
Degradation in FPGAs
Monitoring, Modeling and Mitigation

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der KIT-Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte
Dissertation

von

Abdulazim Amouri
aus Aleppo-Syrien

Tag der mündlichen Prüfung: 23.04.2015

Erster Gutachter: Prof. Dr. Mehdi Baradaran Tahoori,
CDNC, Karlsruher Institut für Technologie (KIT), Deutschland

Zweiter Gutachter: Prof. Dr. Pascal Benoit,
LIRMM, Universität Montpellier 2, Frankreich

This document is licensed under the Creative Commons Attribution – Share Alike 3.0 DE License
(CC BY-SA 3.0 DE): http://creativecommons.org/licenses/by-sa/3.0/de/

Ich versichere hiermit wahrheitsgemäß, die Dissertation bis auf die dort angegebe-
nen Hilfen selbstständig angefertigt, alle benutzten Hilfsmittel vollständig und genau
angegeben und als kenntlich gemacht zu haben, was aus Arbeiten anderer und eigenen
Veröffentlichungen unverändert oder mit Änderungen entnommen wurde.

Karlsruhe, 05.03.2015

Abdulazim Amouri

Dedication

To whom, who taught me my first letters...
To whom, who planted in me the love of learning and discovering...
To whom, who opened my eyes to the unknowns of this world and guided me to discover...
To whom, God ordered me to acknowledge and respect them...
To my parents ... I love you too much

To whom, who change my life...
To whom, who taught me the patience...
To whom, who loved me, helped me, encouraged me and was always beside me...
To my wife ... I love you

To whom, who bring the happiness into my world...
To whom, who make me feel the responsibility...
To whom, who make me look into the future...
To my children ... I love you

I dedicate this work to all of my family members and to the people of Syria, who are
still suffering the war for 4 years.

i

Acknowledgment

My cordial gratitude is presented to my advisor Prof. Dr. Mehdi Tahoori, this great person
from whom I learned a lot, who guided me through my research and give me the flexibility
to try and discover, who unleashed my creativity to deal with the most challenging tasks.
This great person, who kept a high level of patience in spite of all my nonsense ... I’m very
thankful.

I’m also grateful to my co-advisor Prof. Dr. Pascal Benoit and his assistant Dr. Florent
Bruguier for the nice and fruitful collaboration and for their warm welcome during my visit
to Montpellier. Furthermore, my special thanks to Prof. Dr. Jörg Henkel and his assistants
Mr. Hussam Amrouch and Dr. Thomas Ebi for the fruitful collaboration.

I would like to present my heartfelt thanks to all of my colleagues and project partners
at the Chair of Dependable Nano Computing (CDNC) for the nice period I spent between
them and the family atmosphere they have created at our chair and also for all their valuable
feedback and discussions. In particular I want to thank (in alphabetical order): Matthias
Beste, Liang Chen, Mojtaba Ebrahimi, Farshad Firouzi, Saman Kiamehr, Fabian Oboril and
Parthasarathy Murali Baskar Rao. I also want to thank Jochen Hepp, whom I supervised
in the scope of his Master thesis for his nice work. Furthermore, my special thanks to my
colleagues Fabian Oboril, Artjom Grudnitsky and Gabriel Cadilha Marques for correcting
my German translation of the abstract of this dissertation. Finally, my thanks to all the
secretaries and technicians at our institute in particular to Mrs. Iris Schrder-Piepka, Mrs.
Renate Murr-Grobe and Mr. Martin Buchty for all of their efforts in providing a good
working environment.

iii

List of own publications included in this dissertation

Book Chapters

[B.1] A. Amouri, M. Tahoori, ”Lifetime Reliability Sensing in Modern
FPGAs”, In P. Athanas, D. Pnevmatikatos, N. Sklavos, editors, ”Em-
bedded Systems Design with FPGAs”, Springer, ISBN 978-1-4614-
1361-5, 2013.

Conference Papers

[C.1] A. Amouri, F. Bruguier, S. Kiamehr, P. Benoit, L. Torres and
M. Tahoori, ”Aging Effects in FPGAs: an Experimental Analy-
sis”, Proceedings of the 24th International Conference on Field Pro-
grammable Logic and Applications (FPL), IEEE, 2014, Munich,
Germany.

[C.2] A. Amouri, J. Hepp, and M. Tahoori, ”Self-Heating Thermal-Aware
Testing of FPGAs”, Proceedings of the 32nd IEEE VLSI Test Sym-
posium (VTS), pages 1-6, 2014, Napa, California, USA.

[C.3] A. Amouri and M. Tahoori, ”Degradation in FPGAs: Monitor-
ing, Modeling and Mitigation (PHD forum paper: Thesis broad
overview)”, Proceedings of the 23rd International Conference on
Field Programmable Logic and Applications (FPL), pages 12, IEEE,
2013, Porto, Portugal.

[C.4] P.M.B. Rao, A. Amouri, S. Kiamehr, and M. Tahoori, ”Altering
LUT Configuration for Wear-out Mitigation of FPGA-Mapped De-
signs”, Proceedings of the 23rd International Conference on Field
Programmable Logic and Applications (FPL), pages 18, IEEE, 2013,
Porto, Portugal.

[C.5] A. Amouri, H. Amrouch, T. Ebi, J. Henkel and M. Tahoori, ”Accu-
rate Thermal-Profile Estimation and Validation for FPGA-Mapped
Circuits”, Proceedings of the 21st IEEE International Symposium on
Field-Programmable Custom Computing Machines (FCCM), pages
57-60, 2013, Seattle, Washington, USA.

v

[C.6] A. Amouri, S. Kiamehr and M. Tahoori, ”Investigation of Aging Ef-
fects in Different Implementations and Structures of Programmable
Routing Resources of FPGAs”, Proceedings of the 2012 International
Conference of Field-Programmable Technology (FPT), pages 215-
219, IEEE, 2012, Seoul, South Korea.

[C.7] A. Amouri and M. Tahoori, ”High-Level Aging Estimation For
FPGA-Mapped Designs”, Proceedings of the 22nd International
Conference on Field Programmable Logic and Applications (FPL),
pages 284-291, IEEE, 2012, Oslo, Norway.

[C.8] S. Kiamehr, A. Amouri and M. Tahoori, ”Investigation of NBTI and
PBTI Induced Aging in Different LUT Implementations”, Proceed-
ings of the 2011 International Conference of Field-Programmable
Technology (FPT), pages 1-8, IEEE, 2011, New Delhi, India

[C.9] A. Amouri and M. Tahoori, ”A Low-Cost Sensor for Aging and Late
Transitions Detection in Modern FPGAs”, Proceedings of the 21st
International Conference on Field Programmable Logic and Appli-
cations (FPL), pages 329-335, IEEE, 2011, Chania, Greece.

Journal Papers

[J.1] A. Amouri, J. Hepp, and M. Tahoori, ”Built-in Self-Heating Ther-
mal Testing of FPGAs”, Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD) (Accepted for publication,
November 2015)

vi

Abstract

The quest for high performance circuits with low power consumption, large scale inte-
gration and low cost, is the main reason behind the continuous shrinking of transistors’
dimensions at nano-scale. This shrinking has already reached critical limits posing vari-
ous manufacturing and reliability challenges to Very Large Scale Integration (VLSI) chips.
Nowadays, the transistor degradation mechanisms (a.k.a. transistor aging) and the thermal-
related issues (heat dissipation, hot spots, etc.) are among the most important challenges
that affect the reliability of the VLSI chips.

Field Programmable Gate Arrays (FPGAs) are general purpose reconfigurable chips pro-
viding many unique features and capabilities over Application-Specific Integrated Circuits
(ASICs). The FPGA design philosophy as compared to that of ASIC is based on both the
concept of rapid development (faster time to market) and the in-field programming concept.
Hence, unlike ASICs, the circuit can be deployed directly onto the FPGA without the need
to worry about the manufacturing process and the FPGA chips can be easily reconfigured
in the field as desired to accomplish different functions. For these reasons, FPGAs are used
in a wide range of applications, where faster time to market and/or in-field reconfigurations
are required. For many of these applications the reliability is very critical and comes as
a first priority. State-of-the-art FPGAs, pushed by the ever-increasing demands on higher
performance and lower power, use the latest advancements in VLSI technology, and thus
they share most of the reliability challenges associated with nano-scale technology nodes.
Therefore, to guarantee the correct functionality during the lifetime of FPGA-mapped sys-
tems in the field, proper techniques at various levels should be devised.

Transistor aging, as an important reliability threat at nano-scale technologies, causes
changes in the transistor characteristics, which slow down the switching speed of the tran-
sistor over time and in turn leads to timing failures in the chip. This issue has been ad-
dressed in literature mainly for ASICs and at the device-level alone. In order to be able to
fortify against the aging effects in FPGA, it is necessary to estimate the amount of degrada-
tion for the whole FPGA-mapped circuit early at design phase. However, it is infeasible to
estimate the aging for a complete design using directly the models and techniques proposed
at device-level. This is because of the simulation overhead at device-level and its complex-
ity. That is why only experimental methods have been followed in literature to investigate
the aging of FPGA. Based on that, there is a need for fast and accurate aging estimation
at higher level, even if it is inherently less accurate than the device-level correspondent. In
fact, to properly deal with aging in FPGAs, it requires monitoring, modeling and mitiga-
tion at device and architecture levels and this must be integrated in the tool-chain used for
developing the FPGA designs at user side.

This dissertation targets the transistor aging degradation as well as the associated ther-
mal challenges in FPGAs (since there is an exponential relation between aging and chip
temperature). The main objectives are to perform experimentation, analysis and device-

vii

Abstract

level model abstraction for modeling the degradation in FPGAs, then to monitor the FPGA
to keep track of aging rates and ultimately to propose an aging-aware FPGA design flow
to mitigate the aging. The contributions presented in this dissertation can be divided into
three main parts: modeling, monitoring and mitigation. For modeling the aging effects in
FPGA, device-level investigations are carried out on fundamental FPGA building blocks
(look-up tables and routing switch matrices) to understand the effects of aging on FPGA
architecture. Furthermore, FPGA stress experiments with controlled stress conditions are
made to measure the extent of degradation and the role of different parameters in the FPGA
degradation. Additionally, a method for estimating the thermal-profile of FPGA-mapped
designs is proposed, which is verified by real thermal measurements. Based on the results
of these real experiments, an aging modeling framework for FPGA is proposed by combin-
ing both the accurate device-level models and the implicit high-level details in the FPGA
design tools. Using this framework, several mitigation strategies are proposed to reduce the
effect of aging on the total lifetime of the FPGA-mapped design. These strategies are based
on an aging-aware logic mapping that targets directly the look-up tables of the FPGA.

As the effects of aging appear on a long time-scale and also they are process- and usage-
dependent, a tracking of these effects is important to maintain the correct functionality of
the mapped design throughout the FPGA lifetime. For monitoring the aging effects in FP-
GAs, logic-based sensors exploiting the existing programmable FPGA resources, are pre-
sented to monitor the effect of aging on the most critical paths of FPGA-mapped designs.
Additionally, different techniques are proposed for thermal-aware functional testing of the
FPGA using self-heating modules that are built on top of FPGA programmable resources.

The results of these contributions have been integrated in an aging-analysis-and-
mitigation toolset, which takes as input the information available to the FPGA-users about
their designs in order to estimate the total expected lifetime and performs various modifi-
cations to meet the lifetime reliability requirements. These results can be even integrated in
the FPGA tools provided by the manufacturer with more accurate models for aging-aware
placement and routing. Additionally the investigation results can be used to build an aging-
aware FPGA chip, in which the FPGA building blocks are designed with aging effects in
mind from the transistor-level upwards to the whole FPGA.

viii

Zusammenfassung

Die Suche nach hochleistungsfähigen Schaltungen mit niedrigem Stromverbrauch, ho-
her Integrationsdichte und geringen Kosten, ist der Hauptgrund für das kontinuierliche
Schrumpfen der Transistordimensionen bis in den Nanometer-Bereich. Das Schrumpfen
hat jedoch bereits kritische Grenzen erreicht, die verschiedene Herstellung- und Zu-
verlässigkeitsherausforderungen an Very Large Scale Integration (VLSI)-Chips stellen.
Heutzutage gehören die Transistorabbaumechanismen (auch bekannt als Transistor-
alterung) und die thermischen Probleme (Wärmeableitung, Hot Spots, etc.) zu den wichtig-
sten Herausforderungen, die die Zuverlässigkeit der VLSI-Chips beeinflussen.

Im-Feld programmierbare Logik-Gatter-Anordnungen (FPGAs) sind rekonfigurierbare
Chips für allgemeine Anwendungen, die viele einzigartige Funktionen und Fähigkeiten
gegenüber anwendungsspezifische integrierte Schaltungen (ASICs) besizen. Die FPGA-
Entwurfsphilosophie basiert dabei, im Vergleich zu jener der ASICs, auf zwei wesentlichen
Konzepten: Schnelle Prototypen-Entwicklung (und damit schnellere Markt-einführung)
und der Rekonfigurierbarkeit während der Nutzung. Deshalb können, anders als in
ASICs, Schaltkreise auf einem FPGA implementiert werden, ohne sich um den Herstel-
lungsprozess zu kümmern. Die FPGA-Chips können im Betrieb nach Wunsch neu kon-
figuriert werden, um verschiedene Funktionen auszuführen. Aus diesen Gründen werden
FPGAs in einer Vielzahl von Anwendungen eingesetzt, in denen eine schnellere Markte-
inführung und/oder im Feld Neukonfigurationen erforderlich sind. Für viele dieser Anwen-
dungen ist die Zuverlässigkeit sehr kritisch und hat daher erste Priorität. Moderne FPGAs
nutzen die neuesten Fortschritte der VLSI-Technologie, durch die ständig steigende An-
forderungen an die höhere Leistung und geringerem Stromverbrauch, und teilen sich damit
die meisten Zuverlässigkeitsherausforderungen, die mit Nanometer-technologien verbun-
den sind. Deshalb müssen sachgemäße Techniken auf verschiedenen Abstraktionsebenen
entwickelt werden, um die korrekte Funktion im Betrieb der FPGA-basierten Systeme zu
gewährleisten.

Transistoralterung, als eine wichtige Zuverlässigkeitsherausforderung bei Struk-
turgrössen im Nanobereich, führt zu Veränderungen in den Transistoreigenschaften, die
die Schaltgeschwindigkeit der Transistorn mit der Zeit verlangsamen und damit wiederum
zu Chipausfällen führen können. Dieses Problem wurde in der Literatur vor allem für
ASICs und auf Transistoren-Ebene angegangen. Um in der Lage zu sein die Alterungsef-
fekte in FPGAs verlangsamen zu können, ist es notwendig die Alterung früh in der Ent-
wurfsphase abzuschätzen. Es ist jedoch unmöglich, die Alterung für einen kompletten
Entwurf direkt mit Modellen und Techniken auf Transistor-Ebene abzuschätzen, aufgrund
des Simulationsaufwands auf Transistor-Ebene und der verbundenen Komplexität. Deshalb
sind nur experimentelle Methoden in der Literatur verfolgt worden, um die Alterung von
FPGAs zu untersuchen. Somit gibt es einen großen Bedarf für schnelle und genaue Al-
terungsschätzungen auf höheren Abstraktionsebenen, auch wenn diese weniger exakt sind,

ix

Zusammenfassung

als die Transistor-Ebene-Abschätzung. Für den richtigen Umgang mit der Alterung in FP-
GAs werden Überwachung, Modellierung und Minderung der Alterung auf Transistor- und
Architekturebenen benötigt. Darüber hinaus muss all dies in die Werkzeugkette, die für die
Entwicklung der FPGA-Designs auf Anwenderseite verwendet wird, integriert werden.

Diese Dissertation befasst sich mit der Alterung von FPGAs, sowie den damit verbun-
denen thermischen Probleme in FPGAs (da es eine exponentielle Beziehung zwischen Al-
terung und Chiptemperatur gibt). Die in dieser Arbeit vorgestellten Beiträge lassen sich
in drei Hauptteile gliedern: Modellierung, Überwachung und Minderung. Für die Model-
lierung der Alterungseffekte in FPGAs werden Untersuchungen auf Transistor-Ebene für
die Grund-FPGA-Bausteine durchgeführt (Look-up Tables und Routing Schaltmatrizen),
um die Auswirkungen der Alterung auf die FPGA-Architektur zu verstehen. Weiterhin
werden FPGA-Stressexperimente mit kontrollierten Belastungsbedingungen durchgeführt,
um das Ausmaß der Alterung und den Einfluss der verschiedenen Parameter auf die
Alterung von FPGAs zu messen. Zusätzlich wird ein Verfahren zum Abschätzen des
Wärmeprofils vorgeschlagen, dass durch reale thermische Messungen verifiziert/validiert
wird. Basierend auf den Ergebnissen dieser realen Experimente wird eine Platform zur Al-
terungsmodellierung für FPGAs vorgeschlagen. Mit dieser Platform werden verschiedene
Abwehrstrategien entwickelt, die die Auswirkungen der Alterung auf die Gesamtlaufzeit
des FPGAs reduzieren. Diese Strategien basieren auf einer alterungsbewusste Logik-
Zuordnung, und arbeiten direkt auf den Look-up Tables des FPGAs.

Da die Auswirkungen der Alterungseffekte über einen langen Zeitraum erkennbar wer-
den und sie auch Prozess- und Nutzungsabhängig sind, ist eine Überwachung dieser Effekte
wichtig, um die richtige Funktionalität über die gesamte FPGA Lebensdauer zu halten. Zur
Überwachung der Alterungseffekte in FPGAs werden Logik-Sensoren, die die bestehenden
programmierbaren FPGA-Ressourcen nutzen, entwickelt, um den Effekt der Alterung auf
den kritischen Pfaden der FPGA-basierten Entwurfen zu überwachen. Zusätzlich werden
verschiedene Techniken für die thermische sensitive Funktionalitätsprüfung des FPGAs
durch sich selbst aufheizende Module vorgeschlagen, die auf den Resourcen des FPGAs
aufgebaut sind.

Die Ergebnisse dieser Beiträge wurden in ein Toolset für Alterungsanalyse und Min-
derung integriert, dass als Eingabe die Information, die dem FPGA-Nutzer über seine
Entwürfe zur Verfügung stehen, nimmt, um die gesamte erwartete Lebensdauer zu schätzen
und dann verschiedene Modifikationen durchführt, um die Anforderungen bzgl. der Zu-
verlässigkeit über die gesamten Lebensdauer zu erfüllen. Diese Ergebnisse können auch
mit den FPGA-Tools von kommerziellen Herstellern mit genaueren Alterungsmodellen für
alterungsbewusste Platzierung und Verdrahtung benutzt werden. Zusätzlich können die
Untersuchungsergebnisse verwendet werden, um einen alterungsbewusstes FPGA-Chip zu
bauen, in dem die FPGA-Bausteine mit Berücksichtigung von Alterungseffekten von der
Transistor-Ebene aufwärts entwickelt werden.

x

Contents

Abstract vii

Zusammenfassung ix

1. Introduction 1
1.1. FPGAs and technology scaling . 1
1.2. Degradation and reliability challenges of FPGAs 3
1.3. Dissertation focus and goals . 5

1.3.1. Investigation and Modeling . 5
1.3.2. Monitoring . 6
1.3.3. Mitigation . 6

1.4. Dissertation outline . 8

2. Background 9
2.1. FPGA architecture . 9

2.1.1. Configurable Logic Block (CLB) 10
2.1.2. Switch Matrix . 10
2.1.3. Other components . 12

2.2. Circuit aging . 13
2.2.1. Transistor aging . 13
2.2.2. Interconnects aging . 21

I. Investigation and Modeling 23

3. Investigating The Degradation of LUTs 25
3.1. Introduction . 25
3.2. Related Work . 26
3.3. LUT structures . 26

3.3.1. Two-input LUT structures . 26
3.3.2. Four-input LUT structures . 30

3.4. Evaluation methodology . 30
3.4.1. Two-input LUTs . 31
3.4.2. Four-input LUTs . 32

3.5. Experimental results and analysis . 35
3.5.1. Two-input LUTs results . 36
3.5.2. Four-input LUTs results . 41

3.6. Summary . 44

xi

Contents

4. Investigating The Degradation of Programmable Routing Resources 47
4.1. Introduction . 47
4.2. Programmable Routing Switches in FPGAs 47

4.2.1. Pass Transistor with keeper (PT-keeper) 48
4.2.2. Tri-State buffer (TS-buffer) . 49
4.2.3. Transmission Gate (TG) . 49
4.2.4. Multiplexer (MUX) . 50

4.3. Evaluation Methodology . 50
4.3.1. Circuit-level details and assumptions 50
4.3.2. NBTI/PBTI effect analysis . 50
4.3.3. Delay measurements . 51
4.3.4. Load analysis . 51

4.4. Experimental Results . 52
4.4.1. Effect of NCS . 52
4.4.2. Effect of WL . 54
4.4.3. Combined influence of both WL and NCS 54
4.4.4. Effect of Fan-out . 54
4.4.5. Effect of Vdd . 54

4.5. Summary . 58

5. Experimental Analysis of Aging Effects 59
5.1. Introduction . 59
5.2. Related work . 60
5.3. Sensors design and implementation . 60

5.3.1. Sensors design . 60
5.3.2. Implementation . 62

5.4. Experimental setup and schedule . 64
5.4.1. Setup . 65
5.4.2. Schedule . 65

5.5. Experimental results and analysis . 66
5.5.1. Results . 66
5.5.2. Analysis . 69

5.6. Summary . 75

6. Thermal-Profile Estimation of FPGA-Mapped Designs 77
6.1. Introduction . 77
6.2. Related work . 78
6.3. Motivation . 79

6.3.1. Leakage-Temperature Relation . 79
6.3.2. FPGA Leakage Power . 80

6.4. The Proposed Approach . 81
6.4.1. Leakage Power Redistribution . 81
6.4.2. Temperature-Leakage Loop Estimation 81

xii

Contents

6.5. FPGA Thermal Estimation Flow . 83
6.5.1. Floorplan Creation . 83
6.5.2. Power Trace Generation . 84
6.5.3. Thermal Profile Estimation For Dynamically Changing Circuits . . 85

6.6. Experimental Setup . 87
6.6.1. Thermal Camera Usage . 87
6.6.2. Model Calibration . 87

6.7. Experimental Results . 87
6.8. Summary . 88

7. High-level Aging Estimation 93
7.1. Introduction . 93
7.2. Related Work . 94
7.3. Methodology . 94

7.3.1. Aging model abstraction . 95
7.3.2. Information gathering . 97
7.3.3. Aging estimation . 100

7.4. Experimental results . 101
7.4.1. Validation of the abstracted aging model 101
7.4.2. Case study: influence of mapping and optimization algorithms . . . 101

7.5. Summary . 106

II. Monitoring 107

8. Aging Monitoring in FPGA-Mapped Designs 109
8.1. Introduction . 109
8.2. Related Work . 109
8.3. Aging Sensor: Main Idea . 111

8.3.1. Critical path and aging . 111
8.3.2. The proposed sensor . 111
8.3.3. Sensor sensitivity analysis . 114

8.4. Sensor Mapping . 116
8.4.1. Mapping to logic slices . 117
8.4.2. Detection window generation . 118
8.4.3. Glitches in FPGA . 118
8.4.4. Aging sensor placement and calibration 119

8.5. Experimental Results . 121
8.5.1. FPGA design tool experiments (simulation results) 121
8.5.2. FPGA board experiment (emulation results) 122

8.6. Summary . 125

9. Self-Heating Thermal-Aware Testing of FPGAs 127
9.1. Introduction . 127

xiii

Contents

9.2. Related Work . 128
9.3. FPGA Self-Heating . 129

9.3.1. The concept of self-heating . 129
9.3.2. Self-Heating Elements (SHEs) . 129
9.3.3. Chain of SHEs: easier controlling 131

9.4. Thermal profile for testing . 133
9.4.1. Distribution of SHEs . 133
9.4.2. Calibration process . 134
9.4.3. Integration of SHEs . 135
9.4.4. Other thermal constraints . 136

9.5. Self-heating application-independent BIST 136
9.5.1. Sequential method . 136
9.5.2. Concurrent method . 137
9.5.3. Case study BIST implementation 137

9.6. Self-heating application-dependent testing 141
9.6.1. Application-dependent testing . 141
9.6.2. SHEs integration methods . 142

9.7. Experimental Results . 144
9.7.1. Self-heating application-independent BIST 144
9.7.2. Self-heating application-dependent test 147

9.8. Summary . 150

III. Mitigation 151

10.Aging Mitigation in LUTs 153
10.1. Introduction . 153
10.2. Related Work . 153
10.3. Motivation . 154
10.4. Methodology . 154

10.4.1. Method 1: Manipulating partially-used LUTs 154
10.4.2. Method 2: Swapping LUT inputs 156
10.4.3. Application strategies . 157

10.5. Implementation Flow . 158
10.6. Experimental Results . 159
10.7. Summary . 163

11.Conclusions and Outlook 165
11.1. Conclusions . 165
11.2. Outlook . 166

xiv

Chapter 1.

Introduction

The invention of Field Programmable Gate Arrays (FPGAs) in the late 1980’s has rev-
olutionized the modern life in many domains. First, it enabled the concept of hardware
emulation, which helps in accelerating the design process of Integrated Circuits (ICs) in
the means of allowing the design to be early prototyped on real hardware, with minimal
cost. This allows debugging and verifying the design in the field of operation before the
final fabrication of ICs takes place, which is normally a very costly process. Hence, the
introduction of FPGAs in the design process of ICs saves a lot of development efforts and
reduces the cost and time significantly.

In addition to hardware emulation, the unique feature of FPGAs of being general purpose
reconfigurable chips, has opened the doors for new domain of systems that can be adapted
in the field according to the environmental changes or user requirements. Examples of such
systems include remote-area systems, space applications, automobile systems, telecommu-
nication systems, etc. The in-field adaptation is usually very hard to be implemented using
Application Specific Integrated Circuits (ASICs)-based systems, which makes the FPGAs
a preferable choice for these systems. The increasing need for such systems in many appli-
cation domains was and still behind the rapid development of FPGAs during the last two
decades.

Nowadays, the state-of-the-art FPGAs, due to their exploitation for the latest advance-
ments in transistor technology, have many advanced properties in terms of performance,
power consumption and logic densities1, making the FPGAs practical alternatives or even
more preferable than the ASICs for low and medium-volume applications in several do-
mains. In the following, the relation between the FPGAs and the latest advancement in the
transistor technology is highlighted.

1.1. FPGAs and technology scaling

Since the introduction of ICs for the first time more than 60 years ago, their develop-
ment has witnessed a huge number of leaps. For example, the integration density mea-
sured by the number of transistors per chip has been increased dramatically from few
thousand transistors in the 1970s to more than 20 billion transistors in 2014 (Virtex R©

UltraScaleTMXCVU440 FPGA from Xilinx [1]). This rapid development is actually
pushed by the non-stoppable demands for circuits with higher performance, lower power
consumption, lower cost and easier portability. These circuit requirements are explained in
the following: 1) Higher performance: for many applications, the performance is the first

1The number of logic gates that can be implemented on the chip

1

Chapter 1. Introduction

distinguishing aspect of the circuit. Circuits with higher performance allow more tasks to
be completed in shorter time periods. Following the main rule of “performance is never
enough”, there are continuous demands for higher performance circuits. 2) Lower power
consumption: the importance of this requirement comes from its relation to two other fac-
tors; the power consumption cost and/or the limited availability of power sources. The later
factor is dominant in portable battery-running devices and in remote-area applications (e.g.,
mobile phones, laptops, heart-beat regulators, satellites, wireless sensors). The first factor
however, is related to most of the applications and it represents both the operating costs
(i.e., the electricity bill) and/or the infrastructure price (e.g., battery or power harvesting
devices). These important factors raise the demands for lower-power circuits. 3) Lower
cost: the cost of the circuit plays a role mostly in the marketing and directly affects the
manufacturer revenue. For many applications, the circuit cost should not exceed a certain
budget. 4) Easier portability: the smaller the device is, the more mobile it will be. This
fact pushes toward smaller circuits with higher integration densities.

Although these four circuit requirements are the main motivation for the IC develop-
ment, in most cases it is hard to satisfy them all at the same time. This is because of their
strong interdependence that makes changing any of them affecting the rest significantly.
For example, enhancing the performance of the circuit could increase its power consump-
tion and raise its cost or vice versa. Therefore, a trade-off between these requirements is
usually made to fulfill the application needs.

In order to satisfy the above requirements and continue coping with all market demands,
the chip manufacturers used to follow a “magical solution” represented in downscaling the
device technology. This is because smaller transistors are cheaper and also tend to be faster
and consume less power. This solution was successful for a long period. Nowadays, the
downscaling has already reached to a level where the performance and power consumption
cannot be enhanced at the same rate as before. In spite of that, the downscaling continues,
because it can still enhance the circuit cost and portability or it can be used to achieve higher
level of integration, which means more and different functionality can be added to the chip.
In other words, with the downscaling, the same number of transistors can be packed in a
smaller chip area (i.e. more chips can be produced from a single wafer) or more transistors
can be packed in the same chip area (i.e. adding additional functionality to the chip). Since
the main cost represents in wafer production, smaller chips are cheaper and vice versa.

FPGAs are in the front line to benefit from the most advanced technology nodes, not
only to meet the increasing demands of high performance and low power digital and mixed-
signal applications, but also because FPGAs have regular and scalable structure and they
are produced in high-volume. These reasons make the downscaling of FPGAs a more
straightforward process than it is for the other types of chips.

The state-of-the-art FPGA series from the major FPGA manufacturers use the advanced
20 nm technology together with 3D stacking IC technology [2] and with tri-gate transistor
technology [3]. Furthermore, FPGAs based on 16 nm and 14 nm technologies are also in
plan [4, 5]. This excessive scaling allows the FPGA to have a very high integration density,
which reaches to ≈6.8 billion transistors in the largest commercially-available FPGA [6].
In one of the upcoming FPGAs, this number of transistors is 2-3 times larger [2].

Having these integration capabilities, the state-of-the-art FPGAs provide very advanced

2

1.2. Degradation and reliability challenges of FPGAs

features. The upcoming Virtex R© UltraScaleTMXCVU440 FPGA from Xilinx [7], as an ex-
ample, can provide up to 4.4 million logic cells (which is equivalent to ≈50 million ASIC
gates), 88.6 Mbit of internal BlockRAMs, 2880 of internal Digital Signal Processor (DSP)
blocks and 1456 I/O pins. Additionally, it offers several hardened Intellectual Properties
(IPs) and interfaces, such as 16 Gb/s transceivers, 100 Gbit Ethernet units, Peripheral Com-
ponent Interconnect (PCI) Express blocks, etc. Similar features are also announced for the
upcoming Stratix R©10 FPGA from Altera [8] the main competitor of Xilinx.

These advanced features and the continuous development of modern FPGAs has also
extended the range of their application domains to include even applications with few or
no reconfiguration requirements. The relatively short time-to-market that the FPGAs can
offer and their lower cost for low and medium-volume application in comparison to ASIC,
play the main role in this extension. Currently, FPGAs are used in a wide range of do-
mains including both critical and non-critical applications such as aerospace and defense,
wired and wireless communications, smart networks, ASIC prototyping, video and imag-
ing applications, consumer electronics, high-performance computing, factory automation,
data centers, automotive applications, security systems, financial acceleration, high-end
instrumentation and in many medical solutions [9].

Unfortunately, the advanced features of modern FPGAs, as a result of the excessive
downscaling and the very high integration density, do not come free of cost. There are
many manufacturing and reliability challenges accompanied with them. In the next section,
the main reliability challenges facing the modern FPGAs are pointed out.

1.2. Degradation and reliability challenges of FPGAs

The reliability, which is defined as the consistent performing according to the specifica-
tions, means that the manufactured chip must continue functioning as specified during the
whole expected lifetime. For many applications, especially critical ones, the reliability of
the circuit is of the highest priority. However, as the downscaling of device technology
reaches at nano-scale, many challenges rise up quickly and manifest themselves as manu-
facturing and reliability obstacles. Some of these challenges include manufacturing vari-
ability, sub-threshold leakage, heat dissipation, thermal hot spots, increased circuit noise
sensitivity, and reliability concerns due to transient (e.g. radiation-induced soft errors) and
permanent (e.g. transistor aging) failures [10, 11, 12, 13]. The importance of these chal-
lenges comes from the fact that they lead to more failures both during the manufacturing
phase and at runtime. This is represented in lower manufacturing yield, more runtime fail-
ures and shorter lifetime of the chip than expected. All of these may lead to catastrophes in
field of operation if no counter-measures are used. As FPGAs are utilized in many critical
domains, in which the reliability is of a great importance, an appropriate addressing for
each of these challenges is required through all the design phases. This is to assure the
correct operation through the expected lifetime.

Transistor aging in particular, is one of the most important reliability challenges at nano-
scale [14, 13]. It happens on a relatively long time period (i.e. several months to years).
In this period, and under the effect of different factors, the transistor threshold voltage in-
creases slowly, which reduces the switching speed and in turn increases the delay of the

3

Chapter 1. Introduction

circuit. This continues until the delay of the circuit reaches a critical limit after which
timing failures start to happen. In other words, the degradation effect that results from tran-
sistor aging, appears first after having the chip deployed in the operational environment,
which raises many concerns about the reliability. Usually, large design margins are con-
sidered to make up for the delay increase due to transistor aging and to extend the useful
lifetime of the circuit. However, these margins prevent the exploitation of the maximum
performance of the chip.

Actually, transistor aging is a result of several degradation mechanisms. These are
namely Bias Temperature Instability (BTI) [15, 16], which consists of two corresponding
mechanisms; the Negative BTI (NBTI) and the Positive BTI (PBTI), Hot Carrier Injection
(HCI) [17, 18] and Time-Dependent Dielectric Breakdown (TDDB) [19]. The amount of
degradation caused by these mechanisms is related to several circuit and environmental
parameters (e.g. chip temperature, supply voltage, circuit switching activities, design sig-
nal probabilities, etc.). Some of these parameters have a larger impact on accelerating the
degradation than other parameters. With adequate investigation and analysis, these param-
eters can be controlled to mitigate the degradation and prolong the useful lifetime of the
chip. To achieve this in FPGAs, a deep understanding for the origin of the degradation and
how it propagates from the device-level up to the system-level is required.

In addition to transistor aging, thermal-related issues such as heat dissipation and hot
spots are also among the most important reliability challenges in modern VLSI chips [20].
In fact, increasing chip temperature raises the power consumption and it may results in
cracks and permanent damage to the chip and/or nearby components. Furthermore, chip
temperature has an exponential effect on the amount of degradation caused by transistor
aging mechanisms. Thus, increasing chip temperature accelerates the aging process [21].
Therefore, addressing the thermal-related issues in FPGAs is a precondition for addressing
the transistor aging challenge. This requires a deep understanding for the FPGA architec-
ture and the FPGA power distribution.

The challenge of transistor aging has been addressed in literature predominantly for
ASICs and with a main focus on the device-level alone. Because of the simulation over-
head at device-level and its complexity, it is infeasible to apply the models and techniques
proposed at device-level to estimate the aging for a complete design. Additionally, some
of the main factors that influence the aging are originated from higher-levels (e.g., it is
extremely usage, workload and temperature dependent), which requires access to higher-
level details for correct estimation at device-level. Aside from that, in FPGAs most of the
device-level details are proprietary to the manufacturer and the users have access only to
the final fabricated chip. Therefore, only few works have investigated the aging of FPGA
and this is done experimentally. However, there exists no work for estimating the aging for
a complete FPGA-mapped design as required by FPGA designers in order to be able to for-
tify against its effects. Based on that, there is a need for fast and accurate aging estimation
at higher level, even if it is inherently less accurate than the device-level correspondent. In
fact, to properly deal with aging in FPGAs, it requires monitoring, modeling and mitigation
at device and architecture levels as well as the tool-chain used for developing the FPGA
designs at user side.

4

1.3. Dissertation focus and goals

1.3. Dissertation focus and goals

Having the main goal of enhancing the reliability of FPGAs, this dissertation targets mainly
the degradation in FPGAs due to transistor aging as well as the related thermal challenges.
Novel techniques and methods are proposed to handle these challenges at different levels.
The main objectives are to model the degradation in FPGAs by performing experimenta-
tion, analysis and higher level abstraction for the device-level models, then to keep track of
aging rates in the FPGA by proposing aging monitors and ultimately to propose an aging-
aware FPGA design flow to mitigate the aging. The proposed aging analysis and mitigation
techniques are integrated on top of traditional (commercial) FPGA design toolchain, which
shows the applicability of these techniques for real designs. The work accomplished in the
scope of this dissertation can be divided into three main phases; modeling, monitoring and
mitigation. The relation between these phases is depicted in Figure 1.1

Degradation

Monitoring

Degradation

Investigation

Degradation

Modeling

Degradation

Mitigation

Figure 1.1.: The relation between the different phases of work accomplished in the scope
of this dissertation

1.3.1. Investigation and Modeling

In this phase, the first purpose is to have a deep understanding for the FPGA architec-
ture and to investigate the effects of the degradation mechanisms and the related thermal
challenges in FPGAs. To achieve this, device-level investigations are carried out on fun-
damental FPGA building blocks (e.g. look-up tables (LUTs), switch matrices, etc.) to
understand the effects of aging on FPGA architecture. Furthermore, FPGA stress experi-
ments with controlled stress conditions are made to measure the extent of degradation and
the role of different parameters in the FPGA degradation. Additionally, a method for esti-
mating the thermal-profile of FPGA-mapped designs is proposed, which is verified by real
thermal measurements. The results of these investigations are exploited for abstracting the

5

Chapter 1. Introduction

transistor-level models of the aging mechanisms to register-transfer-level (RTL), such that
they can be applied during the mapping of RTL designs to the FPGA. Based on these ab-
stracted models, an aging analysis tool is implemented on top of the FPGA synthesis and
mapping toolchain for estimating the effects of degradation and thermal challenges early
in the design phase, such that appropriate strategies for the mitigation of these challenges
can be applied.

1.3.2. Monitoring

Since aging is process, environment and workload dependent, it is necessary to continu-
ously monitor the amount of circuit degradation to gauge the remaining lifetime and to
maintain the correct functionality of the FPGA. The work done in the scope of the mon-
itoring phase focuses on developing methods and techniques that enable both the FPGA
designer at the design phase, and the FPGA end-user in the field of operation, to monitor
when the effects of transistor aging and thermal issues start to cause malfunctions in the
circuit operation and even to warn before these errors are near to happen. This monitor-
ing ability gives the possibility to consider suitable countermeasures to reduce the effect
of these challenges and to enhance the FPGA reliability before any failure happens. The
monitors are implemented using native programmable resources of FPGAs, which elimi-
nates the need for any external equipment. Furthermore, the sensitivity of these monitors
can be calibrated to work either as aging sensors or as warning sensors before the aging
start to cause errors. In addition to the aging monitors, a thermal-aware testing for FPGAs
using self-heating method is proposed, which enables testing the FPGA at different thermal
corners without the need for external equipment.

1.3.3. Mitigation

Based on the results of the modeling and monitoring efforts, the work in this phase pro-
poses a set of strategies to mitigate the effect of aging in FPGAs. The strategies come in
form of aging-aware logic mapping techniques that target directly the look-up tables of the
FPGA. Additionally several counter-measures and recommendations are discussed through
the whole dissertation to avoid critical degradation effects.

The main contributions of this dissertation are summarized in the following:

• Investigating the effect of BTI mechanism in different LUT structures inside the
FPGA. It is found out that the delay degradation due to transistor aging depends
on the mapped configuration, usage (input signal probability) as well as the specific
LUT structure. Moreover, it is shown that the configuration history of an LUT has
a considerable effect on the delay degradation of the currently-used configuration of
that LUT.

• Investigating the effect of BTI mechanism in different types of programmable rout-
ing switches in the FPGA using device-level simulations. The effects of different

6

1.3. Dissertation focus and goals

parameters on the aging of routing resources are studied. It is found out that differ-
ent parameters affect the amount of degradation differently. Furthermore, it is shown
which structure is the best in terms of aging degradation under different aging mech-
anisms arising from different technology nodes.

• Introducing a flow to accurately estimate the thermal profile of FPGA-mapped de-
signs validated by thermal-camera measurements. The flow is based on a method
that distributes the leakage power properly across the FPGA chip. This method uses a
temperature-leakage loop estimation model for distributing and adapting the leakage
power for more accurate thermal simulation. The results of testing several designs,
with different sizes and frequencies, show that the presented approach can achieve
accurate thermal-profile estimation with average absolute estimation error of around
1◦C across the chip when compared to the camera measurements.

• Analyzing the aging effects in FPGA experimentally using accelerated lifetime con-
ditions. The focus of this analysis is to identify the main parameters and phenomena
influencing the performance degradation of FPGAs. This is done using a set of con-
trolled ring-oscillator-based sensors with different lengths and tunable activity control
that are implemented on a Spartan-6 FPGA. The FPGA is exposed to accelerated-
lifetime conditions using elevated temperatures and voltages in a controlled environ-
ment. The results show the extent of performance degradations, the impact of usage,
the correlation of process variation and aging, the aging of unused resources, and the
relative impacts of BTI and HCI aging factors.

• Abstracting both the BTI and HCI device level models to RTL models. This allows
faster aging estimation for the FPGA-mapped designs than the device-level models.
These abstracted models, in addition to implicit device-level information existed in
the power and timing reports provided from the FPGA’s vendor tools, are used to
present a tool for high-level aging estimation in FPGA. The tool is used to predict
the amount of aging-induced degradation for designs mapped to FPGA devices. This
helps the designers, in an early phase of the design flow, to choose the appropriate
mapping and/or optimization efforts, to prolong the lifetime of their FPGA-mapped
designs.

• Presenting the design and mapping of a low-cost logic-level aging sensor for FPGA-
based designs. The sensor is designed to provide controlled sensitivity, ranging from
a warning sensor to warn before the degradation starts to cause failures, to late tran-
sition detector that detect when the failures happen. The Area, delay, and power
overhead of a set of sensors mapped for most aging-critical paths of representative
designs prove to be very modest.

• Introducing self-heating integration techniques for thermal-aware testing of FPGAs
chips, in which the internal resources of FPGA are used to build controlled self-
heating elements (SHEs). These controlled SHEs are distributed across the FPGA
and integrated with the test scheme to generate the required temperature profile for

7

Chapter 1. Introduction

testing, and thus no external devices for heating up the FPGA are needed. Two dif-
ferent categories of SHEs integration techniques are presented to fit different testing
purposes; the first category is for built-in self-test (BIST), and the second one is for
application-dependent testing.

• Proposing two methods to mitigate the BTI-induced aging in LUTs of the FPGA. The
mitigation is performed by manipulating the configuration of the used LUTs and their
input signal probabilities, while maintaining the functionality of the mapped design.

1.4. Dissertation outline

The outline of the reminder of this dissertation is as follows:
Chapter 2 gives an overview about the general FPGA structure and the main building

blocks that form its resources. This overview is followed by a background about transistor
aging and the degradation mechanisms behind it. An elaborated discussion is then given
on how these degradation mechanisms affect the transistors from both physical and device-
level points of view.

