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Summary

Movements are important aspects of human life because they are our only possibility to

interact with the world. For instance, talking, gestures, writing, object manipulation, et

cetera require well-coordinated muscle contractions. In order to enable skilled movements,

the human sensorimotor system has to solve the highly complex problem of controlling a

redundant system comprising a multitude of degrees of freedom. Against this background,

arm movements are of particular interest. Arm movements have a high practical value

in terms of manipulating objects, but they also demonstrate many aspects which make

motor control and learning hard to decode. Besides the problem of redundancy, the senso-

rimotor system is constantly exposed to changes in the internal and external conditions.

This requires permanent adaptation in order to maintain the control and enable skilled

movements. Yet, it remains puzzling how the sensorimotor system manages these control

and learning processes. A more profound understanding of the mechanisms underlying

motor control and learning is a prerequisite for designing safer workplaces, better tools,

prostheses, and robots, as well as more effective training schedules in sports and neu-

rorehabilitation. For these reasons, this thesis investigates motor control and learning of

arm movements with special consideration of motor memory adaptation as well as its

consolidation and generalization.

The thesis encompasses five main chapters. Chapter 1 gives a general introduction.

Therein, the outline of the thesis is depicted and the theoretical and methodological fun-

damentals of motor control and learning are introduced. In particular, the current state of

research on adaptation of motor memory as well as its consolidation and generalization is

considered. Furthermore, the theory of internal models is introduced. Internal models are

assumed to be neural representations of the mechanical properties of the body and the en-

vironment which enable the sensorimotor system to perform skilled movements. Moreover,

the experimental paradigm of robot-assisted force field adaptation is introduced. Therein,

subjects interact with a robotic manipulandum and adjust reaching movements to robot-

induced dynamic perturbations by adapting their internal models of the task. The intro-

ductory chapter ends with the specification of the aims and scope of the thesis.

In Chapter 2, a methodological basis for the investigation of motor control and learning

using robot-assisted force field experiments is established. Despite the wide-spread usage of

this experimental paradigm, no methodological standards exist. Rather, diverse methods

are used which respectively emphasize different aspects of motor control and learning.

This chapter reviews the existing analytic approaches, integrates them in a methodological

framework, and introduces a tailor-made software application, named ManipAnalysis, for

the analysis of force field experiments. The developed methodological framework serves as

basis for the subsequently reported psychophysical studies.
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Summary

Chapter 3 presents a study on the adaptation and consolidation of motor memory. It

is well accepted that motor memory consolidation is a time-dependent process. Yet, the

detailed influence of the practice schedule during motor adaptation on the subsequent con-

solidation process remains a contentious issue. Therefore, we investigated the consolidation

of motor adaptation under diverse practice conditions. Therein, different subject groups

adapted their reaching movements to dynamic perturbations of different stability. On

the one hand, we found that unstable compared to stable practice conditions impair the

adaptation of an internal model of the task. On the other hand, the results indicate that

unstable practice conditions can foster the consolidation of motor memory by increasing its

resistance to interfering factors. Thus, consolidation of motor adaptation is not only a time-

dependent but also a practice-dependent process. This study is the first considering these

issues across a wide range of different practice conditions. It reveals that not instability

per se is crucial to foster motor memory consolidation, but rather there seems to exist an

optimal amount of instability.

The study reported in Chapter 4 considers motor adaptation and its generalization.

Generalization of motor learning denotes the ability to transfer previously learned motor

actions to different tasks or contexts. Accordingly, knowledge gained through practice in

one situation changes motor performance in a different situation. In particular, we in-

vestigated intermanual transfer (i.e., generalization of motor learning across hands) with

special consideration of its direction and coordinate frame as well as the influence of con-

solidation processes on this transfer. Therein, subjects adapted their reaching movements

to dynamic perturbations and were tested for transfer to the contralateral hand either

immediately after practice or after a 24 h consolidation period. The study is the first de-

tecting transfer of dynamic adaptation both from dominant to non-dominant hand and

vice versa. This transfer occurred in an extrinsic (Cartesian-based) coordinate frame. How-

ever, after the consolidation period, transfer effects were weakened. Moreover, the study

is the first to account for two different features of intermanual transfer. First, practice-

dependent bias, i.e., the change in the prediction of the task conditions due to previous

contralateral practice. Second, interlimb savings, i.e., the ability of faster relearning of the

task due to previous contralateral practice.

The final Chapter 5 comprises a general discussion of the considered research issues,

deduces implications for future research, and states general conclusions. We regarded sev-

eral analytic approaches for the assessment of motor performance and outlined that they

emphasize different aspects of motor control and learning (e.g., different control mecha-

nisms), which may lead to different concluding outcomes. Our psychophysical experiments

reveal that unstable practice conditions impair internal model formation during adapta-

tion but can foster subsequent consolidation processes. Furthermore, for the first time,

we found that intermanual transfer of dynamic adaptation is a bidirectional phenomenon

which occurs in extrinsic coordinates and weakens with time. These findings offer valu-

able information for our understanding of human motor control and learning and, thus

contribute to an interdisciplinary field of research involving human movement science,

neuroscience, and robotics.
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Zusammenfassung

Bewegungen sind eine wichtige Facette des menschlichen Lebens, da sie unsere einzige Mög-

lichkeit sind mit der Umwelt zu interagieren. So basieren beispielsweise Sprache, Gestik,

Schrift, Objektmanipulation etc. auf koordinierten Muskelkontraktionen. Zur Ausführung

präziser Bewegungen, muss das sensomotorische System ein hochkomplexes Problem lösen,

das die Kontrolle eines redundanten Systems mit einer Vielzahl an Freiheitsgraden ver-

langt. Vor diesem Hintergrund sind insbesondere Armbewegungen von Interesse. Zum

einen haben diese eine hohe praktische Relevanz, da sie die Manipulation von Objekten

ermöglichen. Zum anderen können anhand von Armbewegungen viele jener Aspekte be-

trachtet werden, welche die Komplexität motorischer Kontrolle und motorischen Lernens

begründen. Neben dem Problem der Redundanz, ist das sensomotorische System zudem

ständig veränderten internalen und externalen Bedingungen ausgesetzt. Dies verlangt eine

fortwährende Anpassung motorischer Gedächtnisinhalte, um die Kontrolle über das Sys-

tem sicherzustellen und präzise Bewegungsausführungen zu ermöglichen. Allerdings bleibt

bis dato unklar wie das sensomotorische System diese Kontroll- und Lernprozesse steuert.

Ein fundamentales Verständnis motorischer Kontroll- und Lernprozesse und deren zugrun-

deliegender Mechanismen ist eine wichtige Voraussetzung für die Entwicklung sicherer

Arbeitsplätze, besserer Werkzeuge, Instrumente, Prothesen sowie Roboter, aber auch

effektiver Trainingsprogramme im Bereich des Sports und der Neurorehabilitation. Aus

genannten Gründen wird im Rahmen der voliegenden Dissertation die motorische Kon-

trolle sowie motorisches Lernen bei Armbewegungen untersucht. Dabei wird im Speziellen

die Adaptation motorischer Gedächtnisinhalte sowie deren Konsolidierung und Generali-

sierung betrachtet.

Diese Dissertation umfasst fünf Kapitel. Kapitel 1 liefert eine allgemeine Einführung in

die Thematik. Dabei werden die Gliederung der Arbeit vorgestellt sowie die theoretischen

und methodischen Grundlagen zu motorischen Kontroll- und Lernprozessen aufbereitet.

Insbesondere wird der aktuelle Forschungsstand zur Adaptation motorischer Gedächtnisin-

halte sowie deren Konsolidierung und Generalisierung betrachtet. Weiterhin wird die The-

orie der Internen Modelle vorgestellt. Interne Modelle stellen neuronale Repräsentationen

der mechanischen Eigenschaften des Körpers und der Umwelt dar, welche dem sensomoto-

rischen System die präzise Ausführung von Bewegungen ermöglichen. Zudem wird das

experimentelle Paradigma der robotergestützen Kraftfeldexperimente eingeführt, bei dem

Probanden mit einem Robotermanipulandum interagieren und ihre Armbewegungen an

dynamische Störungen anpassen. Diese Anpassung wird mit der Adaptation des zugrun-

deliegenden Internen Modells der Aufgabe erklärt. Das einleitende Kapitel schließt mit

der Bestimmung von Zielsetzung und Aufgabenstellung der Arbeit.
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Zusammenfassung

In Kapitel 2 wird die methodische Grundlage für die nachfolgenden Untersuchungen

motorischer Kontroll- und Lernprozesse entwickelt. Dabei stehen robotergestützte Lernex-

perimente im Mittelpunkt. Trotz der weiten Verbreitung dieses experimentellen Paradig-

mas existieren keine methodischen Standards, sondern es findet vielmehr eine Vielzahl an

Methoden Anwendung. Hierbei werden jeweils unterschiedliche Aspekte motorischer Kon-

trolle bzw. motorischen Lernens akzentuiert, was vermeintlich Ergebnisse und die darauf

basierenden Schlussfolgerungen beeinflusst. Daher werden die bestehenden analytischen

Ansätze aufgearbeitet und in einen gemeinsamen methodischen Rahmen integriert. In

diesem Zusammenhang wird die Softwareapplikation ManipAnalysis vorgestellt, welche

zur Analyse von Kraftfeldexperimenten entwickelt wurde. Der hierbei geformte metho-

dische Rahmen bildet die Basis für die nachfolgend durchgeführten Experimente.

In Kapitel 3 wird eine erste Studie zur Adaptation und Konsolidierung motorischer

Gedächtnisinhalte beschrieben. Zwar ist weitestgehend anerkannt, dass die Konsolidierung

motorischer Gedächtnisinhalte ein zeitabhängiger Prozess ist, der detaillierte Einfluss

der Übungsbedingungen während der motorischen Adaptation auf den nachfolgenden

Konsolidierungsprozess ist jedoch unklar. Aus diesem Grund wurde die Konsolidierung

nach motorischer Adaptation unter verschiedenen Übungsbedingungen untersucht. Dabei

haben Probanden verschiedener Gruppen ihre Armbewegungen an dynamische Störun-

gen unterschiedlicher Stabilität adaptiert. Zum einen zeigen die Ergebnisse, dass instabile

Übungsbedingungen die Adaptation eines Internen Modells der Aufgabe beeinträchtigen.

Zum anderen zeigte sich, dass instabile Übungsbedingungen den Konsolidierungsprozess

begünstigen, da die dabei ausgebildeten motorischen Gedächtnisinhalte eine erhöhte Re-

sistenz gegenüber Interferenz besitzen. In der Studie wurde erstmals die Adaptation und

Konsolidierung über eine große Bandbreite verschiedener Übungsbedingungen hinweg un-

tersucht. Dabei ergab sich, dass nicht Instabilität per se eine Begünstigung des Konsoli-

dierungsprozesses bewirkt, sondern vielmehr ein optimales Maß an Instablität zu existieren

scheint. Somit belegt die Studie, dass instabile Übungsbedingungen zwar die Adapta-

tion Interner Modelle beeinträchtigen, jedoch deren Konsolidierungsprozess begünstigen.

Damit deuten die Befunde darauf hin, dass Konsolidierung motorischer Adaptation nicht

nur ein zeitabhängiger sondern auch ein übungsabhänginger Prozess ist.

Die in Kapitel 4 beschriebene Studie untersucht motorische Adaptation und deren

Generalisierung. Dabei bezeichnet die Generalisierung motorischer Gedächtnisinhalte die

Fähigkeit zuvor gelerntes motorisches Handeln auf eine andere Aufgabe oder in einen an-

deren Kontext zu transferieren. Demzufolge können durch Übung erlangte Erkenntnisse in

einer Situation die motorische Leistungsfähigkeit in einer anderen Situation beeinflussen.

Im Speziellen wird in der Studie der intermanuelle Transfer (d.h. die Generalisierung

motorischen Lernens zwischen Händen) betrachtet. Hierbei werden Richtung und Koor-

dinatensystem (interne Repräsentation) des intermanuellen Transfers analysiert sowie der

Einfluss von Konsolidierung auf diesen Transfer. Dazu adaptierten Probanden ihre Armbe-

wegungen an ein Kraftfeld und wurden daraufhin entweder unmittelbar oder nach einer 24-

stündigen Konsolidierungsphase auf der kontralateralen Hand auf Transfereffekte getestet.

In dieser Studie konnte erstmals Transfer einer dynamischen Adaptationsaufgabe sowohl
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von der dominanten auf die nicht-dominante Hand, als auch von der nicht-dominanten

auf die dominante Hand gezeigt werden. Der Transfer erfolgte in einem extrinsischen (kar-

tesischen) Koordinatensystem. Nach der Konsolidierungsphase waren die Transfereffekte

jedoch abgeschwächt. Zudem werden in der Studie erstmals zwei unterschiedliche Merk-

male intermanuellen Transfers berücksichtigt: Zum einen practice-dependent bias, welcher

die veränderte Prädiktion der Aufgabenstruktur aufgrund vorangehenden kontralateralen

Übens beschreibt, zum anderen interlimb savings, d.h. die Fähigkeit zum schnelleren Er-

lernen der Aufgabe aufgrund vorangehenden kontralateralen Übens.

Im abschließenden Kapitel 5 findet eine Diskussion der zuvor betrachteten Forschungs-

inhalte sowie deren Bedeutung für die zukünftige Forschung statt. Diese Dissertation

zeigt auf, dass eine Vielzahl analytischer Methoden zur Beurteilung motorischer Leistung

existiert und dass die verschiedenen methodischen Ansätze jeweils unterschiedliche As-

pekte motorischer Kontrolle und motorischen Lernens akzentuieren. Entsprechend können

verschiedene analytische Ansätze zu unterschiedlichen Schlussfolgerungen führen. Unsere

Experimente zur motorischen Adaptation zeigen auf, dass instabile Übungsbedingungen

zwar die Ausbildung Interner Modelle während der Adaptationsphase beeinträchtigen, je-

doch Konsolidierungsprozesse begünstigen können. Zudem konnte erstmals intermanueller

Transfer von dynamischer Adaptation in beide Richtungen nachgewiesen werden. Dieser

Transfer erfolgte in extrinsischen Koordinaten und ließ im Zeitverlauf nach. Die Resultate

liefern wertvolle Einsichten in motorische Kontroll- und Lernprozesse und tragen damit

zum Erkenntnisgewinn in einem interdisziplinären Forschungsfeld bei, welches die Bewe-

gungswissenschaft, Neurowissenschaft und Robotik umfasst.
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1 General Introduction

1.1 Preface

Movements are important aspects of human everyday life since they are our only possibility

to interact with the world. Talking, gestures, writing, object manipulation, et cetera

require well-coordinated muscle contractions. For this purpose, the human senosorimotor

system comprises billions of neurons which coordinate hundreds of highly interdependent

muscles in order to control a plethora of mechanical degrees of freedom (Bernstein, 1967;

Rosenbaum, 2010). Accordingly, movements in general and arm movements in particular

have been fascinating researchers for generations. At first glance, arm movements seem

to be an oversimplified selection of the diversity of human movements to be investigated.

However, arm movements have a high practical value in terms of manipulating objects,

but they also demonstrate many aspects which make motor control and learning hard to

decode (Shadmehr & Wise, 2005). For instance, when writing, the sensorimotor system

has to stabilize the torso, control the arm, hand, and fingers but also needs to manipulate

a foreign object attached to the own body, which may have varying mechanical properties.

Thus, the sensorimotor system faces a complex control problem.

An aggravating aspect is that humans are not proficient in performing all possible

motor tasks and its variations by birth. Rather, the sensorimotor system must be able

to learn new motor skills during lifetime, to adapt existing skills to changes in the body

or environment as well as to generalize previously learned motor actions to new tasks

and objects (Schmidt & Lee, 2011; Shadmehr & Wise, 2005). Therefore, the sensorimotor

system must constantly learn and adapt in order to maintain the control and enable skilled

movements. Yet, it remains puzzling how the sensorimotor system manages these motor

control and learning processes.

Understanding the mechanisms of motor control and learning is one of the major topics

in human movement science (Rosenbaum, 2010), robotics (Schaal & Schweighofer, 2005),

as well as neuroscience (Wolpert et al., 2011) and neurorehabilitation (Huang & Krakauer,

2009). However, many features of motor control and learning remain unresolved and are,

thus in the scope of current research, e.g., acquisition of new motor skills as well as adap-

tation of existing motor skills to changing conditions and their generalization to other con-

texts, or consolidation of motor memory. A more profound understanding of these features

and the underlying processes is an important prerequisite for designing safer workplaces,

better tools, prostheses, and robots as well as more effective training schedules in sports

and neurorehabilitation. For this purpose, this thesis investigates motor control and learn-

ing of arm movements. More precisely, adaptation, consolidation, and generalization of

human motor memory with respect to reaching movements is considered.
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1.2 Outline of this thesis

The current thesis comprises five main chapters. In this first chapter (Chapter 1), theoreti-

cal and methodological fundamentals of human motor control and learning are introduced.

Therein, the current state of research on motor adaptation as well as consolidation and

generalization of motor memory is briefly reviewed (Section 1.3). Furthermore, the general

methodology is introduced (Section 1.4). Finally, unresolved research issues are deduced

in order to determine the aims and scope of this thesis (Section 1.5).

Each of the three subsequent chapters (Chapter 2, Chapter 3, and Chapter 4) respec-

tively considers one of those deduced unresolved research issues. These chapters encompass

research articles that were published in international peer-reviewed journals:

• Chapter 2: ManipAnalysis – A Software Application for the Analysis of Force Field

Experiments

Stockinger, C., Pöschl, M., Focke, A., & Stein, T. (2012). ManipAnalysis - a soft-

ware application for the analysis of force field experiments. International Journal of

Computer Science in Sport, 11:52–57.

• Chapter 3: Adaptation and Consolidation of Motor Memory

Stockinger, C., Focke, A., & Stein, T. (2014). Catch trials in force field learning

influence adaptation and consolidation of human motor memory. Frontiers in Human

Neuroscience, 8:231.

• Chapter 4: Adaptation and Generalization of Motor Memory

Stockinger, C., Thürer, B., Focke, A., & Stein, T. (2015). Intermanual transfer

characteristics of dynamic learning: direction, coordinate frame, and consolidation

of interlimb generalization. Journal of Neurophysiology, 114(6):3166–3176.

Finally, Chapter 5 gives an overall discussion and conclusion of the presented work

and deduces implications for future research.

1.3 Theoretical background and terminology

This section aims to introduce and define the terms of motor control and learning as well

as features of motor learning that are of particular interest for this thesis: motor skill

acquisition, motor adaptation, as well as consolidation and generalization of motor mem-

ory. Furthermore, different motor learning processes and the theory of internal models

are introduced. This serves as the theoretical basis of the thesis. To allow a readily acces-

sible approach to these terminologies, this introductory section is based on behaviorally

observable phenomena. The underlying computational mechanisms and neural substrates

are only considered as far as relevant for the purpose of the subsequently presented re-

search.
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1.3.1 Motor control and motor learning

Diverse scientific disciplines contribute to research on motor control and learning, e.g., hu-

man movement science and sports science, neuroscience, psychology, physiology, medicine,

but also engineering and physics. This makes motor control a highly interdisciplinary field

of research (Rosenbaum, 2010; Shadmehr & Wise, 2005). Accordingly, it is hard to give

an overall definition of motor control. However, for the purpose of this thesis, it is suf-

ficient to give a quite generous description: motor control describes the field of studies

investigating how humans and animals control their movements. This comprises questions

about how the central nervous system is organized in order to coordinate the multitude

of muscles and joints, how sensory information is utilized to control movements, and how

the system maintains stability (Schmidt & Lee, 2011; Rosenbaum, 2010). Motor control

is a highly complex challenge for the central nervous system, in particular for the sensori-

motor system. This becomes clear when considering the redundancy (degrees of freedom

of the involved joints, muscle co-contractions), the noisy and delayed sensory information,

or the nonstationarity (fatigue, growth) the sensorimotor system is exposed to (Franklin

& Wolpert, 2011).

Facing these problems, the sensorimotor system needs to be able to acquire or adjust

motor control strategies both on short time scales of fatigue or interactions with objects

and over the long timescale of development and aging (Franklin & Wolpert, 2011). This

capability to acquire new or to adjust existing motor control strategies refers to motor

learning.

In the literature, there exist diverse definitions of motor learning. Shadmehr and Wise

offer a quite broad description of motor learning. They think of motor learning as “the

acquisition of information about movements (and other motor outputs), including what

output to produce as well as how and when to produce it. Motor learning results in the

formation of motor memory” (Shadmehr & Wise, 2005, p. 39). According to Schmidt and

Lee, “motor learning is a set of processes associated with practice or experience leading

to relatively permanent changes in the capability for skilled movement” (Schmidt & Lee,

2011, p. 327). Yet, it is important to add that off-line processes after practice also play an

important role in motor memory formation and, thus in motor learning (Robertson et al.,

2004b).

The focus of this thesis lies on particular features of motor learning rather than on

its overall structure. Therefore, it might be more appropriate to consider motor learning

as an aggregate of diverse phenomena associated with motor performance. For instance,

Magill and Anderson give a more handy definition: “motor learning is the acquisition of

motor skills, the performance enhancement of learned or highly experienced motor skills,

or the reacquisition of skills” (Magill & Anderson, 2014, p. 3). Thereby, a motor skill

refers to an activity or task that requires voluntary control over movements of the joints

and body segments in order to achieve a goal (Magill & Anderson, 2014).

Given these different definitions of different breadth and particularity, one can condense

the following characteristics of motor control and learning:
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• Motor learning can be seen as the acquisition of new or the adjustment of existing

motor control strategies.

• Motor learning comprises several features and behaviorally observable phenomena

which are associated with motor performance.

• This motor performance depends on the sensorimotor system’s competence to control

movements.

• The motor learning features encompass internal processes comprising formation of

motor memory.

• Motor memory formation is associated with movement-related information and de-

velops with practice but also during post-practice off-line processing.

Below, some of the features and internal processes of motor learning as well as motor mem-

ory formations will be introduced. In particular, motor skill acquisition, motor adaptation,

motor memory consolidation, and generalization of motor learning will be considered.

1.3.2 Motor skill acquisition and motor adaptation

Considering the example of handwriting illustrates several basic features of motor control

and learning. First, the sensorimotor system has to control a redundant system involving

diverse limb segments, joints, and muscles. Furthermore, control of a foreign object is

required. Second, the handwriting example clearly illustrates the motor learning capability

of the sensorimotor system because humans are not proficient in writing by birth but have

to learn this motor skill by practicing. Learning of new movements is usually referred to as

motor skill acquisition and is the basis for the diversity of motor skills humans are able to

learn during their lifetime. More precisely, motor skill acquisition involves acquiring new

patterns of muscle activation and attaining a higher level of performance by reducing errors

without a reduction in movement speed (Kitago & Krakauer, 2013; Shadmehr & Wise,

2005). Accordingly, motor skill acquisition implies a systematic change in the learner’s

speed-accuracy trade-off function. This process may last for several days, weeks, or even

years (Kitago & Krakauer, 2013).

Human motor actions are constantly exposed to changes in external and internal con-

ditions. For instance, when adding a big eraser to the top of a pencil, its mechanical

properties change and the handwriting will be affected. However, after some lines of prac-

tice, the handwriting will regain its initial shape despite the changed conditions. But also

the internal conditions may change because, for instance, muscles fatigue. Accordingly,

the sensorimotor system has to account for such conditional changes in order to ensure

movement goal achievement. This illustrates that the sensorimotor system also needs to

be adjustable on shorter timescales. Such ability to adjust previously learned motor skills

to changes in the external or internal conditions is referred to as motor adaptation. This

type of learning is characterized by regaining (or retaining) a given level of performance

by gradual improvements in response to altered conditions, i.e., incremental reduction of
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motor error. However, performance can not get better than baseline performance but at

best can return to it (Shadmehr & Wise, 2005; Krakauer & Mazzoni, 2011).

Research suggests that in contrast to motor skill acquisition, motor adaptation is

learned rather implicitly without subjects’ awareness (Kitago & Krakauer, 2013) and that

after motor adaptation, no new capability emerges but the system’s state is regained to a

prior state of performance (Shadmehr & Wise, 2005). Compared to motor skill acquisition,

motor adaptation takes place on shorter time scales and can occur within a single practice

session (Kitago & Krakauer, 2013). In this thesis, motor adaptation is the learning feature

of particular interest. If a dissociation is negligible, the umbrella term motor learning will

be used. Unless otherwise indicated, all subsequent remarks refer to motor adaptation.

1.3.3 Theory of internal models

Motor adaptation in response to altered environmental conditions has been demonstrated

by several research groups, mostly considering adaptation of arm reaching movements

(e.g., Shadmehr & Mussa-Ivaldi, 1994; Krakauer et al., 1999; Flanagan et al., 1999). The

most common explanation of motor adaptation bases upon the theory of internal models.

Internal models are neural representations of the own body and the environment. They

can be seen as neural circuits that compute sensorimotor transformations and allow the

estimation of limb positions if joint angles, segment lengths, and environmental conditions

are known. Two types of internal models are distinguished: inverse internal models and

forward internal models (Wolpert et al., 1995; Kawato, 1999).

Forward models represent the causal relationship between motor commands and their

consequences by estimating future states of the own body and the environment. Motor

commands are neural outputs that act on the muscles causing them to contract and

generate movements. Thereby, an efference copy of the motor command is passed into a

forward model which acts as a neural simulator (Franklin & Wolpert, 2011; Wolpert et al.,

2013). Thus, a forward model estimates the change of the sensorimotor system’s state

as a result of an outgoing motor command and predicts consequences of an upcoming

action before they actually happen (Wolpert et al., 2011; Karniel, 2011). This property

is important because estimates about the state of the body and the environment are

impaired by time delays and noise. To deal with this problem, forward models predict

motor behavior and sensory consequences to enable predictive control (Franklin & Wolpert,

2011). In particular, this property is important to control rapid movements that are too

fast to wait for sensory feedback.

An internal model that computes motor commands from sensory inputs is called an

inverse model. Inverse models allow the determination of motor commands which are

necessary to produce a particular action in order to achieve a desired sensory consequence.

Hence, inverse models are suitable to act as controllers (Wolpert et al., 2013; Wolpert &

Kawato, 1998). In engineering, this is comparable to an inverse dynamic calculation, i.e.,

the inverse of the controlled system (Karniel, 2011). This necessitates knowledge of the

mechanical properties of the own body.
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In the case of correct structure and parameter values of forward and inverse model,

the output of the forward model (predicted behavior) will be the same as the input to

the inverse model (desired behavior) (Wolpert et al., 2013). Within this thesis, mostly

the main term internal model will be used when the detailed distinction of inverse and

forward model is negligible.

Facing a change in the conditions of movement execution, the input-output relation-

ship of the sensorimotor system is altered and the internal model will fail to generate

an appropriate motor command. This results in a prediction error. Consequently, the

generated motor commands need to be adapted in order to ensure task goal achievement.

