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Abstract. Vertically resolved distributions of sulfur diox-

ide (SO2) with global coverage in the height region from

the upper troposphere to ∼ 20 km altitude have been de-

rived from observations by the Michelson Interferometer for

Passive Atmospheric Sounding (MIPAS) on Envisat for the

period July 2002 to April 2012. Retrieved volume mixing

ratio profiles representing single measurements are charac-

terized by typical errors in the range of 70–100 pptv and

by a vertical resolution ranging from 3 to 5 km. Compari-

son with observations by the Atmospheric Chemistry Exper-

iment Fourier transform spectrometer (ACE-FTS) revealed a

slightly varying bias with altitude of −20 to 50 pptv for the

MIPAS data set in case of volcanically enhanced concentra-

tions. For background concentrations the comparison showed

a systematic difference between the two major MIPAS obser-

vation periods. After debiasing, the difference could be re-

duced to biases within−10 to 20 pptv in the altitude range of

10–20 km with respect to ACE-FTS. Further comparisons of

the debiased MIPAS data set with in situ measurements from

various aircraft campaigns showed no obvious inconsisten-

cies within a range of around ±50 pptv. The SO2 emissions

of more than 30 volcanic eruptions could be identified in the

upper troposphere and lower stratosphere (UTLS). Emitted

SO2 masses and lifetimes within different altitude ranges in

the UTLS have been derived for a large part of these erup-

tions. Masses are in most cases within estimations derived

from other instruments. From three of the major eruptions

within the MIPAS measurement period – Kasatochi in Au-

gust 2008, Sarychev in June 2009 and Nabro in June 2011 –

derived lifetimes of SO2 for the altitude ranges 10–14, 14–18

and 18–22 km are 13.3± 2.1, 23.6± 1.2 and 32.3± 5.5 days

respectively. By omitting periods with obvious volcanic in-

fluence we have derived background mixing ratio distribu-

tions of SO2. At 10 km altitude these indicate an annual cy-

cle at northern mid- and high latitudes with maximum values

in summer and an amplitude of about 30 pptv. At higher alti-

tudes of about 16–18 km, enhanced mixing ratios of SO2 can

be found in the regions of the Asian and the North American

monsoons in summer – a possible connection to an aerosol

layer discovered by Vernier et al. (2011b) in that region.

1 Introduction

The background aerosol loading of the stratosphere has been

found to increase since about the year 2000 (Hofmann et al.,

2009; Vernier et al., 2011b). Due to the negative radiative

forcing of stratospheric sulfate aerosol, this trend has been

discussed as part of the explanation for a slowdown in the rise

of global temperatures (the so-called global warming hia-

tus) since the turn of the millennium (Solomon et al., 2011;

Fyfe et al., 2013a, b; Haywood et al., 2013; Santer et al.,
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2014). Hofmann et al. (2009) explained the rising strato-

spheric aerosol levels with an increase in the anthropogenic

sulfur dioxide (SO2) production in South East Asia while

Vernier et al. (2011b) opposed this view by showing the in-

creasing influence from sulfate injection of moderate tropi-

cal volcanic eruptions into the stratosphere. Recently, Ridley

et al. (2014) have used ground-based and balloon-borne ob-

servations to demonstrate that especially at mid- and high lat-

itudes the aerosol loading within the altitude range between

the tropopause and 15 km contribute strongly to the volcanic

aerosol forcing during the last decade.

As a basis for studying these processes with the aid of at-

mospheric models, it is essential to get global information

about the amount of SO2 reaching stratospheric altitudes.

Measurements of SO2 in the upper troposphere and lower

stratosphere (UTLS) are, however, sparse. In situ observa-

tions from aircraft campaigns are highly accurate (see also

Sect. 2.6). However, they provide mainly snapshots of the

atmospheric state, which might be influenced by the sam-

pling tailored specifically to the campaign objective. Global

observations from satellite nadir sounding instruments pro-

vide horizontally highly resolved pictures of SO2 distribu-

tions emitted by strong sources, like volcanoes (Theys et al.,

2013, and references therein). While most analysis meth-

ods of nadir sounding observations provide vertical column

amounts of SO2, various recent studies indicate that volcanic

plume heights can be derived (Yang et al., 2010; Van Gent

et al., 2012; Rix et al., 2012; Carboni et al., 2012; Clarisse

et al., 2014; Fromm et al., 2014).

Owing to their observation geometry, limb-sounding mea-

surements are especially suited to obtain profile information

of atmospheric constituents. In the microwave spectral re-

gion, Read et al. (1993) retrieved SO2 concentrations from

the Microwave Limb Sounder (MLS) on the Upper Atmo-

sphere Research Satellite (UARS) in the aftermath of the

eruption of Mt. Pinatubo and Pumphrey et al. (2015) anal-

ysed SO2 signatures from various volcanic eruptions mea-

sured by the MLS instrument on the Aura satellite. In the

mid-infrared, Doeringer et al. (2012) used solar occultation

spectra measured by the Atmospheric Chemistry Experi-

ment Fourier transform spectrometer (ACE-FTS) to recon-

struct vertical profiles of SO2 following the eruption of the

Sarychev volcano in June 2009.

In the following we present global altitude-resolved distri-

butions of SO2 between about 10 and 20 km as retrieved from

infrared limb-emission observations by MIPAS (Michelson

Interferometer for Passive Atmospheric Sounding) between

June 2002 and April 2012. This data set is derived from

single MIPAS limb spectra and complementary to the one

presented in Höpfner et al. (2013) which was reconstructed

from monthly and 10◦ zonally averaged spectra, covering the

height region between 15–20 and 40 km altitude. Thus, the

present data set allows us to exploit the full spatial and tem-

poral coverage and resolution of the MIPAS observations.

In Sect. 2 we describe the measurements and the retrieval

scheme and characterize the data set comprising vertical res-

olution and error estimation. This is followed by a compar-

ison with independent remote sensing and in situ observa-

tions of SO2 in the UTLS region. Besides an overview over

the whole data set, the main subject of Sect. 3 is the analysis

of volcanic plumes with respect to the derivation of eruption

masses and lifetimes of SO2 from major volcanic events. The

global non-volcanic background distribution of SO2 is pre-

sented at the end of Sect. 3 and final conclusions are drawn

in Sect. 4.

2 The MIPAS SO2 data set

2.1 Instrument

MIPAS (Fischer et al., 2008) was operated on the sun-

synchronous polar orbiting satellite Envisat. Envisat was

launched on 1 March 2002 and lost ground contact on

8 April 2012. The MIPAS instrument is a limb sounder mea-

suring the thermal radiation emitted by the atmosphere in

the region 685–2410 cm−1 by means of a Fourier transform

spectrometer (ESA, 2000).

Two main periods of MIPAS operation can be distin-

guished: period 1 (P1) lasted from June 2002 until April 2004

and period 2 (P2) from January 2005 until April 2012. Dur-

ing P1 the spectral resolution was 0.025 cm−1 (unapodized).

The latitudinal distance between subsequent limb scans was

530 km, where each limb scan consisted of 17 tangent views

with 3 km sampling steps in the UTLS region. During P2

the spectral resolution was set to 0.0625 cm−1 (unapodized),

thereby reducing the measurement time per spectrum. This

led to finer horizontal (420 km) and vertical (1.5 km in the

UTLS region) sampling patterns.