The contributions of the dissertation are divided into three parts as mentioned before in
Section 1.3:

Part I (the investigation and modeling part) contains the following chapters: Chapter 3
describes the investigation process of the BTI mechanism in three different LUT structures
of the FPGA, reviews the related work in this area and presents the main conclusions.
Afterwards, Chapter 4 describes the investigation of BTI in routing resources of FPGA and
how different parameters play different roles in the amount of the resulted degradation.
Chapter 5 presents the results and the main conclusions of analyzing the aging effects in
FPGA experimentally using accelerated lifetime conditions. Chapter 6 then, introduces the
thermal-profile estimation flow of the FPGA-mapped designs together with a review for
the related work and the experimental results. At the end, Chapter 7 presents the structure
and the implementation details of the high-level aging estimation tool, which can be used
for aging analysis.

Part II (the monitoring part) contains the following chapters: Chapter 8 presents the
design and mapping of the proposed aging sensors, which can be calibrated to be warning
or aging sensors. The chapter also introduces the concept of aging-critical paths, reviews
the related work and presents a method for mapping the sensors to monitor the aging-
critical paths. Chapter 9 introduces the concept and the design of self-heating in FPGA,
reviews the related work and presents an example for integrating the SHEs in an available
BIST structure for FPGA.

Part III (the mitigation part) contains Chapter 10 which describes two methods for mit-
igating the BTI effect in FPGA LUTs. The chapter also reviews the related work and
gives the implementation detail of these methods on an open-source FPGA synthesis and
mapping tool.

At the end, Chapter 11 concludes this dissertation and highlights the possible future
work.

8

Chapter 2.

Background

In order to monitor, model and mitigate the degradation in FPGAs, it is necessary to under-
stand the architecture of modern FPGAs and the degradation mechanisms at nano-scale.
The main focus in this dissertation will be on Static Random Access Memory (SRAM)-
based FPGAs, which use SRAM cells to store the configuration bits. This is because
SRAM-based FPGAs are the most common type available on markets these days and they
are also expected to continue to be the fastest growing ones over the next few years [22].
Other types of FPGAs that use non-volatile storage such as Flash-based FPGAs are less
common. In this chapter, the FPGA architecture and its main components are explained.
This is followed by a review for the main degradation mechanisms behind circuit aging.

2.1. FPGA architecture

I/O Block

Connection Block

Switch Matrix

Logic Block

Programmable
Routing

Programmable
Switch

Figure 2.1.: An abstracted FPGA architecture (island-style)

9

Chapter 2. Background

Being general purpose chips, FPGAs usually offer a large number of configurable logic
components for mapping the logic operations. Additionally, a large variety of other com-
ponents to fulfill different purposes (e.g., communication, acceleration, storage, etc.) are
also available in different versions of FPGA series. However, most of modern commercial
SRAM-based FPGAs share almost the same architecture depicted in Figure 2.1. This ar-
chitecture is usually called the island-style [23]. It consists of a set of logic blocks (also
known as configurable logic blocks), which represent the core of the programmable fabric.
These blocks are connected together via a set of switch matrices, and surrounded by a set
of programmable I/O blocks located at the periphery of the chip. The I/O blocks provide
different programmable I/O connections to the FPGA with different standards. The follow-
ing subsections give an overview about each of these blocks and the additional components
that might exist in an FPGA.

2.1.1. Configurable Logic Block (CLB)

The CLB is the main place to map the logic operations in FPGA. That is why it is available
in large quantity inside the FPGA. Many commercial FPGAs share a common structure
for the CLB. This structure consists of a set of Basic Logic Elements (BLEs), which are
connected together via local interconnects [24] (see Figure 2.2(a)). Each BLE in turn, con-
tains a k-input look-up table (LUT) and a register (D-type flip-flop (D-FF)). A multiplexer
is used to select whether the LUT output is registered or not (see Figure 2.2(b)).

The LUT forms the basic building block of FPGA. It consists of a k-input multiplexer;
whose job is to select one of the 2k inputs programmed in SRAM memory cells (see Fig-
ure 2.3(a)). With this structure, a k-input LUT can be programmed to perform any k-input
logical function. Figure 2.3(b) shows an example of 2-input LUT programmed to perform
the XOR function.

The optimal size of an LUT (i.e. the number of inputs it has) is basically a trade-off be-
tween the area it occupy and the performance it can provide [23]. Nowadays, commercial
FPGAs contain LUTs with up to 8 inputs [8]. In addition to LUTs and registers, modern
FPGAs contain additional components packed inside the CLB to improve the performance
such as arithmetic circuitry to perform carry addition operations, and register shift opera-
tions.

2.1.2. Switch Matrix

The purpose of the switch matrices is to set the connections between different CLBs as
required by the circuit mapped onto the FPGA. This is done using a set of programmable
switches that activate/deactivate the connections as needed to provide the required routing.
In the island-style FPGA architecture (Figure 2.1), these matrices exist on the sides of each
CLB, which provide a high connection flexibility. It should be noted that these matrices are
identical; the variation of connections shown in the figure is just examples of the possible
connections. The connection blocks shown in the figure, provide an interface between the
CLBs and the wiring around them. In many modern FPGA architectures, the connection
blocks and the switch matrices are merged together for each cluster of CLBs.

10

2.1. FPGA architecture

BLE1

BLE2

BLEn

CLB

n-bitm
-b

it

k-bit

Clock

m
Inputs

n
 O

u
p

u
ts

(a) CLB

k-input
LUT D-FF

Clock

In
p
u
ts

O
u
tp
u
t

(b) BLE

Figure 2.2.: The CLB structure

In
p

u
t 0

C0

C1

C2
k
-1

k-
in

p
u

t
M

U
X

In
p

u
t k

-1

C
o

n
fi

gu
ra

ti
o

n

M
e

m
o

ry
 C

e
lls

k-input LUT

Output

In
p

u
t 1

0

1

0

2
-i

n
p

u
t

M
U

X
B

2-input LUT

A

Out

1

B
A Out

AB Out
0 0
0 1
1 0
1 1

0
1
1
0

(a) (b)

Figure 2.3.: The LUT structure: (a) a general k-input LUT and (b) 2-input LUT implement-
ing the XOR function

11

Chapter 2. Background

The number of possible connections between the wires in each matrix is usually too
large. This means, implementing a switch for each possible connection inside the switch
matrix is infeasible in terms of area. Therefore, the number of switches inside the switch
matrix is usually limited to a certain number that provide a good trade-off between area,
rout-ability and performance (which is affected by the length of the routes). Usually, the
routing structure of the FPGA is defined by; i) the channel width (W): which represents
the number of wires in each channel or track, ii) the switch matrix flexibility (Fs): which
represents the number of wires to which each incoming wire can connect in a switch matrix,
iii) the connection block flexibility (Fc): which represents the number of wires in each
channel to which a CLB input or output pin can connect, and iv) the segmented wire length:
which represents the number of CLBs a wire segment spans [23]. Figure 2.4 shows an
example of a switch matrix with W= 5, Fs = 3 and Fc= 3.

CLB CLB

0
1
2
3
4

0
1
2
3
4

0 1 2 3 4

0 1 2 3 4

W = 5

Fc = 3

Fs = 3

Figure 2.4.: A switch matrix example

In order to improve the performance, modern FPGAs provide additional direct point-
to-point wiring with different lengths to connect non-adjacent CLBs as well as adjacent
CLBs.

2.1.3. Other components

In addition to CLBs, modern FPGAs integrate other components to increase the perfor-
mance and also to support different types of interfaces. The following list includes the
most common components:

• BlockRAMs: These are RAM blocks, each with a size of few Kbits, integrated be-
tween the CLBs and distributed across the FPGA. The purpose of them is to provide
a faster access/storage to the data processed by the mapped circuit.

12

2.2. Circuit aging

• Digital Signal Processors (DSPs): As the name implies, these are a set of small
processors that are designed to perform the “multiply-and-add” operation, which is
required by most digital signal processing algorithms. Similar to the BlockRAMs,
the DSPs are integrated between the CLBs and distributed across the FPGA.

• General purpose processors: Some FPGAs include one or two instances of hard-
ened general purpose processors such as PowerPc and ARM processors. These are
made to facilitate the hardware and software co-design of modern systems.

• Digital Clock Managers (DCMs): Each of these modules includes a phase-locked
loop (PLL) with additional circuitry to perform several operations on the system
clock, such as clock multiplication and division. Also they can be used to gener-
ate clock signal with certain duty cycles or to generate several synchronous clock
signals, etc.

• Intellectual Properties (IPs): There exist different versions of FPGAs, each with
different sets of hardened IPs optimized to target a specific domain of applications.
Examples of hardened IPs in FPGA include multi Gbit/s transceivers, Ethernet units,
sensors, different types of controllers, different type of I/O standard interfaces, etc.

With this short background about the FPGA architecture, it becomes clear that the CLBs
and the switch matrices form the main components of the FPGA. Therefore, studying the
degradation effects on FPGA should begin by these basic building blocks. In Chapter 3
and 4, several transistor-level architectures representing the LUTs and the routing switches
are investigated under the effect of transistor aging. In the following section, the main
degradation mechanisms that cause the circuit aging are reviewed.

2.2. Circuit aging

Aging (also known as wearout) is one of the most important reliability challenges facing
the VLSI chips at nano-scale. It happens gradually on a long time scale, in which the delay
of the circuit increases until the point that the timing requirements are not met. After that
the circuit starts to fail, i.e. generating timing failures.

The aging effects can be observed in the transistors as well as the interconnects (i.e., the
wires) inside the chip. However, the degradation mechanisms that affect the transistors are
different from those affecting the interconnects. In this section, both types of mechanisms
are reviewed with a focus on the main mechanisms targeted in this dissertation.

2.2.1. Transistor aging

The transistor aging causes the magnitude of the threshold voltage of transistors to increase,
which is accompanied with a degradation of the mobility, drain current, and transconduc-
tance of the transistor. Hence, the switching delay of the transistor increases, and as a
result, the delay of the circuit functional paths can exceed the timing specifications. Once

13

Chapter 2. Background

this happens, the circuit starts to fail. This can greatly reduce the operational lifetime of
FPGA chips.

There are several degradation mechanisms behind the transistor aging namely BTI, HCI
and TDDB [14, 13]. In the following each of these mechanisms is explained.

2.2.1.1. Bias Temperature Instability (BTI)

The BTI mechanism [25, 26, 27, 28] consists of two corresponding phenomena: NBTI,
which has effect on P-type Metal-Oxide-Semiconductor (PMOS) transistors, and PBTI,
affecting N-type Metal-Oxide-Semiconductor (NMOS) transistors. In previous technology
nodes and fabrication schemes, the PBTI effect was negligible in comparison to NBTI and
was mostly ignored. However, since the introduction of high-κ / metal gates transistors in
sub 45 nm technology, the PBTI effect becomes comparable to the NBTI one [16, 29, 30]
(see Figure 2.5). Consequently, both effects should be considered in new technologies.

100 102 104 106 1080

20

40

60

80

100

120

140

Stress Time [s]

|
V

th
|

[m
V

]

PBTI for 32nm node
NBTI for 32nm node
PBTI for High-K 32nm
NBTI for High-K 32nm

Figure 2.5.: Vth shift induced by NBTI and PBTI [16]

The NBTI (PBTI) can be distinguished from the other degradation mechanisms through
their two phases of influence, in which their effect is observable on the magnitude of thresh-
old voltage (Vth) of PMOS (NMOS) transistors (see Figure 2.6):

• Stress phase: In this phase, the magnitude of Vth increases, which slows down the
switching speed of the transistor. The transistor enters the stress phase when it is
switched ON. i.e., when the gate-source voltage is reversely biased (Vgs =−VDD) for

14

2.2. Circuit aging

PMOS under NBTI, or when the gate-source voltage is positively biased (Vgs =VDD)
for NMOS under PBTI.

• Recovery phase: The transistor enters the recovery phase when its gate-source voltage
is removed (Vgs ≈ 0). In this phase, the magnitude of Vth of the transistor decreases
back toward its initial value [15]. However, this recovery cannot completely com-
pensate the effect of the stress phase. Consequently, the overall effect of BTI is an
increase in the magnitude of threshold voltage over the time (see Figure 2.6).

Time

|Δ
V

th
|

Stress

Recovery

Total NBTI (PBTI)
Total NBTI (PBTI)DC stress

AC stress

Figure 2.6.: BTI-induced Vth change during stress and recovery for both AC and DC type
of stress

The transistor can face two types of stress; continuous (DC) and interrupted (AC) stress.
If a DC type of stress is applied (i.e., when the transistor is always ON), there will be
no recovery phase and the effect on Vth will be much severe than in the AC case (see
Figure 2.6). The ratio between the stress-time to the total-time is designated as the duty
cycle. At 50% duty cycle, the net ∆Vth is less than one-half of its DC value, with little or
no frequency dependence up to 500 kHz [31].

The physical mechanism behind BTI is still not completely understood [26, 27, 28].
However, there exist two different theories that can be used to explain and model the stress
and recovery behavior of BTI: i) Reaction-Diffusion (RD) theory and ii) Charge Trap-
ping/Detrapping (TD) theory. Some believe that both of these theories are tightly coupled
and responsible for the BTI effect [32]. Some also believes that TD has the dominant ef-
fect in earlier lifetime [27] and RD is the dominant one later on [28]. In fact, there are

15

Chapter 2. Background

many versions and modifications for these two theories to match the experimental mea-
surements [28]. The following paragraphs briefly highlight these two theories.

Reaction-Diffusion (RD) theory This theory is proposed initially to explain the NBTI
mechanism. It is based on the dissociation of the interface bonds between Silicon (Si) and
Hydrogen (H) atoms at the SiO2/Si substrate interface under the combinatorial effect of
electric field and elevated temperature [33, 34] (see Figure 2.7). When the gate of the
PMOS transistor is negatively biased, the holes from the channel are attracted to the Si-H
bonds, which weaken these bonds (this is the reaction part). At elevated temperature, the
Si-H bonds are broken and the H diffuses either into the oxide or the Si substrate (this
is the diffusion part), which result in dangling bonds that are called interface traps (Dit
or Nit) at the SiO2/Si substrate interface. These traps cause a positive oxide charge that
increases the threshold voltage of the transistor. The model presented by this theory faced
many criticisms, because it fails to explain and match the experimental measurements of
the recovery phase at short time scale [27]. This made many of the researchers to believe
that the TD theory, which will be explained in the next paragraph, is the main contributor
to the BTI effect, especially because it is also in line with the explanation of PBTI in the
high-κ dielectric [27].

Poly-Si Gate

Dielectric layer

n-Substrate

-VG

Si Si Si Si Si Si Si

Si Si Si Si Si Si Si

O O O OH H

h h h h h h h h h h h h h h

P- channel

O : Oxygen H : Hydrogen
Si : Silicon h : a hole

(1)

(2) (3)D
it

Dit: interface trap

Figure 2.7.: The RD physical mechanism (NBTI) [14]

Charge Trapping/Detrapping (TD) theory This theory is based on the assumption
that there are process-related preexisting defects at the SiO2/Si substrate interface [35,
36]. These defects include bulk traps that cause the charge (holes for PMOS in NBTI or

16

2.2. Circuit aging

electrons for NMOS in PBTI) trapping when the transistor is ON (i.e., under stress), and
the charge detrapping when the transistor is OFF (i.e., in the recovery phase). Although the
model provided for this theory can explains the recovery at short time scales, it has been
contradicted by many experimental measurements and proven to be not the only physical
mechanism behind BTI [28, 36].

Transistor-level BTI model As the main purpose of this dissertation is to study the
lifetime of the FPGA on long time scale, the focus will be on the BTI model that can best
fit the measurement data on the long-term. The BTI model provided for the RD theory is
reported to successfully achieve that [28]. Therefore, it is adopted in this dissertation for
all the simulations. Since the methodologies for all the simulations are also provided, it
should be easy to adopt any other model in any future investigation.

The degradation caused by BTI is usually modeled as a change in the Vth of the transistor.
The adopted model of this change is introduced in [25, 15] for NBTI effect. This model
handles the long-term upper-bound Vth change (i.e., worst case ∆Vth):

∆Vth =

(√
Kv

2Y Tclk

1−β
1/2n
m

)2n

(2.1)

where n is a constant that can be either 1/6 or 1/4 depending on the fabrication process. Y
is the duty cycle, which represents the ratio of stress time (i.e., when the transistor is ON)
to total time and Tclk is the time period of one stress-recovery cycle. The supply voltage
(Vdd) is a part of the technology dependent factor (Kv), which can be found together with
the other parameters and their values in [25, 15].

If the device related parameters are gathered in one constant, the model in Equation (2.1)
can then be abstracted to the following simple form:

∆Vth = ABT I1×Y n× tn× e(
−Ea
kT) (2.2)

where ABT I1 is a technology dependent factor that is also a function of supply voltage (Vdd),
t is the time (transistor’s age) and T is the temperature in Kelvin. k is Boltzmann’s constant,
and Ea is a fitting parameter.

Using the alpha-power law [37], the degradation can be also presented as a change in the
switching delay [38, 39]:

∆d = K×∆Vth×d0 (2.3)

where K is a constant, d0 is the fresh (i.e., non-aged) switching delay, ∆d is the increase in
the switching delay due to NBTI.

Substituting ∆Vth from Equation (2.2) in Equation (2.3) gives:

∆d = ABT I2×Y n× tn× e(
−Ea
kT)×d0 (2.4)

where ABT I2 is the result of multiplying the technology dependent factor ABT I1 from Equa-
tion (2.2) by the constant K from Equation (2.3).

17

Chapter 2. Background

As the long-term PBTI effect is dual to the NBTI one, the same model in Equation (2.1)
can be used for estimating the PBTI effect on NMOS transistors as well [40, 41].

2.2.1.2. Hot Carrier Injection (HCI)

Similar to the BTI, the HCI phenomenon (also known as Hot Carrier Effect (HCE)), causes
also the threshold voltage of the transistors to increase, which in turn leads to similar con-
sequences, like BTI, increasing the delay of the functional paths, and reducing the lifetime
of the chips. However, unlike the BTI, there is no recovery phase for the HCI effect and
the resulted increase in the Vth is permanent (see Figure 2.8). Additionally, the HCI is ac-
celerated by temperature and the electric field [14], the same as BTI, but the electric field
that causes the HCI effect is usually larger than the one which results in the BTI effect [26].
According to [42, 43, 14], there are four mechanisms staying behind the HCI phenomenon.
These are explained in the following paragraphs.

Time

Δ
V

th

Figure 2.8.: HCI-induced Vth change

Drain Avalanche Hot Carrier (DAHC) The DAHC injection is considered to cause
the worst degradation among the four HCI mechanisms. It happens when a high voltage
is applied at the drain (VD > VG) causing the channel carriers (electrons for NMOS and
holes for PMOS) to be accelerated into the depletion region of the drain. These accelerated
carriers will collide with the silicon atoms. The effect is that some of them will gain a little
more energy than the average, which makes them able to overcome the electric potential
barrier between the silicon substrate and the gate oxide, and will get injected into the gate
oxide layer where they are sometimes trapped (see Fig. 2.9). The worst case is when
VD = 2VG. Over the time, these trapped carriers will eventually build up electric charge
within the dielectric layer, which will increase the threshold voltage needed to turn the
transistor on.

18

2.2. Circuit aging

N+ N+

P substrate

Gate (VG) Drain (VD)Source (Vs)

Depletion region

+ ++ ++ +

- - - -
- -

NMOS

Dielectric
layer

Trapped
carriers

Figure 2.9.: HCI- DAHC mechanism [43]

Channel Hot Electron (CHE) In the CHE injection, channel carriers that travel from
the source to the drain are sometimes, because of the high gate voltage, directed to the
gate oxide layer and they get injected there. This happens when the source voltage (VS)
is significantly lower than both the drain voltage (VD) and the gate voltage (VG), while
VD ≈VG.

Substrate Hot Electron (SHEl) In the SHEl injection, carriers in the substrate are
directed under the effect of the substrate field to the substrate-oxide interface. While they
move there, their kinetic energy increases due to the effect of the high field in surface
depletion region. These carriers eventually overcome the energy barrier of the surface and
get injected into the gate oxide; some of them get trapped there. This happens when the
absolute value of the substrate back bias voltage (VB) is very large (i.e., |VB|>> 0).

Secondary Generated Hot Electron (SGHE) In the SGHE injection, carriers are
generated from impact ionization including a secondary carrier that was created similarly
by a previous incident of impact ionization. The conditions of the SGHE are similar to the
DAHC. The main difference between them is the influence of the VB in the generation of
the hot carriers, where a field is created under the effect of VB that direct the hot carriers
generated by the secondary carriers to the surface region.

Although these four mechanisms are used to explain the HCI since the eighties, the
recent studies (e.g., [18, 44]) shows that the HCI is still a main reliability problem for
modern devices.

Transistor-level HCI model The effect of HCI on NMOS transistor is empirically
found and presented as a change in Vth [45, 18, 17]. If the device related parameters are

19

Chapter 2. Background

gathered in one constant and the alpha-power law is used, the degradation can be presented
as a change in the switching delay (∆d) as follows:

∆d = AHCI×α× f × t0.5× e(
−Eb
kT)×d0 (2.5)

where d0 is the fresh (i.e., non-aged) switching delay, AHCI is a technology dependent factor
that is also a function of supply voltage (Vdd), t is the time, Eb is a fitting parameter, α is
the activity factor of the transistor, and f is the frequency. The factor α × f is known as
the activity rate, which represents the switching activity of the transistor (i.e., the rate of
transitions in Hz) and is referred to by AR in this dissertation.

2.2.1.3. The main influencing parameters for BTI and HCI

The transistor-level models of both BTI and HCI show that there is a set of main parameters
that influence the BTI and HCI degradation. Table 2.1 summarizes these parameters and
shows their relation with the HCI and BTI effect.

Table 2.1.: Aging mechanisms and their relations with the main parameters
Factor T V dd AR Y
BTI exponential exponential - sub-linear
HCI exponential exponential sub-linear -

2.2.1.4. Time Dependent Dielectric Breakdown (TDDB)

The TDDB (also known as gate oxide breakdown), as the name indicates, is a breakdown
in the gate oxide layer of the transistor that happens gradually over the time. It causes a
slowdown in the transistor switching speed and an increase in the leakage current, and ends
by losing the dielectric layer to its insulating properties, which cause a permanent failure
in the chip [46, 13]. This degradation process goes through three stages (see Figure 2.10):

Defect Generation
Stage

Soft Breakdown
Stage

Hard Breakdown
Stage

(1) (2) (3)

Figure 2.10.: The three stages of the TDDB in a cross-sectional view of the gate oxide [13]

20

2.2. Circuit aging

1. Defect Generation Stage: The application of high electric field at the gate oxide
layer results in defects (traps) generation in this layer. At the beginning, these defects
are non-overlapping and thus do not conduct.

2. Soft Breakdown Stage: If the stress continues, more defects are generated and they
start to overlap, which may form a resistive conducting path from the gate to the
channel of the transistor. In this stage, the transistor continues to operate, however
with a slowdown in the switching speed and an increase in the leakage current.

3. Hard Breakdown Stage: Once the conducting path is formed, more traps appear
due to thermal damage causing the conducting path to become wider and hence more
leakage current flows through it. The increasing leakage current rises the temperature
and results in thermal runaway that finally leads to a breakdown in the dielectric layer.

As it can be noticed, the TDDB can be distinguished from the BTI and HCI effects
by the increase in the transistor’s leakage current that it causes. One test method for the
TDDB effect depends on monitoring this leakage increase after applying a constant stress
to calculate the Time-To-Failure (TTF) of the transistor [47]. Although the TDDB effect is
important, it is not targeted in this dissertation and left as a possible future extension.

2.2.2. Interconnects aging

As mentioned at the beginning of Section 2.2, both the transistors and the interconnects
inside the chip are susceptible to degradation. There are two main degradation mechanisms
that affect the interconnects inside the chip. These are namely the Electro-Migration (EM)
and the Stress Migration (SM) [43]. Both of them cause the metal atoms to migrate from
one side of the wire to the other side, which slowly cause voids at the side where the atoms
migrated from, that ultimately result in open failures. Also hillocks are created at the side
to which the atoms migrated, which lead to short circuit failures.

For the EM, the migration is a result of the current flows in the wire, where the atoms
migrate in the direction of the electrons. In the SM, the migration happens due to the stress
resulted from the thermal difference alone at the sides of the wires without applying any
current, and the atoms migrate from the highly stressed areas to the less stressed ones. The
interconnects aging is not targeted in this dissertation.

21

Part I.

Investigation and Modeling

23

Chapter 3.

Investigating The Degradation of LUTs

3.1. Introduction

As mentioned in Chapter 2, LUTs are the basic blocks for mapping Boolean functions.
Hence, studying the effect of aging on these basic blocks is necessary to understand the
behavior of FPGA device and its mapped circuit under transistor aging. The fact that
FPGAs allow modifications to the mapped function of LUT through reconfiguration, which
can be partial or full, online or offline [48, 49], necessitates an extended investigation for
the aging effect under different LUT configurations.

In this chapter, the effect of BTI-induced aging (both NBTI and PBTI) is investigated on
three different LUT structures using accurate SPICE simulations. The first considered LUT
structure is based on typical Complementary Metal-Oxide-Semiconductor (CMOS) logic
gates that form together a multiplexer. The second one is based on a set of pass transistors
(this one has the smallest area among the three structures) and the last one is based on a set
of transmission gates (this one has the smallest delay among the three structures).

Two-input LUTs are investigated at the beginning, since larger LUTs are built from
2-input LUTs. The aging-induced degradation of the three structures using is obtained
accurate SPICE simulations. For each structure, the effect of input signal probabilities
(usage), LUT configuration, and FPGA reuse scenarios are investigated. This choice of
small LUTs allows us to comprehensively investigate all possible scenarios for conclusive
analysis, which would be impossible for larger LUTs. Afterwards, logic simulation is used
to extend the results of 2-input LUTs to 4-input LUTs to analyze the aging effects in multi-
level LUTs as used in modern FPGAs (such as 5-input and 6-input LUTs). For the sake
of simplicity, results for 4-input LUTs are presented. However, the overall methodology of
this analysis as well as the major conclusions are still hold for larger multi-level LUTs.

The main goals of this investigation are summarized in the following:

• Identify the best LUT structure in terms of aging.

• Determine best run-time LUT configuration for minimum aging effect.

• Determine best run-time LUT configuration in terms of aging if the reconfiguration
history (i.e., stress history) of the LUT is known.

• Determine the best configuration for the unused LUTs for minimum aging effect.

• Find the role of usage on the amount of aging-induced degradation.

It is found that different parameters such as LUT structure, the current configuration,
the reconfiguration history, and the inputs signal probabilities, have considerable effect

25

Chapter 3. Investigating The Degradation of LUTs

on the NBTI and PBTI induced aging rate of the LUT. Furthermore, the structure with
the smallest area among the three structures is the most susceptible to aging, particularly in
reconfiguration cases. Finally, it is found that, “all-zero” configuration, which is commonly
used in the bitstream for the unused LUTs [50], is not always the best choice in terms of
aging degradation.

The results of the investigation in this chapter are exploited in Chapter 10 for mitigating
the aging effects in LUTs.

The rest of this chapter is organized as follows. Section 3.2 reviews the related work.
Afterwards, Section 3.3 introduces the three different LUT structures under investigation.
The evaluation methodology is presented in Section 3.4. The results are described and
analyzed in Section 3.5. Finally, Section 3.6 concludes this chapter.

3.2. Related Work

There has been previous work on analyzing the effect of transistor aging in FPGAs [51,
52], where only the NBTI effect is investigated. However, to comprehensively investigate
the aging, PBTI has to be also considered. Additionally, “pass transistor”-based LUT is
the only structure that the authors considered in their investigations, although there are
other LUT structures used in FPGA (such as transmission-gate-based LUT). Moreover,
the authors assumed that the input signal probabilities were fixed to 50%, which means
that the effect of signal probabilities, i.e. usage, was not considered. However, the input
signal probabilities have a direct effect on BTI-induced aging. Another study, introduced
in [53], describes exposing real FPGA chips to stress conditions to emulate aging, and
reports delays of both fresh and aged circuit for different benchmarks, with suggestions for
countermeasures.

Recently and similar to the results of this chapter, the authors in [54] show that the “pass
transistor”-based FPGA structures are worse than the “transmission gate”-based alterna-
tives. Besides, the authors in [55] use the “pass transistor”-based LUT to build a model for
accelerated healing from degradation, in which controlling the signal probabilities plays a
main role.

3.3. LUT structures

This section briefly introduces the three different LUT structures that are investigated in
this work: 1) Logic Gate (LG)-based structure, 2) Pass Transistor (PT)-based structure
and 3) Transmission Gate (TG)-based structure. For each structure, the implementation
methodology of 2-input LUTs and 4-input LUTs are described. However, the same imple-
mentation principles are also applicable for larger multi-level LUTs (5 and 6-inputs).

3.3.1. Two-input LUT structures

For the first step, the implementation of 2-input LUTs are introduced for different struc-
tures. Comprehensive investigation of these small LUTs, helps us to understand the behav-

26

3.3. LUT structures

ior of larger LUTs since larger LUTs are made by 2-input LUTs as their building blocks.

3.3.1.1. Logic Gate (LG)-based structure

The most straight forward structure for LUT is based on traditional CMOS gates as shown
in Figure 3.1. This structure consists of (see Figure 3.1(a)):

• Two inputs (In0 and In1) to select the required configuration SRAM cell

• Four configuration lines (C0-C3) that come from the SRAM cells

• Three two input multiplexers

M1

In0

C0

C1

OUT

M2

C2

C3

M3

In1OUT0
C0

C1

In0 OUT0

OUT1

M1

(a) (b)

Figure 3.1.: LG-based structure of two input LUT

Each of the multiplexers consists of two NAND gates, four inverters, and one NOR gates,
as shown in Figure 3.1(b). The main disadvantage of this structure is the large number of
transistors. However, this simple LG structure is a good reference to compare with other
structures in terms of delay, area, power and aging.

3.3.1.2. Pass Transistor (PT)-based structure

As shown in Figure 3.2, this structure consists of [56] :

• Two inputs (In0 and In1) to select the required pass transistor

27

Chapter 3. Investigating The Degradation of LUTs

• Four configurations (C0-C3) that come from the SRAM cells

• Six pass transistors used to form the multiplexer

• A half-latch consists of an inverter and a keeper PMOS transistor

In0

In1

C0

C1

C2

C3

OUT

Figure 3.2.: PT-based structure of two input LUT

The main feature of this circuit is that NMOS pass transistors are used to form the mul-
tiplexer. Since NMOS pass transistors are smaller than PMOS transistors (designed to
operate under the same conditions), this structure has the smallest area among the three
structures. The half-latch is needed to improve the high-level logic at the output. This
is because the NMOS transistor passes a strong zero but a weak one (i.e., less than Vdd).
However, as the difference between Vdd and Vth decreases over time (as a result of both
technology downscaling and aging), this method is no longer suitable.

3.3.1.3. Transmission Gate (TG)-based structure

As mentioned in the previous section, the PT-based LUT is not reliable at low voltage
levels. Therefore, a transmission-gate-based LUT has been designed to operate reliably

28

3.3. LUT structures

at low voltage levels, but at the expense of higher transistor count [56]. In this structure,
instead of unpaired NMOS pass transistor, transmission gate (a pair of parallel NMOS
and PMOS transistors) is used to select one memory cell. This structure consists of (see
Figure 3.3):

In0

In1

C0

C1

C2

C3

OUT

Figure 3.3.: TG-based structure of two input LUT

• Two inputs (In0 and In1) to select the corresponding transmission gates

• Four configurations (C0-C3) that come from the SRAM cells

• Six transmission gates used to form the multiplexer

• An inverter at the output

The TG-based structure has the minimum delay among the three structures. Also, un-
like pass transistors, transmission gates can pass both logic zero and logic one with no
degradation in the voltage level and thus it is suitable for low voltage levels. However, it
requires more area in comparison with the PT structure (because of using a large PMOS

29

Chapter 3. Investigating The Degradation of LUTs

transistor in addition to the NMOS transistor to form the TG structure). This disadvantage
can be partially relieved by removing the half-latch and any initialization circuitry, which
are unnecessary in this structure.

3.3.2. Four-input LUT structures

Nowadays, state-of-the-art FPGAs contain 6-input LUTs. For the sake of simplicity, 4-
input LUT is adopted as an example of larger LUTs since the same principles are also
applied for 6-input LUTs (see for example [56] and [57]).

C
0

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
1
0

C
1
1

2-input

LUT

C
1
2

C
1
3

C
1
4

C
1
5

Configuration memory cells

Input 0

Input 1

Input 2

Input 3

output

2-input

LUT

2-input

LUT

2-input

LUT

2-input

LUT

Level 2

LUT

Level 1

LUTs

Figure 3.4.: Four-input LUT out of a set of five 2-input LUTs

Figure 3.4 shows how a 4-input LUT can be implemented out of a set of 2-input LUTs.
As shown in this figure, the implementation consists of five 2-input LUTs in two levels. The
outputs of the first-level LUTs are fed to the configuration lines of the second-level LUT.
This formation is applied for each of the three structure described in the previous subsection
to build the 4-input LUT version out of each of them. To build larger LUTs (e.g. 6-input
LUT), more levels of this tree structure can be added using the same principle.

3.4. Evaluation methodology

The proposed evaluation methodology focuses firstly on 2-input LUTs and then it is ex-
tended to include 4-input LUTs as well.

30

3.4. Evaluation methodology

3.4.1. Two-input LUTs

First, each LUT implementation, introduced in section 3.3, is converted to H-SPICE netlist
in order to execute the desired simulations. H-SPICE simulator is then used to calculate
the rise and fall delays between the inputs and the output of the LUTs. A 22-nm Predictive
Technology Model (PTM) for metal-gate/high-κ CMOS [58] is used to simulate all the
three implementations.

In order to investigate the effects of NBTI and PBTI on each LUT implementation in-
troduced in Section 3.3, the accurate ∆Vth of each transistor in the implementation has to
be calculated. As discussed in Chapter 2, the overall BTI effect on Vth over time can be
calculated using Equation (2.2). For the sake of simplicity, the temperature is considered
as a constant in the simulation. This simplifies Equation (2.2) as follows:

∆Vth = A×Y n× tn (3.1)

where A is a technology dependent factor, which is a function of temperature. The rest of
the parameters are the same as in Equation (2.2).

The duty cycle (Y), which is the time ratio between the stress time to the total time, can
be represented by the signal probability (SP) of the gate input of the transistor. The SP is
the time ratio in which the signal is 1 to the total time. Particularly, Y = 1−SP for PMOS
transistors under NBTI and Y = SP for NMOS transistors under PBTI. Moreover, A and n
can be different for NBTI and PBTI for a given technology. Consequently, to calculate the
∆Vth for each transistor based on Equation 3.1, the duty cycle for each transistor (which is a
function of the SPs of the internal nodes) in each LUT implementation must be first found.

In general, the 2-input LUT has 4 configuration lines (C0 - C3) to map the required
function, and 2 input lines (In0 and In1) that are used as (primary) inputs for the mapped
function. The configuration lines are fixed (e.g. fixed during the operation of the circuit un-
less a reconfiguration is done). However, the input lines change according to the operation
of the circuit. In order to determine the behavior at these inputs, SPs are used. The signal
probabilities of In0 and In1 are denoted by SP0 and SP1 respectively. Then the SPs of the
internal nodes are obtained as a function of both the SPs of the inputs (SP0 and SP1) and
the configurations (C0 - C3). The SPs of the internal nodes for LG-based, PT-based and
TG-based LUTs are depicted in Figures 3.5, 3.6 and 3.7, respectively.

To find the duty cycle of each transistor, the SPs of internal nodes are used. For example
in Figure 3.6, transistor M1 is under stress whenever Vg(M1) = Vdd and Vs(M1) = 0, the
duty cycle of transistor M1 can be calculated as DCM1 = SP0×C0, where DCM1 is the
duty cycle of transistor M1. The duty cycle for other transistors can be calculated in a
similar way. Based on the aforementioned observations, different SPs of inputs and differ-
ent configurations result in different SPs of the internal nodes, different duty cycles of the
transistors, and consequently, different NBTI and PBTI induced aging.

To cover all the effective parameters that have influence on NBTI and PBTI, all possible
configurations (24 for the 2-inputs LUT) are investigated, and for each configuration, the
SPs of the inputs (SP0 and SP1) are independently swept from 0% to 100% with a step of
10%. This makes the total number of required simulation cases for each LUT implementa-
tion equal to 24 ∗112 = 1936. Afterwards, for each case, the duty cycle of individual tran-

31

Chapter 3. Investigating The Degradation of LUTs

C0

C1

In0
OUT

1-(SP0.C0)

1-((1-SP0).C1)

SP0

1-SP0

SPa = SP0.C0 SPb = (1-SP0).C1

a

b
c

SPc = (1-SPa).(1-SPb) SPout = 1-SPc

Figure 3.5.: SPs of the internal nodes of LG-based 2-input LUT

sistors are calculated and the accurate BTI-induced ∆Vth is found using Equation (3.1). For
calculating the threshold voltage based on Equation (3.1), the H-diffusion type (n = 1/4)
is assumed. Moreover, the constant A is chosen in a way that the NBTI/PBTI induced
∆delay/delay (for both rise and fall time) of a normal inverter with SP = 50% will be 10%
in t = 3 years.

The calculated ∆Vth for each transistor is given to the H-SPICE netlist using the DELVTO
parameter available in H-SPICE. The DELVTO parameter simply shifts the threshold value
of each transistor in the netlist.

3.4.2. Four-input LUTs

As shown in Figure 3.4, a 4-input LUT has 16 configuration lines (C0 - C15) and 4 input
lines (In0 - In3). In order to comprehensively investigate the effects of NBTI and PBTI on
4-input LUTs with the same resolution for SP of primary inputs, which is used for 2-input
LUTs (0% to 100% with a step of 10%), a total number of (n= 216×114) different HSPICE
simulations have to be run. The huge number of simulations makes the investigation very
difficult for this type of LUTs. Therefore, in order to make the investigation possible
for 4-input LUTs (i.e., reduce required runtime), in this section a method to obtain the
BTI-induced delay degradation of 4-input LUTs based on the results of 2-input LUTs is
proposed. It should be noted that since larger LUTs (such as 6-input LUTs) are also built
by 2-input LUTs, the same methodology can be used to obtain the BTI-induced delay
degradation of larger LUTs.

This method is based on the following facts (see Figure 3.8): i) The 4-input LUT consists
of two levels of 2-input LUTs (level-1 and level-2). ii) The delay of level-1 LUTs is from
their inputs (In0 and In1) to their outputs, because the configuration lines are fixed inputs
from SRAM cells. However, iii) for level-2, it can be assumed that its inputs (In2 and In3)
are already there by the time the outputs of level-1 LUTs are arriving. This makes the delay
of level-2 LUT to be from its configuration lines to the output. iv) Since the paths from

32

3.4. Evaluation methodology

In0

In1

C0

C1

C2

C3

OUT

SP0

SP1

1-SP0

1-SP1

SP0

SP1

1-C0

1-C1

1-C2

1-C3

b

c

a

SPa = SP0.(1-C0) + (1-SP0).(1-C1)

SPb = SP0.(1-C2) + (1-SP0).(1-C3)

SPc = SP1.SPa + (1-SP1).SPb

SPout = 1-SPc

M1

Figure 3.6.: SPs of the internal nodes of PT-based 2-input LUT

the configuration lines to the output at level-2 are symmetric, their delays are identical, and
thus the load on the output drivers from level-1 is the same for any path on level-2. These
facts allow us to write the total delay of the 4-input LUT as a summation of the independent
delays of level-1 and level-2 as obtained by the following equation:

D4inp = Dlevel1 +Dlevel2

and Dlevel1 = max
LUT (i)∈level1

(DLUT (i)) (3.2)

where D4inp is the delay of 4-input LUT. Dlevel1 is the maximum delay among all 2-input
LUTs in level-1. The delays of 2-input LUTs in level-1 are the ones which are obtained by
the methodology introduced in the previous subsection. Dlevel2 is the delay of 2-input LUT
in level-2, which is different from the first level delays as explained before.

33

Chapter 3. Investigating The Degradation of LUTs

In0

In1

C0

C1

C2

C3

OUT

SP0

SP1

1-SP0

1-SP1

1-C0

1-C1

1-C2

1-C3

a

b

c

SPa = SP0.(1-C0) + (1-SP0).(1-C1)

SPb = SP0.(1-C2) + (1-SP0).(1-C3)

SPc = SP1.SPa + (1-SP1).SPb

SPout = 1-SPc

Figure 3.7.: SPs of the internal nodes of TG-based 2-input LUT

Therefore, there is a need to run additional SPICE simulations to obtain the BTI-induced
delay degradation of level-2 LUT. For that, a separate BTI analysis for the SPs of each
different configuration line at level-2 (11 different signal probabilities from 0% to 100%
with a step of 10% for each of the 4 configuration lines = 114) and each input SPs (11
different signal probabilities from 0% to 100% for each of the 2 inputs = 112) is generated.
This makes the total number of additional SPICE simulations equal to 116. It should be
noted that a tradeoff between the number of SPICE simulations and the accuracy has to be
made. For example, the number of SPICE simulations can be reduced using less accurate
SPs for configuration lines (e.g. with a step of 20% instead of 10%).

After obtaining the BTI-induced delay results of level-2 LUT, Equation (3.2) is used to
obtain the BTI-induced delay of the 4-input LUT. For each set of specific configuration and
input SPs, the Dlevel1 is obtained by the methodology introduced in the previous subsec-
tion. Besides, the SPs are obtained for the output of each 2-input LUT in level-1. Since

34

3.5. Experimental results and analysis

C0

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

C11

C12

C13

C14

C15

C
o

n
fi

gu
ra

ti
o

n
 m

e
m

o
ry

 c
e

lls

Output

In0 In1 In2 In3

2
-i

n
p

u
t

LU
T

2
-i

n
p

u
t

LU
T

2
-i

n
p

u
t

LU
T

2
-i

n
p

u
t

LU
T

2
-i

n
p

u
t

LU
T

Level-1 LUTs Level-2 LUT

Delay is
from inputs
to output

Configuration
Lines of

Level-2 LUT

Delay is from
config. lines

to output

Figure 3.8.: Delay definitions of first and second level LUTs

the configuration lines of level-2 LUT are connected to the outputs of level-1 LUTs, the
obtained SPs as well as SPs of third and fourth inputs (In2 and In3) can be used to obtain
the BTI-induced delay degradation of second level LUT (Dlevel2). Interpolation is used to
convert the SPs obtained from the outputs of LUTs at level-1 to the exact SPs (0% - 100%
with a step of 10%) at the configuration lines input of the level-2 LUT.

3.5. Experimental results and analysis

The analysis presented in this section is divided into two main parts. In the first part, the
aging of 2-input LUTs is studied, then in the second part the effect of aging on 4-input
LUTs is investigated. Two aging effects are considered separately for all the simulations:
i) NBTI effect alone, because before the introduction of high-κ/metal gate transistors, the
PBTI effect was negligible, and ii) The combined effect of both NBTI and PBTI, to con-

35

Chapter 3. Investigating The Degradation of LUTs

sider the LUTs fabricated using the new high-κ/metal gate transistor technology, in which
both effects are comparatively important. A 22 nm technology library is used for SPICE
simulations as described in Section 3.4. The BTI related coefficients are set in a way that
the delay of an inverter increases by 10% in 3 years for both NBTI and PBTI phenomena.
Please note that in all the following results only the maximum delay between rise and fall
delays are considered.