During motor adaptation, the internal models are assumed to be adapted in order to ac-

count for the conditional changes (Shadmehr & Mussa-Ivaldi, 1994; Wolpert & Kawato,

1998; Krakauer et al., 1999).

Evidence for the existence and adaptability of internal models comes from the observa-

tion of after-effects of motor adaptation. Thereby, after motor adaptation to an external

perturbation, subjects show distinctive motor errors when the perturbation is suddenly

removed. These after-effects show a mirrored pattern compared with the initially observed

errors when the perturbation was introduced. This indicates that the sensorimotor sys-

tem specifically changes its predictions about the task conditions due to motor adaptation

(Shadmehr & Mussa-Ivaldi, 1994). In particular, this demonstrates that motor actions

are partially planned in advance and that motor commands are sent out in a feedforward

manner.

Contrary to the theory of internal models, one might assume that subjects simply

memorize past experience and learn to play out some kind of motor command “tape” as

a function of time. This tape may be built as an average record of previous movements

and refers to a mapping of direction and time onto forces. However, such an approach

could not explain the previously mentioned generalization phenomena. For instance, it

was shown that subjects who adapted their reaching movements to a perturbing force

field in short, straight point-to-point reaching movements also demonstrated enhanced

performance in longer, circular movements (Conditt et al., 1997). Such generalization

to other task types rules out the possibility of a merely time- and direction-dependent

tape of motor commands (Conditt et al., 1997; Shadmehr, 2004). Rather, this suggests

that the sensorimotor system develops internal representations of the own body and the

environment that can be generalized to other movements.

Altogether, there is strong evidence that the sensorimotor system is capable of adapting

motor commands by relating sensory states of the hand to forces using internal models

(Shadmehr, 2004).

1.3.4 Processes of motor learning

As mentioned above, sensory information is critical for motor learning. Depending on

the type and quality of this information, different processes of motor learning can be

distinguished (Wolpert et al., 2011).

First, in error-based learning processes the prediction error of a motor action is reduced

6



1.3 Theoretical background and terminology

on a trial-by-trial basis (Thoroughman & Shadmehr, 2000). The prediction error is the

discrepancy between the predicted (or desired) and the actually sensed outcome of a motor

action. The basis of error-based learning is a directional (signed) motor error vector that

offers a gradient to move the system towards the direction of steepest error reduction

(Wolpert et al., 2011). As such, error based learning is a form of supervised learning

(Franklin & Wolpert, 2011) originating from machine learning.

A second learning process is reinforcement learning which is driven by information

about the relative success and failure of the movement. In contrast to error-based learning,

the provided signal is a scalar reward obtaining less information and no specific direction

of error reduction (Franklin & Wolpert, 2011; Huang et al., 2011). Therefore, the sensori-

motor system needs to explore different possibilities to improve its motor performance so

that reinforcement learning tends to be slow compared with error-based learning (Wolpert

et al., 2011).

Third, use-dependent learning describes the phenomenon that neural or behavioral

changes occur through the pure repetition of movements, even in the absence of systematic

errors (Diedrichsen et al., 2010; Wolpert et al., 2011). Such repetition results in a bias

toward the repeated motor action (a form of habituation), thereby reducing variability of

the movement (Wolpert et al., 2011; Huang et al., 2011).

Potentially, the different learning processes simultaneously contribute to the learning

of a motor task. Reliance on each process seems to depend on the type of task to be

learned or on specific aspects of a task, as well as on the type of information provided

and its reliability (Diedrichsen et al., 2010). Yet, most motor adaptation paradigms are

designed to investigate error-based learning mechanisms (Wolpert et al., 2011) as it is the

case in this thesis.

1.3.5 Consolidation of motor memory

Clearly, practice – i.e., performing a motor task – plays a fundamental role in motor

learning. However, it is known that practice alone is not sufficient to gain long-lasting

expertise because newly formed motor memories are highly fragile and, thus susceptible

to disruption. For this reason, newly formed motor memories need to be stabilized and

protected against forgetting and interfering factors. After a session of practice, the brain

continues processing motor-related information. During such off-line processing between

practice sessions, newly formed motor memory undergoes structural modifications yielding

stabilization of motor memory (i.e., reduction in fragility of a motor memory trace after

encoding). These processes are denoted as consolidation of motor memory (Robertson

et al., 2004b; Krakauer & Shadmehr, 2006).

To investigate motor memory consolidation in the context of motor adaptation re-

search, so-called ABA-paradigms have evolved. Thereby, it is tested whether successive

learning of two tasks A and B interferes with each other. More precisely, after learning of

task A, the second task B is learned before testing the retention performance of task A

(Robertson et al., 2004b). For motor adaptation tasks, it was shown that motor memory

consolidation of task A can be impaired by learning the second task B (e.g., Brashers-
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Krug et al., 1996; Shadmehr & Brasher-Krug, 1997; Krakauer et al., 2005). Several studies

demonstrated that the interference effect diminishes as the time between learning A and B

is increased (Brashers-Krug et al., 1996; Shadmehr & Brasher-Krug, 1997; Walker et al.,

2003; Krakauer et al., 2005). This indicates that consolidation is a time-dependent process

and was shown to be a robust feature in motor adaptation (Robertson et al., 2004b).

Motor memory consolidation is likely to be supported not only by a replay of past

events but also by a reorganization of the movement-related information (Walker et al.,

2005). Potentially, this yields a shift of the internal representation of the learned move-

ment which has previously only been associated with practice, therefore fostering consol-

idation of motor memory (Robertson et al., 2004b). For instance, Shadmehr & Holcomb

(1997) reported such processes of reorganization during consolidation. They found that

the brain engages new regions shifting from prefrontal regions of the cortex to structures

of the premotor, posterior parietal, and cerebellar cortex. This suggests that consolida-

tion processes change the neural representation, thus potentially increasing the functional

stability of the underlying task (Shadmehr & Holcomb, 1997). Altogether, the importance

of consolidation processes in motor learning is well-accepted.

1.3.6 Generalization of motor memory

Humans are able to perform previously learned motor skills in different contexts than in

that of initial acquisition. For instance, a subject who learned handwriting with a pen will

also be able to write with chalk on a blackboard or even write with the other hand. This

feature refers to a generalization of motor learning from one task or context to another,

i.e., knowledge gained through practice in one situation changes performance in a different

situation (Criscimagna-Hemminger et al., 2003; Seidler, 2010; Kitago & Krakauer, 2013).

Generalization is not only of interest in neuroscience (Shadmehr, 2004) but also in

sports science (Magill & Anderson, 2014). In the latter case, generalization is more often

denoted as transfer of learning with respect to motor skills. Thereby, one might further

distinguish in positive and negative transfer, which describe that previous experience fa-

cilitates or hinders learning of new skills or the generalization of a skill to new contexts,

respectively (Magill & Anderson, 2014). However, the amount of transfer is typically small

(Schmidt & Lee, 2011).

In more fundamental research, generalization is mostly considered with respect to

motor adaptation of arm movements. Therein, generalization was shown to occur across

different types of movements (Conditt et al., 1997), movement directions (Thoroughman

& Shadmehr, 2000), workspaces (Shadmehr & Moussavi, 2000), and limb configurations

(Malfait et al., 2002). In the special case of motor memory generalization across arms

(Criscimagna-Hemminger et al., 2003), this feature is denoted by the terms intermanual

generalization or intermanual transfer. The present thesis concentrates on intermanual

transfer of motor adaptation.

In order to explain such intermanual transfer effects, two prominent models have been

proposed (for review, see Ruddy & Carson, 2013). First, the cross-activation model sug-

gests that unilateral practice causes bilateral adaptation both in the contralateral and the
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ipsilateral hemisphere. Second, the bilateral access model suggests that motor memory

which is formed during unilateral practice is not effector-specific but is encoded in an ab-

stract form that can be utilized for motor control for both the trained and the untrained

hand (Ruddy & Carson, 2013; Anguera et al., 2007). Yet, the detailed mechanisms un-

derlying intermanual transfer remain elusive.

This chapter introduced the terms of motor control and learning as well as related

features. This thesis concentrates on motor adaptation (rather than motor skill acqui-

sition) in the form of error-based learning processes (rather than reinforcement learning

or use-dependent learning) as well as the consolidation and generalization (in terms of

intermanual transfer) of motor learning.

1.4 General methodology

1.4.1 Experimental paradigms for the investigation of motor adaptation

To investigate motor adaptation, different experimental paradigms have evolved. One

example are saccade adaptation experiments in which the adaptation of eye movements

is studied. Therein, a target is presented and as soon as the eyes start moving toward it,

the target is extinguished and presented somewhere else (McLaughlin, 1967). This results

in a motor error because the predicted proprioceptive feedback by the eye muscles do

not match the actual visual feedback. With practice, primates are able to adapt to this

distortion by changing their motor outputs (Shadmehr et al., 2010).

Another wide-spread experimental paradigm considers the adaptation of arm move-

ments to external perturbations. Therein, two main adaptation paradigms exist: kine-

matic and dynamic adaptation paradigms. In kinematic adaptation paradigms, subjects

are exposed to a visual perturbation like prism-induced displacements (Held & Freedman,

1963). In other approaches, subjects manipulate a handle or a stylus to perform movement

tasks that are displayed on a screen. Thereby, the relationship between hand position and

displayed cursor position is altered by visuomotor rotations or shifts (Krakauer et al.,

2005). Dynamic adaptation paradigms most often use robotic manipulanda. Thereby,

subjects grasp the handle of a robotic device and perform reaching movement tasks. The

robotic devices can induce forces to alter the dynamic conditions resulting in perturbed

arm movements (Shadmehr & Mussa-Ivaldi, 1994; Figure 1.1). In other approaches, the

task dynamics are altered by attaching inertial loads to the subject’s arm (Krakauer et al.,

1999) or inducing Coriolis forces by seating subjects in a rotating environment (Lackner

& DiZio, 2005). In all these cases, subjects need to adapt their motor commands by

producing additional forces in order to compensate the induced dynamic disturbance.

Altogether, in motor adaptation paradigms the task conditions are altered by inducing

perturbations. This results in motor errors – or more precisely, in prediction errors – be-

cause the predicted and the actual conditions differ. With practice, subjects are capable to

account for the perturbations by adapting their motor outputs (Shadmehr et al., 2010).
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A B

Figure 1.1: Robotic manipulanda for the investigation of motor adaptation. A, Self-
developed robotic device “BioMotionBot” (Bartenbach et al., 2013). B, Robotic manipu-
landum “Kinarm End-Point Lab”. The subject grasps the handle of the manipulandum.
On a vertical screen, the movement task as well as the cursor, representing the handle, are
presented. The robotic device can induce forces to alter the dynamic conditions.

1.4.2 Force field adaptation experiments

This thesis concentrates on motor adaptation to robot-induced dynamic perturbations –

so-called force field adaptation experiments. For this reason, the classical experimental

setup as first introduced by Shadmehr & Mussa-Ivaldi (1994) and the common adaptation

progression shall be depicted in detail.

In robot-assisted force field experiments, the subjects interact with a robotic manipu-

landum by grasping its handle and perform goal-directed reaching movements (Figure 1.1).

The task to be performed is visualized on a screen. The robotic device has computer-

controlled motors that can apply forces to the subjects’ hand via the handle and, there-

with, alter the dynamic conditions of task execution. Hence, the subjects’ movements

can be perturbed under consideration of the current state of movement (e.g., velocity-

dependent forces). The movement tasks as well as its visualization can be programmed in

tailor-made fashion, thus meeting research-specific requirements. The movements of the

handle can be recorded in high resolution by measuring the position of the handle and the

forces acting at the handle. Those quantities serve as basis for on-line task specifications

as well as for the analysis of motor performance.

A typical adaptation progression of a subject handling a robotic manipulandum is il-

lustrated in Figure 1.2 (Shadmehr & Brasher-Krug, 1997). When the robot’s motors do

not produce perturbing forces (null field condition), movement paths are straight-lined

(Figure 1.2A). When a velocity-dependent force field (Figure 1.2B) affects the subject’s

hand, hand paths are distinctively deviated from desired movement path (Figure 1.2C).

With practice, the subject’s hand paths converge to those observed under null field con-

ditions (Figure 1.2D). Hence, the subject adapted its motor commands by predicting the

altered force environment.

One might argue that subjects simply increase arm stiffness by muscular co-contraction,

therewith freezing the degrees of freedom, to control their movements when the perturbing

forces are applied. However, when turning off the force field after adaptation, after-effects
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Figure 1.2: Robot-assisted force field adaptation paradigm. A, Hand paths of a representa-
tive subject performing unperturbed two-dimensional point-to-point reaching movements
(null field condition). The hand paths are nearly straight-lined. B, Visualization of an
velocity-dependent curl force field produced by a robotic manipulandum. C, Deviated hand
paths of a subject when first exposed to the force field. D, Hand paths of a subject after ap-
proximately 300 movement trials under force field conditions showing nearly straight-lined
trajectories similar to those observed under null field conditions (A). E, After-effects of
force field learning when turning off the force field after adaptation. Hand paths are devi-
ated in the counter-direction of initial deviation under force field conditions (C) indicating
predictive force field compensation (acc. to Shadmehr & Brasher-Krug, 1997).

of force field adaptation can be observed (Figure 1.2E). These after-effects indicate predic-

tive force compensation and are approximately a mirror image of the hand paths observed

in early force field trials (Figure 1.2A). This is taken as evidence that subjects adapt an

internal model of the task dynamics and, thus change their motor commands to specifi-

cally counter the disturbing forces – i.e., the sensorimotor system learns something specific

about the motor task (Shadmehr, 2004).

1.5 Aims and scope of this thesis

This thesis aims to investigate motor control and learning mechanisms with special consid-

eration of motor memory adaptation as well as its consolidation and generalization. For

this purpose, the above-introduced experimental paradigm of robot-assisted force field

experiments is used.

The work depicted in this thesis was embedded in the research program of the Young

Investigator Group (YIG) “Computational Motor Control and Learning” which was sup-

ported by the “Concept for the Future” of Karlsruhe Institute of Technology within the

framework of the German Excellence Initiative. The subsequent Chapters 2, 3, and 4

comprise research articles which represent three different research projects of the YIG.

These three projects, in turn, are related to other work performed within the framework

of the YIG. Figure 1.3 illustrates the integration of these projects to the overall context

of the YIG. This work encompasses three main parts:

(1) development of materials and methods,

(2) investigation of adaptation and consolidation of motor memory,

(3) investigation of adaptation and generalization of motor memory.

The Chapters 2, 3, and 4 each consider one of the three main parts, respectively.
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Adaptation and generalization of motor memory

Adaptation and consolidation of motor memory

Development of materials and methods

Development of robotic manipulandum

Bartenbach, Sander, Pöschl, Wilging, Nelius, Doll, Burger,

Stockinger, Focke, & Stein (2013). The BioMotionBot – A

robotic device for applications in human motor learning

and rehabilitation. J Neurosci Methods, 213(2).

Development of analysis software application

Stockinger, Pöschl, Focke, & Stein (2012). ManipAnalysis

– A software application for the analysis of force field

experiments. Int J Comput Sci Sport, 11(3).

Psychophysical studies

Conditions and amount of practice 

influence motor adaptation

Focke, Stockinger, Diepold, Taubert, & Stein (2013). The

influence of catch trials on the consolidation of motor

memory in force field adaptation tasks. Front Psychol, 4:479.

Conditions of practice influence 

adaptation and consolidation of motor memory

Stockinger, Focke, & Stein (2014). Catch trials in force

field learning influence adaptation and consolidation of

human motor memory. Front Hum Neurosci, 8:231.

Neurophysiological studies

Consolidation of dynamic learning in the EEG

Thürer, Stockinger, Focke, Putze, Schultz, & Stein

(2016). Increased gamma band power during movement

planning coincides with motor memory retrieval.

NeuroImage, 125.

Influence of tDCS on 

consolidation of motor adaptation

Taubert*, Stein*, Kreutzberg, Stockinger, Hecker, Focke,

Ragert, Villringer, & Pleger (in review). Remote effects of

non-invasive cerebellar stimulation on error processing in

motor re-learning.

Intermanual transfer of motor adaptation

Stockinger, Thürer, Focke, & Stein (2015). Intermanual

transfer characteristics of dynamic learning: direction,

coordinate frame, and consolidation of interlimb

generalization. J Neurophysiol, 114(6).

Interlimb interference of motor adaptation

Stockinger, Thürer, Focke, & Stein (in preparation).

Interlimb interference characteristics in dynamic learning.

2011/
2012

2014/
2015

2013

Computational studies

2014
Mathematical modeling 

and simulation of motor learning

Stockinger, Thäter, & Stein (in preparation). A computa-

tional approach to motor learning – dynamic adaptation

under stable and unstable environmental conditions.

Figure 1.3: Schematic of scientific work performed within the Young Investigator Group
(YIG) “Computational Motor Control and Learning”. Bold-framed boxes indicate the
work presented in the Chapters 2, 3, and 4 of this thesis.
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1.5.1 Development of materials and methods

The first step was to develop a methodological basis for the investigation of motor con-

trol and learning mechanisms using robot-assisted experiments. Despite the well-known

experimental paradigm of robot-assisted learning experiments, no standards for the use

of materials and methods existed. For instance, most robotic manipulanda which are

used in research contexts are tailor-made devices (e.g., MIT-Manus, Krebs et al., 1998;

Johns Hopkins Manipulandum, Charnnarong, 1991; Braccio di Ferro, Casadio et al., 2006;

vBOT, Howard et al., 2009). Accordingly, sales and distribution of commercial robotic

devices for research purposes are rare. Rather, the vast majority of robotic devices was

designed for neurorehabilitation and clinical settings (e.g., Kinarm EndPoint Lab, BKIN

Technologies, Kingston, Canada, Scott, 1999; Phantom Haptic Device, Sensable, Wilm-

ington, MA, USA; InMotion, Interactive Motion Technologies, Watertown, MA, USA)

or for the investigation of one specific aspect of motor control research, respectively (for

review, see Howard et al., 2009).

Similarly, neither software applications nor standards for data processing and analysis

of robot-assisted motor control and learning experiments existed. However, the usage of

automatized analytic software tools is required because robot-assisted experiments accu-

mulate a great amount of digital data. In the literature, a diversity of algorithms and

strategies to process such data is used. Likewise, multiple concepts exist to define and

assess motor performance (cf. Shadmehr & Brasher-Krug, 1997; Caithness et al., 2004;

Scheidt et al., 2000). This underpins the necessity to deal with motor performance assess-

ment as well as analytic processing procedures and to build a common framework for the

analysis of robot-assisted experiments.

Consequently, our initial work concentrated on the development of materials and meth-

ods (Figure 1.3). First, this encompassed the development of a novel 3D robotic manipu-

landum for the research in human motor learning, rehabilitation, and sports (Bartenbach

et al., 2011, 2013). Secondly, a tailor-made software application for the automatized ana-

lysis of robot-assisted experiments was designed (Stockinger et al., 2012). This latter work

is presented in Chapter 2 and introduces the software application ManipAnalysis.

1.5.2 Adaptation and consolidation of motor memory

On the basis of the initially developed materials and methods, the second part of the

YIG work (Figure 1.3) comprised experiments on adaptation and consolidation of motor

memory both on the psychophysical level (Focke et al., 2013; Stockinger et al., 2014) and

using neurophysiological methods like electroencephalography (EEG, Thürer et al., 2016)

and transcranial direct current stimulation (tDCS, Taubert et al., in review). Moreover,

we used a computational approach by mathematically modeling and simulating motor

control and learning processes to reproduce the previously gained findings. Chapter 3

presents one of the psychophysical experiments (Stockinger et al., 2014).

This work preliminary concentrated on adaptation and consolidation of motor memory

with respect to the applied practice schedule. As outlined in Subsection 1.3.5, it is well-
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accepted that motor memory consolidation is a time-dependent process (Robertson et al.,

2004b; Krakauer & Shadmehr, 2006). From a practical perspective, it is also interest-

ing to ask whether motor memory consolidation is also practice-dependent, i.e., whether

it relates to the applied practice schedule. Research in skill learning exhibited that the

type of practice affects motor memory consolidation (Schmidt & Lee, 2011). However, in

the context of motor adaptation, there is no coherent theory on such relations. Indeed,

there are indications that the encoding and consolidation of motor memory can be influ-

enced by the practice structure during motor learning. Research suggests that variable

or unstable practice conditions facilitate consolidation processes compared with blocked

practice (Tanaka et al., 2009; Kantak et al., 2010). Such variable or unstable conditions

of practice provoke unexpected motor errors during learning which are fed back to the

sensorimotor system. As motor adaptation is assumed to be a predominantly error-based

learning process (see Subsection 1.3.4, Thoroughman & Shadmehr, 2000), such interfer-

ences may distinctively influence formation of motor memory and engage deeper cognitive

processing of task-related information yielding more robust motor memories (e.g., Shea &

Kohl, 1991; Overduin et al., 2006; Tanaka et al., 2009; Kantak & Winstein, 2012). Yet, the

detailed influence of unstable conditions of practice on motor adaptation and subsequent

consolidation processes remains elusive.

Therefore, the aim of the study presented in Chapter 3 was to investigate the influence

of unstable practice conditions on motor adaptation and consolidation in a dynamic learn-

ing task. For this purpose, subjects were tested in an ABA-paradigm and different subject

groups adapted their movements to force field perturbations of different stability.

1.5.3 Adaptation and generalization of motor memory

The third main part of the YIG work (Figure 1.3) considered motor adaptation and

its generalization. Within the framework of the YIG, two experiments were conducted

regarding this issue, one of which is presented in Chapter 4 (Stockinger et al., 2015).

Generalization of motor memory is a well-accepted feature of motor learning that is

of high theoretical and practical value (Magill & Anderson, 2014). From a fundamental

neuroscientific point of view, knowledge about generalization mechanisms helps gaining

insights into the interaction of different brain areas or into the internal representation of

movement. From a practical point of view, knowledge about generalization characteristics

provides valuable information for enhancing training schedules in sports or neurorehabili-

tation in terms of bilateral practice. Hence, research on generalization of motor learning

is promising, yet, “still not well understood at all” (Schmidt & Lee, 2011, p. 483). In

particular, this holds for intermanual transfer of dynamic adaptation, i.e., generalization

of motor adaptation across hands – as there are several open questions regarding its char-

acteristics.

For instance, there are open questions on the symmetry or asymmetry of this transfer.

Previous studies that investigated intermanual transfer of dynamic adaptation reported a

unidirectional – in particular asymmetric – transfer only from the dominant to the non-

dominant arm (Criscimagna-Hemminger et al., 2003; Wang & Sainburg, 2004; Galea et al.,
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2007). However, it remains unresolved why transfer should be exclusively unidirectional.

Moreover, there are diverging results considering the coordinate frame of intermanual

transfer. Such transfer could occur in an extrinsic (Cartesian-based) coordinate frame –

i.e., for a certain movement the forces on the left and the right hand should be similar.

Transfer might also occur in intrinsic (joint-based) coordinates – i.e., if the workspace is

near the midline transfer would lead to the same joint torques and mirror symmetric force

profiles on the contralateral arm (for details, see Criscimagna-Hemminger et al., 2003).

Knowledge about the coordinate frame of transfer offers valuable information about the

internal representation of motor actions.

It is generally accepted that consolidation and sleep play a major role in the formation

of motor memory. By downscaling synaptic strength and eliminating noise, sleep might

enhance the signal to noise ratio as well as facilitate the interactions with higher-order brain

areas (Diekelmann & Born, 2010). Thus, sleep-related consolidation seems to support

generalization processes by structural reorganization and formation of more general motor

memory representations (Rasch & Born, 2013; Censor, 2013). Likely, these processes

facilitate the context-independent applicability of the related motor task (Censor, 2013).

Yet, an increased intermanual transfer after a period of consolidation including nocturnal

sleep was only demonstrated for a finger sequencing task (Witt et al., 2010) but not for

motor tasks involving more implicit learning mechanisms. So far, it remains unresolved

whether consolidation processes also facilitate intermanual transfer effects in dynamic

adaptation.

The study depicted in Chapter 4 (Stockinger et al., 2015) specifically addresses these

issues. Therein, intermanual transfer of dynamic adaptation is investigated with respect

to the direction (asymmetry/symmetry) and the coordinate frame of transfer as well as

the influence of a 24 h consolidation period (incl. nocturnal sleep) on the transfer.
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Stockinger, C., Pöschl, M., Focke, A., & Stein, T. (2012). ManipAnalysis - a software ap-

plication for the analysis of force field experiments. International Journal of Computer

Science in Sport, 11:52–57.

Acknowledgments

This research was conducted in the context of the Young Investigator Group (YIG) “Computational

Motor Control and Learning” which received financial support by the “Concept for the Future” of

Karlsruhe Institute of Technology within the framework of the German Excellence Initiative. The

authors thank and acknowledge Frederic Doll and Volker Bartenbach for their technical support.





Abstract

In human movement science, the plasticity of the sensorimotor system is one of the most

important issues as it enables humans to adapt their movements to changing environ-

mental conditions. It is generally accepted that human motor memory contains so-called

internal models which are neural representations of the mechanical properties of the limbs

and objects in the environment. Robot-assisted force field experiments are an established

tool to investigate the characteristics of such internal models. However, these force field

experiments produce a great amount of data which needs to be organized, stored, and

analyzed. Moreover, despite the wide-spread use of robot-assisted experiments, no stan-

dards for data processing and analysis exist. Rather, a multitude of methods is used which

might have an impact to the gained results and conclusions. Thus, we considered exist-

ing analytic approaches, integrated them in a methodological framework, and developed

a tailor-made software application, called ManipAnalysis, for the analysis of force field

experiments. Therefore, we first extracted general and research-specific software require-

ments. On this basis, we designed an application in C# which has a flexible modular

structure and only depends on .NET framework, MongoDB database server, and Mat-

lab. Altogether, ManipAnalysis offers a hand-in-hand solution for the analysis of force

field experiments ranging from data import and storage, up to visualization and export of

calculated performance parameter values. Thus, ManipAnalysis fills the gap between data

acquisition with the help of a robotic device and statistical analysis with specific software

applications.
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2.1 Introduction

The human’s ability to adapt movements to changing environmental conditions is a main

issue in human movement science. Thereby, understanding the involved mechanisms of

motor learning is one of the core problems (Rosenbaum, 2010). The last couple of years,

especially computational approaches have led to rapid advances in our understanding of

these mechanisms (Wolpert et al., 2011). One of the key concepts in this context is

the theory of so-called internal models. Internal models are neural representations of the

mechanical properties of the limbs and objects in the environment (Kawato, 1999). On the

one hand, internal models allow the determination of required motor commands that are

necessary to achieve a certain motor action (internal inverse model). On the other hand,

internal models can be used as neural simulators to estimate the consequences of a motor

command (internal forward model) (Kawato, 1999; Wolpert et al., 2011). It is assumed

that subjects are able to adjust their internal models when facing systematic changes in

the environmental conditions. In such cases, internal model adaptation is necessary to

ensure movement goal achievement.