For the retrieval of SO2 described in this paper, level-1b

calibrated spectra version 5 as provided by ESA have been

used (Nett et al., 2002).

2.2 Retrieval

In contrast to the MIPAS data set of SO2 published by

Höpfner et al. (2013), which was reconstructed from monthly

and zonal averaged spectra, the present retrieval has been

performed on the basis of single limb scans. The standard

MIPAS IMK-IAA data processing scheme has been applied

as described in detail by von Clarmann et al. (2003) and

von Clarmann et al. (2009). The retrieval method is a con-

strained non-linear least squares multi-target fitting proce-

dure of measured limb radiances. Spectral fitting intervals

which have been applied for the reconstruction of SO2 are

listed in Table 1. In addition to the spectral region of the ν3

band around 1370 cm−1 (Höpfner et al., 2013) we have used

lines from the weaker ν1 band around 1130 cm−1 to mini-

mize errors due to saturation in case of enhanced concen-

trations. Beside the volume mixing ratios of SO2, jointly re-
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Table 1. Spectral windows for MIPAS SO2 retrieval [cm−1].

MIPAS period

P1 (2002–2004) P2 (2005–2012)

1128.2000–1129.4250 1128.1875–1129.4375

1132.1250–1132.7500 1132.1250–1132.7500

1136.3250–1136.8750 1136.3125–1136.8750

1139.4500–1141.0000 1139.4375–1141.0000

1142.0000–1143.3000 1142.0000–1143.3125

1366.5750–1368.2500 1366.5625–1368.2500

1369.9500–1370.6250 1369.9375–1370.6250

1371.1250–1371.9250 1371.1250–1371.9375

1376.0000–1376.6250 1376.0000–1376.6250

trieved parameters are altitude profiles of the main spectrally

interfering species H2O, O3, N2O and CH4. Height distribu-

tions of further trace gases exhibiting minor signatures in the

spectral region of interest are taken either from previous steps

in the retrieval chain (HNO3, N2O5, CFC−12, HCN, PAN,

C2H2) or are based on climatological profiles (HCFC−22,

CFC−113, CFC−114, HCFC−142b). The atmospheric tem-

perature profile, the instrumental line of sight and spectral

calibration correction are likewise imported from previous

retrieval steps.

Regularization of the retrieval is necessary since the alti-

tude grid distance of the atmospheric profiles is 1 km and,

thus, smaller than the vertical tangent point spacing of 1.5–

3 km. Here we have applied a standard first-order Tikhonov

regularization scheme (Tikhonov, 1963; Steck, 2002). This

scheme constrains the reconstructed profiles by minimizing

along with the spectral residual also the first derivative of the

vertical profile. Thus, the regularization introduces a smooth-

ness of the result but avoids any biasing with respect to some

absolute volume mixing ratio (vmr). The resulting vertical

resolution varies from 3 to 5 km in the altitude range between

10 and 20 km.

The IMK-IAA MIPAS data which are used in this work are

versions V5H_SO2_20, V5R_SO2_220 and V5R_SO2_221.

2.3 Error estimation

An estimate of altitude-dependent retrieval errors of vari-

ous sources has been performed separately for different lo-

cations belonging to both measurement periods and for vol-

canically perturbed and unperturbed atmospheric situations.

Figure 1 shows the resulting mean error profiles for each of

the four categories. Estimated errors are split into one purely

random term, due to measurement noise, and “systematic”

terms, due to instrumental, spectroscopic and errors in pre-

determined parameters, like temperature and line-of-sight

pointing. Note, however, that the “systematic” error contains

also random contributions with different time-scales, e.g. ra-

diometric calibration. The random error due to measurement

Table 2. Results of retrieval simulations for enhanced profiles. The

vmr values of SO2 at the profile maximum and the integrated col-

umn amounts between 10 and 25 km are reported (Ref. is reference,

Res. is result, Diff. is difference= (Res.−Ref.)/Ref.× 100).

VMR max Column (10–25 km)

Ref. Res. Diff. Ref. Res. Diff.

[ppbv] [ppbv] [%] [DU] [DU] [%]

1.08 1.01 −6.34 0.12 0.12 1.23

5.08 4.43 −12.78 0.52 0.52 −0.13

10.08 8.19 −18.71 1.02 1.00 −1.72

50.08 31.02 −38.06 5.03 4.67 −7.01

100.08 49.90 −50.14 10.03 8.57 −13.97

500.08 114.14 −77.18 50.10 22.33 −54.83

noise leads to vmr errors which are at first-order indepen-

dent of the SO2 amount in the atmosphere. With around 70–

100 pptv it is the dominant error contribution when single

(non-averaged) profiles are considered. In the case of aver-

aging, systematic errors become more important. These are

estimated to about 10–75 pptv (10–180 %) for cases without

volcanic influence and 10–110 pptv (10–75 %) in volcani-

cally enhanced conditions (Fig. 1).

In contrast to other trace gases measured with MIPAS, the

dynamic range of SO2 vmr values in the atmosphere can vary

significantly because of volcanic activity. This can introduce

errors in the retrieved profiles due to saturation effects in the

radiative transfer. We have estimated these uncertainties by

sensitivity studies. Table 2 shows the results depending on

the value of the maximum of the assumed SO2 vmr profile.

The retrieved vmr values show maximum concentrations un-

derestimated by−13 % for 5 ppbv and−50 % for a reference

of 100 ppbv. Partial column amounts over a certain altitude

range around the maximum of the vmr profile are much less

affected. The underestimation here reaches from −0.1 % for

the profile with a maximum of 5 ppbv to−14 % for 100 ppbv

at the maximum. This result indicates that the error of the

maximum vmr value is mainly caused by the regularization

smoothing constraint while saturation effects appear for pro-

files with vmr values above 50–100 ppbv.

2.4 Validation

2.4.1 Comparison with ACE-FTS

We have performed a comparison of MIPAS altitude pro-

files of SO2 with those of the ACE-FTS instrument (research

product version 3.0). ACE-FTS is one of the instruments

belonging to the Atmospheric Chemistry Experiment space

mission launched in August 2003 (Bernath et al., 2005). The

Fourier transform spectrometer measures infrared solar oc-

cultation spectra from 750 to 4400 cm−1 with a spectral res-

olution of 0.02 cm−1 at sunrise and sunset during each or-

bit. The vertical resolution of the retrieved profiles of atmo-
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Figure 1. Four pairs of plots showing single profiles error estimates for MIPAS SO2. Within each pair the left plot represents the absolute and

the right plot the relative errors. Left pairs: no clear volcanic enhancement; right pairs: volcanically enhanced profiles; top: MIPAS period

P1; bottom: MIPAS period P2. Meaning of abbreviations in the legend: “Total” is the combined random and systematic error; “Rand” is the

random error; “Sys” is the systematic error; “Interf” is the error due to uncertainty of interfering species; “Temp” is the temperature error;

“Tgrad” is the error due to neglect of a horizontal temperature gradient; “Spectr” is the spectroscopic data error; “LOS” is the error due

to line-of-sight pointing uncertainty; “Shift” is the spectral shift error, “Gain” is the radiometric gain calibration uncertainty; “ILS” is the

uncertainty of instrumental line shape.

spheric traces gases is about 3–4 km as set by the instru-

ment’s field of view. More specific information on the recon-

struction of SO2 vertical distributions from ACE-FTS mea-

surements can be found in Doeringer et al. (2012).