3.5.1. Two-input LUTs results

The first focus of this section is on studying the LUT aging under different configurations
with respect to different input SPs. Then, the second subsection focuses on studying the ef-
fect of “previous” configuration (The configuration that was previously loaded on the LUT
in “reconfigurable” applications, or the configuration which is loaded when the LUT is un-
used) on the aging of the LUT with respect to its “current” configuration (the configuration
which is loaded when the LUT is used).

3.5.1.1. Aging Effects for Different Configurations

All possible configurations with all possible input SPs are examined in order to find their
influence on the aging of the three LUT structures. Figure 3.9 shows the BTI-induced aging
on the three LUT structures. It consists of two parts: on the left side; the aging effect is
due to NBTI-alone and on the right side; the aging effect is due to the combined effect of
both NBTI and PBTI. The y-axis is the normalized LUT delay increase. The x-axis reflects
the 16 possible configurations of the 2-input LUT. The effect of SPs can be seen with the
vertical lines (range) for each configuration. The average over all combinations of input
SPs for each configuration is represented by the x sign on the lines as shown in the figure.
Since the relation between SPs and the NBTI/PBTI effects is not linear, the average value
is not always at the middle of the range.

It can be seen in Figure 3.9 that the post-aging delay depends on the configuration, signal
probability, and the structure. Therefore, all these three aspects must be considered for ac-
curate aging modeling of LUTs. Also, the extent of the effect of each of these three factors
(LUT structure, configuration, and input SPs) on aging-induced delay heavily depends on
the other two parameters.

The other interesting observation is that in a given LUT structure, different configu-
rations have different BTI sensitivity. In the delay models used for LUTs, it is widely
accepted that the propagation delay of an LUT is independent of the mapped function
(configuration) [59, 60]. However, these results suggest that the post-aging delay actually
depends on the mapped function (configuration) to the LUT.

In terms of NBTI-induced post-aging ∆delays, the three structures are comparable. How-
ever, there are minor differences that make the LG-based structure the best choice.

In PT-based structure, NBTI-induced ∆delays are negative for some SPs (meaning that
the LUT becomes faster due to NBTI effect) which can be explained by the following:
In Section 3.3, it is mentioned that NMOS transistor passes normally a weak one, and
therefore a keeper is needed to improve the high level logic at node c and low level logic

36

3.5. Experimental results and analysis

−5%

0%

5%

10%

15%

20%

25%

30%
Effect of NBTI alone :LG−based LUT

2−input LUT Configuration

ΔD
el

ay
N

o
rm

al
iz

ed

ZERO
AND

A.¬
B A

¬A.B B
XOR OR

NOR

XNOR ¬B
A+¬B ¬A

¬A+B

NAND
ONE

−5%

0%

5%

10%

15%

20%

25%

30%
Combined effect of both NBTI and PBTI :LG−based LUT

2−input LUT Configuration

ΔD
el

ay
N

o
rm

al
iz

ed

ZERO
AND

A.¬
B A

¬A.B B
XOR OR

NOR

XNOR ¬B
A+¬B ¬A

¬A+B

NAND
ONE

−5%

0%

5%

10%

15%

20%

25%

30%
Effect of NBTI alone :PT−based LUT

2−input LUT Configuration

ΔD
el

ay
N

o
rm

al
iz

ed

ZERO
AND

A.¬
B A

¬A.B B
XOR OR

NOR

XNOR ¬B
A+¬B ¬A

¬A+B

NAND
ONE

−5%

0%

5%

10%

15%

20%

25%

30%
Combined effect of both NBTI and PBTI :PT−based LUT

2−input LUT Configuration

ΔD
el

ay
N

o
rm

al
iz

ed

ZERO
AND

A.¬
B A

¬A.B B
XOR OR

NOR

XNOR ¬B
A+¬B ¬A

¬A+B

NAND
ONE

−5%

0%

5%

10%

15%

20%

25%

30%
Effect of NBTI alone :TG−based LUT

2−input LUT Configuration

ΔD
el

ay
N

o
rm

al
iz

ed

ZERO
AND

A.¬
B A

¬A.B B
XOR OR

NOR

XNOR ¬B
A+¬B ¬A

¬A+B

NAND
ONE

−5%

0%

5%

10%

15%

20%

25%

30%
Combined effect of both NBTI and PBTI :TG−based LUT

2−input LUT Configuration

ΔD
el

ay
N

o
rm

al
iz

ed

ZERO
AND

A.¬
B A

¬A.B B
XOR OR

NOR

XNOR ¬B
A+¬B ¬A

¬A+B

NAND
ONE

Figure 3.9.: The BTI effect of different configurations with different input SPs on the three
LUT structures (2-input LUTs)

at node OUT (see Figure 3.6) in PT-based LUT. However, this keeper makes the rising
transition at the output slower. Moreover, the NBTI effect increases the keeper’s threshold

37

Chapter 3. Investigating The Degradation of LUTs

voltage and as a result it becomes weaker due to NBTI. Putting altogether, NBTI may result
in faster rising transition at the output by making the keeper weaker. This effect can be seen
in Figure 3.9 (negative ∆delay).

In

∆Vth1

OUT

m1

Vdd

∆Vth1

OUT

∆Vth2

InIn0

m1

m2

Vdd

Vdd

Vdd

(a) Circuit1 (b) Circiut2

Figure 3.10.: A normal inverter (Circuit1) and a pass transistor connected to a half latch
(Circuit2)

0 0.01 0.02 0.03 0.04
0

0.2

0.4

0.6

0.8

Δ Vth1

Δ
D

el
ay

/D
el

ay

Circuit2 ΔVth2=0
Circuit2 ΔVth2=0.02
Circuit2 ΔVth2=0.04
Circuit1

Figure 3.11.: Delay sensitivity of the two circuits in Figure 3.10 to threshold voltage of
NMOS transistor

In terms of BTI-induced post-aging ∆delays (i.e., the combined effect of both NBTI
and PBTI), the LG-based and TG-based structures are comparable, while the PT-based

38

3.5. Experimental results and analysis

structure is the worst one. The larger range of ∆delay in the PT-based structure is mainly
due to the high impact of PBTI on the fall time. To clarify this effect, two circuits shown
in Figure 3.10 are considered. The first circuit consists of a normal inverter, and the second
one consists of a half latch with a pass transistor connected to its input. Figure 3.11 shows
the sensitivity of fall time (from node In to node OUT) to the threshold voltage change of
transistor m1. As shown in this figure, the normalized ∆delay of circuit2 is much higher
than circuit1 for the same amount of ∆Vth of transistor m1. Moreover, the normalized
∆delay of circuit2 increases when the threshold voltage of pass transistor increases. As a
result, since PBTI increases the threshold voltage of both the NMOS pass transistor and the
NMOS transistor in the pull-down network of the half-latch, it has relatively high impact on
PT-based structure compared to the LG-based structure. It should be noted that the effect of
PBTI is less in TG-based structure compared to PT-based structure because of two reasons:

• A normal inverter, which is, as explained in the previous paragraph, less sensitive to
PBTI, is used at the output of the TG-based structure instead of the half-latch in the
PT-based structure

• The structure of the transmission gate, in which a PMOS transistor is parallel to an
NMOS transistor, alleviates the effect of PBTI on the NMOS transistor.

Table 3.1 shows a ranking of the five best configurations that have the minimum aging
(NBTI and NBTI/PBTI) in each LUT structure. In addition, for each configuration the
delay degradation reduction (DR) compared with worst-case configuration is shown. The
DR is calculated as follows:

DR =
maxi(Con f max

i)−mini(Con f max
i)

maxi(Con f max
i)

(3.3)

where Con f max
i is the maximum value of normalized ∆delay for all possible SPs in a certain

configuration (i). The information in this table can be used for aging-aware logic mapping.
These results show that when only NBTI is considered, the range of aging-induced delay-

increase for different configurations is quite high (up to 92% for PT-based structure). This
range is reduced when both NBTI and PBTI are considered.

3.5.1.2. Aging Effects Considering Previous Configuration

Here the effect of the “previous” configuration on the aging of the LUT when it is loaded
with the “current” configuration is studied. In this scenario, the LUT is already aged based
on a previous configuration (for a long period of time) and the delay degradation of the
newly loaded configuration due to transistor aging under the previous configuration is in-
vestigated. The purpose of this study is to find out:

• If a pre-knowledge about the user configuration is available, then the suitable config-
uration to be loaded on unused LUTs can be determined.

• In reconfiguration systems in which the set of possible configurations are known,
an accurate delay of the newly loaded configuration can be obtained and optimized,

39

C
hapter3.

Investigating
T

he
D

egradation
ofL

U
T

s

Table 3.1.: Best NBTI and PBTI induced configurations for the three 2-input LUT structures and the improvement of ∆delay in
comparison to the worst case configuration

LG PT TG
Ranking NBTI alone NBTI and PBTI NBTI alone NBTI and PBTI NBTI alone NBTI and PBTI

1 A.¬B (47.51%) ¬A (40.92%) A+¬B (92.00%) ¬A.B (32.37%) AND (56.58%) A (27.02%)
2 ¬A (43.93%) A (36.82%) ¬A.B (52.49%) A (31.60%) B (53.64%) ¬A.B (24.52%)
3 NAND (31.62%) ¬A.B (29.71%) XNOR (52.30%) AND (31.29%) A (52.92%) XOR (23.99%)
4 ¬B (31.44%) XOR (28.79%) AND (45.59%) B (26.74%) ¬A.B (42.83%) AND (23.45%)
5 A (24.61%) OR (28.42%) ¬A+B (44.19%) NOR (19.25%) ¬A+B (37.05%) B (20.81%)

40

3.5. Experimental results and analysis

given the LUT configurations, usage (SPs), and runtime of the previous configura-
tions.

• What is the best configuration, in terms of minimum aging delay degradation, to be
loaded in unused LUTs, when the user configuration is unknown.

In order to perform this analysis, all pairs of configurations (as the “previous” configura-
tion and “current” configuration) have been simulated. The best “previous” configuration
for each “current” configuration is reported in Table 3.2. For instance, if the “current”
configuration is NAND, the best “previous” configurations for the NBTI-induced aging
are ONE, XNOR and ZERO for LG, PT, and TG-based structures respectively. For the
BTI-induced aging the best “previous” configuration is ONE for both LG and PT-based
structures, and ¬A.B for TG-based structure.

These results show that the best “previous” configuration depends on the “current” con-
figuration and the particular structure. Moreover, the choice of all-zero as the standby
configuration, as dominantly used to fill unused LUTs in configuration bitstream in the
FPGAs, may result in maximum delay degradation for some user configurations.

To have an overview of the effect of the “previous” configurations on the BTI-induced
aging of the “current” configurations, Figure 3.12 shows the range of normalized post aging
∆delay for different “previous” configurations. Unlike Figure 3.9, the range in Figure 3.12
represents the effect of different SPs as well as different “current” configurations. It can
be seen from the ranges in Figure 3.12 that if the FPGA is reused, the PT-based structure
will have the worst BTI-induced post aging delay in comparison with the two other struc-
tures. This is mainly due to the high sensitivity of PT-based structure to the PBTI effect as
described before.

When the user configuration is unknown, the “previous” configuration which has in aver-
age the minimum post-aging ∆delay among all “current” configurations is chosen accord-
ing to Equation (3.4).

mini(mean j(Con f mean
current(j)|Con f max

previous(i))) (3.4)

where Con f mean
current(j) is the mean value of normalized ∆delay for all possible SPs in a certain

“current” configuration (j) and Con f max
previous(i) is the maximum value of normalized ∆delay

for all possible SPs in a certain “previous” configuration (i). The results for the three LUT
structures are shown in Table 3.3. Also, the percentages of DR compared to the worst
case “previous” configuration are shown. Note that in current FPGAs, unused LUTs in the
configuration bitstream are filled with all-zero configuration. However, these results show
that for both the LG-based and the PT-based structures, all-zero is not the best choice, and
even does not lie in the top-five rank for the NBTI effect. Furthermore, PT-based structure
is the most sensitive to the choice of “previous” configuration, followed by TG and LG.

3.5.2. Four-input LUTs results

Similar to 2-input LUTs, the effect of both NBTI and PBTI on each possible configura-
tion of the 4-input LUT in each structure is investigated. Table 3.4 shows a ranking of

41

C
hapter3.

Investigating
T

he
D

egradation
ofL

U
T

s

Table 3.2.: Best NBTI and PBTI induced “previous” configuration for different “current” configuration in 2-input LUTs
C-C AND A.¬B A ¬A.B B XOR OR NOR XNOR ¬B A+¬B ¬A ¬A+B NAND

LG NBTI P-C ONE ONE ¬A ONE ONE ONE ONE B ONE ONE ¬A.B A ONE ONE
BTI P-C ONE ONE ¬A ONE ONE ONE ONE OR ONE ONE ONE A ONE ONE

PT NBTI P-C ZERO XNOR XNOR ZERO XNOR XNOR XNOR XNOR XNOR XNOR XNOR XNOR XNOR XNOR
BTI P-C A OR A+¬B ¬A ONE ONE ONE ¬A+B ONE ONE ONE ONE ONE ONE

TG NBTI P-C ZERO ZERO ZERO ZERO ¬B ZERO ONE ZERO ZERO ZERO A.¬B ZERO ONE ZERO
BTI P-C ZERO ZERO ZERO ZERO NOR ZERO ¬B ZERO ZERO ZERO AND ZERO NAND ¬A.B

C-C: Current Configuration P-C: Previous Configuration

−5%

0%

5%

10%

15%

20%

25%

30%

35%

40%

Combined effect of both NBTI and PBTI :LG−based LUT
for all possible "Current" Configurations and SPs

2−input LUT "Previous" Configuration

N
o

rm
al

iz
ed

 Δ
D

el
ay

ZERO
AND
A.¬

B A
¬A.B B
XOR OR
NOR
XNOR ¬B
A+¬B ¬A
¬A+B
NAND

ONE

−5%

0%

5%

10%

15%

20%

25%

30%

35%

40%

Combined effect of both NBTI and PBTI :PT−based LUT
for all possible "Current" Configurations and SPs

2−input LUT "Previous" Configuration

N
o

rm
al

iz
ed

 Δ
D

el
ay

ZERO
AND
A.¬

B A
¬A.B B
XOR OR
NOR
XNOR ¬B
A+¬B ¬A
¬A+B
NAND

ONE

−5%

0%

5%

10%

15%

20%

25%

30%

35%

40%

Combined effect of both NBTI and PBTI :TG−based LUT
for all possible "Current" Configurations and SPs

2−input LUT "Previous" Configuration

N
o

rm
al

iz
ed

 Δ
D

el
ay

ZERO
AND
A.¬

B A
¬A.B B
XOR OR
NOR
XNOR ¬B
A+¬B ¬A
¬A+B
NAND

ONE

Figure 3.12.: BTI effects of different “current” configurations with different input SPs and different “previous” configuration for three
2-input LUT structures.

42

3.5.
E

xperim
entalresults

and
analysis

Table 3.3.: Best NBTI and PBTI induced “previous” configuration for the three structures and the improvement of ∆delay in compar-
ison to the worst case when the “current” configuration is unknown (2-input LUTs)

LG PT TG
Ranking NBTI alone NBTI and PBTI NBTI alone NBTI and PBTI NBTI alone NBTI and PBTI

1 ONE (12.26%) ONE (16.77%) XNOR (45.57%) ONE (46.84%) ZERO (45.41%) ZERO (41.03%)
2 OR (11.30%) A+¬B (12.60%) A+¬B (45.57%) B (34.01%) ¬A.B (35.34%) ¬A.B (26.80%)
3 A+¬B (10.64%) OR (12.20%) ¬A+B (45.57%) OR (32.88%) AND (35.19%) A.¬B (25.17%)
4 A (10.22%) NAND (10.12%) ONE (45.57%) ¬A.B (32.88%) B (26.35%) AND (24.60%)
5 NAND (6.80%) ¬A+B (9.08%) AND (4.58%) ZERO (31.32%) A.¬B (23.93%) NOR (18.82%)

43

Chapter 3. Investigating The Degradation of LUTs

the top five configurations that have the minimum aging in comparison to the worst case
configuration for each structure type. The 16-bit configurations are shown in hexadecimal
format. In fact, due to the symmetry of the components of 4-input LUT (see Figure 3.4),
there are several configurations that have the same NBTI/PBTI-induced delay degradation
(see for example the column “NBTI alone” of both the PT and the TG structures). For that
case, the first five configurations in sequence have been reported regardless of how many
configuration share the same aging effect.

As the number of possible configurations and SPs for each LUT type is too large (216

configurations ×114 SPs), in Table 3.5 only the ranges of the delay degradation for each
of the three LUT structures are reported. Also, in Figure 3.13, the probability density
function of the normalized ∆delay is plotted for each aging effect (NBTI alone and both
NBTI/PBTI) for all combinations of configurations and SPs. This is to show a summary of
their total effect on aging. The normalized ∆delay is taken for the mean value over all SPs
in each possible configuration. Several observations can be drawn from this figure:

• The TG-based LUT is the worst among the three structures when the NBTI effect
alone is considered.

• From the distribution of the three structures in Figure 3.13(a), it can be seen that the
aging variation due to different configurations is comparable for the three structures
in case of considering NBTI alone.

• In Figure 3.13(b), it can be seen that the PT-based LUT is much worse than the other
two types in both degradation and variation when both NBTI and PBTI are considered
together.

3.6. Summary

In this chapter, the effect of transistor aging, due to NBTI and PBTI, in look-up tables
(LUTs) has been investigated by considering different structures through detailed SPICE
simulations. The main conclusions of this analysis can be summarized as follows.

• The LUT structure, the current configuration, the previously run configuration, and
the inputs signal probabilities are parameters that have considerable effect on the
NBTI and PBTI induced aging of LUTs, and all of them must be considered for
accurate delay degradation analysis.

• The PT-based structure (the one with least area overhead) is the worst choice for high-
κ/metal gates technologies, because PBTI has a considerable effect on this structure.

• All-zero configuration in the bitstream for the unused LUTs is not the best choice
in term of aging and may result in high delay degradation when the LUT is used in
future. The best configuration for the unused LUTs depends on the runtime configu-
ration and the LUT-structure.

The results of this analysis can be used for aging-aware logic mapping as well as recon-
figuration scheme for FPGAs.

44

3.6. Summary

−5% 0% 5% 10% 15% 20% 25% 30%
0

0.1

0.2

0.3

0.4

0.5

0.6

X = Δ Delay/Delay (NBTI alone)

Probability Density Function of (X)

LG
TG
PT

(a)

−5% 0% 5% 10% 15% 20% 25% 30%
0

0.1

0.2

0.3

0.4

0.5

0.6

X = Δ Delay/Delay (NBTI and PBTI)

Probability Density Function of (X)

LG
TG
PT

(b)

Figure 3.13.: Probability density function for the normalized ∆delay in the three 4-input
LUT structures: (a) considering NBTI alone and (b) considering both NBTI
and PBTI together

45

C
hapter3.

Investigating
T

he
D

egradation
ofL

U
T

s

Table 3.4.: Best NBTI and PBTI induced configurations for the three 4-input LUT structures and the improvement of ∆delay in
comparison to the worst case configuration

LG PT TG
Ranking NBTI alone NBTI and PBTI NBTI alone NBTI and PBTI NBTI alone NBTI and PBTI

1 F2FFh (46.95%) FCFFh (33.21%) B00Bh (63.95%) FFFFh (68.40%) DD1Dh (40.79%) FD1Fh (24.51%)
2 2FFFh (46.35%) FFFFh (32.81%) B00Fh (63.95%) B11Fh (52.68%) DD1Fh (40.79%) FF1Fh (24.51%)
3 02FFh (45.77%) 333Fh (32.31%) B0BBh (63.95%) F3FFh (52.67%) DF1Dh (40.79%) F1DFh (24.46%)
4 20FFh (45.77%) 33CFh (32.31%) B0BFh (63.95%) FF4Fh (52.44%) DF1Fh (40.79%) F1FFh (24.46%)
5 22FFh (45.77%) 33FFh (32.31%) B0FBh (63.95%) F4FFh (52.43%) FD1Dh (40.79%) F1FDh (24.41%)

Table 3.5.: Ranges of normalized ∆delay degradation for the three 4-input LUT structures
LG PT TG

NBTI alone NBTI and PBTI NBTI alone NBTI and PBTI NBTI alone NBTI and PBTI
-0.12% to 5.47% 0.37% to 8.52% -2.37% to 5.43% 3.78% to 48.74% 1.81% to 8.02% 3.14% to 10.79%

46

Chapter 4.

Investigating The Degradation of Programmable
Routing Resources

4.1. Introduction

In the previous chapter, the degradation of LUTs due to BTI effect is investigated. This
chapter investigates the degradation of another basic element of FPGAs, which is the rout-
ing switch. As discussed in Chapter 2, the CLBs are connected together through pro-
grammable routing resources. These resources are designed to be very general in order
to enable different routing possibilities among logic blocks. This results in large routing
resources, which consequently consume most of the die area and power [61]. Additionally,
in most cases, due to the large sets of switches that form a certain route, routing resources
cause the dominant delay in the overall path delay [61]. For these reasons, studying the
degradation of FPGA programmable routing resources is of great importance.

A routing switch, programmed through an SRAM cell, is the building block for the
routing resources in FPGAs. For that reason, in this chapter, the effect of BTI-induced
aging (both NBTI and PBTI) on four different implementations of programmable rout-
ing switches is investigated. For each implementation, detailed SPICE simulations using
PTM [58] 32 nm technology library are done, considering a wide range of different pa-
rameters which affect the operation of the switch such as: load (wire length, number of
cascaded switches and fan-out), input signal probability and supply voltage. The results
show that these parameters affect the amount of degradation differently. Furthermore, the
structures based on an NMOS transistor are the best in terms of NBTI while the transmis-
sion gate based structure is the best when both NBTI and PBTI are considered. In addi-
tion, contrary to typical CMOS logic structures, using a higher supply voltage causes less
amount of degradation for the pass transistor based structures, which makes them benefit
from both higher performance and less aging.

The rest of this chapter is organized as follows. Section 4.2 introduces the different
routing switch implementations under investigation. Then, the evaluation methodology is
presented in Section 4.3. Afterwards, the results are described and analyzed in Section 4.4.
Finally, Section 4.5 points out the main conclusions of this investigation.

4.2. Programmable Routing Switches in FPGAs

As discussed in Chapter 2, the routing switches or Programmable Interconnect Points
(PIPs) are used to define the desired routing among the logic blocks inside the FPGA. With
the development of FPGAs, several designs and architectures have been proposed for the

47

Chapter 4. Investigating The Degradation of Programmable Routing Resources

routing elements, and various switch matrices appeared in state-of-the-art FPGA devices.
However, the structure of a basic PIP did not change much. Here, four different implemen-
tations for routing switches are described, which are mainly used in different generations,
categories, and variations of SRAM-based FPGAs. These implementations are the basis of
the analysis in this chapter.

SRAM
Cell

Routing
wire

Routing
wire

SRAM
Cell

Routing
wire

Routing
wire

(a) PT-keeper (b) TS-buffer

Routing
wire

Routing
wire

SRAM Cell

Q Q

Routing
wire

SRAM Cells

(c) TG (d) MUX

Figure 4.1.: Different routing switch structures.

4.2.1. Pass Transistor with keeper (PT-keeper)

A pass transistor, which consists of an NMOS transistor and a controlling SRAM cell, was
used in the early FPGAs for routing switches, because it can be used as a bidirectional
switch and needs only one SRAM cell to control it [62]. In addition, this type of routing
switch has very small area. However, the delay of this type of switches grows quadrat-
ically when they are connected in series [62]. The other disadvantage of pass transistor
switches is that they can only convey a weak-1 (Vdd−Vth) instead of a strong-1 (full Vdd).
This increases the leakage current of the subsequent elements. With technology downscal-
ing, the difference between Vdd and Vth decreases, and hence using this structure in newer
technologies is more problematic.

To overcome the disadvantages of pass transistor structure, a keeper is added to the
output of pass transistor (see Figure 4.1(a)) to pull a weak-1 into a strong-1 [62]. The

48

4.2. Programmable Routing Switches in FPGAs

1 2 3 4 5 6 7 8
0

10

20

30

40

Number of connected PIPs in series

N
o

rm
a

liz
e

d
 d

e
la

y

TS−buffer
PT−keeper
TG
MUX

Figure 4.2.: Normalized Delay versus number of PIPs connected in series for different
structures.

keeper consists of an inverter and a PMOS transistor. When the output of pass transistor
is a weak-1, the PMOS transistor of the keeper switches on, and as a result, the output is
pulled up to Vdd . Still, the delay of the PT-keeper increases quadratically with the number
of cascaded switches (see Figure 4.2).

4.2.2. Tri-State buffer (TS-buffer)

Similar to the PT-keeper, a tri-state buffer consists of a pass transistor controlled by an
SRAM cell (see Figure 4.1(b)). However, a buffer is used at its input to solve the problem
of quadratic delay increase when multiple routing switches are connected in series. The
buffer consists of two or more cascaded inverters. This type of routing switches needs
more area in comparison to the pass transistors. However, it can provide a linear delay
dependency to the number of cascaded routing switches (see Figure 4.2). That is why they
are used in larger FPGAs, where many switches are connected in series.

4.2.3. Transmission Gate (TG)

The transmission gate based routing switch consists of a parallel structure of an NMOS
and a PMOS transistor [63]. Because an SRAM cell has both Q and ¬Q, a single SRAM
cell can be used for controlling the TG switch, where Q is connected to the gate of NMOS
and ¬Q is connected to the gate of PMOS (see Figure 4.1(c)). Although this structure has
a larger area in comparison to the simple pass transistor structure, it can pass both strong-
1 and strong-0. However, similar to PT-keeper structure, the delay of transmission gate
switches increases quadratically when they are connected in series (see Figure 4.2).

49

Chapter 4. Investigating The Degradation of Programmable Routing Resources

4.2.4. Multiplexer (MUX)

The multiplexer based routing switch consists of an n-input multiplexer and a tri-state
buffer (see Figure 4.1(d)). The tri-state buffer determines whether the input is connected to
the output or not, through a programmable SRAM cell, and the multiplexer selects which
input is connected to the output [62]. The multiplexer is built based on NMOS pass transis-
tors (see the PT-based LUT structure in Figure 3.2). Similar to the TS-buffer structure, the
delay of the MUX based routing switch increases linearly with the number of connected
switches in series (see Figure 4.2).

4.3. Evaluation Methodology

In FPGAs, the circuit delay consists of two parts: the delay of the logic and the delay of the
routing. Usually the routing delay is the dominant one [61], because the routing inside the
FPGA goes through multiple switching elements to form the desired routing. On the other
hand, as discussed in Chapter 2, aging increases the switching delay of the transistors inside
the circuit, and the aging effects become more critical at smaller feature sizes. Putting all
together, investigating the effect of aging on the FPGA switching elements is a necessity
to assure the correct functionality of FPGAs. In this section, the details of the investigation
of the BTI effects on basic routing switches are described. The four different types of
programmable switches (PT-keeper, TS-buffer, TG and MUX) discussed in Section 4.2
are considered. In order to do this investigation on each of the structures above, HSPICE
simulations are carried out, using PTM 32 nm technology libraries [58] to obtain fresh and
aged routing switch delays. In the following, the different phases of the methodology are
introduced:

4.3.1. Circuit-level details and assumptions

As the device level details of the commercial FPGAs are not publicly available, some of
the information is obtained from available literature and the rest, particularly regarding the
relative and actual sizing of transistors, are assumed, in order to obtain logically correct
results. Regarding the size of transistors, the gate lengths of all transistors of the routing
switches are set to the minimum length. In addition, the width of each transistor is set to
the minimum size which results in a reasonable delay in the worst case (maximum load and
maximum number of routing switches connected in series). In fact, in experimental results
section (Section 4.4), normalized BTI-induced ∆delay (∆delay/Fresh delay) is reported.
That is why the particular sizing has in general a minimal effect in this analysis; therefore,
no detailed optimization on sizing in terms of delay is carried out.

4.3.2. NBTI/PBTI effect analysis

As the BTI effect represents itself as a change in transistor Vth, it is necessary to obtain
NBTI/PBTI-induced ∆Vth of each transistor. Similar to the method in Section 3.4, Equa-
tion (3.1) is used. The suitable coefficients are obtained from PTM reliability models [58].

50

4.3. Evaluation Methodology

The aging effect is considered for a time period of three years. To get the duty cycle of
each transistor, the SP of the routing switch input is swept from 0.1 to 0.9, and propagated
through all the transistors inside the routing switch to calculate the local SP of each tran-
sistor (SPl). Afterwards, for each transistor the duty cycle is obtained such that for PMOS
YPMOS = 1−SPl and for NMOS YNMOS = SPl . Then, the calculated ∆Vth for each transistor
is adjusted in the HSPICE netlist.

4.3.3. Delay measurements

Finally, three different sets of H-SPICE simulations are carried out to obtain the delay of
fresh, aged switches considering only NBTI, and aged switches considering both NBTI
and PBTI, respectively. All delay measurements are taken when the signal passes through
VDD/2. Then, the maximum of rise and fall delays is considered as the delay of the routing
switch. To show the effect of BTI-induced aging on timing behavior of the switch, the
normalized BTI-induced delay change (Daged−D0

D0
) is reported, where Daged is the delay of

aged switch (NBTI or BTI) and D0 is the delay of fresh switch.

4.3.4. Load analysis

Load information is necessary to perform correct simulations. This information consists of:
1) the wire length between each two switches, 2) the number of connected routing switches
in series, and 3) the fan-out of the switch.

1. Wire Lengths (WL): To model the wires in HSPICE netlist, an RC model is used.
The metal resistance and capacitance values of the routing wires are proportional to
its length. To obtain the wire length, the distance between two CLBs in a basic FPGA
structure (if an island-based FPGA structure is considered) is defined as the minimum
wire length. For long wires that cross multiple CLBs (with no routing switching in
between), the wire length can be obtained by multiplication of minimum wire length
times the number of CLBs it passes (segment length). For this analysis, a maximum
segment length of 16 is considered. Then PTM interconnect models [58] are used to
obtain the suitable parameters of copper interconnect (such as minimum wire width,
space, height, thickness and inter-layer dielectric), and accordingly, the appropriate
resistance and capacitance values are extracted.

2. Number of Cascaded Switches (NCS): The routing between two non-cascaded
CLBs usually passes through multiple routing switches. During the investigation,
the number of cascaded switches is swept to show the effect of NCS on the amount
of BTI-induced aging of the routing. For simplicity, the maximum NCS is set to 4 in
order to show the trend.

3. Switch fan-out: Switch fan-out indicates when a routing switch can drive multiple
other switches at the same time. For the sake of simplicity, the maximum fan-out of
each switch is set to 5.

51

Chapter 4. Investigating The Degradation of Programmable Routing Resources

4.4. Experimental Results

The main goal of this chapter is to investigate the aging effect on routing switches for two
different cases: i) considering only NBTI effect and ii) considering BTI (both NBTI and
PBTI effects). In order to have a comprehensive investigation, the four structures of routing
switches discussed in Section 4.2 are considered. The parameters under investigation and
the experimental setup are already discussed in Section 4.3.

4.4.1. Effect of NCS

For each cascade length, the delay from the input switch to the output of the last switch is
measured. Figure 4.3 depicts the effect of NCS on both the NBTI and BTI cases for the
four types of routing structures. The effect of the SP is expressed by the vertical lines, and
the x and ? symbols represent the average over all SPs.

As shown in this figure, the NBTI effect is negligible for PT-keeper, TS-buffer and MUX
structures. This is because the delay of the NMOS pass transistor is dominant in both struc-
tures, and as the NBTI affects only PMOS transistors, the effect of NBTI cannot be seen
in these three structures. However, since the TG structure consists of parallel PMOS and
NMOS transistors, as shown in Figure 4.1(c), the effect of NBTI appears in this struc-
ture. On the other side, the effect of BTI (NBTI+PBTI) on PT-keeper, TS-buffer and MUX
structures is high, where the normalized ∆Delay can reach to more than 10%. Moreover,
it can be seen that the normalized ∆Delay is highly dependent on the input SP. For the TG
structure, the effect of BTI-induced aging is generally less than the other three structures.
To better explain this, consider two different cases shown in Figure 4.4. In the first case
(Figure 4.4(a)), the SP of input is near 0, in this case the NMOS transistor is under PBTI
stress, while the PMOS transistor stays unstressed, which makes it able to compensate the
overall aging of the TG structure. In the other case (Figure 4.4(b)), where SP is near 1,
the PMOS transistor is stressed while the NMOS transistor experiences almost no stress,
again resulting in a compensation for the total aging of the TG structure. This is also the
reason for the very low sensitivity of BTI-induced aging to input SP in the TG structure in
comparison to the other three structures.

In fact the NBTI effect makes PT-keeper, TS-buffer and MUX structures even faster, and
with higher NCS, this effect gets amplified. The reason can be explained for each structure
separately. For the PT-keeper structure (Figure 4.1(a)), the rise delay is the dominant delay.
With NBTI effect, the inverter inside the keeper structure becomes faster at the falling edge
and this causes the pull-up PMOS inside the keeper circuit to switch on faster, although
its threshold voltage increases due to NBTI. For the TS-buffer structure (Figure 4.1(b)),
the rise delay is also the dominant delay. With NBTI effect, the first inverter of the buffer
becomes faster at falling edge, while the second one becomes slower at rising edge. De-
pending on the sizing of the transistors and the dominance of the delay, this effect may
lead either to positive or to negative delay degradation. For the MUX structure, the same
explanation for TS-buffer is applied as the tri-state buffer is a part of the MUX structure.
For the TG structure, NBTI-induced aging has no sensitivity to the NCS.

52

4.4.
E

xperim
entalR

esults

1 2 3 4
−0.05

0

0.05

0.1

0.15

 # of Cascaded elements for WL = 1

∆
D

el
ay

/D
el

ay

1 2 3 4
−0.05

0

0.05

0.1

0.15

 # of Cascaded elements for WL = 1

∆
D

el
ay

/D
el

ay

1 2 3 4
−0.05

0

0.05

0.1

0.15

 # of Cascaded elements for WL = 1

∆
D

el
ay

/D
el

ay

NBTI alone
NBTI and PBTI

1 2 3 4
−0.05

0

0.05

0.1

0.15

 # of Cascaded elements for WL = 1

∆
D

el
ay

/D
el

ay

(a) PT-keeper (b) TS-buffer (c) TG (d) MUX

Figure 4.3.: BTI-induced wear-out for different number of cascaded switches

SP≈ 0

VDD

0

Mostly stressed

Mostly unstressed

(a) SP near 0

SP≈ 1

VDD

0

Mostly stressed

Mostly unstressed

(b) SP near 1

Figure 4.4.: Effect of different SPs on the BTI-induced aging of TG switch

53

Chapter 4. Investigating The Degradation of Programmable Routing Resources

4.4.2. Effect of WL

To see the effect of WL on BTI-induced aging, several wire lengths, as discussed in Sec-
tion 4.3, are investigated. The results show that, the BTI-induced wear-out decreases if
WL increases. This is due to the fact that the WL has no effect on the BTI-induced ∆Vth.
However, longer wires cause higher switching delays. As a result, the normalized (∆Delay)
decreases when WL increases.

4.4.3. Combined influence of both WL and NCS

To connect two logic blocks inside the FPGA, there are two possibilities: the first one is
to use long wires with minimum possible NCS, and the second one is to use shorter wires
with more NCS. To see which one is better from the aging point of view, three different
options are investigated to connect two logic blocks with segment distance of 4: i) using 1
switch with WL=4, ii) using 2 switches connected in series, each has a WL=2 and iii) using
4 cascaded switches each has a WL=1. The BTI-induced degradation of the three cases is
shown in Figure 4.5. As shown in the figure, in terms of BTI-induced aging, it is better to
use less number of cascaded switches with longer wires.

4.4.4. Effect of Fan-out

Generally, the delay of PT-keeper, TG and MUX routing switches are affected by the fan-
out. However, the delay of TS-buffer without a buffer sharing (see Figure 4.6(a)) is not
affected by fan-out [62]. This is due to the fact that the capacitance seen by node A is
the same no matter how many of the TS-buffers are connected. Therefore, to consider the
effect of fan-out on BTI-induced delay degradation of TS-buffer, the structure which is
shown in Figure 4.6(b), i.e., TS-buffer with buffer sharing [62], is considered.

The effect of fan-out on BTI-induced delay degradation of routing switches is shown
in Figure 4.7. The results show that the effect of fan-out is negligible for PT-keeper, TG
and MUX structures, although their fresh delays are affected by fan-out. However, for
TS-buffer the BTI-induced normalized ∆Delay decreases with higher fan-out.

4.4.5. Effect of Vdd

When performance is critical, higher Vdd is usually used at the cost of extra power con-
sumption. On the other hand, when the power is critical, lower Vdd is used at the cost of
performance. In this experiment, three values for Vdd are investigated: i) Typical Vdd , to
represent typical circuit operation, ii) High Vdd (110% Vdd), to represent high performance
case, and iii) Low Vdd (90% Vdd), to represent low power case. The effect is shown in
Figure 4.8 for the four routing switches.

To explain this figure, let us consider a simple CMOS inverter. In typical CMOS gates,
BTI-induced ∆Vth increases when supply voltage increases, although the delay of the fresh
circuit decreases [25]. This leads to an increase in the normalized BTI-induced ∆Delay at
higher supply voltages. However, the PT-keeper, TS-buffer and MUX structures do not fol-
low the same trend in terms of supply voltage, and surprisingly the amount of normalized

54

4.4.
E

xperim
entalR

esults

1−4 2−2 4−1
−0.05

0

0.05

0.1

0.15

NCS − WL

∆
D

el
ay

/D
el

ay

(a) PT-keeper

1−4 2−2 4−1
−0.05

0

0.05

0.1

0.15

NCS − WL

∆
D

el
ay

/D
el

ay

(b) TS-buffer

1−4 2−2 4−1
−0.05

0

0.05

0.1

0.15

NCS − WL

∆
D

el
ay

/D
el

ay

NBTI alone
NBTI and PBTI

(c) TG

1−4 2−2 4−1
−0.05

0

0.05

0.1

0.15

NCS − WL

∆
D

el
ay

/D
el

ay

(d) MUX

Figure 4.5.: The effect of wire length and number of cascaded elements together on BTI-induced wear-out

A

(a) Without Buffer-sharing (b) Buffer-sharing

Figure 4.6.: Two different switch type of TS-buffer

55

C
hapter4.

Investigating
T

he
D

egradation
ofProgram

m
able

R
outing

R
esources

1 2 3 4 5
−0.05

0

0.05

0.1

0.15

Fan−out

∆
D

el
ay

/D
el

ay

(a) PT-keeper

1 2 3 4 5
−0.05

0

0.05

0.1

0.15

Fan−out

∆
D

el
ay

/D
el

ay

(b) TS-buffer

1 2 3 4 5
−0.05

0

0.05

0.1

0.15

Fan−out

∆
D

el
ay

/D
el

ay

NBTI alone
NBTI and PBTI

(c) TG

1 2 3 4 5
−0.05

0

0.05

0.1

0.15

Fan−out

∆
D

el
ay

/D
el

ay

(d) MUX

Figure 4.7.: BTI-induced wear-out for different Fan-out

1 2 4 8 16
−0.05

0

0.05

0.1

0.15

Wire lengths

∆
D

el
ay

/D
el

ay

(a) PT-keeper

1 2 4 8 16
−0.05

0

0.05

0.1

0.15

Wire lengths

∆
D

el
ay

/D
el

ay

(b) TS-buffer

1 2 4 8 16
−0.05

0

0.05

0.1

0.15

Wire lengths
∆

D
el

ay
/D

el
ay

110% VDD − NBTI
VDD − NBTI
90% VDD − NBTI
110% VDD − NBTI and PBTI
VDD − NBTI and PBTI
90% VDD − NBTI and PBTI

(c) TG

1 2 4 8 16
−0.05

0

0.05

0.1

0.15

Wire lengths

∆
D

el
ay

/D
el

ay

(d) MUX

Figure 4.8.: BTI-induced wear-out for different supply voltages

56

4.4. Experimental Results

BTI-induced ∆Delay decreases for higher supply voltages in these three structures. This
behavior can be explained by taking into consideration that these routing switches are not
simple CMOS gates. Thus, they have different characterization and sensitivity to different
parameters. Figure 4.9 shows the sensitivity of delay to ∆Vth for a pass transistor, a trans-
mission gate and a simple CMOS inverter, for different supply voltages. As shown in this
figure, the sensitivity of delay to ∆Vth is almost the same for different supply voltages in TG
structure and CMOS inverter. However, the sensitivity of delay to ∆Vth decreases signifi-
cantly when the supply voltage increases for NMOS pass transistor. Therefore, even with
higher BTI-induced ∆Vth in higher supply voltages, the normalized BTI-induced ∆Delay
decreases for the three structures that have NMOS pass transistor as a main part of the
switch (i.e. PT-keeper, TS-buffer and MUX).

0 0.005 0.01 0.015
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

|∆ V
th

|

N
or

m
al

iz
ed

 d
el

ay

VDD−L
VDD
VDD−H

(a) NMOS Pass Transistor

0 0.005 0.01 0.015
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

|∆ V
th

|

N
or

m
al

iz
ed

 d
el

ay

VDD−L
VDD
VDD−H

(b) TG

0 0.005 0.01 0.015
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

|∆ V
th

|

N
or

m
al

iz
ed

 d
el

ay

VDD−L
VDD
VDD−H

(c) CMOS inverter

Figure 4.9.: Sensitivity of delay to ∆Vth in different circuits

However, the NBTI effect and its sensitivity to supply voltage are negligible for PT-
keeper, TS-buffer and MUX structures. This is consistent with the observations of previous
sections. For the TG structure, increasing the supply voltage results in a very small increase
in the normalized NBTI and BTI-induced ∆Delay.

57

Chapter 4. Investigating The Degradation of Programmable Routing Resources

4.5. Summary

In this chapter, the effect of transistor aging, due to NBTI and PBTI, on routing switches
inside the FPGA has been investigated by considering different implementations through
detailed SPICE simulations. The effect of different parameters has been studied on the
aging of switches (i.e. wire length, number of cascaded switches, fan-out, signal probability
and supply voltage). The main knobs that can be used by the FPGA manufacturers and
designers to mitigate the aging, can be summarized according to the obtained results in the
following:

• The NCS vs WL: less number of cascaded switches with longer wires has less aging
effect than larger number of cascaded switches with shorter wires.

• Fan-out: for the TS-buffer structure, activating a higher fan-out leads to less aging.

• Supply voltage: for both PT-keeper and TS-buffer structures, using higher Vdd leads
to less aging.

• The structures based on NMOS transistor are the best for technologies susceptible to
only NBTI while the transmission gate based structure is the best when both NBTI
and PBTI are important.

58

Chapter 5.

Experimental Analysis of Aging Effects

5.1. Introduction

The investigation of the aging effects in FPGA building blocks (LUTs and switch matrices),
which has been done in the previous two chapters, is based on the results of simulating the
aging of the individual transistors using the transistor-level BTI model (see Section 2.2). In
this chapter, the purpose is to experimentally investigate the aging effects on commercially-
available FPGA devices. For this purpose, an experimental analysis is performed to observe
the impact of various parameters, such as temperature, voltage, usage (signal probabilities
and switching activities) as well as process variation on performance degradation of FP-
GAs impacted by various aging mechanisms. The goal of this analysis is to observe the
following:

• The extent of performance degradation.