Our group developed a novel 3D robotic manipulandum with end-point force control,

called BioMotionBot (Bartenbach et al., 2011; Figure 2.1). The BioMotionBot can be

used in the context of internal model learning and additionally enables the development of

tailor-made robot-assisted training programs for rehabilitation purposes. In this context,

force field experiments are commonly used. Thereby, subjects interact with the robotic

device which can alter the dynamic conditions of movement execution by perturbing,

constraining, or supporting the movements. However, in such force field experiments, a

great amount of data is accumulated. This recorded data has to be organized and stored in

a way that enables fast and easy access to the data, even for multiple users simultaneously.

Moreover, the data needs to be properly analyzed.

In the corresponding research literature, a multitude of methods is used (diverse robotic

manipulanda and analytic approaches). Potentially, these heterogeneous methods have an

impact to the gained results and conclusions. Thus, the precise consideration of existing

analytic approaches and the integration in a methodological framework would be ad-

vantageous. To our best knowledge, there exists no software application for this purpose.

Therefore, we developed a tailor-made software application that manages all analytic steps

for the analysis of robot-assisted force field experiments within a single framework. This

software application, called ManipAnalysis, is presented in this paper.

2.2 Methodological basis

2.2.1 Experimental setup

In 1994, Shadmehr & Mussa-Ivaldi introduced an experimental setup to investigate prop-

erties of internal model formation under changing environmental conditions. This setup

was constantly enhanced and is commonly used today (Criscimagna-Hemminger & Shad-

mehr, 2008; Arce et al., 2010; Howard et al., 2011). In this setup, subjects grasp the
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Figure 2.1: Classical two-dimensional center-out movement task. A, Subject performing
center-out movements handling the robotic manipulandum BioMotionBot. The cursor
representing the position of the handle and the target points are visualized on a screen.
B, The center-out movement task typically comprises movements from a center point to
circumjacent target points and back.

handle of a robotic manipulandum and perform horizontal point-to-point reaching move-

ments in a center-out task. Usually, this center-out movement task comprises move-

ments from a center point to circumjacent target points and back which are arranged

on a circle with a diameter of about 0.1–0.4 m (Figure 2.1). After a habituation pe-

riod under null field conditions, the robotic manipulandum produces forces which af-

fect the subjects’ hand via the robot handle. In the majority of the cases, a velocity-

dependent curl force field is generated that pushes the handle perpendicular to the cur-

rent movement direction (Brashers-Krug et al., 1996; Shadmehr & Brasher-Krug, 1997;

Figure 2.2A): (
Fx

Fy

)
= k ·

(
cos
(
(−1)n · Φ

)
− sin

(
(−1)n · Φ

)
sin
(
(−1)n · Φ

)
cos
(
(−1)n · Φ

) )
Φ=90◦

= (−1)n ·

(
0 −k
k 0

)
·

(
ẋ

ẏ

)
.

(2.1)

Thereby, the robot-generated force (Fx, Fy)
> in clockwise (n = 1) or counterclockwise

(n = 2) direction is determined by the force field viscosity k and the hand velocity (ẋ, ẏ)>.

Occasionally, other types of velocity-dependent force fields are used, e.g., skew fields (Shad-

mehr & Mussa-Ivaldi, 1994; Howard et al., 2011; Franklin et al., 2008):(
Fx

Fy

)
=

(
−k −k
−k k

)
·

(
ẋ

ẏ

)
, (2.2)(

Fx

Fy

)
=

(
0 k

k 0

)
·

(
ẋ

ẏ

)
, or (2.3)(

Fx

Fy

)
=

(
k1 −k2

k2 k1

)
·

(
ẋ

ẏ

)
, (2.4)

where, k, k1, k2 ∈ R (Figure 2.2B–D).
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Figure 2.2: Visualization of different viscous force fields: A, curl force field (Equation 2.1);
B–D, skew force fields (Equations 2.2–2.4).

Due to the velocity-dependency of the applied forces, subjects are normally requested

to perform their reaching movements within a requested time (usually 500±50 ms; Brashers-

Krug et al., 1996; Shadmehr & Brasher-Krug, 1997).

If the reaching movements are unperturbed, only little deviations and therefore al-

most straight-lined hand trajectories are observed. When exposed to a force field, the

hand trajectories of the subjects initially reveal large deviations compared with the null

field condition indicating that the subjects’ internal model is not suitable anymore. With

ongoing practice in the force field, these deviations decrease leading to straightened tra-

jectories similar to those under the null field condition. In order to perform such accurate

reaching movements, the sensorimotor system has to account for the altered dynamic con-

ditions and produce additional forces to counteract the perturbation. This is assumed to

be done by adapting the internal model of the task dynamics (Shadmehr & Mussa-Ivaldi,

1994).

2.2.2 Assessment of motor performance

Force field trials

Most commonly in dynamic adaptation experiments, the motor performance is assessed in

force field trials using kinematic data by quantifying the deviation of the performed hand

path from an ideal hand path (e.g., Shadmehr & Brasher-Krug, 1997) or by quantifying the

correlation of the performed hand trajectory to a baseline trajectory (e.g., Brashers-Krug

et al., 1996). Thereby, motor performance is determined both by the ability to predict

the dynamic conditions and the ability to react to sensed motor errors. Accordingly,

both feedforward and feedback motor control mechanisms influence motor performance

assessed on force field trials, thus evaluating net motor performance facing the dynamic

perturbation.

Null field catch trials

When the force field is removed after adaptation and the subjects perform the task under

unperturbed conditions, the hand trajectories show distinct deviations once again – now

in the opposite direction as compared to the beginning of force field exposure. These so-

called after-effects indicate that the sensorimotor system did not just increase stiffness to
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resist the perturbation but learned to deal with the new environmental conditions. This is

taken as evidence that an internal model of the task was adapted in order to account for

the conditional changes. In particular, after-effects indicate a feedforward motor control

strategy because the motor action is executed prior to receiving sensory feedback.

In order to assess after-effects, researchers commonly induce so-called (null field)

catch trials to the learning schedule. On these trials, the dynamic perturbation is ran-

domly and without prior announcement removed such that subjects unexpectedly per-

form their movements under null field conditions (e.g., Brashers-Krug et al., 1996; Shad-

mehr & Brasher-Krug, 1997; Overduin et al., 2006). This allows the assessment of after-

effects throughout the course of the learning schedule. Herein, a kinematic error mea-

sure can be used to evaluate the magnitude of the after-effects and therewith infer feed-

forward motor control mechanisms. However, catch trials produce large motor errors

that are fed back to the subjects. For this reason, motor performance on catch tri-

als is also influenced by the subjects’ ability to react to motor errors (feedback mech-

anisms).

Error clamp trials

As mentioned above, in force field adaptation tasks, subjects have to learn to compensate

the perturbing forces applied by the robot. When adapting to the force field, subjects

change their force production in order to predictively cancel out the perturbation. For

instance, when a curl force field (Equation 2.1) has to be learned, the subjects need to

produce additional compensatory forces perpendicular to the current movement direction.

Note, that these forces are not produced to move the hand towards that direction but

only to maintain on the desired trajectory. Therefore, the subjects’ forces measured at

the handle of the robotic manipulandum offer information about the degree of adapta-

tion.

Recently, so-called error clamp trials (or force channel trials) are used to assess mo-

tor adaptation of reaching movements under dynamic perturbations (Figure 2.3). On

these trials, the robot produces a virtual force channel that constrains the movement to

a straight line toward the target point counteracting all movements perpendicular to the

target direction. This allows assessment of the forces that subjects produce in perpendic-

ular direction against the virtual channel wall (Figure 2.3B,D) and serves as indicator for

predictive force field compensation (Scheidt et al., 2000; Smith et al., 2006). Note, that

on error clamp trials the perturbing force field is turned off and, thus there is no need

to produce perpendicular forces against the channel wall to maintain on the desired hand

path. Altogether, as on these trials motor errors are clamped to zero and the learning

stimulus (force field) is not present, these trials allow measurement of motor adaptation

with respect to feedforward adaptation mechanisms without overlapping reflex, error feed-

back, or learning mechanisms. This serves as indicator for the adaptation of the internal

model of the task dynamics (Scheidt et al., 2000; Joiner et al., 2013). Similar to catch

trials, error clamp trials can be randomly interspersed during the learning schedule to

evaluate progression of motor learning.
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Figure 2.3: Resulting and perpendicular forces on error clamp trials measured at the handle
during a dynamic adaptation experiment for a representative subject and selected move-
ment directions. Gray arrows attached to the straight-lined hand paths indicate subject-
applied forces with respect to the hand position. Under null field conditions, forces are
almost exclusively produced parallel to the movement direction (A) resulting in almost no
perpendicular forces (B). When adapted to the force field, the force output is changed (C)
by applying additional perpendicular forces (D) to cancel the predicted force field.

2.3 ManipAnalysis

2.3.1 Software requirements

In human movement science generally as well as in force field experiments particularly,

the used measurement instruments produce a great amount of data. Thus, the problem of

organization, processing, analysis, and storage of this data needs to be solved. In case of

the BioMotionBot, movements are recorded in the form of Cartesian coordinates alongside

with dynamic data measured at the robotic handle. Most often, measuring instruments

store these data in human-readable txt-files or some proprietary format as c3d. These files

are the basis for all upcoming analytic steps. Hence, an analytic software application needs

to be able to read these different file formats and manage all upcoming processing steps.

In software development, several requirements need to be considered. First of all, gen-

eral software quality requirements form a basic framework as stated for example by the

International Organization for Standardization (ISO). Thereby, the ISO distinguishes in

basic software quality characteristics (functionality, reliability, usability, efficiency, main-

tainability, portability) and corresponding subcharacteristics (ISO/IEC 9126, 2001; Fig-

ure 2.4). We followed these general requirements as far as relevant for the considered

specific scientific purpose.
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Figure 2.4: ISO software product quality requirements (acc. to ISO/IEC 9126, 2001).

Besides these general quality requirements, several research-specific requirements were

formulated for the special case of the analysis of force field experiments:

• Import and convenient storage of collected data in order to have effective and fast

access to the required data in further analytic steps.

• Preprocessing of imported raw data by filtering, calculation of movement velocities,

segmentation, and time normalization.

• Calculation of baseline trajectories which are recorded while no forces affect subjects’

hand. In further steps, these baseline trajectories shall be used as reference for the

degree of adaptation to induced perturbations.

• In research on internal models, the adaptation to induced perturbations is of general

interest. To assess a subject’s motor performance and the degree of adaptation,

the software needs to support flexible selection and calculation of commonly used

performance parameters.

• Ability to select and analyze movement data of individual or groups of subjects.

• Visualization of collected and calculated data in appropriate form.

• Flexible export options of all calculated intermediate and end results for further data

analysis using specific software applications (e.g., SPSS, R, Matlab).

2.3.2 Software architecture

ManipAnalysis is programmed in C# using .NET framework (v4.5 or later). All recorded

data alongside all preprocessed data and all analytic results are imported into a document-

oriented database, MongoDB, which can be located on an arbitrary network connected

server running a MongoDB-supported operating system (e.g., Microsoft Windows (Server),

Linux/Unix, MacOS). All calculations are executed using MathWorks Matlab accessing

a provided COM interface. Matlab instances are used to maximize processing speed

because there are (virtual) CPU-cores available on the system and distributes the workload
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Figure 2.5: ManipAnalysis user interface showing plot and export opportunities for selected
performance parameters for a defined group of subjects and specific movement trials..

among them. ManipAnalysis runs stable with Matlab v7.12 (R2011a) or later. All Mat-

lab calculations are performed in the background meaning that the Matlab workspace

is not shown, but only the ManipAnalysis user interface itself (Figure 2.5). However,

switching to the software’s debug mode provides the possibility to access the Matlab

workspace and shell for debug purposes.

Modules

ManipAnalysis is composed of different modules performing specific tasks. There are five

basic modules (Import, Preprocessing, Analysis, Visualization, Export) each containing

several submodules (Figure 2.6). This separation of tasks ensures a maximum degree of

flexibility. Due to this modular structure, only corresponding modules need to be adjusted

if requirements change. The software structure itself remains unaffected, allowing for

easy refactoring. This property is of general interest for research-specific use because the

concrete experimental paradigm will change from case to case.

Import

In robot-assisted experiments, raw data obtained by robotic manipulanda usually contain

time stamps, Cartesian coordinates, as well as forces and torques acting at the handle of

the manipulandum. Furthermore, raw data includes information about the experimental

setup such as type of force field, type of task, movement number, and subject-related

information. The import module is able to parse this information, reorganize it, and

store it in the database. Thereby, different data formats can be handled (e.g., txt, c3d).

Altogether, selected raw data is automatically imported, classified, and stored.
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Figure 2.6: Modular structure of ManipAnalysis containing five basic modules and corre-
sponding submodules, each performing specific tasks.

Preprocessing

The preprocessing module is composed of raw data filtering, calculation of movement

velocities, data segmentation, and time normalization. Furthermore, baseline trajectories

(hand paths, velocity profiles) and baseline force profiles as well as movement mean times

are calculated.

In human movement science, recorded data is often affected by high-frequent noise.

In order to attenuate this noise, raw data is processed using digital filtering. Thereby,

using Fourier transform, the frequency spectrum is determined and certain frequencies

are selectively rejected or attenuated (Winter, 2005). ManipAnalysis performs digital

filtering using a Butterworth low-pass filter. Hereby, filter order and cut-off frequency can

be adjusted on the user interface. In particular, these filter parameters can be adjusted

independently for kinematic and dynamic data.

Based on the filtered data, movement velocities are numerically calculated using central

difference method (Robertson et al., 2004a):

v(t) = ẋ(t) =
dx(t)

dt

≈ D∆t[x](t) =
x(t+ ∆t)− x(t−∆t)

2∆t
.

Hereby, x(t) denotes the Cartesian positional data at time t and ∆t denotes the incremental

time step. Considering this equation for time discretized data yields to the following

formulation

vj =
xj+1 − xj−1

2∆t
(j = 1, . . . , n− 1)
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where, vj = v(∆t · j) and xj = x(∆t · j) denote the measured velocity and position at the

discretized time point j, respectively, and n is the total amount of recorded data points.

Afterwards, data sets are segmented in order to dissociate different movement trials.

The implemented segmentation algorithm provides two options:

• Segmentation based on position data:

All data points after the cursor leaves the start point up to the arrival at the target

point are selected.

• Segmentation based on velocity data:

Data points are selected based on a velocity threshold. Thereby, in a first step, the

maximal movement speed is calculated for each movement trial. Based on a (freely

selectable) percentage value, a velocity threshold as percentage of maximum speed is

determined. Movement onset (and offset) is then selected as the time point at which

hand speed exceeds (or falls under) this velocity threshold (e.g., 5%: Yang et al., 2007;

10%: Scott et al., 2001; 15%: Donchin et al., 2002).

Afterwards, for the purpose of comparability, movement data is time normalized

(Robertson et al., 2004a). In ManipAnalsis, this is performed by using cubic spline in-

terpolation with not-a-knot end conditions and subsequent rescaling of movement data as

percentage of duration.

For the cubic spline interpolation, a piecewise polynomial is determined (consisting of

polynomials of degree three, i.e., pi ∈ P3, i = 1, . . . , n) such that

p : [t0, tend]→ R, p ∈ C2([t0, tend]),

pi = p|[ti−1,ti], (i = 1, . . . , n)

for (equidistant) nodes t0 < t1 < · · · < tend. Thereby, p has to fulfill the interpolation

condition,

p(ti) = xi, (i = 1, . . . , n).

Moreover, p has to be continuous and two times continuously differentiable at interior

nodes:

pi(ti) = pi+1(ti), (i = 1, . . . , n− 1),

p′i(ti) = p′i+1(ti), (i = 1, . . . , n− 1),

p′′i (ti) = p′′i+1(ti), (i = 1, . . . , n− 1).

Finally, not-a-knot boundary conditions are required to uniquely define the spline:

p
(3)
1 (t1) = p

(3)
2 (t1) and p

(3)
n−1(tn−1) = p(3)

n (tn−1).

In order to rescale the movement data, the above-defined cubic spline p is evaluated at
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the discrete time points

τi =
i

N
(tend − t0), (i = 0, . . . , N)

which yields

xnorm =
(
p(τ1), . . . , p(τN )

)> ∈ RN .

For rescaling the movement data as percentage of duration, one sets N = 100.

In the final step of the preprocessing, baseline trajectories are calculated. This is

conducted by averaging (pointwise arithmetic mean) selected movement paths, velocity

profiles, and force profiles which were recorded under null field conditions. Such baseline

trajectories are determined for each movement direction and subject, respectively. In

subsequent processing steps, these baseline trajectories are used as reference functions.

All of the above-described preprocessing submodules can be executed automatically or

manually. Furthermore, ManipAnalysis allows individual adjustments of the preprocessing

procedures. Results of each processing step are stored in the database.

Analysis

Centerpiece of ManipAnalysis is the calculation of performance parameters to quantify

the magnitude of adaptation to dynamic perturbations. As mentioned above, force field

experiments are a common tool in human movement science. Nevertheless, researchers

use diverse methods to quantify a subject’s ability to perform movements under force field

conditions. In literature, diverse performance parameters are considered, which in turn

are calculated with different algorithms. ManipAnalysis supports the calculation of all

commonly used performance parameters enabling the user their individual selection.

In principle, ManipAnalysis supports calculation of kinematic (based on hand path and

velocity profiles) and dynamic (based on forces at the handle) measures. The measures

can further be distinguished in correlation measures, error measures, and measures offering

absolute quantities (Table 2.1):

Kinematic measures

• Velocity vector correlation coefficient

The velocity vector correlation coefficient (Pearson correlation) quantifies the similarity

between a trial trajectory and a corresponding baseline trajectory depending on the

velocity profiles (Brashers-Krug et al., 1996; Caithness et al., 2004; Overduin et al.,

2006):

VCorr(v,v∗) =
Cov(v,v∗)√

Var(v) ·Var(v∗)

=
E(v · v∗)− E(v) · E(v∗)√

[E(v2)− E(v)2] · [E(v∗2)− E(v∗)2]
.
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2.3 ManipAnalysis

Table 2.1: Classification of performance measures supported by ManipAnalysis.

Type of measure Kinematic Dynamic

Correlation/
Similarity

• Velocity vector
correlation coefficient

• Force field
compensation factor

• Orthogonal reference
function correlation

Error/
Difference

• Enclosed area

• Perpendicular displacement
(maximum, mean, at vmax,
at arbitrary t)

• Root mean square error

Absolute values
• Trajectory length • Midmovement force

• Length ratio

Here, v = (ẋ, ẏ) ∈ RN×2 denotes the velocity profile of the measured movement trial

to be evaluated and v∗ = (ẋ∗, ẏ∗) ∈ RN×2 denotes the corresponding baseline velocity

profile.1

The multiplications of two matrices are meant as scalar product in the dimension 2 and

E(·) denotes the expected value (mean value) of a vector’s entries and accordingly the

mean value for each column of a matrix.

• Orthogonal reference function correlation

This correlation measure estimates the similarity between trial and baseline trajecto-

ries (Stein et al., 2010). Thereby, in a first step, the correlation coefficients (Pearson

correlation) of all movement velocity profiles and a given set of orthogonal reference

functions (orthonormal system of Taylor polynomials of degree 1 to m) are calculated.

This leads to a m-dimensional vector of correlation coefficients for each movement trial.

In a second step, the actual correlation is computed by calculating the cosine of the

ankle between the correlation vectors of trial movement, k, and corresponding baseline

movements, k∗:2

ORF = cos(k,k∗) =
k>k∗

‖k‖2 · ‖k∗‖2
.

Whenever performance is assessed using correlation coefficients, ManipAnalysis per-

forms Fisher z-transforms in order to enable the calculation of mean values across dif-

1In accordance to standard notation, scalar quantities are denoted by italic symbols (e.g., x, v, F );
vectorial quantities are denoted by bold symbols (e.g., x, v, F); desired or baseline states, functions, or
values are indicated by the “asterisk” notation (e.g., x∗, v∗, F∗); N denotes the number of data points
of a movement as given by the time normalization.

2Here, ‖ · ‖2 denotes the Euclidean norm; in two-dimensional space this refers to the length of a vector.
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ferent subjects or trials:[−1, 1] → R,

r 7→ z := arctanh(r) = 1
2 ln
(

1+r
1−r

)
.

For visualization purposes as well as export of data (see paragraphs Visualizaion and

Export), the z-values can be transformed back to correlation coefficients.

• Enclosed area

The area enclosed by trial trajectory and straight line joining start and target point

(Caithness et al., 2004; Burdet et al., 2001) is determined using Gauss’ area formula for

polygons:

A =
1

2

N−1∑
i=1

(
x(i) − x(i+1))(y(i) + y(i+1)

)
+

1

2

(
x(N) − x(1))(y(N) + y(1)

)
.

Here, (x(i), y(i)) = x(i), (i = 0, . . . , N + 1) are the vertices of a two-dimensional polygon

which in case of movement trajectories are given by start point (i = 0), trial trajectory

(i = 1, . . . , N), and target point (i = N + 1).

• Perpendicular displacement

Maximal perpendicular displacement (PDmax, Schabowsky et al., 2007; Howard et al.,

2010) and mean perpendicular displacement (PDmean, Davidson & Wolpert, 2004; Arce

et al., 2010) of trial trajectory from straight line joining start and target point is deter-

mined by

PDmax = max
{ N

min
i=1
‖x(i) − x∗straight‖2

}
and

PDmean =
1

N

( N∑
i=1

min ‖x(i) − x∗straight‖2
)

where, x(i) = (x(i), y(i)) indicates the two-dimensional coordinates of the trial trajectory

and x∗straight represents the straight line joining start and target point.

Furthermore, the perpendicular displacement of trial trajectory to straight line joining

start and target points can be calculated at arbitrary time points τ after movement

start based on non-normalized data:

PDτ = min ‖x(τ)− x∗straight‖2.

Due to its simplicity, the perpendicular displacement measure is frequently used in

literature. Depending on the chosen time point of evaluation, different motor con-

trol mechanisms can be considered. For small time windows, preliminary feedforward

control mechanisms affect this measure (e.g., PD100ms, de Xivry et al., 2011). When

evaluating at later time points, reflex and feedback mechanisms become relevant (e.g.,
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PD200ms: Shadmehr & Holcoumb, 1999; PD250ms: Thoroughman & Shadmehr, 1999,

2000; PD300ms: Shadmehr & Brasher-Krug, 1997; Donchin et al., 2002; Criscimagna-

Hemminger et al., 2003) such that this measure accounts for different control mecha-

nisms.

Similarly, the perpendicular displacement can be calculated at the time point of maximal

velocity τvmax (Thoroughman & Taylor, 2005; Donchin et al., 2003; Pekny et al., 2011):

PDτvmax
= min ‖x(τvmax)− x∗straight‖2.

This measure has the advantage to be independent of the segmentation algorithm.

The perpendicular displacement values can be calculated both as absolute and signed

values indicating the direction of displacement (clockwise or counterclockwise) from the

straight line.

• Trajectory length

Length of trial trajectory as well as length ratio of trial trajectory and baseline (No-

vakovic & Sanguineti, 2011):

d =

N−1∑
i=1

‖x(i+1) − x(i)‖2

and

LengthRatio =
d

d∗
=

∑N−1
i=1 ‖x(i+1) − x(i)‖2∑N−1
i=1 ‖x∗(i+1) − x∗(i)‖2

.

• Root mean square error

of trial trajectory and baseline trajectory (Boutin et al., 2012):

RMSE =

√√√√ 1

N

N∑
i=1

‖x(i))− x∗(i))‖22.

Dynamic measures

Based on the recorded forces on error clamp trials (see Section 2.2.2), ManipAnalysis

supports the calculation of two dynamic measures of performance: force field compensation

factor and midmovement force.

• Force field compensation factor

The force field compensation factor is found by linear regression (in a least-squares

sense) of the actually measured perpendicular forces Factual on error clamp trials and

the ideal perpendicular forces Fideal. The ideal perpendicular force profile Fideal(t) refers

to the forces necessary to cancel the force field if it had occurred and can be determined

by the definition of the perturbing force field. Thus, the linear regression problem is
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given by

Factual(t) = a0 + a1 · Fideal(t) + ε(t)

where, ε is an additive error term, a0 is the intercept, and the parameter a1 serves as

the force field compensation factor (Joiner & Smith, 2008; Joiner et al., 2013).

• Midmovement force

ManipAnalysis offers the calculation of the Midmovement force as the average perpen-

dicular force produced against the channel wall during error clamp trials within an

arbitrary time window [τa, τb] (e.g., from 70 ms before to 70 ms after maximum speed

of that movement; Joiner et al., 2013):

Fmid =
1

τb − τa

∫ τb

τa

Factual(t)dt.

This integral is numerically integrated using trapezoidal rule.

Visualization

To illustrate calculated results, ManipAnalysis offers four kinds of result visualization:

• Plot of mean movement times of a subject or group of subjects itemized by movement

type (Figure 2.7). This is supported to control whether subjects stick to a predefined

movement time because in most experiments the induced force field is a function of

hand velocity. Thereby, the required movement time depends on the specific movement

task, in particular on the range of movement. In conventional center-out movement

tasks, center point and peripheral points are 0.1 m apart (Figure 2.1A) and subjects

are requested to perform the task within 500±50 ms (Shadmehr & Mussa-Ivaldi, 1994;

Brashers-Krug et al., 1996; Shadmehr & Brasher-Krug, 1997).

• Visualization of baseline and trial trajectories supporting individual selection of specific

subjects or movement trials (Figure 2.8B). Moreover, calculation and visualization of

mean trajectories is possible. Thereby, computation of mean trajectories of one subject

averaged over several trials as well as mean trajectories of several subjects is possible.

• As mentioned above, unperturbed point-to-point reaching movements are approximately

straight. Moreover, such movements show bell-shaped velocity profiles (Flash & Hogan,

1985). This characteristic changes when forces affect subjects’ hands yielding a curve

with multiple peaks (Shadmehr & Mussa-Ivaldi, 1994). To visualize such changes, Ma-

nipAnalysis generates movement velocity profiles of individually selected subjects or

movement trials. Furthermore, averaged velocity profiles can be calculated and visual-

ized (Figure 2.8C).

• Furthermore, force profiles of forces measured at the handle can be plotted. In particu-

lar, ManipAnalysis supports separate illustration of the force components perpendicular

and parallel to movement direction (Figure 2.8D). This allows description of changes in

the subjects’ force output when adapting to the force field.
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Thereby, qkll indicates the point of time 300 ms after movement start. This value can be 

calculated both as absolute and signed value indicating the direction of displacement 

(clockwise or counterclockwise) from the straight line. 
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Visualization 

To illustrate the calculated results, ManipAnalysis offers four kinds of result visualization: 

(1) Plot of mean movement times of a subject or group of subjects itemized by movement 

type (Fig. 6). This is supported to control whether subjects stick to a predefined movement 

time because in most experiments the induced force field is a function of hand velocity. 

Thereby, the required movement time depends on the specific movement task, in 

particular on the range of movement. In conventional center-out movement tasks, center 

point and peripheral points are 0.1 m apart (Fig. 1a) and subjects have to perform the task 

within 500±50 ms (Brashers-Krug et al., 1996; Shadmehr & Brashers-Krug, 1997).  

