

ãω
jm =

1
k

∫
d3r (∇× j j(kr)X jm(r̂))

† Jω(r),

b̃ω
jm =

∫
d3r j j(kr)X†

jm(r̂)Jω(r),
(8)
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or, [2, Eq. (9.165) without the magnetization current therein],

âω
jm =

ik√
j( j+1)

∫
d3r j j(kr)Y ∗

jm(r̂)L · (∇×Jω(r)),

b̂ω
jm =

−k2√
j( j+1)

∫
d3r j j(kr)Y ∗

jm(r̂)L ·Jω(r),
(9)

where the tildes and carets in the left hand sides indicate different normalizations, r = |r|,
r̂ = r/|r| is the angular part of r, and k ≡ ω/c throughout the article.

The expressions in Eq. (8) and Eq. (9) are valid for any source radius R. For electromagneti-
cally small sources where kR � 1, they can be reduced to the simpler well known expressions
that are obtained in [2, Chap. 9] and [1, Chap. 9] by starting with the equation for the vector

potential as a function of Jω(r) in the Lorentz gauge [Eq. (43)], and expanding
exp(ik|r−r′|)

|r−r′| in

powers of k|r− r′|. For example, when kR � 1 the source dependent terms of the electric and
magnetic dipole moments are

⎡
⎣ aω

11
aω

10
aω

1−1

⎤
⎦→

∫
d3r Jω(r),

⎡
⎣ bω

11
bω

10
bω

1−1

⎤
⎦→

∫
d3r r×Jω(r), (10)

where we have chosen the spherical vector basis. We will work in this basis throughout the
article. Appendix C contains auxiliary expressions.

3. Exact dipolar moments

We will now obtain exact expressions for the dipolar vectors [aω
11,a

ω
10,a

ω
1−1]

T , [bω
11,b

ω
10,b

ω
1−1]

T

and [cω
11,c

ω
10,c

ω
1−1]

T as coordinate space integrals of functions of Jω(r). While these expressions
are, as Eq. (8) and Eq. (9), valid for any source size, they are only marginally more complex
than their kR � 1 limits: Namely, they contain spherical Bessel functions. As far as we know,
these expressions have not been reported before.

We start from Eq. (7), where we substitute

J̊ω(p̂) =
1√
(2π)3

∫
d3r Jω(r)exp

(
−i

ω
c

p̂ · r
)
. (11)

to get

qω
jm =

1√
(2π)3

∫
dp̂ Q†

jm(p̂)
∫

d3r Jω(r)exp
(
−i

ω
c

p̂ · r
)
. (12)

The condition |p|= ω/c is enforced in the argument of the exponential. We now substitute the
exponential for its expansion in spherical harmonics

exp
(
−i

ω
c

p̂ · r
)
= (4π)∑̄

l,m

(−i)l̄Y ∗̄
lm(r̂)Yl̄m(p̂) jl̄(k|r|), (13)

where jl̄(·) is the l̄-th order spherical Bessel function of the first kind. The result is:

√
(2π)3

4π
qω

jm =

∑̄
lm

(−i)l̄
∫

dp̂ Q†
jm(p̂)Yl̄m(p̂)

∫
d3r Jω(r)Y ∗̄

lm(r̂) jl̄(kr).
(14)
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Equation (14) is an exact expression for the {aω
jm,b

ω
jm,c

ω
jm} coefficients in terms of integrals

in both momentum (shaded area) and coordinate space. As shown in App. B, only terms with
l̄ = j contribute to the bω

jm, while the aω
jm and cω

jm get contributions from both l̄ = j− 1 and
l̄ = j + 1. Additionally, it is possible to further simplify Eq. (14) in the dipolar ( j = 1) case
without making any approximation. We now present the derivations for the magnetic dipole
bω

1m. Appendix D contains the derivations for aω
1m and cω

1m. It also contains the c00 case.
For the magnetic dipole, we particularize Eq. (14) for Q jm(p̂)→ X jm(p̂) and j = 1, which

implies l̄ = 1:

i

√
(2π)3

4π
bω

1m =

m=1

∑
m=−1

∫
dp̂ X†

1m(p̂)Y1m(p̂)
∫

d3r Jω(r)Y ∗
1m(r̂) j1(kr).

(15)

Explicit expressions of X1m(p̂) can be obtained using Eq. (66) and then used to write the
momentum integrals in the shaded area of Eq. (15) as

m = 1 →
∫

dp̂

⎡
⎢⎣
−Y10(p̂)√

2
Y11(p̂)√

2
0

⎤
⎥⎦

†

Y1m(p̂),

m = 0 →
∫

dp̂

⎡
⎢⎣
−Y1−1(p̂)√

2
0

Y11(p̂)√
2

⎤
⎥⎦

†

Y1m(p̂),

m =−1 →
∫

dp̂

⎡
⎢⎣

0

−Y1−1(p̂)√
2

Y10(p̂)√
2

⎤
⎥⎦

†

Y1m(p̂),

(16)

which can be easily solved for each m ∈ {−1,0,1} using the orthonormality properties of the
spherical harmonics:

∫
dp̂ Ylm(p̂)Y ∗̄

lm
(p̂) = δmmδl̄l . They result in three vectors for each m case,

which we list here as row vectors. From top to bottom, the three row vectors correspond to
m = 1,0,−1:

m = 1 → 1√
2

( 0 1 0 )
( −1 0 0 ),
( 0 0 0 )

m = 0 → 1√
2

( 0 0 1 )
( 0 0 0 ),
( −1 0 0 )

m =−1 → 1√
2

( 0 0 0 )
( 0 0 1 ).
( 0 −1 0 )