• How the performance degradation correlates with intra-die process variation.

• The effect of resource utilization in FPGAs on relative aging, and

• The relative criticality of different aging mechanisms (BTI vs HCI).

The experiment1 is done using a set of controlled ring-oscillator-based sensors with dif-
ferent lengths and tunable activity control, which are implemented on pre-specified loca-
tions in a Spartan-6 FPGA. These sensors are designed in such a way that the internal
Switching Activities (SAs) and SPs of them can be varied and hence the effect of these
parameters can be analyzed. Afterwards, accelerated-lifetime conditions using elevated
temperatures and voltages are applied to stress the FPGA and emulate the aging process.

The performance of the sensors and hence their delay degradations are monitored
throughout the experiment period (one week of stress with 80◦C and Vdd = 150% of the
nominal voltage, followed by one week of recovery). The influences of several factors
such as input SPs, input SAs and intra-die process variation (PV) on the amount of per-
formance degradation of the sensors are analyzed. The results provide some key insights
regarding the relation between these factors and the resulted degradation. Additionally,
the effect of aging on unused FPGA resources is investigated. It is shown that the un-
used FPGA resources age significantly as well, in some cases more than some used/active
blocks.

1Here I acknowledge our collaborators at LIRMM, University of Montpellier 2, France. The measurement
method and the experimental setup is designed, developed and performed by them [64].

59

Chapter 5. Experimental Analysis of Aging Effects

The rest of the chapter is organized as follows: Section 5.2 reviews the related work.
Then, Section 5.3 presents the design and the implementation of the sensors used in the
analysis. Afterwards, Section 5.4 illustrates the experimental setup. Later, the experimental
results and the analysis are discussed in Section 5.5. Finally, Section 5.6 concludes this
chapter.

5.2. Related work

There is some prior work which uses accelerated-lifetime conditions for stressing FPGA
chips and emulating the aging effects such as [52, 53] and [65]. Different modes of stress
conditions are investigated in [52, 53] ranging from normal operating conditions (1.2V and
310◦K) to high ones (2.2V and 420◦K). Test circuits that utilize both the LUTs and the
routing resources are used for measuring the performance degradation. Similar conditions
are applied in [65] to analyze the effect of aging on Physical Unclonable Functions (PUFs).
The PUFs were basically a set of ring oscillators mapped to FPGA LUTs.

The main differences between the work in this chapter and the aforementioned experi-
ments are:

• Investigating the effect of different parameters that have direct relation with aging
such as SP and SA and their combinations to identify the contribution of different
degradation mechanisms from a system-level perspective.

• The uniform placement of the different sensors (i.e. the test circuits) across the FPGA
chip, which capture the effect of intra-die variation and relate it to the degradation
mechanisms, and also to assure a homogeneous thermal profile across the chip.

• The use of a novel non-intrusive performance monitoring method based on measur-
ing the electromagnetic emissions of the FPGA [64], which is more accurate than
the methods that have on-chip communication modules. This is because those meth-
ods may introduce biases in the measurements, which come as a result of intra-die
variations, heat generation and voltage droops.

5.3. Sensors design and implementation

The main parameters that affect the aging process in FPGA, which previously discussed in
Chapter 2 (see Table 2.1), must be controlled in such a way that their values can be varied in
order to analyze their contribution to the total performance degradation. In this section, the
details of the sensors used in the aging experiment to vary these parameters are discussed.

5.3.1. Sensors design

As discussed in Chapter 2, the BTI mechanism is distinguished by its sensitivity to signal
duty cycle (Y) that can be represented by input SP as well (i.e., Y = 1− SP for PMOS
transistors under NBTI and Y = SP for NMOS transistors under PBTI), while the HCI

60

5.3. Sensors design and implementation

can be distinguished by the sensitivity to the amount of AR. It should be noted that SA
(the input switching activity) and AR have the same value if the transistor gate is directly
connected to the same input. Since the transistor-level details of the FPGA are proprietary,
the input SAs and SPs of individual modules (e.g., LUTs and routing resources) will be
used in the rest of this chapter. Although these values are different from the internal AR
and Y of each transistor, they are still related with them and can give a general implication
of the individual effect for each of BTI and HCI mechanisms.

Taking that into account, four controllable Ring-Oscillator (RO)-based sensors are used
to vary the values of SPs and SAs (see Figure 5.1). The number of the stages in the RO can
determine the generated frequency, and hence the amount of SA. Two of the sensors are
utilized for this purpose; the first one (S1) with three inverter stages (reaching a frequency
of ≈ 350 MHz on a Spartan-6 FPGA) and the second one (S2) with a single inverter stage
(for a maximum possible frequency of ≈ 900 MHz on the same FPGA).

Chair of Dependable Nano Computing (CDNC)

Institute of Computer Science and Engineering

1

En En

Sensor1 Sensor2

En

Sensor4 Sensor3

En

SP of En signal = 10% for all sensors

5% 95% 5%

95% 5% 95%

5%

95%

Input SP of

each inverter

Frequency (SA) ~= 350 MHz Frequency (SA) ~= 900 MHz

E
ff

e
c
t

o
f

S
P

Effect of SA

Figure 5.1.: Sensor versions to vary SPs and SAs

To vary the SP of the internal sensor stages, the switching of the RO itself can be con-
trolled. Usually, all the internal stages of the RO have a fixed input SP of 50% because
the inverters toggle continuously between logic-0 and logic-1. Adding an external enable
signal (En) to enable/disable the switching of the RO can change the input SPs of all the
inverters accordingly. Based on that, an enable signal is added to both S1 and S2 to specify
their internal SPs. A clock signal with a duty cycle of 10% is fed to this enable signal,

61

Chapter 5. Experimental Analysis of Aging Effects

which set the internal SPs of S1 to 5%, 95% and 5% respectively, and the internal SP of
S2 to 5% as shown in Figure 5.2. It should be noted that this enable signal is very low
frequency (i.e., 10 kHz) compared to the frequency of RO such that it does not interfere
with the functionality of RO. In order to get the effect of the reverse combinations of input
SPs, two other sensors are used; S3 as a counterpart to S1 with internal SPs of 95%, 5%
and 95%, and S4 as a counterpart to S2 with input SP of 95% as shown in Figure 5.1.

En

Output

AND gate

S1

Output

1
st

 Inv

S2

Output

AND gate

Output

Inv

0 T/10 T t

Output

2
nd

 Inv

Output

3
rd

 Inv

(SP = 10%)

SP = 5%

SP = 95%

SP = 5%

SP = 5%

SP = 95%

Figure 5.2.: The internal SPs for sensors S1 and S2

5.3.2. Implementation

With the aim of realizing the aging measurement2, a Nexys 3 board that offers a xc6slx16-
2csg324 Spartan 6 Xilinx FPGA is used [66]. This FPGA is manufactured with a 45-nm
process technology. The slices inside the CLBs of this device can be divided into 3 different
types: SliceX, SliceL and SliceM. SliceXs are the basic slices and are composed of LUTs
and FFs. SliceLs include in addition an arithmetic carry structure and wide multiplexers.
SliceMs, which are the most complex ones, allow using the LUTs as distributed RAM and
shift registers. Since these different types do not have the same resources, one can assume
that they do not present exactly the same timing performances. In order to compare the
measured frequencies among different locations, the sensors have to be implemented on
the same type of slices. SliceXs were chosen since they represent one half of the available
FPGA slices.

2The implementation is done in collaboration with our collaborators at LIRMM, University of Montpel-
lier 2, France

62

5.3. Sensors design and implementation

Similarly, the exact same configuration of LUT inputs is chosen, which means that the
routing nets structure is the same for all the sensors. This is also to be sure that the same
internal paths inside each LUT are used so a comparison between them is then possible.
Figure 5.3 depicts the resources used in each CLB for each sensor type. The sensors are
implemented using Xilinx Design Language (XDL) description, then converted into Hard
Macro (HM) to be sure that the resources used in the final design are those defined in the
specifications.

B C D A
En

B A
En

B C D A
En

B A
En

Switch
Matrix

Slice
X

Slice
L or
M

D
F
F

C
F
F

F
F

B
F
F

F
F

A
F
F

F
F

A6
A5

B6

C6

D6

Switch
Matrix

Slice
X

Slice
L or
M

D
F
F

F
F

C
F
F

F
F

B
F
F

F
F

A
F
F

F
F

A6
A5

B6

Switch
Matrix

Slice
X

Slice
L or
M

D
F
F

F
F

C
F
F

F
F

B
F
F

F
F

A
F
F

F
F

A6
A5

B6

C6

D6

Switch
Matrix

Slice
X

Slice
L or
M

D
F
F

F
F

C
F
F

F
F

B
F
F

F
F

A
F
F

F
F

A6
A5

B6

S1

S3

S2

S4

Figure 5.3.: Implementation of the sensors

In fact, ROs are PVT sensors (i.e. they are sensitive to Process, Voltage and Temperature
variations). For this reason, 40 sensors of each type were implemented. First, the different
types of sensors are placed homogeneously to guarantee a homogeneous thermal profile

63

Chapter 5. Experimental Analysis of Aging Effects

across the chip. Secondly, depending on their location on the floorplan, random and sys-
tematic variations of the process may affect the actual frequencies of ROs. The different
types of sensors are hence interleaved to average process variations. Figure 5.4 shows an
overview of a part of the FPGA floorplan (Block RAMs, DSPs and other specific blocks
are not depicted).

...
S3

S1

Unused

IO Block

S4

S2

...

Figure 5.4.: A part of the FPGA floorplan showing the distribution of the sensors (the stress
configuration)

The implemented design also allows enabling and disabling the sensor to reach the speci-
fied SA and SP values (see Section 5.3.1). The enable signal has a frequency of 10 kHz and
a duty cycle of 10%. This signal is generated using a 100 MHz oscillator clock available
on Nexys 3 board. Its frequency is decreased to 10 MHz using a Digital Clock Manager
(DCM) and then a counter generates the final frequency and duty cycle of the enable signal.

5.4. Experimental setup and schedule

In this section, the experimental setup, depicted in Figure 5.5, is described for both ap-
plying the accelerated lifetime conditions and monitoring the performance of the sensors
before and after the stress. This is followed by an illustration for the schedule in which the
experiment is applied.

64

5.4. Experimental setup and schedule

5.4.1. Setup

In this setup3, to eliminate the on-board sources of variation, in addition to applying the
accelerated lifetime conditions, the Nexys board was modified to have a direct access to the
FPGA core voltage. The FPGA board is then supplied using an external high-precision dy-
namic voltage controller and the temperature is regulated using a dynamically controllable
thermal chamber (See Figure 5.5). For monitoring the performance of the sensors before
and after the stress, an Electro-Magnetic (EM) method [64] is used to guarantee that only
variations due to aging are captured. This is unlike related approaches that have on-chip
communication modules, which are susceptible to intra-die variations that can influence
the measurements. The monitoring is done by configuring the FPGA each time with a
single sensor at a certain location, and then capturing its frequency using EM analysis. A
near-field EM probe is placed over the package to capture the EM emanations. Afterwards,
an FFT for the digitalized EM signal is performed to obtain the frequency of the associ-
ated sensor. This process is repeated for each possible location of each sensor type on the
FPGA. In this way, a frequency cartography for the FPGA is built. As estimated in [67], the
measurement error is lower than 100 kHz with this equipment. The same error estimation
procedure was followed again here, and similar results have been acquired as well.

5.4.2. Schedule

The experimental schedule is as follows (it should be noted that the whole experiment is
automated using a controlling PC (see Figure 5.5)):

1. At the beginning (at Day 0), before stressing the FPGA circuit, a fresh characteri-
zation for the whole FPGA is performed under nominal operational conditions (i.e.,
with 1.2V and 25◦C). This is done by placing S1, S2, S3 and S4 successively (only
one sensor from each type at a time) at their pre-defined locations (40 positions for
each sensor type) for capturing their fresh oscillating frequency. A whole cartography
of the FPGA is also performed as a reference with S0 (the same RO used in [64]).

2. Afterwards, the accelerated lifetime conditions are applied by exposing the FPGA to
an elevated temperature and core voltage. The core was supplied by a 1.8V voltage
(50% above its nominal value of 1.2 V) using the aforementioned external power
supply, and the FPGA was heated to 80◦C using the thermal chamber, while the
stress configuration (Figure 5.4) was in operation (please note that S0 is not loaded
during the stress). These conditions are applied for 7 days continuously without any
interrupt. This is to avoid any possible intermediate recovery that may happen to the
sensors.

3. At Day 7, directly after the stress, the circuit is set back under the nominal conditions,
and a full characterization is performed, exactly as in step 1, for all the sensors (S0 -
S4). The FPGA is then powered-off for the rest of the day.

3The measurement method and the experimental setup is designed, developed and performed by our
collaborators at LIRMM, University of Montpellier 2, France [64].

65

Chapter 5. Experimental Analysis of Aging Effects

Dynamically Controllable Thermal
Chamber

Electromagnetic Sensing Probe

Spartan-6 slx16 FPGA

Dynamic
Voltage

Controller

Oscilloscope

Low Noise
Amplifier

Experiment
Controlling PC +

Software

Figure 5.5.: Experimental setup [64]

4. Step 3 is then repeated on a daily basis until Day 14.

5.5. Experimental results and analysis

As discussed in Section 5.4, the FPGA is characterized before the stress (at Day 0) and
after the stress (at Day 7), then on a daily basis during the recovery phase (at Day 8, Day
9, Day 12, Day 13 and Day 14). The main results and observations are discussed in the
following section followed by a thorough analysis in Section 5.5.2.

5.5.1. Results

The frequency changes of each type of sensors (40 sensors from each type) during the
experiment period are depicted in Figure 5.6. Unfortunately, for the sensors of type S4,
the measurement data got corrupted after Day 8. Actually it is because post-processing is
more complex with the equipment with such frequencies (which means it requires much
time and visual analysis). However, the trend was the same after 2 and 3 days on a subset
of points. Therefore, for both S2 and S4 sensors the results are shown only till Day 8 to
allow the comparison between these two types.

As can be observed in Figure 5.6, there are two distinguished groups of frequencies
appearing for each sensor type. These are the result of mapping the sensors to different

66

5.5.
E

xperim
entalresults

and
analysis

Day 0 Day 7 Day 8 Day 9 Day 12 Day 13 Day 14
320

330

340

350

360

370

380

F
re

q
u

en
cy

 (
M

H
z)

Day 0 Day 7 Day 8
750

775

800

825

850

875

900

925

950

F
re

q
u

en
cy

 (
M

H
z)

(a) Sensors of type S1 (b) Sensors of type S2

Day 0 Day 7 Day 8 Day 9 Day 12 Day 13 Day 14
320

330

340

350

360

370

380

F
re

q
u

en
cy

 (
M

H
z)

Day 0 Day 7 Day 8
750

775

800

825

850

875

900

925

950

F
re

q
u

en
cy

 (
M

H
z)

(c) Sensors of type S3 (d) Sensors of type S4

Figure 5.6.: The frequency change of each sensor (40 sensors from each type, each line color represents a single sensor)

67

C
hapter5.

E
xperim

entalA
nalysis

ofA
ging

E
ffects

Table 5.1.: Mean frequency and max variation
Sensors of type S1 Sensors of type S3 Sensors of type S2 Sensors of type S4

SliceM CLB SliceL CLB SliceM CLB SliceL CLB SliceM CLB SliceL CLB SliceM CLB SliceL CLB
Day 0
Fmean (MHz) 344.8 371.1 345.9 371.8 846.2 921.0 849.9 922.8
Varmax (MHz) 9.0 (2.6%) 12.3 (3.3%) 6.7 (1.9%) 8.9 (2.4%) 23.3 (2.8%) 40.2 (4.4%) 29.9 (3.5%) 27.0 (2.9%)
Day 7 (directly after the stress)
Fmean (MHz) 330.0 355.0 333.2 358.4 807.2 881.7 813.1 880.3
Varmax (MHz) 8.2 (2.5%) 11.4 (3.2%) 6.8 (2.0%) 8.5 (2.4%) 18.2 (2.3%) 33.7 (3.8%) 23.3 (2.9%) 31.5 (3.6%)
Day 8 (after 1 day of recovery)
Fmean (MHz) 333.3 358.0 333.7 358.8 810.6 881.1 813.5 880.5
Varmax (MHz) 7.9 (2.4%) 10.9 (3.0%) 7.0 (2.1%) 8.9 (2.5%) 20.8 (2.6%) 26.4 (3.0%) 23.1 (2.9%) 32.1 (3.7%)
Day 9 (after 2 days of recovery)
Fmean (MHz) 333.0 358.3 333.4 358.6 810.5 883.2 NA NA
Varmax (MHz) 8.0 (2.4%) 11.0 (3.1%) 7.2 (2.2%) 8.6 (2.4%) 18.6 (2.3%) 30.5 (3.5%) NA NA

68

5.5. Experimental results and analysis

CLBs. Actually, as discussed in Section 5.3.2, each CLB in Spartan-6 FPGA contains two
type of slices: either SliceX with SliceL or SliceX with SliceM. Although only SliceXs
are chosen to map the sensors, the results show that the sensors mapped to the CLBs that
contain SliceM beside SliceX are slower than those mapped to the CLBs that contain SliceL
beside SliceX by about 7 to 9%. This is in line with the previous results of [64]. The other
observation is that there is a clear performance variation between the sensors of each type.
Table 5.1 separates the sensors mapped to the CLBs with SliceL from those with SliceM
and shows the mean frequency (Fmean) and the maximum variation (Varmax) for each type.

Although the previous observations are interesting, the main observation however in both
Figure 5.6 and Table 5.1 is the relatively large performance degradation after the stress for
all the sensors. Figure 5.7 shows this degradation as a normalized ∆Delay for the sensors
of each type. This degradation reaches to 5.17% for some sensors of type S2. Table 5.2
records the minimum, mean and maximum values for each type during the first 3 days after
the stress.

In addition to the previous results, it is mentioned in Section 5.4 that a characterization
is made for the unused FPGA resources using a fifth type of sensors (S0) before and after
the stress. It should be noted again here that unlike S1-S4, Sensors of type S0 are not
mapped during the stress phase and the targeted resources were completely unused (i.e.,
no user configurations are mapped to them). Similarly, the result of this characterization is
shown in Figure 5.8 both as a frequency change (Figure 5.8(a)) and as a normalized ∆Delay
change (Figure 5.8(b)). Also, Table 5.3 shows the minimum, mean and maximum values
of this degradation.

5.5.2. Analysis

The results of the aging experiment, which are given in the previous section, show an aging
extent of up to 5.17% after just one week of continuous stress. The effects of different
parameters on this extent are analyzed in the following:

5.5.2.1. Effect of Input Signal Probability (SP)

As mentioned in Section 5.3.1, in terms of SPs, S1 is the counterpart of S3 and S2 is the
counterpart of S4. If we take the measurements of Day 7 (directly after the stress), we will
find that S1 has higher aging than S3 by about 18% on average, also S2 has higher aging
than S4 by about 10% on average. The measurements of the next day (Day 8), show that
some recovery happens. This recovery was higher in S1 and S2 than in S3 and S4. The
results of the recovery make the aging of S1 and S3 comparable. The same also can be
observed for S2 and S4. This trend continues until the end of the experiment at Day 14.

Based on the fact that the BTI mechanism is sensitive to SP changes and it is the only
mechanism that has a recovery effect (see Chapter 2), these results show that the input SPs
play a role in aging. However, more experiments are needed to verify this and to determine
what is better in terms of aging, low input SPs or higher ones.

69

C
hapter5.

E
xperim

entalA
nalysis

ofA
ging

E
ffects

Day 0 Day 7 Day 8 Day 9 Day 12 Day 13 Day 14
0

1%

2%

3%

4%

5%

6%

N
o

rm
al

iz
ed

 Δ
 D

el
ay

Day 0 Day 7 Day 8
0

1%

2%

3%

4%

5%

6%

N
o

rm
al

iz
ed

 Δ
 D

el
ay

(a) Sensors of type S1 (b) Sensors of type S2

Day 0 Day 7 Day 8 Day 9 Day 12 Day 13 Day 14
0

1%

2%

3%

4%

5%

6%

N
o

rm
al

iz
ed

 Δ
 D

el
ay

Day 0 Day 7 Day 8
0

1%

2%

3%

4%

5%

6%

N
o

rm
al

iz
ed

 Δ
 D

el
ay

(c) Sensors of type S3 (d) Sensors of type S4

Figure 5.7.: Normalized ∆Delay change of each sensor (40 sensors from each type, each line color represents a single sensor)

70

5.5.
E

xperim
entalresults

and
analysis

Table 5.2.: Normalized ∆Delay increase after the stress (aging rates)

Aging Sensors of type S1 Sensors of type S3 Sensors of type S2 Sensors of type S4
Min Mean Max Min Mean Max Min Mean Max Min Mean Max

At Day 7 4.14% 4.33% 4.48% 3.48% 3.66% 3.87% 4.46% 4.86% 5.17% 4.23% 4.43% 4.77%
At Day 8 3.04% 3.37% 3.69% 3.33% 3.53% 3.74% 4.00% 4.47% 4.81% 4.21% 4.39% 4.65%
At Day 9 3.12% 3.43% 3.73% 3.42% 3.60% 3.88% 4.14% 4.51% 4.79% NA NA NA

71

C
hapter5.

E
xperim

entalA
nalysis

ofA
ging

E
ffects

Day 0 Day 7 Day 8 Day 12 Day 13 Day 14

400

420

440

460

F
re

q
u

en
cy

 (
M

H
z)

Day 0 Day 7 Day 8 Day 12 Day 13 Day 14
0

1%

2%

3%

4%

5%

6%

N
o

rm
al

iz
ed

 Δ
 D

el
ay

(a) Frequency change (b) Normalized ∆Delay change

Figure 5.8.: Unused CLBs (each line color represents a single sensor)

Table 5.3.: Normalized ∆Delay increase after the stress (aging rates) for unused CLBs
Aging Min Mean Max
At Day 7 3.60% 4.10% 4.57%
At Day 8 3.68% 4.13% 4.58%
At Day 12 3.69% 4.16% 4.57%
At Day 13 3.54% 4.01% 4.48%
At Day 14 3.54% 3.98% 4.47%

72

5.5. Experimental results and analysis

5.5.2.2. Effect of Switching Activity (SA)

In terms of SA, S1 is the counterpart of S2 and S3 is the counterpart of S4 (see Sec-
tion 5.3.1). Both S2 and S4 are about 250% faster (i.e. have higher SAs) than their coun-
terparts. However, the measurements at Day 7 (directly after the stress) show that S2 has
only about 12% aging on average more than S1, and S4 has about 21% aging on average
more than S3. After the recovery at Day 8, this difference becomes about 33% on average
S2 more than S1 and about 24% on average S4 more than S3. This trend continues till the
end of the experiment at Day 14.

These results show that the frequency change has a limited effect on aging for this FPGA
technology. Another support for this conclusion is the results of aging for both CLBs that
contain SliceL or SliceM. The sensors mapped to the CLBs that contain SliceL are faster
than those mapped to the CLBs that contain SliceM by about 7 - 9% (see Figure 5.6 and
Table 5.1). However, there is no noticeable difference between the aging of both (see
Figure 5.7 and Table 5.2). Again, this is due to the limited effect of frequency change on
aging for this technology. Since only HCI, and not BTI, is affected by frequency changes,
it can be concluded that the HCI effect in this technology node is less than the BTI effect.

5.5.2.3. Aging of Unused Resources

As mentioned before, the unused LUTs were completely unmapped during the stress. How-
ever, characterizing them using S0 before and after the stress shows that they also age (see
Figure 5.8 and Table 5.3). The aging of these unused resources is even more than some
of the used resources (it is more than the aging of S1 and S3 sensors). The explanation of
this behavior is the fact that there is no power gating in Spartan-6 FPGA, which means that
even if the resources are unused, they are powered-on all the time. A default configuration
of all zeros or all ones is normally loaded to the unused resources [68] to isolate them from
the mapped circuit. This puts the unused resources under a static type of BTI stress, and
this is the reason of their degradation.

These results are in line with the simulation results of Chapter 3. As a future work,
investigating the effect of applying different configurations for the unused LUTs on the
aging rate is planned.

5.5.2.4. Recovery Results

Among all sensors, only S1 and S2 sensors show clear recovery. A possible reason could
be that there was not enough recovery time during the stress (the first 7 days) for these two
types of sensors, while the other sensors had such time to recover. In fact, since all sensors
are ROs, and the transistors under stress were switching, there was an AC type of stress,
not a DC. This means that some sort of BTI relaxation was happening during the 7 days of
stress for some of the sensors. This may explain why the aging of S1 and S3 (S2 and S4)
becomes comparable after Day 8. However, still more experiment is needed to verify this.

73

Chapter 5. Experimental Analysis of Aging Effects

5.5.2.5. Effect of Process Variation (PV)

Aging influence on PV Although the performance of the sensors degraded after the
stress, the maximum variation (Varmax) did slightly change during the entire experiment
period for all the sensors (see Figure 5.6 and Table 5.1). This applies for the unused re-
sources as well (see Figure 5.8). In other words, the aging affects the mean value (µ) of
the frequency for each sensor type, but has almost no influence on the standard deviation
(σ) of each type. Figure 5.9 shows the probability density function for the sensors of type
S1 before and after the stress.

D
ay

 0
D

ay
 7

D
ay

 8

320 330 340 350 360 370 380
Frequency [MHz]

D
ay

 1
4

SliceM CLB SliceL CLB

Figure 5.9.: The probability density function for the sensors of type S1 before and after the
stress. The aging affects the mean value (µ) of the frequency, but has almost
no influence on the standard deviation (σ)

PV influence on aging It was also desired to see how the PV affects both the initial
delay and the aging of the sensors. Figure 5.10 shows a comparison for all the sensors of
type S1 for their initial frequency at Day 0 and their aging directly after the stress (at Day
7) and at the end of the experiment after a week of recovery (at Day 14). The figure shows
clearly that there is no correlation between how the PV affects the initial delay and how it

74

5.6. Summary

0 1 2 3 4 5 6 7 8 910111213141516171819202122232425262728293031323334353637383940
2%

3%

4%

5%

6%
N

o
rm

al
iz

ed
 Δ

 D
el

ay

Sensor ID
0 5 10 15 20 25 30 35 40

340

350

360

370

380

F
re

q
u

en
cy

 [
M

H
z]

 Frequency at Day 0
Normalized Δ Delay at Day 7 (directly after stress)
Normalized Δ Delay at Day 14 (after recovery)

Figure 5.10.: A comparison between the effect of PV on the initial delay of the sensors
of type S1 and their aging directly after the stress and after the recovery (40
sensors of type S1)

affects the aging and recovery of different sensors. The same results apply for all sensor
types (S1 - S4).

5.6. Summary

In this chapter, an analysis has been presented for some of the main parameters influencing
the performance degradation resulted from transistor aging in FPGAs. The analysis is based
on the result of stressing a Spartan-6 FPGA, where a set of controlled ring-oscillator-based
sensors with different lengths and tunable activity control is implemented. Furthermore, a
novel monitoring method based on measuring the electromagnetic emissions of the FPGA
is used to accurately monitor the performance of the sensors before and after the stress.
The results showed a degradation of up to 5.17% in the performance of the sensors after
one week of stress. The following conclusions are also observed:

• Input SPs play a role in degradation.

• The input frequency (SAs) plays also a role, but the impact of operational frequency
on the aging was less compared to SP. This suggests that BTI aging is the dominant
factor in this technology node compared to HCI.

• There is no correlation between how the PV affects the initial delay and how it affects
the aged one.

75

Chapter 5. Experimental Analysis of Aging Effects

• The unused FPGA resources age significantly as well, in some cases more than some
used/active blocks.

More experiments are planned in the future for further analysis of possible aging mitigation
strategies based on the observations of this chapter.

76

Chapter 6.

Thermal-Profile Estimation of FPGA-Mapped
Designs

6.1. Introduction

As discussed in Chapter 2, the temperature has an exponential relation with both BTI and
HCI effects. Therefore, to correctly estimate the aging effect, an accurate thermal esti-
mation for the FPGA is required. In this chapter, a method for accurate thermal-profile
estimation for the FPGA-mapped design is presented. This thermal estimation is a main
part of the high-level aging estimation, which will be discussed later in Chapter 7.

The modern FPGAs are very susceptible against a wide range of reliability problems
induced by elevated temperatures and unbalanced thermal distribution across the FPGA
die [69]. Besides, the problem of power in SRAM-based FPGAs, particularly leakage
power, is even worse than in ASICs, because most of the transistors are powered on all
the time even in the unused blocks of the FPGA, and hence the leakage can reach more
than 50% of the total power consumption [70]. These reasons made predicting the thermal
characteristics of modern FPGA platforms at design time something inevitable. This helps
to ensure the lifetime of chips and to avoid the unforeseen failures produced by elevated
temperatures during system operation. Furthermore, knowing the thermal characteristics,
at design time, helps the designers to avoid possible hot-spots in an early phase of the
design process by applying alternative routing and placement options, reducing the oper-
ational clock frequency or any other possible technique. This eliminates the overhead of
the in-field thermal behavior investigation of FPGA chips, and thus reduces the overall
design time and cost. Moreover, this helps to check whether the design meets its ther-
mal constraints during the iterative design process (i.e. while optimizing for other design
constraints).

Traditionally, studying the thermal characteristics at design time can be done by gener-
ating the power trace for different blocks1 in the chip and then using a thermal simulator
(e.g., HotSpot [71, 72], ISAC [73], etc.) to estimate the generated temperatures. These
simulators require accurate information about the power distribution (both leakage and dy-
namic) across the chip to build the corresponding thermal profile. The key challenge in
FPGA is that, unlike the dynamic power, which is provided in detail through the vendor’s
power tool (such as the XPower tool from Xilinx and the PowerPlay tool from Altera), the
leakage power for the whole FPGA chip is reported as only one value without any details
about its distribution across the FPGA die. The lack of knowledge of how exactly the leak-
age power is distributed across the FPGA chip leads to highly inaccurate power traces for

1In this scope, a block is a rectangular region of the FPGA which simplifies thermal simulation through
abstraction.

77

Chapter 6. Thermal-Profile Estimation of FPGA-Mapped Designs

different FPGA blocks and consequently unfaithful thermal estimation. This is shown later
in this chapter.

In this chapter, the challenge of unknown leakage distribution in FPGA chips is ad-
dressed. Also, a method is presented, based on temperature-leakage loop estimation model,
to accurately distribute the reported leakage power across the FPGA chip for more accurate
thermal profile estimation. Based on this method, a generic flow is presented for steady-
state thermal profile estimation in FPGA at design time using the information provided
from the vendor’s tools. This flow can be used with any SRAM-based FPGA. To pre-
cisely calibrate the proposed method and its model, an infrared-based thermal camera is
employed2, which measures the emissions from the backside of Xilinx Virtex-5 chip. The
Camera is used also to validate the proposed approach against various benchmark circuits.
The obtained results show that the proposed flow for steady-state thermal profile estimation
comes with an average absolute error of 1◦C and 3◦C in terms of the thermal variation and
peak temperature, respectively.

The rest of this chapter is organized as follows: Section 6.2 describes the related work.
Afterward, Section 6.3 highlights the relation between temperature and leakage power
which motivates the work in this chapter. Afterward, Section 6.4 presents the proposed
approach for leakage power distribution and adaptation. Section 6.5 then explains the pro-
posed flow to estimate the thermal behavior of the FPGA. Section 6.6 illustrates the utilized
experimental platform that employs an infrared camera to accurately calibrate and validate
the estimated thermal characteristics. Later, the evaluation and the comparison results are
given in Section 6.7. Finally, Section 6.8 concludes this chapter.

6.2. Related work

Thermal simulators for estimating the thermal profiles of the FPGA has been proposed
in [71] and [74]. In [71], the authors measure the power consumption of the FPGA before
and after loading their design to determine its power consumption. Although this approach
can measure the power consumption accurately, it does that for the whole design or the
loaded module, which means that the generation of a fine-grained power trace is not possi-
ble and hence, the resulted thermal profile will not have enough resolution to determine the
hot-spots within the loaded design. In [74], the power trace is generated considering the
worst-case power consumption of the FPGA components. This may not provide accurate
thermal results. Furthermore, no details are given on how the leakage power, which is re-
ported from the FPGA’s power tool as a single value, is distributed across the FPGA chip.
In summary, although the leakage power can be estimated for the whole FPGA accurately,
no enough details are given in literature or the FPGA toolset about its distribution across
the FPGA chip for the thermal simulation.

2I acknowledge here Prof. Jörg Henkel and his group from the chair of embedded systems at Karlsruhe
Institute of Technology who have done the thermal camera setup

78

6.3. Motivation

6.3. Motivation

In order to motivate the proposed thermal profile estimation flow, the relationship between
temperature and leakage power is first highlighted through theoretical models and FPGA
experiments. Afterward, the leakage power issue in FPGAs is explained.

6.3.1. Leakage-Temperature Relation

Leakage power and temperature have a closed-loop relation. This relation is modeled in
literature in two different equations. The first one (Equation 6.1) describes the relation
between leakage power and temperature of Metal-Oxide-Semiconductor Field-Effect Tran-
sistor (MOSFET) transistors [75].

Pleak = P0× e−k/T (6.1)

where Pleak is leakage power, T is temperature, P0 and k are process dependent constants.
The second model (Equation 6.2) describes the relation between the junction temperature
of the package and the total power consumption of it (leakage + dynamic) [75].

T = Ta +θ × (Pleak +Pd) (6.2)

where Ta is the ambient temperature, θ is the thermal resistance of the package, Pleak and Pd
are the leakage and dynamic power consumption of the chip, respectively. It is clear from
the two equations that rising the temperature will increase the leakage, and in turn will rise
the temperature again and so on until the heat generated from the package stabilizes with
the heat dissipated from it.

In order to better understand this closed-loop relation between the temperature and the
leakage power in FPGAs, several experiments using different FPGA platforms are carried
out. In one of the experiments, a Spartan6-based board (Digilent Atlys) with built-in power
monitoring capabilities for each power supply voltage on the board is employed. As a test-
bench circuit, a 128-bit pipelined AES-encoder circuit at 300 MHz is used. Additionally, to
override the contribution of the dynamic power on the total power, constant signal activities
are assured for the internal logic of the testbench circuit. In that way, any change to the
total power value that may happen would be only due to the leakage contribution.

The board is switched-on, and left until stable power values are reached. Then, the
testbench design is loaded to the FPGA. After few minutes, a fan is used to circulate air at
the heatsink of the FPGA, in order to cool the FPGA down. The fan is left on for about one
minute and then switched off for the rest of the experiment. The power behavior of FPGA’s
internal logic supply voltage (Vint) during this experiment is depicted in Figure 6.1.

As it can be seen in this figure, the power value has a sudden increase directly after the
testbench is loaded to the FPGA. Then, a logarithmic increase to the power value happens
after the design is loaded to the FPGA, which can be explained as follow: as the power
value increased due to the loading of the testbench on the FPGA, the junction temperature
of the package increased as well according to Equation 6.2. This increase in temperature
caused an increase to the leakage power of the internal transistors of the FPGA according to

79

Chapter 6. Thermal-Profile Estimation of FPGA-Mapped Designs

0

0.5

1

1.5

2

2.5

3

3.5

0 50 100 150 200 250 300 350 400

P
o

w
e

r
(W

)

Time (Seconds)

Design
Loaded

C
o

o
lin

g
A

ct
iv

at
e

d

No Coolin
g

No Coolin
g

Figure 6.1.: Temperature - Power relation through the time for Vint power source in a
SPARTAN-6 FPGA

Equation 6.1, which in turn caused an increase to temperature and so on this loop continued
until the heat dissipation of the heatsink stabilized with the heat generation of the FPGA
package. The support of this explanation is the second phase of the experiment, where the
fan is activated so the temperature decreased and caused the leakage to decrease as well.
The third phase supports the same trend as well, where switching off the fan increases the
temperature and the leakage again. This experiment clearly shows the relation between
temperature and leakage power.

6.3.2. FPGA Leakage Power

In SRAM based FPGAs, most of the internal transistors are powered on all the time during
operation. This causes a large amount of leakage power consumption even if the design
loaded onto the FPGA is very small, because in addition to the used FPGA blocks, the un-
used blocks of the FPGA are always powered on and consume leakage power. Fortunately,
the power analysis tool, that comes with the vendor toolset, can estimates this amount of
leakage based on different operational conditions. However, the estimated amount of leak-
age is reported as a single value for the whole FPGA chip. This is useful when a power
budget analysis for the FPGA is needed. However, for the thermal profile analysis of de-
signs mapped to FPGA, one needs to have 1) an accurate model of leakage distribution
across the FPGA device and 2) close the loop for leakage and temperature. With the lack
of such information no accurate thermal profile estimation can be made.

In the following section, a method for distributing and increasing the reported leakage
value across the FPGA is presented based on the relation between leakage power and tem-

80

6.4. The Proposed Approach

perature, in such a way that hotter areas get more percentage of the leakage than the cooler
ones. Afterward, a flow for steady-state thermal estimation using the proposed method is
presented.

6.4. The Proposed Approach

6.4.1. Leakage Power Redistribution

Starting from the fact that MOSFET transistors leak more power under higher temperatures,
a leakage-temperature-loop-based model is proposed to redistribute the leakage power to
the FPGA blocks, in such a way that blocks which have higher temperature values get
more percentage of the reported total leakage power than the other blocks. The traditional
leakage-temperature relation model [75] is given in Equation (6.1). The proposed model,
given in Equation (6.3), is inspired by the model in Equation (6.1) to determine the per-
centage of leakage power contributed by each block in the FPGA floorplan.

Factori = e−B/(Ti−C) (6.3)

where i is the block number, T is the block temperature, Factor is a value, which represents
a part of leakage power that the specified block will get, B and C are fitting parameters
with positive values, which are obtained and calibrated through some generic test cases
using the camera measurements, as will be explained later in Section 6.6.2. The leakage
redistribution algorithm can be summarized in the following steps:

1. At the beginning, the leakage power (Ptotal
leakage) is distributed equally to the FPGA

blocks, then HotSpot (as a thermal simulator) is called to get the first per-block
steady-state temperature estimation (Ti).

2. Afterward, the model in Equation (6.3) is used to calculate the percentage of leakage
that each block will get.

3. The original amount of leakage reported in the power report is then divided to the
summation of all Factor values to determine a normalized per-factor leakage.

4. Finally, the per-block leakage for each block (Pblocki
leakage) is calculated by multiplying

the calculated per-factor leakage by the Factor value of each block. In that way, the
amount of the reported leakage power does not increase.

This loop continues until the steady-state temperature values of each block Ti converge
over subsequent loop iterations (∆Ti > δ , e.g. δ = 0.1◦C). A pseudo-code of this process is
shown in Figure 6.2.

6.4.2. Temperature-Leakage Loop Estimation

In the previous section, the leakage power, which is reported in the power tool as a single
value, is redistributed according to the temperature values across the FPGA chip. In this

81

Chapter 6. Thermal-Profile Estimation of FPGA-Mapped Designs

1. Read Ptotal
leakage, n ⇐ No o f blocks

2. Pblock
leakage ⇐ Ptotal

leakage / n
3. For each blocki
4. Pblocki

leakage ⇐ Pblock
leakage

5. Pblocki ⇐ Pblocki
leakage + Pblocki

dynamic
6. End For
7. Count ⇐ 0
8. Do
9. Call HotSpot (Pblocki)

10. Read Per_block Temperatures (Ti)
11. For each blocki
12. Factori ⇐ e−B/(Ti−C)

13. End For
14. Factors ⇐ ∑

n
i=0 Factori

15. P f actor
leakage ⇐ Ptotal

leakage / Factors
16. For each blocki
17. Pblocki

leakage ⇐ Factori × P f actor
leakage

18. Pblocki ⇐ Pblocki
leakage + Pblocki

dynamic
19. End For
20. Count ⇐ Count + 1
21. While (∆ Ti > δ) AND (Count < Countmax)

22. Return (Pblocki
leakage) f ixed ⇐ Pblocki

leakage

Figure 6.2.: Redistribution of the leakage power across the FPGA chip according to tem-
perature values

section, the resulted per-block leakage values (Pblocki
leakage) f ixed are allowed to increase, to

reflect the real circuit operation (i.e. closing the temperature-leakage loop). The direct use
of Equation (6.1), for this purpose, requires knowledge about the range of possible leakage
power inside an FPGA block for a certain technology node. Without this knowledge, the
parameters P0 and k cannot be adjusted. In our case, a primary estimation for the per-
block leakage resulted from the previous section is already there and hence, these low level
details are not required. The new per-block leakage (Pblocki

leakage)new is calculated according to
Equation (6.4). (

Pblocki
leakage

)
new

= (Ā× e−B̄/(Ti−C̄)+1)×
(

Pblocki
leakage

)
f ixed

(6.4)

where Ā, B̄ and C̄ are fitting parameters with positive values. Similar to Equation (6.3) the
calibration of these parameters will be explained later in Section 6.6.2. The calculation
of the steady state temperature happens in a loop similar to Figure 6.2 by replacing lines
12 - 17 with Equation (6.4). It should be noted, that the values of (Pblocki

leakage) f ixed , which
are obtained in Section 6.4.1 are fixed through the whole loop and do not change at each
iteration. A pseudo-code of this process is shown in Figure 6.3.

82

6.5. FPGA Thermal Estimation Flow

1. For each blocki
2. Get (Pblocki

leakage) f ixed

3. Pblocki ⇐ (Pblocki
leakage) f ixed + Pblocki

dynamic
4. End For
5. Count ⇐ 0
6. Do
7. Call HotSpot (Pblocki)
8. Read Per_block Temperatures (Ti)
9. For each blocki

10. (Pblocki
leakage)new

⇐ (Ā × e−B̄/(Ti− C̄) + 1) × (Pblocki
leakage) f ixed

11. Pblocki ⇐ (Pblocki
leakage)new + Pblocki

dynamic
12. End For
13. Count ⇐ Count + 1
14. While (∆ Tblock > δ) AND (Count < Countmax)

Figure 6.3.: Leakage-temperature loop calculation

Actually, HotSpot simulator contains a built-in function intended to account for the
temperature-leakage loop. However, the results of using this function do not make any
noticeable change to the obtained thermal profile. We believe that this is because HotSpot
has no information about the percentage of leakage power in the total power of each block.

6.5. FPGA Thermal Estimation Flow

In order to estimate the temperature profile across the FPGA chip, thermal simulators (e.g.
HotSpot, ISAC) require two types of information: i) a floorplan of the chip and ii) a power
trace file describing the power consumption (including both dynamic and leakage power)
of each part of the chip. In the following, Xilinx’s design tools are targeted, because the
proposed experimental setup utilizes a Virtex-5 FPGA (see Section 6.6). Nevertheless, the
same flow can be easily adjusted for other design tools from other FPGA vendors.

A method similar to the one presented in [74] is followed for preparing the needed
FPGA information to be used in the targeted thermal simulator. Additionally, the HotSpot
5.02 [72] simulator is used for thermal modeling.

