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Abstract 

Strength of silica fibers heat treated in humid air is affected by swelling strains. 
In the absence of externally applied stresses swelling is isotropic. Under uniaxial 
stress an anisotropy of swelling strains has to be expected with maximum 
expansion in stress direction. In order to compute the maximum possible 
anisotropy, a Finite Element analysis is carried out. Under the assumption of a 
spherical nano-pore generated by a single bond breaking event, an averaged 
axial swelling strain was computed that is by a factor of >2 larger than the 
volume swelling strain.  
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1. Introduction 

Water penetrated into silica reacts with the silica network according to  

 Si-O-Si +H2O  SiOH+HOSi (1) 

with the concentration of the hydroxyl S = [SiOH] and that of the molecular water C = 

[H2O]. It was early shown by Brückner [1, 2], Shackelford [3] and Shelby [4] that this 
reaction is accompanied by volume swelling.  
In Fig. 1 a volume element with a number of N Si-O bonds is shown. In a statistical 
sense, the number of N arbitrarily oriented Si-O-bonds can be dismantled in com-
ponents oriented in the x-, y-, z-directions of a rectangular coordinate system with N/3 
single bonds in each direction.  

 

 
Fig. 1 Volume element containing a number of N Si-O bonds (2-dimensional representation) 

divided into N/3 bonds oriented in x-, y-, and z-directions. 

Under mechanical stresses applied in z-direction, the probability of reaction events is 
expected to be increased for the bonds Nz. The maximum swelling strain in z-direction 
should therefore result when all reactions occur at bonds Nz exclusively. In a FE-study 
we considered this special case and looked for the maximum swelling strain sw,z.  
Maximum anisotropy is reached if all reaction events are located at bonds oriented in 
z-direction. For this situation the strain components x, y, z, and the volume strain v 
were determined by FE-computations. 

 
2. Maximum anisotropy expected from FE-computations 

Due to the reaction a SiO-bond may be fractured in the absence of stresses. Our 
coordinate system is oriented so that the z-axis agrees with the direction in which the 
repulsive forces between the silanols act (Fig. 2). The “nano-pore” defined by the 
dashed circle in Fig. 2 was modelled as a sphere of radius R in an “infinite body”. 
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In our FE-study we modelled the infinite body by a cylinder of radius 500 R and half 
height 500 R, Fig. 3a. For the computations we used ABAQUS Version 6.9 on a mesh 
of 1246 elements and 3880 nodes. Due to symmetry only a 4th of the total body had to 
be modelled. As the only material parameter of relevance we used the Poisson ratio of 
=0.17. In order to compute the expansion in z-direction, a constant displacement 0 is 
prescribed over a sphere part with an opening angle  with respect to the z-axis, Fig. 
3b.  
 

 

Fig. 2 Bond breaking by water/silica reaction; the two hydroxyls yield an expansive displacement 0 in 
z-direction; the volume element in which the reaction occurred is represented by the dashed circle.  

 

Fig 3 a) Finite Element model of a “nano pore” loaded by displacement caused by a repulsive 
interaction between the silanol groups, b) details of pore loading. 
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2.1 Local strains along symmetry axes 

The displacements in axial and radial directions, z and r, were determined first for 
the symmetry axes as a function of distances z and r. Figure 4a gives the displacement 
ratio r/z for =3.5° as a function of the distance r/R (note reciprocal scaling of the 
abscissa).  
In Fig. 4b the ratio r/z is plotted as a function of the angle  given in Fig. 3b. For 
angles <45° the expansion in z-direction is accompanied by a reduction in y- and x-
directions. For angles >45° all directions show expansion. 

 
Fig. 4 a) Ratio of transversal and axial displacements plotted against the reciprocal distance for =3.5°, 

b) displacements in y- and x-directions normalized on the axial strain vs. the angle . 

Figure 5a shows the axial displacements, z normalized on the sum of the displace-
ments in all 3 directions as a function of the distance from the pore centre for 0. 
Due to rotational symmetry with x=y=r this ratio reads 
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It should be noted, that the denominator does not agree with a volume change since the 
individual values are determined at different locations. 
In Fig. 5b the same results are plotted versus sin() showing a nearly linear depen-
dency. A numerical representation of the FE-results is 
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Fig. 5 “Anisotropy” of the displacements in axial and radial directions vs. angle  defined in Fig. 3b. 

2.2 Strain distributions over cylinder contours 
In Section 2.1 only the displacements on the symmetry axes were taken into account. 
In the following considerations the displacement distributions over the surface of 
cylinder elements are given which result for a purely axial displacement 0, i.e. for 
0. Figure 6a gives a schematic illustration. Figure 6b represents the displacement 
distributions for a cylinder contour with h== 16R. 

 
Fig. 6 a) Axial displacements acting on the “nano pore”, b) displacement distributions z and r at the 

cylinder contours in a distance of h, = 16 R. 
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3. Volume expansion strain and anisotropy ratio 

The volume change in axial direction is given by  

 



0

)(2 drrrV zz  (3) 

In radial direction it holds  
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On a cylinder contour with =h the average displacement in z-direction reads 
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Consequently, the average strain in z-direction is obtained as 
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Since the cylinder volume in the absence of swelling is 
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the volume welling strain results as 
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The anisotropy ratio vz  /  is obtained by combining eqs.(6) and (8):  
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A cylinder contour of  = h = 16 R may be considered. In this case, the evaluation of 
eq.(9) results in 
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A Poisson’s ratio  for swelling strains can be defined via 
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Since the volume strain is  
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eqs.(10) to (12) yield 
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The resulting Poisson’s ratio is similar to those found for ceramics and metals.  

4. Influence of the chosen geometry 

In order to show the effect of the finite body that had to be modelled for the FE-
computations, we computed the strains on cylinder contours in different distance from 
the pore. Figure 7 shows the ratios vz  /  and zr  / .  

It can be seen that the results are rather independent of the chosen cylinder contour. 
For vz  /  the maximum variation within the range of 16R  h,  100 R is less than 2%. 
This weak dependency clearly indicates that the theorem of Saint-Venant is 
sufficiently fulfilled, i.e. that 

 RhR 500,    (14) 

When (14) holds, the validity of Saint-Venant’s theorem suggests that special details 
of the pore-shape cannot have a noticeable influence on vz  /  and zr  / . 

 

Fig. 7 Strain ratios vz  /  and zr  /  vs. h/R or /R. 
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