 

 

Figure 6. Mean movement time and standard deviation of a subject for each of the 16 types of movements 

averaged over 16 sets: eight outward directed (01-08) and eight inward-directed (09-16), 

respectively.  
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Figure 2.7: Mean movement time and standard deviation of a subject for each of the 16 types
of movements averaged over 16 sets: eight outward directed (01-08) and eight inward-
directed (09-16), respectively.

• Most importantly, ManipAnalysis generates performance parameter curves illustrating

performance changes in the course of a practice session. Thereby, the above-mentioned

performance parameters can be selected. These can be shown for single subjects as well

as mean values of selected groups of subjects. Optionally, user-defined fitting curves

can be inserted to approximate the time curve (Figures 2.8A, 2.9).

Export

For further data analysis with specific statistical software applications or additional data

analysis using different applications, ManipAnalysis offers following export options:

• Export of preprocessed movement data (baseline trajectories, movement hand paths,

velocities, forces) for single subjects and as mean values of selected groups of subjects.

This enables manual database unrelated movement analysis using analysis applications

of interest.

• Export of movement time mean values and corresponding standard deviations.

• Export of performance parameters averaged over selected movement intervals for indi-

vidual subjects enabling further statistical comparisons of several subjects at selected

points of time (intraindividual mean values).

• Export of performance parameters for each single movement of selected groups of sub-

jects enabling both the analysis of homogeneity within groups and the comparison of

different groups (interindividual mean values).

ManipAnalysis saves the export data as txt-files which are structured in a way enabling

straightforward processing with common statistical software applications. For all exports

the requested data can be selected individually.
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Figure 2.8: Visualization options demonstrated for a force field adaptation experiment.
A, Mean performance parameter curves for a group of subjects illustrated by enclosed
area of trial trajectory and straight line joining start and target point under null field
(left) and force field conditions (right). B, Mean movement hand paths under null field
conditions (left), for the first set of force field practice (middle), and within the last set
of force field training (right). C,D, Mean velocity profiles and mean force profiles in the
course of movement time under null field conditions (left), at the beginning of force field
practice (middle), and at the end of force field practice (right).
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Figure 2.9: Visualization options illustrated by selected mean performance parameter curves
as a function of trials. Underlying data is descended from a force field adaptation exper-
iment: A, Velocity vector correlation coefficient between trial trajectory under force field
conditions and baseline trajectories. B, Area enclosed by trial trajectory and straight line
joining start and target point. C, Mean perpendicular displacement PDmean of trial tra-
jectory from straight line joining start and target point. D, Perpendicular displacement
300 ms after movement start PD300ms as signed value. The negative results indicate dis-
location of straight line in counterclockwise direction. E, Length ratio of trial trajectory
and corresponding baseline trajectory. F, Root mean square error of trial trajectory and
corresponding baseline trajectory. G, Force field compensation factor of randomly inter-
spersed error clamp trials. H, Midmovement force evaluated within a time window of
±70 ms around time point of maximum velocity. The curves A-F are approximated by
bi-exponential fitting curves whose shapes indicate adaptation to the force field condition
with increasing number of trials, respectively.
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2.4 Discussion

ManipAnalysis was developed for the analysis of force field experiments. Here, we first

discuss the software’s properties with respect to the previously stated general software

quality requirements (functionality, reliability, usability, efficiency, maintainability, porta-

bility; ISO/IEC 9126, 2001). Afterwards, we discuss ManipAnalysis with regard to the

initially mentioned research-specific requirements.

2.4.1 ManipAnalysis and general software quality requirements

ManipAnalysis was developed to manage all processing steps for the analysis of force field

experiments. Therefore, only suited and approved processing procedures from computa-

tional neuroscience and human movement science were implemented. Those were deduced

from common literature and our own practical experiences. Calculation algorithms were

implemented by using Matlab and relating Matlab algorithms if existent. This enabled

an easy and comparable implementation of algorithms. Moreover, Matlab algorithms are

well-proven, accurate, and numerically stable. For data export, well-established txt-files

were chosen since these are supported by almost every other analytic software application

that might be used in further processing steps. Altogether, requirements on functionality

are satisfied.

Due to the use of a document-oriented database, all imported files as well as all in-

termediate and final calculation results of ManipAnalysis are consistently organized and

centrally backed up. On the one hand, this enables several users to work simultane-

ously on the same data without being forced to use the same computer or to having to

import the files several times. Hence, different users do not have to repeat previously

conducted calculations since these are stored in the database. On the other hand, using

a document-oriented database in combination with constant database backups provides

complete recoverability of the data. Due to the fact that the application is relatively new,

it is problematic to rank maturity and fault tolerance properties of the application. How-

ever, first experiences in analyzing large amount of data show that ManipAnalysis runs

reliably.

In order to fulfill usability requirements, an easily operated user interface was imple-

mented. A standard mode offers the most common analytic options with Matlab running

in the background. A debug mode provides detailed adjustments concerning all process-

ing steps as well as access to the Matlab workspace for manual calculations. Certainly,

attractiveness of the application was of secondary importance within the development

process. This is due to the fact that ManipAnalysis is a custom-made research-specific

analytic tool. Nevertheless, the simple generation of movement trajectory plots or perfor-

mance parameter values has positive influence on the application’s attractiveness.

Since all mathematical calculations of ManipAnalysis are processed locally on the

user’s computer and subsequently backed up in the database, calculations only have to

be computed once. Therefore, a perfect trade-off between performance and security is

achieved. This leads to efficiency in time behavior and resource utilization.
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Main benefit of the application’s modular architecture is a high degree of maintainabil-

ity and portability. If errors occur, only the corresponding module needs to be identified,

tested, and remedied. Moreover, the application is adaptable and expandable in case of

changes in calculation algorithms or research-specific changes like differing experimental

setups. Thus, ManipAnalysis is not limited to the analysis of traditional two-dimensional

center-out movements but might easily be adjusted to other tasks. Likewise, there is no

limitation on experiments using dynamic perturbations. The analysis of experiments using

kinematic perturbations (Krakauer et al., 2005) is possible as well. Most importantly, the

application is compatible to arbitrary robotic manipulanda since recorded data of robotic

manipulanda commonly contain the same type of information. In the event of a differing

raw data structure, merely the import module needs to be adapted to use ManipAnalysis.

For instance, ManipAnalysis processes data which is recorded using the self-developed

robotic device BioMotionBot (Bartenbach et al., 2013) but also using the commercial de-

vice Kinarm EndPoint Lab (BKIN Technologies, Kingston, Canada, Scott, 1999). For the

case of software adjustments, ManipAnalysis comprises an automatic deployment system.

Thereby, updates are automatically installed using ClickOnce (Microsoft Corp., USA)

technology.

Besides the need for the .NET framework, Matlab, and connection to a MongoDB

database, there are no limitations or requirements for the use of ManipAnalysis. Nor there

are restrictions concerning co-existence with other applications.

2.4.2 ManipAnalysis and research-specific requirements

As outlined in this article, there exist diverse methodological approaches for the analysis

of force field experiments. Likely, different analytic methods might lead to different con-

clusions. Therefore, it is important to know about the diversity of analytic methods and

its particular characteristics. For instance, in order to evaluate movement trials most mea-

sures require the definition of a reference trajectory which is assumed to reflect an ideal

pattern (e.g., straight line joining start and target point, individual baseline trajectories).

However, it is debatable which trajectory does reflect ideality or whether such an ideality

even exists.

Moreover, the type of data under consideration is crucial. Measures based on kinematic

and dynamic data emphasize different aspects of motor performance. Dynamic measures

that assess motor performance using error clamp trials evaluate motor performance in

terms of feedforward mechanisms. In contrast, the above-stated kinematic measures eval-

uate motor performance with regard to feedforward, feedback, and reflex mechanisms as

well as inertial properties of the subjects’ arm (i.e., mechanical influence of forces on the

human arm). Even within the class of kinematic measures, different aspects are empha-

sized. Kinematic measures based on hand paths (i.e., positional data) are easy to calculate

and interpret, yet, neglecting temporal factors. In comparison, measures based on velocity

data are more sensitive to aspects like smoothness of movement execution because they

account for temporal factors.

Clearly, we cannot (and are not willing to) give instructions for the analysis of force field
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experiments. However, by implementing ManipAnalysis we offer a software application

that supports all common measures of performance within the framework of force field

experiments, thus enabling consideration of different aspects of motor performance.

2.5 Conclusion

The purpose of this article was to introduce the software application ManipAnalysis. This

application was developed for the analysis of data gathered in force field experiments which

are a common tool in the research of motor control and learning. General and research-

specific software requirements were extracted from common literature and own practical

experiences. The developed application only requires the .NET framework, Matlab, and

a MongoDB database. Due to its modular architecture, ManipAnalysis is expandable

and adaptable in case of changing research-specific requirements. ManipAnalysis is nei-

ther limited to the analysis of classical two-dimensional center-out movement tasks nor

there are restrictions concerning the used robotic manipulandum. ManipAnalysis handles

all analytic steps beginning with the import and storage of data up to performance pa-

rameter calculation, visualization, and export. Altogether, ManipAnalysis fills the gap

between acquisition and statistical analysis of data which is recorded during force field

experiments. We presented diverse approaches to assess motor performance and outlined

that these emphasize different aspects, e.g., different control mechanisms. Likely, usage of

different analytic approaches leads to different concluding outcomes. Thus, we encourage

researchers to chose their analytic approaches with caution bearing in mind the different

mechanisms involved in motor control and learning.
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Abstract

Force field studies are a common tool to investigate motor adaptation and consolidation.

Thereby, subjects usually adapt their reaching movements to force field perturbations in-

duced by a robotic device. In this context, so-called catch trials, in which the disturbing

forces are randomly turned off, are commonly used to detect after-effects of motor adap-

tation. However, catch trials also produce sudden large motor errors that might influence

the motor adaptation and the consolidation process. Yet, the detailed influence of catch

trials is far from clear. Thus, the aim of this study was to investigate the influence of

catch trials on motor adaptation and consolidation in force field experiments. Therefore,

105 subjects adapted their reaching movements to robot-generated force fields. The test

groups adapted their reaching movements to a force field A followed by learning a second

interfering force field B before retest of A (ABA). The control groups were not exposed to

force field B (AA). To examine the influence of diverse catch trial ratios, subjects received

catch trials during force field adaptation with a probability of either 0%, 10%, 20%, 30%,

or 40%, depending on the group. First, the results on motor adaptation revealed signifi-

cant differences between the diverse catch trial ratio groups. With increasing amount of

catch trials, the subjects’ motor performance decreased and subjects’ ability to accurately

predict the force field and therefore internal model formation was impaired. Second, our

results revealed that adapting with catch trials can influence the following consolidation

process as indicated by a partial reduction to interference. Here, the optimal catch trial

ratio was 30%. However, detection of consolidation seems to be biased by the applied

measure of performance.
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3.1 Introduction

3.1 Introduction

Motor learning is an important attribute of human life which refers to an improvement

in execution of a motor behavior. Thereby, motor learning implies two distinct features:

the ability to acquire new motor skills and the adaptation of existing motor skills to new

environmental conditions (Huang & Krakauer, 2009; Krakauer & Mazzoni, 2011; Kitago &

Krakauer, 2013). In neuroscience, motor learning has most often been studied in the con-

text of adaptation of reaching movements. Thereby, subjects usually adapt their reaching

movements to either kinematic perturbations (visuomotor rotations, Krakauer et al., 2005;

prism-induced displacements, Held & Freedman, 1963) or dynamic perturbations (robot-

induced forces, Shadmehr & Mussa-Ivaldi, 1994; rotation of body Lackner & DiZio, 2005;

attached inertial loads, Krakauer et al., 1999). Here, we want to focus on motor learning

in terms of adaptation of reaching movements to robot-induced forces. Thereby, subjects

commonly interact with a robotic device that applies perturbing forces to the subjects’

hands leading to changed dynamic conditions of the reaching movements. At the begin-

ning of reaching under these changed dynamics, subjects’ hand trajectories are deviated

from desired straight hand paths showing a hooking pattern. This results in a motor error

arising from the discrepancy between prediction and execution of the movement. When

further exposed to this perturbation, subjects’ performance initially improves rapid fol-

lowed by a slower increase to steady state close to baseline performance (Shadmehr et al.,

2010). This kind of fast trial-by-trial reduction of motor errors following an abrupt change

in conditions is typically referred to as motor adaptation (Haith & Krakauer, 2013). When

the dynamic perturbation is removed after adaptation and the subject is reaching under

unperturbed conditions, hand trajectories are deviated again. Now, the hand trajectories

show after-effects in a direction opposite to the initial deviation of the dynamic perturba-

tion. This is taken as evidence that the sensorimotor system learned an internal model to

specifically counteract the dynamic perturbation and did not simply increase arm stiffness

(Shadmehr et al., 2010). To detect adaptation of such an internal model, usually error

clamp trials or catch trials are interspersed. In error clamp trials, movements are con-

strained to a virtual channel and the subjects’ forces against the channel wall are evaluated

(Scheidt et al., 2000). In catch trials, the dynamic perturbation is randomly and without

prior announcement removed (usually in 10–20% of the trials) and subjects reach under

null field conditions. This allows detection of after-effects (Brashers-Krug et al., 1996;

Shadmehr & Brasher-Krug, 1997). In contrast to error clamp trials, catch trials produce

large motor errors that are fed back to the subject. As motor adaptation from one trial

to the next was shown to be proportional to experienced motor error (Thoroughman &

Shadmehr, 2000; Donchin et al., 2003), it is widely accepted that catch trials affect execu-

tion of immediately following movement trials (Thoroughman & Shadmehr, 2000; Scheidt

et al., 2001; Karniel & Mussa-Ivaldi, 2002, 2003; Levy et al., 2010). However, the influence

of catch trials on the overall motor adaptation process has not yet been investigated in

detail.

Following adaptation, motor memory is transformed from an initially fragile state to
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a more robust and stable state and therewith gains resistance to interference. This time-

dependent process is called consolidation and contributes to enhanced retest performance

when exposed to the disturbance a second time (Robertson et al., 2004b; Krakauer &

Shadmehr, 2006). In the context of force field experiments, numerous studies were able to

detect enhanced retest performance of a learned force field A when exposed to this per-

turbation a second time (savings in AA-paradigm) (Brashers-Krug et al., 1996; Shadmehr

& Brasher-Krug, 1997; Caithness et al., 2004; Overduin et al., 2006; Focke et al., 2013).

Moreover, various studies investigated the consolidation process of force field adaptation

using an ABA-paradigm. Thereby, consolidation following adaptation to force field A

is interfered by learning a second force field B before retest of A (Brashers-Krug et al.,

1996; Shadmehr & Brasher-Krug, 1997; Caithness et al., 2004; Focke et al., 2013). Some

researchers found evidence for consolidation of force field A (Brashers-Krug et al., 1996;

Shadmehr & Brasher-Krug, 1997), whereas others did not (Caithness et al., 2004; Focke

et al., 2013). Most of these studies used catch trials without taking into account that these

change the conditions of practice and may thus considerably influence the consolidation

process. Indeed, Overduin et al. (2006) showed that subjects are able to consolidate a

learned force field A in the ABA-paradigm when catch trials were interspersed during

adaptation, whereas learning without catch trials did not lead to consolidation of force

field A. Conversely, Focke et al. (2013) failed to confirm this finding for a more complex

task, suggesting that not the presence of catch trials per se but the amount of induced

catch trials might be crucial. Thus, consolidation also seems to be a practice-dependent

process in which the effect of catch trials is insufficiently understood and needs to be

further investigated.

Taken together, the detailed influence of catch trials on the overall motor adaptation

process as well as on the following consolidation process remains unknown. Research

in skill learning exhibited that variable practice schedules facilitate consolidation when

learning closed tasks for which the environmental conditions are always similar and the

movement can be planned in advance (Shea & Morgan, 1979; Shea & Kohl, 1991; Schmidt

& Lee, 2011). Thereby, higher variability during practice leads to a poorer performance

during learning but to a better performance at retest compared to lower variability during

practice. Although, the relationship between motor adaptation and skill learning is far

from clear (Yarrow et al., 2009), similar results may occur for motor adaptation and

the following consolidation process. Therefore, the aim of our study was to investigate

the influence of different catch trial ratios both on the motor adaptation process and

on the consolidation process in force field adaptation. We hypothesized that increasing

intermittence during practice operationalized with various catch trial ratios of up to 40%

leads to a poorer performance during adaptation compared to lower intermittence during

practice (e.g., 0% catch trials) but facilitates the consolidation process.
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Table 3.1: Experimental paradigm and classification of subject groups.

Group
Catch trial
ratio [%]

Subjects
Paradigm

Day 1
(Learning)

Day 2
(Interference)

Day 3
(Retest)

Control 0% (C0)
0

n=11 F N A0 – A0

Test 0% (T0) n=11 F N A0 B0 = –A0 A0

Control 10% (C10)
10

n=11 F N A10 – A10

Test 10% (T10) n=10 F N A10 B10 = –A10 A10

Control 20% (C20)
20

n=11 F N A20 – A20

Test 20% (T20) n=9 F N A20 B20 = –A20 A20

Control 30% (C30)
30

n=11 F N A30 – A30

Test 30% (T30) n=10 F N A30 B30 = –A30 A30

Control 40% (C40)
40

n=10 F N A40 – A40

Test 40% (T40) n=11 F N A40 B40 = –A40 A40

F: familiarization block in null field (25 sets, 400 trials); N: baseline block in null field (6 sets, 96 trials); A:

clockwise velocity-dependent force field with different ratio of catch trials and force field trials 25 sets, 400 trials);

B: counterclockwise velocity-dependent force field with different ratio of catch trials and force field trials (25 sets,

400 trials).

3.2 Materials and methods

3.2.1 Subjects

A total of 110 healthy subjects participated in this study (age 24.3±2.1 years; 46 female,

64 male; 103 right-handed, 7 left-handed). They all gave written informed consent and the

test-protocol was reviewed and approved by the institutional review board. All subjects

were naive to the experimental procedure (apparatus, paradigm, and purpose of the study)

and had no known motor deficits or neurological impairments. Handedness was verified

using Edinburgh Handedness Inventory (Oldfield, 1971).

The subjects were randomly assigned to ten groups, whereas five control groups (C0,

C10, C20, C30, C40) and five corresponding test groups (T0, T10, T20, T30, T40) were

defined (Table 3.1). To investigate consolidation patterns of motor memory, we considered

all ten groups separately. To analyze motor adaptation to force field A during the learning

session (day 1), we unified each two corresponding groups (e.g., C10 and T10) as the

corresponding control and test groups passed the same experimental procedure on that

day. We refer to the union of two such groups as the catch trial ratio groups 0%, 10%,

20%, 30%, and 40%.

Five subjects were excluded from the analysis because of technical reasons or lacking

ability to adapt to the dynamics.
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A B

Figure 3.1: A, Robotic device BioMotionBot. B, Subject performing the horizontal point-
to-point reaching task. The cursor corresponding to the position of the handle and the
targets were displayed on a screen facing the subject.

3.2.2 Apparatus

Subjects grasped the handle of a robotic device (BioMotionBot; Figure 3.1A) that could

exert forces (Bartenbach et al., 2013). The subjects’ arms were not supported and all

movements were restricted to the horizontal plane. Subjects had clear view of their hand

throughout the whole experiment. They received full visual feedback of the targets as well

as of the cursor corresponding to the position of the handle on a vertical screen mounted

above the robotic device. Subjects sat on a chair, which was individually adjusted so

that they were able to grasp the handle with their dominant hand and comfortable reach

all target positions (Figure 3.1B). This individual seating position was reinstated in all

following practice sessions. Position and force at the handle were recorded at a sampling

rate of 200 Hz.

3.2.3 Procedure

Task

We used an experimental setup similar to that described by Focke et al. (2013). Subjects

were asked to perform accurate goal-directed point-to-point reaching movements in the

horizontal plane with their dominant hand using the robotic device. Starting from a

center point, subjects had to reach for one of the eight peripheral target points which

highlighted in a pseudo-randomized order. The subsequent movement was initiated from

this point back towards the center point. Therefore, the end point of each movement

was the starting point for the subsequent movement. The peripheral target points were

uniformly arranged on a circle of 10 cm radius around the center point. Targets were red

circles (1 cm diameter) and the cursor was a white circle (0.3 cm diameter) appearing

on a black background. If a target had to be reached, it changed its color from red to

yellow. To avoid target sequence specific phenomena, the target sequence differed for each

subject.

We defined a set of movements as 16 trials eight outward and eight inward movements

in which each peripheral target point occurred exactly once. All learning blocks were

constructed as concatenation of such movement sets. This ensured the same amount of

practice towards each target direction.
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Subjects were requested to perform each movement within 500±50 ms. Additionally,

subjects were told that reaction time was not important, i.e., after appearance of the new

target they could wait as long as they wanted before starting the movement. Consequently,

reaction time was excluded from the requested time interval. After completion of each

movement, subjects received visual feedback about movement time on the screen. If the

subjects reached the target within the required time, a green circle around the target

appeared. If they moved too slowly, a red circle appeared and when moving too fast,

an orange circle turned up. This visual feedback was provided throughout the whole

experiment to ensure consistent movement speed.

Experimental design

To investigate the consolidation process of a learned task A, we used an ABA-paradigm

whereby the practice sessions were distributed over three days with 24 h rest between each

session (Table 3.1). To determine the adaptation process, we considered the learning block

A on day 1.

On day 1, all subjects began with a familiarization block under null field conditions

(F, no disturbing forces) for 25 sets (400 trials; Table 3.1). After performing this familiar-

ization block, subjects were able to perform the movements at the requested speed. We

did not further analyze this data. After 5 min of rest, subjects performed a baseline block

for six sets (96 trials) under null field conditions (N). Based on these trials, we calculated

baseline trajectories to evaluate null field performance and as reference to movement trials

performed under force field conditions. After another 5 min of rest, subjects performed

25 sets (400 trials) in a velocity-dependent clockwise force field A. On day 2 (24 h rest),

subjects of the test groups (T0,. . . ,T40) were exposed to a second interfering velocity-

dependent counterclockwise force field B=–A for 25 sets. Subjects of the control groups

did not attend the laboratory on day 2. On day 3, all subjects were retested for another

25 sets in force field A.

During force field adaptation, short breaks of 60 s were inserted after each five sets.

Thereby, subjects could release their hand from the handle but remained seated. The

sessions lasted approximately 60 min on day 1 and approximately 30 min on the subsequent

practice days. Subjects were instructed to sleep at least 6 h between the test sessions.

Forces and catch trials

Within the force field adaptation blocks, the robotic device generated a velocity-dependent

force field that applied forces perpendicular to the direction of movement according to the

following equation: (
Fx

Fz

)
= k ·

(
cos(θ) − sin(θ)

sin(θ) cos(θ)

)
·

(
ẋ

ż

)
(3.1)

Here, Fx and Fz are the robot-generated forces; k = 20 Ns/m is the force field viscosity;

θ denotes the direction of the force field (force field A: θ = −90 clockwise-directed, force

field B: θ = 90 counterclockwise-directed); ẋ and ż are the components of hand velocity
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in the horizontal plane.

During force field adaptation, catch trials were pseudo-randomly interspersed without

prior announcement. Depending on the group, catch trials appeared with either 0%,

10%, 20%, 30%, or 40% probability. The catch trial ratio is indexed in the name of

group and applied force field, respectively (e.g., C10: control group adapting to force

field A10 with 10% catch trials; Table 3.1). Catch trials occurred in outward and inward

movements and in some cases occurred one after another. If a catch trial occurred towards

a specific direction, no force field trial was performed towards this direction during this

set of movements. Catch trials were induced without replacement such that the number of

force field trials differed between the catch trial groups but the total amount of performed

movements retained (400 movements).

3.2.4 Data analysis

Preprocessing

All parameters were calculated using the custom-made software application ManipAnalysis

(Stockinger et al., 2012). Raw data of hand trajectories were filtered using a fourth-order

Butterworth low-pass filter (6 Hz cut-off frequency). Afterwards, movement velocities were

numerically computed using central difference method. Next, data sets were segmented.

For position data, movement start was defined as the time-point when the cursor left the

starting point and movement termination was marked when the cursor reached the target

point. For velocity data, movement onset (or end) was defined as the time at which velocity

exceeded (or fell under) 10% of maximal velocity of that movement. Finally, the data sets

were time-normalized using cubic spline interpolation to make them comparable.

We calculated baseline trajectories and baseline velocity profiles for each of the 16

movement directions by respectively averaging corresponding movements of the last five

sets recorded in the baseline block under null field conditions (N) (Stockinger et al.,

2012).

Performance measurement

Velocity vector correlation coefficient

To quantify movement performance under force field conditions, we calculated a velocity

vector correlation coefficient. This widely used measure only considers force field trials and

quantifies motor performance by estimating the similarity between the velocity profiles of

force field movements and corresponding baseline movements (Shadmehr & Brasher-Krug,

1997; Caithness et al., 2004; Overduin et al., 2006; Stockinger et al., 2012).

Perpendicular displacement

To specifically evaluate catch trial movements, we calculated the signed perpendicular

displacement (PDcatch) of hand trajectory from the straight line joining start and target

point 300 ms after movement start (Shadmehr & Brasher-Krug, 1997; Donchin et al.,

2002). This measure allowed us to gauge both the magnitude and the direction of the
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deviation. For instance, a subject who adapted to a clockwise-directed force field A will

predictively generate additional forces in counterclockwise direction to cancel out the ex-

pected disturbing forces (Shadmehr & Mussa-Ivaldi, 1994). Consequently, we would expect

the perpendicular displacement on a catch trial to be counterclockwise-directed. We in-

dicate such after-effects appropriate to force field A with negative sign. In contrast, we

indicate after-effects appropriate to force field B with positive sign.

Moreover, the perpendicular displacement was calculated for force field trials (PDfield)

to calculate a learning index as described in the following paragraph. Other measures of

trajectory displacement (e.g., maximal perpendicular displacement, mean perpendicular

displacement, perpendicular displacement 200 ms after movement start) yielded qualita-

tively similar results and are therefore not presented in this paper.

Learning index

To relate force field trials and catch trials, we calculated a learning index (LI). This

learning index allows quantification of force field learning with respect to after-effects dur-

ing catch trials (Donchin et al., 2002; Overduin et al., 2006). When subjects adapt to

the force field conditions, trajectories should become straight-lined and therefore show

gradually decreasing perpendicular displacement values in force field trials. However, in

catch trials there should be increasing after-effects to the opposite direction with ongoing

learning (Shadmehr & Mussa-Ivaldi, 1994). Based on this idea we calculated the learning

index as follows:

LI =
PDcatch

|PDfield|+ |PDcatch|
∈ [−1, 1] (3.2)

Thereby, PD denotes the perpendicular displacement of hand trajectory as defined

above in either force field trials (PDfield) or catch trials (PDcatch). The learning index was

calculated using perpendicular displacement mean values (PD) of force field and catch

trials for each set (16 trials) of movements.