6.5.1. Floorplan Creation

The FPGA’s floorplan is generated using 1) the information from the chip resource file
(*.xdlrc) and 2) the die dimensions (see floorplan creation in Figure 6.5). The information
provided from the xdlrc file divides the FPGA chip into two-dimensional array of physical
tiles. Each tile contains a set of the FPGA internal components. For the generation of the
floorplan, it would be possible to divide the floorplan exactly as the FPGA is divided in the
xdlrc file (i.e. each tile from the xdlrc file is mapped to one block of the floorplan). How-
ever, the number of FPGA tiles is usually large (e.g. 164× 177 for Virtex-5 110t), which

83

Chapter 6. Thermal-Profile Estimation of FPGA-Mapped Designs

can result in excessively long thermal simulation runtime. Fortunately, the temperature has
a negligible variation at such granularity. For that reason, the FPGA die is divided into
a two-dimensional set of identical blocks, where each block has a dimension of n×m of
physical tiles (it is found that a block size of 5×5 of physical tiles gives the best trade-off
between temperature accuracy and simulation runtime). The FPGA die dimensions, which
are obtained either from the FPGA datasheet or from manual measurements, are used then
to calculate the dimensions of each physical tile (assuming all tiles are identical in size),
and in turn to calculate the dimensions of each block in the floorplan.

6.5.2. Power Trace Generation

The generation of the power trace file, on the other side, requires detailed information about
the power distribution across the FPGA for the targeted mapped design. FPGA designers
can get detailed power estimation for a certain design using the vendor’s power analyzer
tool. In our case, Xilinx’s XPower is used to generate the detailed power report. The
generation of accurate power values, for different parts of the circuit, requires detailed in-
formation about the internal signal activities. These can be obtained using a logic simulator
(e.g. ModelSim) for the post-place-and-route circuit model (see Figure 6.4). The internal
signal activities can be saved in a value change dump (VCD) file and then can be given to
the power tool. The power report, generated in that way, contains a detailed dynamic power
description for each node in the design (logic (LUT), routing signals, clocks, etc.).

Power

Analyzer

Tool
Power

Report
Physical Constraints

Circuit Netlist

Logic

Simulator

VCD File

Post place-and-route

simulation modelTestbench

Figure 6.4.: Power report generation flow

The power report is parsed to extract the dynamic-power value for each node in the
design. Then the physical locations for each node is obtained from the physical mapping
information (the design’s XDL file), and mapped to the chip resource file (XDLRC file) to
find the exact physical tile place on the FPGA die, and in turn to find the exact block place
in the floorplan. If a node occupies more than one tile (which is the case in the routing
signals), its power is distributed to the tiles, in such a way that the tiles that drive a larger
number of other signals (i.e. have a high fan-out) get more percentage of the power. Such

84

6.5. FPGA Thermal Estimation Flow

information can be obtained from the design’ XDL file. Afterward, for each block in the
floorplan, the values of the dynamic power of the tiles inside that block are summed up to
get the block’s dynamic power value. Figure 6.5 shows an overview of this flow.

For the leakage power, the method presented in Section 6.4 is followed for distributing
and increasing it across the FPGA chip. After that loop converges, the thermal profile is
then obtained. For the leakage power, the amount reported in the power report is given as
a single value for the whole chip and not per node, unlike the dynamic power. For that
reason, taking into account that the FPGA chips, in general, has regular structure, the first
intuitive idea that may come to mind to get a rough estimation for the per-block leakage,
is to divide the leakage power equally to all the blocks. However, when the temperature
results from the simulation are compared with real measurements from infra-red camera as
we will see in Section 6.7, the results did not match. Therefore, it is necessary to accurately
redistribute the leakage power in a more proper way.

6.5.3. Thermal Profile Estimation For Dynamically Changing Circuits

The output of the thermal profile estimation flow, described in the previous subsections, is
the steady-state thermal behavior of the FPGA-mapped circuit. However, in reconfigurable
applications in which some portions of the configuration change over time, the thermal
behavior of the circuit may not have a single steady-state case. In other words, for each
partial or full reconfiguration the steady-state thermal profile of the FPGA can be different.
The proposed flow can be easily extended to handle reconfigurable systems. In fact, it is
only required to perform a thermal profile analysis for each of the reconfiguration options
of the circuit, which are typically known at the design time (e.g. the bitsream, floorplan,
and all other required details are available at design time).

On the other hand, the FPGA-mapped circuit itself can have different signal activities
through the lifetime operation. This means that its thermal profile is dynamically changing
through the lifetime operation, which necessitates a dynamically changing thermal pro-
file estimation to reflect the circuit operation. For this purpose, the following approach is
proposed:
The simulation time of the post-place-and-route model is divided to a series of time win-
dows. Then, for each time window a separate VCD file can be generated. Afterward, using
the FPGA’s power tool, for each of the generated VCD file a separate power report can be
generated. Finally, using the proposed thermal profile estimation flow, for each of the gen-
erated power report a separate thermal profile is generated, in such a way that the primary
input temperatures used in the estimation of the leakage power is simply the steady-state
temperatures of the previous thermal profile estimation. The details are as follow:

• Determine a time window (tw) in which a separate VCD file for the signal activities
should be captured. In such a way the total simulation time is divided into several
time windows from tw

0 to tw
n

• Using the logic simulator, for each time window (tw
i), generate a separate VCD file

(VCDi).

85

Chapter 6. Thermal-Profile Estimation of FPGA-Mapped Designs

Power

Report

Circuit

Description

(XDL file)

Chip

Resources

(XDLRC file)

Die

Dimensions

Power DistributionFloorplan Creation

Block Power

HotSpot

Power Extraction

Node Power

(1)

Leakage

Power

(2)

Dynamic Power

0 1 2 ...

k

0
1
2

k

...

...

Block Power
0
1
2

k

Block Temp.
0
1
2

k

Blocki =

n x m Tiles

Leakage

Distribution

Model

(Online)

Original Leakage Power

Model Calibration

Using Thermal Camera

(Once and Offline)

User Design

FPGA Development

Tools

Figure 6.5.: An overview of the proposed temperature estimation flow

86

6.6. Experimental Setup

• Then, using the power tool, for each VCD file (VCDi), a separate power report (PRi)
is generated for the mapped design.

• Afterward, following the proposed thermal-profile estimation flow, for PR0 generate
the thermal profile (T P0)

• Then, for each of the following PRi, use the previous thermal profile (T Pi−1) as initial
temperature values to generate the new thermal profile (T Pi).

6.6. Experimental Setup

6.6.1. Thermal Camera Usage

To accurately adapt, analyze and validate the presented approach, a thermal camera is em-
ployed3 that monitors the infrared emissions from the back side of an FPGA’s die. In
contrast to the widely used method of distributing a large number of ring oscillators across
the chip [76] to build the thermal map of the FPGA over runtime, this setup enables us to
obtain accurate measurements of the chip’s temperature at a much higher spatial resolu-
tion, especially considering that key factors, such as the peak temperature, can be missed
by on-chip sensors if there are high spatial thermal gradients. Another advantage is that
this method is non-intrusive meaning that there is no need to modify the user application
(bitstream) to include soft sensor arrays. For more details about this setup, the reader is
referred to [77].

6.6.2. Model Calibration

To obtain the values of the fitting parameters B and C in Equation (6.3) and Ā, B̄ and C̄
in Equation (6.4), a generic circuit that utilizes a variety of the FPGA components (LUTs,
FFs, DSPs, BRAMs, and DCMs) is used. This circuit is designed in such a way that it
can operate under different frequencies (33 - 600 MHz). Thus, the maximum possible
range of temperatures can be generated. For each operating frequency, a separate thermal
profile of the circuit is captured with the thermal camera. Then, the simulation results,
using the proposed approach, are fitted with their corresponding camera measurements for
each frequency to obtain the fitting parameters (while the model is trained and tuned).
Afterward, the same values for these fitting parameters, which are obtained in this step, are
used with all other benchmark circuits in this chapter. It should be noted that this calibration
process is needed only one time for each targeted FPGA chip.

6.7. Experimental Results

In order to validate the proposed approach, several designs with various sizes and logic
densities are tested with the thermal camera, and compared the results of the simulation

3I acknowledge here Prof. Jörg Henkel and his group from the chair of embedded systems at Karlsruhe
Institute of Technology who have done the thermal camera setup

87

Chapter 6. Thermal-Profile Estimation of FPGA-Mapped Designs

with the measurements of the camera. Table 6.1 lists these circuits and their properties.
The first circuit (8-bit Finite Impulse Response (FIR) filter) represents a lightweight FPGA
load case. The second circuit is 128-bit pipelined AES encoder, which represents a medium
FPGA load case. The remaining four circuits, are used to show extreme load cases, where
a set of LUTs, FFs, DSPs, and BlockRAMs are designed in such a way that they keep
switching at their inputs and/or outputs in a continuous manner, so that maximum dynamic
power consumption for each case can be obtained. For each circuit a test-bench is integrated
in the design to independently generate random vectors for the inputs of the circuit. The
circuits are synthesized and built for Virtex-5 FPGA (XC5VLX110t-1FF1136) using Xilinx
ISE 12.2.

The thermal camera is used to record the thermal behavior of each circuit loaded into the
FPGA. At the beginning, the FPGA was left switched on for long period before loading the
circuits, to allow it to heat up and reaches a stable temperature. Afterward, each configura-
tion file is loaded to the FPGA and the thermal behavior is recorded using the camera until
the temperature values stabilized. At the end, the FPGA is reset but left switched on until
its temperature become stable, then the next design is loaded, and so on until all the circuits
are tested. For the thermal simulation, the method described in Section 6.5 is followed for
estimating the thermal profile of each design. HotSpot simulator is configured to represent
the same experimental conditions of the camera, where the packaging of the FPGA is re-
moved. The leakage distribution loops in Section 6.4.1 and 6.4.2 converges within 6-15
iterations for all designs. The obtained thermal profiles from the thermal camera and the
proposed simulation flow for two of the benchmark circuits are shown in Figure 6.6.

Figure 6.7 shows a comparison between the measurements of the thermal camera, for
“Toggling LUTs-FFs” circuit, and the resulted thermal profile for each of the three steps
of the approach presented in Section 6.4. Figure 6.7-(e) shows the stable leakage values
across the chip after applying the proposed approach.

To compare the thermal profiles obtained from the simulation results using the proposed
approach and the camera measurements, the difference range, between any two points on
the FPGA chip, is considered to be the measure for the accuracy of the simulation. Five
points for the comparison have been set as seen in Figure 6.7-(a). The temperature differ-
ences between the peak temperature and the five comparison points (P1 - P5) are reported
in Table 6.2 for each of the benchmark circuits in Table 6.1. The average absolute estima-
tion error is about 1.0◦C for temperature variation across the FPGA, which is represented
by the five comparison points (P1 - P5), while the absolute estimation error for the peak
(max) temperature for each circuit is 3◦C. These results show that the proposed flow can
provide accurate thermal estimation results at the design time, which helps to determine
and avoid critical hot spots early in the design phase (i.e. before loading the design to the
FPGA for in-field operation).

6.8. Summary

Due to the lack of detailed information about how the leakage power is distributed across
the modern FPGAs, the traditional method to estimate the thermal profiles suffers from
inaccuracy. In this chapter, a method for properly distributing the leakage power across the

88

6.8.
Sum

m
ary

Table 6.1.: Properties of the circuits used in the thermal comparison
Circuit Clock Frequency Size Other FPGA Components
FIR filter 152 MHz 1699 LUTs / 528 FFs / 708 Slices 1 DCM / 17 IOBs
AES encoder 294 MHz 10786 LUTs / 7769 FFs / 3185 Slices 1 DCM / 129 IOBs
Toggling LUTs no clock 3840 LUTs / 0 FFs / 960 Slices 1 IOBs
Toggling LUTs-FFs 100 MHz 3293 LUTs / 1035 FFs / 874 Slices 3 IOBs
Toggling LUTs-FFs-DSPs 100 MHz 7913 LUTs / 3229 FFs / 2298 Slices 12 DSPs / 18 IOBs

Table 6.2.: The comparison results between the thermal camera measurements and the thermal simulation using the proposed
approach

Circuit
Camera Measurements [◦C] Simulation Results [◦C] Average abs.

Max Deviation from the Max Max Deviation from the Max Estimation
P1 P2 P3 P4 Center P1 P2 P3 P4 Center Error [◦C]

FIR filter 49.9 2.7 2.7 2.9 2.6 1.4 49.2 1.6 1.9 1.7 1.2 0.3 1.1
AES encoder 96.6 8.0 13.9 14.2 9.2 7.3 99.4 7.9 15.6 16.1 10.3 8.5 1.2
Toggling LUTs 60.5 7.6 1.6 6.7 8.1 5.4 57.1 8.9 0.5 8.8 9.6 7.4 1.6
Toggling LUTs-FFs 57.1 2.6 6.0 7.5 7.1 4.5 55.0 1.0 6.5 7.5 6.9 5.2 0.6
Toggling LUTs-FFs-DSPs 107.1 7.4 19.1 23.1 21.6 15.2 104.1 3.9 18.7 21.7 20.3 15.8 1.4

89

C
hapter6.

T
herm

al-Profile
E

stim
ation

ofFPG
A

-M
apped

D
esigns

102°C

97°C

82°C

77°C

72°C

67°C

62°C

92°C

87°C

65

70

75

80

85

90

95

100

105

(a) Floorplan (b) Camera (c) Simulation

94°C

64°C

54°C

84°C

74°C

104°C

115°C

60

70

80

90

100

110

(d) Floorplan (e) Camera (f) Simulation

Figure 6.6.: Comparing the obtained thermal profiles between the measurements of the infrared camera and the proposed simulation
flow: (a-c) AES encoder, (d-f) Toggling LUTs-FFs-DSPs. Please note that there is a little difference between the color
coding used in the software of the camera and the color coding of Matlab, in which the simulation profiles are drawn.

90

6.8.
Sum

m
ary

P5

P1 P2

P3 P4

40

42

44

46

48

50

52

54

56

58

40

42

44

46

48

50

52

54

56

58

40

42

44

46

48

50

52

54

56

58

(a) (b) (c) (d)

0

0.001

0.002

0.003

0.004

0.005

0.006

Le
ak

ag
e

 P
o

w
e

r
(W

at
t)

 0.005-0.006
0.004-0.005
0.003-0.004
0.002-0.003
0.001-0.002
0-0.001

(e)

Figure 6.7.: Comparing different leakage distribution models. (a) Infrared camera measurement, (b) The total leakage is equally-
distributed across the FPGA, (c) The total leakage is redistributed according to temperature values (as in Section 6.4.1)
and (d) (e) The leakage-temperature loop is applied (as in Section 6.4.2)

91

Chapter 6. Thermal-Profile Estimation of FPGA-Mapped Designs

FPGA chip has been presented. The method uses a temperature-leakage loop estimation
model for distributing the leakage power. The model is calibrated and validated using real
measurements from an infrared camera, which measures the emissions from the backside
of Virtex-5 FPGA chip. The comparison results between the camera measurements and
the simulation of several designs, with different sizes and frequencies, showed that the
proposed approach can achieve accurate thermal-profile estimation, with average absolute
estimation error of around 1◦C across the FPGA chip.

92

Chapter 7.

High-level Aging Estimation

7.1. Introduction

To make the FPGA-based circuit designers capable of analyzing the impact of transistor
aging on their designs, they have to consider BTI and HCI-based aging models. In this case,
the aging of the mapped design depends both on the FPGA device characteristics and the
mapped design netlist. However, the currently available models are at device level [16, 15,
45], which makes the estimation of the aging for a complete FPGA-mapped circuit using
such models an infeasible job. This is mainly because of the simulation overhead at device-
level and its complexity. Additionally, some of the main factors that influence the aging
are originated from higher-levels (e.g., it is extremely usage, workload and temperature
dependent), which requires access to higher-level details for correct estimation at device-
level. Aside from that, in FPGAs most of the device-level details are proprietary to the
manufacturer and the users have access only to the final fabricated chip. This makes the
aging estimation, for the designers, an unknown and inaccurate process, and hence, the
designers may overestimate it, which results in performance loss, or underestimate it, which
may end with an unreliable design. Based on that, the need for fast and accurate aging
estimation at higher level emerges, even if it is inherently less accurate than the device-
level correspondent.

In this chapter, an abstraction for both the BTI and HCI device level models to RTL mod-
els is proposed, which allows faster aging estimation for the FPGA-mapped designs than
the device-level models. Based on these abstracted models, an aging estimation/prediction
tool for designs mapped into state-of-the-art FPGAs is presented. This tool considers both
the mapped design (logic-level netlist as well as placement and routing) and FPGA device
characteristics. The key point of this tool is that it infers the needed FPGA device infor-
mation from the available FPGA timing and power reports provided by the FPGA design
toolset, and also from the post-place-and-route simulation model, without the need for de-
tailed device-level/circuit-level manufacturing info/parameters, that is usually needed for
the BTI and HCI models. Moreover, the tool uses both thermal modeling and logic simula-
tion of the FPGA mapped design, to obtain accurate stress/relaxation information, which is
needed for aging analysis. The tool is implemented based on the information provided by
Xilinx’s FPGA design tools. Nevertheless, it can be easily adjusted for other FPGA design
tools from other vendors.

The tool can be used to evaluate, predict or estimate the amount of aging-induced degra-
dation, and hence the lifetime of the FPGA-mapped designs. It also identifies aging-
vulnerable nodes in the design. Designers can obtain the impact of different designs, map-
ping styles, usage, etc. on the wear-out (lifetime) of their circuits mapped into the FPGA.

93

Chapter 7. High-level Aging Estimation

So, along with existing toolset for power, performance and area analysis, the designers
would be able to co-optimize the wear-out along with other design constraints.

As a case study of the tool usage, the tool have been examined with several ITC’99 test-
bench circuits using a Virtex-6 FPGA, to explore the effect of the design parameters on the
amount of expected circuit aging. The results show that the amount of aging-induced degra-
dation is strongly dependent on the circuit mapped to the FPGA device, so that different
circuits loaded to a single FPGA device have different lifetimes. Also, different mapping
and optimization algorithms for the same circuit show tendencies of different aging rates.

The rest of this chapter is organized as follows: In Section 7.2 the related works are
reviewed. Afterwards, in Section 7.3, the proposed aging modeling tool is described. The
validation of the abstracted device model followed by the experimental results are both
discussed in Section 7.4. At the end, Section 7.5 concludes this chapter.

7.2. Related Work

There are many papers which discuss the effect of BTI and HCI-induced degradations
and their estimations. However, only few works presented a complete framework/tool for
degradation assessment. For NBTI degradation assessment in microprocessors, the au-
thors in [78] have presented a framework called New-age that takes as input parameters
the netlist, the technology node used, the operating conditions of the circuit (voltage, tem-
perature, etc.) and the probabilities of the inputs, to calculate the aging estimation due to
NBTI. The estimation is done at gate level. A similar framework is presented in [17]. The
authors in [69] have also presented a framework for estimating the Mean-Time-To-Failure
(MTTF) due to the effects of NBTI, TDDB and EM in FPGAs. The framework depends
on a 65 nm PTM model to get the needed device level information for the estimation, be-
cause the FPGA device level information is proprietary. It was not clear how the circuits
that represent the different elements of the FPGA are obtained to perform the estimation at
their transistors.

The main difference of the tool proposed in this chapter to the aforementioned frame-
works, is that the proposed tool does the aging estimation for both BTI and HCI phenomena
at system-level yet device/technology-level relevant, not at transistor or gate-levels. This
eliminates any need for detailed device-level information of the FPGA, as this information
is usually not available (proprietary). Furthermore, the estimation at system-level is easier,
faster and meets the accuracy needs of the FPGA designers to decide whether a certain
mapping / routing / placement technique is better than another in terms of aging.

7.3. Methodology

The methodology for implementing the aging estimation tool for FPGAs can be divided
into three parts: i) the abstraction of the device level models of both BTI and HCI, ii) the
inference of the required information from the power and timing reports of a certain design
as well as the thermal model, and iii) the aging estimation process.

94

7.3. Methodology

7.3.1. Aging model abstraction

In order to achieve an accurate estimation for the amount of aging-induced degradation,
without the need for detailed device level information, a high level abstraction for the de-
vice level models for both BTI and HCI is needed. However, this abstraction must use
the most detailed information that can be gained from various sources, such as logic-level
simulations, detailed physical design (placement and routing) information, thermal profile
and the FPGA’s power and timing reports, to achieve the highest possible accuracy. By an-
alyzing the FPGA reports, it can be seen that the finest details are given at signal and logic
level. Therefore, the abstraction is done at this level, which is called node level. A single
node can represent an LUT, a flip-flop, a routing signal, a half adder, etc. (see Fig. 7.1).
This node separation is taken at the granularity of what the timing report can provide. A
path in the circuit from an input flip-flop to an output flip-flop consists of a set of nodes. It
should be noted that several paths can pass through a single node at the same time (e.g. a
6-inputs LUT can have up to six different paths crossing it).

Node

Node
Node

N
o

d
e

Figure 7.1.: Different nodes in the FPGA

For a certain node, all the needed information for aging estimation (e.g. signal prob-
abilities, signal activities, initial delays, etc.) can be gained from the FPGA reports for
each and every input and output of that node separately. In other words, the device-level
details, which are needed for the aging estimation, are already given for the inputs and the
outputs of any certain node in the FPGA. However, the device-level details of the node’s
internals are not known for the FPGA designer. In the proposed model, it is get used of
this information at the inputs and the outputs of each node to estimate the internal details

95

Chapter 7. High-level Aging Estimation

of that node. The idea is to represent each internal path from an input of a certain node to
an output of that node by a series of blocks. Each block is represented by an inverter in the
corresponding technology node used in the targeted FPGA, so that it contains the impact of
the technology node as well as the aging effect on both NMOS and PMOS transistors. The
number of blocks (m) in the series is determined according to the delay of a representative
inverter in the technology node, such that m = delay of the internal path / delay of a single
inverter. In that way, the logic depth of the internal path is represented (see Fig. 7.2). The
validation of this model is discussed in Section 7.4.1.

SPoutSPi

Block0 Block1 Blockm-1

Node

SP0

SP1

SPn

SPout

Path0

Path1

Pathn

Pathi

Figure 7.2.: Different paths through a node and a representation of a single path by a series
of blocks

The internal details, at the input of each block, are estimated as a function of the series’
input and output (which are given from the FPGA reports for the corresponding node) in
addition to the block position in the series. For example, for estimating the NBTI effect,
the signal probability (SP), at the gate of a certain transistor, is required to calculate the
duty cycle (Y) of that transistor as given in Equation (2.4). By logic simulation, all signal
probabilities, at the inputs/outputs of each node in the circuit, can be calculated. The inter-
nal SP for each representative block in Fig. 7.2, according to the proposed model, can be
written as:

SPj =

{
SPi + j ∗ |SPout−SPi|

m−1 , SPout ≥ SPi

SPi− j ∗ |SPout−SPi|
m−1 , else

}
(7.1)

96

7.3. Methodology

where j ∈ {0,1,2, ...,m−1} is the position of the block in the series. Similarly, for HCI
(see Equation (2.5)), the activity rate (AR) can be read from the power report for each
input/output of every node in the design. The internal AR can be then estimated in a similar
way like (7.1). By representing the logic depth, the transistor types, and the delays in the
same technology node used in the targeted FPGA, in addition to estimating the internal
details (SPs and ARs) from the known information at inputs and outputs of the node, this
cascaded block model can better reflect the aging of internal elements of the node.

7.3.2. Information gathering

The aging estimation tool is based on the abstracted models of BTI and HCI presented in
the previous section, and uses these models to calculate the amount of aging-induced degra-
dation. The input parameters for these models are taken from the information provided by:

A) The timing report to obtain the pre-aging critical paths with their breakdowns of their
nodes.

B) The detailed physical design information, for obtaining the nodes’ information and the
breakdown of the logic-level netlist to nodes with FPGA coordinates.

C) Logic simulations for the placed and routed design (with nodes’ information) to obtain
the duty cycle and activity rates of each input/output of every node.

D) The thermal model, which uses the power report, physical design information (B) and
signal activities (C) to obtain nodes’ temperatures.

The tool overview is depicted in Fig. 7.3. Each part of the tool is discussed in detail in
the following subsections.

7.3.2.1. Determination of nodes and their delays

The first step of the tool, is to determine the nodes and the pre-aging delay of each path from
an input to an output of every node in the finally placed and routed design. This information
is taken from the timing report (see Fig. 7.4). The timing report is generated, in our case,
using Xilinx’s timing analyzer tool, by specifying a certain number of paths per constraint
(PConstr.). The value of PConstr. depends on the size of the design, and has to be given
such that all the paths that have a slack of x% are reported (x is the maximum expected
degradation during the lifetime of the FPGA, e.g. 15%). A parser is used afterward to
extract these paths with their nodes breakdown and also their pre-aging delays.

7.3.2.2. Determination of activity rates

The activity rate for each input/output of every node (AR) is determined from the power
report of the finally placed and routed design. For accurate activity rate calculation, Xilinx’s
Xpower analyzer needs the Value Change Dump file (*.vcd) of the design’s simulation.
With a logic simulator (e.g. Modelsim), the vcd file can be generated using the post-place-
and-route simulation model of the design. However, a testbench that reflects a realistic

97

Chapter 7. High-level Aging Estimation

Nodes

Extraction

Activity Rates

Calculation

Signal

Probabilities

Calculation

Temperature

Profile

Calculation

Aging Estimation

(HCI , BTI)

Timing

Report

Power

Report

XDL

file

XDLRC

file

Logic

Simulation

(VCD file)

Power

Report

1. Paths

2. Nodes

3. Pre-aging

delays

Temperature

Per Node

Signal

Probabilities

(Duty cycle)

Activity

Rates

1. Degradation Ratio

2. Lifetime change

Figure 7.3.: Overview of the proposed aging estimation tool

Timing

Analyzer

Tool
Timing

Report

Nodes Extraction

Physical

Constraints

Circuit

Description

User

Constraints

Pconstr.

Path Delay

Node Delay Path0

Path1

Path2

PathN

Figure 7.4.: Determining the nodes in the design and their pre-aging delays

98

7.3. Methodology

operation of the desired circuit must be used for the simulation, thus real values for the
activity rates can be reported, which results in a more accurate power estimation of the
mapped circuit. A parser is used afterward to read the generated power report, and to
extract the nodes and the activity rates at their inputs and outputs. An overview of this
process is shown in Fig. 7.5.

Power

Analyzer

Tool
Power

Report

Activity Rates Calculation

Physical Constraints

Circuit Description

Node AR

Logic

Simulator

VCD File

Post place-and-route

simulation modelTestbench

Figure 7.5.: Calculating the activity rate of the nodes

7.3.2.3. Determination of signal probabilities

A separate routine is used for this purpose, it parses the vcd file generated in the previous
section, then it creates a table with all nodes, and assigns for each node 3 counters to
count the times in which the node’s input was one, zero or unknown respectively during
the simulation. Afterward, the probability of having one at the input is calculated for all
nodes, and saved in a separate table. The calculated signal probabilities (SPs) are used
afterward to calculate the duty cycle (Y) of each input/output of every node, such that for
NBTI: Y = 1−SP, and for PBTI: Y = SP.

7.3.2.4. Temperature profile calculation

The method presented in Chapter 6 is used here to estimate the thermal profile of the FPGA-
mapped design.

99

Chapter 7. High-level Aging Estimation

7.3.3. Aging estimation

At this stage, all the necessary pieces of information for applying the abstracted BTI and
HCI models to the nodes are available, and the aging estimation can be made. The es-
timation process can be simply summarized by three main steps: i) finding the amount
of change in node’s delay due to aging (∆d(node)), then ii) calculating, for each node, the
post-aging delay

(
d0(node)+∆d(node)

)
. Afterward, iii) finding the post-aging critical path

delay (d̃critical), and compare it to the pre-aging critical path delay (dcritical), to determine
the percentage of performance loss due to aging. The details are as follows:

A) Each path in the design Pi contains nodes gi
1 to gi

N , and each node gi
j has a pre-aging de-

lay d0(nodei
j)

. This information is already stored in the table presented in Section 7.3.2.1.

B) The pre-aging delay of each path Pi is calculated from di
0 = ∑

N
j=1 d0(nodei

j)

C) The pre-aging critical delay dcritical is the maximum di
0 for all paths.

D) Now, for each node gi
j: i) Find its activity rate AR(nodei

j)
from the table in Sec-

tion 7.3.2.2. ii) Find its duty cycle Y(nodei
j)

from the table in Section 7.3.2.3. iii) Find
its temperature T(nodei

j)
from the table in Section 7.3.2.4.

E) The amount of change in node’s delay due to aging
(∆d(node)) can be then calculated for each node. For HCI: i) For the maximum frequency
of the targeted FPGA (AR = max), assume x% maximum (worst-case) HCI delay in-
crease in z years1, under ambient temperature T , and for a representative inverter delay
d0. Solve in (2.5) to obtain AHCI . ii) For each node gi

j, generate the representative
series of blocks as discussed in Section 7.3.1. iii) Having the activity rates at the input
and output of the node, calculate for each block the internal activity rate AR similar
to (7.1), then calculate the change in the block delay using (2.5). iv) The summation of
the block delays gives the new delay of the node due to HCI.

F) Similarly, for BTI: i) For SP = 1 (NBTI) or SP = 0 (PBTI) Assume y% maximum
(worst-case) BTI delay increase in z years1, under ambient temperature T , and for a
representative inverter delay d0. Solve in (2.4) to obtain ABT I . ii) For each node gi

j,
generate the representative series of blocks as discussed in Section 7.3.1. iii) Having
the signal probabilities at the input and output of the node, calculate for each block the
internal signal probability SP as in (7.1), then calculate the change in the block delay
using (2.4). iv) The summation of the block delays gives the new delay of the node due
to BTI.

G) Afterward, for each node gi
j, the post aging delay is simply calculated d0(nodei

j)
+

∆d(nodei
j)

.

1The values for x, y and z can be taken from user, or alternatively, from real measurements (e.g. as done
in Chapter 5 or in [53])

100

7.4. Experimental results

H) At the end, for each path Pi, the post aging delay is calculated di =

∑
N
j=1

(
d0(nodei

j)
+∆d(nodei

j)

)
I) The post-aging critical delay d̃critical is the maximum di for all paths.

Having both the pre-aging critical delay (dcritical), and the post-aging critical delay(
d̃critical

)
of the FPGA-mapped design, the percentage of delay degradation due to aging

can be simply calculated aging rate = d̃critical
dcritical

−1.

7.4. Experimental results

7.4.1. Validation of the abstracted aging model

To validate the model proposed in Section 7.3.1, an HSPICE device level simulation, for a
2-input LUT and for a half adder circuit, is carried out using a 22 nm predictive technology
model. The same circuits and method presented in Chapter 3 are used to emulate the
effect of aging on the transistors. For each input of the LUT a set of 9 different SPs (0.1,
0.2, ..., 0.9) and their permutations (9*9) are tested for each possible LUT configuration,
then the relative delay increase is recorded for each case (see Fig. 7.6(a)). On the other
side, using Matlab, all possible SPs of the LUT’s output (SPout put) are calculated, then
for the path that represent the first input of the LUT to the output, the proposed model is
applied. Afterward, for each set of both first-input’s SP (SP0) and SPout put , the relative delay
increase due to NBTI is recorded and compared to the HSPICE results (see Fig. 7.6(b)).
The comparison results show that, for 14 configurations out of the possible 16, and for all
possible permutations of input and output SPs, the trends of NBTI degradation between the
model and the HSPICE simulation match. For the remaining 2 configurations, only parts of
the permutations of input and output SPs yield similar NBTI degradation trends. In total,
around 90% of the results match the trend (see Fig. 7.6).

It should be noted that the proposed model is to abstract relatively small logic circuits,
not large ones. This is thought for the basic elements of the FPGA (nodes). Furthermore,
these results show that using the abstracted model alone may not be enough to have an
accurate design margin determination. However, for judging whether a certain implemen-
tation of the design is better than another, the proposed model gives the needed accuracy.
In fact, with the lack of the device level information of the FPGA, this abstraction provides
an easy and fast way for aging estimation, which may also be the only available way for
FPGA users.

7.4.2. Case study: influence of mapping and optimization algorithms

The idea is to explore the effect of different design parameters on the amount of estimated
aging-induced degradation. Therefore, several ITC’99 testbenches have been tested with
different mapping and optimization algorithms. The aging estimation tool is built based on
the information provided by Xilinx’s FPGA development tools. Virtex6-vlx75t is used as a
targeted FPGA for estimating the aging of different designs onto it, because it can fit all the

101

Chapter 7. High-level Aging Estimation

0001
0010

0011
0100

0101
0110

0111
1000

1001
1010

1011
1100

1101
1110

123456789

−2
0
2
4
6
8

Configurations (for each, SP1
 = 0.1 , 0.2, ... , 0.9)

SP
0 (* 0.1)Δ

D
el

ay
 /

D
el

ay
 (

%
)

(a) HSPICE simulation

0001
0010

0011
0100

0101
0110

0111
1000

1001
1010

1011
1100

1101
1110

123456789

−2
0
2
4
6
8

SPoutput
 (mapped according to HSPICE results)

SP
0 (* 0.1)

Δ
D

el
ay

 /
D

el
ay

 (
%

)

(b) Abstracted model

Figure 7.6.: Validating the abstracted model with HSPICE simulation for PT-based 2-input
LUT, for each input 9 SPs from 0.1 to 0.9 are tested (as Chapter 3

102

7.4. Experimental results

selected testbench circuits. All circuits are forced to be mapped only to LUT and flip-flops,
thus a fair comparison can be made. Furthermore, as PBTI effect is similar to NBTI, only
NBTI effect is considered in the following. However, the extension of the proposed flow for
PBTI is quite straightforward. Three experiments are made for each circuit: the first one is
by making the ISE tool choose the best mapping, placing and routing conditions with speed
optimization (the default options). The second one is by forcing the placement to a corner
of the FPGA with speed optimization. The third experiment is to force area optimization
with freely mapping, placing, and routing. In all the experiments, the maximum amount
of degradation (worst case), used in Section 7.3.3 to get the values of ABT I and AHCI , is
set to be 15% in 5 years for SP = 1 (PMOS transistors always ON → worst case NBTI)
and AR = 500 MHz (maximum frequency→ worst case HCI). 10000 vectors are tested for
each experiment to determine signal probabilities and activities. The degradation ratio due
to NBTI and HCI are reported in Table 7.1 for each experiment. The explanation for the low
HCI-induced degradation ratios compared to the NBTI ones is because, for the HCI case,
the tested circuits operates with frequencies less than the maximum possible frequency on
the FPGA (AR = 500 MHz) which is considered the worst case as mentioned before.

It should be noted that the amount of degradation has a direct relation with the circuit be-
havior (i.e. signal activities and probabilities) as described in Section 7.3.2.2. Therefore, it
is necessary to write a realistic testbench for each circuit to get an accurate circuit behavior.
The testbenches for the ITC’99 circuits are written, taking into consideration the original
functionality of each circuit that is reported in [79]. Nevertheless, for b14, as it represents
a sub-circuit of a processor, it was not practical to write a realistic testbench. Therefore,
random vector inputs are considered for it.

It’s also important to mention that a small change, in the degradation ratio of BTI or
HCI-induced aging, can result in a significant change to the operational lifetime of the
design. For example, according to the NBTI device-level model (see Equation (2.4)), if
two degradation ratios (r0 and r1) are considered for a certain PMOS transistor, where
r0 < r1 (see Fig. 7.7). The required time (transistor age) until a transistor with a degradation
ratio r0 reaches a critical delay will be significantly different from the same transistor with
degradation ratio r1. In a similar way, a rough estimation can be made to calculate the
percentage of lifetime extension for each case in Table 7.1. This can be done by considering
average properties (temperature, signal probabilities, activity ratios, etc.) of all transistors
across the critical path of each design. In this way, the percentage of lifetime extension
(LT) can be written for BTI as:

LT =

(r1

r0

)1/n

×
e

(
−Ea

kT avg
0

)
×
(
Y avg

0

)n

e

(
−Ea

kT avg
1

)
×
(
Y avg

1

)n

−1 (7.2)

Similarly for HCI:

103

C
hapter7.

H
igh-levelA

ging
E

stim
ation

Table 7.1.: Results of investigating different mapping options for each design and the effect on both HCI/NBTI-induced aging

Circuit Experiment Area Pre-aging Post-aging Post-aging Degradation Lifetime Degradation Lifetime
(LUT / FF) critical delay critical delay critical delay ratio extension ratio extension

(NBTI) (HCI) (NBTI) ratio (HCI) ratio

b04
Speed optimized 111 / 67 4.108 ns 4.622 ns 4.233 ns 12.51% 75.60% 3.04% 39.26%
Forced placement 112 / 67 4.080 ns 4.617 ns 4.226 ns 13.16% 29.60% 3.58% Reference
Area optimized 106 / 59 5.341 ns 6.075 ns 5.481 ns 13.74% Reference 2.62% 143.94%

b05
Speed optimized 133 / 41 2.777 ns 3.056 ns 2.794 ns 10.05% 120.33% 0.61% 54.42%
Forced placement 133 / 41 2.766 ns 3.083 ns 2.787 ns 11.46% Reference 0.76% Reference
Area optimized 96 / 34 3.169 ns 3.497 ns 3.185 ns 10.35% 84.30% 0.50% 159.06%

b11
Speed optimized 68 / 31 2.142 ns 2.442 ns 2.225 ns 14.01% Reference 3.87% 98.56%
Forced placement 68 / 31 2.263 ns 2.569 ns 2.390 ns 13.52% 23.47% 5.61% Reference
Area optimized 63 / 19 2.603 ns 2.966 ns 2.711 ns 13.95% 2.61% 4.15% 110.44%

b12
Speed optimized 256 / 123 2.348 ns 2.618 ns 2.365 ns 11.50% 60.15% 0.72% 21.47%
Forced placement 256 / 123 2.370 ns 2.654 ns 2.389 ns 11.98% 25.05% 0.80% Reference
Area optimized 192 / 119 3.023 ns 3.399 ns 3.043 ns 12.43% Reference 0.66% 87.29%

b14
Speed optimized 856 / 216 6.451 ns 7.256 ns 6.604 ns 12.48% 31.67% 2.37% Reference
Forced placement 856 / 216 7.173 ns 8.110 ns 7.285 ns 13.06% Reference 1.56% 156.38%
Area optimized 765 / 162 8.256 ns 9.305 ns 8.320 ns 12.70% 18.04% 0.78% 1096.71%

FIR Filter
Speed optimized 1086 / 515 3.513 ns 4.026 ns 3.574 ns 14.60% 2.73% 1.74% 15.24%
Forced placement 1086 / 515 3.784 ns 4.339 ns 3.843 ns 14.67% Reference 1.32% 53.85%
Area optimized 962 / 499 4.311 ns 4.908 ns 4.400 ns 13.85% 41.18% 2.06% Reference

104

7.4. Experimental results

LT =

(r1

r0

)2

×
e

(
−Eb

kT avg
0

)
×ARavg

0

e

(
−Eb

kT avg
1

)
×ARavg

1

−1 (7.3)

where T avg, Y avg and ARavg are the average temperature, duty cycle and activation ratio
respectively, for all transistors across the critical path of each design. The percentage of
lifetime extension for each mapping compared to the worst mapping of every testbench
circuit is reported in columns “Lifetime extension” in Table 7.1 for both NBTI and HCI.

t0 t1

Critical

Δ
D

el
ay

 /
D

el
ay

 (
%

)

Time

degredation rate r
1

degradation rate r
0

Lifetime
enhancment

Figure 7.7.: A small change in the degradation ratio has a significant effect on the lifetime

Actually, several conclusions can be drawn from the results in Table 7.1:

• Aging of the FPGA device (both the NBTI-induced and the HCI-induced), and hence
the lifetime, is significantly dependent on the design loaded onto it. This can be
clearly seen from the degradation ratios column for both NBTI and HCI.

• Different mappings of the same circuit can results in relatively different aging rates.

• Changing the mapping and/or the optimization algorithm can significantly affect the
lifetime of the design.

• It cannot be concluded whether the area-optimized mapping is always better in terms
of aging compared to delay-optimized or vice versa (for both NBTI and HCI). It
depends on and differs for each application.

105

Chapter 7. High-level Aging Estimation

7.5. Summary

In this chapter, an abstraction for both the BTI and HCI device level models to RTL models
is proposed, which allows faster aging estimation for FPGA-mapped designs. These ab-
stracted models, in addition to implicit device-level information existed in the power and
timing reports provided from the FPGA’s vendor tools, are used to present a tool for high-
level aging estimation in FPGA. Using the proposed tool, several experiments have been
made to explore the effect of different designs and mapping options. The results showed
that aging of the FPGA device is dependent on the design loaded onto it. Furthermore,
different mappings of the same circuit can result in different aging rates.

106

Part II.

Monitoring

107

Chapter 8.

Aging Monitoring in FPGA-Mapped Designs

8.1. Introduction

In order to increase the reliability of FPGA-mapped circuits, the aging effects must be
monitored, thus suitable countermeasures can be made to avoid critical failures. In fact,
the aging is a process dependent (i.e., due to process variation, the amount of degradation
of each chip could be different). Additionally, the degradation depends not only on the
time the chip is exploited in the field (e.g. 2 years) but also on the workload and envi-
ronment (e.g. ambient and chip temperature). Therefore, to identify whether a particular
FPGA chip is worn out, or to warn just before its useful lifetime is over, it needs to be
continuously monitored in field. For this purpose, a logic-level circuitry for the detection
of late-transitions that happen due to transistor aging in modern FPGAs is presented in this
chapter. The advantage of the resources available in FPGAs is taken to design and imple-
ment low-cost and highly accurate online aging sensors. A scheme is provided to select
which paths are to be monitored (the most aging-vulnerable paths) in the circuit using the
high-level estimation tool presented in Chapter 7, thus a highly-efficient monitoring can be
achieved.

By using the proposed sensor mapping techniques, the sensitivity of the sensor can se-
lectively be adjusted to the range from a warning sensor to a late transition detector with a
desired window. When used as a warning sensor, it can signal aging when the transitions
happen in the timing guards, to be able to detect and mitigate aging of critical paths before
it causes erroneous captures.

Unlike most of previous work which are based on ring oscillators and counters to mea-
sure variation and aging across the FPGA chip [80][81], the proposed sensor is application
dependent, i.e. it monitors the correct functionality of critical paths in the FPGA-mapped
design. To the best of our knowledge, the work in this chapter is the first approach for
design and mapping of a logic-level aging sensor for FPGA-based designs.

The rest of the chapter is organized as follows. In section 8.2 the related work is re-
viewed. Section 8.3 presents the main idea of the proposed aging sensor. The FPGA
mapping of the sensor is discussed in section 8.4. Section 8.5 contains the experimental
results and analysis of the aging sensors. Finally, section 8.6 concludes this chapter.

8.2. Related Work

For delay fault testing in FPGAs, a BIST-based approach has been presented in [82], which
stimulates several paths with a same length, then compares their output to detect faults.
However, this method targets mainly manufacturing delay faults. In [52], a method is

109

Chapter 8. Aging Monitoring in FPGA-Mapped Designs

developed for measuring and monitoring degradation in an FPGA, based on measuring
the difference on transitions at inputs and outputs and their probabilities for a single path,
but it is used offline to find at which frequency the circuit starts to fail. The chapter also
estimates the effects of the aging-phenomena based on an NBTI model. The authors in [80]
present a multi-use sensor implemented in reconfigurable logic in order to help estimating
variation in delay, static and dynamic power, and temperature. The sensor is based on a
ring oscillator and a residue-number-system ring counter, where an array of such sensors is
arranged across the FPGA chip in order to measure the variation. Each sensor occupies 8
LUT of a Virtex-5 FPGA. The relation between the frequency of the ring oscillator and the
desired parameter variation is used to estimate that variation. In [83] a delay measurement
method based on transition probabilities (TPs) is presented. A set of test vectors are used
to test the desired paths in the circuit, and to calculate the TPs at the output of each path,
then based on the TPs, the delay of the paths are determined.

