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Foreword of the Editor

Microwave heating is becoming popular in industrial processes. Dif-
ferent to conventional heating techniques (e. g. hot air, infrared light),
the microwave heating principle is volumetric, which means the mi-
crowave penetrates through the object and is heating its volume uni-
formly. Hence, both surface and interior of the object are heated si-
multaneously, which results in significantly reduced process time and
energy consumption.

However, the microwave heating is not always uniform. Unlike in
convectional heating where the temperature distribution is reaching
equilibrium after a certain process time, the temperature distribution
of microwave heating is varying during the entire heating process.
There are a number of spatially distributed hot spots and cold spots,
caused by not only the properties of the workpiece, but also the elec-
tromagnetic (EM) field distribution within the oven chamber.

In his work, Dr.-Ing. Yiming Sun proposes an innovative real-time mi-
crowave control approach to improve the temperature homogeneity
under microwave heating by combining the idea of advanced control
algorithms and multi-source microwave feeding systems. In this ap-
proach, Dr.-Ing Yiming Sun develops multiple adaptive or intelligent
control structures, including the model predictive control (MPC), neu-
ral network control (NNC) and reinforcement learning control (RLC)
methods, to automatically adjust the power of spatially distributed
feeding antennas, in order to actively influence the electromagnetic
(EM) field distribution inside the oven chamber, and hence, improve
the temperature distribution. The experimental results prove that
these advanced control methods can effectively reduce the final tem-
perature derivations and improve the temperature homogeneity, com-
pared with conventional feedback control strategies.



The work of Dr.-Ing. Yiming Sun is showing a big potential to be im-
plemented in industry applications, especially for those requiring ex-
cellent temperature homogeneity during the heating process. It will
help the multi-source microwave heating devices to achieve the same
performance as common industry autoclaves, in terms of temperature
homogeneity. It will also further promote the implementation of mi-
crowave heating.
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1. Introduction

Heating is one of the most common processes in the manufacturing
industry for a wide range of applications, including sintering, curing
and drying. It plays an essential role in promoting chemical and phys-
ical reactions, and improving the processability of materials. The qual-
ity of heating directly determines the final quality of industrial prod-
ucts. In conventional industrial heating equipments, such as furnaces,
kilns and autoclaves, heat is generated by the combustion of fuels or
using electric currents, and transferred to the heated material by ei-
ther thermal conduction, convection, radiation, or a combination of
all three.

In conventional heating, all the heating energy required will be firstly
generated on the surface by the thermal radiation or convection, and
then transmitted through the body into the core by the thermal con-
duction. The rate of the heat flow from outside to inside is entirely
determined by the physical properties of the material, such as its con-
ductivity, specific heat capacity and mass density. There is no way to
accelerate the heating flow rate or influence the internal temperature
distribution. With the same material, the thicker the heated product is,
the longer it takes to transfer the heat to the internal core. Meanwhile,
a large temperature deviation would occur between the surface and
internal core, which could bring quality problems [Mer98]. During the
whole heating process, a huge amount of energy is lost in heating the
intermediate medium (e.g. hot air), and the corresponding time con-
sumption is also large. Although many proper improvements have
been done regarding to equipment sizes and operations, conventional
heating has various problems unsolved. Heating still remains as one
of the most challenging processes to be precisely controlled.
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1. Introduction

1.1. Development of Microwave Heating

In contrast to conventional heating, microwave heating has a com-
pletely different heating mechanism, which is the so-called volumet-
ric heating ability. Instead of the heating flow from the surface to the
core, the microwave energy is directly transferred into heat inside the
heated material.

As shown in the figure 1.1, in conventional heating, the surface is
always hotter than the core because the heat flows from the surface
to the core. However, in microwave heating both the surface and
the core of the product are heated simultaneously. Due to the heat
convection on the surface, the maximum temperature of microwave
heating occurs in the core of the product. It is the opposite to the
temperature distribution of the conventional heating, therefore it is
called the inverse temperature profile. This inverse temperature pro-
file might be a problem for some applications, but it is helpful in cer-
tain cases, such as in the microwave sintering of YBCO superconduc-
tors [BADAC92].

Hot

Cold

Product Product

Heat flow

Conventional Heating Microwave Heating

Figure 1.1. Temperature profile comparison between conventional (left) and
microwave (right) heating.

Benefiting from the special heating mechanism, microwave heating
has several advantages over the conventional heating.

1. Reduced energy and time consumption

Microwave heating generates the heat directly in the volume of
a product, which saves significant energies from the unnecessary

2



1.1. Development of Microwave Heating

heating of the intermediate medium, especially for high tempera-
ture applications [TC99]. Because of the unique volumetric heat-
ing ability, there is no need to spend additional time in the surface
heating and the heat transfer process. Moreover, the heating rate
to the inside of the material is not limited by the slow heat transfer
process, but mostly determined by the microwave power. In prin-
ciple, the microwave heating is able to provide any desired heating
rate as long as the microwave power is sufficient, which largely re-
duces the overall heating time [LM03].

2. Selective and controllable heating

When a product consisting of different materials is heated in a mi-
crowave cavity, different heating rates are achieved due to differ-
ent properties of individual materials. This selective heating phe-
nomenon is desired in many applications, especially in the mi-
crowave chemistry area. For example, in the applications intro-
duced by [ZQY14], temperature gradients at different locations are
required to enhance different local chemical reactions.

In conventional heating, it is slow and clumsy to control the heat-
ing rate. In comparison to the conventional heating, the rate of mi-
crowave heating can be immediately controlled by adjusting the
microwave power. In applications where multiple stages with dif-
ferent heating rates are required, i.e. sintering of ceramics [Kat92]
or curing of composite materials [LLG14], microwave heating is
preferred because of its controllable and quick response.

Due to above mentioned advantages, considerable research has been
performed on microwave heating since the 1950s. Nowadays, there
are a large number of successful applications of microwave heating
in different industries, including food, rubber, pharmaceutical, poly-
mers, plastics and textiles [oED07]. During the last 10 to 15 years,
more and more interests have been drawn to the emerging domain of
fabricating carbon fiber reinforced polymer (CFRP) composite materi-
als using microwave heating. CFRP composite material is one kind of
advanced high-performance (AHP) composite materials that increas-
ingly attracts both commercial and research attentions [Cor01]. Due to
its excellent mechanical properties, such as the fatigue resistance, light
weight and extraordinary high-temperature characteristics [LLG14],
CFRP has been widely applied in automotive, renewable energy, aero-
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space and many other weight-critical applications. According to the
report in [Qui01], nearly half of the Boeing 787 airplane is comprised
of CFRP and other composites, which saves on average 20% of the
total weight compared with conventional aluminium designs. Based
on the market report published in 2012 [Cas12], the global CFRP mar-
ket size is forecast to have an annual growth rate of 17%, reaching
118,600 tonnes with an estimated value of 7.3 billion US dollars (USD)
by 2017.