Early in the adaptation period, subjects should show a learning index near zero because

in catch trials small after-effects and in force field trials large displacements should appear.

With ongoing practice, the absolute value of the learning index should increase because

after-effects in catch trials increase and deviations in force field trials decrease (Donchin

et al., 2002). A subject who resists the disturbing forces by increasing the stiffness of

the arm may perform an accurate movement showing only small deviations during force

field trials. Nevertheless, this leads to a low-valued learning index because perpendicular

displacements are also small in catch trials. Thus, the learning index is a good measure to

quantify force field prediction and thus internal model formation (Overduin et al., 2006).

The learning index is a relative measure of performance with a theoretical limit of 1

(absolute value). It is signed as the numerator includes the signed perpendicular displace-

ment of catch trials. This allows distinction of learning the two opposing force fields A and

B. Thereby, learning of the clockwise-directed force field A was indicated with a negative

value, whereas learning of the counterclockwise-directed force field B had positive sign.

The learning index was not calculated for the 0% catch trial groups (C0, T0) as these
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groups did not receive any catch trials that indicate after-effects.

We conducted the statistical analyses for velocity vector correlation coefficient, learn-

ing index as well as the perpendicular displacement. We did this for several reasons. First,

velocity vector correlation is a well-established and frequently used measure to quantify

force field learning (e.g., Shadmehr & Brasher-Krug, 1997; Caithness et al., 2004; Overduin

et al., 2006). This enables comparison to most former force field studies. Second, velocity

vector correlation allowed us to quantify performance of the 0% catch trial group which

is impossible when using the learning index. Third, we additionally used the learning

index based on the perpendicular displacement because it also considers catch trials and

therefore more emphasizes the internal model prediction and the direction of force pre-

diction than the velocity vector correlation. Furthermore, the perpendicular displacement

is an intuitively accessible and frequently used measure of motor error (e.g., Shadmehr &

Brasher-Krug, 1997; Donchin et al., 2002).

Difference values

To assess performance changes between two distinct points in time, we calculated the

difference value of performances between these two points in time. Thereby, increase (or

decrease) of performance within the considered period was indicated with positive (or

negative) sign. Using this difference value we were able to compare performance changes

across different groups.

The term “initial performance” always refers to the mean score of the first set of move-

ments (16 trials) within the considered period. Accordingly, “end performance” always

refers to the mean score of the last set of movements (16 trials) within the considered

period.

Statistics

To test for differences within groups, we used paired t-tests. Adaptation on day 1 was con-

firmed by comparing initial and end performance of the learning session for each group. To

check for consolidation of force field A of a specific group, we compared initial performance

of the learning session (day 1) and retest session (day 3) of that group.

To test for differences between groups, we conducted one-way ANOVAs with between

subject factor group. Hereby, differences in initial or end performance were determined.

To compare the degree of adaptation between groups, we considered the difference value

of initial and end performance in force field A of the learning session (day 1).

To test for differences in consolidation between the pairs of groups, we conducted a

two-way ANOVA with the between subject factors catch trial ratio [0%, 10%, 20%, 30%,

40%] and interference [control group, test group]. Therefore, we compared the difference

values calculated from initial performance of the learning session (day 1) and retest session

(day 3) between the different groups. This allowed evaluation of the influence of different

catch trial ratios on the consolidation of force field A with respect to the interference of

force field B. To evaluate after-effects, we used one-sample t-tests to compare given mean

values to zero.
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All statistical analyses were conducted using IBM SPSS software (v.21). All data

are presented as mean values and 95% confidence intervals. For all statistical tests, the

level of significance was a priori set to p = 0.05. If one-way ANOVAs revealed significant

differences, Bonferroni Post-hoc analysis was used. Effect sizes were determined using

partial eta squared η2
p (small effect: η2

p = 0.01; medium effect: η2
p = 0.06; large effect:

η2
p = 0.14) or Cohen’s d (small effect: d = 0.20; medium effect: d = 0.50, high effect:

d = 0.80) (Cohen, 1992). All correlation coefficients were transformed using Fisher z-

transform before statistical analyses were conducted. All presented data of velocity vector

correlation refers to the retransformed z-values.

3.3 Results

The initial performance of the learning session (day 1, first set) did not differ significantly

between the ten groups (one-way ANOVA, factor: group [C0,. . . ,C40, T0,. . . ,T40]). This

holds for the velocity vector correlation (F(9,95) = 1.30, p = 0.249), perpendicular displace-

ment (F(9,95) = 1.58, p = 0.135), and learning index (F(7,75) = 0.92, p = 0.493). Further-

more, we found no significant differences in initial (first set) or end performance (last set)

between corresponding control and test groups which received the same amount of catch

trials (pairwise independent t-tests). These findings hold for velocity vector correlation,

perpendicular displacement, and learning index. Thus, we can unify corresponding control

and test groups to analyze the adaptation process during the learning session (day 1) as

subjects received the same protocol on that day. Similarly to the ten separated groups,

we found no significant differences in initial performance of the learning session (day 1)

when considering the five different catch trial ratio groups (one-way ANOVA, factor: catch

trial ratio [0%,. . . ,40%]; unification of each two corresponding control and test groups)

for velocity vector correlation (F(4,100) = 1.42, p = 0.234), perpendicular displacement

(F(4,100) = 1.42, p = 0.222), and learning index (F(3,79) = 0,68, p = 0.568). Therefore, we

act on the assumption that all groups and all catch trial ratio groups started with similar

initial conditions.

In the following, we first present results of the adaptation process of the learning session

(day 1) considering the five unified catch trial ratio groups. Afterwards, we present results

of the consolidation of force field A. The test groups were exposed to a second interfering

force field B on day 2 before retest of force field A on day 3, whereas the control groups

were retested in force field A on day 3 without interference. Therefore, in consolidation

analysis, we consider all ten control and test groups separately (Table 3.1). Additionally,

we present results of the after-effects detected during catch trials.

3.3.1 Adaptation

Hand trajectories and velocity profiles

On day 1, all subjects showed the expected adaptation pattern when exposed to force

field A. At the beginning of force field adaptation, subjects’ hands were considerably
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disturbed. This resulted in distinctively curved trajectories compared to the null field

condition (Figure 3.2A,B). The force field disturbance was also indicated by a change in

the hand velocity profiles. Under null field conditions, subjects produced typical bell-

shaped velocity profiles with a single peak (Figure 3.2D). At the beginning of force field

adaptation, however, subjects’ velocity profiles were noticeably disturbed (Figure 3.2E).

With practice, subjects were able to counteract the forces resulting in straight-lined trajec-

tories and velocity profiles similar to those profiles in baseline movements (Figure 3.2C,F).

A B C

D E F

Figure 3.2: Representative mean hand trajectories and mean hand velocity profiles (out-
wards movements only) of one group. A, Straight-lined baseline trajectories. B, Disturbed
trajectories at the beginning of force field adaptation (first set). C, Reshaped straight-
lined trajectories at the end of force field adaptation (last set). D, Smooth bell-shaped,
single-peak baseline velocity profiles. E, Disturbed velocity profiles at the beginning of
force field adaptation. F, Velocity profiles at the end of force field adaptation showing
bell-shaped, single-peak profiles.

Velocity vector correlation coefficient and perpendicular displacement

The time course of velocity vector correlation coefficient and perpendicular displacement

demonstrate the progress of adaptation to force field A for all groups (Figure 3.3, left; Fig-

ure 3.4, left). Adaptation is illustrated by a distinct improvement of motor performance

during force field learning. Initially, all groups show rapid improvements in performance.

With further practice, the rate of performance improvement decreases. Finally, perfor-

mance output reaches plateau.

We statistically confirmed adaptation to force field A for each catch trial ratio group.

Thereby, all groups showed significantly higher end performance compared to the initial

performance (paired t-test: p < 0.001 for all five groups). Moreover, we found differences
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Figure 3.3: Mean time courses of velocity vector correlation coefficient for all three days.
After learning force field A on day 1 (left), subjects of each catch trial ratio group were
divided into control and test groups. Test groups adapted to an interfering force field
B=-A on day 2 (mid). On day 3, all groups were retested in force field A (right). On all
three days, subjects were able to adapt to the changed dynamic conditions indicated by
increasing correlation coefficients. All data is presented as mean values ±95% confidence
intervals.

Figure 3.4: Mean time courses of signed perpendicular displacement 300 ms after movement
start in force field trials. Positive (negative) values indicate deviations in clockwise (coun-
terclockwise) direction caused by disturbance of force field A (force field B). On all three
days, subjects were able to adapt to the changed dynamic conditions leading to decreased
errors. All data is presented as mean values ±95% confidence intervals.
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in the degree of adaptation between the five catch trial ratio groups: The performance im-

provement value assessed by subtracting initial performance from end performance showed

significant differences between the five groups. All these findings hold for both velocity

vector correlation (one-way ANOVA: F(4,100) = 6.70, p < 0.001; Figure 3.6A) and per-

pendicular displacement (one-way ANOVA: F(4,100) = 24.64, p < 0.001; Figure 3.6B). For

the velocity vector correlation, Bonferroni Post-hoc analysis revealed significant differ-

ences between 0% and 30% catch trial ratio (p = 0.015), 0% and 40% catch trial ratio

(p = 0.001), 10% and 30% catch trial ratio (p = 0.015), as well as between 10% and 40%

catch trial ratio (p = 0.015). For the perpendicular displacement, Bonferroni Post-hoc

analysis revealed significant differences between 0% and 20% catch trial ratio (p < 0.001),

0% and 30% catch trial ratio (p < 0.001), 0% and 40% catch trial ratio (p < 0.001), 10%

and 20% catch trial ratio (p = 0.002), 10% and 30% catch trial ratio (p < 0.001), 10%

and 40% catch trial ratio (p < 0.001), as well as between 20% and 40% catch trial ratio

(p = 0.024).

Additionally, we conducted the same analyses comparing the performance at the time

point at which all groups had performed a total of 240 force field trials, i.e., same amount of

force field trials. We found similar results, i.e., significant worse degree of adaptation with

increasing catch trial ratio for velocity vector correlation (one-way ANOVA: F(4,100) = 3.31,

p = 0.014) and perpendicular displacement (one-way ANOVA: F(4,100) = 13.35, p < 0.001).

Thus, the reported differences between the catch trial ratio groups were not because of

the different amount of performed force field trials. Therefore, sensorimotor adaptation,

as quantified by the velocity vector correlation coefficient and perpendicular displacement,

worsened as the catch trial ratio increased.

Learning index

To determine the degree of force field learning with respect to catch trials, we conducted

the same adaptation analyses as above for the four groups that received catch trials using

the learning index. All four groups improved rapidly at the beginning of adaptation

(Figure 3.5, left). This rapid improvement decayed with ongoing practice and finally

reached plateau for all groups. All groups were able to adapt to the force field conditions

when considering the learning index. This was exhibited by a significant improvement

from first set to last set (paired t-test: p < 0.001 for all four groups).

To gauge differences in the improvement of learning index during adaptation, we com-

pared the difference values (initial vs. end of adaptation) of learning index and found sig-

nificant differences between the four groups (one-way ANOVA: F(3,79) = 2.85, p = 0.043).

Bonferroni Post-hoc analysis revealed significant differences between 10% and 30% catch

trial ratio (p = 0.032) as well as between 10% and 40% catch trial ratio (p = 0.016) (Fig-

ure 3.6C). These differences also hold, when evaluating the learning index at the time point

at which all groups had performed 240 force field trials (one-way ANOVA: F(3,79) = 3.53,

p = 0.019). Therefore, sensorimotor adaptation, as quantified by the learning index, wors-

ened as the catch trial ratio increased. These results are in accordance to the results of

velocity vector correlation and perpendicular displacement mentioned above.
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Figure 3.5: Mean time courses of learning index which relates catch trials and force field
trials. Learning of the clockwise-directed force field A is indicated with negative values,
learning of the counterclockwise-directed force field B has positive sign. All data is pre-
sented as mean values ±95% confidence intervals.

A B C

Figure 3.6: Comparison of degree of adaptation between catch trial ratio groups using veloc-
ity vector correlation coefficient (A), perpendicular displacement (B), and learning index
(C). All three performance measures indicate a significantly decreasing degree in force
field adaptation with increasing catch trial ratio. All data is presented as mean values
±95% confidence intervals; asterisks indicate significant differences between catch trial
ratio groups.

57



3 Adaptation and Consolidation of Motor Memory

Adaptation to the interfering force field

On day 2, all test groups were exposed to the interfering force field B and followed the

same protocol as on day 1, respectively. Thus, these groups received different amounts of

catch trials. We found differences in the degree of adaptation to force field B between the

test groups: The performance improvement value assessed by subtracting initial perfor-

mance from end performance showed significant differences between the five test groups

for all measures (one-way ANOVA: velocity vector correlation: F(4,46) = 7.564, p < 0.001;

perpendicular displacement: F(4,46) = 11.407, p < 0.001; learning index: F(3,36) = 7.561,

p < 0.001). For the velocity vector correlation, Bonferroni Post-hoc analysis revealed sig-

nificant differences between T0 and T30 (p = 0.001), T0 and T40 (p = 0.007), T10 and T30

(p = 0.002), as well as between T10 and T40 (p = 0.009). For the perpendicular displace-

ment, Bonferroni Post-hoc analysis revealed significant differences between T0 and T20

(p = 0.019), T0 and T30 (p < 0.001), T0 and T40 (p = 0.001), T10 and T30 (p < 0.001),

as well as between T10 and T40 (p = 0.006). For the learning index, Bonferroni Post-hoc

analysis revealed significant differences between T10 and T30 (p = 0.001) and between

T10 and T40 (p = 0.001). Therefore, the test groups’ attained level of adaptation to force

field B decreased with increasing catch trial ratio which is in line with the findings on the

adaptation to force field A on day 1.

A B C

Figure 3.7: Comparison of development in initial performance from learning session (day 1)
to retest (day 3) of force field A measured by velocity vector correlation (A), perpendicular
displacement (B), and learning index (C). Positive values indicate a performance improve-
ment, whereas negative values indicate a decreased initial retest performance compared
to naive performance. In general, test groups show impaired consolidation compared to
corresponding control groups indicated by a significant effect of interference [control, test].
For velocity vector correlation (A) and perpendicular displacement (B), there is also a sig-
nificant interaction of interference and catch trial ratio, indicating different consolidation
depending on the catch trial ratio. Thereby, consolidation is least impaired for 30% catch
trial test group. All data is presented as mean values ±95% confidence intervals.
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3.3.2 Consolidation

Velocity vector correlation coefficient and perpendicular displacement

As expected, all control groups exhibited savings of force field A from learning on day 1

until retest on day 3. This was indicated by a significant increase of the initial performance

(mean score of first set) measured by velocity vector correlation from learning session

(day 1) to retest (day 3) of force field A for all control groups (paired t-test: p < 0.010 for

all five groups). In particular, we found no significant differences in this increase between

the five control groups (one-way ANOVA: F(4,49) = 2.31, p = 0.073) when comparing the

difference value of initial performance on day 1 and day 3, i.e., the consolidation processed

similarly for all control groups.

The aim of our study was to investigate the influence of different catch trial ratios on

the consolidation process in the ABA-paradigm, in particular on resistance to interference

of force field B learning. To assess the influence of catch trials on the consolidation process

with respect to the interference of force field B, we conducted a two-way ANOVA (between

subject factors: catch trial ratio [0%,. . . ,40%] and interference [control group, test group])

analyzing the difference values of initial performances of the learning session and retest

of each catch trial ratio group (Figure 3.7A). We found a significant interference effect

(F(1,95) = 65.90, p < 0.001, η2
p = 0.41) and a significant interaction between interference

and catch trial ratio (F(4,95) = 5.11, p= 0.001, η2
p = 0.18). Thus, in general, exposure to the

interfering force field B on day 2 had an effect on the consolidation process. However, for

different catch trial ratio groups, consolidation progressed differently. Post-hoc analysis

(pairwise independent t-tests between corresponding control and test groups) revealed

significant differences between groups C0 and T0 (t(20) = 5.79, p < 0.001, d = 2.47),

C10 and T10 (t(19) = 4.68, p < 0.001, d = 2.06), C20 and T20 (t(18) = 6.27, p < 0.001,

d = 2.85) as well as between C40 and T40 (t(19) = 2.74, p = 0.013, d = 1.18) indicating a

significant effect of the exposure to the interfering force field B, respectively. However, we

found no significant differences between C30 and T30 (t(19) = –0.02, p = 0.983, d = 0.01).

Thus, the consolidation process of subjects receiving 30% catch trials was not significantly

influenced by the interfering force field B when measured by velocity vector correlation.

Taken together, for the catch trial ratio groups 0%, 10%, and 20% the difference values

comparing initial performance of the learning session (day 1) and retest (day 3) differed

significantly between control and test groups. Thereby, test groups performed worse. This

significant difference did not appear for a catch trial ratio of 30%. In case of a further

increase of the catch trial ratio up to 40%, control and test groups showed significant

differences again.

We conducted the same analyses for the performance values assessed by the perpen-

dicular displacement (Figure 3.7B). The two-way ANOVA (between subject factors: catch

trial ratio [0%,. . . ,40%] and interference [control group, test group]) analyzing the differ-

ence values of initial performances of the learning session and retest revealed a significant

interference effect (F(1,95) = 179.21, p < 0.001, η2
p = 0.65) and a significant interaction be-

tween interference and catch trial ratio (F(4,95) = 3.10, p = 0.019, η2
p = 0.12). In general,
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this indicates an effect of exposure to force field B and differing consolidation progres-

sion for the diverse catch trial ratios which is in line with the findings of the velocity

vector correlation. In contrast, Post-hoc analysis (pairwise independent t-tests), showed

significant differences between all corresponding control and test groups, respectively (0%:

t(20) = 7.96, p < 0.001, d = 3.39; 10%: t(19) = 7.13, p < 0.001, d = 3.12; 20%: t(18) = 6.10,

p < 0.001, d = 2.71; 30%: t(19) = 4.28, p < 0.001, d = 1.86; 40%: t(19) = 4.49, p < 0.001,

d = 1.97). Therefore, exposure to force field B significantly impaired the consolidation

process of all test groups. However, this impairment depended on the catch trial ra-

tio and was least for the 30% catch trial ratio test group compared to its control group

(Figure 3.7B).

Thus, the consolidation process, as measured by the velocity vector correlation, was

influenced by catch trials, suggesting most resistance to interference of force field B for

30% catch trials. Consolidation, in terms of absence of interference and as quantified by

the perpendicular displacement, could not be detected for any catch trial ratio. However,

the consolidation process was least impaired for 30% catch trial ratio suggesting partial

resistance to interference.

Learning index

We also considered the progress of learning index from the learning session (day 1) to the

retest session (day 3). All control groups showed significantly higher initial learning index

values at retest than at the learning session (paired t-test: p < 0.015 for all four groups).

In particular, we found no significant differences in this increase between the four control

groups when comparing the difference value of initial performance on day 1 and day 3

(one-way ANOVA: F(3,39) = 0.08, p = 0.970), i.e., the consolidation processed similarly

for all control groups. This is in accordance to the findings of the velocity vector correlation

and perpendicular displacement. However, the two-way ANOVA (between subject factors:

catch trial ratio [10%,. . . ,40%] and interference [control group, test group]) revealed only

a significant effect of interference (F(1,75) = 129.59, p < 0.001, η2
p = 0.63; Figure 3.7C)

but no significant interaction between interference and catch trial ratio (F(3,75) = 0.59,

p = 0.625, η2
p = 0.02). Therefore, exposure to force field B had a significant influence on the

consolidation process for all considered catch trial ratios. Thus, in contrast to the results

of velocity vector correlation and perpendicular displacement, the catch trial ratio had no

significant influence on the consolidation process as quantified by the learning index.

After-effects

Figure 3.8 illustrates after-effects of force field adaptation in catch trials that occurred

during all sessions. For all catch trial ratio groups, after-effects are initially small but

increase with ongoing practice and reach plateau. At the end of each day, the catch trial

groups’ after-effects differed significantly in magnitude (one-way ANOVAs: p ≤ 0.001 for

all three days). Thereby, with increasing catch trial ratio, subjects showed significantly

smaller after-effects.
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Figure 3.8: Mean time courses of after-effects measured by signed perpendicular displacement
during catch trials. Negative (positive) values indicate deviations in counterclockwise
(clockwise) direction and therefore after-effects appropriate to force field A (force field B).
The magnitude of after-effects increases with ongoing practice and is least for subjects
receiving 30% and 40% catch trials. All data is presented as mean values ±95% confidence
intervals.

Figure 3.9: Mean values of signed perpendicular displacement in catch trials of the first
movement set at retest of force field A (day 3). All control groups show significant nega-
tive after-effect values indicating predictive force compensation appropriate to force field
A. Test groups show significant positive after-effect values indicating predictive force com-
pensation appropriate to force field B. All data is presented as mean ±95% confidence
intervals.
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To investigate after-effects of force field B adaptation onto retest of force field A, we

considered catch trials at the beginning of the retest session (day 3). We calculated the

mean values of perpendicular displacements in catch trials of the first set of movements.

This allowed us to quantify the magnitude and the direction of after-effects. Comparison

of after-effects based on only the first catch trial, which occurred for all groups on the

third or fourth trial, lead to similar results.

At the beginning of the retest session, all control groups showed significant nega-

tive mean perpendicular displacements (one-sample t-test vs. zero; C10: t(10) =–3.72,

p = 0.004; C20: t(10) = –3.73, p = 0.004; C30: t(10) = –5.58, p < 0.001; C40: t(9) = –9.38,

p < 0.001; Figure 3.9). Thus, subjects of all control groups started retest of force field A

with a force field prediction appropriate to force field A. We found no significant differ-

ences of these after-effects between the control groups (one-way ANOVA: F(3,39) = 0.65,

p = 0.578).

The test groups, however, all showed significant positive perpendicular displacements

in catch trials at the beginning of retest (one-sample t-test vs. zero; T10: t(9) = 2.74,

p = 0.023; T20: t(8) = 4.87, p = 0.001; T30: t(9) = 2.37, p = 0.042; T40: t(10) = 2.90,

p = 0.016; Figure 3.9). Thus, subjects of all test groups started retest of force field A with

a force field prediction appropriate to force field B. We found no significant differences of

these after-effects between the test groups indicating similar after-effects of force field B

adaptation onto retest of force field A (one-way ANOVA: F(3,36) = 0.68, p = 0.542).

3.4 Discussion

Our study was designed to investigate the influence of catch trials on the overall motor

adaptation process as well as on the following consolidation process. We hypothesized that

increasing intermittence during practice – operationalized with various catch trial ratios –

leads to a poorer performance during adaptation compared to constant practice but facili-

tates consolidation. Against the background of these hypotheses, we separately discuss the

results on motor adaptation (Subsection 3.4.1) and consolidation (Subsection 3.4.2). Fi-

nally, we relate our results to findings from research on skill learning (Subsection 3.4.3).

3.4.1 Catch trials influence internal model formation and motor performance

during adaptation

Our results on motor adaptation showed that increased intermittence by interspersed

catch trials lead to poorer performance during adaptation. We assume that the catch trial

induced intermittences impair the ability to form an internal model and therewith impair

accurate compensation for the dynamic perturbation.

In accordance to former studies (e.g., Shadmehr & Mussa-Ivaldi, 1994), our results

showed that all groups were able to adapt to the changed dynamic conditions induced

by the disturbing force field (Figures 3.3, 3.4, 3.5). Though, the degree of adaptation

depended on the amount of induced catch trials. This finding holds for all considered per-

formance measures (Figures 3.3, 3.4, 3.5). Overduin et al. (2006) did not find an influence
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of catch trials on the performance development during adaptation. But they solely com-

pared 0% and 20% catch trial ratio groups using the velocity vector correlation. However,

we tested a wider range of catch trial ratios and performance measures demonstrating

that, in general, motor adaptation depends on the catch trial ratio. These differences in

the degree of adaptation are not attributed to the different amount of performed force

field trials but seem to be distinctively caused by the catch trial induced intermittences.

We assume that subjects of different catch trial ratio groups had formed internal models

of different quality. As mentioned above, the learning index is a good measure of force

field prediction (Donchin et al., 2002; Overduin et al., 2006). Subjects receiving less catch

trials (10%, 20%) demonstrated learning curves that suggest better force field prediction

compared to the 30% and 40% catch trial ratio groups (Figure 3.5, left). Accordingly,

the higher learning index for low catch trial groups contributes to an appropriate internal

model formation that enables accurate movement generation using a feedforward control

strategy (Franklin et al., 2008; Donchin et al., 2002; Overduin et al., 2006). In contrast,

the learning index values of the catch trial ratio groups 30% and 40% suggest an impaired

ability to form an appropriate internal model. This would cause inaccurate prediction

of perturbing forces and require reaction using muscular co-contraction to perform the

movement (Overduin et al., 2006). Maybe, subjects receiving a high amount of catch

trials relied more on an impedance control strategy by increasing arm stiffness (Scha-

bowsky et al., 2007). Former research already proposed coexistence of forward model

prediction and impedance control strategy (Milner & Franklin, 2005; Osu et al., 2003;

Takahashi et al., 2001). Since we tested adaptation using various catch trial ratios, we

propose that the ability to form an appropriate internal model changes gradually with

altered conditions of practice. This might explain the order of attained performance level

according to the amount of induced catch trials which is reasonable as with increasing catch

trial ratio the interference and the uncertainty increase which prevents the sensorimotor

system of accurately predicting the disturbing forces (Franklin et al., 2008; Osu et al.,

2003; Takahashi et al., 2001). In contrast, internal model formation is more emphasized

for subjects receiving constant force field perturbations. For such constant perturbations,

it was previously assumed that appropriate internal model formation is the main reason for

high movement performance at the end of the learning session (Shadmehr et al., 2010).

3.4.2 Consolidation depends on catch trial ratio and performance measure

For the consolidation process following motor adaptation, we found differing results for

the considered performance measures suggesting a different sensibility to detect consolida-

tion. Considering the velocity vector correlation, we found that the consolidation process

can be positively influenced by catch trials. When subjects learned a second interfering

task in-between, consolidation was least impaired for a catch trial ratio of 30%. This was

demonstrated by a similar performance development during the consolidation period of

corresponding control and test groups for 30% catch trial ratio (Figure 3.7A). For lower

catch trial ratio (0%, 10%, 20%), however, consolidation was impaired when learning an

interfering second task as indicated by significant differences in the consolidation between
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corresponding control and test groups. Similarly, for 40% catch trial ratio such signifi-

cant difference in the consolidation between control and test group occurred. Therefore,

learning with an optimal amount of catch trials seems to make the subsequent consolida-

tion process more resistant to interference compared to learning without catch trials or

learning with an immoderate amount of catch trials. For the perpendicular displacement,

we also found an influence of catch trials on the consolidation process (Figure 3.7B). We

detected differences in the degree of impairment of the consolidation process between the

various catch trial ratios showing strongest resistance to interference for 30% catch trial

ratio. However, for this measure, there was no complete resistance to the interference

caused by force field B for any test group. Furthermore, we did not find consolidation

when considering the learning index suggesting a disruption of the consolidation process

when adapting to an interfering force field B, regardless of the induced amount of catch

trials (Figure 3.7C).