In Fig. 2 the comparison of SO2 profiles between MIPAS

and ACE-FTS is shown for collocated observations using

a match criterion of 500 km and 5 h. Furthermore, the pro-

files have been grouped into one part to represent background

conditions with mixing ratios smaller than 50 pptv (top row

in Fig. 2) and two groups to represent enhanced mixing ra-

tios with at least one vmr value up to 20 km larger than 50

and 200 pptv (middle and bottom row of Fig. 2 respectively).

In the case of the background conditions, there is a clear

bias with larger MIPAS mixing ratios of up to 30 pptv be-

low 18 km and up to 15 pptv lower MIPAS values for alti-

tudes between 18 and 20 km. The combined precision esti-

mates of both instruments (blue curves in the third column)

are slightly smaller than the standard deviation (SD) of the

differences. As will be shown below, this is caused by the

residual atmospheric variability within the limits of the col-

location criterion. In the case of enhanced SO2 vmr values,

differences between MIPAS and ACE-FTS are generally in

the range of±30 pptv, reaching values of±50–100 pptv only

at a few altitudes. However, as shown by the error bars in the

second row of Fig. 2, these differences lie mostly inside the

SD of the differences and, thus, are not significant. The large

difference between the black and blue curves in the middle

and bottom plot of the third column (Fig. 2) is very proba-

bly due to the strong atmospheric variability of SO2 under

volcanic influence.

Figure 3 presents a closer look at the comparison of collo-

cated measurements for the background case. Here we have

distinguished matches during MIPAS periods P1 (top) and P2

(bottom). Additionally, during P2 only profiles during peri-

ods of low volcanic activity have been selected which was not

necessary for P1 since there was no significant volcanic influ-

ence when both instruments measured simultaneously. This

representation reveals that the typical bias of up to 30 pptv

for the SO2 background only appears during period P2 while

during P1 no significant bias between the two instruments

can be detected. We suppose that this fact is due to the higher

spectral resolution during P1 which makes the retrieval of

small spectral signatures more robust. Furthermore, there is

a very good agreement between the combined estimated in-

Atmos. Chem. Phys., 15, 7017–7037, 2015 www.atmos-chem-phys.net/15/7017/2015/
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Figure 2. Comparison of MIPAS and ACE-FTS collocated single profile measurements. Left column: average profiles (red solid: MIPAS

original data set, red dotted: MIPAS data set after debiasing; cf. Sect. 2.5). Second column: mean differences MIPAS-ACE-FTS (solid:

before, dotted: after debiasing) together with their standard error (error bars; not visible in the top row since these are smaller than the line

thickness) calculated as their SD (see third column) divided by the square root of the number of pairs (see last column). Third column: SD of

the single differences (black line) and the mean value of the combined estimated precision of the two instruments (blue line). Fourth column:

number of collocated pairs used for comparison at each altitude. Top row: only those pairs are selected where ACE-FTS profile values are

smaller than 50 pptv up to 20 km altitude. Middle row: only those pairs are selected where ACE-FTS profile values are above 50 pptv at least

at one altitude level up to 20 km. Bottom row: same as middle row but for a lower limit of 200 pptv.

strument precision and the SD of the profile differences (third

column in Fig. 3). This is due to the selection of periods with

very low volcanic activity which, in addition to the criterion

on small vmr values of SO2, leads to a reduction of atmo-

spheric variability in the data set. This demonstrates that the

combined precision estimates of MIPAS and ACE-FTS are

realistic.

2.4.2 Comparison with retrievals from mean MIPAS

spectra and the monthly averaged ACE-FTS data

set

Here we analyse the agreement between the MIPAS SO2

data retrieved from monthly zonal mean spectra (Höpfner

et al., 2013) (called MIPASmon in the following) and the

present single scan data set. Figure 4 shows the compari-

son of average monthly mean profiles between the two MI-

PAS data sets and ACE-FTS for background (top) and vol-

canically perturbed cases (bottom). For the background sit-

uation, MIPAS monthly mean profiles from single scan re-

trievals show similar differences either to MIPASmon or the

ACE-FTS data set. This is in agreement with the compar-

isons of collocated profiles between MIPAS and ACE-FTS

described in the previous section. The background profiles

of MIPASmon and ACE-FTS compare very well. In con-

trast, the comparison of volcanically enhanced monthly mean

profiles (Fig. 4, bottom) reveals a good agreement between

ACE-FTS and MIPAS single scan retrievals while MIPAS-

mon seems to underestimate the atmospheric SO2 content

by up to 100 pptv. Such an underestimation of SO2 in MI-

PASmon for volcanically enhanced periods has already been

suspected when comparing the SO2 distribution of July 2009

between ACE-FTS and MIPASmon retrievals (Höpfner et al.,

2013).

www.atmos-chem-phys.net/15/7017/2015/ Atmos. Chem. Phys., 15, 7017–7037, 2015
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Figure 3. Same as top row in Fig. 2 but (1) separated in MIPAS phase 1 (top row) and phase 2 (bottom row) observation periods and

(2) excluding periods with strong volcanic influence (January–June 2005, May–November 2006, October 2007, July–December 2008, June–

December 2009).

When comparing MIPAS and MIPASmon profiles of SO2

separately for MIPAS periods P1 and P2 and additionally ex-

cluding volcanically enhanced periods (see Fig. 5), we reach

the same conclusion as from the comparison with ACE-FTS

in Fig. 3: in P1 the background distribution compares well

between both data sets while during P2 a typical bias of the

MIPAS single scan retrieved data of up to 30 pptv is apparent.

2.5 Debiasing

The presented comparisons have revealed a distinct height-

dependent bias between the SO2 retrievals from MIPAS pe-

riods P1 and P2 of up to about 30 pptv down to about

12 km. Most observations further indicate that this bias af-

fects the observations during measurement period P2. Thus,

for the subsequent discussion of the whole data set from

2002 to 2012 we have applied an altitude- and latitude-

dependent bias-correction to the data from period P2. This

2-dimensional correction pattern has been determined as the

difference between the mean SO2 distributions (height vs.

latitude) of period P1 and period P2 where, for both periods,

months of major volcanic influence have been excluded. The

spatial correction pattern as shown in Fig. 6 does not vary

strongly with latitude down to about 10 km altitude. It is gen-

erally positive above 17–18 km and negative below, reaching

values of −150 pptv at the lowest altitudes between 6 and

10 km.

The comparisons with ACE-FTS and MIPAS monthly

mean retrievals as discussed above and as shown in Figs. 2–

5 have been repeated for the debiased data set (bold dotted

lines in these figures). The results now show a much bet-

ter consistency between the two measurement periods with

remaining maximum differences of about 10–15 pptv at 13–

14 km and of a few tens of pptv at lowest altitudes. In the

following we will restrict the discussion to altitudes above

10 km where remaining differences between the data sets of

P1 and P2 are around 10 pptv.

2.6 Comparison of the debiased data set with in situ

observations

The comparison of MIPAS SO2 with ACE-FTS and MIPAS-

mon is only possible for altitudes above 12.5 and 15 km re-

spectively. The altitude region between about 8 and 12 km

has been covered mainly by in situ observations from air-

craft.