In the scope of reliability analysis for FPGAs, a dynamic thermal-aware reliability man-
agement framework has been presented in [81], which estimates the lifetime reliability of
FPGAs, based on estimation of several phenomena and hard errors such as TDDB and EM,
in addition to NBTI impacts. The proposed framework uses some tools and simulators
to calculate the temperature variation across the chip, the switching activity of the design
and the static probability of the signals, to do the estimation of the TDDB, The EM and
the NBTI. Performance degradation of FPGAs due to HCI and TDDB has been analyzed
in [84] and some load balancing and alternate routing techniques have been proposed to
improve the reliability MTTF of the FPGA chip. The first proposed technique is to use
controlled input vectors to optimize the active leakage power of logic blocks, and hence
reduce the TDDB effect. The second technique is to balance the load on the circuit, and
hence mitigating the HCI impact. Another technique of using a selective alternate routing
is used to reduce the EM impact. In [53] accelerated-life tests are performed on FPGAs,
to study the effects of the degradation, and three degradation-mitigation strategies are also
discussed. The first strategy is relocating the logic functions to unused LUTs, the second
strategy is to reroute signals to unused interconnects, and the third strategy is to exploit the
unused regions of LUTs with spare inputs.

Logic-based sensors for ASIC designs to measure delay degradation in the circuit due
to transistor aging are presented in [85] and [86]. In [85], the sensor is based on two
ring oscillators, one as a reference and one under stressed conditions. The outputs of both
oscillators are passed to a phase comparator to determine the difference. The difference
between their frequencies is used to measure the delay. In [86], the sensor composed of
a simple inverter and two tri-state buffers to measure the instability in the output of the
critical path during a specific period. The sensor is to be placed at the output of the critical
path, if the output is unstable within the desired period, due to aging, the output of the two
tri-state buffers will be the same, and thus an error can be reported.

Techniques for eliminating the design margins in processor pipelines are presented
in [87, 88, 89, 90, 91]. Although these techniques are intended to be used to detect vi-
olation in design margins caused by power saving techniques, or process variation, they
can be used, in principle, for aging detection as well. However, the applicability for FPGA
designs is not certain, because they require either non-logic type of resources or delay el-

110

8.3. Aging Sensor: Main Idea

ements, which have relatively large area impact when ported to FPGA. RAZOR [87, 90]
for example, is a simple and good technique to detect delay faults in ASIC designs. How-
ever, mapping it to FPGA resources is difficult, as the placement of its shadow latch and
the XOR comparator should be very accurate in order to catch the delayed transitions cor-
rectly. Given the constraints in type of available logic resources and routing path delay on
current FPGAs; such precise timing cannot be met. Hence such sensors cannot be directly
mapped to current FPGAs. In addition to these approaches, there are a large set of sensors
and techniques for delay detection in ASIC designs, which use resources not available on
FPGAs.

The main difference of the work in this chapter with the existing techniques is that, it
exploits the native resources available on FPGA, to design a low-cost aging sensor with
adjustable sensitivity. Additionally, a scheme is provided to select the places where the
sensor should be placed to have a more reliable monitoring.

8.3. Aging Sensor: Main Idea

8.3.1. Critical path and aging

The maximum operational frequency of a circuit is determined according to the delay of
the longest combinational path (critical path). A guard period is also added to this delay
to define the minimum clock period (Tcritical) to ensure correct functionality. This guard
period is used to allow the signal to be stable before the FF setup time (Fig. 8.1), and also
to consider process variation. Due to transistor aging, gate delays and in turn path delays
are increased, causing transitions to arrive later and ultimately an incorrect value can be
latched in the FFs (as illustrated in Fig. 8.1).

It should be noted that, in the presence of aging, the critical paths may change over time,
i.e., some non-critical paths at the beginning of FPGA lifetime (t0) may become critical
after aging (tn). More details are discussed in section 8.4.4, where a selection scheme to
determine the highly-vulnerable paths to aging (aging-critical paths) is presented.

Two main concepts should be considered when designing a sensor to detect these late
transitions due to aging or delay faults:

• Warnability: The sensor/detector should be able to generate a warning signal when
the output of the critical path gets very close to the clock edge before exceeding it,
which is the case of the aging phenomena that happens gradually. Thus a suitable
action can be taken to mitigate aging (e.g., reducing the operating frequency).

• Detectability: When the output of the critical path exceeds the clock edge, a delay
fault happens. The sensor/detector should be able to detect this fault and generate an
error signal.

8.3.2. The proposed sensor

The proposed sensor is to be placed in parallel with the aging-critical path output (Dout),
meaning the path that has most (initial delay + aging-induced delay increase), to detect

111

Chapter 8. Aging Monitoring in FPGA-Mapped Designs

Q

Q
SET

CLR

D

Input FF

Q

Q
SET

CLR

D

Output FF

CLKCLK

CLK

Dout

(Aged Circuit)

Stable

Stable

Unstable Stable

Unstable Stable

Tcritical

Transition to stable
before clock edge

Late transition due
to aged circuit

D DCritical Path

Dout

Dout

Figure 8.1.: Description of the effect of the aged circuit

whether the circuit generates late transitions after the clock edge, or too close before it, as
shown in Figure 8.2. The schematic of the sensor is depicted in Figure 8.3. The idea is
to use the signal on the critical path output itself as a clock input to two different edge-
triggered D-FFs. Assuming that the original design works with the positive edge transition
of the clock, the proposed circuit detects both positive and negative transitions on the crit-
ical path which happen during the first half (assuming a 50% duty cycle for the clock) of
the next clock cycle (i.e. when the clock level is high). That is why the system clock is fed
to the inputs of the D-FFs. The use of two FFs is because one latches rising transitions and
the other one detects falling transitions. When the end point of the critical path makes a
transition at the positive level (i.e. the first half) of the (next) clock, it means that the path
is aged and makes a late transition.

One can argue that the non-aged (fault-free) path can also make the early transitions
during the first half of the clock cycle. This may invalidate the functionality of the sensor
as outlined above and cause it to wrongly raise the error signal. Modifications to the sensor
to deal with such issues are discussed in section 8.4, where a narrower detection window is
generated and used instead of the clock to reduce the detection period, and avoid the false
detection of the early transitions that may happen (Figure 8.6).

To illustrate the sensor functionality, a chain of odd number of inverters is considered
as a basic example for a critical path. The timing diagram in Figure 8.4 shows two cases,

112

8.3. Aging Sensor: Main Idea

Q

Q
SET

CLR

D

Input FF

Q

Q
SET

CLR

D

Output FF

CLK

CLK

Dout

D D

Aging
Sensor

CLK Aging
Notification

Signal

Critical Path

Figure 8.2.: The placement of the aging sensor on the critical path

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

D

DClk

Critical path
output (Dout)

Aging
Notification

Signal

Figure 8.3.: Schematic diagram of the proposed aging sensor

113

Chapter 8. Aging Monitoring in FPGA-Mapped Designs

namely the fault-free (non-aged) circuit (its output is Dout), and the aged circuit (with delay
fault). In the non-aged case, the input to the inverters chain causes a transition at the output
lies in the second half of the clock cycle (clk = 0), and will cause the sensor (Figure 8.3) to
latch the current state of the clock, that is ’0’, which means no notification of aging. In the
second case, the circuit is aged, and the transition in the critical path happens after the clock
edge, in the first half of the next clock cycle (clk = 1). This transition causes the sensor to
latch the current state of the clock, that is ’1’, and the sensor raises the error signal.

CLK

Tcritical

input

Dout

Dout
(Aged circuit)

Aging
Notification

Path delay more
delay

due to
aging

(Fresh circuit)

Figure 8.4.: Example to show the sensor functionality when the aging happens in the circuit

8.3.3. Sensor sensitivity analysis

The sensitivity of the sensor, Tss, is defined as the time period from the latching edge of the
clock to the earliest time that the path makes a transition after the clock edge and the sensor
is able to raise an aging notification signal. In other words, if the clock period is Tclk, the
delay of the critical path must be at least Tclk +Tss to be detected by the aging sensor. This
means that any aging delay less than Tss would not be detected by the sensor. In case of
a warning sensor, Tss is negative, thus the detection can happen before the clock edge (see
Figure 8.5).

The amount of Tss can be controlled according to the design requirements. To explain
how this can be achieved, let’s consider Figure 8.6 that shows the sensor’s FFs and the
routing delays for its inputs.

The FF requires the transition on its input to be stable before the clock edge, at least in
an amount equal to its setup time (Tset), to latch the input successfully. Another fact that
should be considered is that the timing, at which the sensor detects, must be relative to the

114

8.3. Aging Sensor: Main Idea

Clk

Dout

Tss

Transitions
undetectable

Transitions
detectable

Figure 8.5.: The sensitivity of the sensor (Tss), negative to the left of the clock edge, and
positive to the right.

Q

Q
SET

CLR

D

Output FF

CLK

Dout
D

Aging
Notification

Signal

Critical Path

Aging Sensor

Ddw

D
cp Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

D

D
Detection
window

Figure 8.6.: The relative delays of the sensor inputs

115

Chapter 8. Aging Monitoring in FPGA-Mapped Designs

timing of the output FF (at which the actual data is latched). Now, if we consider there is no
skew between the inputs of the sensor’s FFs, and the inputs of the output FF (Figure 8.6),
then the sensitivity can be calculated as follows.

Tss = TSensor set−TOut put set (8.1)

where TSensor set and TOut put set are the setup times of the sensor’s FFs and the output FF,
respectively. If no process variation is considered, the FFs will have equal setup times, and
as a result Tss will be simply zero.

In the real case there are routing delays that lead to variable amounts of skew. If the two
delays are different, the signals will reach the sensor at different timing with respect to the
output FF (Figure 8.7). Considering these delays, the sensitivity equation (Equation (8.1))
will become:

Tss = (TSensor set−TOut put set)+(Ddw−Dcp) (8.2)

where Ddw and Dcp are the path delays of the sensor inputs (from the detection window
and the critical path) relative to the inputs of the output FF.

Since the setup times cannot be altered, the term (Ddw−Dcp) is used to control the
amount of the required sensitivity. For an ideal late transition detector the sensitivity is
zero, which means that the late transitions can be detected as soon as they exceed the clock
edge. This can be achieved when both terms (TSensor set −TOut put set) and (Ddw−Dcp) are
equal to zero, or when (TSensor set−TOut put set) =−(Ddw−Dcp).

To obtain a negative sensitivity (warning sensor), the term (Ddw−Dcp) must be negative.
That means the amount of the delay from the output of the critical path is larger than that
of the clock (Figure 8.7).

8.4. Sensor Mapping

Xilinx Virtex-6 is used, as one of the state-of-the-art FPGA platforms, for the mapping.
As presented in section 8.3, the sensor uses two different edge triggered D-FFs to latch
the actual state of the clock. It would be much useful if double edge triggered D-FFs are
available on the FPGA, because then using one FF would be enough to detect both negative
and positive transitions and there will be no need for the OR gate shown in Figure 8.3
anymore. Unfortunately, double-edge triggered FFs are not available on the Virtex-6 series;
however, there are similar components that can be used instead, namely Double-Data Rate
Output Registers (ODDR). The ODDR exists near the general purpose input/output pins,
and one ODDR is enough to implement the functionality of the proposed sensor. However,
because the aging notification signal has to be sent to one of the output pins outside the
FPGA, this may cause problems since it might be necessary to handle and use this signal
inside the FPGA. Furthermore, the ODDRs exist only in certain places on the FPGA, so
the output of the critical path has to be routed there, which could be very long (through
multiple switch matrices and buffers) depending on the original placement of the critical
path.

116

8.4. Sensor Mapping

Clk

Dout

Dout

Dout

1) Ddw = Dcp

(Aging Sensor)

2) Ddw < Dcp

(Warning Sensor)

3) Ddw > Dcp

(Invalid case)

Detection
Window

Detection
Window

Detection
Window

Figure 8.7.: Different relative values of input delays and the effects of how the sensor sees
the inputs

8.4.1. Mapping to logic slices

The other option to map the proposed aging sensor is the normal logic slices that are dis-
tributed over the FPGA area. The fact that in each slice of the Virtex-6 FPGA only one
type of clock edge can be defined, implies the need to use two different slices to implement
the aging sensor: one for the positive edge D-FF and the other one for the negative edge.
Although the sensor occupies two slices, it uses the D-FFs and one LUT, leaving the rest
of resources in these slices available for mapping other circuit components.

The basic aging sensor (Figure 8.3) is able to detect any transition happens during the
positive level (first half) of the clock cycle. This can generate false notification if an early
transition happens in this period in the fault-free operation of the circuit. To alleviate this
problem, it is necessary to reduce the window in which the sensor latches the transition.
In the basic sensor implementation, this window was generated by the positive level of the
clock. Since the clock typically has a 50% duty cycle, this latching window is 50% of
the clock period. This is an issue for many functional paths as they make early transitions
during the clock cycle. However, if this latching window is reduced such that the monitored
path in the non-aged state does not make any transition during this latching window, no
false notification can happen.

The Mixed-Mode Clock Managers (MMCM) component in Virtex-6 allows the genera-
tion of a controlled-duty-cycle clock. This option fits the need for a flexible aging sensor.
By generating a smaller duty cycle period, the latching window can be reduced proportion-

117

Chapter 8. Aging Monitoring in FPGA-Mapped Designs

ally. In this case, it is enough to use the controlled duty cycle clock in place of the func-
tional clock in the sensor. However, the MMCM is unable of generating a small duty cycle
signal when the functional clock frequency is relatively high (300-600 MHz). This makes
this method unsuitable for high-frequency designs. A suitable method for high-frequency
designs is introduced in the next section.

8.4.2. Detection window generation

Using the MMCM, a phase shift version of the clock can be generated, which can be then
combined with the original clock using an AND gate to generate the required detection
window (Figure 8.8). The amount of the phase shift can specify the width of the detection
window. It should be noted that the width of the detection window cannot be less than the
allowed minimum signal width of the FPGA as described in section 8.4.3, otherwise, the
detection window will be absorbed by the internal buffers and will not reach the FFs.

This combination (the original clock with the phase shifted one) must be done before
passing the two generated clocks (The functional clock and the generated detection win-
dow) to global clock buffers, in order to assure minimum skew. Furthermore, the two clock
paths must be balanced using the same amount of components, to avoid large delay differ-
ences between them. That is the reason why there is a NOT gate on the functional clock
path in Figure 8.8, so that the two clocks have nearly the same propagation delay of one
LUT each.

MMCM

LUT1

LUT2

Clkin

Functional
Clk

Detection
Window

Figure 8.8.: The generation of the detection window using the MMCM

8.4.3. Glitches in FPGA

As the proposed sensor uses the data path as a clock source, it may face too many transi-
tions, and hence the power consumption of the sensor maybe high. Before going further
with the analysis of this information, an interesting point must be highlighted. In modern
FPGAs, special types of buffers are used for the clocks and the inputs of the FFs inside

118

8.4. Sensor Mapping

the slices. These buffers allow only pulses with a width greater than a certain amount to
be further propagated. Thus, glitches that are very small are internally absorbed by the
buffer [92]. The timing simulations that have been done in the scope of this chapter prove
that fact as well. Table 8.1 shows different simulated FPGAs, with the minimum pulse-
width that can be propagated through the buffers.

Table 8.1.: Minimum allowed pulse widths in different FPGAs
Simulated device Minimum allowed pulse width
Spartan-6 LX45 240 ps
Virtex-5 LX110t 369 ps
Virtex-6 LX75t 450 ps

The values in Table 8.1 are actually defined in the generated post-place-and-route simu-
lation models, under “PATHPULSE => xxx ps” constraint. The possible generated small
glitches cannot reach the output FF (The monitored FF, where these glitches are supposed
to be latched and cause errors) as they will be absorbed by the buffers, also these glitches
cannot reach the sensor’s FF. Actually, this is the idea, because the sensor is supposed to
generate errors only if the latched data is incorrect, so as long as the output FF does not see
these glitches, the sensor won’t see them as well. Furthermore, as the possible number of
glitches that can reach the sensor clock input within one clock cycle is minimum, its power
consumption would be minimum as the results show in section 8.5.

8.4.4. Aging sensor placement and calibration

Choosing the appropriate place (CLB slices) for mapping the sensor with respect to the
placement of the aging-critical paths (the paths that have the highest post-aging delay) to
be monitored, and the number of the sensors for the entire circuit are important issues to be
addressed.

8.4.4.1. Selection scheme of the paths to be monitored

The correct choice of where to place the sensors in the circuit, plays an important role for
achieving a highly reliable monitoring. The method presented in Chapter 7 is used here
to select the most top aging-critical paths to be monitored. This can be summarized in the
following steps:

1. Using the timing analyzer tool, sort the paths based on their timing slacks in the
decreasing order. This way, the critical and near-critical paths are determined.

2. Estimate the aging of each path using the method proposed in Chapter 7.

3. Resort the paths according to their aged delays.

119

Chapter 8. Aging Monitoring in FPGA-Mapped Designs

4. As the sensor is to be placed at the output of the path, if several paths share the same
output node, keep the one with the highest post-aging delay and remove the others.

5. Depending on the criticality of the application, and the available space left on the
FPGA chip; the number of the paths to be monitored can be determined.

6. Place the sensor circuits at the outputs of selected paths.

7. A calibration to the sensors should then be done to set their sensitivity (negative for
warning, and near-zero positive for late transition detector) as detailed below.

8.4.4.2. Sensor calibration

As mentioned in section 8.3.3, the sensitivity can be calibrated using the delays at the inputs
of the sensor. An option to use programmable delay elements would consume too many
resources. Therefore, the proposed approach is to control the routing to specify the amount
of the delay in a simple way.

The first knob to calibrate sensitivity is the delay on the detection window path, which
can be controlled using a relative location constraint. The locations of the AND and the
NOT gates (The LUT to which they are mapped in Figure 8.8) can be chosen such that
one of them is farther than the other one, with respect to the clock buffers. Thus speci-
fying one of them affects the relative delay of the other one, accordingly. For example,
suppose that the names of the two LUTs in Figure 8.8 are MMCM/Detection_window
and MMCM/Functional_clock, the relative location constraints for them can then be
written as

INST "MMCM/Detection_window" U_set="clock_0";
INST "MMCM/Functional_clock" U_set="clock_0";

INST "MMCM/Detection_window" RLOC = X0Y0;
INST "MMCM/Functional_clock" RLOC = X10Y0;

which means that the LUT from which the functional clock is passing, is 10 slices farther
than the other, with respect to the clock buffers of both, and hence the detection window ad-
vances the functional clock. Modifying this distance changes the amount of delay between
the two clocks.

The second knob is the relative delay from the critical path output to the sensor. Again,
the relative location constraints can be used to determine the place of the sensor relative
to the place of the output FF, and thus increasing or decreasing the delay difference be-
tween the output FF inputs and the sensor inputs. For example, suppose that the name of
the output register in Figure 8.6 is Output_reg, and the names of the sensor’s FFs are
sensor0/pos_edge and sensor0/neg_edge, the relative location constraints can
then be written as

INST "Output_reg" U_set="sensor0";
INST "sensor0/pos_edge" U_set="sensor0";

120

8.5. Experimental Results

INST "sensor0/neg_edge" U_set="sensor0";

INST "Output_reg" RLOC=X0Y0;
INST "sensor0/pos_edge" RLOC=X0Y1;
INST "sensor0/neg_edge" RLOC=X1Y1;

By controlling these two knobs, the sensor sensitivity can easily be calibrated using
Equation 8.2.

8.4.4.3. Pre-used FPGAs

In reconfigurable applications, some other configurations may have been loaded in the
FPGA and because of that, the FPGA device is aged based on that usage. When the new
configuration is loaded in the FPGA, the effect of pre-aging due to previous configurations
has to be considered (in which some FPGA resources are aged with different rates). To
handle such cases in the proposed approach, instead of considering d0, as the path delay
of “fresh FPGA”, one can use du

0 as the delay of that path in the “used FPGA” (see Equa-
tion 8.3).

du
0 = d0 +∆d0 (8.3)

where ∆d0 is the aging of the path so far. In other words, d0 is updated with the delay in-
crease so far, and the delta delay in future, and hence, the post-aging path delay d becomes
d = du

0 +∆d.

8.5. Experimental Results

In order to evaluate, validate and analyze the proposed aging sensor, experimental analysis
for representative high frequency FPGA designs have been performed.

8.5.1. FPGA design tool experiments (simulation results)

The simulations are done using Xilinx ISE 12.2, together with Modelsim SE 6.5c for Xilinx
Virtex-6 FPGA devices. Post-place and route simulation model from ISE is generated for
the simulation of each experiment and used together with the generated Standard Delay
Format (SDF) file in Modelsim. The maximum delay values for all components were
always considered in the following results, to reflect the worst-case results. Virtex-6 series
FPGAs are chosen for the simulated device since they are one of state-of-the-art FPGA
devices from Xilinx fabricated using a 40nm copper CMOS process technology.

To have a fair analysis of the sensor, three circuits with typical operational frequency
have been firstly chosen to reflects real usage of the FPGA. The first circuit is a pipelined
32-bit square root circuit [93]. It contains 5 pipelined stages, and operates at a frequency
of about 320 MHz. The second circuit is a pipelined AES encoder [94], which contains
30 stages, and operates at a frequency of about 550 MHz. The third circuit is a self-built
typical 8-bit FIR filter with 32 stages, has LUT-based implementation, and operates at a

121

Chapter 8. Aging Monitoring in FPGA-Mapped Designs

frequency of about 275 MHz. In addition, the sensor has been tested on a set of several
circuits from the ITC’99 testbench with different sizes and frequencies.

To assign the sensors to the critical paths in the circuits, a logic-level implementation
is necessary, because the behavioral description contains internally generated paths which
may not easily be extracted to be monitored. The logic-level descriptions for the circuits
were generated using Xilinx ISE synthesis tool. Different numbers of sensors are placed to
the top aging-critical paths of the circuit as described in section 8.4.4. The sensors are then
calibrated as warning sensors. The suitable device size to efficiently fit the requirements
of most of the tested circuits is chosen to be XC6VLX75T-FF484. For the AES encoder
circuit, XC6VLX240T-FF784 is chosen. To simulate the aging phenomena, the frequency
of the circuit is increased gradually, and the outputs of critical paths are reported together
with the sensors behavior. The sensors were calibrated to work with a sensitivity of almost -
50 ps. When the critical path transitions fall within 50 ps prior to the clock edge, the sensors
generate the aging notification signal. By using the detection window adjustment technique
presented in Section 8.4.2, no false notifications happened for the inserted sensors.

The area overhead of the sensors for the tested circuits is reported in Table 8.2. The area
is chosen as an optimization goal in the synthesis phase to have a fair comparison. For
power and performance overhead reported in Table 8.3 the speed is chosen as an optimiza-
tion goal. The area overhead of the sensor is very small, as each sensor needs only 2 FFs
and 1 LUT. The performance overhead is also very small. The power overhead is mainly
caused by using the MMCM to generate the detection window. This can be seen from the
results in table 8.3 where adding extra sensors does not scale the power linearly. Actually
the power can be further reduced by selectively activating the sensors from time to time.
The MMCM element is used in all circuits, the original circuits (i.e. without sensors) and
with-sensors circuits, to generate the 200+ MHz clock frequencies; therefore, the MMCM
is not considered in the area comparison. The negative values of area overhead in table 8.2
are related to LUTs which have been optimized; however the area overhead of the registers
is always positive.

It needs to be noted that the transistor aging happens at a very large time scale. There-
fore, the critical path is not required to be monitored all the time: a periodic (e.g. once
every week or month) monitoring of the critical path is enough. Given the runtime recon-
figurability of FPGAs, it is possible to turn off the sensor most of the time and only activate
it at very infrequent rates. Alternatively, a control signal can be easily asserted to the sensor
to enable/disable it. The Clock Enable (CE) ports of the D-FF in the sensor can be used for
that purpose. Since the sensor circuitry would be used (switched) much less frequently than
the functional path, the aging rate of the sensor circuitry would be multiple times less than
the original circuit. Therefore, the aging of the sensor circuitry can be neglected compared
to the aging of the original circuit. This periodic activation of the sensor can also reduce
the power associate with the sensor circuitry considerably.

8.5.2. FPGA board experiment (emulation results)

To validate the sensor functionality in real-time environment, an XUP-5 board equipped
with a Virtex5-LX110t is used. The square root circuit with five attached sensors is tested.

122

8.5.
E

xperim
entalR

esults

Table 8.2.: Area overhead for different number of sensors
Tested circuit Resource type Original With 5 sensors With 10 sensors With 20 sensors

b04 Slice registers 62 77 (24.19%) 90 (45.16%) 110 (77.41%)
Slice LUTs 108 111 (2.77%) 113 (4.62%) 116 (7.41%)

b05 Slice registers 44 54 (22.72%) 64 (45.45%) 84 (90.90%)
Slice LUTs 132 135 (2.27%) 138 (4.55%) 141 (6.82%)

b12 Slice registers 126 136 (7.94%) 146 (15.87%) 166 (31.75%)
Slice LUTs 240 243 (1.25%) 245 (2.08%) 248 (3.33%)

b14 Slice registers 165 175 (6.06%) 185 (12.12%) 205 (24.24%)
Slice LUTs 782 785 (0.38%) 787 (0.64%) 790 (1.02%)

b17 Slice registers 1334 1344 (0.75%) 1354 (1.50%) 1374 (3.00%)
Slice LUTs 5643 5650 (0.12%) 5652 (0.16%) 5651 (0.14%)

Square root Slice registers 924 934 (1.08%) 944 (2.16%) 964 (4.33%)
Slice LUTs 997 1009 (1.20%) 1007 (1.00%) 1014 (1.70%)

AES encoder Slice registers 7748 7758 (0.13%) 7768 (0.26%) 7788 (0.52%)
Slice LUTs 9698 9754 (0.58%) 9697 (-0.01%) 9657 (-0.42%)

FIR filter Slice registers 499 509 (2.00%) 519 (4.01%) 540 (8.22%)
Slice LUTs 962 966 (0.42%) 968 (0.62%) 971 (0.94%)

123

C
hapter8.

A
ging

M
onitoring

in
FPG

A
-M

apped
D

esigns

Table 8.3.: Power and performance overhead for different number of sensors
Tested circuit Power / Performance Original Design With 5 sensors With 10 sensors With 20 sensors

b04 Power at 229 MHz 0.795 W 0.845 W (6.29%) 0.871 W (9.56%) 0.876 W (10.19%)
Performance 4.332 ns (230 MHz) 4.347 ns (230 MHz) (0.35%) 4.350 ns (230 MHz) (0.42%) 4.365 ns (229 MHz) (0.76%)

b05 Power at 338 MHz 0.807 W 0.828 W (2.60%) 0.837 W (3.72%) 0.850 W (5.33%)
Performance 2.877 ns (347 MHz) 2.942 ns (340 MHz) (2.26%) 2.912 ns (343 MHz) (1.22%) 2.956 ns (338 MHz) (2.75%)

b12 Power at 400 MHz 0.812 W 0.838 W (3.20%) 0.846 W (4.19%) 0.868 W (6.70%)
Performance 2.458 ns (406 MHz) 2.491 ns (401 MHz) (1.34%) 2.484 ns (402 MHz) (1.05%) 2.499 ns (400 MHz) (1.67%)

b14 Power at 146 MHz 0.800 W 0.807 W (0.88%) 0.807 W (0.88%) 0.811 W (1.38%)
Performance 6.588 ns (151 MHz) 6.835 ns (146 MHz) (3.75%) 6.810 ns (146 MHz) (3.37%) 6.825 ns (146 MHz) (3.60%)

b17 Power at 180 MHz 0.819 W 0.822 W (0.37%) 0.829 W (1.22%) 0.829 W (1.22%)
Performance 5.513 ns (181 MHz) 5.527 ns (180 MHz) (0.25%) 5.501 ns (181 MHz) (-0.21%) 5.511 ns (181 MHz) (-0.04%)

Square root Power at 310 MHz 0.951 W 0.978 W (2.84%) 0.976 W (2.62%) 0.985 W (3.58%)
Performance 3.130 ns (319 MHz) 3.144 ns (318 MHz) (0.44%) 3.173 ns (315 MHz) (1.37%) 3.184 ns (314 MHz) (1.73%)

AES encoder Power at 500 MHz 3.901 W 3.900 W (-0.03%) 3.928 W (0.69%) 3.977 W (1.95%)
Performance 1.856 ns (538 MHz) 1.857 ns (538 MHz) (0.05%) 1.896 ns (527 MHz) (2.16%) 1.865 ns (536 MHz) (0.48%)

FIR filter Power at 270 MHz 1.566 W 1.581 W (0.96%) 1.584 W (1.15%) 1.597 W (1.98%)
Performance 3.619 ns (276 MHz) 3.620 ns (276 MHz) (0.03%) 3.662 ns (273 MHz) (1.19%) 3.633 ns (275 MHz) (0.39%)

124

8.6. Summary

The maximum frequency for the mapped circuit is reported as 340 MHz. For the generation
of the detection window, two DCMs are used, because the MMCM element is not available
in Virtex5. The outputs of the sensors are passed to an OR gate and connected to a LED.

Two input clock frequencies were tested: 1) under the maximum frequency (325 MHz),
to test the sensor in normal circuit operation mode, and 2) above the maximum frequency
(400 MHz), in order to emulate the aged circuit case. The LED was OFF during the first
case, which means that no late transitions were detected, and ON during the second case,
which proves that a late transition has been detected.

8.6. Summary

In this chapter, the design and mapping of a low-cost logic-level aging sensor for FPGA-
mapped designs have been presented. It has been taken advantage of FPGA resources to
design an efficient aging sensor (controlled to be warning or late-transitions detector) which
not only detects transistor aging, but can detect erroneous glitches due to intermittent and
transient faults. The implementation of such sensors for representative designs shows very
low area, performance and power overhead. (≈ 1.3% area, ≈ 1.6% performance, and ≈
1.5% power overhead when 10 sensors are placed)

125

Chapter 9.

Self-Heating Thermal-Aware Testing of FPGAs

9.1. Introduction

Testing of FPGA chips is of great importance, not only at the manufacturing phase, but
also during the in-field operation to ensure the correct functionality throughout the sys-
tem lifetime. As many failure mechanisms are accelerated with high chip temperatures,
thermal-aware methods of testing are usually used to detect such failures, and also to en-
sure the quality of the devices for a required thermal specification [95]. In this type of
testing, the chip is first heated to a certain temperature and then the test is applied. Ex-
ternal devices such as thermal chambers and ovens are used for the purpose of heating up
the chip. Burn-in testing is another type of testing in which the chip is exposed to high
temperatures and/or voltages for certain periods in order to accelerate the aging and stress
the chip before applying the test. Again, in this type of testing external devices are used
for heating up the chip. However, the use of these devices for thermal-aware testing has
various limitations. For instance, they cannot provide on-chip thermal gradient for thermal
testing; they are large and expensive, and have limited usability for in-field test; there is a
possibility of heating up unwanted components on the board; and the number of chips that
can be simultaneously tested is limited.

In this chapter, an approach for self-heating the FPGA chips is presented together with
several techniques for integrating this self-heating with the test scheme for the purpose of
thermal-aware testing. Thus, no external devices are needed. In the proposed approach,
the internal logic resources of FPGA are used to build controlled Self-Heating Elements
(SHEs). These SHEs are very flexible in both size and quantity, they can be either dis-
tributed across the FPGA to heat up all the FPGA at once, or they can be concentrated in a
certain part of the FPGA to generate the required thermal gradient across the chip. Further-
more, a simple programmable controlling scheme has been developed to tune the amount
of generated heat according to the test requirements.

Two different categories of SHEs integration techniques are presented to fit different test-
ing purposes; the first category is for Built-In Self-Test (BIST) in application-independent
testing. Here the SHEs are integrated with the BIST scheme for FPGAs, which allows any
specific thermal profile during test by specific placement of SHEs throughout the chip as
well as programming SHEs for particular heat generation. In that way, the required testing
temperature is maintained throughout the test. The second category of the SHEs integration
techniques is for application-dependent FPGA testing, in which the SHEs are integrated
within the specific user application with minimum overhead to provide the self-heating for
the thermal-aware testing.

The proposed approach has many advantages. First, it eliminates the need for any ex-

127

Chapter 9. Self-Heating Thermal-Aware Testing of FPGAs

ternal devices for heating, and thus reducing the testing cost and assuring heating only the
FPGA chip and not any other components on board. Unlike the external heating devices,
it can generate uniform temperature or particular thermal gradient on the chip for specific
test plans. Furthermore, it can be used for in-field thermal-aware testing by end users.
Additionally, there is no limitation on the number of FPGA chips to be heated in paral-
lel and hence reducing the test time. Moreover, this technique can primarily be used for
thermal-aware testing as a part of manufacturing and production test flow. Also, it can be
used as a part of acceptance test by the user in the field. The presented approach is demon-
strated on a Virtex-5 FPGA and integrated with both a particular FPGA BIST scheme and
an application-dependent test. The experimental results show that a wide range of maxi-
mum chip temperatures can be achieved (from 50◦C up to 125◦C) with a high accuracy (±
1◦C).

The rest of this chapter is organized as follows: Section 9.2 discusses the related work.
Then, Section 9.3 illustrates the concept of self-heating and introduces the proposed SHEs.
Afterwards, Section 9.4 discusses the generation of the desired thermal profile for testing.
Later, Section 9.5 describes the integration of the SHEs with BIST structures, which is
followed by a demonstration for the implementation of the proposed self-heating BIST
on Xilinx Virtex-5 FPGAs. Then, Section 9.6 describes the thermal-aware application-
dependent testing, where several SHEs integration methods are discussed. Section 9.7,
shows the experimental results, and finally Section 9.8 concludes this chapter.

9.2. Related Work

The thermal-aware testing of chips is studied in literature with the focus on test proce-
dure and schedule. For example, in [95, 96, 97] the thermal-aware test scheduling is han-
dled. However, there is no focus on chip heating methods, and external heating devices are
mostly considered.

The concept of self-heating in FPGA is discussed in the literature mostly as an undesired
property that should be tolerated, e.g., in ring oscillators when used as thermal sensors [98,
99]. Some other works refer to self-heating in FPGA implicitly when the thermal issues of
FPGA such as hot-spots are discussed [74, 100, 101]. Explicit methods for heat generation
in FPGAs are presented in [102, 103].

The concept of self-heating for test purposes in Programmable Logic Devices (PLDs)
is discussed in [104], which tests a performance-failing PLD by isolating thermal effects
from AC effects on circuit performance. This is done by isolating the critical paths and
placing a type of thermal generators around them to heat them for testing. The heat gen-
erated by each of the thermal generators is a result of creating an intentional short circuit
between the output of two different logic blocks, one with logic-0 output and the other
with logic-1 output. The same technique for generating the heat is also adopted in [105].
Obviously, this technique cannot be used in the production test as it may damage the chip
permanently if the created short circuits are not controlled correctly. In [106], another self-
heating method based on toggling flip-flops is introduced. The temperature is controlled
by changing the frequency of the clock signal that feed the toggling flip-flops. To gener-
ate high chip temperatures (above 100◦C), a high frequency clock signal is needed, which

128

9.3. FPGA Self-Heating

might not be possible in FPGAs.
The main difference between the work presented in this chapter and the aforementioned

references is that the focus here is not the self-heating itself but rather the integration of the
self-heating with different testing schemes for efficient thermal-aware testing.

9.3. FPGA Self-Heating

9.3.1. The concept of self-heating

The idea of self-heating is to make the FPGA able to generate heat by increasing the power
consumption of its elements. This can be achieved in several ways e.g., creating intentional
short circuits, forcing high toggling rates at the inputs/outputs of the FPGA resources, etc.
The approach that includes forcing of high toggling rates is safer and straightforward to
implement and control, and thus it is preferred. Forcing high toggling rates can be applied
to most FPGA resource types such as Block-RAMs or DSP elements. However, most of
these resources are concentrated in a few locations on the FPGA die and may not be avail-
able at all in different FPGA chips. Therefore, if an even temperature distribution across
the FPGA is desired, these types of resources are unsuitable to implement self-heating. On
the other hand, logic resources are well distributed across the FPGA, which makes them a
good candidate for being used for the implementation of self-heating modules. Usually the
logic resources consist of a set of LUTs and FFs as well as switching/routing resources and
multiplexers.

9.3.2. Self-Heating Elements (SHEs)

In this chapter, the main components to implement the proposed SHEs are LUTs and FFs.
As these resources are available in a large number and evenly distributed across the FPGA,
the SHEs can be freely placed in any desired location on the FPGA and thereby their density
and quantity can be controlled, which determines the amount of heat generated in order to
achieve the desired final on-die temperature distribution.

control input toggle output

Figure 9.1.: Basic toggle logic

The basic circuit for controlling input/output toggling is depicted in Figure 9.1. It con-
sists of a basic ring oscillator with an additional signal to control the toggling rate. This
circuit can be realized using an LUT with at least two inputs. Usually, the feedback signal

129

Chapter 9. Self-Heating Thermal-Aware Testing of FPGAs

from the LUT output to its input goes through switching resources, which cause these re-
sources to toggle as well and hence their dynamic power consumption will increase in turn,
enabling more heat to be generated. For larger LUTs (e.g. with 6-inputs), it is preferable
to toggle all the inputs in order to maximize the power consumption. This can be achieved
by connecting the feedback signal to all inputs.

clock

FF_set

serial_in

serial_out

x3
x4
x5
xn

u1
x2
x1

f(x1...xn)

Toggle_LUT
(0)

x3
x4
x5
xn

u1
x2
x1

f(x1...xn)

Toggle_LUT
(n)

Self-Heating Element (SHE)

...
Control
Circuit

Figure 9.2.: Components inside an SHE

To maximize the power consumption, each of the proposed SHEs consists of several
toggling LUTs. Figure 9.2 shows an overview of a single SHE. It consists of a set of
toggling LUTs in addition to a control circuit. The logic function implemented by each
toggling LUT is depicted in Figure 9.3. Basically, this is an extension to the circuit in
Figure 9.1 to achieve toggling on the rest of LUT inputs by connecting them to feedback
signals from other LUTs.

Toggle_LUT

control input toggle
output

...
inputs from

other
toggle LUTs

toggle
feedback

Figure 9.3.: Toggle logic with additional inputs

The control circuit depicted in Figure 9.4 sends the (serial_out) signal to all
(control_input) ports of toggling LUTs inside the SHE. The circuit consists of a FF

130

9.3. FPGA Self-Heating

working as a shift register to store the toggling control signal (serial_in) for one clock
cycle. The (FF_set) signal is used to stop the toggling asynchronously by forcing the
output of the FF to ’1’. The “optimization preventing inputs” are connected to the feed-
back outputs of other toggling LUTs inside the SHE to prevent any possible deletion of
their signal by the FPGA tools.

Q

Q
SET

CLR

D

clock

FF_set

serial_in

serial_outoptimization
preventing

inputs

Figure 9.4.: The control circuit of the proposed SHE

9.3.3. Chain of SHEs: easier controlling

A single SHE can have as many toggling LUTs as possible. However, the larger the SHE
the more routing complexity it poses, which can restrict its placement on the FPGA. Fur-
thermore, in a single SHE, all of the toggling LUTs can be either in toggling mode or
stopped, all at the same time. Thus, if an SHE contains too many LUTs, a fine control of
the generated temperature cannot be achieved.

Based on the above statement, small SHEs (e.g., each with up to 10 toggling LUTs) are
more preferable. Moreover, local routing can be used instead of global routing resources,
and the serial_out signal has less routing overhead. Consequently, the footprint of
each SHE is less and more space is left for any BIST circuitry to be implemented concur-
rently with the SHEs. Furthermore, it is easier to distribute small SHEs across the FPGA
than the larger ones for better heat distribution and control.

clock

reset

heating_control
chain

outputx3

u1x2

x1
f(x1...xn)

x3

u1x2

x1
f(x1...xn)

x3

u1x2

x1
f(x1...xn)

…SHE
#1

SHE
#2

SHE
#nserial_in serial_in

serial_out

Figure 9.5.: Self-Heating Chain (SHC)

131

Chapter 9. Self-Heating Thermal-Aware Testing of FPGAs

In order to have a simple control for the SHEs across the FPGA, the serial_in and
serial_out ports of multiple SHEs are connected together resulting in a Self-Heating
Chain (SHC), as depicted in Figure 9.5. The advantage of this connection is having the
ability to control how many SHEs are toggling or stopped inside the SHC using a single
control signal and hence, controlling the amount of heat generated from that SHC. This
process is explained next. Furthermore, the SHC can contain an arbitrary number of SHEs,
which gives more flexibility in its placement on the FPGA.

In each SHE in the chain, the toggling of the LUTs and the propagation of the
control_input signal are delayed by the control circuit for one clock cycle, as men-
tioned earlier. Therefore, in order to make all SHEs in the chain toggle, after a reset, the
first control input of the SHC (heating_control) has to be ’0’ for as many clock cy-
cles as there are SHEs in the chain. A timing diagram showing this process is depicted in
Figure 9.6.

SHE #5 serial_out

...

clock

reset

heating_control

SHE #1 serial_out

SHE #2 serial_out

All SHEs are
enabled

Asynchronous
reset

Figure 9.6.: Enabling the toggling of SHEs inside an SHC after reset

For controlling the amount of heat generated from the SHC, an input with a certain
duty cycle can be applied to the heating_control signal, to switch the toggling of
the individual SHEs inside the chain on and off. If, for example, only half of the SHEs
are desired to toggle at the same time, the duty cycle of the heating_control signal
should be set to 50%, as shown in Figure 9.7, using a chain with 5 SHEs.

While each chain could be driven by an individual control input in order to determine
its power consumption and thereby the on-chip temperature distribution, a single input for
all chains is used to control them. This simplifies the concurrent usage of self-heating with
other BIST circuits on the FPGA.

132

9.4. Thermal profile for testing

clock

reset

heating_control

SHE #1 serial_out

SHE #2 serial_out

SHE #3 serial_out

SHE #4 serial_out

SHE #5 serial_out

active heating
elements: 3 of 5

active heating
elements: 2 of 5

Figure 9.7.: Five self-heating elements of a SHC with 50% duty cycle

9.4. Thermal profile for testing

For applying a certain thermal-aware test on FPGA, a certain thermal profile is needed
depending on the test requirements and type (e.g. application-independent vs. application-
dependent). In this section, the process of arranging and controlling the SHEs on the FPGA
to achieve a certain thermal profile is discussed.

9.4.1. Distribution of SHEs

The flexibility of SHEs and their arrangements in SHCs allow them to be distributed in
different ways depending on the type of thermal-aware testing to be carried out on the
FPGA components. If, for example, a certain thermal gradient is required to activate certain
paths in particular regions of the chip, then the SHEs can be concentrated around these
paths or regions. Figure 9.8 shows an example of using 359 SHEs concentrated in the
upper-left corner of a Virtex-5 110T FPGA to generate a custom thermal profile. Each
SHE consists of 7 toggling LUTs and additional LUT and FF for control. The thermal
profile is obtained using the tool from Chapter 6. The internal thermal sensor of Virtex-
5 FPGA is used additionally to verify the results of the thermal profile estimation tool.
If other FPGAs than the Virtex-5 is to be used, a similar calibration to the one done in
Chapter 6 must be carried out in advance. In Section 9.7, more details about the maximum
temperature is discussed.