There is no doubt that CFRP will become one of the most important
and demanding materials in the near future. However, there are also
challenges from different aspects, such as high costs and manufactur-
ing complexities. For most industrial areas, cost reduction is a key
priority that has to be concerned during the manufacture process. Al-
though the price of carbon fiber material has been decreasing during
the last few years (about 20 USD per kg in 2014 [cfr]), curing of one
CFRP workpiece is still expensive. The most common way to cure a
CFRP workpiece is to layer the uncured prepreg into a mould, put
a vacuum bag to the mould and cure it in an autoclave. The curing
process within the autoclave takes a long time and the corresponding
energy consumption is large, which leads to the increase of the total
cost. Besides the autoclave curing, there are a number of other cur-
ing methods. Their main advantages and drawbacks are shown in the
following table 1.1.

Compared with other curing methods in table 1.1, microwave heating
has a higher heating efficiency and lower curing cost. In addition, mi-
crowave heating also has a large penetration depth, which means the
heat can be directly generated deeply inside the CFRP workpiece and
rapid curing is possible for thick composite materials. However, there
are still a number of problems that limit the implementation of mi-
crowave heating in the practical CFRP curing process, such as thermal
insulation, temperature measurement, and most important, tempera-
ture control problems.

During the heating process, the temperature of the entire heated work-
piece should be controlled and held in a predefined range. In addition,
the overall temperature homogeneity of the workpiece should also be
sustained in a certain level, to avoid any local overheating (hot spots)
[RMS96] or thermal runaway [Kri92]. According to investigations in
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Advantages Drawbacks

Autoclave high quality
workpiece

expensive; slow

Electron-
beam

high quality
workpiece; low
costs; short time

very large temperature
difference for thick

workpieces

Ultra violet
(UV) very short time

special resin matrix
needed; relatively high

costs

X-rays large penetration
depth

long curing time; safety
issues

Microwave
Heating

short time; low
costs; large

penetration depth;
high heating

efficiency

temperature control and
non-uniform

distribution problems

Table 1.1. Comparison of different curing methods (according to [BRS01]).

[LLG14] and [KMS01], quality failures caused by the non-uniform
temperature distribution have become the major problem associated
with microwave heating applications.

It is easy to control a single temperature under microwave heating,
by using a temperature sensor and adjusting the microwave power
based on the feedback temperature value [SZ06]. Nevertheless, it is
way more complicated and difficult to control the entire temperature
distribution of the workpiece. Because the temperature distribution is
determined not only by the properties of the workpiece, but also by
the electromagnetic (EM) field distribution within the microwave cav-
ity. The EM field and temperature distributions are governed jointly
by two partial differential equations (PDEs) [BBBB95], which are the
Maxwell’s equations [Mer98] and the forced heat transfer equation
[Met96]. On the one hand, the EM field distribution influences the
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heating rates as well as the temperature distribution of the workpiece.
On the other hand, the temperature distribution also affects the prop-
erties of the workpiece, such as thermal conductivity and dielectric
permittivity, which is reciprocated to change the EM field distribu-
tion. An uniform temperature distribution of microwave heating re-
quires optimizations from a number of different parts, including the
design of the microwave applicator, adjustment of microwave power,
temperature measurement approach and others.

1.2. Overview of the State of the Art

In general, there are three different types of approaches to control the
temperature and improve the temperature homogeneity under mi-
crowave heating.

1.2.1. Modern control methods

The idea of using modern control methods to control the heat trans-
fer process in microwave heating started from the 1980s. In the be-
ginning it was used simply as an approach to keep the thermal sta-
bility and prevent the thermal runaway phenomenon. In simple sce-
narios, e.g. one-dimensional slabs or single-mode microwave cavities,
the two coupling PDEs (Maxwell’s equations and heat transfer equa-
tion) can be solved analytically, and the required microwave power is
directly calculated based on the analytical solution, such as the idea
used in [Smy90]. But this control scheme is only valid for simple heat-
ing scenarios, and it also assumes properties of the heated material are
perfectly known in advance, which does not hold in most cases.

Besides the analytical control solution method, another more general
control approach, which is the model based temperature control, was
proposed in [RMTV85]. A transfer function [Dor95] was used to de-
scribe the relationship between one measured temperature and the
microwave power of one source. A simple single-input single-output
(SISO) feedback controller was constructed to control the power of the
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microwave source in order to make the measured temperature reach
the predefined target temperature.

This modeling-and-control approach is effective for microwave heat-
ing systems with one feeding source, and most of following work uses
the same kind of strategy. For instance, in [RCVI99] a proportional-
integral-derivative (PID) controller was developed to control temper-
atures in microwave heating. In [SBA00] the autoregressive-moving-
average model with exogeneous inputs (ARMAX) [BJR13] method
was utilized to build the system model. Another model-based feed-
back controller was designed and a recursive Kalman filter (RKF) was
used to estimate the parameter of the ARMAX model, which further
enhanced the control performance. Similar control schemes can also
be found in [KRS08] and [HS07]. Despite the model based feedback
controller achieved good control performance regarding to the SISO
heating scenario, the entire temperature distribution of the heated
load was not considered in the control model, and hence, not con-
trolled.