In Fig. 7 we show a collection of published airborne mea-

surements of SO2 mainly observed before the year 2000

(Jaeschke et al., 1976; Inn and Vedder, 1981; Meixner, 1984;

Möhler and Arnold, 1992; Reiner et al., 1998; Thornton

et al., 1999; Jaeschke et al., 1999; Curtius et al., 2001). These

are compared to MIPAS data of similar geographic range and

season excluding periods of strong volcanic influence. Fur-

thermore, the MIPAS data are subdivided into measurement

periods P1 (green) and P2 (blue, solid) because of the debias-

ing of measurement period P2 with respect to P1 as described

above. In general the MIPAS data are in the range of in situ

observations. In the northern high and mid-latitudes, e.g. in

Meixner (1984), Möhler and Arnold (1992) and Reiner et al.

(1998), the values increase with lower altitudes, which is re-
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Figure 4. Comparison between monthly mean profiles from ACE-

FTS, MIPASmon (Höpfner et al., 2013) and MIPAS. Left: average

profiles (red solid: MIPAS original data set, red dotted: MIPAS data

set after debiasing). Middle: mean differences (blue: MIPASmon

– ACE-FTS, red: MIPAS – ACE-FTS, red solid: before debiasing,

red dotted: after debiasing) together with their standard error (error

bars; not visible in the top row since these are smaller than the line

thickness). Right: number of collocated pairs of monthly mean val-

ues used for comparison at each altitude. Top: only those pairs are

selected where MIPASmon profile values are smaller than 50 pptv

up to 20 km altitude. Bottom: only those pairs are selected where

MIPASmon profile values are above 100 pptv at least at one altitude

level up to 20 km.

flected in the MIPAS data set. At more remote regions like

over the equatorial and southern Pacific Ocean, Thornton

et al. (1999) observed in general lower SO2 mixing ratios

than in the Northern Hemisphere (bottom row in Fig. 7). This

is reflected mainly by the MIPAS data which show a weaker

vertical gradient compared to the observations in the north

and are in magnitude similar to the Thornton et al. (1999)

observations in the equatorial region. However, at southern

subtropical and mid-latitudes MIPAS values are higher than

the in situ data by 20–30 pptv.

A comparison with a more recent set of in situ observa-

tions is presented in Fig. 8. The data have been collected

by DLR-IPA (Deutsches Zentrum für Luft- und Raumfahrt

– Institute für Physik der Atmosphäre) and MPI-K (Max-

Planck-Institut für Kernphysik) using a jointly developed ion

trap chemical ionization mass spectrometer (ITCIMS), de-

scribed in Speidel et al. (2007), during several measurement

campaigns (Schlager et al., 2006; Fiedler et al., 2009b, 2011;

Waddicor et al., 2012; Barth et al., 2014; Roiger et al., 2014).

In contrast to the behaviour of SO2 with altitude shown

before, this time the vmr values in the northern mid- to high
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Figure 5. Same as top row in Fig. 4 but (1) only for MIPAS-

mon and MIPAS, (2) separated in MIPAS phase 1 (top row)

and phase 2 (bottom row) observation periods and (3) exclud-

ing periods with strong volcanic influence (October–December

2002, July 2003, January–June 2005, May–November 2006, Octo-

ber 2007, July–December 2008, June–December 2009, November–

December 2010, July–September 2011).
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Figure 6. Bias correction applied to the MIPAS data set from period

P2 (2005–2012).

latitudes (first two rows in Fig. 8) do not show a distinct in-

crease towards lower altitudes, which is different from MI-

PAS. Also, the absolute in situ measured vmr values are in

most cases smaller than MIPAS, especially at altitudes below

10 km. In contrast, the equatorial and southern hemispheric

ITCIMS data from AMMA, SCOUT-O3 and TROCCINOX

are higher compared to MIPAS. The in situ data from the

ESMVal-Antarktis campaign are, with around 10 pptv, com-

parable to the South Pacific data of Thornton et al. (1999)

and lower than MIPAS up to 13 km by up to 40 pptv. Above

13 km differences are reduced to about 10 pptv.

Obviously, it is difficult to gain a coherent picture of the

uncertainty of the MIPAS background SO2 data set in the
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Figure 7. Comparison between in situ and debiased MIPAS observations of SO2. Green lines indicate MIPAS measurements before April

2004 and blue lines after January 2005 (solid thin lines: mean of each year, solid bold lines: mean of all profiles). Black diamonds show the

in situ observations based on publications as given in the plot title (JAESCHKE76: Jaeschke et al. (1976), INN81: Inn and Vedder (1981),

MEIXNER84: Meixner (1984), MOEHLER92: Möhler and Arnold (1992), THORNTON99: Thornton et al. (1999), CURTIUS01: Curtius

et al. (2001), JAESCHKE99: Jaeschke et al. (1999), REINER98: Reiner et al. (1998). In the case of THORNTON99, the data from Thornton

et al. (1999, Plate 3) have been subdivided into five regions over the Pacific (bold black lines: mean, dotted: median). Periods with strong

volcanic influence have been excluded from the MIPAS data (see caption of Fig. 5).

lowermost stratosphere/upper troposphere from comparison

with in situ measurements. First, the variability of SO2 in

the UTLS is quite large. We have tried to restrict the MIPAS

data to background situations while the in situ data might

contain cases in which volcanic plumes are sampled. Unfor-

tunately, the real matches between in situ and MIPAS data

are too sparse to get robust statistics – so we had to compare

with seasonal mean MIPAS data. Second, aircraft campaigns

are snapshots and even are often dedicated to specific objec-

tives which might not be representative of the atmospheric

situation in general. Third, even the atmospheric background

situation might be different due to changes in industrial emis-

sion patterns influencing the UTLS distributions of SO2.

In summary, for the region between 7 and 15 km the MI-

PAS data set of SO2 (especially above 10 km) seems to be

in accordance with the set of in situ observations within its

estimated systematic error of a few tens of ppt. Thus, in the

following we will restrict the discussion to the debiased data

set and to altitudes above 10 km, where remaining differ-

ences between the debiased data of P1 and P2 are around

10–20 pptv.
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Figure 8. Comparison between in situ airborne ITCIMS observations and the debiased MIPAS data set of SO2. Green lines indicate MIPAS

measurements before April 2004 and blue lines after January 2005 (solid thin lines: monthly mean for each year, solid bold lines: mean of

all profiles, dashed bold lines: monthly mean for year of in situ observation). Black diamonds and horizontal bars show the mean values of

the in situ observations as well as their 1σ variability. The median value of the in situ measurements is indicated by black triangles. Periods

with strong volcanic influence have been excluded from the MIPAS data (see caption of Fig. 5).

3 Results and discussion

3.1 SO2 distributions

As an example for daily distributions from MIPAS, Fig. 9

shows volume mixing ratios of SO2 at the altitude levels 18,

20 and 22 km for 3 days after the eruption of the Nabro vol-

cano on 12 June 2011. The plume of enhanced concentra-

tions is clearly visible on 17 June reaching from northern

Africa over the mid-east to South East Asia at 18 and 20 km,

while no clear enhancements are visible at 22 km altitude.