In case a homogeneous temperature profile over the entire FPGA is desired for the testing
(which is usually the case for BIST schemes) a regular distribution of the SHEs is an
important factor. However, the perfect regular distribution (i.e., with the same number
of SHEs in each part of the FPGA) causes the temperature at the center of the FPGA to
be higher than at the sides. Therefore, to generate a homogeneous thermal profile over
the entire FPGA, it is necessary to balance the distribution of the SHEs by increasing the
number of SHEs at the sides and decrease it in the center. By that, a homogeneous thermal
profile over the entire FPGA is generated. This balancing is done gradually, where the
increasing/decreasing of the SHEs at the sides/center is done linearly until a homogeneous

133

Chapter 9. Self-Heating Thermal-Aware Testing of FPGAs

30 SHEs

No SHEs 106°C

108°C

110°C

112°C

102°C

100°C

104°C

(a) (b)

Figure 9.8.: A custom thermal profile generated by placing SHEs at a specified corner of the
FPGA: (a) Distribution of the SHCs (Each rectangular box represents 2 SHCs.
The reported number of SHEs is per each SHC) (b) The resulted thermal profile
of the FPGA

thermal profile is achieved. Figure 9.9 shows an example of such balanced distribution of
1805 SHEs across the FPGA.

16 SHEs

12 SHEs

10 SHEs

7 SHEs

130ÁC

125ÁC

115ÁC

120ÁC

(a) (b)

Figure 9.9.: A balanced distribution of SHEs: (a) Distribution of the SHCs (Each rectan-
gular box represents 2 SHCs. The reported number of SHEs is per each SHC)
(b) The resulted thermal profile of the FPGA

9.4.2. Calibration process

Based on the above discussion, the distribution of SHEs determines the shape of the thermal
profile of the FPGA. However, the density of this profile (i.e. the maximum temperature) is

134

9.4. Thermal profile for testing

determined by the number of active SHEs in the design. The relation between the number
of active SHEs and the desired maximum temperature depends mainly on the target FPGA
device. Therefore, a pre-calibration must be carried out on the target FPGA to determine
this relation. This can be done by testing different number of SHEs with different distribu-
tions and observe the resulted temperature. This information is used then in the design of
the heating controller (Section 9.5.3.3). It should be noted that it is usually advantageous
to integrate the maximum possible number of SHEs in the FPGA. The job of the heating
controller is then to activate/deactivate a subset of SHEs according to the desired maximum
temperature.

9.4.3. Integration of SHEs

Whether a homogeneous or custom thermal profile, in both cases it might be necessary to
modify the test structure to release logic resources for the integration of the SHEs. This re-
lease process must take the desired distribution of the SHEs into account. This is discussed
in details in Section 9.5.3 for a BIST case and in Section 9.6 for an application-dependent
testing case. In fact, the structure of the proposed SHEs is very flexible for such integra-
tion. The way how the toggling LUTs inside the SHEs are connected, allows them to be
distributed freely, leaving place for the original application to be routed around the SHEs.
Figure 9.10 shows examples of such integration, where placement constraints are used to
place the LUTs of the SHEs at certain locations inside the logic blocks, allowing the appli-
cation to be placed freely at the other unused resources.

(a) (b)

Figure 9.10.: An SHE with 7 toggling LUTs and control circuit (additional LUT and FF)
on Virtex-5 FPGA: (a) dense placement (higher heat generation) (b) spread
placement (higher flexibility)

It should be noted that the distribution shown in Figure 9.10 is the distribution of the
toggling LUTs inside a single SHE, which helps in integrating the SHEs in the test circuit.
This process is independent of the process of distributing the SHEs themselves across the

135

Chapter 9. Self-Heating Thermal-Aware Testing of FPGAs

FPGA to determine the shape of the desired thermal profile, which is discussed previously
in Section 9.4.1.

9.4.4. Other thermal constraints

There are several other factors that should be considered before integrating the self-heating
in the FPGA. These factors are related mainly to the environment in which the target FPGA
is deployed. For example, it should be checked whether the board is able to supply the re-
quired current for raising the temperature of the FPGA, which can reach several amperes
depending on the target FPGA and the desired temperature. Also, it should be checked
whether raising the temperature of the FPGA will affect any other components on the
board or in the surroundings. These constraints could be quite different for production
test compared to in-field board test.

9.5. Self-heating application-independent BIST

The proposed self-heating approach can be combined with various BIST schemes for
FPGA testing to create a thermal-aware BIST. In this section, the main steps for integrating
the proposed self-heating for FPGA devices with BIST structures are explained. This is
followed by a working example of such integration with a BIST structure for testing the
logic resources in Xilinx Virtex-5 FPGAs.

Usually the BIST structure for FPGA devices consists of three main sets of components:
i) Test Pattern Generators (TPGs) for generating the required input patterns for testing the
targeted circuit, ii) Blocks Under Test (BUTs) which represent the blocks of the FPGA to
be tested and iii) Output Response Analyzers (ORAs) which determine whether the outputs
of the BUTs are valid (see Figure 9.11(a)). In order to test all the resources of the FPGA
and achieve 100% coverage, several test configurations are generated in such a way that
each resource appears in at least one test configuration as BUT. The integration of the
self-heating with the BIST structure can be done in two ways:

9.5.1. Sequential method

In this method, the self-heating and the self-testing are done in two consecutive steps.
First the FPGA is loaded with the SHEs (heat configuration) for heating up the chip to
the desired temperature. Afterwards, the BIST test configuration is loaded on the FPGA
for testing. In case the test requires multiple reconfigurations, this process of consecutive
heating and testing is repeated before the application of each test configuration. The main
advantage of this method is that there is no need to modify the original BIST structure.
Additionally, the whole FPGA resources are available to the SHEs during the heating step.
However, the controlling of the temperature can be done only during the execution of the
heating step. During the testing step, the temperature will vary. Thus, depending on both
the configuration time and execution time of each test configuration on the FPGA, the pre-
cision of the thermal control may decrease. Although the FPGA can be heated above the
desired temperature during the heating step to compensate the cool down that may happen,

136

9.5. Self-heating application-independent BIST

TPG 1 TPG 2 TPG 1 TPG 2
Heating

Controller

BUT

ORA

SHE

(a) (b)

Figure 9.11.: (a) BIST components alone and (b) with integrated self-heating

this still does not allow accurate temperature control during the test steps. Using the se-
quential method, we have measured about 10◦C cool down under the desired temperature,
during the test steps, for the same experiment explained in Section 9.7.1.

9.5.2. Concurrent method

In this method, the SHEs are integrated with the BIST structure into a single Heat&Test
configuration. This is done by adding a fourth set of components to the BIST structure
representing the SHEs as shown in Figure 9.11(b). The main advantage of this method
is the accurate control of the test temperature. Furthermore, the total number of required
Heat&Test configurations, and hence the total test time, is less compared to the sequen-
tial method. However, this integration requires additional design efforts depending on the
original BIST structure. The original BIST structure has to be modified in order to free up
enough logic resources for the SHEs. This can be done in several ways, again depending
on the targeted BIST structure: i) by reducing the number of BUTs that are tested at the
same time and scaling down the other BIST components accordingly. This will also re-
sult in an increase to the total number of configurations, compared to those in the original
BIST method, ii) by decreasing the size of the ORAs in such a way that the fault detec-
tion coverage is preserved but the diagnosis resolution is diminished. It should be noted
that the process of modifying the BIST structure to release logic resources, must take the
distribution of the SHE resources into account to generate the desired thermal profile.

Because of the main advantages of this method over the sequential method, the concur-
rent method is adopted in the rest of this chapter.

9.5.3. Case study BIST implementation

As a proof of concept, the proposed SHEs are integrated into an existing BIST scheme for
Virtex-5 FPGAs. The selected BIST scheme from [107] can detect 100% of all stuck-at
faults in every CLB.

137

Chapter 9. Self-Heating Thermal-Aware Testing of FPGAs

9.5.3.1. The structure of the selected BIST

The CLBs in Virtex-5 FPGAs can either contain two SliceL or a pair of SliceL and SliceM
as shown in Figure 9.12. In each slice there are a set of four 6-input LUTs and four FFs
in addition to carry logic circuits. The SliceM incorporates all the logic functionality of
SliceL and has additional circuitry to be used as distributed memory.

CLB

Switch
Matrix

COUT

CIN

COUT

CIN

SliceM
OR
SliceL

SliceL

Figure 9.12.: Virtex-5 CLB [108]

The original BIST divides the test into three steps. First it configures half of the slices as
BUTs and the other half as ORAs for the logic test. In the next step, it reverses the config-
uration in such a way that the slices, which were configured as ORAs are now configured
as BUTs and vice versa, thus all the slices are tested. Finally, special configurations are
loaded to test the additional functionality of all SliceM at once. Each of the first two steps
uses 6 consecutive configurations to test the logic functionality of both SliceL and SliceM,
and the final step uses 5 other configurations to test the additional functionality of SliceM.
This makes the total number of required configurations equal to 17.

The TPGs that drive the inputs of BUTs for testing the logic functionality are realized
using DSPs. The BUTs are divided into two partitions; each partition is fed by a different
TPG. The outputs of each BUT from each partition are compared to an identical BUT
from the other partition by an ORA as depicted in Figure 9.13. For testing the memory
functionality of SliceM, the test patterns are stored in Block-RAMs and DSPs are used as
address counters. For sake of simplicity, the integration of the SHEs is shown only for the
logic testing steps (the first 12 configurations).

9.5.3.2. Modifications to integrate the SHEs

As all available slices on the FPGA are already used in the original BIST, the fraction
of tested slices in each test step must be reduced for integrating the SHEs. As discussed
before, half of the slices are configured to be BUTs, and the other half as ORAs in each
step. In order to integrate the SHEs, the BIST is restructured in such a way that one third

138

9.5. Self-heating application-independent BIST

TPG 1

TPG 2

BUT
ORA

Figure 9.13.: BIST layout from [107]

of the slices are configured as BUTs, the second third as ORAs and the last third is used
for the SHEs as shown in Figure 9.14.

This integration increases the number of required steps for testing all the slices on the
FPGA from two steps to three. In each step a different set of slices are tested, which
increases the total number of required reconfiguration from 12 to 18 (i.e. 6 reconfigurations
in each step × 3 steps).

9.5.3.3. Heating control

The integrated SHEs are arranged in SHCs as explained in Section 9.3 to simplify the
control of the heating. The heating controller shown in Figure 9.14 is basically a dy-
namic duty cycle signal generator. It takes as an input the desired testing temperature from
the user and compares it to the FPGA chip temperature, which can be either read from
the built-in thermal sensor available on the FPGA, or predetermined using FPGA ther-
mal analysis tools (e.g. the tool presented in Chapter 6). The duty cycle of the generated
heating_control signal is adapted according to the difference between the desired
testing temperature and the measured chip temperature. The heating controller can be im-
plemented either inside the FPGA or outside as an external component. As the proposed
SHEs do not require the entire resources in their utilized slices (see Figure 9.10), the heat-
ing controller can be easily implemented inside the FPGA without posing any additional
area overhead.

The distribution of the generated heat across the FPGA is controlled by the placement
of SHEs on the FPGA. For this BIST example, a homogeneous temperature distribution
across the FPGA is desired for thermal-aware testing of all the slices. Therefore, the SHEs

139

Chapter 9. Self-Heating Thermal-Aware Testing of FPGAs

TPG 1

TPG 2

Heating
Controller

heating_control

BUT
ORA
SHE

Figure 9.14.: Concurrent self-heating and BIST layout

are spread evenly as shown in Figure 9.15. In fact, this spreading causes the temperature
on the edges of the FPGA to be slightly lower than at the center. To handle this, the length
of the SHCs in the center is reduced to lower their heat generating capability and thus
balancing the temperature across the FPGA.

TPG 1 TPG 2
Heating

Controller

BUT ORA SHE

TPG 1 TPG 2
Heating

ControllerTPG 1 TPG 2
Heating

Controller

Step 1 Step 2 Step 3

Figure 9.15.: Distribution of BUTs, ORAs and SHEs during the three different configura-
tion steps for a homogeneous temperature distribution across the FPGA

140

9.6. Self-heating application-dependent testing

9.6. Self-heating application-dependent testing

In addition to BIST, which is primarily used for application-independent testing, any
application-dependent test can be integrated with the proposed SHEs for thermal-aware
testing. This is particularly very useful for high-volume customers to check whether their
design meets the thermal requirements and each chip is functional under different tempera-
ture corners. As mentioned previously in Section 9.4.3, the structure of the proposed SHEs
is very flexible for such integration. In this section, different methods for this integration
are discussed.

9.6.1. Application-dependent testing

Functional tests of the FPGA resources (e.g., the BIST example in Section 9.5.3) can be
used to determine if the hardware complies with its specification. Sometimes it is more
important to find out whether a single application can be executed correctly under certain
conditions. Such specific conditions cannot be activated during the general application-
independent manufacturing test due to test time constraints. For example, if a given ap-
plication does not use the CLBs SliceM functionality, it seems pointless to run the addi-
tional memory test configurations to verify the SliceM’s behavior. One alternative approach
would be to do a set of functional tests for all used resources so that all utilized functionality
can be verified.

Another approach (which is targeted in this section) is to verify that the implemented
application delivers the correct output values for all possible input combinations. It may be
the case that the application functions perfectly at low (room) temperature but fails at high
temperatures, for example, resistive opens or reduced transistor mobility aggravated at high
temperature leading to intermittent delay faults. The advantage of application-dependent
testing is that fewer reconfigurations are needed to apply the test compared to a complete
functional test of all resources. Later in Section 9.7, the total test time will be discussed.
There, it will become clear, that the time needed for the reconfigurations of the FPGA can
be the dominant factor in total test time, if a lot of test configurations have to be executed.

In order to point out the flexibility of the proposed self-heating scheme, the proposed
approach has been adapted to heat up only the areas of the FPGA where the application is
placed. As the implementation of the application is not stripped down to just the critical
path, the application is still able to be used in a normal way. This is unlike the method
in [104] where just the critical paths of failing PLDs are heated up by using short-circuits,
which is done in order to determine more easily if elevated temperature levels are the sole
cause for the application failures on these devices.

The goal here is to show that it is possible to augment an application with SHEs without
affecting the application’s performance considerably. This way, the application can either
run normally, without the SHEs being active, or with active SHEs providing concurrent
self-heating. Using the latter case, the part of the FPGA that is used by the application is
heated up. Then, the impact of high temperature levels on the behavior of the application
is analyzed.

141

Chapter 9. Self-Heating Thermal-Aware Testing of FPGAs

9.6.2. SHEs integration methods

The first condition to integrate the SHEs in a certain FPGA-mapped circuit (i.e., a certain
application) is that enough free resources should be available on the FPGA for this purpose.
The redundancy of the FPGA resources together with the complexity of placing and rout-
ing highly utilized FPGAs; yield the fact that there exists almost no practical application
that can utilize 100% of the FPGA resources. It is even recommended to limit the FPGA
utilization to 50% if a peak performance is desired [109]. This means that for many practi-
cal applications, there are always free resources on the FPGA chip that can be used for the
self-heating integration. However, the integration methods may differ from one application
to another depending on the availability of unused resources.

In the following, different methods are presented for integrating the SHEs in a given
application on the FPGA. It should be noted that these proposed methods are not all suitable
for all sorts of applications. There are two measures to decide whether a certain proposed
method is suitable for a particular application. The first measure is, as discussed before,
the amount of available unused resources and the distribution of these resources across the
FPGA. The second measure is the impact of the self-heating on the original application
performance. The performance is measured by the minimum delay that is necessary to
run the application. Lower minimal delays mean the application can be executed at higher
clock speeds.

9.6.2.1. Ring placement

In this method, the mapped-circuit is constrained to be placed at the center of the FPGA,
while the SHEs are mapped to the sides (see Figure 9.16). The heat generated by the
SHEs at the sides raises the temperature of the circuit in the middle. The advantage of
this method is that the SHEs and the application are separated, which causes the minimum
overhead to the application performance. It is obvious that this method is ideally applicable
for applications that utilize less than 50% of the FPGA resources. This is to allow enough
number of SHEs to be integrated for a wider range of testing temperatures.

9.6.2.2. Rows or columns placement

This method constrains the SHEs to pre-specified columns or rows with regular spacing,
leaving the free gaps between them to map the application (see Figure 9.17). The advan-
tage here is to allow a more custom thermal profile within the application. However, this
reduces the routability of the FPGA-mapped application, which in turn affects the applica-
tion performance.

9.6.2.3. Stripping placement

As discussed previously in Section 9.4.3, this method exploits the structure flexibility of
the proposed SHEs to strip the SHEs down to their toggling LUTs, where the placement
freedom is higher. The toggling LUTs of each SHE are distributed across several slices as
required, which leaves the rest of the resources in each slice available for the mapped design

142

9.6. Self-heating application-dependent testing

SHEs

SH
Es

SH
Es

SHEs

Application

Figure 9.16.: Ring placement of the SHEs around the FPGA-mapped application

Application SHE

Figure 9.17.: Rows, columns and checkerboard placement of the SHEs through the FPGA-
mapped application

(see Figure 9.10). In a different perspective, the self-heating elements are distributed and
mapped to any unused resources (down to individual LUTs within partially-used slices) to
be as non-intrusive as possible to the original mapped design. The advantage of this method
is that it reduces the performance overhead significantly in comparison to the previous
method (rows or columns placement). However, this comes at the cost of more design
efforts.

It should be noted that since the individual delay time of a transistor is affected by pro-
cess variations during its fabrication, and the delay time also increases with higher tem-
peratures, the temperature at which an application actually begins to fail can also differ
between devices of the same make and model. Therefore, the self-heating should be able
to generate a wider range of temperatures, thus enough number of SHEs (i.e., depending
on the calibration process) must be integrated in the design.

143

Chapter 9. Self-Heating Thermal-Aware Testing of FPGAs

9.7. Experimental Results

9.7.1. Self-heating application-independent BIST

The self-heating BIST example discussed in Section 9.5.3 is implemented on a Xilinx
XUPV5 development board. This board features a Virtex-5 LX110T FPGA, as well as
several interfaces and peripherals. The 18 configurations for the self-heating BIST were
generated as discussed in Section 9.5.3.2 using ISE 12.2 tool-chain. It should be noted
that no modifications are made to the default packaging and heat-sink delivered from the
vendor.

The heating controller is implemented inside the FPGA using the free resources left by
the SHEs, and designed to heat the FPGA to different target testing temperatures. These can
be selected through user input that is fed to the controller through on-board switches. The
clock frequency for both BIST and SHEs circuits is set to 100 MHz. The built-in thermal
sensor of the FPGA is also observed using the Xilinx ChipScope software to validate the
controller operation. ChipScope is also used to load the 18 configurations onto the FPGA
via a USB-to-JTAG interface cable. A single pass/fail bit is sent to one of the LEDs on the
board to indicate if faults have been detected. In case of positive feedback, the status of
the ORAs is read through an Integrated Logic Analyzer (ILA) core for fault diagnosis and
localization.

A total number of 1805 SHEs are integrated with the BIST, each of which consists of 7
toggling LUTs in addition to the control circuit (as in Figure 9.10(a)). The simulated tog-
gling frequency of the SHEs is reported as 500 MHz by Xilinx power tool. This integration
increases the total power consumption of the FPGA from ≈2.5 W for the original BIST
circuit to ≈14 W for the self-heating BIST. The resulted thermal profile using the SHEs
is estimated, using the tools from Chapter 6. The thermal profile of the original BIST cir-
cuit (without the SHEs) is depicted in Figure 9.18(a). By integrating the SHEs as shown
in Figure 9.15 for two of the three steps, a maximum temperature range between 126◦C
and 132◦C is reported across the FPGA as seen in Figure 9.18(b). However, as Virtex-5
LX110T is rated to work under a maximum temperature of 125◦C, the board is switched
off when the built-in thermal sensor reports 120◦C to avoid any possibility of damaging
the chip.

The measurement of the total test time depending on the targeted testing temperature is
shown in Figure 9.19. The gaps in this temperature measurement on x-axis are the result
of ChipScope tool not being able to capture the output of the built-in thermal sensor during
FPGA reconfiguration.

The total test time can be divided into 4 parts: i) the initial heat-up time to the targeted
BIST temperature, ii) the BIST run-time, iii) the reconfiguration time after each Heat&Test
configuration and iv) the re-heating time to the targeted testing temperature again after the
temperature dropped during the previous reconfiguration. While the time to reconfigure
and to run the BIST is independent from the targeted temperature, the initial heat-up time
rises with the temperature. The re-heating time after each reconfiguration also rises with
the temperature but as the re-heating has to be done 18 times, its impact on the total test
time increases more considerably with increasing targeted BIST temperature. In Figure

144

9.7. Experimental Results

50°C

49°C

48°C

47°C

46°C

135°C

110°C

120°C

115°C

125°C

130°C

(a) (b)

Figure 9.18.: Thermal profile of the Virtex-5 FPGA: (a) the original BIST and (b) the mod-
ified BIST (with SHEs)

00:00 03:00 06:00 09:00 12:00 15:00 18:00

30

40

50

60

70

80

90

100

110

120

Time [mm:ss]

Te
m

p
er

at
u

re
 [

°C
]

test at 90°C

test at 100°C

test at 110°C

Figure 9.19.: Total test time depending on targeted BIST temperature

9.20 the re-heating time of the 17 configurations after the first configuration is shown at
different targeted BIST temperatures. Later configurations generally need less time to re-
heat, because the thermal capacity of the heat-sink is saturated. This can be seen more
clearly at higher temperatures.

Assuming the original BIST was programmed to the FPGA the same way over JTAG,
the overhead caused by merely adding the SHEs to the BIST can be compared. Even if the
heating time is ignored, the configuration time is 50% more, because now 18 configurations
are required for testing all the CLBs instead of 12 in the original BIST. Depending on the

145

Chapter 9. Self-Heating Thermal-Aware Testing of FPGAs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0

5

10

15

20

25

30

35

40

45

Configuration number

T
im

e
to

 r
e-

h
e

at

[s
]

110°C 100°C

90°C 80°C

Figure 9.20.: Time to re-heat after each reconfiguration depending on targeted BIST
temperature

targeted BIST temperature, the increase in the total test time may grow further. This is be-
cause the test application now is not executed right after the completion of reconfiguration
but just after the FPGA has reached the desired temperature. This increase is reported in
Table 9.1. It should be noted that for a fair comparison, the testing time should be com-
pared with that of a real heating chamber, which also needs time for heating up the FPGA.
Although the increase in testing time looks large, the advantages of this method over using
the external heating devices (e.g., the ability to apply the test to large number of FPGAs
simultaneously, the possibility for in-field testing by the user, the cost reduction, etc.) make
this method more feasible in many domains.

Table 9.1.: Increase in testing time caused by implementing the proposed SHEs alongside
the BIST in connection to the targeted BIST temperature

Target temperature Increase in testing time
Reconfiguration time alone 50%

80◦C 57%
90◦C 80%

100◦C 88%
110◦C 115%

146

9.7. Experimental Results

9.7.2. Self-heating application-dependent test

To compare the different self-heating integration methods for application-dependent test-
ing, discussed in section 9.6.2, a 16-bit FIR filter is used as a test case. The chosen FIR
filter has 128 taps that are concatenated to form the 128 stages of a digital 128th-order
discrete-time FIR filter.

To implement the FIR filter on the Virtex-5 FPGA, 5,888 LUTs and 2,048 FFs are
needed. The option that allows the ISE tool-chain to use DSP resources for faster sum-
mation and multiplication is turned off to allow a fair comparison between the different
integration methods. Another 917 LUTs and 23 FFs are used to implement a Linear Feed-
back Shift Register (LFSR). The LFSR acted as stimulus process for the FIR filter that feeds
the filter inputs with pseudo random data.

The FIR filter is placed in a constrained area in the middle of the chip. The achievable
clock speed that is still safe to run the filter correctly is between 144 MHz and 156 MHz.
When constrained to an area with significantly less than 11,400 free LUTs (i.e., a utilization
rate higher than 52%), the ISE tool-chain is no longer able to implement the FIR filter.

72 SHCs are added to heat up the application. Each SHC contains 20 SHEs and every
element consists of seven toggle LUTs and one control LUT plus a FF. A total of 1,440
SHEs are used that require 11,520 LUTs and 1,440 FFs to be implemented. The integration
methods discussed in section 9.6.2 are implemented and their respective impact on the
application performance is analyzed. Figure 9.21 shows the result of implementing the
ring placement method.

58ÁC

50ÁC

54ÁC

122°C

110°C

114°C

118°C

SHE areas

FIR filter
constrained

area

(a) (b)

Figure 9.21.: Thermal profiles: (a) FIR filter alone (b) FIR filter and active SHEs (ring
placement)

The initial thermal profile of the FIR filter alone executing at 150 MHz is shown in
Figure 9.21(a). There, the central area where the filter is placed is 56◦C, which is only

147

Chapter 9. Self-Heating Thermal-Aware Testing of FPGAs

slightly warmer than the rest of the chip. The absolute temperature deviation is below
2.3◦C. By using all SHCs with the maximum duty cycle, the area in which the application
was placed can be heated up to 120◦C. This can be seen in Figure 9.21(b). The center where
the FIR is located is heated in a rather homogeneous way, which is exactly as desired.
However, in some of the SHE areas there are hot spots. Therefore, an extra care has to be
taken to avoid overheating in some parts of the FPGA during any self-heating application-
dependent testing.

In order to have a fair comparison among all the integration methods, the delay overhead
of these methods has been compared at different utilization rates. This is because higher
utilization rates have a negative influence on the application performance, and this role
should be overridden in the comparison. To achieve that, the size of the constrained area,
where the FIR filter is mapped, is changed in such a way that different levels of utilization
rate for the mapped FIR filter on the constrained area are reached (between 25% and 52%,
see Figure 9.22). Then, in each case, the exact same number of resources as needed to
implement the SHEs in the ring placement is added to this constrained area. The utilization
rate is calculated based on the free resources left for the FIR filter in the constrained area
after subtracting the resources needed by the SHEs.

Virtex-5 Virtex-5 Virtex-5 Virtex-5

FIR

25% 35% 48% 52%

Constrained

Area

Figure 9.22.: Different sizes for the constrained area on Virtex-5 FPGA to achieve different
utilization rates for the mapped FIR filter into this area

Figure 9.23 shows the worst case delays for the different integration methods and Ta-
ble 9.2 shows the associated relative performance degradation. For each utilization rate the
scenario where the FIR filter alone is implemented is used as reference.

As anticipated, the maximum clock speed of the application drops slightly with increas-
ing the utilization rate, even without the self-heating circuitry. The impact of the ring
placement method on the FIR performance is the minimum among all the methods for
various utilization rates. This is obvious because of the separation of the SHEs and the
application as discussed previously in Section 9.6.

For the rows and columns placement methods, where the SHEs are constrained as fixed
rows or columns inside the application area, they result in the highest performance impact

148

9.7. Experimental Results

0.000

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

9.000

10.000

25.00% 35.00% 48.00% 52.00%

D
e

la
y

[n
s]

Utilization rate

FIR alone

FIR + SHEs (ring)

FIR + SHEs (stripping)

FIR + SHEs (columns)

FIR + SHEs (rows)

Figure 9.23.: Impact of different SHE integration method and utilization rates on the appli-
cation delay

Table 9.2.: Relative performance degradation of the FIR filter for different SHE integration
methods

Utilization rate SHE integration method
(Max frequency) Ring Stripping Columns Rows
25% at (156MHz) 3.00% 3.84% 23.10% 26.02%
35% at (151MHz) 3.54% 10.84% 25.38% 26.89%
48% at (146MHz) 1.76% 12.74% 25.36% 24.40%
52% at (144MHz) 1.30% 27.62% 36.95% 35.28%

among all these methods. Especially at utilization rate of 52% where the performance
drops considerably compared to the ring placement method.

For the stripping placement method, when the utilization rate is low, the performance
impact is acceptable. However, this impact is much less than the rows and the columns
placement methods. While this method is not the best in terms of performance overhead,
it allows the design to be placed and routed at much higher utilization rates (using this
method, it was possible to map the FIR filter at a utilization rate of up to 73%). This means
that in terms of area requirements, particularly when the utilization rate is very high, this is
the most efficient method.

149

Chapter 9. Self-Heating Thermal-Aware Testing of FPGAs

9.8. Summary

In this chapter, self-heating integration techniques for thermal-aware testing of FPGA de-
vices have been presented, in which the internal resources of FPGA are used to build
controlled SHEs. Thus, no external devices for heating up the FPGA are needed. Both
application-independent and application-specific thermal-aware BIST-based testing of FP-
GAs are presented. The techniques are applied on representative test cases. The exper-
imental results show that a wide range of maximum chip temperatures can be achieved
(from 50◦C up to 125◦C on Virtex-5 FPGA) with a high accuracy (± 1◦C).

150

Part III.

Mitigation

151

Chapter 10.

Aging Mitigation in LUTs

10.1. Introduction

As discussed in Chapter 2, LUTs form the basic reconfigurable blocks for mapping and im-
plementing logic circuits in FPGAs. Due to this important role, it is very necessary to keep
the aging rates of the LUTs as low as possible. In Chapter 3, the impact of BTI on differ-
ent implementations of 2-input and 4-input LUTs was studied. The analysis revealed that
BTI-induced aging on LUTs has a direct relationship with: 1) actual LUT configuration, 2)
the configuration history of the LUT, 3) input signal probabilities, and 4) the architecture
of the LUT. Based on that study, changing the LUT configuration and/or its input signal
probabilities can change the degradation rate significantly.

In this chapter, it is made use of these results to propose a method for mitigating BTI-
induced aging in partially and fully used LUTs. The main idea is to alter LUT inputs
and LUT configuration to select the configuration with the minimum aging effect while
preserving the logic functionality of FPGA-mapped circuit. The proposed method has
been implemented and validated using the academic tool VTR [110]. The results show that
for different benchmark circuits with different sizes and functionality, the proposed method
can mitigate BTI aging effect by about 20% on average (translated to 2X improvement in
lifetime of FPGA-mapped designs).

The rest of the chapter is structured as follows: Section 10.2 reviews the related work.
Section 10.3 gives the motivation for this chapter. Then, Section 10.4 presents the proposed
methods for mitigating the aging of LUTs. Afterward, Section 10.5 details the implementa-
tion flow. Later, Section 10.6 presents the observations and the results of the study. Finally,
Section 10.7 concludes the chapter.

10.2. Related Work

There exists few related work for degradation mitigation in LUTs. The authors in [111]
proposed inverting the configuration bits of LUTs on a periodic base to relax the transistors
and mitigate the NBTI effect. This technique however, requires additional overhead due to
the need for reconfiguration and rerouting. The authors in [53] proposed exploiting unused
and partially used LUTs to replace the worn-out LUTs. This can be applied only to a
certain set of the LUTs that have such unused and partially used LUTs in the same cluster
where they exist.

153

Chapter 10. Aging Mitigation in LUTs

10.3. Motivation

In Chapter 3, an investigation is made for BTI-induced aging on three different 2-input
and 4-input LUT architectures. These are: PT-based, TG-based and LG-based structures.
Table 10.1 shows an example of the results obtained for the TG-based LUT.

Table 10.1.: Normalized BTI-induced ∆delays for 4-input LUT with TG structure
LUT Input Normalized

LUT Signal Probabilities ∆Delays
Config. A B C D NBTI PBTI BTI

0000 0 0 0 0 8.01% 7.19% 10.50%
0000 0 0 0 0.1 7.97% 7.19% 10.46%

...
0000 1 1 1 1 7.98% 7.17% 10.48%
0001 0 0 0 0 3.60% 3.17% 5.68%

...
FFFF 1 1 1 0.9 4.45% 6.47% 6.10%
FFFF 1 1 1 1 4.46% 6.49% 6.12%

The strong dependency of LUT delay degradation on the mapped configuration as well as
input signal probabilities motivates the idea of the work in this chapter. If one can change
the configuration of each LUT in the circuit to another configuration that has minimum
aging effect, while preserving the logic functionality of each LUT, aging of the whole
circuit will be mitigated. This idea is described in details in the next section.

10.4. Methodology

According to the observations of Chapter 3, LUTs with different configurations and differ-
ent input signal probabilities have different aging-induced delay degradation. The objec-
tive here is to transform a LUT configuration from one pattern to another, to mitigate aging
without affecting the logic function that it implements. In order to do so, two methods are
proposed that are described next:

10.4.1. Method 1: Manipulating partially-used LUTs

In FPGAs, not all mapped logic functions can fully utilize LUTs. This is because some
functions need fewer inputs to be implemented. Therefore, there are some LUTs which
are partially used. An LUT that has unused inputs will naturally contain don’t-care con-
figuration bits. The idea here is to change the signal probabilities of any unused LUT
input (i.e. in partially used LUT) and also to alter the don’t-care bits in it to obtain better

154

10.4. Methodology

aging-induced delay degradation for that LUT. The methodology to change an LUT con-
figuration bit-pattern using “Method 1” (unused inputs and don’t care bits manipulation) is
illustrated in Figure 10.1 and 10.2. In both figures, the scenario chosen is a 4-input LUT
with 2 unused inputs. While Figure 10.1 only clarifies the availability of the don’t-care bits
(denoted by X) that can be exploited for the given scenario in the configuration bitstream,
Figure 10.2 illustrates how the signal probabilities of the unused inputs (denoted by Y) and
the don’t care bits together can be manipulated iteratively to generate a wide range of new
LUT configurations.

In Figure 10.1, it is assumed that both unused inputs (C and D) are connected to logic 0
and the default LUT configuration for this scenario is “XXXX XXXX XXXX 1000”. As
shown in this figure, there are 212 = 4096 different possible configurations supporting the
same logic functionality, but each of them has a different post-aging∗ delay as described in
Section 10.3. Among the wide range of possibilities available, the LUT configuration with
the best post-aging delay is picked as the replacement configuration. There is a possibility
to also exploit the effect of input signal probabilities in the optimization of delay degra-
dation. By connecting an unused input permanently to logic 0 (Gnd) or logic 1 (Vdd), its
signal probability is set to 0.0 and 1.0, respectively. This provides a wider search space for
optimization, as shown in Figure 10.2. This will increase the search space to about 4∗212

different combinations. It should be noted that, the new LUT configuration still supports
the same logic functionality as the original LUT configuration. Therefore, the functionality
of the design does not change by using this method. The only restriction of this method is
that it requires partially-utilized LUTs. Thus, “Method 1” cannot be applied on fully used
LUTs to mitigate aging effect.

4 Input
LUT

A
B
C
D

1

2
Y
Y

Out Logic
 0

 Actual Bit Pattern
XXXX XXXX XXXX 1000

0000 0000 0000 1000 => Delay X
0

1111 1111 1111 1000 => Delay X

4095

Best post-aging
delay chosen

B A Out
1 1 1
else 0

Truth Table

Figure 10.1.: Manipulating LUT configuration based on the available don’t-care bits

∗“Post-aging” delay refers to LUT delay after 3 years, from start of operation.

155

Chapter 10. Aging Mitigation in LUTs

4 Input
LUT

A
B
C
D

1

2
Y
Y

Out Logic
 0 or 1

 Actual Bit Pattern
XXXX XXXX XXXX 1000

B A Out
1 1 1
else 0

Truth Table

LUT Bit Pattern Don't care Manipulation

0 0

0 1

1 0

1 1

Port D
Signal
Logic

Port C
Signal
Logic

XXXX XXXX XXXX 1000
 0000 0000 0000 1000

 to
1111 1111 1111 1000

XXXX XXXX 1000 XXXX
 0000 0000 1000 0000

 to
1111 1111 1000 1111

XXXX 1000 XXXX XXXX
 0000 1000 0000 0000
 to

 1111 1000 1111 1111

1000 XXXX XXXX XXXX
 1000 0000 0000 0000
 to

 1000 1111 1111 1111

Figure 10.2.: Manipulating LUT configuration based on the signal probability of the un-
used inputs and the corresponding don’t-care bits

10.4.2. Method 2: Swapping LUT inputs

In this method the LUT inputs are swapped, mapped to different ports and accordingly the
configuration of the LUT is changed to obtain same functionality but with better post-aging
delay. This is illustrated in Figure 10.3 with an example scenario. The scenario shows how
the original LUT configuration bit-pattern of “1000 1000 1000 0000” can be transformed
to “1110 0000 0000 0000” by just connecting the LUT inputs to different ports. Unlike
“Method 1”, “Method 2” can be applied to both fully and partially used LUTs. The num-
ber of alternate LUT configuration bit-patterns that can be generated depends on the exact
scenario at hand. For example, if a 4-input LUT is partially used with just one utilized
input port, then there are only 4 ways to connect that input to the various LUT ports, and
thus only 4 configuration bit-patterns can be generated (this of course if “Method 1” is not
considered). However, for a 4 input fully utilized LUT, the total number of alternate con-
figuration bit-patterns that can be generated is 4! = 24. As in “Method 1”, the configuration
bit-pattern that yields the best post-aging delay is chosen as the replacement one.

156

10.4. Methodology

4 Input
LUT

 Inputs swapping

 New Bit Pattern
1110 0000 0000 0000

 Actual Bit Pattern
 1000 1000 1000 0000

Port
LUT Configuration

D C B A

4 3 2 1 1000 1000 1000 0000

2 1 4 3 1110 0000 0000 0000

4 2 3 1 1010 0000 1000 0000

…...

1 2 3 4 1110 0000 0000 0000

 Best
post-aging
 delay
 chosen

 Truth Table
A
B
C
D

1

2
3
4

Out

D C B A Out
0 1 1 1 1
1 0 1 1 1
1 1 1 1 1

else 0

4 Input
LUT

A
B
C
D

3

4
1
2

Out

Figure 10.3.: LUT configuration manipulation by swapping LUT inputs

10.4.3. Application strategies

It should be noted that swapping the LUT inputs (Method 2) involves changes to routing,
albeit mostly intra-cluster routing. In this chapter, it is presumed that this routing change
will be supported by the cluster cross-bar configurations, with almost no impact on routing
delay. In short, while employing “Method 2”, this chapter presumes that the cost of local
routing changes is negligible in architectures which employ full cluster cross-bars, which
can easily connect a cluster input to any given LUT port. Nevertheless, keeping the local
routing changes as a major constraint, this chapter classifies the application of the proposed
two methods into the following strategies:

1. Routing intact (Snoroute): using “Method 1” alone without any local routing changes,
then estimating the benefits obtained with aging mitigation.

2. Re-routing (Sreroute): using the combination of “Method 1” and “Method 2” to in-

157

Chapter 10. Aging Mitigation in LUTs

crease the search space and come up with alternate LUT patterns, which may poten-
tially yield better aging mitigation, but however requires local routing changes.

10.5. Implementation Flow

In order to implement the proposed methods of Section 10.4, it is necessary to perform
data mining on the results obtained in Chapter 3. These results are the delay degradation
values for different LUT configurations and input signal probabilities (Table 10.1) for each
of the three LUT transistor-level implementations (PT, TG & LG). The data mining is nec-
essary for search space exploration of the proposed methods in order to make the searching
for the best aging-aware configuration in each LUT a fast, static and one-time process.
For more details about the data mining performed in this regard, the reader is referred
to [112]. In addition to that, some modifications to the VTR tool are also necessary to in-
clude aging-mitigation as part of the flow, and also to make it aware of configuration-based
delay calculation for LUTs.

The original VTR tool takes as inputs, in addition to the HDL circuit, a device architec-
ture file that contains information about the FPGA components and their delays [110]. The
device architecture file adopted by this chapter is provided by the VTR tool and is based
on a Stratix c© IV FPGA. Since only 4-input LUTs are targeted, the device architecture file
is modified accordingly to use only this kind of LUTs, and the delays are modified accord-
ing to the measurements of Chapter 3. Furthermore, to add optimization for aging as a
part of the VTR flow and make VTR aware of the proposed strategies in Section 10.4, the
following modifications are applied:

1. Making VTR able to display the complete configuration patterns for each LUT at the
final output of the flow: The VTR tool, by default, is only capable of displaying the
truth table for each LUT and does not have the provision to display LUT configuration
bit patterns. The VTR tool is therefore modified to include configuration bits as part
of each LUT and highlight the effects of configuration changes on individual LUTs by
the proposed aging mitigation strategies. For the sake of simplicity, the VTR tool is
considered to connect the LUT input signals to the LUT ports in the sequential order
(i.e, signal 1 connected to LUT port 1, signal 2 connected to LUT port 2, etc.,) and the
configuration bitstream is generated accordingly. Using this order, the data mining
tool employs a signal probability of ”0” or ”1” for the unused inputs as discussed in
section 10.4.

2. Picking the post-aging delays for the LUTs according to their configurations from
the hashing tables generated by the data mining tool: Based on each LUT original
configuration value, the best post-aging delay and the corresponding new LUT con-
figuration value can be picked up from the respective hashing tables according to the
LUTs architecture (PT, TG and LG), aging phenomenon (BTI and NBTI) and the
mitigation strategies. Therefore, with this modification, the VTR tool is designed
to generate circuit paths with pre-aging† and post-aging delays and thus enable the

†‘Pre-aging” delay refers to fresh LUT delay at the start of operation.

158

10.6. Experimental Results

comparison between them. This helps to analyze the impact of BTI-induced aging on
the circuit paths and also the effects of aging mitigation offered by the two strategies
proposed in this chapter.

3. Adding a timing report utility to report all critical and near critical paths in the circuit
based on the post-aging delays: In this implementation, using the default critical path
report generated by the VTR as the baseline, four additional critical path reports
are generated by substituting 1) the pre-aging delays, 2) the unmitigated post-aging
delays, 3) the post-aging delays based on Snoroute, and 4) the post-aging delays based
on Sreroute, respectively. This is done for the purpose of comparing the critical paths
before and after aging.

With these modifications, we have the ability to choose which aging optimization strat-
egy to apply on all available LUTs in the design, and also to compare the efficiency of
different strategies against the original case (with no aging optimization) for the overall
circuit delay using an aging aware (i.e. pre-aging and post-aging) static timing analysis.

10.6. Experimental Results

Various standard VTR benchmark circuits are tested using the modified VTR tool (Sec-
tion 10.5). Three different post-aging delays are captured for the critical path in each
circuit: 1) without using any aging mitigation strategy (DDe f ault), 2) using Snoroute strategy
(Dnoroute) and 3) using Sreroute strategy (Dreroute). For each strategy, both NBTI-induced
post-aging delay (to account for older devices without high-κ/metal gate materials), and
BTI (NBTI + PBTI)-induced post-aging delay (to account for the newer devices) are con-
sidered.

The critical path delay of a circuit includes both the LUT delays and the routing delays.
Since the proposed strategies target only LUTs, the effect of aging on routing resources
is not considered in this work. Nevertheless, based on the results of Chapter 4, aging of
routing resources is affected by their input signal probabilities. Since the functionality of
LUTs and accordingly the signal probabilities of the internal nodes are not affected by
using the proposed strategies, we believe that applying the proposed method will not affect
aging of the routing resources.

The experiments on the benchmark circuits are repeated for the three LUT architectures.
However, for the sake of clarity and brevity, the detailed results are presented only for TG-
based LUTs. For the PT and LG-based LUTs only average values are presented. Table 10.2
reports the TG-based critical-path normalized ∆delay for each benchmark circuit, taking
into consideration, aging phenomena and the strategies used.