In order to truly improve the temperature homogeneity, microwave
heating systems equipped with multiple distributed feeding sources
were studied and developed, such as the system used in our experi-
ments and the one mentioned in [LLHG14]. On the one hand, systems
with multiple distributed microwave heating sources have a great po-
tential to achieve a more uniform temperature distribution. But on the
other hand, they are much more complicated than systems with only
one feeding source. A lot of its properties, such as the EM distribution,
excitement of different modes, effects of different positions of sources,
especially the temperature control strategy, still remain unknown. Al-
though in [LLG14] and [LLHG14], a distributed temperature control
system was claimed to be implemented for controlling power of in-
dividual sources, there is no detailed introduction about this system.
Corresponding modeling and controlling methods are still not clear.
To the author’s knowledge, up until now there is no sophisticated the-
ory or model published to deal with the controller design of systems
with multiple distributed microwave heating systems.
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1.2.2. Numerical simulations

Numerical simulation is preferred for more complicated scenarios
where analytical solutions are not feasible. The idea of numerical
simulation is to separate the original problem into a number of small
parts, solve different parts individually and finally merge results of
all small parts into the solution of the original problem. During the
last 20 years, the rapid development of powerful computers has led
to more and more implementations of numerical analysis for solving
complex electrodynamics problems. Common numerical simulation
methods used for modeling microwave heating scenarios consist of
the finite-difference time-domain (FDTD) method, the finite-volume
time-domain (FVTD) method, the finite element method (FEM), the
method of moments (MoM), as well as the transmission line matrix
(TLM) method. Detailed introductions of above methods exceed the
scope of this dissertation, and they can be found in a large number of
books and papers such as [KL93] [LNS04] [DLT12] [Chr05].

Numerical simulation is used not to directly control the microwave
heating, but to help improve the heating homogeneity. The principle
is to firstly use numerical techniques to simulate and estimate the EM
field as well as the temperature distributions within the microwave
cavity, and then to optimize the heating homogeneity according to
the simulation results using some auxiliary approaches. For example,
in [CZ05] and [SCV+10], FDTD methods were used to simulate tem-
perature profiles of microwave heating in one-dimensional and three-
dimensional scenarios, and the thermal runaway phenomenon can be
prevented based on the simulation. In [GRD07] FEM was applied
to estimate the temperature distribution of the food within the mi-
crowave oven in case of a rotating turntable. Afterwards the rotating
speed and time of the turntable can be optimized based on the simula-
tion results. Hence, the overall temperature uniformity was enhanced.
Similarly, the influences of mode stirrers to the EM field distribution
were simulated using FEM in [PGMCCCSH04]. The angle of mode
stirrers was determined with the help of simulation results and the
temperature distribution was also improved. More examples of us-
ing numerical simulations to improve the performance of microwave
heating can be found in [PS91] [FR93] [YG04] [GY07] [HM96].
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Numerical simulation is the most important tool to analyze the EM
field and temperature distributions of microwave heating, which is
flexible and powerful to deal with different kinds of microwave heat-
ing problems. It provides important and valuable foundations to op-
timize the design and setup of the microwave heating system. Nev-
ertheless, it is still not a direct and efficient way to improve the tem-
perature homogeneity. On the one hand, the real EM and tempera-
ture distributions are affected by multiple factors, including dielectric
properties of the heated product, the position of the heated product,
the resonant microwave frequency range, and the air flow rate within
the microwave cavity. Any little mismatch of these influencing factors
will cause that the simulation result dramatically differs from the real
heating result. Therefore, the more variables a problem has, the less
accurate the simulation result is. That is also why in many problems
with highly complex heating scenarios, the simulated results are far
from satisfactory.

On the other hand, for certain highly complex systems (such as the
HEPHAISTOS system used in this dissertation), even though the sim-
ulation results are accurate, there is no sophisticated guideline of how
to improve the final temperature distributions based on correspond-
ing simulation results. For instance, if a local hot spot is found in both
the simulated and real temperature distributions, great efforts have
to be done to eliminate this hot spot without creating new hot spots,
due to the fact that any small modifications of the heating setup or
equipment are possible to cause unexpected impacts to the entire tem-
perature distribution.

1.2.3. Other auxiliary approaches

Besides the modern control method and the numerical simulation ap-
proach, there are other auxiliary approaches that aim to improve the
temperature homogeneity under microwave heating. They can be
divided into two categories. The first category comprises methods
that focusing on creating a more homogeneous EM field distribution,
which correspondingly leads to a homogeneous temperature distribu-
tion (for homogeneous workpieces). For example, the idea of vari-
able frequency microwave heating was used in both [LBC+95] and
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[Bow99], and the phase controlled microwave heating method was
applied in [BPJD99]. According to the results shown in the three
papers, although relatively homogeneous EM field distributions can
be created using above methods, the resulting temperature distribu-
tions were not as uniform as expected, and local hot spots still ex-
isted.

The other category relies on mechanical approaches that can improve
the temperature homogeneity directly. For instance, the method in
[WRK+12] used the real experimental results to adjust the position of
a susceptor, in order to achieve a specified heating at particular areas.
Another example is the hybrid system used in [KHYM13] that consists
of both the microwave and hot air heatings, to get a enhanced surface
heating and reduce the temperature gradient between the surface and
core of the product. These approaches are intuitive and effective. But
on the other hand, they are either too difficult or not efficient enough
to be extended to more general cases.

Despite numerous approaches were applied, no systematical solution
has been established to solve the problem of the temperature non-
uniformity in microwave heating. So far it still remains as one of the
most challenging problems in microwave heating.

1.3. Objective and content

In this dissertation, a novel adaptive temperature control concept
for microwave heating is proposed, which combines the distributed
microwave feeding system with advanced multiple-input multiple-
output (MIMO) control methods. The idea of distributed microwave
feeding systems was presented and proved to be effective in [Feh09].
Based on this theory, HEPHAISTOS, which is short for high elec-
tromagnetic power heated automated injected structure oven system
[Feh09], was designed. HEPHAISTOS has more than one microwave
feeding sources and a very unique hexagonal structured cavity shape,
resulting in a rather homogeneous EM field distribution in the whole
cavity scale [Feh09]. More important, the EM field distribution in
HEPHAISTOS can be changed during the heating process, by adjust-
ing the power of individual heating sources, to achieve better tem-
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perature distributions for different heating setups or workpieces. In
other words, HEPHAISTOS has the potential for systematically alter-
ing heating patterns to achieve the desired heating rates and tempera-
ture distributions on different types of heated workpieces.

The key to realize this potentiality is to develop an innovative and
effective power control system. By means of advanced modeling and
control methods, the temperature changing trends of different parts
of the workpiece can be predicted and the power allocated to each
heating source can be adjusted accordingly, to guarantee the heating
stability and enhance the temperature homogeneity.
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Figure 1.2. Diagrams of two different temperature control approaches.