This global dispersion is similar to observations by IASI

(Clarisse et al., 2014; Fromm et al., 2014). One week later,

on 24 June, the plume filled a large area of the Asian mon-

soon region. Its extension towards the west reached 0◦ lon-

gitude over northern Africa. Even at 22 km, enhanced values

of SO2 could be observed within a restricted area reaching

from the Arabian Peninsula over India and southern China.

One month later, on 22 July, the plume at 18 km extended

around the globe from the tropics to high northern latitudes,

while at 20 km it remained within the tropics/subtropics and

at 22 km no clear enhancements could be observed anymore.

In the MIPAS data set enhanced values of lower stratospheric

SO2 over the Northern Hemisphere can be observed even un-

til mid-/end of September 2011. Of course it must be kept in

mind that due to the limited vertical resolution, high volume

mixing ratios in the retrieved profiles detected up to 22 km

altitude do not guarantee that volcanic SO2 actually reached

these heights. Taking into account, however, the half-width

of the averaging kernel (3–5 km), it is very probable that the

plume extended at least to heights of 20 km.
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Figure 9. Example from the MIPAS data set of SO2 for 3 days and at three altitude levels after the eruption of Nabro on 12 June 2011. Note

that the colour scale does not cover the entire range of the data such that vmr values > 300 pptv are set to the colour at 300 pptv (red) and

negative values to 0 (black).

To give an overview over the whole measurement period,

Figs. 10–12 show the data set grouped as bins of 2-day and

10◦ zonal means. The most obvious signals influencing the

time series are due to volcanic eruptions which have been in-

dicated by triangles and abbreviations (see Table 3). A quan-

titative analysis of the emitted masses of SO2 from these

volcanic events is discussed in Sect. 3.2. In the subsequent

Sect. 3.3 we try to extract the global distribution and the tem-

poral behaviour of the non-volcanic background of SO2 in

the UTLS.

3.2 Volcanic SO2 mass and lifetime

As noticed above, the strongest contribution to the variabil-

ity of SO2 volume mixing ratios in our data set is caused by

volcanoes. Though not as strong as the one of Pinatubo in

1992, many mid-scale volcanic eruptions occurred in the pe-

riod 2002–2012. Partly overlapping the measurement period

of MIPAS there exist observations of volcanic SO2 by the

microwave limb-emission sounder MLS on Aura (Pumphrey

et al., 2015). Though not being as sensitive to SO2 as the mid-

infrared observations, measurements in the microwave have

the advantage of being less affected by particles like aerosols

or thin clouds in the line of sight.

In Fig. 13 we show an example of the development of the

total mass of SO2 as calculated from MLS and MIPAS vol-

ume mixing ratios during a period of time around the erup-

tion of Sarychev on 12 June 2009. Directly after the erup-

tion, total SO2 masses of both instruments increase. How-

ever, MLS shows a faster rise and larger maximum values.

After a few weeks, the global SO2 masses of the instruments

start to agree, showing a similar decline afterwards.

We interpret this behaviour as an underestimation of the

MIPAS SO2 masses directly after strong volcanic eruptions.

This is supported by the assumption that the major mass of

SO2 is injected into the UTLS region during the eruption

and decreasing afterwards, as observed e.g. by various nadir

sounding satellite instruments. First, one reason for this un-

derestimation is the influence of volcanic particles on the

MIPAS measurements: spectra strongly affected by aerosols

or clouds are excluded from the retrieval. As described in

Höpfner et al. (2013) the cloud clearing algorithm excludes

tangent views with a particle volume density of about 1–

2 µm3cm−3 along the line of sight. This causes a sampling

artifact where non-plume air masses are favoured. Second,

the presence of largely enhanced concentrations of SO2 leads

to saturation of the spectral lines and, thus, to an underesti-

mation in the retrieval as described in Sect. 2.3. Maximum

volume mixing ratios derived from MIPAS after strong vol-

canic eruptions are around 13 ppbv of SO2. These are con-

centrations where saturation effects, especially when consid-

ering partial column amounts, are in the range of a few per-

cent (cf. Table 2). Thus, we do not consider saturation to be
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Figure 10. Global time series of colour-coded SO2 distributions at various altitudes with a time resolution of 2 days. The colour scale is

restricted to 0–200 pptv: negative and values larger than 200 pptv are given the colour belonging to 0 and 200 pptv respectively. Volcanic

eruptions are indicated at the latitude of their location (for details see Table 3).

as important as the cloud clearing for the underestimation

of SO2 masses. Third, the sampling of the horizontally re-

stricted plume directly after the eruption by limb-sounding

instruments results in errors in total mass estimation which

might be slightly worse in case of MIPAS due to a less dense

along-track sampling compared to MLS.

In order to compile a climatology of SO2 masses emit-

ted by volcanoes, we have fitted the MIPAS observations

to a parametric model with exponential decay, similar to

Pumphrey et al. (2015):

M1hi (t)=M1hi (t0)× exp

(
−
t − t0

τ1hi

)
. (1)

M1hi (t) are the background-subtracted zonal mean masses

of SO2 observed by MIPAS binned over 5 days within the

latitude range where elevated signals are observed and within

the altitude range1hi . The background values have been de-

termined using the observations just before the eruption time

t0. The fitting parameter M1hi (t0) denotes the emitted mass

at time t0 and τ1hi , the e-folding lifetime of SO2, at 1hi .

For the calculation of masses, the MIPAS retrievals of

SO2 volume mixing ratios have been combined with the

pressure–temperature data set also derived from MIPAS (von

Clarmann et al., 2003) to obtain vertical profiles of number

densities. These profiles have been integrated in the verti-
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Figure 11. Time series of colour-coded SO2 volume mixing ratio profiles for 10◦ latitude bins in the Southern Hemisphere with a time

resolution of 2 days. The colour scale is restricted to 0–200 pptv: negative and values larger than 200 pptv are given the colour belonging to

0 and 200 pptv respectively. Volcanic eruptions are indicated at the latitude bin of their location (for details see Table 3).

cal over the respective layer thickness to obtain partial col-

umn amounts. Subsequently, these data have been averaged

within 10◦ latitude bins and multiplied by the zonal area to

obtain zonal masses of SO2. Subsequently, for the calcula-

tion of M1hi (t) the masses of those zonal bands, which rel-

ative to their background values were clearly affected by the

respective eruption, have been summed up.

Unlike Pumphrey et al. (2015) we have chosen to per-

form an altitude-dependent fit within three atmospheric lay-

ers (1h1 = 10–14 km, 1h2 = 14–18 km, 1h3 = 18–22 km).

Furthermore, due to the underestimated SO2 masses di-

rectly after a volcanic eruption, as discussed above, the fit-

ting period initiates not at t0 but when linear behaviour of

ln(M1hi (t)) starts and ends when no enhanced signal com-

pared to the background is detected.