To our best knowledge, Overduin et al. (2006) provided the only study which also

considered both the velocity vector correlation and the learning index. They observed

consolidation for subjects receiving 20% catch trials for both measures. Shadmehr and

Brashers-Krug (1997) also used catch trials (approx. 17%) and found consolidation within

the ABA-paradigm. However, they only computed velocity vector correlation coefficients.

The fact that we detected a reduced interference on the consolidation process using this

measure merely for a higher catch trial ratio of 30% might be explained by the higher com-

plexity of our reaching task. In contrast to the mentioned studies, we did not support the

subjects’ arms. This results in more degrees of freedom within shoulder and elbow joints

to be controlled and thus in an increased task complexity. Maybe, an increase of the catch

trial ratio up to 30% further emphasized its positive effects on the consolidation process,

compensated for our increased task complexity, and therewith facilitated consolidation.

However, a further increase of catch trial ratio up to 40% seems to impair consolidation

as it increases uncertainty about the task.

The missing detection of consolidation as measured by the perpendicular displacement

and learning index might be due to a lower sensitivity of these measures compared to

the velocity vector correlation. In this connection it is noteworthy that Overduin et al.

(2006) also detected a trend toward a difference between their 20% catch trial control

and test groups which, however, turned out not to be statistically significant. It remains

the question, why there should be a differing sensitivity between the considered measures.

The underlying computations offer a possible explanation because the measures are based

on different types of information. The perpendicular displacement and the learning index

depend on positional data. The velocity vector correlation, however, uses velocity data

and therefore also considers temporal factors. Moreover, the velocity vector correlation is

a similarity measure which compares fielded movements to baseline movements recorded

under null field conditions, whereas the perpendicular displacement and the learning index

are measures of difference.

Irrespective of methodological factors, the question remains, why test groups revealed

differences in the reduction of interference that impaired the consolidation process. Former
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studies that investigated consolidation in ABA-paradigms discussed anterograde interfer-

ence effects that might have avoided detection of consolidation (Brashers-Krug et al.,

1996; Shadmehr & Brasher-Krug, 1997; Caithness et al., 2004). Anterograde interference

describes the influence of the interfering force field B onto the recall of force field A. There-

fore, anterograde interference might cover the consolidation of force field A (Robertson

et al., 2004b). We were able to detect anterograde interference for all test groups that

received catch trials by considering the after-effects of learning force field B onto retest

of force field A on day 3. Thereby, all considered test groups showed similar after-effects

indicating anterograde interference of similar magnitude (Figure 3.9). Former studies us-

ing catch trials could not be sure about the relative magnitude of anterograde interference

effects because only one catch trial group was given and for the 0% catch trial groups

detection of after-effects was not possible. Certainly, we were not able to measure antero-

grade interference effects for our 0% catch trial test group T0 either. However, the similar

after-effects of the catch trial test groups T10, T20, T30, and T40 allow extrapolation to

the 0% catch trial group T0 and provide strong evidence for similar effects for all five test

groups. Thus, anterograde interference effects do not depend on the induced catch trial

ratio during adaptation. Therefore, anterograde interference cannot entirely explain the

lacking consolidation. In our experimental design, test groups adapted to force field B

on day 2 following the same protocol as on day 1. Thus, these groups received different

amounts of catch trials leading to significant different attained end performances in force

field B. This might have influenced the formation of an internal model appropriate to

force field B. Therefore, the observed differences in the resistance to interference between

catch trial ratios might be caused by the different types of interference induced via force

field B. For the reason of comparability, our experimental protocol was designed similar

to those of former studies presenting catch trials on day 2 (Shadmehr & Brasher-Krug,

1997; Overduin et al., 2006). To further enhance understanding of consolidation processes,

future studies should keep the interfering task fixed.

As outlined above, subjects’ attained end performance in force field A on day 1 de-

creased with increasing amount of catch trials. Nevertheless, all control subjects started

with a similar level of initial performance at retest independent of the end performance

on day 1. This finding emphasizes the importance to separate acquisition performance

from retention performance (learning-performance distinction; Kantak & Winstein, 2012).

Accordingly, challenging practice schedules with high variability induce difficulties for the

learner which might impair acquisition performance but facilitate long-term retention and

consolidation processes, referred to as the contextual interference effect (Schmidt & Lee,

2011). Research suggests, that variable practice schedules influence motor memory forma-

tion causing deeper cognitive processing and therefore stronger and more elaborate motor

memory representations (Kantak & Winstein, 2012; Robertson et al., 2004b). This positive

effect is supposed to occur because variable practice induces more contrasting inter-trial

comparisons than constant practice (Kantak & Winstein, 2012). In our design, catch trials

produced variable practice schedules that led to impaired acquisition performance but a

potentially stronger internal model representation of force field A enhancing long term
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retention. Altogether, there is strong evidence that the practice structure affects consol-

idation of motor memory (Robertson et al., 2004b; Tanaka et al., 2009; Kantak et al.,

2010; Kantak & Winstein, 2012). Moreover, in variable and constant practice, different

neural substrates seem to be critical for consolidation (Tanaka et al., 2009; Kantak et al.,

2010). Tanaka et al. (2009) further supposed that motor memories, which are encoded in

variable practice schedules, are stored more quickly and become more rapidly stabilized

and resistant compared to constant practice. These suggestions provide possible expla-

nations for our findings on differing resistance to interference when learning with catch

trials compared to constant force field practice. Yet, we suppose that for our specific task,

not the presence of catch trials per se is important. Rather there seems to be an optimal

amount of catch trial induced variability that facilitates the consolidation process.

3.4.3 Comparison of motor adaptation and skill learning

At the outset of this article we argued that motor adaptation and skill learning need to be

considered as two distinct features of motor learning (Huang & Krakauer, 2009; Krakauer

& Mazzoni, 2011) and that the relationship between motor adaptation and skill learning

is far from clear (Yarrow et al., 2009). In our view, comparing our results to the results

from skill learning reveals some parallels.

Results in research on variability of practice showed that variable practice schedules

in learning a single motor skill (McCracken & Stelmach, 1977) or multiple motor skills

(Shea & Morgan, 1979) can lead to an impaired motor performance during the acquisition

phase compared to constant practice schedules. These findings correspond to our results

on motor adaptation. Hereby, groups with high variability induced by a high amount of

catch trials showed a poorer performance at the end of the learning phase than groups with

less or no catch trials. Taken together, in both cases, schedules with high variability that

cause interferences lead to poorer performance at the end of the learning phase compared

to groups that practiced under constant conditions.

As mentioned above, it is important to separate acquisition performance from retention

performance (Kantak & Winstein, 2012). Again, this was shown when learning a single

motor skill (Shea & Kohl, 1991) and multiple motor skills (Shea & Morgan, 1979). In

our study, we observed a similar phenomenon, since groups practicing in intermittent

practice schedules (high amount of catch trials) revealed impaired performance at the end

of adaptation phase but the induced variability partly facilitated consolidation. However,

the results of our study indicate that for motor adaptation there seems to exist an optimal

amount of such variability. Nevertheless, these parallels have to be considered with caution

and further research comparing both features of motor learning is required.

3.5 Conclusion

In this paper we investigated the influence of catch trials on the overall motor adaptation

process as well as on the consolidation process. We found that in motor adaptation,

subjects show different ability to form an internal model depending on the amount of
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catch trials. These findings demonstrate a substantial influence of catch trials on the

adaptation process. The consolidation process following motor adaptation further seems

to be influenced by variable practice schedules suggesting an effect on the reduction of

interference. For our specific task, a catch trial ratio of 30% was most beneficial indicating

the existence of an optimal amount of catch trials. However, we cannot state a total

absence of interference for any catch trial ratio. Moreover, the detection of consolidation

seems also to be biased by the applied measure of performance. Therefore, further studies

should account for the characteristics of used analytical methods. Comparing our results to

results from motor skill learning (e.g., Schmidt & Lee, 2011) revealed similarities indicating

that the processes of motor adaptation and skill learning possibly follow similar principles.

However, similarities and differences between these two processes of motor learning should

be focused in future studies to gain a more comprehensive understanding of human motor

learning.
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Abstract

Intermanual transfer, i.e., generalization of motor learning across hands, is a well-accepted

phenomenon of motor learning. Yet, there are open questions regarding the characteristics

of this transfer, particularly the intermanual transfer of dynamic learning. In this study, we

investigated intermanual transfer in a force field adaptation task concerning the direction

and the coordinate frame of transfer as well as the influence of a 24 h consolidation period

on the transfer. We tested 48 healthy human subjects for transfer from dominant to non-

dominant hand and vice versa. We considered two features of transfer. First, we examined

transfer to the untrained hand using force channel trials that suppress error feedback and

learning mechanisms to assess intermanual transfer in the form of a practice-dependent

bias. Second, we considered transfer by exposing the subjects to the force field with the

untrained hand to check for faster learning of the dynamics (interlimb savings). Half of

the subjects were tested for transfer immediately after adaptation, whereas the other half

was tested after a 24 h consolidation period. Our results showed intermanual transfer both

from dominant to non-dominant hand and vice versa in extrinsic coordinates. After the

consolidation period, transfer effects were weakened. Moreover, the transfer effects were

negligible compared with the subjects’ ability to rapidly adapt to the force field condition.

We conclude that intermanual transfer is a bidirectional phenomenon that vanishes with

time. However, the ability to transfer motor learning seems to play a minor role compared

with the rapid adaptation processes.
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4.1 Introduction

Interlimb transfer refers to a generalization of motor learning from one limb to another.

This transfer is a well-documented phenomenon and is of high interest for both practical

and theoretical reasons (Magill, 2007). Most frequently, interlimb transfer is investigated

for arm movements (i.e., intermanual transfer). Thereby, subjects usually adapt their

reaching movements to either kinematic or dynamic perturbations and are subsequently

checked for transfer to the contralateral untrained arm. Yet, it is assumed that adap-

tations to kinematic and dynamic perturbations at least partly involve different memory

systems (Krakauer et al., 1999; Donchin et al., 2012) and that transfer of kinematic and

dynamic features follows different principles (Sainburg, 2002). Previous research mostly

concentrated on intermanual transfer following kinematic adaptation (e.g., Sainburg, 2002;

Sainburg & Wang, 2002; Taylor et al., 2011; Mostafa et al., 2014). In contrast, fewer stud-

ies investigated intermanual transfer of learned dynamics (e.g., Criscimagna-Hemminger

et al., 2003; Joiner et al., 2013). Yet, basic characteristics regarding intermanual trans-

fer of dynamic adaptation are far from clear. Here, we focus on intermanual transfer of

dynamic learning.

For instance, there are open questions on a-/symmetry and magnitude of this transfer.

Previous studies that investigated intermanual transfer in force field adaptation tasks re-

ported a unidirectional transfer, asymmetric in particular, only from the dominant to the

non-dominant arm (Criscimagna-Hemminger et al., 2003; Wang & Sainburg, 2004; Galea

et al., 2007). However, it remains unclear why transfer should be exclusively unidirec-

tional. It was assumed that force field adaptation with the dominant arm yields a more

proficient internal model compared with the non-dominant arm and that this internal

model is fundamental for the transfer to the contralateral arm (Wang & Sainburg, 2004).

In contrast to this elaborate internal model formation of the dominant arm controller, the

non-dominant arm controller was suggested to rely more on an impedance control rather

than feedforward motor control (Duff & Sainburg, 2007; Schabowsky et al., 2007). Hence,

the non-dominant arm controller lacks in “knowledge” that could be transferred to the

contralateral arm. However, the detailed connection between internal model formation

during adaptation and intermanual transfer remains unclear.

Moreover, there are diverging results when the coordinate frame of transfer is consid-

ered. Transfer could occur in an extrinsic (Cartesian-based) coordinate frame meaning

that for a certain movement the forces on the left and the right hand should be sim-

ilar. Transfer might also occur in intrinsic (joint-based) coordinates. Thereby, if the

workspace is near the midline, transfer would lead to the same joint torques, resulting

in mirror symmetric force profiles (for details, see Criscimagna-Hemminger et al., 2003).

Criscimagna-Hemminger and colleagues (2003) as well as Malfait and Ostry (2004) found

transfer within an extrinsic coordinate frame. On the contrary, Wand and Sainburg (2004)

as well as Galea and colleagues (2007) found transfer within an intrinsic coordinate frame.

From a theoretical point of view, knowledge about the coordinate frame of transfer offers

valuable information about the internal representation of motor actions and might help to
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improve computational models of motor control and learning.

After learning a motor task, the motor memory formed is stabilized by processes of

consolidation (Robertson et al., 2004b). For force field adaptation tasks, plenty of studies

have demonstrated such motor memory consolidation on a behavioral level (Brashers-Krug

et al., 1996; Caithness et al., 2004; Overduin et al., 2006; Focke et al., 2013; Stockinger

et al., 2014). Moreover, functional imaging has shown that after practice, the brain en-

gages new regions to perform the task suggesting a change of newly formed neural rep-

resentations (Shadmehr & Holcomb, 1997). In particular, sleep seems to play a major

role in memory formation and consolidation (Rasch & Born, 2013). Accordingly, sleep

supports generalization processes by structural reorganization and consolidation of more

general motor memory representations (Rasch & Born, 2013; Censor, 2013). However, it

is still unclear whether consolidation processes may also facilitate intermanual transfer of

dynamic adaptation.

The aim of this study was to investigate intermanual transfer characteristics in a force

field adaptation task. First, we hypothesized that motor adaptation is more elaborate

with the dominant compared with the non-dominant hand. We further hypothesized that

intermanual transfer only occurs from dominant to non-dominant hand. For this purpose,

we considered two distinct features of transfer (practice-dependent bias, interlimb savings).

Moreover, we examined the coordinate frame of this transfer. Finally, we hypothesized that

processes of consolidation (including nocturnal sleep) facilitate intermanual transfer.

4.2 Materials and methods

4.2.1 Participants

A total of 48 healthy human subjects (18–29 years; 10 female, 38 male) participated in

the study. All subjects gave written informed consent, and the test protocol was reviewed

and approved by the KIT ethics committee. All subjects were right-handed (Edinburgh

Handedness Inventory; Oldfield, 1971) and were naive to the experimental procedure (ap-

paratus, paradigm, and purpose of the study). They were instructed to sleep at least 6 h

in the nights prior to the test sessions and asked not to consume any alcohol or drugs

during the test days.

4.2.2 Apparatus

We used a robot-assisted experimental paradigm (Shadmehr & Mussa-Ivaldi, 1994). There-

by, subjects grasped the handle of a robotic device (Kinarm End-Point Lab, BKIN Tech-

nologies, Kingston, Canada) that could exert forces. The subjects’ arms were not sup-

ported and motion of the robot’s handle was restricted to the horizontal plane. Subjects

had clear view of their hand throughout the whole experiment. They received full visual

feedback of the targets as well as of the cursor corresponding to the position of the handle

on a vertical monitor, approximately centered at eye level. Subjects sat on a chair such

that they were able to comfortably grasp the handle with either hand and reach all target
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positions. The robot was centrally positioned in front of the subjects such that the center

position of the robot handle was located in the subjects’ midsagittal plane. Position and

force at the handle were recorded at a sampling rate of 200 Hz.

4.2.3 Task

Subjects were asked to perform accurate goal-directed 2d point-to-point reaching move-

ments using the robot handle. Starting from a center point, subjects had to reach for

one of three peripheral target points which appeared in a pseudo-randomized order. The

subsequent movement was initiated from this peripheral point back toward the center

point. Therefore, the end point of each movement was the starting point for the subse-

quent movement. The peripheral target points appeared in 10 cm distance from the center

point in forward (0◦), forward-leftward (45◦ left of straight line), or forward-rightward (45◦

right of straight line) direction (Criscimagna-Hemminger et al., 2003). If a target had to

be reached, it appeared as a light gray circle (1 cm diameter) on a black background.

The cursor representing the position of the handle was displayed as white circle (0.35 cm

diameter).

We defined a set of movements as six trials (three outward and three inward move-

ments) in which each peripheral target point occurred exactly once and, thus each of the

possible six movements had to be performed once. All learning blocks were constructed

as concatenation of such movement sets and were equal for all subjects. This ensured the

same amount of practice towards each target direction.

Subjects were requested to perform each movement within 500±50 ms. Subjects were

told that reaction time was not important – i.e., after appearance of the new target they

could wait as long as they wanted before initiating the movement. After completion of

each movement, subjects received visual feedback about movement time on the screen. If

the subjects reached the target within the required time, its color changed to green. If

they moved too slowly, it became red, and if moving too fast, it became blue. This visual

feedback was provided throughout the whole experiment to ensure consistent movement

speed.

4.2.4 Experimental design

To test for transfer in both directions, participants were divided in two main groups (left-

to-right : LR, right-to-left : RL; Table 4.1). To assess the influence of a consolidation period

on transfer, we further subdivided the groups. One half was tested for transfer immediately

after the training block (immediate transfer groups: LRi, RLi). The other half was tested

for transfer following a consolidation period of 24 h (consolidation transfer groups: LRc,

RLc). Thus, there were four different groups to which subjects were randomly assigned

(LRi, RLi, LRc, RLc; twelve subjects per group). Note that each two groups that were

tested for the same transfer direction (LRi and LRc; RLi and RLc) followed the same basic

timetable but differed only in the break between force field training and transfer test.

Similarly, the groups that were tested for different transfer direction but same transfer
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Table 4.1: Subject groups and experimental setup.

Transfer
direction

Group Familiari-
zation

Baseline Training Break Transfer
bias savings

[NF] [NF,EC,FFCT] [NF] [EC] [NF] [EC] [FF,EC] [EC] [FF,EC]

54, 54 54, 54, 54, 54 6 6 6 6 168 6 168

LR
LRi L R L R L R R R L L L – R R

LRc L R L R L R R R L L L 24 h R R

RL
RLi R L R L R L L L R R R – L L

RLc R L R L R L L L R R R 24 h L L

6 randomized EC;

6 randomized FFCT

(1 per hand & direction)

∼10% EC;

30 s break

after 84 trials

∼10% EC;

30 s break

after 84 trials

R: right, L: left, i: immediate transfer, c: consolidation transfer;
NF: null field trial, FF: force field trial, EC: error clamp trial, CT: catch trial

test type (LRi and RLi; LRc and RLc) followed the same basic timetable but differed

only in the hand used to perform each block. In particular, the target sequences for the

groups were mirrored and therefore similar with reference to the body midline. Thus, for

instance, when the LRi and LRc groups had to perform a forward-leftward movement, the

RLi and RLc groups had to perform a forward-rightward movement.

During the experiment, three different trial types were used: null field trials (NF, no

perturbing forces), force field trials (FF, perturbing forces), and error clamp trials (EC,

force channel trials).

On null field trials, the subjects could reach without perturbing forces as the robot’s

motors were turned off.

On force field trials, the robot generated a velocity-dependent force field that applied

forces to the subjects’ hand via the robot handle. A clockwise-directed curl force field

pushed the handle perpendicular to the direction of movement:

F =

(
Fx

Fy

)
=

(
0 k

−k 0

)
·

(
ẋ

ẏ

)
,

(Fx and Fy are the robot-generated forces, k = 15 Ns/m is the force field viscosity, and

x and y are the components of hand velocity). This force field was used to alter the dy-

namic conditions of the movements and therewith provoke subjects’ adaptation of reaching

movements (Shadmehr & Mussa-Ivaldi, 1994).

On error clamp trials, the robot generated a virtual force channel (wall stiffness

6000 N/m, wall viscosity 25 Ns/m) that restricted the movement to a straight line to-

ward the target point, thus counteracting all movements perpendicularly to the target

direction (Scheidt et al., 2000; Joiner et al., 2013). These trials were used to measure

the forces at the handle that subjects produced perpendicular to the movement direction.

These forces served as indicator for predictive force field compensation. Because on these

trials the motor errors were clamped to zero and the force field that had to be learned was
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not present, these trials allowed measurement of motor adaptation with respect to feed-

forward adaptation without overlapping error feedback or learning mechanisms (Scheidt

et al., 2000; Joiner et al., 2013).

The experiment consisted of a familiarization block, a baseline block, a force field

training block, and a transfer test block (Table 4.1). The familiarization block consisted

of 54 null field trials for each hand.

The baseline block consisted of two cycles of 54 trials per hand which consisted mostly

of null field trials but also contained six pseudo-randomly interspersed error clamp trials

and force field catch trials per hand (one trial per movement direction and hand). The

baseline block finished with another set of null field trials followed by a set of error clamp

trials for each hand, respectively (one trial per movement direction and hand). The error

clamp trials during the whole baseline block (two error clamp trials for each hand and

each movement direction) served as baseline trials. The force field catch trials (one trial

for each hand and each movement direction) served as force field baseline to assess the

arm stiffness and the impact of the force field to the arms.

The force field training block (168 trials) consisted mainly of force field trials which

were performed with the training hand only. To assess performance, error clamp trials

were randomly interspersed with a probability of approximately 10%.

In the transfer test block, we tested for two different features of transfer: practice-

dependent bias and interlimb savings (Table 4.1). First, we defined practice-dependent

bias as a change in the prediction of the environmental conditions when reaching with the

untrained hand caused by the previous contralateral force field adaptation. To assess this

practice-dependent bias, we used six error clamp trials (one trial per movement direction)

(Joiner et al., 2013). Second, we considered whether force field adaptation with the training

arm facilitated subsequent force field adaptation with the transfer arm. For this purpose,

subjects also performed a force field training block (168 trials) with their transfer hand

equivalent to the initial force field training block (Criscimagna-Hemminger et al., 2003).

We refer to this kind of transfer as interlimb savings (Joiner et al., 2013). Note that both

features refer to the ability to transfer learning. The practice-dependent bias would lead to

changes in the prediction about the dynamics, whereas interlimb savings would lead to the

ability to adapt faster when the previously experienced learning stimulus is presented.

Throughout the whole experiment, there were short breaks of 30 s each time subjects

had to change the reaching hand as well as after 84 trials (14 sets) in the force field training

blocks.

4.2.5 Data Analysis

Preprocessing

All data was processed using the custom-made software application ManipAnalysis (Stockin-

ger et al., 2012). Thereby, raw data were filtered using a fourth-order Butterworth low-pass

filter with a cut-off frequency of either 6 Hz (positional data) or 10 Hz (force data). Move-

ment velocities were numerically computed using the central difference method. Next, data

sets were segmented. Movement start (or end) was defined as the time point at which hand
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speed exceeded (or fell below) 10% of maximal speed of that movement. Finally, data sets

were time-normalized using cubic spline interpolation.

Performance measurement

Subjects had to learn to compensate forces in the perpendicular direction because the force

field was acting perpendicularly to the movement direction. Therefore, we concentrated

on the analysis of forces (on error clamp trials) and deviations (on force field trials) in the

perpendicular direction.

As dynamic performance measure, we considered the forces that subjects produced

against the virtual channel wall during error clamp trials. During the baseline block,

we recorded two such force profiles for each hand and each movement direction. By

averaging these force profiles, we assessed a baseline force profile for each hand and each

movement direction, respectively. As a performance measure, we computed a force field

compensation factor (Joiner et al., 2013). This factor was found by linear regression of

the actually measured perpendicular force profile on the error clamp trial and the ideal

perpendicular force profile (forces necessary to cancel the force field if it had occurred;

determined by Fideal = (Fideal,x, Fideal,y)
> = (0, 15 Ns/m;−15 Ns/m, 0) · (ẋactual, ẏactual)

>)

according to:

Factual = a0 + a1 · Fideal(t) + ε(t).

Thereby, ε is an additive error term, a0 is the intercept, and the parameter a1 serves as

the force field compensation factor (Joiner & Smith, 2008; Joiner et al., 2013).

In addition, we calculated the midmovement force as the average perpendicular force

produced against the channel wall during error clamp trials within a time window rang-

ing from 70 ms before to 70 ms after maximum speed of that movement (Joiner et al.,

2013). The statistical analyses using this measure yielded results similar to the force field

compensation factor. Thus, these results are not presented in this article.

The performance measurement using error clamp trials is a good indicator for the per-

formance of the feedforward controller, because it is not confounded by error feedback and

learning mechanisms. This allows analyses of the adaptation of the feedforward controller

by formation of an internal model of the task.

As a kinematic performance measure, we considered force field trials and computed the

perpendicular displacement of hand path from straight line joining the start and target

points at maximum hand speed (PDvmax) (Pekny et al., 2011; Mattar & Ostry, 2007).

The produced hand path results from the superposition of several control mechanisms

(feedforward control, feedback control, impedance control) and therefore reflects net motor

performance. In addition, we fit the adaptation curves obtained by the kinematic error

(PDvmax) to an exponential function:

f(t) = a · exp(−t/τ) + β

(mean R2-value across all subjects was 0.65), whereby, we analyzed the time constant τ ,

which represents the rate of adaptation (e.g., Davidson & Wolpert, 2004).
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To evaluate magnitude and direction of forces or deviations, all measures were com-

puted as signed values. Thereby, for outward (inward) directed movements, a positive

sign indicates force compensation or perpendicular deviation in counter-clockwise direc-

tion (clockwise direction).

Statistics

Normal distribution of the data was checked using Kolmogorov-Smirnov test. Homoscedas-

ticity was checked using Levene’s test. Results of these tests were not in conflict with the

respective parametric statistical tests used. If ANOVAs revealed significant differences,

Tukey’s honestly significant difference (or Tukey-Kramer method in unbalanced cases)

Post-hoc tests were used.

For all statistical tests, the level of significance was set a priori to p = 0.05. When

multiple analyses were conducted addressing the same research question, Holm-Bonferroni

procedure (sequentially rejective Bonferroni test; Holm, 1979) was used to adjust the

level of significance. All results that are reported as statistically significant comply with

this α-level adjustment. Effect sizes were determined using partial eta squared η2
p (small

effect: η2
p = 0.01; medium effect η2

p = 0.06; large effect: η2
p = 0.14) or Cohen’s d (small

effect: d = 0.20; medium effect d = 0.50; large effect: d = 0.80; Cohen, 1988). All data

are presented as mean values and 95% confidence intervals. All statistical analyses were

conducted using IBM SPSS software (v.22).

4.3 Results

4.3.1 Adaptation to the force field condition

The subjects’ hand paths reflected the typical adaptive behavior (Figure 4.1). Under null

field conditions, hand paths were unperturbed and almost straight-lined (Figure 4.1A,D).

When exposed to the force field, hand paths initially showed high deviations (Figure 4.1B,E)

but straightened with training (Figure 4.1C,F).

We used two different approaches to assess adaptation to the force field condition.

We calculated a dynamic performance measure that represents subjects’ predictive be-

havior and a kinematic endpoint error measure that represents net motor performance

(Figure 4.2).