Due to the demands of different heating scenarios, two different con-
trol strategies are developed in this dissertation (see figure 1.2). Both
of these two strategies aim to control the heating rate and achieve a
desired temperature distribution, but they control based on different
types of models. In the first adaptive temperature control approach
(figure 1.2a), the modeling is based on temperatures measured at sep-
arate points. During the heating process a system model based on the
temperature-power relation is recursively estimated, and the power
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of the distributed feeding sources is calculated based on the estimated
model. The entire temperature distribution is effectively improved by
driving separate temperatures to the predefined target temperature.
This is the most common control strategy used in industrial applica-
tions. It is suitable for heating scenarios like the heating of multiple
small workpieces or situations where the whole temperature profile
of the workpiece is not available. Different system modeling methods,
including the state-space model [Dor95] and the neural network (NN)
based models [Hay98], are constructed. The model predictive control
(MPC) [MHL99] and neural network control (NNC) [CK92] methods
are applied, respectively.

The second intelligent temperature control approach (figure 1.2b ) is
based on the thermal image from the infrared camera. Information ab-
stracted from the thermal image, such as the maximum temperature,
the minimum temperature and their corresponding positions, is used
for the control. Unlike the conventional input-output models used in
the adaptive control system, a Markov decision process (MDP) [Bel57]
is constructed to simulate the power-temperature state transient re-
lation in the intelligent control system. The final control objective
is to limit the temperatures of the entire workpiece within a prede-
fined range, and hence, obtain a homogeneous temperature distribu-
tion. Conventional control methods are not appropriate for this task,
therefore a reinforcement learning based intelligent controller [Bar98]
is used here.

Comparing above two temperature control approaches with temper-
ature controllers proposed in other papers such as [SAB98] [SBA00]
[RCVI99] [HS07], the novel adaptive temperature concept developed
in this dissertation has evident advantages in many aspects. Benefit-
ing from the MIMO heating and control systems, it is possible to not
only control the heating rate but also improve the temperature homo-
geneity in real time. The online system identification methods used in
this control concept able to estimate influences from different factors
numerically, without knowing any specific value of the influencing
factor, which makes them more flexible be implemented in practical
heating applications.
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Last but no least, the theory and principles used in this dissertation
are adaptive to other microwave heating systems and scenarios. The
entire control system of HEPHAISTOS can be transferred to other mi-
crowave heating systems without significant modifications. All afore-
mentioned methods and strategies will be introduced in details, and
their corresponding performance will be compared via a number of
experimental results.
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2. Introduction of
HEPHAISTOS

In this chapter, the distributed microwave heating system HEPHAIS-
TOS will be introduced in detail. In the beginning, the principles of
electromagnetic heating is addressed. Then the components of HEP-
HAISTOS, including the microwave heating system, the process con-
trol system and the temperature measurement system, are explained
one by one.

2.1. Electromagnetic Heating

Almost everything in the real world, except a perfect conductor or per-
fect insulator, can be heated within an electromagnetic field. Based on
different kinds of materials, the electrical heating techniques can be
divided into several different classes, including ohmic heating, induc-
tion heating and dielectric heating.

2.1.1. Ohmic Heating

Ohmic heating, also known as Joule heating [GC99], is a basic electri-
cal heating mechanism. When a direct current (DC) or alternating cur-
rent (AC) flow passes through a conductor or semiconductor, a frac-
tion of the electrical energy is transformed into thermal energy due to
electrical resistance, and therefore the heat is generated. The amount
of heating power Pohmic is proportional to the square of the current I ,
such as

Pohmic = I · V = I2 ·R =
V 2

R
, (2.1)
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where R is the electrical resistance of the object and V is the voltage
across it. Ohmic heating is widely implemented in various industrial
applications, including food processing [DAF90] and equipment man-
ufacture (electric stove, electric heater) [WCJ+12].

2.1.2. Induction heating

Induction heating is used for heating conducting materials (mostly
metals). A conventional induction heating system is shown in fig-
ure 2.1. An alternating current passes through the induction coil
and generates a time-variant magnetic field surrounding the coil. The
magnetic field has the same frequency as the alternating current and
it will induce eddy currents [RLCB02] within the conducting mate-
rial that is inserted in the coil. Heat is generated by the eddy cur-
rents due to the ohmic heating effect (such as in equation 2.1). The
frequency of AC power supply of induction heating is selected de-
pending on the size of the workpiece to be heated. Heating smaller
workpieces requires higher operating frequencies. Larger parts can be
processed with lower operating frequencies. Normally the frequency
ranges from 5 kHz to 500 kHz. Details about induction heating can be
found in [Mer98] [RLCB02] and [RP06].

Coil

Current in the 
coil

Induced 
current 

Magnetic field

Figure 2.1. Induction heating system [RLCB02].
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2.1.3. Dielectric heating

Dielectric heating is used to heat poorly conducting materials such as
dielectrics and insulators, i.e. plastic, wood and rubber. According to
the electrical frequencies used, dielectric heating is further classified
into radio frequency heating and microwave heating. The frequency
used in radio frequency heating is 300 kHz to 300 MHz, and in mi-
crowave heating is 300 MHz to 300 GHz [Met96]. The reason why di-
electric heating is distinguished by the applied frequency is because at
radio frequency the ionic conduction mechanism dominates the loss,
whereas at microwave frequency the dipole relaxation is more im-
portant [Met96] [MM83]. In industry, the operating frequency of mi-
crowave heating is defined by ISM (the industrial, scientific and medi-
cal) frequencies as 915 MHz or 2.45 GHz (in Europe). Higher frequen-
cies like 24.15 GHz could also be used, but it has to be verified with
respect to special practical or theoretical advantages [Feh09].

When a dielectric material is put into an alternating electric field, the
movements of permanent dipoles and free ions or ionic species are
both affected, resulting in two different loss mechanisms: the dipole
relaxation and the ionic conduction. In an alternating electric field,
dipoles will rotate their orientations around equilibrium status to fol-
low the external electric field, which is called dielectric polarization
[GC99] such as illustrated in figure 2.2. Due to the time needed for
the rotation, the response of re-orientation following external electric
field is not instantaneous. At low frequencies, the dipoles have suffi-
cient time to follow the direction altering of the electric field. There is
little heat generated due to frictions during the rotation process, and
most of the energy from the external electric field is directly stored in
the dielectric.