(17)

Having solved the momentum space integrals in the shaded area of Eq. (15), the summation in
m can now be done. With Jω(r) = [Jω

1 ,Jω
0 ,Jω

−1]
T , and, as in Eq. (65),

r̂ =
r
|r| = 2

√
π
3

⎡
⎣ Y ∗

11(r̂)
Y ∗

10(r̂)
Y ∗

1−1(r̂)

⎤
⎦ , (18)
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the result of the sum reads

bω
11 =

√
3

2πi

∫
d3r (Jω

0 r̂1 − Jω
1 r̂0) j1(kr),

bω
10 =

√
3

2πi

∫
d3r

(
Jω
−1r̂1 − Jω

1 r̂−1
)

j1(kr),

bω
1−1 =

√
3

2πi

∫
d3r

(
Jω
−1r̂0 − Jω

0 r̂−1
)

j1(kr).

(19)

Considering the expression for the cross product in spherical coordinates [Eq. (64)], we can
finally write Eq. (19) as: ⎡

⎣ bω
11

bω
10

bω
1−1

⎤
⎦=−

√
3

2π

∫
d3r r̂×Jω(r) j1(kr). (20)

The expressions for [aω
11,a

ω
10,a

ω
1−1]

T and [cω
11,c

ω
10,c

ω
1−1]

T can be obtained by similar, although
more involved, procedures. We provide the derivations in App. D. The results read:⎡

⎣ aω
11

aω
10

aω
1−1

⎤
⎦=− 1

π
√

3

∫
d3r Jω(r) j0(kr)

︸ ︷︷ ︸
l̄=0

− 1

2π
√

3

∫
d3r

{
3
[
r̂†Jω(r)

]
r̂−Jω(r)

}
j2(kr)

︸ ︷︷ ︸
l̄=2

,

(21)

and ⎡
⎣ cω

11
cω

10
cω

1−1

⎤
⎦=

1

π
√

6

∫
d3r Jω(r) j0(kr)

︸ ︷︷ ︸
l̄=0

− 1

π
√

6

∫
d3r

{
3
[
r̂†Jω(r)

]
r̂−Jω(r)

}
j2(kr)

︸ ︷︷ ︸
l̄=2

,

(22)

where the contributions coming from l̄ = j− 1 = 0 and l̄ = j+ 1 = 2 are indicated. The dot
product r̂†Jω(r) is simply equal to r̂T Jω(r) in Cartesian coordinates [18].

Equation (20), Eq. (21), and Eq. (22) are exact. In particular they apply to a source distribu-
tion of any size. They are also simpler than the corresponding exact expressions obtained from
Eq. (8) or Eq. (9). We note that Eqs. (20) to Eq. (22) should also be reachable from the coordi-
nate space integrals of Eq. (8) or Eq. (9). Our route through momentum space explicitly exploits
that the contributions to the qω

jm only come from the Fourier components of the source in the
domain |p|= ω/c. This restriction is imposed in the exponential of Eq. (11) and determines the
argument of the spherical Bessel functions jl̄(kr) in Eq. (14), which then appear in Eqs. (20),
Eq. (21), and Eq. (22). We can deduce that the spherical Bessel functions must be responsible
for rejecting the |p| �= ω/c components present in Jω(r). We now provide a more formal proof
of their role.

In the expression of qω
jm in Eq. (14), the dependence on the current density is contained in

the integrals ∫
d3r Jω(r)Y ∗

lm(r̂) jl(kr). (23)
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We then write Jω(r) as an inverse Fourier transform and expand its exponential exp(ip · r) as
in Eq. (13), except that now |p| is not restricted to ω/c. After rearranging the integrals we get:

∑̄
l,m

4πil̄√
(2π)3

∫
d3pJω (p)Y ∗̄

lm(p̂)
∫

d3rYl̄m(r̂)Y
∗
lm(r̂) jl̄(|p|r) jl(kr) . (24)

The shaded d3r integral can be solved by splitting it into its radial and angular parts(∫
d3r =

∫ ∞
0 dr r2 ∫ dr̂

)
. First, the angular part is solved through the orthonormality of the

spherical harmonics, which forces (l̄,m) = (l,m). The remaining radial integral has a formal
solution as a radial Dirac delta distribution [19, Eq. (4.1)]

∫
drr2 jl(|p|r) jl(kr) =

π
2k2 δ (|p|− k), (25)

which enforces the |p|= k = ω/c restriction in Eq. (24), namely:

4πil√
(2π)3

∫
d3pJω(p)Y ∗

lm(p̂)
π

2k2 δ (|p|− k) =

4πil√
(2π)3

∫
dp̂Y ∗

lm(p̂)
∫ ∞

0
dp p2Jω(p)

π
2k2 δ (|p|− k) =

1
k2

√
π
2

il
∫

dp̂J̊ω(p̂)Y ∗
lm(p̂).

(26)

The jl(kr) functions from Eq. (14) find their way into Eq. (25), and become one of the pieces
needed to obtain the Dirac delta δ (|p|−k) which filters out the |p| �=ω/c components of Jω(r).