Before performing the analysis of adaptation to the force field condition, we considered

the impact of the force field on the subjects’ arms before any learning occurred. Therefore,

we analyzed motor performance under null field conditions and on force field catch trials,

i.e., null field and force field baseline (Figure 4.2A, left). A repeated-measures ANOVA

(condition [null field baseline, force field catch trial]; hand [L, R]) of these baseline values

revealed a significant effect of hand (F(1,46) = 84.8, p < 0.001, η2
p = 0.65), a significant

effect of the force field condition (F(1,46) = 1918.2, p < 0.001, η2
p = 0.98), and a significant

interaction of hand and force field condition (F(1,46) = 14.8, p < 0.001, η2
p = 0.24). Under

null field conditions, movements of both arms tended to be curved inward (as indicated
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Figure 4.1: Mean plots of reaching movements with left (A-C, LR group) and right (D-F,
RL group) hand: null field baseline (A,D), force field catch trials (B,E), and movement
trials at the end of the training block under force field conditions (C,F). In comparison
to the right hand, left hand movements are straighter under null field conditions, but are
more deviated by the force field (Note: All illustrations are in extrinsic coordinates).

by the positive sign of the deviations). Thereby, left arm produced significantly lower

deviations (t(47) = 8.22, p < 0.001, d= 1.81). On force field catch trials, the left arm showed

significantly higher deviations compared with the right arm (t(47) = 10.85, p < 0.001,

d = 2.07). Thus, the force field had significant impact on both hands. However, the

impact of the force field on the left hand was higher than on the right hand.

To preclude that the assessed differences in force field catch trials are due to dissimilar

error feedback mechanisms of the two hands (which might occur earlier than the time

point of maximum speed at which the hand path was evaluated), we conducted the same

analysis comparing the perpendicular displacement 80 ms and 150 ms after movement

onset. Thereby, we found qualitatively similar results indicating a larger impact of the

force field to the left hand compared with the right hand (p < 0.001, in both cases).

Consideration of the adaptation to the force field condition revealed that subjects

were able to reduce the kinematic endpoint error during force field training until reaching

a performance plateau for both hands (Figure 4.2A, right). When the degree of perfor-

mance improvement between hands was compared using a repeated-measures ANOVA

(time [force field catch trials, end of adaptation]; hand [L, R]), the results showed a sig-

nificant effect of time (F(1,46) = 880.8, p < 0.001, η2
p = 0.95) and hand (F(1,46) = 43.0,

p < 0.001, η2
p = 0.48) as well as a significant interaction of time and hand (F(1,46) = 18.0,

p < 0.001, η2
p = 0.28). This indicates significantly higher overall error reduction of the

left hand compared with the right hand (caused by the initial differences). Consideration

of the motor performance at the end of adaptation (mean of last eight sets) revealed no

significant difference between the left and right hands (t(46) = 1.04, p = 0.304, d = 0.54).
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A

B

Figure 4.2: Baseline measurements and adaptation progression (mean±95% CI) for left and
right hand as measured by the kinematic end point error (perpendicular displacement, A)
and the force field compensation factor (B). After 84 trials, a break of 30 s was given.
Asterisks indicate statistically significant differences.

Thus, motor adaptation ended up on a similar performance level for both hands. More-

over, consideration of the time constants of adaptation revealed no significant differences

between the left and right hands (τL = 3.9, τR = 4.9; t(46) = 1.52, p = 0.223, d = 0.32),

indicating similar adaptation capacities for both hands.

Consideration of the force field compensation factor yielded similar results for the

adaptation to the force field condition (Figure 4.2B; Figure 4.3). A repeated-measures

ANOVA (time [baseline, end of adaptation], hand [L, R]) revealed a significant effect of

time (F(1,46) = 999.5, p < 0.001, η2
p = 0.96). The effect of hand (F(1,46) = 0.6, p = 0.447,

η2
p = 0.01) and the interaction of time and hand (F(1,46) = 3.1, p = 0.086, η2

p = 0.06) were

not statistically significant. Under null field baseline conditions, we found significantly

higher forces produced against the channel wall for the right hand compared with the

left hand (t(47) = 4.27, p < 0.001, d = 0.89; Figure 4.2B, left). This is in line with the

aforementioned higher deviations of right hand paths under null field conditions. When

exposed to the force field, subjects adapted their motor output by producing additional

perpendicular forces. At the end of the training block (last six error clamp trials, one per
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Figure 4.3: Ideal (dashed) and measured (solid) perpendicular force profiles on error clamp
trials during baseline, at end of force field adaptation, and in the transfer test block
(mean±95% CI). At the end of the training phase, all subject groups learned to produce
additional compensatory forces in perpendicular direction. On the transfer tests, the
groups LRi, LRc, and RLi show transfer in form of increased perpendicular forces compared
with baseline conditions (practice-dependent bias).

movement direction), subjects learned to produce additional compensating perpendicular

forces to counteract the force field. At the end of the training block, subjects compensated,

on average, 64.8±4.5% (left) and 62.8±5.3% (right) of the force field. This did not differ

between hands (t(46) = 0.56, p = 0.580, d = 0.16). Therefore, left and right hands showed

similar ability to adapt their motor output by predicting the force field.

Combining the results of kinematic and dynamic measures of performance shows that

both left and right hands were able to adapt to the changed dynamic conditions by pre-

dicting the force field resulting in reduced kinematic reaching error. The applied force

field had a higher impact on the left hand, causing a higher overall reduction of motor

error during the training block. However, the motor error progression indicated a com-

parable rate of adaptation between hands. Similarly, feedforward motor adaptation was

comparable between hands.
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4.3.2 Transfer of learning

To assess transfer of learning, we considered two different transfer features. First, we

considered the practice-dependent bias as measured on error-clamp trials. This allowed

analysis of the subjects’ predictions about the dynamic conditions with the transfer hand

without previously being exposed to the force field with that hand (Joiner et al., 2013).

Second, we considered the interlimb savings, i.e., subjects’ ability to adapt to the force

field condition with their transfer hand when exposed to the contralaterally experienced

force field (see Materials and Methods).

Practice-dependent bias

Figure 4.3 illustrates the perpendicular forces on error clamp trials applied by the subjects

at the end of adaptation as well as in the transfer test immediately after training (LRi, RLi)

and after the 24 h consolidation period (LRc, RLc). As shown in Figure 4.4, transfer oc-

curred in extrinsic coordinates as indicated by the positive sign of the force field compensa-

tion factor (which was defined relative to the forces necessary to counter the force field).

To simplify presentation of the results and make the two hands comparable, all further

reported results of the force field compensation factor base on baseline-subtracted force

profiles. To assess if transfer in terms of a practice-dependent bias occurred, we considered

error clamp trials immediately after adaptation. Thereby, we found transfer of learning

both from left to right arm (one-sample t-test vs. 0; LRi: t(11) = 4.33, p = 0.001) and

from right to left arm (RLi: t(11) = 3.39, p = 0.006) as indicated by an increased lateral

force compared with baseline (i.e., zero value; Figure 4.4). On average, this corresponded

to 23.7% (LRi) and 20.0% transfer (RLi). After the 24 h consolidation period, only the

LRc group showed significant transfer to the contralateral arm of, on average, 12.8% (LRc:

t(11) = 4.27, p = 0.001; RLc: t(11) = 0.55, p = 0.592).

To test if the amount of transfer differed between transfer conditions, we conducted

a 2×2 ANOVA (transfer direction [LR, RL], transfer type [immediate, consolidation]).

Thereby, we found a significant effect of transfer direction (F(1,44) = 6.22, p = 0.016,

η2
p = 0.12) and of transfer type (F(1,44) = 12.79, p = 0.001, η2

p = 0.23) but no significant

interaction of these two factors (F(1,44) = 0.64, p = 0.43, η2
p = 0.014).

Altogether, immediately after adaptation, transfer of learning in terms of practice-

dependent bias occurred in both directions. After the consolidation period, these transfer

effects declined and only occurred from the left to right hand.

Interlimb savings

To assess interlimb savings, subjects were exposed to the force field with their transfer

hand. Consideration of the randomly interspersed error clamp trials during the force field

block allowed analysis of subjects’ predictive behavior. The progression of the force field

compensation factor for naive subjects and transfer subjects is shown in Figure 4.5A and

4.5B for each hand, respectively. Accordingly, the progression of net motor performance

as quantified by the perpendicular displacement is depicted in Figure 4.5C and 4.5D.
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Figure 4.4: Transfer of learning by means of practice-dependent bias as measured by the
force field compensation during error clamp trials for all four groups (mean±95% CI).
Asterisks indicate statistically significant differences vs. zero (baseline).

A B

C D

Figure 4.5: Intermanual transfer by means of interlimb savings as comparison of adaptation
progression between novices (black) and transfer groups (gray, white) on error clamp trials
(A,B) and the kinematic endpoint error on force field trials (C,D) (mean±95% CI). A,C:
left-hand novices vs. right-to-left transfer groups; B,D: right-hand novices vs. left-to-right
transfer groups. After 84 trials, a break of 30 s was given.
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For statistical analyzes, we considered the first eight sets of movement trials (48 move-

ments, containing six error clamp trials) because these comprise the initial adaptation

phase before performance reaches plateau. Within this time window, we compared per-

formance between transfer and control subjects using one-way ANOVAs. For instance, for

the transfer groups LRi and LRc - i.e., transfer from left to right hand - the pooled RL

group (RLi and RLc) served as control group because its subjects were naive to the force

field when reaching with their right hands. Moreover, to assess differences in the rate of

adaptation, we compared the time constants of adaptation between groups as assessed by

fitting to exponentials (see Materials and Methods).

For the right-to-left direction (group [LR, RLi, RLc]; Figure 4.5A,C), there were no

statistically significant differences between groups. This holds for the force field compen-

sation factor measured on error clamp trials (F(2,45) = 2.56, p = 0.088, η2
p = 0.10) as

well as for the mean values of perpendicular displacement measured on force field trials

(F(2,45) = 1.75, p = 0.185, η2
p = 0.07) and for the time constants of adaptation (τLR = 3.9,

τRLi = 3.0, τRLc = 3.9; F(2,45) = 0.85, p = 0.433, η2
p = 0.04).

For the left-to-right direction (group [RL, LRi, LRc]; Figure 4.5B,D), there were dif-

ferences between groups (F(2,45) = 4.05, p = 0.024, η2
p = 0.153) when the force field

compensation factor was considered. Thereby, the control group tended to show less force

field compensation compared with the transfer groups. However, after α-level adjustment

using to Holm-Bonferroni method, these differences were not statistically significant. Sim-

ilarly, the performance assessed by the perpendicular displacement did not reveal any

statistically significant differences between groups when the mean values (F(2,45) = 2.00,

p = 0.146, η2
p = 0.082) or the time constants of adaptation (τRL = 4.4, τLRi = 5.2,

τLRc = 5.8; F(2,45) = 0.93, p = 0.401, η2
p = 0.04) were considered.

Even when considering only the forces measured during the first randomly interspersed

error clamp trial (which occurred on the seventh trial), we did not detect any differences

between groups. This holds both for right-to-left transfer direction (one-way ANOVA:

group [LR, RLi, RLc], F(2,45) = 0.19, p = 0.829, η2
p = 0.01) as well as left-to-right transfer

direction (one-way ANOVA: group [RL, LRi, LRc], F(2,45) = 1.17, p = 0.320, η2
p = 0.05).

Taking all results together, for all considered measures of performance, we failed to

detect clear transfer effects by means of interlimb savings immediately after adaptation as

well as after the consolidation phase in either direction. Thus, transfer effects were quite

weak compared with the fast initial performance improvements caused by adaptation

mechanisms.

4.4 Discussion

This study revealed three main findings: (1) the ability to adapt to the force field condi-

tion did not differ between hands; (2) intermanual transfer in form of a practice-dependent

bias occurred both from dominant to non-dominant hand and vice versa in extrinsic co-

ordinates; and (3) a consolidation phase (incl. nocturnal sleep) after adaptation did not

foster but rather weakened transfer effects.
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4.4.1 Adaptation does not differ between hands

Our results showed that subjects are able to adapt their reaching movements to a changed

dynamic environment with either hand. During training, the left hand reduced motor error

more than the right hand when absolute values were considered. This, however, was mainly

attributed to the higher impact of the force field on the left hand and therewith to higher

deviations at the beginning of force field exposure. Accordingly, the adaptation rate did

not differ between hands. Most interestingly, we did not detect differences between hands

in the ability to predict the force field at the end of adaptation when considering the force

field compensation factor, which is a measure of feedforward control mechanisms. Thus,

we did not detect better adaptation competence of the dominant right hand compared with

the non-dominant left hand. We rather assume that both the dominant and non-dominant

arm controllers are able to form an elaborate internal model of the task dynamics.

This result is in contrast to the findings of Duff and Sainburg (2007). In their study,

only the dominant, not the non-dominant, arm showed increased motor errors during

after-effect trials following the adaptation to an attached inertial load (Duff & Sainburg,

2007). This was taken as evidence for a more elaborate predictive control during dominant

compared with non-dominant arm movements. On the other hand, Sainburg (2002) found

after-effects for both dominant and non-dominant arm movements following adaptation

to an inertial load. However, these initial after-effects were not statistically evaluated for

potential differences but appear to be of similar magnitude for either hand (see Figure 2B

in Sainburg, 2002). Similarly, a closer look at the results of Criscimagna-Hemminger et al.

(2003) indicates that their subjects did not show a better adaptation competence when

using the dominant compared with the non-dominant arm (consider control groups in

their Figures 3B vs. 4B or Figure 5A vs. 5B). Unfortunately, Criscimagna-Hemminger

and colleagues (2003) did not statistically test for this issue either, because this was not

part of their research question. Thus, one can only speculate about this disparity. Yet,

our findings contradict the assumption that the non-dominant arm controller is generally

less proficient in forming an appropriate internal model for feedforward control (Wang

& Sainburg, 2004; Sainburg, 2002). Likewise, we cannot support the idea that the non-

dominant arm controller relies more on an impedance control than on feedforward control

during reaching under changed dynamic conditions (Sainburg, 2002; Schabowsky et al.,

2007). Moreover, the left hand’s higher deviations during force field catch trials challenge

the assumption that the non-dominant arm generally relies more on impedance control

and therefore makes use of higher arm stiffness (Schabowsky et al., 2007).

4.4.2 Intermanual transfer of dynamic learning is bidirectional

Our second main finding is that dynamic learning can transfer both from dominant to non-

dominant hand and vice versa. Former research reported only unidirectional transfer from

dominant to non-dominant hand (Criscimagna-Hemminger et al., 2003; Wang & Sainburg,

2004; Galea et al., 2007). This unidirectional transfer was explained by the above-discussed

potential different abilities of the dominant and non-dominant arm controller to form an
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appropriate internal model of the task dynamics (Wang & Sainburg, 2004). Accordingly,

the formation of such an internal model is critical for intermanual transfer. However, for

methodological reasons, the aforementioned studies were not able to measure solely inter-

nal model formation without overlap of learning or feedback mechanisms or increased arm

stiffness due to impedance control. Therefore, in these studies, effector specific differences

in the attained feedforward adaptation level and acquired motor memory were not specif-

ically assessed. Nevertheless, we also suggest that the formation of an internal model is

mandatory for intermanual transfer. However, we propose that this can be accomplished

for either arm in comparable quality and serve as the basis for bidirectional transfer.

We found that subjects learned, on average, 63% (right) and 65% (left) of the force

field, and we found intermanual transfer of 20% (right-to-left) and 24% (left-to-right) im-

mediately after adaptation in the form of a practice-dependent bias. For a similar learning

schedule and the same performance measure, Joiner and colleagues (2013) found that sub-

jects learned, on average, 77% of the force field and they assessed intermanual transfer

of 9% (right-to-left). Maybe, the small differences in the attained adaptation level and

amount of transfer are attributed to slight differences in the experimental setup (arm sup-

port, amount of targets). In any case, our quantitative results are more similar to those

of Joiner and colleagues (2013) than to the 50% intermanual transfer reported by Malfait

and Ostry (2004). These quantitative differences might be explained by the used per-

formance measure, as discussed previously by Joiner and colleagues (2013). They argued

that the feedforward adaptation, which is of interest, is overlapped by feedback control and

increased stiffness when measuring transfer using force field trials. Moreover, measuring

transfer using force field trials also induces learning processes as the learning stimulus is

presented. It becomes apparent that learning the considered task proceeds at a very high

rate when comparing our results on practice-dependent bias and interlimb savings. We

found significant transfer in the form of practice-dependent bias on error clamp trials. In

contrast, we did not detect this clear transfer when subjects were exposed to the force field

and their initial performance was compared with naive subjects (interlimb savings). In our

opinion, this is attributed to the rapid initial learning processes induced by force field ex-

posure which complicates detection of transfer. Maybe, former studies were subject to this

methodological issue and, thus potential bidirectional transfer remained hidden. However,

note that we only found clear bidirectional transfer in terms of practice-dependent bias

but we did not detect such clear transfer in terms of interlimb savings. At this point, we

were not able to replicate the findings of Criscimagna-Hemminger and colleagues (2003)

who detected interlimb savings in direction from dominant to non-dominant hand which

suggests that the aforementioned methodological issues (e.g., feedforward adaptation over-

lapped by feedback control, measuring transfer while adapting to the force field) may not

be the only reason for the asymmetrical transfer observed in previous studies.

We found that transfer occurred in extrinsic coordinates. This is in line with findings of

Criscimagna-Hemminger et al. (2003) as well as Malfait and Ostry (2004) and contrasts the

findings of Wand and Sainburg (2004) and Galea et al. (2007) who found transfer within

an intrinsic (joint-based) coordinate frame. It is possible that intermanual transfer (in
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terms of interlimb savings) would have occurred in intrinsic coordinates if we specifically

tested it by presenting a counter-clockwise force field in the transfer test. However, it

is unlikely that subjects, who showed the reported transfer (practice-dependent bias) in

extrinsic coordinates on error clamp trials, would immediately afterwards switch their

prediction and show transfer by means of interlimb savings in intrinsic coordinates.

These diverging results on the coordinate frame of transfer indicate that the internal

representation of movements is highly specific to the task and the experimental setup.

For instance, the coordinate frame of transfer might depend on whether the same object

is handled with both arms (e.g., one robot handle; Criscimagna-Hemminger et al., 2003;

Malfait & Ostry, 2004) or whether two different objects are handled (e.g., two robotic han-

dles; Galea et al., 2007) or additional loads are attached to either hand Wang & Sainburg

(2004). When one single object is handled with both hands (present study; Criscimagna-

Hemminger et al., 2003; Malfait & Ostry, 2004), transfer may occur preferentially in ex-

trinsic coordinates as the changed dynamics are rather linked to the external object than

to the limb dynamics. In the latter cases (Galea et al., 2007; Wang & Sainburg, 2004),

transfer may have occurred preferentially in intrinsic coordinates. This would match with

findings by Cothros et al. (2006) who suggested the acquisition of a distinct internal model

of the dynamics of an object separate from internal models used to control limb dynamics.

Another influencing factor might be the workspace in which movements are performed.

Research suggests that reaching near or across the midline implies different motor control

features compared with reaching in the ipsilateral hemispace (e.g., Bryden et al., 2011).

Potentially, intermanual transfer might also be influenced by the workspace in which the

original task is learned. Practice near the midline, as in our study, preferentially yielded to

transfer in extrinsic coordinates (Criscimagna-Hemminger et al., 2003; DiZio & Lackner,

1995) whereas movements that were performed in ipsilateral hemispace were rather shown

to be transferred in intrinsic coordinates (Wang & Sainburg, 2004). Furthermore, visual

feedback of the own arm or the cursor representing the end-point being controlled as well as

if the visual feedback is aligned vs. non-aligned might influence the internal representation

of a task and therewith the coordinate frame of transfer (Parmar et al., 2015). Moreover, as

supposed by Galea et al. (2007), the coordinate frame of transfer might also be attributed

to the type of observed motor error and the visual cues providing this information.

Presumably, the internal representation of movements and, therefore the coordinate

frame of intermanual transfer is a combination of different coordinate frames which is

modulated by diverse task specifications. Recent investigations suggest such a mixture of

internal representations underlying both intramanual (Berniker et al., 2014; Parmar et al.,

2015) and intermanual generalization (Parmar et al., 2015).

Taking these findings together, we found bidirectional intermanual transfer in terms

of practice dependent bias that occurred in extrinsic coordinates. Yet, the magnitude

of transfer and the coordinate frame of transfer appear to be influenced by diverse task

specifications. However, the observed transfer effects seem to play a minor role compared

with the fast initial adaptation processes. Because transfer characteristics are of high

interest from a theoretical point of view and give insights to fundamental motor learning
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mechanisms, future studies should account for the methodological difficulties in detecting

transfer. Moreover, further research should examine whether transfer in more complex

motor tasks has more robust features giving transfer subjects a substantial advantage in

performance compared with naive subjects.

4.4.3 Intermanual transfer effects weaken with time

Despite the found bidirectional intermanual transfer of motor memory immediately after

adaptation, transfer of motor memory declined with time. After the 24 h consolidation pe-

riod, transfer from non-dominant to dominant hand decreased and, in the case of dominant

to non-dominant hand, even vanished. Considering the initially mentioned importance of

consolidation and sleep on motor memory formation (Censor, 2013; Rasch & Born, 2013),

this finding is surprising.

Transfer in terms of practice-dependent bias decreased with the consolidation period.

On error clamp trials after the consolidation period, we only detected a small amount of

transfer from the non-dominant to the dominant hand (LRc group). Generally, a decrease

of motor performance and therewith a decrease of transfer effects after a consolidation

period could be caused by a warm-up decrement. This phenomenon refers to a decrement

in performance caused by temporary factors rather than memory loss, e.g., loss of internal

states that are critical for the motor action (Schmidt & Lee, 2011; Kantak & Winstein,

2012). Yet, potential transfer should have been detectable in our interlimb savings test

block despite warm-up decrement because the internal set was reinstated. However, even

when exposed to the force field, subjects did not show interlimb savings. Thus, processes

of consolidation did not facilitate intermanual transfer in the considered task, but rather

weakened transfer effects. Plenty of former studies found consolidation of motor memory

for this specific task when the retest was performed with the training hand (Brashers-Krug

et al., 1996; Shadmehr & Holcomb, 1997; Caithness et al., 2004; Overduin et al., 2006;

Focke et al., 2013; Stockinger et al., 2014). This indicates that motor memory underlying

the considered task is, in principle, sensitive to consolidation. Possibly, the consolidation

period only fosters the stabilization of an effector-specific internal representation rather

than a more generalized internal representation.

4.4.4 Neural processes and models of intermanual transfer

Previous research proposed several potential neural processes underlying transfer and gen-

eralization of motor memory. In the context of intermanual transfer, the most common

explanations are the cross-activation model and the bilateral access model (for review,

see Ruddy & Carson, 2013). According to the cross-activation model, unilateral practice

causes bilateral adaptation by increasing motor activity in the contralateral hemisphere,

which controls the arm, but also in the ipsilateral hemisphere. Thereby, during adapta-

tion, an inferior motor program is built in the contralateral hemisphere, which is used on

the transfer test. The bilateral access model states that motor adaptation occurs in neural

regions which are involved in the control of the trained hand but also are accessible to
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the untrained hand (Ruddy & Carson, 2013; Anguera et al., 2007). Regarding the bidi-

rectional transfer in our experiment, both models may account for our findings. However,

our study was not designed to examine intermanual transfer on a neural level. For the

purpose of a more elaborate theory of neural processes underlying the transfer, further

studies using functional imaging techniques are needed.
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This thesis aimed to investigate motor control and learning with special consideration of

motor memory adaptation as well as its consolidation and generalization. For this pur-

pose, the experimental paradigm of robot-assisted force field experiments was used. More

precisely, the aim of this thesis was to address unresolved research issues concerning (1) the

development of materials and methods – particularly, aspects of processing and analyzing

data gained during motor adaptation experiments as well as assessment of motor per-

formance, (2) the influence of unstable practice schedules in motor adaptation on motor

memory consolidation, and (3) generalization characteristics of dynamic adaptation – par-

ticularly, direction (asymmetry/symmetry) and coordinate frame of intermanual transfer

as well as the influence of a consolidation period on this transfer.

This final chapter summarizes and discusses the main findings on these issues, considers

implications for future research, and finally closes with a general conclusion.

5.1 Approaches to analyze motor adaptation experiments

Chapter 2 considered methodological aspects of robot-assisted learning experiments in

order to develop a stable methodological basis for the subsequently reported experiments.

Although robot-assisted learning experiments are widely-used, no standards for the use of

materials and methods existed. Accordingly, neither software applications nor standards

for data processing and analysis of such experiments existed. Unfortunately, researchers

often miss to report detailed information concerning the used methods. In particular this

holds for data processing procedures and algorithms. For these reasons, the reported tailor-

made software application ManipAnalysis was developed to serve as a common framework

for the analysis of robot-assisted adaptation experiments and was successfully utilized in

subject experiments (cf. Chapters 3, 4; Focke et al., 2013; Thürer et al., 2016; Taubert et

al., in review).

As illustrated, multiple approaches exist to define and assess motor performance in

robot-assisted adaptation experiments. The presented software application ManipAnalysis

supports the most common performance measures – both based on kinematic and dynamic

data. Even though these analytic approaches target at the same main aspect, researchers

need to take their different emphases into consideration. Within this section, the properties

of common motor performance assessment approaches, their controversies, and challenges

shall be discussed.
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5.1.1 The choice of a reference trajectory

To assess motor performance, it is intuitive and common to consider kinematic data of

movement trials. Most often, goal-directed reaching movements are evaluated with respect

to some pre-defined reference trajectory. Thereby, performance is either quantified by a

correlation coefficient determining the similarity to that reference trajectory or by an error

measure, i.e., deviation from the reference trajectory (see Section 2.3.2).

Often the reference trajectory is individually determined for each subject in baseline

measurements under null field conditions (baseline trajectories; e.g., Shadmehr & Mussa-

Ivaldi, 1994; Gandolfo et al., 1996). On the one hand, such individual determination of the

reference trajectory has the advantage of respecting subject-specific preferences and factors

(e.g., handedness, segment lengths). On the other hand, this procedure is labor-intensive

because it requires additional measurements and calculations for each single subject.

In another prevalent approach, movements are compared to a universal reference tra-

jectory. In case of point-to-point reaching, one often considers the direct line joining start

and target point as the ideal hand path and a bell-shaped (Gaussian-like) speed profile

as an ideal hand velocity function. At first glance, this approach seems oversimplified.

However, it is supported by diverse computational and behavioral studies (e.g., Flash &

Hogan, 1985; Shadmehr & Mussa-Ivaldi, 1994). From a computational point of view, the

sensorimotor system has to select one specific motor command out of an infinite number

of possible motor commands. This refers to an optimization problem of minimizing a cost

function (Jordan, 1996). The most commonly considered cost function in the context of

point-to-point reaching is hand jerk1 (Hogan, 1984; Flash & Hogan, 1985). Such an ideal

minimum hand jerk movement produces straight-lined hand paths as well as symmetric

and bell-shaped hand speed profiles (Shadmehr & Wise, 2005). In behavioral experiments,

these patterns repeatedly occurred (e.g., Flash & Hogan, 1985; Shadmehr & Mussa-Ivaldi,

1994) such that minimum hand jerk optimization is frequently used for modeling and

simulation purposes (e.g., Bhushan & Shadmehr, 1999; Thoroughman & Shadmehr, 2000;

Donchin et al., 2003). Notably, subjects keep these patterns irrespective of the direction

or the scale of the movement (within a comfortably reachable workspace; Moraso, 1981;

Wolpert et al., 2013) as well as in the absence or presence of perturbations (Haith &

Krakauer, 2012). Taken together, evaluation of a performed goal-directed arm movement

with respect to a minimum hand jerk trajectory – in particular, to a straight-lined hand

path – is reasonable both from behavioral and computational perspective.