In the fifth row of Table 3 the resulting values ofM1hi (t0)

and τ1hi for all volcanic eruptions which could be detected

within the MIPAS data set are presented for each of the

three atmospheric layers. The total masses are indicated in

bold face. An independent fit of M1hi (t0) and τ1hi has

Atmos. Chem. Phys., 15, 7017–7037, 2015 www.atmos-chem-phys.net/15/7017/2015/
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Figure 12. Same as Fig. 11 but for the Northern Hemisphere.

only been possible for the eruptions with the largest signals:

Kasatochi (August 2008), Redoubt (March 2009), Sarychev

(June 2009), Merapi (November 2010), Puyehue-Cordón

Caulle (June 2011) and Nabro (June 2011). This is indicated

as extrapolation method “c” in Table 3. For the other erup-

tions typical lifetimes have been assumed as the average life-

times of Kasatochi, Sarychev and Nabro (τ̄1h1
= 13.3 days,

τ̄1h2
= 23.6 days, τ̄1h3

= 32.3 days). Thus, in those cases

only the SO2 masses M1hi (t0) have been fitted. In Table 3

this is marked as extrapolation methods “a” or “b” where “a”

means that only one enhanced value of M1hi (t) has been

used after the eruption while “b” indicates that more than

one value of M1hi (t) has been fitted.

Uncertainties, which are given in brackets in Table 3, have

been estimated by variation of the fitting interval time in case

of methods “b” and “c”. Additionally, for the cases “a” and

“b” where lifetimes have not been derived simultaneously, an

error of 20 % in the assumed values of τ̄1hi has been applied.

The table also presents results of SO2 mass and lifetime from

previous studies. These are mainly based on nadir sounding

satellite observations with the exception of Pumphrey et al.

(2015), who discuss Aura/MLS limb measurements.

www.atmos-chem-phys.net/15/7017/2015/ Atmos. Chem. Phys., 15, 7017–7037, 2015
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Table 3. Volcanic eruptions observed in MIPAS measurements. General data of volcanoes are obtained from http://www.volcano.si.edu.

“TropVolc” indicate unidentified sources at low tropical latitudes. M(t0) are the resulting emission masses of SO2 from the exponential fit

(see text for details). Values of M(t0) are given for altitude ranges 10–14/14–18/18–22/10–22 km. “τ =” in column M(t0) indicates that

a fit of the lifetime was possible with the values in days given for the altitude ranges 10–14/14–18/18–22 km. Values in brackets indicate

estimated errors.

Name Eruption Location M(t0) [Gg] M(t0) [Gg]

date ◦ N/◦ E if present: τ [d] if present: τ [d]

from other sources

Ny Nyamuragira 25 Jul 2002 −1.4/29.2 22(1)/12(1)/3(0)/37(2)a

Ru Ruang 25 Sep 2002 2.3/125.4 36(19)/39(9)/15(2)/90(21)b 741

Rev Reventador 03 Nov 2002 −0.1/−77.7 54(47)/29(6)/12(2)/94(47)b 65–841; 1002

So Soufrière Hills 12 Jul 2003 16.7/−62.2 68(19)/28(7)/2(1)/98(20)b 100–1283; 1401

Ma Manam 27 Jan 2005 −4.1/145.0 79(15)/87(9)/39(3)/206(17)a 1801; 99± 13(> 68.1 hPa)4

An Anatahan 06 Apr 2005 16.4/145.7 34(11)/34(7)/0(0)/68(13)a 1651

Tr TropVolc mid-Jul 2005 0.0/0.0 38(17)/21(5)/1(0)/60(18)a

Tr TropVolc mid-Aug 2005 0.0/0.0 61(26)/23(5)/3(1)/88(27)a

Ma Manam 27 Feb 2006 −4.1/145.0 21(4)/58(8)/1(0)/80(9)a

So Soufrière Hills 20 May 2006 16.7/−62.2 40(29)/38(4)/85(15)/162(33)a 2001; 123–2335; 139± 24(> 68.1 hPa)4

Ra Rabaul 7 Oct 2006 −4.3/152.2 75(26)/118(34)/12(4)/205(43)b 1251; 2302; 190± 14(> 100 hPa)4

Ny Nyamuragira 27 Nov 2006 −1.4/29.2 49(6)/5(0)/–/54(6)a 58–2161

Fo Fournaise, 04 Apr 2007 −21.2/55.7 57(10)/12(1)/2(1)/71(10)a 140(> 7.5 km)6

Piton de la

Ta Tair, Jebel at 30 Sep 2007 15.6/41.8 26(11)/27(5)/3(1)/56(12)b 46–577

Ch Chaiten 02 May 2008 −42.8/−72.7 26(7)/2(0)/2(0)/30(7)a 108; 69

Ok Okmok 12 Jul 2008 53.4/−168.1 110(41)/31(6)/2(0)/143(41)b 200–3005; 100–20010

Ka Kasatochi 07 Aug 2008 52.2/−175.5 645(127)/210(86)/43(8)/899(154)c 900–270011; 220012; 1000(> 10 km)13

12005; 17009; 160014; 1350± 38(> 215 hPa)4

τ = 14(1)/23(5)/32(4) τ = 8–912; 189; ≈1014; 27± 1(> 215 hPa)4

Da Dalaffilla 03 Nov 2008 13.8/40.5 31(9)/47(10)/1(0)/79(13)b 100–20015

Re Redoubt 23 Mar 2009 60.5/−152.7 182(10)/18(7)/–/200(12)c 225–33516

τ = 24(1)/22(6)/–

Fe Fernandina 10 Apr 2009 −0.4/−91.6 14(2)/11(3)/2(0)/27(4)a

Sa Sarychev 12 Jun 2009 48.1/153.2 888(293)/542(60)/44(4)/1473(299)c 120017; 90014; 571± 42(> 147 hPa)4

1160± 180(> 215 hPa)4

τ = 15(2)/25(1)/38(2) τ = 27± 2(> 147 hPa)4; 17± 3(> 215 hPa)4;

τ = 10–1117; ≈1014

Ny Nyamuragira 02 Jan 2010 −1.4/29.2 17(5)/3(1)/2(0)/22(6)b

So Soufrière Hills 11 Feb 2010 16.7/−62.2 11(3)/12(2)/5(1)/28(4)b 5018

Pa Pacaya 28 May 2010 14.4/−90.6 –/10(2)/4(1)/14(2)b 2019

Me Merapi 04 Nov 2010 −7.5/110.4 –/253(61)/23(7)/276(61)c 44020

τ = –/15(2)/24(7)

Sh Shiveluch 12 Dec 2010 56.7/161.4 18(4)/1(0)/0(0)/20(4)a

Kar Karymsky 01 Jan 2011 54.0/159.4 –/–/1(0)/1(0)a

Gr Grímsvötn 21 May 2011 64.4/−17.3 273(101)/2(0)/–/276(101)a 350–40014; 108± 11(> 215 hPa)4

Pu Puyehue- 04 Jun 2011 −40.6/−72.1 185(33)/–/–/185(33)c 25014

Cordón Caulle τ = 32(3)/–/– τ = 6.822

Na Nabro 12 Jun 2011 13.4/41.7 131(86)/343(79)/65(5)/539(117)c 150014; 650(> 10 km)21

543± 45(> 147 hPa)4

τ = 11(3)/23(2)/ 27(1) τ = 20± 2(> 147 hPa)4

a, b, c extrapolation method, see Sect. 3.2. 1Prata and Bernardo (2007), 2Carn et al. (2009), 3Carn and Prata (2010), 4Pumphrey et al. (2015), 5Prata et al. (2010), 6Tulet and Villeneuve (2011),
7Clarisse et al. (2008), 8Neely et al. (2013, Table S1) and references therein, 9Karagulian et al. (2010), 10Spinei et al. (2010), 11Corradini et al. (2010), 12Krotkov et al. (2010), 13Kristiansen

et al. (2010), 14Clarisse et al. (2012), 15http://www.volcano.si.edu/volcano.cfm?vn=221070; S. Carn, personal communication, 2014, 16Lopez et al. (2013), 17Haywood et al. (2010), 18Cole

et al. (2010), 19derived from Aura/OMI–30 May 2010 (http://so2.gsfc.nasa.gov), 20Surono et al. (2012), 21Clarisse et al. (2014), 22Theys et al. (2013).