4. Electromagnetically small source approximation with increasing accuracy

We now make the small argument approximation to the spherical Bessel functions in Eqs. (20)-
(22) and keep terms up to second order: j0(kr) ≈ 1− (kr)2/6, j1(kr) ≈ kr/3 and j2(kr) ≈
(kr)2/15. After grouping terms with the same power of k we obtain:

⎡
⎣ bω

11
bω

10
bω

1−1

⎤
⎦≈− 1

2π
√

3
k
∫

d3r r×Jω(r), (27)

⎡
⎣ aω

11
aω

10
aω

1−1

⎤
⎦≈− 1

π
√

3

∫
d3r Jω(r)︸ ︷︷ ︸

l̄=0

(28)

− 1

π
√

3
k2
∫

d3r
1
10

{[
r†Jω(r)

]
r−2r2Jω(r)

}
︸ ︷︷ ︸

l̄=0,l̄=2

, (29)

⎡
⎣ cω

11
cω

10
cω

1−1

⎤
⎦≈ 1

π
√

6

∫
d3r Jω(r)︸ ︷︷ ︸

l̄=0

(30)

− 1
π

√
2
3

k2
∫

d3r
1
10

{
2
[
r†Jω(r)

]
r+ r2Jω(r)

}
︸ ︷︷ ︸

l̄=0,l̄=2

. (31)
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Equation (27), Eq. (28) and Eq. (29) are, respectively, the well known approximated mag-
netic, electric, and toroidal dipole moments of electromagnetically small current distributions.
We note that the electric dipole contains contributions only from l̄ = 0 while the toroidal dipole
has contributions from l̄ = 0 and l̄ = 2.

The small argument approximation causes two kinds of inaccuracies. On the one hand, entire
integral terms are neglected. For example, the toroidal term in Eq. (29) disappears in a lowest
order approximation. On the other hand, some components with |p| �= ω/c will leak into the
dipole moments. This happens because the approximated expressions of the spherical Bessel
functions do not correspond to momentum space Dirac deltas δ (|p|− k).

Approximations with increasing accuracy are obtained in a straightforward way from the
exact Eqs. (20) to Eq. (22). It is a matter of taking more terms in the expansions of the spherical
Bessel functions. For example, the (kr)3 correction to Eq. (27) reads

√
3k3

60π

∫
d3r [r×Jω(r)]r2, (32)

the (kr)4 correction to the total aω
1m in Eqs. (28)-(29) reads

k4

140π
√

3

∫
d3r

{[
r†Jω(r)

]
r− 3

2
Jω(r)r2

}
r2, (33)

and the (kr)4 correction to the total cω
1m in Eqs. (30)-(31) reads

k4

70π
√

6

∫
d3r

{[
r†Jω(r)

]
r+

1
4

Jω(r)r2
}

r2. (34)

The above corrections to aω
1m and bω

1m coincide up to normalization factors with the mean
square radii in [16, App. C], where they are derived in a different way.

We now use our results to compute the magnetic dipole moment of a current distribution with
a previously known analytical solution, verify that the result coincides, and compare it with two
approximated solutions for electromagnetically small sources obtained from taking the first and
the two first terms in the expansion of the spherical Bessel functions.

5. Example

Let us consider an infinitesimally thin circular loop of current with implicit time dependence
exp(−iωt). The loop has radius a and lies on the plane perpendicular to the ẑ axis (see the inset
in Fig. 2). The expression for its current in spherical coordinates is

Jω(r) = φ̂ I0δ (r−a)
1
r

δ (θ − π
2
), (35)

where φ̂ = [−sinφ ,cosφ ,0]T , φ = arctan( y
x ) and θ = arccos( z

r ).
The exact value of its magnetic dipole moment is obtained after calculating the integral in

Eq. (20):
m = ẑ

√
3I0a j1(ka). (36)

We obtain a first small source approximation by using Eq. (27) and a more accurate second
one using the incremental correction in Eq. (32)

m(1)
ka�1 = ẑ

√
3I0

ka2

3
,

m(2)
ka�1 = ẑ

√
3I0

ka2

3

[
1− (ka)2/10

]
.

(37)
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The same results are obtained by taking terms up to ka and (ka)3, respectively, in the Taylor
series of j1(ka) in Eq. (36). This latter approach relies on the existence of an exact closed form
solution and is hence not general.

The exact value of Eq. (36) coincides with the one calculated in [13, §13.3 p1881] up to a
numerical factor that can be traced back to a different normalization. In this simple example,
the relative error incurred due to the small source approximations is equal to the relative error
incurred when approximating the first order spherical Bessel function. Figure 2 shows the rela-
tive errors incurred when taking only the first term in the expansion [ j1(ka)≈ ka/3] and when
taking the first two terms

{
j1(ka)≈ (ka/3)× [1− (ka)2/10

]}
. We see that, if we take only one

term, a 10% relative error is incurred when the diameter of the loop is approximately 30% of
the wavelength. When taking two terms, the 10% relative error is reached when the diameter
is approximately 70% of the wavelength. We note that in this example the current is concen-
trated in the most exterior region of the object. When this is not the case, e.g. in a homogeneous
current distribution within a sphere of diameter 2a, the relative errors should be smaller.
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Fig. 2. Relative error in the magnetic dipole moment of an infinitesimally thin circular
current loop of radius a (shown in the inset) due to the small 2πa/λ0 approximation. Solid
red line: Error due to taking only the first term in the small argument expansion of the
spherical Bessel function in Eq. (20). Such first order gives the typical integral for the
magnetic dipole moment of electromagnetically small sources [see Eq. (27)]. Dashed black
line: Error due to taking the first two terms in the expansion, i.e. Eq. (27) plus Eq. (32).