These two possibilities to define a reference trajectory are the most common ones in

current research. However, the implicit assumption that reaching movements underlie an

invariant optimization criterion, which is valid under perturbed and unperturbed condi-

tions, is debatable (Donchin et al., 2003; Izawa et al., 2008; Ito et al., 2013). Similarly, the

pure existence of a desired trajectory that serves as reference is subject of controversial

discussion (Todorov & Jordan, 2002; Cisek, 2005). These issues should be addressed in

future research.

1Jerk,
...
x , is the third time derivative of position, x. Thus, a minimum jerk optimization yields a maxi-

mization of smoothness.
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5.1.2 Kinematic and dynamic data to assess motor control mechanisms

Measures based on kinematic data

To evaluate movement trials in dynamic adaptation tasks, most frequently kinematic data

is used. The main reason for this choice is twofold. First, kinematic data is easy to

analyze and comprehensible. Second, if the experimental setup does not utilize robotic

devices to induce dynamic perturbations but attached inertial loads (e.g., Krakauer et al.,

1999) or rotating environments (e.g., Lackner & DiZio, 1994), dynamic data is difficult or

impossible to record and analyze.

Even within the class of kinematic performance measures, different aspects of motor

control and learning are emphasized. For instance, measures based on hand paths (e.g.,

perpendicular displacement, enclosed area) only consider spatial factors, whereas measures

based on velocity data (e.g., velocity vector correlation) can also account for temporal

factors or smoothness of the performed movement. The study reported in Chapter 3

revealed that these different particularities can lead to different conclusions. Therein,

motor performance assessed using a velocity vector correlation coefficient revealed different

outcomes compared with a displacement measure based on the hand path. Obviously, the

two measures emphasized different aspects of of motor control and learning.

As pointed out in Section 2.2, motor performance on force field trials can simply

be evaluated using kinematic data. When subjects perform movements under altered

dynamics, the motor control system may use different control strategies. On the one

hand, feedforward control (predictive control) can be used to predict the dynamics of

the task. On the other hand, feedback mechanisms (reflexes, corrections due to sensed

errors) and impedance control strategies (increased stiffness by muscular co-contraction)

can be used to stabilize the movements (Franklin & Wolpert, 2011; Wolpert et al., 2011).

Impedance control is particularly important to gain stability at initial stages of learning

(Thoroughman & Shadmehr, 1999; Milner & Franklin, 2005) or when facing uncertain

or unstable conditions (Burdet et al., 2001; Takahashi et al., 2001; Osu et al., 2003). It

is assumed that movements are controlled by a combination of these strategies (Franklin

et al., 2003; Osu et al., 2003) resulting in the observable net motor performance. The

reliance on the respective strategy seems to depend on the environmental stability and

the quality of the task-related information (Takahashi et al., 2001; Osu et al., 2003).

Thus, impedance control is a valuable strategy but makes feedforward motor control hard

to uncover. Therefore, it is important to bear in mind that movement trials during force

field exposure represent net motor performance rather than merely feedforward motor

control mechanisms.

Often, one is interested in feedforward motor control mechanisms because these reflect

internal model properties. To assess these feedforward mechanisms different approaches

are possible. First, consideration of movements under force field exposure is justified

when the time point of evaluation is set before reflex mechanisms and/or corrective motor

commands affect the movement. To catch predominantly feedforward control mechanisms,

the according time point should not be later than approximately 150 ms after movement
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onset (e.g., PD100ms, de Xivry et al., 2011) because reflexes and voluntary corrective

reactions may occur thereafter (responses to sensed perturbations: short-latency reflexes

[20–45 ms], long-latency reflexes [45–100 ms], voluntary reactions [120–180 ms]; Pruszynski

et al., 2008). Moreover, mechanical factors influence the magnitude of deviations on force

field trials. The effect of perturbing forces on the subject’s arm depends on its inertial

properties (arm’s mass, segment lengths, limb configuration) but also on its stiffness and

viscosity properties.

Another way to gauge information about feedforward motor control in dynamic learn-

ing is the induction of (null field) catch trials. On these trials the dynamic perturbation is

unexpectedly removed and allows the detection of after-effects. These after-effects reflect

a subject’s prediction about the dynamic conditions and would not occur if the subject

merely increased arm stiffness to resist the environmental perturbation. For this reason,

after-effects indicate feedforward motor control (Shadmehr & Mussa-Ivaldi, 1994). How-

ever, similarly to the assessment of motor performance on force field trials, this approach is

also confounded by feedback mechanisms because after-effects induce large sudden errors

that are fed back to the sensorimotor system. Similarly, the problematic with respect to

inertial properties, stiffness, and viscosity of the arm arises and may affect the magnitude

of after-effects. Furthermore, when detecting after-effects using a block of null field catch

trials, subjects will return their force outputs to baseline level quite fast because null

field catch trials cause unlearning (Thoroughman & Shadmehr, 2000). This is due to the

high motor errors that are fed back to the sensorimotor system signifying that force field

compensation is unnecessary (Smith et al., 2006). But most importantly, as the study

reported in Chapter 3 revealed, random induction of catch trials in the practice schedule

significantly influences motor adaptation as well as consolidation of motor memory.

Measures based on dynamic data

A more recent way to detect feedforward motor control mechanisms – and therewith a

subject’s ability to form an internal model of the task dynamics – uses error clamp trials

(force channel trails; Scheidt et al., 2000; Section 2.2). On these trials, the hand path is

constrained by virtual walls to the straight line towards the target point. Measurement of a

subject’s forces at the handle that are applied against the channel wall reveal information

about predictive force field compensation and enable evaluation of motor performance

in terms of feedforward mechanisms (Shadmehr et al., 2010). In contrast to force field

trials or null field trials, the motor errors are clamped to zero such that error feedback

is suppressed. Contrary to null field catch trials, error clamp trials preserve the adapted

behavior from unlearning because the force field and error signals that could promote or

wash out prior learning are absent (Criscimagna-Hemminger & Shadmehr, 2008; Scheidt

et al., 2000). Accordingly, the random integration of error clamp trials is assumed to keep

the overall learning schedule unaffected. Indeed, absence of motor errors for many trials by

inducing large blocks of error clamp trials yields a return of motor output towards baseline

level. However, this processes at comparably low rate (Smith et al., 2006; Criscimagna-

Hemminger & Shadmehr, 2008; Vaswani & Shadmehr, 2013).
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Altogether, besides kinematic data, recent research considers dynamic data to assess

motor performance. Kinematic measures mostly encompass feedforward motor control

features as well as mechanical factors (stiffness, viscosity, inertia of subject’s arm) and

feedback motor control mechanisms (reflexes, corrective reactions). In combination with

error clamp trials, dynamic measures predominantly gauge feedforward motor control

features. Thus, despite the same intention, kinematic and dynamic measures pronounce

different aspects of motor control and learning. Likely, different analytic approaches lead to

different concluding outcomes. For these reasons, profound knowledge of the mechanisms

underlying motor control and learning is a premise to perform sophisticated research.

5.2 Characteristics and mechanisms of motor memory

adaptation and its consolidation

The previous section discussed concepts for the analysis in motor adaptation experiments.

Herein, the utilization of catch trials was considered. Originally, catch trials were induced

in learning schedules as an analytic tool in order to detect after-effects of motor learning

and to gain insights into feedforward motor adaptation (e.g., Brashers-Krug et al., 1996)

but their potential influence on the learning process was neglected. As mentioned above,

catch trials cause sudden large motor errors that are fed back to the sensorimotor system.

This alters the conditions of practice and potentially influenced motor control and learning

features. Despite their wide-spread use, the detailed influence of catch trials on motor

control and learning remained elusive. The study reported in Chapter 3 considered this

issue in detail to bridge the gap between prior investigations that tried to unravel the

potential effects of catch trials but found differing results (Overduin et al., 2006; Focke

et al., 2013).

5.2.1 Unstable practice conditions affect adaptation and consolidation of

motor memory

Instability affects internal model formation during adaptation

We found that unstable practice conditions, caused by inducing catch trials, impair motor

adaptation. More precisely, an increased instability due to an increased catch trial ratio

led to a poorer motor performance during adaptation. Thus, catch trials had a significant

effect on the motor learning process.

First, these results underpin the importance of the methodological issues discussed in

the previous section. Obviously, the considered motor learning paradigm is highly sensitive

to methodological factors.

Second, with regards to content, the results indicate that subjects had an impaired

ability to form an appropriate internal model of the task dynamics when catch trials were

induced. To cope with the induced instability, subjects utilized both feedforward predic-

tion and impedance control strategies in hybrid fashion. This is suggested by previous

investigations considering reaching movements under unstable environmental conditions
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(Takahashi et al., 2001; Osu et al., 2003; Franklin et al., 2003). To our best knowledge,

the study reported in Chapter 3 is the first to investigate dynamic adaptation across a

wide range of different environmental conditions allowing detection of gradual changes

in motor adaptation. With increasing instability – i.e., increasing catch trial ratio –

subjects tended to rely more on impedance control. This indicates a gradual transi-

tion of control strategies in relation to the environmental instability. Therewith, the

results extend prior studies investigating motor control and learning under unstable con-

ditions (e.g., Scheidt et al., 2001; Takahashi et al., 2001; Osu et al., 2003; Franklin et al.,

2003) and contribute to a more profound understanding of motor control and learning

features.

Instability can foster consolidation of motor memory

We found that unstable practice conditions impaired subjects’ ability to adapt to the dy-

namics but fostered subsequent offline consolidation processes. This yielded a stabilized

motor memory representation because the interfering effect of learning a second task was

reduced. Therefore, we found evidence that consolidation of human motor memory follow-

ing motor adaptation is not exclusively time-dependent but also practice-dependent. This

is in line with investigations showing that the neural substrates of motor memory consol-

idation depend on the practice structure (Kantak et al., 2010). Yet, not instability per se

is important to foster consolidation processes but rather there seems to exist an optimal

amount of instability facilitating consolidation of motor memory. When the instability

was too high, its positive effect diminished. That offers a possible explanation for the di-

verging findings of Overduin et al. (2006) and Focke et al. (2013). Overduin et al. (2006)

found consolidation within an ABA-paradigm when inducing 20% catch trials, whereas

our group was not able to (completely) reproduce this finding for a more complex task

(Focke et al., 2013). The experimental setup of the study reported in Chapter 3 was simi-

lar to that of Focke et al. (2013). Here, we found that unstable practice can also facilitate

consolidation processes in this more complex task, yet, with an optimal catch trial ratio

of 30%.

There is evidence that the practice schedule modulates the neural substrates of motor

memory consolidation (Robertson et al., 2004b; Tanaka et al., 2009; Kantak et al., 2010).

This would explain different consolidation processes of variable compared to constant

practice. The study reported in Chapter 3 supports these assumptions and underpins the

importance of the practice schedule on motor memory consolidation.

Taken together, motor memory consolidation processes can be fostered by unstable

practice conditions. The optimal extent of instability and its positive effects seem to

depend on the task specification, in particular, on the task complexity.
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5.2.2 Computational models and neural correlates of motor adaptation and

consolidation

Computational models of motor adaptation under unstable conditions

The findings reported in the study of Chapter 3 are also interesting from a computational

point of view. The behavioral findings may contribute to advances in the modeling of motor

control and learning processes. In this context, so-called state-space models have been

extensively used (Smith et al., 2006; Lee & Schweighofer, 2009). The basis of state-space

models is the assumption that the subjects’ internal models implement the task dynamics

with respect to the system’s state rather than rote memorization of a forces or torques when

performing a motor action (Conditt et al., 1997). In reaching movements, the state may

be described by the position and velocity of the limb (Shadmehr & Wise, 2005). Using the

state-space model approach, one can model motor adaptation as trial-by-trial adjustment

of the internal model by iterative motor error reduction. This idea is derived from dynamic

systems theory in the style of a feedback control approach. Such an iterative process of

motor error reduction accounts for the empirical finding that the motor error on trial n is

linearly correlated to the change in motor output on trial n+1 (Thoroughman & Shadmehr,

2000; Donchin et al., 2003). Altogether, using state-space models one can describe internal

model adaptation and therewith adjustments in feedforward motor control, i.e., prediction

of the task conditions.

As outlined above, when subjects are exposed to unstable conditions, they seem to use

an impedance control strategy in addition to a feedforward motor control strategy. We

recently conducted a computational study accounting for the different control mechanisms

in order to reproduce the subjects’ adaptive behavior reported in Chapter 3 (Stockinger,

2014). Therein, we implemented adaptive subject controllers which were embedded in

a state-space model framework. These controllers were designed to adapt their motor

output using a supervised error learning algorithm and were trained in the scenarios of

Chapter 3. Under unstable conditions, two control processes were required to repro-

duce subject behavior: one process that forms an internal model of the task dynamics

(feedforward controller) and a second process that stabilizes the limb around the desired

trajectory (impedance control). With increasing instability, the feedforward controller

had difficulties in building an appropriate internal model of the task dynamics. To ensure

movement goal achievement, the modeled controller tended to rely more on the impedance

controller. Thus, both control strategies were used in parallel but the reliance on the two

strategies gradually changed with the environmental instability. Under stable dynamic

perturbations, the modeled subject controller relied almost exclusively on internal model

formation and only made use of impedance control at the initial phase of adaptation.

These findings are in accordance to former computational studies that considered differ-

ent motor control strategies under uncertain environmental conditions (e.g, Burdet et al.,

2006; Mitrovic et al., 2010; Kadiallah et al., 2012). Moreover, we were able to extend these

previous findings by validating our model with respect to a larger range of environmental

conditions and demonstrating a gradual change in utilized motor control strategies.
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Neural correlates of motor adaptation and consolidation

Besides the behavioral and computational consideration of motor control and learning, it

is interesting to ask which neural correlates are involved. Previous research revealed an

important role of the cerebellum in motor control and learning suggesting that the cere-

bellum computes internal models. Yet, it is under debate whether these internal models

refer to inverse or forward internal models (Izawa et al., 2012; Haith & Krakauer, 2013).

Evidence for a cerebellar involvement comes from patient studies showing that damage to

the cerebellum impairs the ability to adapt movements to perturbations (Maschke et al.,

2004; Smith & Shadmehr, 2005; Rabe et al., 2009; Donchin et al., 2012). Similar evidence

for the importance of the cerebellum comes from neuroimaging studies (Nezafat et al.,

2001; Krebs et al., 1998) or studies using stimulation techniques such as transcranial di-

rect current stimulation (tDCS) or transcranial magnetic stimulation (TMS) (Galea &

Celnik, 2009; Grimaldi et al., 2014; Celnik, 2015). In order to test for a cerebellar in-

volvement when learning the task considered in this thesis, our group recently performed

a tDCS experiment in a similar experimental setup as reported in Chapter 3. Therein, we

modulated error processing during motor adaptation by applying tDCS to the cerebellum

and found that tDCS during adaptation accelerated forgetting in the movement set breaks,

whereas the continuous learning-related motor error reduction was preserved (Taubert et

al., in review).

Besides the cerebellum, the motor cortex is known to be involved in motor control

and learning (Diedrichsen et al., 2005; Herzfeld et al., 2014). The primary motor cortex

(M1) was shown to be involved in motor learning as being sensitive to TMS (de Xivry

et al., 2011) and tDCS (Galea & Celnik, 2009). Recently, also involvement of the premotor

cortex in motor learning was discussed (Taylor & Ivry, 2014). Thus, motor learning is not

restricted to the cerebellum. Rather, different neural substrates seem to contribute to

adaptation and consolidation of motor memory at different stages (Shadmehr & Holcomb,

1997; Diedrichsen et al., 2010).

Presumably, motor memory is reorganized after its adaptation and the brain engages

new regions to perform the motor task. Such reorganization by consolidation processes

may contribute to increased functional stability (Shadmehr & Holcomb, 1997; Krebs et al.,

1998). Our group recently investigated activity in the electroencephalography (EEG) over

the prefrontal cortex in a consolidation paradigm similar to that depicted in Chapter 3.

Following a period of consolidation, subjects showed an increased gamma band power

over prefrontal areas at retest. In contrast, subjects whose consolidation period was in-

terfered by learning a second task did not show this pattern (Thürer et al., 2016). Thus,

consolidation processes seem to affect the brain areas involved during retrieval of motor

memory.

Taken together, there is evidence that motor control and learning of the considered task

depends on the cerebellum as well as the motor cortex and the prefrontal cortex. Yet,

their detailed functions as well as their interplay in motor control and learning remain

unresolved.
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5.3 Characteristics and mechanisms of motor memory

generalization

The aim of Chapter 4 was to investigate motor memory generalization in a force field

adaptation task – in particular, direction and coordinate frame of intermanual transfer as

well as the influence of a consolidation period on intermanual transfer.

5.3.1 Characteristics and different features of intermanual transfer

In order to gain a comprehensive understanding of transfer mechanisms, we defined two

different features of transfer: practice-dependent bias and interlimb savings. Our results

revealed intermanual transfer both from dominant to non-dominant hand and vice versa.

However, the ability to transfer motor learning seems to play a minor role compared with

the rapid adaptation processes because we found transfer by means of a practice-dependent

bias but no clear transfer by means of interlimb savings. That means, prior adaptation

changed the subjects’ prediction about the dynamic conditions at the contralateral arm

(practice-dependent bias) but did not result in significantly faster adaptation with the

contralateral arm (interlimb savings). This is the first study dissociating and considering

both these features of intermanual transfer. Most former studies investigated transfer only

in terms of interlimb savings (Criscimagna-Hemminger et al., 2003; Wang & Sainburg,

2004; Galea et al., 2007) whereas only one study considered transfer in terms of practice-

dependent bias (Joiner et al., 2013).

Intriguingly, we found that transfer of dynamic learning can occur in bidirectional

manner, i.e., both from dominant to non-dominant and vice versa. This contrasts previous

findings (Criscimagna-Hemminger et al., 2003; Wang & Sainburg, 2004; Galea et al., 2007).

We also outlined that transfer is difficult to detect for methodological reasons which might

have complicated detection of potential bidirectional transfer in former studies.

Moreover, the study depicted in Chapter 4 is the first to consider the influence of a con-

solidation period (incl. nocturnal sleep) on intermanual transfer of dynamic adaptation.

Consolidation of motor memory – particularity in connection with sleep – is suggested

to be an important aspect of motor learning because structural modifications and reor-

ganizations occur (Rasch & Born, 2013; Censor, 2013). Against this background, it is

surprising that transfer mechanisms were not fostered by a period of consolidation. Yet,

further research is needed to gain more detailed insights into the relation of motor memory

consolidation and intermanual transfer.

5.3.2 Models and neural correlates of intermanual transfer

Consideration of transfer mechanisms is revealing because it allows ratiocination of brain

regions that are involved in the formation of an abstract movement representation during

adaptation, regardless of the hand being used during adaptation. Based on behavioral

studies two prominent models have been proposed to explain intermanual transfer: the

bilateral access model and the cross activation model (Ruddy & Carson, 2013).
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In the framework of the bilateral access model, motor memory formed during unilateral

practice is not effector-specific but is encoded in more abstract form. This abstract motor

memory can be utilized for motor control for both the trained and the untrained, con-

tralateral limb (Ruddy & Carson, 2013). When transfer of learning occurs, the untrained

hemisphere accesses this motor memory formed during initial contralateral practice.

One prominent example of such bilateral access offers the callosal access model (Taylor

& Heilman, 1980). This model bases on the assumption that the left hemisphere plays a

dominant role in movement control for both body sides and motor memory formation is

lateralized to this dominant hemisphere (Liepmann, 1905; Serrien et al., 2006). However,

the motor networks projecting to the untrained limb have access to this previously formed

motor memory. Accordingly, interlimb transfer from the right to left hand would be

accomplished by initial motor memory formation in the dominant (left) hemisphere and

gained access by the motor networks projecting to the left hand. Thereby, the corpus

callosum serves as mediator between the lateralized motor networks (Ruddy & Carson,

2013; Anguera et al., 2007; Takeuchi et al., 2012). This is supported, for example, by

research on hominids showing that intermanual transfer performance is associated with

the structural integrity of the motor and sensory regions of the corpus callosum (Phillips

et al., 2013). Another possibility for bilateral access is that the established motor memory

is located in cortical or subcortical areas which project bilaterally, i.e., which are accessible

to the motor networks of both limbs (Ruddy & Carson, 2013).

The cross-activation model bases on the observation that in unilateral movement tasks

there is increased excitability both in contralateral and ipsilateral cortical motor areas

(Lee et al., 2010; Ruddy & Carson, 2013). Such bilateral cortical activity during unilateral

practice indicates dual neural adaptations in both hemispheres (Ruddy & Carson, 2013).

For instance, during right hand motor learning, a motor program is stored in the dominant

hemisphere and an inferior duplicate of this motor program is stored in the non-dominant

hemisphere. When performing the task with the untrained limb, the non-dominant motor

areas use this inferior motor program independent of the superior motor program in the

dominant motor areas (Anguera et al., 2007). In the intermanual transfer experiment

depicted in Chapter 4, we found bidirectional transfer. This finding could be explained

by both the bilateral access model and the cross activation model. However, in order

to detect systematic differences in the strength of this transfer between both directions,

further investigations are needed.

Criscimagna-Hemminger et al. (2003) considered intermanual transfer in a similar dy-

namic adaptation task as depicted in Chapter 4. These authors found intermanual trans-

fer of motor learning for a split brain patient. This suggests interhemispheric connections

independent of the corpus callosum. However, further statements about the neural mech-

anisms underlying intermanual transfer of dynamic learning would be speculation.

Another noteworthy finding of the intermanual transfer experiment in Chapter 4 is

the coordinate frame of transfer. We found transfer in extrinsic coordinates which is in

line with previous studies sharing a similar experimental setup (Criscimagna-Hemminger

et al., 2003; Malfait & Ostry, 2004). Such transfer in extrinsic coordinates suggests an
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internal representation of the motor task in extrinsic coordinates. This is interesting from

a cognitive and a computational perspective. First, such representation in extrinsic coor-

dinates suggests that subjects related the motor task – i.e., learning a force field – with

an external object rather than with respect to their own body. Second, from a computa-

tional perspective, this finding is in line with the previously discussed assumption that the

subjects’ controllers minimize a cost function that is defined in extrinsic coordinates (i.e.,

minimum hand jerk, Subsection 5.1.1) rather than in intrinsic coordinates (e.g., minimum

torque change).

5.4 Implications for future research

The findings of this thesis comprise both methodological aspects and aspects with regard to

adaptation of motor memory as well as its consolidation and generalization. Motor control

and learning is a vital field of research which possesses valuable potential for theoretical

and practical reasons. Thus, more studies are necessary to replicate and enhance the

findings reported in this thesis. Based on the presented results future research should

consider the following issues:

• consideration of the different mechanisms underlying the control of arm movements

as well as further development of analytic approaches to assess these mechanisms;

• identification of further factors that facilitate consolidation of motor memory, e.g.,

type of feedback, structural learning schedules, or amount of practice;

• investigation of detailed relations between practice schedule, consolidation, and inter-

manual transfer in order to foster transfer processes;

• development of more elaborate computational models of motor learning that account

for different control mechanisms and generalization characteristics;

• investigation of intermanual transfer using functional imaging techniques in order to

identify the neural correlates underlying transfer;

• investigation of intermanual transfer mechanisms in more complex adaptation tasks

in order to emphasize potential transfer effects in terms of interlimb savings;

• consideration of further similarities and differences between motor skill learning and

motor adaptation in order to close the gap between these two types of motor learning

and gain a more comprehensive understanding of motor learning in its entirety.

5.5 Conclusion

This thesis aimed to investigate motor control and learning mechanisms with special con-

sideration of motor memory adaptation as well as its consolidation and generalization.

These features are in the scope of current research because there are plenty of unresolved
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questions. To gain more detailed insights into the mechanisms underlying motor control

and learning, we used the well-known experimental paradigm of force field adaptation. In

essence, the current thesis revealed the following findings:

(1) The different analytic approaches for the assessment of motor performance, which are

reported in the literature, emphasize different aspects of motor control and learning,

e.g., different control mechanisms. Despite the same intention, usage of different ana-

lytic approaches can lead to different concluding outcomes. Potentially, diverging find-

ings of prior investigations are caused by such methodological factors. For this reason,

profound knowledge about the diversity of analytic methods and their characteristics

is indispensable to perform sophisticated research. Thus, researchers are encouraged

to chose their analytic approaches with caution bearing in mind the manifold nature

of motor control and learning mechanisms.

(2) Unstable practice conditions impair internal model adaptation. Presumably, subjects

use at least two different motor control strategies: feedforward control using inter-

nal model predictions and impedance control to modulate arm stiffness by muscular

co-contractions. With increasing environmental instability the reliance on the motor

control strategies gradually changes from feedforward to impedance control.

(3) Consolidation of motor adaptation is not only a time-dependent process but also

a practice-dependent process. Unstable practice conditions can foster consolidation

processes by increasing the resistance of the newly formed motor memory against

interfering factors. Thereby, not instability per se is crucial to foster motor memory

consolidation but rather there seems to exist an optimal amount of instability.

(4) Intermanual transfer of dynamic learning is a bidirectional phenomenon which occurs

in extrinsic coordinates and weakens with passage of time. Intermanual transfer com-

prises two different features: practice-dependent bias (i.e., change in the prediction of

the task conditions due to previous contralateral practice) and interlimb-savings (i.e.,

faster learning of the task due to previous contralateral practice). In particular, both

the right and the left hand are capable of forming an appropriate internal model of

the task when exposed to altered dynamic conditions.

These findings contribute to:

• our fundamental understanding of the mechanisms involved in motor control and

learning as well as the internal representation of motor tasks;

• our understanding of motor memory consolidation and its dependence on the practice

schedule and therewith to a basic understanding of how practice sessions in neurore-

habilitation and sports should be designed;

• enhancements of computational models for motor control that can account for vary-

ing environmental conditions by using different control mechanisms; this contributes

to designing robots with sophisticated control algorithms ensuring stable and safe

operating.
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5.5 Conclusion

Altogether, motor control and learning are vital fields of research which are interdisci-

plinary in nature. Therein, diverse disciplines like human movement science, neuroscience,

and robotics contribute to an enhanced understanding of motor control and learning. In-

sights into the characteristics and mechanisms of the human sensorimotor system offer

valuable information to compose effective practice schedules in neurorehabilitation and

sports, for designing safer workplaces, better tools and prostheses, or to develop more

sophisticated robots. Against this background, this thesis contributes to an enhanced

understanding of human motor control and learning.
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