It should be noted that the calculation of input signal probabilities of used LUT inputs
is not possible using VTR, because VTR currently does not have a provision to generate a
post-place-and-route simulation model. Therefore, the worst case post-aging delays among
all possible signal probabilities of used inputs for each LUT configuration are considered.
This is of course very pessimistic; however, it still shows that the proposed strategies can
successfully mitigate BTI-induced aging. Whenever the workload details and the post-
place-and-route simulation capability are made available for the VTR utility, the precise

159

C
hapter10.

A
ging

M
itigation

in
L

U
T

s

Table 10.2.: Worst-case normalized post-aging ∆delay for the critical paths in TG-based LUTs using different optimization strategies.

Circuits
Size LUTs in ∆DDefault (%) ∆Dnoroute (%) ∆Dreroute (%)
in Critical No mitigation Snoroute strategy Sreroute strategy

LUTs Path NBTI BTI NBTI BTI NBTI BTI
ch intrinsic 646 6 6.13 9.16 5.82 8.91 4.64 7.49

ode 10187 77 5.75 8.94 5.54 8.75 4.64 7.77
fir 16341 72 5.69 8.94 5.46 8.72 4.55 7.64

mm2 11767 74 5.67 8.91 5.44 8.70 4.55 7.64
bfly 17080 74 5.76 8.96 5.54 8.77 4.65 7.73
bgm 44216 66 5.69 8.94 5.51 8.79 4.67 7.85

or1200 4289 67 5.90 8.72 5.24 8.37 3.38 5.90
LU8PEEng 34280 397 6.02 9.01 5.41 8.50 3.90 6.47
s-vision0 16155 11 5.93 9.09 5.67 8.94 4.68 7.73
s-vision1 15262 15 6.39 9.20 5.54 8.47 3.70 5.89
s-vision3 328 8 6.00 9.14 5.86 9.02 4.68 7.97

Average 5.90 9.00 5.55 8.72 4.37 7.28
Average in case of PT-based LUTs 4.80 28.00 4.77 26.95 3.00 21.59
Average in case of LG-based LUTs 4.45 7.92 3.84 7.01 3.13 5.89

160

10.6. Experimental Results

signal probabilities can be then used directly and exact post-aging delays can be considered
instead of the worst case ones.

As it can be observed from the results in Table 10.2, the strategy Sreroute offers better
aging mitigation than Snoroute. This is because Sreroute works on a larger search space and
also considers both fully- and partially-used LUTs for aging mitigation as discussed in
Section 10.4. The improvements that strategy Sreroute can offer over Snoroute for different
benchmark circuits in TG-based architecture is shown in Figure 10.4 and 10.5 for NBTI and
BTI-induced aging, respectively. The average BTI-induced aging mitigation using Sreroute
is about 20%.

0

5

10

15

20

25

30

35

40

45

A
gi

n
g

m
it

ig
at

io
n

 %

Circuits

 Snoroute

 Sreroute

Figure 10.4.: NBTI aging mitigation for TG LUTs - Worst case delay

The degradation caused by BTI-induced aging has an obvious effect on the lifetime of
the circuit. Different degradation rates can lead to different operational lifetime of the
circuit. Even a small difference in the degradation rates can yield significant lifetime en-
hancements. Therefore, when the strategies for aging mitigation described in this chapter
are translated into lifetime enhancements, a significant improvement to circuit lifetime is
achieved. Table 10.3 reports the improvements in lifetime for each of the benchmark cir-
cuits using the two strategies. The average lifetime enhancement is about 200% using
Sreroute for BTI.

161

Chapter 10. Aging Mitigation in LUTs

0

5

10

15

20

25

30

35

40
A

gi
n

g
m

it
ig

at
io

n
 %

Circuits

 Snoroute

 Sreroute

Figure 10.5.: BTI aging mitigation for TG LUTs - Worst case delay

Table 10.3.: Lifetime improvement

Circuits Snoroute (%) Sreroute (%)
NBTI BTI NBTI BTI

ch intrinsic 37.69 17.80 433.01 234.59
ode 24.24 13.72 262.01 131.42
fir 28.66 15.87 281.46 156.48

mm2 28.42 15.88 275.56 152.27
bfly 26.27 13.80 260.05 142.28
bgm 21.39 11.14 226.63 119.52

or1200 103.80 28.15 2722.79 942.89
LU8PEEng 90.73 41.81 1243.28 632.23
s-vision0 30.80 10.07 310.98 165.07
s-vision1 136.17 64.35 2556.22 1360.38
s-vision3 15.36 8.42 347.97 127.89
Average 45.25 20.85 509.23 257.79

Average for PT-based 4.59 25.65 1498.23 278.49
Average for LG-based 142.60 108.01 239.61 184.29

162

10.7. Summary

10.7. Summary

In this chapter, two novel strategies to mitigate BTI-induced aging in LUTs have been
proposed and implemented. The proposed mitigation strategies have been implemented by
manipulating the LUT configuration bits and input signal probabilities, while preserving
the intended mapped logic functionality. Implementation is carried out by devising a new
data mining tool and also by using the modified version of the VTR tool. The results
presented in this chapter confirmed that there is a significant improvement on BTI-induced
aging degradation based on the proposed strategies. The main conclusions of this chapter
can be summarized as follows.

• Altering LUT configuration and input signal probabilities can significantly mitigate
BTI-induced aging in FPGAs.

• The mitigation strategies proposed in this chapter are feasible and can be imple-
mented without significant run-time overheads.

• The proposed strategies improve the lifetime of the FPGA-mapped designs, on aver-
age, by more than 200%.

163

Chapter 11.

Conclusions and Outlook

Transistor aging, as a main cause for the degradation in FPGAs, is one of the most impor-
tant reliability challenges at nano-scale CMOS. Since FPGAs are used in many domains
including very critical applications, it is extremely important to account for transistor ag-
ing through all design stages. Thus, appropriate mitigation and countermeasures have to be
implemented at all levels of the design from system-level down to transistor-level. In this
dissertation, investigation, modeling, monitoring and mitigation techniques are proposed
to understand and deal with the aging of FPGAs at different abstraction levels.

11.1. Conclusions

In the first part of this dissertation (the investigation and modeling part), the BTI-induced
aging effects on the basic building blocks of the FPGA (LUTs and switch matrices) are
investigated in the means of simulation using transistor-level models. The results of in-
vestigating the aging of LUTs show that the LUT structure, the current configuration, the
previously run configuration, and the inputs signal probabilities are parameters that have
considerable effect on the NBTI and PBTI induced aging of LUTs, and all of them must
be considered for accurate delay degradation analysis. It is also shown that the PT-based
structure (the one with least area overhead) is the worst choice for high-κ/metal gates tech-
nologies. Furthermore, it is shown that the best configuration for the unused LUTs depends
on the runtime configuration and the LUT-structure.

The results of investigating the aging of switch matrices revealed several knobs that can
be used by the FPGA manufacturers and designers to mitigate the aging. The first knob is
about the number of cascaded switches against the length of the connecting wires, where
it is shown that less number of cascaded switches with longer wires have less aging effect
than larger number of cascaded switches with shorter wires. The second knob is about the
fan-out of the TS-buffer structure, where activating a higher fan-out leads to less aging. The
third knob is about the supply voltage, where using higher Vdd for both the PT-keeper and
TS-buffer structures leads to less aging. It is also shown that the structures based on NMOS
transistor are the best for technologies susceptible to only NBTI, while the transmission
gate based structure is the best when both NBTI and PBTI are important.

The aforementioned investigations are followed by an experimental analysis for the ag-
ing effect in FPGAs from a system-level point-of-view. This analysis reveals as well several
important facts about the aging. It shows the extent of the aging-induced degradation in
FPGA for the tested technology and the role of usage (input signal probabilities and switch-
ing activities) in this degradation. It also shows that there is no correlation between how
the process variation affects the initial delay and how it affects the aged one. Furthermore,

165

Chapter 11. Conclusions and Outlook

it shows that the unused FPGA resources age significantly as well, in some cases more than
some used/active blocks.

As temperature has an exponential relation with the aging effects, it was also necessary
in this part to accurately estimate the thermal-profile of FPGA-mapped designs to allow for
more accurate aging estimation. Therefore, a method for properly distributing the leakage
power across the FPGA chip is presented. This method is based on a temperature-leakage
loop estimation model for distributing the leakage power. It is shown that the presented
approach can achieve accurate thermal-profile estimation, with average absolute estimation
error of around 1◦C across the FPGA chip.

All of the previous knowledge is then gathered to propose an aging estimation and pre-
diction tool, which can estimate/predict the amount of aging-induced degradation for de-
signs mapped to FPGA devices. The tool is based on RTL abstractions for both BTI and
HCI device-level models, and extracts the necessary information from the implicit data
existed in the power and timing reports provided from the FPGA’s vendor tools. The pro-
posed tool enables exploring the influence of different designs and mapping options on the
amount of aging.

In the second part of this dissertation (the monitoring part), a low-cost logic-level aging
sensor with very low area, performance and power overhead for FPGA-mapped designs is
presented. The sensor can be controlled to be warning or late-transitions detector that not
only detects transistor aging, but can also detect erroneous glitches due to intermittent and
transient faults. Furthermore, a sensor placement methodology is presented to achieve a
highly reliable aging monitoring.

In the second part as well, and for quickly test for thermally-activated faults in FPGAs,
self-heating integration techniques for thermal-aware testing of FPGA devices is presented.
These techniques eliminate the need for external devices for heating up the FPGA. Two
different categories of these techniques are presented to fit different testing purposes; for
BIST, and application-dependent testing.

In the third part of this dissertation (the mitigation part), two novel strategies to miti-
gate BTI-induced aging in LUTs are proposed. These strategies are based on the relation
between the LUT configuration and the amount of BTI-induced degradation. The results
of applying these strategies show that a significant improvement on BTI-induced aging
degradation can be achieved by just altering the LUT configurations.

11.2. Outlook

As the main focus in this dissertation is on degradation in FPGAs, the degradation effects
due to TDDB mechanism can be investigated in the future and modeled. Also, aside from
the transistor-aging mechanisms, the degradation of the interconnects (i.e., the interconnect
aging) due to EM and SM can be also targeted in any future work.

The high-level aging estimation methodology presented in Chapter 7 can be used in the
placement and routing algorithms of FPGAs. In which a third optimization function can be
proposed (i.e., in addition to the two existing optimization functions that can optimize for
either the speed or the area) to optimize for aging reliability. Thus, aging-aware placement
and routing of the FPGA-mapped design can be achieved.

166

11.2. Outlook

Using the main conclusions of this dissertation, especially those related to the basic
building blocks (LUTs and switch matrices), it is also possible to build an aging-aware
FPGA chip, in which the FPGA building blocks are designed with aging effects in mind
from the transistor-level up to the whole FPGA. Such aging-awareness should be straight
forward to implement if the low-level details of the FPGA are available.

167

List of abbreviations

AR Switching Activity Rate of the transistor

Dit or Nit Interface Trap

LT Lifetime Extension

SA(s) Switching Activity(ies)

VD Drain voltage

VG Gate voltage

VS Source voltage

VDD Positive supply voltage in Field-Effect Transistor (FET) technology

Vgs Gate-Source Voltage

Vth Threshold Voltage

AC Alternating Current

ASIC(s) Application Specific Integrated Circuit(s)

BIST Built-In Self-Test

BLE(s) Basic Logic Element(s)

BTI Bias Temperature Instability

CHE Channel Hot Electron

CLB(s) Configurable Logic Block(s)

CMOS Complementary Metal-Oxide-Semiconductor

DAHC Drain Avalanche Hot Carrier

DC Direct Current

DCM(s) Digital Clock Manager(s)

DSP(s) Digital Signal Processor(s)

EM Electro-Migration

169

List of abbreviations

FF(s) flip-flop(s)

FIR Finite Impulse Response

FPGA(s) Field Programmable Gate Array(s)

H Hydrogen

HCE Hot Carrier Effect

HCI Hot Carrier Injection

HM Hard Macro

I/O Input/Output

IC(s) Integrated Circuit(s)

IP(s) Intellectual Property(ies)

LFSR Linear Feedback Shift Register

LG Logic Gate

LUT(s) Look-Up Table(s)

MMCM Mixed-Mode Clock Managers

MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor

MTTF Mean-Time-To-Failure

MUX Multiplexer

NBTI Negative Bias Temperature Instability

NCS Number of Cascaded Switches

NMOS N-type Metal-Oxide-Semiconductor

ODDR Double-Data Rate Output Register

PBTI Positive Bias Temperature Instability

PCI Peripheral Component Interconnect

PIP(s) Programmable Interconnect Point(s)

PLD(s) Programmable Logic Device(s)

PLL phase-locked loop

170

List of abbreviations

PMOS P-type Metal-Oxide-Semiconductor

PT Pass Transistor

PT-keeper Pass Transistor with keeper

PTM Predictive Technology Model

PUF(s) Physical Unclonable Function(s)

PV Process Variation

RAM Random Access Memory

RD Reaction-Diffusion theory

RO(s) Ring Oscillator(s)

SGHE Secondary Generated Hot Electron

SHC(s) Self-Heating Chain(s)

SHE(s) Self-Heating Element(s)

SHEl Substrate Hot Electron

Si Silicon

SiO2 Silicon Dioxide

SM Stress Migration

SP(s) Signal Probability(-ies)

SRAM Static Random Access Memory

TD Charge Trapping/Detrapping theory

TDDB Time-Dependent Dielectric Breakdown

TG Transmission Gate

TP(s) Transition Probability(ies)

TS-buffer Tri-State buffer

TTF Time-To-Failure

VLSI Very Large Scale Integration

WL Wire Length

XDL Xilinx Design Language

171

Bibliography

[1] Mike Santarini. Xilinx Ships Industrys First 20-nm All Programmable Devices.
Xcell journal, 86:8–15, 2014.

[2] Nick Mehta. Xilinx UltraScale Architecture for High-Performance, Smarter Sys-
tems. Xilinx White Paper WP434, December 2013.

[3] Altera. Meeting the Performance and Power Imperative of the Zettabyte Era with
Generation 10. Altera White Paper WP-01200, June 2013.

[4] Steve Leibson and Nick Mehta. Xilinx UltraScale: The Next-Generation Architec-
ture for Your Next-Generation Architecture. Xilinx White Paper WP435, July 2013.

[5] Altera. The Breakthrough Advantage for FPGAs with Tri-Gate Technology. Altera
White Paper WP-01201, June 2013.

[6] Jean-Marc Yannou. Xilinx’s 3d (or 2.5 d) packaging enables the world’s highest
capacity FPGA device, and one of the most powerful processors on the market. 3D
Packaging, November 2011.

[7] Virtex Ultrascale: Delivering ASIC-Class Advantages, http://www.xilinx.com.

[8] Stratix 10 FPGAs and SoCs: Delivering the Unimaginable, http://www.altera.com.

[9] FPGA applications, http://www.xilinx.com/applications/.

[10] Shekhar Borkar. Tackling variability and reliability challenges. IEEE Design and
Test of Computers, 23:520, 2006.

[11] Joseph W McPherson. Reliability challenges for 45nm and beyond. In Proceedings
of the 43rd annual Design Automation Conference, pages 176–181. ACM, 2006.

[12] Sang Phill Park, Kunhyuk Kang, and Kaushik Roy. Reliability implications of bias-
temperature instability in digital ics. IEEE Des. Test, 26(6):8–17, 2009.

[13] Tanya Nigam, Kok-Yong Yiang, and Amit Marathe. Moore’s Law: Technology
Scaling and Reliability Challenges. Microelectronics to Nanoelectronics: Materials,
Devices & Manufacturability, page 1, 2012.

[14] Alvin W Strong, Ernest Y Wu, Rolf-Peter Vollertsen, Jordi Sune, Giuseppe La Rosa,
Timothy D Sullivan, and Stewart E Rauch III. Reliability wearout mechanisms in
advanced CMOS technologies, volume 12. John Wiley & Sons, 2009.

173

Bibliography

[15] Wenping Wang, Shengqi Yang, S. Bhardwaj, S. Vrudhula, F. Liu, and Yu Cao. The
Impact of NBTI Effect on Combinational Circuit: Modeling, Simulation, and Anal-
ysis. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, 18(2):173
–183, feb. 2010.

[16] S. Zafar, YH Kim, V. Narayanan, C. Cabral, V. Paruchuri, B. Doris, J. Stathis, A. Cal-
legari, and M. Chudzik. A comparative study of NBTI and PBTI (charge trapping)
in SiO2/HfO2 stacks with FUSI, TiN, Re gates. In VLSI Technology, Symposium on,
pages 23–25. IEEE, 2006.

[17] A. Tiwari and J. Torrellas. Facelift: Hiding and slowing down aging in multicores. In
Microarchitecture, International Symposium on, pages 129 –140. IEEE/ACM, 2008.

[18] A. Bravaix, C. Guerin, V. Huard, D. Roy, JM Roux, and E. Vincent. Hot-carrier ac-
celeration factors for low power management in DC-AC stressed 40nm nMOS node
at high temperature. In Reliability Physics Symposium, 2009 IEEE International,
pages 531–548. IEEE, 2009.

[19] T Nigam, A Kerber, and P Peumans. Accurate model for time-dependent dielectric
breakdown of high-k metal gate stacks. In Reliability Physics Symposium, 2009
IEEE International, pages 523–530. IEEE, 2009.

[20] Ayse Kivilcim Coskun, Tajana Simunic Rosing, and Kenny C Gross. Proactive tem-
perature management in MPSoCs. In Proceedings of the 13th international sympo-
sium on Low power electronics and design, pages 165–170. ACM, 2008.

[21] Shekhar Borkar. Designing reliable systems from unreliable components: the chal-
lenges of transistor variability and degradation. Micro, IEEE, 25(6):10–16, 2005.

[22] Transparency Market Research. Field-Programmable Gate Array (FPGA) Market -
Global Industry Analysis, Size, Share, Growth, Trends and Forecast, 2013 - 2019.
Technical report, RESEARCH AND MARKETS, October 2013.

[23] Vaughn Betz, Jonathan Rose, and Alexander Marquardt. Architecture and CAD for
deep-submicron FPGAs. Kluwer Academic Publishers, 1999.

[24] Deming Chen, Jason Cong, and Peichen Pan. FPGA design automation: A survey.
Foundations and Trends R© in Electronic Design Automation, 1(3):139–169, 2006.

[25] S. Bhardwaj, W. Wang, R. Vattikonda, Y. Cao, and S. Vrudhula. Predictive modeling
of the NBTI effect for reliable design. In Custom Integrated Circuits Conference,
2006. CICC’06. IEEE, pages 189–192. IEEE, 2006.

[26] Dieter K Schroder. Negative bias temperature instability: What do we understand?
Microelectronics Reliability, 47(6):841–852, 2007.

174

Bibliography

[27] Tibor Grasser, Ben Kaczer, Wolfgang Goes, Hans Reisinger, Thomas Aichinger,
Philipp Hehenberger, P-J Wagner, Franz Schanovsky, Jacopo Franco, M Toledano
Luque, et al. The paradigm shift in understanding the bias temperature instability:
from reaction–diffusion to switching oxide traps. Electron Devices, IEEE Transac-
tions on, 58(11):3652–3666, 2011.

[28] S. Mahapatra, N. Goel, S. Desai, S. Gupta, B. Jose, S. Mukhopadhyay, K. Joshi,
A. Jain, A.E. Islam, and M.A. Alam. A Comparative Study of Different Physics-
Based NBTI Models. Electron Devices, IEEE Transactions on, 60(3):901–916,
March 2013.

[29] J.J. Kim, R. Rao, S. Mukhopadhyay, and C.T. Chuang. Ring oscillator circuit struc-
tures for measurement of isolated NBTI/PBTI effects. In Integrated Circuit Design
and Technology and Tutorial, International Conference on, pages 163–166. IEEE,
2008.

[30] JH Stathis, M. Wang, and K. Zhao. Reliability of advanced high-k/metal-gate n-FET
devices. Microelectronics Reliability, 50(9):1199–1202, 2010.

[31] James H Stathis and Sufi Zafar. The negative bias temperature instability in MOS
devices: A review. Microelectronics Reliability, 46(2):270–286, 2006.

[32] Tibor Grasser and Ben Kaczer. Evidence that two tightly coupled mechanisms are
responsible for negative bias temperature instability in oxynitride MOSFETs. Elec-
tron Devices, IEEE Transactions on, 56(5):1056–1062, 2009.

[33] Muhammad Ashraful Alam and S Mahapatra. A comprehensive model of PMOS
NBTI degradation. Microelectronics Reliability, 45(1):71–81, 2005.

[34] Muhammad Ashraful Alam, Haldun Kufluoglu, D Varghese, and S Mahapatra. A
comprehensive model for PMOS NBTI degradation: Recent progress. Microelec-
tronics Reliability, 47(6):853–862, 2007.

[35] Daniele Ielmini, Mariaflavia Manigrasso, Francesco Gattel, and Grazia Valentini.
A unified model for permanent and recoverable nbti based on hole trapping and
structure relaxation. In Reliability Physics Symposium, 2009 IEEE International,
pages 26–32. IEEE, 2009.

[36] DS Ang, CJ Gu, ZY Tung, AA Boo, and Y Gao. Evolution of oxide charge trapping
under bias temperature stressing. Microelectronics Reliability, 54(4):663–681, 2014.

[37] Takayasu Sakurai and A Richard Newton. Alpha-power law MOSFET model and its
applications to CMOS inverter delay and other formulas. Solid-State Circuits, IEEE
Journal of, 25(2):584–594, 1990.

[38] Hong Luo, Yu Wang, Ku He, Rong Luo, Huazhong Yang, and Yuan Xie. Model-
ing of PMOS NBTI effect considering temperature variation. In Quality Electronic

175

Bibliography

Design, 2007. ISQED’07. 8th International Symposium on, pages 139–144. IEEE,
2007.

[39] M. Noda, S. Kajihara, Y. Sato, K. Miyase, X. Wen, and Y. Miura. On estimation
of NBTI-Induced delay degradation. In Test Symposium (ETS), 2010 15th IEEE
European, pages 107 –111, May 2010.

[40] Shyh-Chyi Yang, Hao-I Yang, Ching-Te Chuang, and Wei Hwang. Timing control
degradation and NBTI/PBTI tolerant design for Write-replica circuit in nanoscale
CMOS SRAM. In VLSI Design, Automation and Test, 2009. VLSI-DAT ’09. Inter-
national Symposium on, pages 162 –165, april 2009.

[41] Sanjay V. Kumar, Chris H. Kim, and Sachin S. Sapatnekar. Adaptive techniques for
overcoming performance degradation due to aging in digital circuits. In Proceedings
of the 2009 Asia and South Pacific Design Automation Conference, ASP-DAC ’09,
pages 284–289, Piscataway, NJ, USA, 2009. IEEE Press.

[42] Eiji Takeda, Cary Y-W Yang, and Akemi Miura-Hamada. Hot-carrier effects in MOS
devices. Academic Press, 1995.

[43] Renesas. Semiconductor Reliability Handbook. Renesas Electronics Corporation,
2008.

[44] Paolo Magnone, Felice Crupi, Nicole Wils, Ruchil Jain, Hans Tuinhout, Pietro An-
dricciola, Gino Giusi, and Claudio Fiegna. Impact of Hot Carriers on nMOSFET
Variability in 45-and 65-nm CMOS Technologies. Electron Devices, IEEE Transac-
tions on, 58(8):2347–2353, 2011.

[45] E. Takeda and N. Suzuki. An empirical model for device degradation due to hot-
carrier injection. Electron Device Letters, IEEE, 4(4):111 – 113, April 1983.

[46] Mihir Choudhury, Vikas Chandra, Kartik Mohanram, and Robert Aitken. Analytical
model for TDDB-based performance degradation in combinational logic. In Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2010, pages 423–
428. IEEE, 2010.

[47] A. Elhami Khorasani, M. Griswold, and T.L. Alford. A Fast I-V Screening Measure-
ment for TDDB Assessment of Ultra-Thick Inter-Metal Dielectrics. Electron Device
Letters, IEEE, 35(1):117–119, Jan 2014.

[48] David Dye. Partial Reconfiguration of Virtex FPGAs in ISE 12. Xilinx White Paper
WP374, July 2010.

[49] Altera. Increasing Design Functionality with Partial and Dynamic Reconfiguration
in 28-nm FPGAs. Altera White Paper WP-01137, July 2010.

[50] Rajat Chauhan and Rajesh Kaushik. Utilization of unused IO block for core logic
functions, January 2 2007. US Patent 7,157,936 B2.

176

Bibliography

[51] E. Stott, P. Sedcole, and P. Cheung. Modelling degradation in FPGA lookup tables.
In Field-Programmable Technology, 2009. FPT 2009. International Conference on,
pages 443–446, dec. 2009.

[52] Edward A. Stott, Justin S.J. Wong, Pete Sedcole, and Peter Y.K. Cheung. Degrada-
tion in FPGAs: measurement and modelling. In FPGA ’10: Proceedings of the 18th
annual ACM/SIGDA international symposium on Field programmable gate arrays,
pages 229–238, New York, NY, USA, 2010. ACM.

[53] E. Stott, J.S.J. Wong, and P.Y.K. Cheung. Degradation Analysis and Mitigation in
FPGAs. In Field Programmable Logic and Applications (FPL), 2010 International
Conference on, pages 428–433, 2010.

[54] Charles Chiasson and Vaughn Betz. Should FPGAS abandon the pass-gate? In Field
Programmable Logic and Applications (FPL), 2013 23rd International Conference
on, pages 1–8. IEEE, 2013.

[55] Xinfei Guo, Wayne Burleson, and Mircea Stan. Modeling and Experimental Demon-
stration of Accelerated Self-Healing Techniques. In Proceedings of the The 51st An-
nual Design Automation Conference on Design Automation Conference, pages 1–6.
ACM, 2014.

[56] Tao Pi and Patrick J Crotty. FPGA lookup table with transmission gate structure for
reliable low-voltage operation, December 23 2003. US Patent 6,667,635.

[57] Steven P Young. Programmable logic block having lookup table with partial output
signal driving carry multiplexer, March 20 2007. US Patent 7,193,433.

[58] Predictive Technology Model (PTM). http://ptm.asu.edu/. model released
in Oct. 2007.

[59] Xilinx. 7 Series FPGAs Configurable Logic Block. Xilinx User Guide 474, August
2014.

[60] Xilinx. Spartan-6 FPGA Configurable Logic Block. Xilinx User Guide 384, Febru-
ary 2010.

[61] I. Kuon, R. Tessier, and J. Rose. FPGA architecture: Survey and Challenges. Foun-
dations and Trends R© in Electronic Design Automation, 2(2):135–253, 2008.

[62] G. Lemieux and D. Lewis. Circuit design of routing switches. In international
symposium on Field-programmable gate arrays, pages 19–28. ACM, 2002.

[63] M. Khellah, S. Brown, and Z. Vranesic. Modelling routing delays in SRAM-based
FPGAs. In Canadian Conference on VLSI, page 6B. Citeseer, 1993.

177

http://ptm.asu.edu/

Bibliography

[64] Florent Bruguier, Pascal Benoit, Philippe Maurine, and Lionel Torres. A New Pro-
cess Characterization Method for FPGAs Based on Electromagnetic Analysis. In
FPL11 21st International Conference on Field Programmable Logic and Applica-
tions, pages 20–23. Ieee, September 2011.

[65] A. Maiti, L. McDougall, and P. Schaumont. The Impact of Aging on an FPGA-Based
Physical Unclonable Function. In International Conference on Field Programmable
Logic and Applications (FPL), pages 151 – 156, 2011.

[66] Spartan-6 Family Overview, 2011.

[67] Florent Bruguier, Pascal Benoit, and Lionel Torres. Investigation of Digital Sensors
for Variability Characterization on FPGAs. In Proceedings of the 5th International
Workshop on Reconfigurable Communication-centric Systems on Chip 2010 Re-
CoSoC10, pages 95 – 100, Karlsruhe, Germany, 2010.

[68] Tim Tuan and Bocheng Lai. Leakage power analysis of a 90nm FPGA. In Custom
Integrated Circuits Conference, 2003. Proceedings of the IEEE 2003, pages 57–60.
IEEE, 2003.

[69] P. Mangalagiri, S. Bae, R. Krishnan, Y. Xie, and V. Narayanan. Thermal-aware
reliability analysis for platform FPGAs. In Proceedings of the 2008 IEEE/ACM
International Conference on Computer-Aided Design, pages 722–727. IEEE Press,
2008.

[70] Jameel Hussein, Matt Klein, and Michael Hart. Lowering Power at 28 nm with
Xilinx 7 Series FPGAs. Xilinx White Paper WP389, Aug. 2013.

[71] S. Velusamy, Wei Huang, J. Lach, M. Stan, and K. Skadron. Monitoring temperature
in FPGA based SoCs. In Computer Design: VLSI in Computers and Processors,
2005. ICCD 2005. Proceedings. 2005 IEEE International Conference on, pages 634
– 637, oct. 2005.

[72] Wei Huang, K. Sankaranarayanan, K. Skadron, R.J. Ribando, and M.R. Stan. Accu-
rate, Pre-RTL Temperature-Aware Design Using a Parameterized, Geometric Ther-
mal Model. Computers, IEEE Transactions on, 57(9):1277 –1288, sept. 2008.

[73] Y. Yang, Z. Gu, C. Zhu, R.P. Dick, and L. Shang. Isac: Integrated space-and-time-
adaptive chip-package thermal analysis. Computer-Aided Design of Integrated Cir-
cuits and Systems, IEEE Transactions on, 26(1):86–99, 2007.

[74] Priya Sundararajan, Aman Gayasen, N. Vijaykrishnan, and T. Tuan. Thermal char-
acterization and optimization in platform FPGAs. In Proceedings of the 2006
IEEE/ACM international conference on Computer-aided design, ICCAD ’06, pages
443–447, 2006.

178

Bibliography

[75] H.Y. Lui, C.H. Lee, and R.H. Patel. Power estimation and thermal budgeting
methodology for FPGAs. In Custom Integrated Circuits Conference, 2004. Pro-
ceedings of the IEEE 2004, pages 711–714. IEEE, 2004.

[76] M. Happe, A. Agne, and C. Plessl. Measuring and predicting temperature distribu-
tions on FPGAs at run-time. In Reconfigurable Computing and FPGAs (ReConFig),
2011 International Conference on, pages 55 –60, dec. 2011.

[77] A. Amouri, H. Amrouch, T. Ebi, J. Henkel, and M. Tahoori. Accurate
Thermal-Profile Estimation and Validation for FPGA-Mapped Circuits. In Field-
Programmable Custom Computing Machines (FCCM 2013), the 21st IEEE Interna-
tional Symposium on, pages 57–60, 2013.

[78] M. DeBole, K. Ramakrishnan, V. Balakrishnan, W. Wang, H. Luo, Y. Wang, Y. Xie,
Y. Cao, and N. Vijaykrishnan. A framework for estimating NBTI degradation of
microarchitectural components. In Design Automation Conference, 2009. ASP-DAC
2009. Asia and South Pacific, pages 455–460. IEEE, 2009.

[79] CAD group. CAD Group: ITC’99 Benchmarks (2nd release), 2010.

[80] Kenneth M. Zick and John P. Hayes. On-line sensing for healthier FPGA systems. In
FPGA ’10: Proceedings of the 18th annual ACM/SIGDA international symposium
on Field programmable gate arrays, pages 239–248, New York, NY, USA, 2010.
ACM.

[81] Prasanth Mangalagiri, Sungmin Bae, Ramakrishnan Krishnan, Yuan Xie, and Vi-
jaykrishnan Narayanan. Thermal-aware reliability analysis for platform fpgas. In
ICCAD ’08: Proceedings of the 2008 IEEE/ACM International Conference on
Computer-Aided Design, pages 722–727, Piscataway, NJ, USA, 2008. IEEE Press.

[82] Miron Abramovici and Charles E. Stroud. BIST-Based Delay-Fault Testing in FP-
GAs. J. Electron. Test., 19(5):549–558, 2003.

[83] J.S.J. Wong and P.Y.K. Cheung. Improved delay measurement method in FPGA
based on transition probability. In Proceedings of the 19th ACM/SIGDA interna-
tional symposium on Field programmable gate arrays, pages 163–172. ACM, 2011.

[84] Suresh Srinivasan, Prasanth Mangalagiri, Yuan Xie, N. Vijaykrishnan, and Karthik
Sarpatwari. FLAW: FPGA lifetime awareness. In DAC ’06: Proceedings of the 43rd
annual Design Automation Conference, pages 630–635, New York, NY, USA, 2006.
ACM.

[85] John Keane, Tae hyoung Kim, Xiaofei Wang, and Chris H. Kim. On-chip reliability
monitors for measuring circuit degradation. Microelectronics Reliability, In Press,
Corrected Proof:–, 2010.

179

Bibliography

[86] Martin Oma na, Daniele Rossi, Nicolò Bosio, and Cecilia Metra. Novel low-cost
aging sensor. In CF ’10: Proceedings of the 7th ACM international conference on
Computing frontiers, pages 93–94, New York, NY, USA, 2010. ACM.

[87] D. Ernst, Nam Sung Kim, S. Das, S. Pant, R. Rao, Toan Pham, C. Ziesler, D. Blaauw,
T. Austin, K. Flautner, and T. Mudge. Razor: a low-power pipeline based on circuit-
level timing speculation. In Microarchitecture, 2003. MICRO-36. Proceedings. 36th
Annual IEEE/ACM International Symposium on, pages 7 – 18, dec. 2003.

[88] Toshinori Sato and Yuji Kunitake. A Simple Flip-Flop Circuit for Typical-Case
Designs for DFM. In Quality Electronic Design, 2007. ISQED ’07. 8th International
Symposium on, pages 539 –544, mar. 2007.

[89] M. Eireiner, S. Henzler, G. Georgakos, J. Berthold, and D. Schmitt-Landsiedel.
In-Situ Delay Characterization and Local Supply Voltage Adjustment for Com-
pensation of Local Parametric Variations. Solid-State Circuits, IEEE Journal of,
42(7):1583 –1592, jul. 2007.

[90] S. Das, C. Tokunaga, S. Pant, W.-H. Ma, S. Kalaiselvan, K. Lai, D.M. Bull, and
D.T. Blaauw. RazorII: In Situ Error Detection and Correction for PVT and SER
Tolerance. Solid-State Circuits, IEEE Journal of, 44(1):32 –48, jan. 2009.

[91] K.A. Bowman, J.W. Tschanz, Nam Sung Kim, J.C. Lee, C.B. Wilkerson, S.-L.L.
Lu, T. Karnik, and V.K. De. Energy-Efficient and Metastability-Immune Resilient
Circuits for Dynamic Variation Tolerance. Solid-State Circuits, IEEE Journal of,
44(1):49 –63, jan. 2009.

[92] Xilinx Synthesis and Simulation Design Guide, http://www.xilinx.com.

[93] J. Angermeier, A. Amouri, and J. Teich. General methodology for mapping iterative
approximation algorithms to adaptive dynamically partially reconfigurable systems.
In Field Programmable Logic and Applications, 2009. FPL 2009. International Con-
ference on, pages 302 –307, 31 2009-sept. 2 2009.

[94] Opencores, http://opencores.org.

[95] Chunhua Yao, Kewal K Saluja, and Parameswaran Ramanathan. Thermal-aware test
scheduling using on-chip temperature sensors. In VLSI Design (VLSI Design), 2011
24th International Conference on, pages 376–381. IEEE, 2011.

[96] Chunsheng Liu, Kugesh Veeraraghavan, and Vikram Iyengar. Thermal-aware test
scheduling and hot spot temperature minimization for core-based systems. In Defect
and Fault Tolerance in VLSI Systems, 2005. DFT 2005. 20th IEEE International
Symposium on, pages 552–560. IEEE, 2005.

[97] Zhiyuan He, Zebo Peng, Petru Eles, Paul Rosinger, and Bashir M Al-Hashimi.
Thermal-aware SoC test scheduling with test set partitioning and interleaving. Jour-
nal of electronic testing, 24(1-3):247–257, 2008.

180

Bibliography

[98] Justin SJ Wong, Pete Sedcole, and Peter YK Cheung. Self-measurement of combi-
natorial circuit delays in FPGAs. ACM Transactions on Reconfigurable Technology
and Systems (TRETS), 2(2):10, 2009.

[99] Sergio Lopez-Buedo, Javier Garrido, and Eduardo I Boemo. Dynamically inserting,
operating, and eliminating thermal sensors of FPGA-based systems. Components
and Packaging Technologies, IEEE Transactions on, 25(4):561–566, 2002.

[100] Markus Happe, Andreas Agne, and Christian Plessl. Measuring and predicting tem-
perature distributions on FPGAs at run-time. In Reconfigurable Computing and
FPGAs (ReConFig), 2011 International Conference on, pages 55–60. IEEE, 2011.

[101] Adwait Gupte and Phillip Jones. Hotspot mitigation using dynamic partial reconfig-
uration for improved performance. In Reconfigurable Computing and FPGAs, 2009.
ReConFig’09. International Conference on, pages 89–94. IEEE, 2009.

[102] Piotr Weber, Maciej Zagrabski, Przemyslaw Musz, Krzysztof Kepa, Maciej Niko-
dem, and Bartosz Wojciechowski. Configurable heat generators for FPGAs. In
Thermal Investigations of ICs and Systems (THERMINIC), 2014 20th International
Workshop on, pages 1–4. IEEE, 2014.

[103] Andreas Agne, Hendrik Hangmann, Markus Happe, Marco Platzner, and Christian
Plessl. Seven recipes for setting your fpga on fire–a cookbook on heat generators.
Microprocessors and Microsystems, 38(8):911–919, 2014.

[104] Siuki Chan and Steven HC Hsieh. Methods and apparatus for isolating critical paths
on an IC device having a thermal energy generator, May 2005. US Patent 6,895,566.

[105] Steven HC Hsieh and Siuki Chan. Methods and circuits for measuring the thermal
resistance of a packaged IC, Aug 2007. US Patent 7,257,511.

[106] Robert O Conn, Steven J Carey, Siuki Chan, and William H Pabst. Self-heating
mechanism for duplicating microbump failure conditions in FPGAs and for logging
failures, Apr 2008. US Patent 7,362,121.

[107] Bradley F Dutton and Charles E Stroud. Built-in self-test of configurable logic
blocks in Virtex-5 FPGAs. In System Theory, 2009. SSST 2009. 41st Southeastern
Symposium on, pages 230–234. IEEE, 2009.

[108] Xilinx. Virtex-5 FPGA User Guide. Xilinx Documentation UG190, March 2012.

[109] Doug Amos, Austin Lesea, and René Richter. FPGA-Based Prototyping Methodol-
ogy Manual. Happy About, 2011.

[110] Jonathan Rose, Jason Luu, Chi Wai Yu, Opal Densmore, Jeff Goeders, Andrew
Somerville, Kenneth B. Kent, Peter Jamieson, and Jason Anderson. The VTR
Project: Architecture and CAD for FPGAs from Verilog to Routing. In Proceedings
of the 20th ACM/SIGDA International Symposium on Field-Programmable Gate Ar-
rays, pages 77–86. ACM, 2012.

181

Bibliography

[111] S. Srinivasan, R. Krishnan, P. Mangalagiri, Y. Xie, V. Narayanan, M.J. Irwin, and
K. Sarpatwari. Toward increasing FPGA lifetime. Dependable and Secure Comput-
ing, IEEE Transactions on, 5(2):115–127, 2008.

[112] P.M.B. Rao, A. Amouri, S. Kiamehr, and M. Tahoori. Altering LUT Configuration
for Wear-out Mitigation of FPGA-Mapped Designs. In Field Programmable Logic
and Applications (FPL), 2013 23nd International Conference on, pages 1–8, 2013.

182

	Abstract
	Zusammenfassung
	Introduction
	FPGAs and technology scaling
	Degradation and reliability challenges of FPGAs
	Dissertation focus and goals
	Investigation and Modeling
	Monitoring
	Mitigation

	Dissertation outline

	Background
	FPGA architecture
	Configurable Logic Block (CLB)
	Switch Matrix
	Other components

	Circuit aging
	Transistor aging
	Interconnects aging

	Investigation and Modeling
	Investigating The Degradation of LUTs
	Introduction
	Related Work
	LUT structures
	Two-input LUT structures
	Four-input LUT structures

	Evaluation methodology
	Two-input LUTs
	Four-input LUTs

	Experimental results and analysis
	Two-input LUTs results
	Four-input LUTs results

	Summary

	Investigating The Degradation of Programmable Routing Resources
	Introduction
	Programmable Routing Switches in FPGAs
	Pass Transistor with keeper (PT-keeper)
	Tri-State buffer (TS-buffer)
	Transmission Gate (TG)
	Multiplexer (MUX)

	Evaluation Methodology
	Circuit-level details and assumptions
	NBTI/PBTI effect analysis
	Delay measurements
	Load analysis

	Experimental Results
	Effect of NCS
	Effect of WL
	Combined influence of both WL and NCS
	Effect of Fan-out
	Effect of Vdd

	Summary

	Experimental Analysis of Aging Effects
	Introduction
	Related work
	Sensors design and implementation
	Sensors design
	Implementation

	Experimental setup and schedule
	Setup
	Schedule

	Experimental results and analysis
	Results
	Analysis

	Summary

	Thermal-Profile Estimation of FPGA-Mapped Designs
	Introduction
	Related work
	Motivation
	Leakage-Temperature Relation
	FPGA Leakage Power

	The Proposed Approach
	Leakage Power Redistribution
	Temperature-Leakage Loop Estimation

	FPGA Thermal Estimation Flow
	Floorplan Creation
	Power Trace Generation
	Thermal Profile Estimation For Dynamically Changing Circuits

	Experimental Setup
	Thermal Camera Usage
	Model Calibration

	Experimental Results
	Summary

	High-level Aging Estimation
	Introduction
	Related Work
	Methodology
	Aging model abstraction
	Information gathering
	Aging estimation

	Experimental results
	Validation of the abstracted aging model
	Case study: influence of mapping and optimization algorithms

	Summary

	Monitoring
	Aging Monitoring in FPGA-Mapped Designs
	Introduction
	Related Work
	Aging Sensor: Main Idea
	Critical path and aging
	The proposed sensor
	Sensor sensitivity analysis

	Sensor Mapping
	Mapping to logic slices
	Detection window generation
	Glitches in FPGA
	Aging sensor placement and calibration

	Experimental Results
	FPGA design tool experiments (simulation results)
	FPGA board experiment (emulation results)

	Summary

	Self-Heating Thermal-Aware Testing of FPGAs
	Introduction
	Related Work
	FPGA Self-Heating
	The concept of self-heating
	Self-Heating Elements (SHEs)
	Chain of SHEs: easier controlling

	Thermal profile for testing
	Distribution of SHEs
	Calibration process
	Integration of SHEs
	Other thermal constraints

	Self-heating application-independent BIST
	Sequential method
	Concurrent method
	Case study BIST implementation

	Self-heating application-dependent testing
	Application-dependent testing
	SHEs integration methods

	Experimental Results
	Self-heating application-independent BIST
	Self-heating application-dependent test

	Summary

	Mitigation
	Aging Mitigation in LUTs
	Introduction
	Related Work
	Motivation
	Methodology
	Method 1: Manipulating partially-used LUTs
	Method 2: Swapping LUT inputs
	Application strategies

	Implementation Flow
	Experimental Results
	Summary

	Conclusions and Outlook
	Conclusions
	Outlook