6. Results for helicity multipoles

There is some recent interest in the use of helicity for the study of interactions between matter
and electromagnetic fields [20–24]. Due to its fundamental relationship with electromagnetic
duality, the helicity formalism is also very useful when discussing dual symmetric systems
[25,26], e.g. Huygens surfaces [27,28]. We now extend our results to the dipoles of well defined
helicity.

Multipoles of well defined helicity are an alternative to the multipoles of well defined parity.
The two sets are related by a change of basis, which we write for both the qω

jm coefficients and
the Q jm(p̂) functions:
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gω
jm+ =

bω
jm +aω

jm√
2

⇐⇒ G+
jm(p̂) =

X jm(p̂)+Z jm(p̂)√
2

=
1+ ip̂×√

2

LYjm√
j( j+1)

,

gω
jm− =

bω
jm −aω

jm√
2

⇐⇒ G−
jm(p̂) =

X jm(p̂)−Z jm(p̂)√
2

=
1− ip̂×√

2

LYjm√
j( j+1)

,

gω
jm0 = cω

jm ⇐⇒ G0
jm(p̂) = W jm(p̂) = p̂Yjm,

(38)

where 1 is the 3×3 unit matrix.
The Gλ

jm(p̂) in Eq. (38) and the Q jm(p̂) have the same properties under rotations. They

differ in their parity and polarization properties. Instead of eigenstates of parity, the Gλ
jm(p̂)

are eigenstates of the helicity operator with eigenvalue λ . This is obvious from the rightmost
expressions in Eq. (38) since the helicity operator Λ in the momentum representation is ip̂×:

Λ =
J ·P
|P| → ip̂×, (39)

where J and P are the angular and linear momentum vector operators, respectively.
The two transverse families of this alternative basis, G±

jm(p̂), correspond to multipolar com-
ponents gω

jm± that radiate fields of definite polarization handedness (helicity) λ =±1 [29, App.
A].

The extension of our dipolar results to the helicity basis is straightforward. According to the
third line of Eq. (38), the result for λ = 0 is Eq. (22). The exact expressions for the transverse
dipoles with helicity λ =±1 can be obtained using Eq. (20), Eq. (21) and Eq. (38):

−2π
√

6

⎡
⎣ gω

1λ
gω

0λ
gω
−1λ

⎤
⎦= (40)

∫
d3r

{
3 j1(kr)r̂×+λ

[
2 j0(kr)1+(3r̂r̂† −1) j2(kr)

]}
Jω(r).

The approximated expressions up to order k2 are:

−2π
√

6

⎡
⎣ gω

1λ
gω

0λ
gω
−1λ

⎤
⎦=

∫
d3r

{
kr×+λ

[
21+

k2

5

(
rr† −2r21

)]}
Jω(r).

(41)

7. Conclusion and future work

In conclusion, we have obtained new exact expressions for the dipolar moments of a local-
ized source distribution. These expressions are simpler than the ones reported to date. They
are only marginally more complex than the typical integrals for the dipole moments of electro-
magnetically small sources and allow to easily obtain approximate expressions with increasing
accuracy. Our results can be applied in the many areas where the dipole moments of electrical
current sources are used.

In future work, we aim to obtain new exact expressions for general j-polar order and use
them in applications like for instance in the study of the scattering properties of nanostructures.
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Appendices

A. Fields produced by time varying sources: Only Fourier components with |p| = ω/c
contribute

We consider a electric charge and current density distributions ρ(r, t) and J(r, t) embedded in
an isotropic and homogeneous medium with constant and real permittivity ε and permeability
μ . We assume them to be confined in space so that ρ(r, t) = 0 and J(r, t) = 0 for |r| > R. We
consider the following Fourier decomposition:

ρ(r, t) = R

[∫ ∞

0+

dω√
2π

exp(−iωt)ρω(r)
]

= R

[∫ ∞

0+

dω√
2π

exp(−iωt)
∫

d3p√
(2π)3

ρω(p)exp(ip · r)
]
,

J(r, t) = R

[∫ ∞

0+

dω√
2π

exp(−iωt)Jω(r)
]

= R

[∫ ∞

0+

dω√
2π

exp(−iωt)
∫

d3p√
(2π)3

Jω(p)exp(ip · r)
]
.

(42)

The lower limit of the integral in dω excludes the static case ω = 0.
Devaney and Wolf [11] proved that, outside the source region, the transverse parts of the elec-

tromagnetic field produced by the source at frequency ω are determined by the transverse com-
ponents of Jω(p) that meet |p|= ω/c, where c = 1/

√εμ is the speed of light in the medium.
We now provide a different proof which uses the potentials instead of the fields and shows

the selection of the |p|= ω/c components through the appearance of a radial delta distribution.
We prove that the only parts of the sources that contribute to the scalar and vector potentials in
the Lorenz gauge are those in the domain |p|= ω/c. The electric and magnetic fields obtained
from the potentials are hence also determined by the components in the momentum space shell
with radius |p|= ω/c, which means that the result is independent of the choice of gauge.