For an easier overview, a graphical representation of MI-

PAS total masses in comparison with external work is given

in Fig. 15 where black symbols indicate MIPAS, red ones

MLS and other colours the nadir observations. From a total

of 42 pairs of MIPAS/external observations, 18 compare well

within 1σ and 28 within 2σ error bars. Furthermore, about

two-thirds (28 of 42) of the MIPAS-derived SO2 masses are

lower than those derived from other sources. This might be

explained by the fact that nadir instruments sample the whole

column of SO2 while the MIPAS altitude range considered

Atmos. Chem. Phys., 15, 7017–7037, 2015 www.atmos-chem-phys.net/15/7017/2015/
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Figure 13. Comparison between daily values of global mass of SO2

above 146.8 hPa after the Sarychev eruption from MIPAS (red) and

from MLS deseasonalized observations (black) (Pumphrey et al.,

2015).

here starts at 10 km, which leads to low MIPAS columns in

cases where the bulk of SO2 remains in the troposphere. Re-

garding only limb sounders, MIPAS total masses compare

within the uncertainties with MLS for So06, Ra06, Sa09 (re-

trieval above 215 hPa) and Na11 while MIPAS values are

lower for Ka08 and higher for Ma05 and Gr11. However,

under consideration of the lower pressure level given for the

MLS data set, MIPAS data of Ma05, So06 and Ra06 would

be outside the estimated error range and lower than MLS.

For some of the volcanic eruptions detected in the MI-

PAS data set (see Table 3), no published values of emit-

ted SO2 abundances have been found. We attributed those

SO2 plumes to specific volcanic eruptions by comparison

with measurements from nadir sounding satellites given at

http://so2.gsfc.nasa.gov or at http://sacs.aeronomie.be. Fur-

thermore, in two cases (mid-July and mid-August 2005) en-

hanced values of SO2 have been detected, but due to the

sparse data coverage by MIPAS during this time it was not

possible to directly attribute those to specific eruptions.

Regarding the retrieved atmospheric e-folding lifetimes of

SO2, we could detect a clear dependence on altitude. Con-

sidering the major eruptions of Kasatochi in 2008 (Ka08),

Sarychev in 2009 (Sa09) and Nabro in 2011 (Na11), these

vary from 11–15 days at 10–14 km via 23–25 days at 14–

18 km to 27–38 days at 18–22 km. These values are sim-

ilar to those of MLS (Pumphrey et al., 2015), which de-

rived 17 days above 215 hPa (11–12 km) and 27 days above

147 hPa (13–14 km) in the case of Sa09. From nadir sounders

in the case of Ka08, Karagulian et al. (2010) derived a life-
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Figure 14. Logarithmic representation of total mass of SO2 above

146.8 hPa from MIPAS (red dots) from Fig. 13 in comparison with

e-folding lifetime τ (thin solid lines) resulting from exponential fits

using different start/end dates of the fit window. The bold grey line

shows a fit with a fixed lifetime of 10 days.

time of 18 days. This value, however, has been challenged by

Clarisse et al. (2012), who determined similar values as re-

ported by Krotkov et al. (2010): 8–9 days. For Sa09, Clarisse

et al. (2012) showed a time dependence comparable to Hay-

wood et al. (2010), pointing to a lifetime of around 10 days.

Thus, there is a clear difference between SO2 lifetime esti-

mates from nadir and from limb-sounding instruments. Fig-

ure 14 illustrates this discrepancy by comparing a decay time

of 10 days to the MIPAS observations from Fig. 13 in log-

arithmic representation. Haywood et al. (2010) have noted

a similar difference between their nadir sounding observa-

tions and results from model runs. These differences have

partly been explained by the SO2 detection limit of the nadir

measurements leading to lower lifetime estimates upon dis-

persion of the plume. A further contribution might also stem

from the vertical sensitivity of nadir sounding instruments

in combination with vertically varying decay times of SO2:

nadir sounders also sample air from altitudes lower in the

troposphere which are not seen by the limb instruments and

where the lifetime of SO2 is probably shorter than at higher

altitudes.

3.3 Global variability of background SO2

A modulation of the SO2 time series which seems not to be

caused by volcanic activity appears in the Northern Hemi-

sphere at mid- and high latitudes (see the top row in Fig. 10):

in summer the SO2 volume mixing ratios at 10 km alti-

tude are enhanced with monthly mean values reaching 80–

100 pptv. This feature can best be detected during years when

volcanic influence was comparably small, such as 2003, 2007

or 2010. In comparison, northern wintertime volume mixing

www.atmos-chem-phys.net/15/7017/2015/ Atmos. Chem. Phys., 15, 7017–7037, 2015
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Figure 15. Graphical representation of total SO2 eruption masses

as listed in Table 3. Black: MIPAS, red: MLS, other colours: nadir

instruments. The coloured numbers refer to the references given in

Table 3.

ratios of SO2 are around 40–50 pptv. An annual cycle of SO2

is also slightly visible at mid-latitudes in the Southern Hemi-

sphere, however, with strongly reduced amplitude compared

to the north (10 pptv in winter vs. 40 pptv in summer).

A globally resolved view on the seasonal variability of the

SO2 non-volcanic “background” is provided in Fig. 16. Here

we have tried to exclude periods of direct volcanic SO2 influ-

ence by visual inspection of single observations (as in Fig. 9)

and of the overview plots (Figs. 10–12). Time periods which

have been excluded from the analysis are reported in the cap-

tion of Fig. 16. Certainly it is not possible to exclude all vol-

canic influence. However, we tried to avoid the signals of the

larger volcanic eruptions in order to get a picture of possible

non-volcanic impact, its global distribution and its temporal

modulation.

The most obvious temporal variability in background SO2

is an annual cycle at 10 km altitude with maxima during sum-

mer over northern mid- to high latitudes and southern mid-

latitudes as already mentioned above. Furthermore, at 12 km

one can observe the highest values of SO2 over the western

Pacific and Atlantic at northern subtropical and mid-latitudes

in June–July–August (JJA). Enhanced values spread within

this latitude band eastward over the Pacific and the Atlantic.

Higher up, at 14 and 16 km, localized regions with enhanced

SO2 mixing ratios can be found over South East Asia, the

Arabian Peninsula and middle America. At 18 km these loca-

tions of slightly enhanced values are still visible in JJA. Fur-

thermore, at this altitude there appear enhanced mixing ra-

tios over the Antarctic region which are probably connected

to the downwelling of SO2-rich air within the Antarctic polar

vortex as described by Höpfner et al. (2013).