As the frequency increases, the time left for the rotation gets less and
less and finally it is shorter than the time needed for the rotation. It
causes the dipole re-orientation lags the external electric field and this
delay is called dipole relaxation [HS92]. In this case, the dipole align-
ment within the dielectric is broken and molecules collides with each
other more and more. Correspondingly, frictions get larger and more
heat is generated during the re-orientation process. As the frequency
further increases, a critical point is reached where the rate of direc-
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tion altering of the external electric field is so high that the dipole
re-orientation fails to follow. As a consequence the friction becomes
smaller and the generated heat is also less.

External electric field E

+
-

-

+

-

+

-

Dielectric material

+

- +
-

+

-

+

Dipole

Figure 2.2. Dipole polarization of dielectric.

The above interpretation was firstly formulated by the physicist Peter
Debye [Aru10], using the well-known complex permittivity equation
[GC99], such as

ε(ω) = ε′(ω)− jε′′(ω) = ε∞ +
εs − ε∞
1 + jωτ

, (2.2)

where ε(ω) is the complex permittivity of a dielectric as a function of
angular frequency ω = 2πf , ε′(ω) and ε′′(ω) are the real and imagi-
nary part of ε(ω) respectively. The parameter εs is the permittivity of
the material at low frequencies, ε∞ is the permittivity of the material
at very high frequencies. The relaxation time τ represents the time
of form and decay of the polarization within the dielectric when the
external electric field is applied and vanished respectively.

From the above equation, it can be derived that

ε′ = ε∞ +
εs − ε∞

1 + (ωτ)
2 ,

ε′′ =
ωτ (εs − ε∞)

1 + (ωτ)
2 .

(2.3)
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Figure 2.3. Amplitudes of ε′ and ε′′ at different frequencies [Met96].

According to above equations, the varying curves of ε′ and ε′′ are
shown in figure 2.3.

Intuitively, the real amplitude ε′ can be considered as the in-phase re-
sponse with the external electric field

−→
E , which defines the amount

of energy that can be stored within the dielectric and does not cause
energy loss. The imaginary amplitude ε′′ can be considered as the
response that has 90 ◦ phase shift with

−→
E , which determines the

amount of energy dissipation from the external electric field and the
heat generation within the dielectric. Correspondingly, the density
of power dissipated into the dielectric due to the dipole relaxation is
[Mer98]

pd =
1

2
ωε0ε

′′(ω)
∥∥∥−→E∥∥∥2 , (2.4)

where ε0 = 8.85×10−12F/m is the permittivity of vacuum. It is evident
from above equations as well as figure 2.3 that f0 = 1/τ is the critical
point where the dipole polarization fails to follow the direction change
of
−→
E . Therefore it is more efficient to use microwaves with frequencies
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close to f0 for heating. For different dielectric materials, the frequency
f0 is different. Many dielectric materials have f0 locating between 0.8
GHz ∼ 3 GHz, and that is why the frequencies for industrial heating
are 915 MHz and 2.45 GHz.

Besides dipole relaxation, there is another heat generation mechanism
of microwave heating: ionic conduction. Ionic conduction is the move-
ment of free ions or ionic species under the influence of external elec-
tric field, within a solid (such as structurally disordered crystalline
solids) or aqueous solutions (such as solution of salts) [Tul07]. It is
essentially similar with the electronic conduction of conductors, ex-
cept the moving particles are ions instead of electrons. The energy is
transformed from the electric field to the material and an amount of
heat is generated. The ionic conduction loss is characterized by an
equivalent dielectric conductivity σd, and the corresponding heating
power density can be represented as [Met96]

pc =
1

2
σd

∥∥∥−→E∥∥∥2 (2.5)

Combining above two loss mechanisms, the overall microwave heat-
ing power density is expressed as [Met96]

pmw = pd + pc =
1

2
σe(ω, T )

∥∥∥−→E∥∥∥2 ,
σe(ω, T ) :=σd + ωε0ε

′′(ω, T ),
(2.6)

where σe(ω, T ) is the effective electrical conductivity. The total effec-
tive loss factor is defined as [Met96]

ε′′e (ω, T ) :=
σe(ω, T )

ωε0
=

σd
ωε0

+ ε′′(ω, T ), (2.7)

which represents the microwave energy absorbing ability of a dielec-
tric material. The effective loss factor for fixed temperature is shown
in figure 2.4, which gives a clear impression about the influences
of different loss mechanism at different frequencies. In this disser-
tation, the effective electrical conductivity σe(ω, T ) is considered as a
parameter σe(T ) that relies on only the temperature T . Because it is
assumed in the dissertation that the microwave frequency is fixed at
2.45 GHz.
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Figure 2.4. Effective loss factor due to the dipole relaxation and the ionic con-
duction losses [Met96].

2.2. Structure of HEPHAISTOS

HEPHAISTOS is a giant microwave heating system equipped with
spatially distributed feeding sources (see figure 2.5). The size of a
standard HEPHAISTOS module is about 180 cm × 155 cm × 110 cm,
which is comparable to large industrial autoclaves (such as in figure
2.5b) and much larger than other microwave heating systems used
anywhere else [lar]. More important, multiple HEPHAISTOS mod-
ules can be integrated into one large heating system, which is flexible
to deal with large-scale workpieces.

Compared with other microwave heating systems, HEPHAISTOS
is much more complex. It not only has a complicated hardware
structure, but also consists of a sophisticated process control system
and combined temperature measurement techniques. In general, the
whole HEPHAISTOS system can be divided into three parts, indicated
by three different colors in figure 2.6. These three parts are introduced
in the following of this chapter.
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(a) Photo of HEPHAISTOS. (b) Autoclave in CFRP curing [aut].

Figure 2.5. Comparison between HEPHAISTOS (a) and an autoclave (b).
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Figure 2.6. Schematic setup of HEPHAISTOS [Feh09].

2.2.1. Microwave Heating System

The structure of a typical microwave heating system is shown in fig-
ure 2.7. It consists of three parts, including a microwave generator, a
waveguide and a resonant cavity. Since HEPHAISTOS is a distributed
microwave heating system, it has multiple microwave generators and
waveguides. Microwaves generated by each microwave generator
will be transmitted through the corresponding waveguide, fed into
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the same resonant cavity, and finally absorbed by the heat load. The
functions of individual parts are explained in the following.

Heated 
load

Microwave 
generator

Microwave cavity

Waveguide

Microwaves

Figure 2.7. Structures of a normal microwave heating system.

Microwave Generator

A microwave generator is comprised of a power supply system and a
microwave source. The power supply system provides the electrical
energy to the microwave source, and the microwave source uses the
electrical energy to generate microwaves and propagate them further
to the succeeded equipments.