In the Lorenz gauge, and with implicit monochromatic exp(−iωt) dependence, the sources
in Eq. (42) generate the following scalar and vector potentials:

φω(r) =
1
ε

∫
d3r′ρω(r′)

exp(ik|r− r′|)
4π|r− r′|

Aω(r) = μ
∫

d3r′ Jω(r′)
exp(ik|r− r′|)

4π|r− r′| ,

(43)

where k = ω/c.
Following Jackson’s steps, we use the expansion of exp(ik|r− r′|)/(4π|r− r′|) in [2, Eq.

9.98]

exp(ik|r− r′|)
4π|r− r′| = ik

∞

∑
l=0

h(1)l (kr) jl(kr′)
m=l

∑
m=−l

Ylm(r̂)Y
∗
lm(r̂

′) (44)

to get to [2, Eq. 9.11]:

Aω(r) =

iμk∑
l,m

h(1)l (kr)Ylm(r̂)
∫

d3r′ Jω(r′) jl(kr′)Y ∗
lm(r̂

′)︸ ︷︷ ︸
ΓΓΓlm

, (45)
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where l and m are integers, h(1)l (·) and jl(·) are the l-th order spherical Hankel and Bessel
functions, respectively, r̂ = r/|r|, r̂′ = r′/|r′|, r = |r|, r′ = |r′|, and Yjq are the scalar spherical
harmonics.

Let us now consider the integral labeled as ΓΓΓlm in Eq. (45) for a given term (l,m). We use
the inverse Fourier transform of Jω(r′)

Jω(r′) =
∫

d3p√
(2π)3

Jω(p)exp
(
ip · r′) , (46)

and the expansion of the exponential exp(ip · r′) in spherical harmonics,

exp
(
ip · r′)= (4π)

∞

∑̄
l=0

m=l̄

∑
m=−l̄

il̄Yl̄m(r̂
′)Y ∗̄

lm(p̂) jl̄(|p||r′|), (47)

to get

ΓΓΓlm

4π
=

∑̄
lm

il̄
∫

d3r′
∫

d3p√
(2π)3

Jω (p) jl̄(|p|r′) jl(kr′)Y ∗̄
lm(p̂)Yl̄m(r̂

′)Y ∗
lm(r̂

′).
(48)

We stress that Jω(p) in Eq. (46), and hence Jω(r′) in Eq. (45) and ΓΓΓlm in Eq. (48), may
contain contributions from momenta p such that |p| �= ω/c. The following steps show that
these contributions are filtered out and that Aω(r) depends only on the components of Jω(p)
with |p|= ω/c.

We take Eq. (48), split the integral in d3r′ into radial and angular parts(∫
d3r′ =

∫ ∞
0 dr′ r′2

∫
dr̂′
)
, and solve the angular part through the orthonormality of the

spherical harmonics
∫

dr̂′Yl̄m(r̂)Y
∗
lm(r̂) = δl̄lδmm. After this, the only term in the sum on l̄ and

m that does not vanish is the one meeting l̄ = l and m = m:

ΓΓΓlm

4π
= il

∫
d3p√
(2π)3

Jω(p)Y ∗
lm(p̂)

∫
dr′(r′)2 jl(|p|r′) jl(kr′) . (49)

The crucial step is that the integral in the shaded box of Eq. (49) has a formal solution as a
radial Dirac delta distribution [19, Eq. 4.1]:

∫
dr′(r′)2 jl(|p|r′) jl(kr′) =

π
2k2 δ (|p|− k). (50)

This δ (k − |p|) term discards all momenta contributions from outside the spherical shell
|p|= k = ω/c in Eq. (49). To show it explicitly, we split the integral in d3p into radial (p = |p|)
and angular parts

(∫
d3p =

∫ ∞
0 dp p2 ∫ dp̂

)
:

ΓΓΓlm =
4π√
(2π)3

il
∫

dp̂ Y ∗
lm(p̂)

∫
dp p2Jω(p)

π
2k2 δ (p− k) =

il√
2π

∫
dp̂ Jω(p, |p|= k)Y ∗

lm(p̂).

(51)

Since this conclusion holds for all values of (l,m) in Eq. (45), it follows that the vector
potential is completely determined by Jω(p, |p| = k), i.e., the components of Jω(p) on the
momentum shell of radius |p|= ω/c.
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The same conclusion is valid for the scalar potential φω(r) in Eq. (43). This can be seen
noting that none of the steps in the previous derivation needs the fact that Jω(r) is a vector. The
same steps can be taken for the scalar charge density ρω(r) which generates the scalar potential
in Eq. (43). Regarding its inverse Fourier transform

ρω(r) =
∫

d3p√
(2π)3

ρω(p)exp(ip · r) , (52)

the conclusion in this case is that φω(r) only depends on the momentum components of the
charge density ρω(p) in the momentum shell of radius |p|= ω/c.

Since both scalar and vector potentials (ρω(r),Aω(r)) depend only on the source Fourier
components in the domain |p|= ω/c, the same will be true for the electric and magnetic fields
computed from them:

Eω(r) = iωAω(r)−∇φω(r), Bω(r) = ∇×Aω(r). (53)

It is hence clear that the conclusion is gauge independent. It is also clear that the derivation
applies to both transverse and longitudinal components of the electromagnetic field, but the
longitudinal electric field with |p| = ω/c is zero outside the source region. This can be seen
in [13, §13.3 p1875-1877], and in [14, App. C], where the cancellation is shown to be due to
the continuity equation.