Comparison of these global structures and temporal vari-

ations in the UTLS with previous in situ measurements is

difficult due to their sparsity and the variability of the ob-

served SO2 concentrations. The main feature of the MIPAS

data set at lowest altitudes of 10 km, the annual variation with

maximum values in JJA, cannot clearly be identified in avail-

able airborne in situ measurements (cf. Figs. 7 and 8). In situ

campaigns providing data in northern mid-latitudes during

summer have been e.g. ACCESS, ITOP, TACTS and DC3

(Fig. 8). During ACCESS and TACTS mean volume mixing

ratios on the order of 30 pptv have been detected at around

10 km altitude while the corresponding MIPAS data show

about 50–70 pptv. During ITOP and DC3, however, the MI-

PAS values are more similar to the airborne averaged data

of around 40–70 pptv. Thus, at the present stage, we cannot

decide whether the annual variation of SO2 at 10 km altitude

is robust or caused by unknown artifacts within the MIPAS

retrieval.

A similar interhemispheric picture of the SO2 distribution

as in the MIPAS data set has been obtained by Thornton

et al. (1999) during flights over the Pacific. At 8–12 km al-

titude a north–south gradient has been found with values of

50–150 pptv in the north decreasing to 10 pptv at southern re-

mote areas. (The Thornton et al. (1999) data are also included

in the comparison of Fig. 7.)

Another feature reported by Thornton et al. (1999) and

present also in the MIPAS distributions, especially in JJA (cf.

Fig. 16), is the signal of pollution visible in the western North

Pacific region east of the Asian continent and reaching even

the upper troposphere. Enhanced levels of SO2 in the free tro-

posphere originating from the North China Plain have been

observed by Ding et al. (2009) during airborne measurements

in summer 2007. By trajectory analysis Ding et al. (2009)

concluded that these polluted air masses are further lifted into

the upper troposphere by warm conveyor belts. Furthermore,

Fiedler et al. (2009a, b) report on measurements of enhanced

SO2 concentrations over Europe with origin in East Asia.

Enhanced concentrations of SO2 at around 16–18 km lo-

cated mainly in the regions of the Asian and the North Amer-

ican monsoons cannot be compared to in situ data due to

the lack of observations at those altitudes. However, there

may be a connection with the Asian tropopause aerosol

Atmos. Chem. Phys., 15, 7017–7037, 2015 www.atmos-chem-phys.net/15/7017/2015/
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Figure 16. Seasonal global SO2 background distributions at different altitude levels based on all MIPAS observations. The following

time periods have been left out to avoid volcanic contributions: October–December 2002, July–August 2003, January–August 2005,

May–November 2006, October–November 2007, July 2008–January 2009, April–December 2009, November–December 2010, June–

October 2011.

layer (ATAL) which was detected in data of the space-

borne lidar CALIPSO (Vernier et al., 2011a). There is a re-

gion of enhanced aerosol backscatter signal in the region

of the Asian monsoon extending vertically from around 13

to 18 km. A similar but less pronounced aerosol feature is

also present in connection with the North American monsoon

(Vernier et al., 2011a). The nature of these particles is still un-

clear. Due to their low depolarization signal, either spherical

droplets or small solid particles are candidates (Vernier et al.,

2011a). The present MIPAS data indicate that there are en-

hanced levels of SO2 in the monsoon regions at the altitudes

of the ATAL. This points towards the possibility of a produc-

tion of sulfate aerosols from SO2 oxidation at those levels.

4 Conclusions

We have presented a data set of global SO2 volume mixing

ratio distributions which is complementary to the one shown

in Höpfner et al. (2013). While the latter covers the alti-

tude range of 15–40 km, the present retrievals extend from

the upper troposphere up to about 20 km. In terms of tem-

poral and horizontal resolution, the Höpfner et al. (2013)

data are monthly and zonal average values of 10◦ latitudi-

nal bins, while the new data record consists of single limb-

scan retrievals from MIPAS/Envisat comprising more than

1000 profiles with global coverage daily. The estimated to-

tal error for single vmr profiles is typically in the range of

60–100 pptv. The error budget is dominated by the mea-

surement noise. Other error contributions are estimated from

about 10 pptv up to 100 pptv, with increasing errors towards

lower altitudes. Comparison of the MIPAS SO2 measure-

ments with those of the ACE-FTS instrument revealed an

www.atmos-chem-phys.net/15/7017/2015/ Atmos. Chem. Phys., 15, 7017–7037, 2015
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altitude-dependent offset in the background SO2 concentra-

tions of the second major measurement period of MIPAS

(2005–2012). The two periods have been debiased by the ap-

plication of a height- and latitude-dependent correction field

yielding residual biases of less than 20 pptv. Due to the spar-

sity of in situ observations of SO2, no systematic validation

could be made with collocated measurements. However, we

could compare within similar latitudes and seasons of the

year. This resulted in a scatter of the differences within about

±50 pptv, revealing no indication for a problem with the ac-

tual MIPAS data after debiasing.

Due to the global coverage of this data set and the high

sensitivity of limb observations, the evolution of SO2 clouds

from single volcanic eruptions reaching the region of the

UTLS can be tracked, in some cases for even more than half

a year. We have derived volcanic injection masses and for

some cases also atmospheric lifetimes at three altitude re-

gions for 30 eruptions between 2002 and 2012. The determi-

nation of masses of emitted SO2 was complicated due to an

underestimation of the total mass directly after the eruptions

which has become evident by a comparison with SO2 masses

derived from MLS. This is attributed to sampling artifacts

caused by the discard of MIPAS spectra with large aerosol

contribution, an effect similar to the “aerosol cloud top” fea-

ture in SAGE II observations (McCormick and Veiga, 1992;

Fromm et al., 2014) and the smearing of SO2 profile maxima

in case of extremely high mixing ratios where the spectral

lines are saturated and, thus, carry less information. The de-

rived masses can be used as input for atmospheric models

taking into account explicitly also smaller volcanic eruptions

reaching stratospheric levels. Furthermore, to our knowledge

for the first time the atmospheric e-folding lifetime of SO2

has been derived at different levels in the UTLS. The av-

erage lifetimes increase with altitude from about 13 days at

10–14 km up to 32 days at 18–22 km. These values are com-

patible with other limb-sounding measurements (Pumphrey

et al., 2015) but are considerably larger than estimates from

nadir sounders. We attribute this discrepancy to the SO2 de-

tection limit of nadir sounding instruments and a combina-

tion of both decay time and instrument sensitivity varying

with height.

Seasonal global maps of background SO2 distributions

are provided by omitting volcanically perturbed periods. In

the northern mid- and high latitudes at about 10 km altitude

these maps indicate an annual cycle with maximum values

during summertime. Candidate explanations are the higher

tropopause level during summer and the so-called flushing of

the extratropical UTLS with tropospheric air from late spring

to summer (Gettelman et al., 2011, and references therein).

To our knowledge, such a cycle in SO2 has not been observed

before. However, the significance of this particular result is

limited, and additional measurements are needed for confir-

mation or falsification. The same applies to increased con-

centrations of SO2 at altitudes of 16–18 km at the regions and

during the period of the Asian and North American monsoon,

which might be linked to the ATAL (Vernier et al., 2011a).

This calls for a closer probing of upper altitude monsoon air-

masses with respect to sulfur species which is actually a goal

of the StratoClim project (http://www.stratoclim.org/).

The Supplement related to this article is available online

at doi:10.5194/acp-15-7017-2015-supplement.
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