There are mainly two types of microwave sources, which are mi-
crowave tubes (vacuum devices) and solid-state devices. Microwave
tubes are the most basic and fundamental microwave sources. There
are many different types of microwave tubes, such as klystrons, mag-
netrons, gyrotrons and traveling-wave tubes [Jon98]. Microwave
tubes have been widely used in various industrial applications, es-
pecially for those requiring high power or high frequencies [Poz09].
Compared with microwave tubes, solid-state devices normally have
smaller size, lighter weight and smaller frequency shifts. The main
limits of solid-state devices are that they could not generate mi-
crowaves of high power or high frequencies. Therefore solid-state de-
vices are mainly applied for low to moderate powers at low to mod-
erate frequencies. The average output power versus frequency perfor-
mance of the microwave tubes and the solid-state devices is shown in
figure 2.8.

23



2. Introduction of HEPHAISTOS
TREW: HIGH-FREQUENCY SOLID-STATE ELECTRONIC DEVICES 641

Fig. 4. Average RF output power versus frequency for various electronic devices (courtesy of the Naval Research Laboratory).

function of bandgap energy and wide bandgap semiconductors
are desirable for power applications. Semiconductors, such as
SiC and GaN, show significant potential for these applications.

Electronic devices designed for microwave and RF applica-
tions operate in a transit-time mode and are scaled in size by
frequency considerations. Under normal operation the electric
fields within the devices vary from low magnitude near the elec-
tron injection location to magnitude sufficient to produce elec-
tron velocity saturation in the charge control/modulation region.
Therefore, large current capability requires semiconductor ma-
terials that have high electron velocity. In general, both high
mobility and high saturation velocity are desirable for high RF
current. Traditional semiconductors such as Si and GaAs have
electron saturation velocities that are limited to about

cm/s, and this limits both the power that can be generated
and the frequency response of the device. Wide bandgap semi-
conductors have electron saturation velocities that are a factor
of two higher. The combination of high current and high voltage
capability make wide bandgap semiconductors very attractive
candidate materials for fabrication of high-power and high-per-
formance electronic devices [4].

IV. SOLID-STATE ELECTRONIC DEVICES

A large variety of semiconductor devices for high-frequency
applications have been proposed, fabricated, demonstrated,
and used in practical applications. A review of these devices
has been presented [5]. The present state-of-the-art RF power
performance of microwave solid-state devices is compared
to that for microwave tubes in Fig. 4. Solid-state devices
produce RF power of about 100 W in S-band and 1 W at 100
GHz. As indicated, the RF performance of solid-state devices
is significantly lower than obtained from electronic vacuum

tubes. The reduced RF power capability of solid-state devices
is due to 1) lower bias voltage that can be applied; 2) reduced
electron velocity in the semiconductor which produces reduced
current and; 3) a thermal limitation caused by the semicon-
ductor thermal impedance. The relatively low bias voltage at
which solid-state devices operate permit high reliability due to
reduced electric field stress, and the ability to use lithography
technology permits low fabrication costs. Solid-state device RF
output power can be increased by using power combining tech-
nology, although system RF output power is generally limited
to the 10’s to 100’s of kilowatt level in the microwave region.
For megawatt systems it is difficult to efficiently combine the
large number of devices necessary for practical systems.

1) Transistors: Three-terminal transistor structures can be
fabricated with a variety of geometries and operating character-
istics. Fundamentally, they all function by controlling the con-
ductivity of a conducting channel by establishment and mod-
ulation of an electrostatic barrier. However, the various tran-
sistor structures differ regarding the details of how the electro-
static barrier is formed, and how it modulates the channel con-
ductivity. Field-effect transistors are majority carrier devices,
where the modulation region controls majority carrier current,
and bipolar transistors are minority carrier devices where the
modulation region controls minority carrier current. The opera-
tion and performance of these devices are reviewed.

The first practical work on the development of FETs was re-
ported in patents by Lilienfeld in 1930 [6] and 1933 [7], and
reports by Stuetzer [8], [9] in 1950 and Shockley in 1952 [10].
The early devices demonstrated limited performance due to rel-
atively poor semiconductor material quality and an inability to
fabricate a gate electrode with fine line geometry. The realiza-
tion of high performance devices needed to wait for the ad-
vancement of epitaxial semiconductor growth technology and
the development of optical lithography to produce gate lengths

Figure 2.8. Power versus frequency performance of different solid-state de-
vices and microwave tubes [Tre05].

In HEPHAISTOS, magnetron [Poz09] is selected as the microwave
source, such as shown in figure 2.9. Magnetron is one of the most
popular microwave tubes used in industrial applications. Its working
principles are well explained in [Jon98] and [Gil11]. The reason why
magnetron is used in HEPHAISTOS is due to considerations of size,
cost, efficiency and most important, the ability to produce high power
microwave (700 W to 2 kW).

These magnetrons are directly connected with a number of power sup-
plies. In the old HEPHAISTOS cavity 3, power supplies with only
pulse DC output were applied. All magnetrons had to work in the
pulse mode (only ON and OFF), and different microwave power lev-
els were only realized by adjusting the ON/OFF time ratio via the
pulse width modulation (PWM) method [Bar01]. After the upgrade of
the whole system, the new HEPHAISTOS cavity 3 are equipped with
two different types of power supplies, such as shown in figure 2.10.
Both of them are able to operate the magnetron in the continuous-
wave (CW) mode, which means the microwave power can be adjusted
continuously without PWM.
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Permanent magnets

(a) Photo of a magnetron

CathodeResonant 
cavity

(b) Cross-section of a magnetron

Figure 2.9. Photos of Magnetron used in practice (a) and its cross-section (b).

The power supplies in the first two modules of HEPHAISTOS cavity
3 are standard-ripple power supplies [rip], which are sufficient to ful-
fill all requirements of normal microwave heating. Another type of
low-ripple power supplies is used in the third module, which can be
used in applications requiring faster and more accurate output power.

(a) Standard-ripple power supply. (b) Low-ripple power supply.

Figure 2.10. Power supplies used in the updated HEPHAISTOS cavity 3.
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Waveguide

The role of waveguides is to transmit the electromagnetic wave from
one point to another. In the microwave heating system, it is used to
propagate microwaves from the generator to the microwave cavity.
The waveguide is important for the whole microwave heating system,
because it directly determines how much power can be fed to the mi-
crowave cavity. There are a variety of different types of waveguides,
such as dielectric waveguides, coaxial cables, microstrips or hollow
metal pipes [HB01]. Hollow metal pipes are the most common one
used at microwave frequencies, such as in figure 2.11.