B. One term in bω
jm, two in aω

jm and cω
jm

We show that, for aω
jm and cω

jm, only terms with l̄ = j− 1 or l̄ = j+ 1 can be different from
zero in Eq. (14), and that for bω

jm, only l̄ = j contributes. For this, we will write the momentum
space integrals in the shaded area of Eq. (14) as integrals of triple products of spherical harmon-
ics. These integrals have an exact expression involving a product of two 3j-Wigner symbols.
The requirement that one of the 3j-Wigner symbols be non-null results in the aforementioned
relationships between j and l̄.

Particularizing the shaded integrals in Eq. (14) to W jm(p̂) and Z jm(p̂)∫
dp̂ W jm(p̂)†Yl̄m(p̂) =

∫
dp̂ [p̂Yjm(p̂)]

†Yl̄m(p̂),∫
dp̂ Z†

jm(p̂)Yl̄m(p̂) =
∫

dp̂ [ip̂×X jm(p̂)]
†Yl̄m(p̂),

(54)

we find that each of their three components contains either one [in the W jm(p̂) case] or a sum
of two [in the Z jm(p̂) case] triple products of spherical harmonics like Y ∗

1pY
∗
jqYl̄r, which can

be also written [30] as (−1)p+qY1−pYj−qYl̄r. The result of the integral of the product of three
spherical harmonics is [31, p. 700]∫

dΩ Yl1m1(Ω)Yl2m2(Ω)Yl3m3(Ω) =
√

(2l1 +1)(2l2 +1)(2l3 +1)
4π

(
l1 l2 l3
0 0 0

)(
l1 l2 l3
m1 m2 m3

)
,

(55)

where

(
j1 j2 j3
q1 q2 q3

)
is the 3j-Wigner symbol.

In our case, we see from the right hand sides of Eq. (54) that j1 = 1 from p̂ [see Eq. (65)],
j2 = j from Z jm(p̂) or W jm(p̂), and j3 = l̄ from Yl̄m(p̂). We now consider some of the conditions
for the first 3j-symbol in Eq. (55) (

1 j l̄
0 0 0

)
(56)
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to be different than zero. Namely [32, p. 1056]:

| j1 − j2| ≤ j3 ≤ j1 + j2 =⇒ |1− j| ≤ l̄ ≤ j+1 (57)

which, if j > 0 restricts l̄ to be j−1, j or j+1 and, when j = 0 in the longitudinal case, forces
l̄ = 1. Furthermore, because of the zeros in Eq. (56), 1+ j+ l̄ must be an integer multiple of 2,
which then forbids l̄ = j when j > 0. All together we obtain for the W jm(p̂) and Z jm(p̂) cases
the restrictions:

l̄ = j−1 or j+1 if j > 0,

l̄ = 1 if j = 0.
(58)

In the X jm(p̂) case, the integrals in the three components of
∫

dp̂ X†
jm(p̂)Yl̄m(p̂) (59)

contain a product of two spherical harmonics, but the third one can always be assumed to be
the constant 1 =

√
4πY00. In this case the restriction of Eq. (57) forces l̄ = j.

|0− j| ≤ l̄ ≤ j+0 =⇒ l̄ = j. (60)

C. Auxiliary expressions in the spherical vector basis

We write a vector a in the spherical vector basis as:

a = a1ê1 +a0ê0 +a−1ê−1, (61)

with

ê1 =− x̂+ iŷ√
2

ê0 = ẑ

ê−1 =
x̂− iŷ√

2
.

(62)

This choice of basis induces the following relationships between the Cartesian and spherical
coordinates of a in the spherical and Cartesian basis:

⎡
⎣ a1

a0

a−1

⎤
⎦=

⎡
⎢⎣

−1√
2

i√
2

0

0 0 1
1√
2

i√
2

0

⎤
⎥⎦
⎡
⎣ax

ay

az

⎤
⎦ ,
⎡
⎣ax

ay

az

⎤
⎦=

⎡
⎢⎣

−1√
2

0 1√
2−i√

2
0 −i√

2
0 1 0

⎤
⎥⎦
⎡
⎣ a1

a0

a−1

⎤
⎦ . (63)

In the spherical basis, the components of the cross product of two vectors are [33]:

a×b = i

⎡
⎣ a1b0 −a0b1

a1b−1 −a−1b1

a0b−1 −a−1b0

⎤
⎦ . (64)

Let us now write some explicit expressions for p̂ and X jm(p̂) that we use in the text.

p̂ =
p
|p| =

⎡
⎣ p̂1

p̂0

p̂−1

⎤
⎦= 2

√
π
3

⎡
⎣−Y1−1

Y10

−Y11

⎤
⎦= 2

√
π
3

⎡
⎣ Y ∗

11
Y ∗

10
Y ∗

1−1

⎤
⎦ , (65)
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X jm(p̂) =
1√

j( j+1)

⎡
⎢⎢⎢⎢⎢⎢⎣

−
√

j( j+1)−m(m−1)
2 Yj(m−1)(p̂)

mYjm(p̂)

√
j( j+1)−m(m+1)

2 Yj(m+1)(p̂)

⎤
⎥⎥⎥⎥⎥⎥⎦
. (66)

Equation (65) follows Eq. (63), the expressions of Y1m in Cartesian coordinates and the prop-
erty Y ∗

lq = (−1)qYl−q. Equation (66) follows from the definition of X jm in Eq. (2) and the ex-
pression of the angular momentum vector operator L in spherical coordinates

L =

⎡
⎢⎢⎢⎢⎢⎣

−Lx+iLy√
2

Lz

Lx+iLy√
2

⎤
⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎣

−Ldown√
2

L0

Lup√
2

⎤
⎥⎥⎥⎥⎥⎦
, (67)

where Lup = Lx + iLy and Ldown = Lx − iLy are the angular momentum ladder operators

LupYjm =

{ √
j( j+1)−m(m+1)Yj(m+1) if |m+1| ≤ j

0 else
,

LdownYjm =

{ √
j( j+1)−m(m−1)Yj(m−1) if |m−1| ≤ j

0 else
.