Figure 2.11. Hollow metal waveguides [web].

26

In HEPHAISTOS, there are two types of waveguides used. One is
the WR-340 waveguide, which is a rectangular hollow metal waveg-
uide used to transmit microwaves ranging from 2.20 GHz to 3.30 GHz
[BBG+03] (as in figure 2.12a). The other one is the slotted waveg-
uide, which acts as an antenna and omits the microwave to the exter-
nal space [ST12] (such as shown in figure 2.12b). Each magnetron
is directly mounted with a WR-340 waveguide, and every WR-340
waveguide is further connected to a slotted waveguide. The mi-
crowaves are transmitted from the microwave generator to the slot-
ted waveguide via the WR-340 waveguide, and then directly radi-
ated into the microwave cavity through the slots of the slotted wave-
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uide. Details about the waveguides design refer to [Mer98] [HB01]
and [Str07].

Receive the 
microwave  from 
the magnetron

Feed the microwave to 
the slotted waveguide

(a)

Microwave transparent material

(b)

Figure 2.12. The WR-340 waveguide (a) and slotted waveguide (b) used in
HEPHAISTOS

Microwave cavity

Microwave cavity is a type of resonator with a closed metal structure,
which is the main part of a microwave heating system [Mer98]. Mi-
crowaves transmitted from waveguides will propagate through the
cavity space, and they will also get reflected by the walls of the cav-
ity, or get absorbed by the load that is put within the cavity. The
microwave energy is gradually dissipated, and the load eventually
gets heated. A microwave cavity could be constructed into different
shapes, including rectangular, circular, hexagon (HEPHAISTOS), oc-
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tagon [LLHG14] and others. The shape of a microwave cavity signifi-
cantly influences the electromagnetic field modes that can exist within
the cavity. According to the number of excited modes, the microwave
cavity can be classified into the following two types.

• Single mode cavity

The single mode cavity is designed to operate at a single resonant
mode, which means the amplitude of this resonant frequency is
significantly larger than that of the others. For a single mode cav-
ity with the resonant frequency at f0, its size is normally limited
by the half wavelength λ0/2 (λ0 is the wavelength), e.g. 6.1 cm at
2.45 GHz. Because of the small size, single mode cavities are in-
appropriate to heat large-scale products, and not widely used in
industrial microwave heating. But on the other hand, for the same
power applied, the electric field strength and the corresponding
microwave heating power density in a single mode cavity is much
higher than a multimode cavity [MM83], therefore it is suitable to
heat low loss dielectric materials. In addition, due to the narrow
frequency band and simple geometry, the EM field distribution
within a single mode cavity can be determined analytically, which
gives direct guides of where and how to put the heated load to get
the desired heating characteristics [FBLI+95].

• Multimode cavity

Compared with the single mode cavity, the multimode cavity is
much more complex. In general, the size of a multimode cavity is
much larger than a single mode cavity, which gives the multimode
cavity the ability to handle a wide range of workpieces with dif-
ferent sizes. More important, a large number of different modes
can be excited within a multimode cavity, which leads to a more
uniform EM field distribution and heating pattern than in a sin-
gle mode cavity [HB01]. Due to these reasons, multimode cavities
have been dominantly used in industrial microwave heating ap-
plications [Mer98]. Although multimode cavities are convenient to
use, both design and analysis of multimode cavities are difficult.

A very important parameter for both single mode and multimode cav-
ities is the quality factor Q, which indicates how much energy is dis-
sipated compared to the total stored energy referring to the resonant
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2.2. Structure of HEPHAISTOS

frequency f0, or equivalently, the 3 dB bandwidth [HB01] within a cav-
ity regarding to this frequency. The quality factor Q of the mode n is
defined by [Mer98]

Qn = 2π
total energy stored in mode n
energy dissipated per cycle

= 2π
total energy stored in mode n× resonant frequencyfn

power dissipated in mode n
,

(2.8)

or
Qn ≈

fn
∆f

, (2.9)

where ∆f is the 3 dB bandwidth defined as the frequency range with
half power of the resonant frequency fn.

Based on equation 2.8, the total quality factor Q of the whole cavity
can be further divided as [Mer98],

1

Q
=

1

QL
+

1

QW
+

1

QD
. (2.10)

where QL corresponds to the loss absorbed by the heated load, QW
corresponds to the loss due to the dielectric properties of the wall, and
QD consists of the diffraction loss leaking through unclosed parts of
the cavity.

HEPHAISTOS is a giant multimode microwave cavity. From figure
2.5, it is clear that it has a very unique hexagonal shape. According
to the simulation results in [Feh09], the electric energy density in the
hexagonal shape applicator is much more homogeneous than densi-
ties of other shapes (including octagon, heptagon, cylindric and cir-
cular). In other words, the unique hexagonal design is able to reduce
the EM field fluctuations and increase the EM field homogeneity over
most of the cavity volume, which is also helpful to get a more uniform
temperature distribution on the heated load [Feh09].

Unlike most of other microwave heating systems with only one
source, in HEPHAISTOS there are more than one microwave heating
sources per module. There are several advantages for using multiple
feeding sources at different locations, e.g. the improvement of the EM
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Figure 2.13. Cross section structure of HEPHAISTOS.

field uniformity due to the cross coupling of multiple sources [Dat01].
But the most important one is that, as stated in [MM83], the implemen-
tation of multiple feeding sources creates the opportunity of adjusting
the power so as to improve both the EM field and the temperature dis-
tributions, by the superposition of microwaves from different feeding
sources.

For the old generation of HEPHAISTOS, each module has 12 mi-
crowave generators as feeding sources, and the total power of 12 mi-
crowave generators is 10 KW. The locations of each slotted waveguide
are shown in figure 2.13 (from 1 to 12). In the upgraded HEPHAIS-
TOS cavity 3, the number of microwave generators is reduced to 6 per
module, and their locations are shown by the red labels in 2.13. With
the new power supplies, each source is able to provide maximum 2
KW microwave power. Therefore the total power of one module is
increased from 10 KW to 12 KW. This upgrade not only increases effi-
ciency of each generator, but also reduces the area of unclosed parts of
the cavity, which lowers the quality factor Q and further enhances the
efficiency of the whole cavity.
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2.2. Structure of HEPHAISTOS

2.2.2. Process Control System

The process control system of HEPHAISTOS mainly contains two
parts, including a LabVIEW [lab] [TK06] based control interface and
another MATLAB [mat] [EEE97] based temperature control system.
The whole diagram of the process control system is shown in figure
2.14.