(68)

D. Expression of selected qω
jm tensors as spatial integrals

D.1. Case a1m

As shown in App. B only l̄ = 0 and l̄ = 2 can have non zero contributions to a1m. That is

aω
1m = aω

1m
l̄=0 +aω

1m
l̄=2. (69)

We start with l̄ = 0. From Eq. (14), and since Y00 = 1/
√

4π:

al̄=0
1m =

1√
(2π)3

∫
dp̂ Z†

1m(p̂)
∫

d3r Jω(r) j0(kr). (70)

The explicit expressions for Z1m = ip̂×X1m are

m = 1 → ip̂×X11(p̂) =−
√

2π
3

⎡
⎣Y 2

10 −Y11Y1−1

−Y11Y10

Y 2
11

⎤
⎦ ,

m = 0 → ip̂×X10(p̂) =−
√

2π
3

⎡
⎣ Y10Y1−1

−2Y11Y1−1

Y10Y11

⎤
⎦ ,

m =−1 → ip̂×X1−1(p̂) =−
√

2π
3

⎡
⎣ Y 2

1−1
−Y10Y1−1

Y 2
10 −Y11Y1−1

⎤
⎦ .

(71)
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The relationship Y ∗
lq = (−1)qYl−q, and the orthonormality of the spherical harmonics allow us

to solve the momentum space integrals in the shaded area of Eq. (70), and immediately reach

⎡
⎣ aω

11
aω

10
aω

1−1

⎤
⎦

l̄=0

=− 1

π
√

3

∫
d3r Jω(r) j0(kr). (72)

In the l̄ = 2 case √
(2π)3

4π
al̄=2

1m =

−
m=2

∑
m=−2

∫
dp̂ Z†

1m(p̂)Y2m

∫
d3r Jω(r)Y ∗

2m j2(kr),
(73)

the shaded momentum space integrals contain triple products of spherical harmonics and can
be solved using

∫
dp̂Yl1m1(p̂)Yl2m2(p̂)Yl3m3(p̂) =√
(2l1 +1)(2l2 +1)(2l3 +1)

4π

(
l1 l2 l3
0 0 0

)(
l1 l2 l3
m1 m2 m3

)
,

(74)

where

(
j1 j2 j3
q1 q2 q3

)
is the 3j-Wigner symbol.

They result in five vectors for each m case, which we list here as row vectors. From top to
bottom, the row vectors correspond to m = 2,1,0,−1,−2:

m = 1 → −1√
30

( 0 0
√

6 )

( 0 −√
3 0 )

( 1 0 0 )
( 0 0 0 )
( 0 0 0 )

m = 0 → −1√
30

( 0 0 0 )

( 0 0
√

3 )
( 0 −2 0 )

(
√

3 0 0 )
( 0 0 0 )

m =−1 → −1√
30

( 0 0 0 )
( 0 0 0 )
( 0 0 1 )

( 0 −√
3 0 )

(
√

6 0 0 )

(75)

The summation in m in Eq. (73) can now be done. With Jω(r) = [Jω
1 ,Jω

0 ,Jω
−1]

T , and Y ∗
2m =

(−1)mY2−m, it reads
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aω
11

l̄=2 =
1√
(2π)3

4π√
30

∫
d3r

(√
6Jω

−1Y2−2 +
√

3Jω
0 Y2−1 + Jω

1 Y20

)
j2(kr),

aω
10

l̄=2 =
1√
(2π)3

4π√
30

∫
d3r

(
−
√

3Jω
−1Y2−1 −2Jω

0 Y20 −
√

3Jω
1 Y21

)
j2(kr),

aω
1−1

l̄=2 =
1√
(2π)3

4π√
30

∫
d3r

(
Jω
−1Y20 +

√
3Jω

0 Y21 +
√

6Jω
1 Y22

)
j2(kr).

(76)

We now use the following relationships:

Y22 =

√
10π

3
Y 2

11, Y21 =

√
20π

3
Y10Y11

Y20 =
√

5π
(

Y 2
10 −

1
4π

)

Y2−2 =

√
10π

3
Y 2

1−1, Y2−1 =

√
20π

3
Y10Y1−1,

(77)

which we substitute in Eq. (76) and get

aω
11

l̄=2 =
2√
3

∫
d3r

[
Y1−1

(
Jω
−1Y1−1 + Jω

0 Y10
)
+

Jω
1

2

(
Y 2

10 −
1

4π

)]
j2(kr),

aω
10

l̄=2 =
−2√

3

∫
d3r

[
Y10

(
Jω
−1Y1−1 + Jω

1 Y11
)
+ Jω

0

(
Y 2

10 −
1

4π

)]
j2(kr),

aω
1−1

l̄=2 =
2√
3

∫
d3r

[
Y11 (Jω

0 Y10 + Jω
1 Y11) +

Jω
−1

2

(
Y 2

10 −
1

4π

)]
j2(kr).

(78)

The expressions in the shaded areas of Eq. (78) can be completed to Y11Jω
1 +Y10Jω

0 +Y1−1Jω
−1

using terms to their right. In the case of the aω
10

l̄=2 the completion is straightforward. For the
other two cases one uses that

3
4π

= |Y10|2 + |Y11|2 + |Y1−1|2 =⇒ Y 2
10 −

1
4π

=
1

2π
+2Y11Y1−1. (79)

Finally, noting that

Y11Jω
1 +Y10Jω

0 +Y1−1Jω
−1 =

1
2

√
3
π

[
r̂†Jω(r)

]
, (80)

we reach the final result
⎡
⎣ aω

11
aω

10
aω

1−1

⎤
⎦

l̄=2

=− 1

2π
√

3

∫
d3r

{
3
[
r̂†Jω(r)

]
r̂−Jω(r)

}
j2(kr). (81)

The sum of the two contributions can be manipulated with the aid of the recursion relations
between spherical Bessel functions:

2l+1
x

jl(x) = jl−1(x)+ jl+1(x),

(2l+1)
d
dx

jl(x) = l jl−1(x)− (l+1) jl+1(x),
(82)
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to get, with the definitions Jr
ω(r) =

[
r̂†Jω(r)

]
r̂ and Jt

ω(r) = Jω(r)−Jr
ω(r),

⎡
⎣ aω

11
aω

10
aω

1−1

⎤
⎦=− 1

2π
√

3

∫
d3r Jr

ω(r)
6
kr

j1(kr)

− 1

2π
√

3

∫
d3r 3Jt

ω(r)
(

1
kr

+
d

d(kr)

)
j1(kr).

(83)

D.2. Case c00

In the j = 0 case the contribution corresponding to l̄ = j−1 =−1 does not exist (see App. B),
so the only contribution comes from l̄ = 1:

i

√
π
2

c00 =
m=1

∑
m=−1

∫
dp̂ W†

00(p̂)
∫

d3r Jω(r)Y ∗
1m j1(kr)

=
m=1

∑
m=−1

∫
dp̂ (p̂)†Y1m(p̂)

∫
d3r Jω(r)Y ∗

1m j1(kr).

(84)

The integrals in the shaded area are conveniently solved using Eq. (65) and the orthonormal-
ity of the spherical harmonics. After the sum in m we get:

i

√
π
2

c00 =
∫

d3r 2

√
π
3

(−Jω
−1Y

∗
11 + Jω

0 Y ∗
10 − Jω

1 Y ∗
1−1

)
j1(kr)

=
∫

d3r
[
r̂†Jω(r)

]
j1(kr).

(85)

The first term in a small kr expansion of c00 will be of order k:

c00 ≈−i

√
2
π

k
3

∫
d3r

[
r†Jω(r)

]
. (86)

D.3. Case c1m

As in Sec. D.1, we split the two contributions:

cω
1m = cω

1m
l̄=0 + cω

1m
l̄=2. (87)

For l̄ = 0, and recalling that Y00 = 1/
√

4π:

cl̄=0
1m =

4π√
(2π)3

∫
dp̂ W1m(p̂)† 1√

4π

∫
d3r Jω(r)

1√
4π

j0(kr),

=
1√
(2π)3

∫
dp̂ [p̂Y1m(p̂)]

†
∫

d3r Jω(r) j0(kr).

(88)

The result of the integrals in the shaded area above is:

m = 1 : 2

√
π
3

⎡
⎣1

0
0

⎤
⎦ , m = 0 : 2

√
π
3

⎡
⎣0

1
0

⎤
⎦ , m =−1 : 2

√
π
3

⎡
⎣0

0
1

⎤
⎦ . (89)

With which we reach:
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⎡
⎣ cω

11
cω

10
cω

1−1

⎤
⎦

l̄=0

=
1

π
√

6

∫
d3r Jω(r) j0(kr). (90)

For l̄ = 2:

cl̄=2
1m =

−4π√
(2π)3

m=2

∑
m=−2

∫
dp̂ [p̂Y1m(p̂)]

†Y2m

∫
d3r Jω(r)Y ∗

2m j2(kr),
(91)

the shaded momentum space integrals contain triple products of spherical harmonics and can
be solved using Eq. (74). They result in five vectors for each m case, which we list here as row
vectors. From top to bottom, the row vectors corresponds to m = 2,1,0,−1,−2:

m = 1 → −1√
15

( 0 0
√

6 )

( 0 −√
3 0 )

( 1 0 0 )
( 0 0 0 )
( 0 0 0 )

m = 0 → −1√
15

( 0 0 0 )

( 0 0
√

3 )
( 0 −2 0 )

(
√

3 0 0 )
( 0 0 0 )

m =−1 → −1√
15

( 0 0 0 )
( 0 0 0 )
( 0 0 1 )

( 0 −√
3 0 )

(
√

6 0 0 )

(92)

The following result is reached after taking steps parallel to those taken in Sec. D.1 for al̄=2
1m :

⎡
⎣ cω

11
cω

10
cω

1−1

⎤
⎦=

1

π
√

6

∫
d3r Jω(r) j0(kr)

︸ ︷︷ ︸
l̄=0

− 1

π
√

6

∫
d3r

{
3
[
r̂†Jω(r)

]
r̂−Jω(r)

}
j2(kr)

︸ ︷︷ ︸
l̄=2

.

(93)
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