HEPHAISTOS 
Cavity

LabVIEW based 
Control Interface

Remote Control 
Interface (via TCP/

IP)

MATLAB based 
Temperature Control 

Functions

PC 1PC 2

Measured 
temperatures

Temperatures and 
other required data

Temperatures and 
other required data

Calculated control inputCalculated control inputCalculated control input

Figure 2.14. Diagram of the process control system.

The LabVIEW based control interface directly communicates with the
HEPHAISTOS cavity using INTERBUS [FT88] (used in the current
HEPHAISTOS cavity) or PROFINET [JF05] (used in the Hybrid HEP-
HAISTOS cavity [Gmb14]) serial protocol. It receives the measured
temperature values from the cavity (or from the infrared camera in the
other case), and sends different parameter settings and commands to
the cavity, like the control input, heating time, and target temperature
value. Simple temperature control schemes, such as manual control
(manually set power of each source) and PID control, can be directly
realized in the LabVIEW using its VIs [lab] and toolboxes. The front
panel of the interface is demonstrated in figure 2.15.

For more complicated temperature control methods, such as all the
adaptive and the intelligent control methods aforementioned, they
have to be called from a remote MATLAB based control system. That
is because LabVIEW as a graphical programming language is not effi-
cient to deal with high dimensional matrix computation tasks, which
are easily to be done in MATLAB. These two parts are running in dif-
ferent PCs in order to guarantee the sufficient computation resources
for both of them. During the heating process, they communicate
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through a remote control interface, which is shown in figure 2.16.
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Figure 2.15. Labview based control interface.

Figure 2.16. Remote control interface of HEPHAISTOS.
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The remote control interface functions like a transfer station. It re-
ceives different types of data, including the temperature values, pre-
diction length (used in MPC) and other required information, from
the LabVIEW control interface, and send them to the MATLAB con-
trol system. After the new control input is calculated by the MATLAB
control system, the remote interface picks it up and further sends it to
the LabVIEW control interface. The communication between the re-
mote interface and the LabVIEW control interface is done through the
TCP/IP protocol.

2.2.3. Temperature Measurement Approaches

In HEPHAISTOS, there are three different temperature measurement
approaches, including the thermocouple, fiber optic sensor and in-
frared camera. The infrared camera is put right above the metallic
table, which is used to get the whole temperature profile of the heated
workpiece during the heating process. Both thermocouples and fiber
optic sensors can be fixed at any locations using microwave transpar-
ent tapes, to measure the surface temperature of the workpiece.

Different temperature measurement approaches have different perfor-
mance in practical experiments. For thermocouples, their presence
in the microwave cavity significantly influence the EM field, lead-
ing to thermal instability and microwave breakdown [PCB+01]. Even
shielded with aluminium or copper backed tape, the shielding itself
will be heated which also affects the measurement accuracy of ther-
mocouples. Compared with thermocouples, the fiber optic sensor is
much more convenient that can be directly used without any shield-
ing or other processing. But the main problem is its large time delay
during the temperature measurement.

The figure 2.17 demonstrates the time delay occurred in temperature
measurement using fiber optic sensors. After the microwave sources
are switched on, the temperatures measured by fiber optic sensors
stayed constant for quite a period. The time between switching on
heating power and temperature changes is around 8 s to 10 s. What
is even worse is that this time delay value is not fixed. It differs from
time to time and from sensor to sensor. This time delay brings extra
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Figure 2.17. Comparison of measurement delays using the fiber optic sensor
(FOS) and the infrared camera (IRC).

difficulties to both the control of the system and the temperature mea-
surement. There is no way to eliminate or reduce its influences from
neither hardware nor modeling aspects.

The above mentioned problems of thermocouples and fiber optic sen-
sors can be easily overcome by the infrared camera. The temperature
measurement using the infrared camera is contactless, and it can be di-
rectly implemented without any additional processing. As also shown
in figure 2.17, the time delay of the infrared camera is so small that
can be neglected in practice. The only difficulty regarding the infrared
camera is the temperature mismatch caused by the metallic mesh that
is put in between the camera and the cavity.
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In principle, the metallic mesh is designed to block the microwave and
keep the safety of the infrared camera. But during the heating process,
this mesh absorbs parts of the infrared signals from the workpiece,
and meanwhile it also emits a certain amount of infrared signals. The
infrared signals received by the infrared camera are partly from the
workpiece and partly from the mesh itself. As a result, the tempera-
ture directly measured by the infrared camera is different from the real
temperature of the workpiece. This difference is proportional to the
temperature difference between the workpiece and the mesh. There-
fore when the workpiece is heated to a high temperature and the mesh
stays cool, the temperature values measured by the infrared camera
will be significantly differ from the real temperatures. In order to get
the accurate temperature measurements, this influence has to be com-
pensated.

According to the above principles, the mesh can be considered as an
infrared window [Gru03]. Once the emissivity of the workpiece, the
transmittance of the mesh and the temperature of the mesh are known,
the measured temperature can be compensated using the method as
described in [Mad04]. In HEPHAISTOS, the compensation functions
are included and applied using the FLIR ThermoVision LabVIEW
Tool-kit [fli].
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Figure 2.18. Temperature comparison between FOS and IRC (after compensa-
tion).

After the compensation, the temperature measured by the infrared
camera is further verified. Temperatures of three different locations
on the surface of a workpiece were measured by both fiber optice sen-
sors and the infrared camera. The corresponding temperature curves
and fitting results are shown in figure 2.18.

From the result in figure 2.18, it is clear that after the compensation the
temperatures measured by the infrared camera are close to the temper-
atures measured by the fiber optic sensors. The differences between
them are limited within ±2◦C except the mismatched region, which
is labeled in both figures in 2.18. This region is caused by the fact
that when the temperatures have large changes (see figure 2.18a), the
response of the infrared camera is much faster than the response of
fiber optic sensors. In other words, this mismatched region is gener-
ated because of the time delay of fiber optic sensors. Due to the fast
and accurate temperature measurement results, the infrared camera is
mainly used in the following experiments.
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3. Modeling Microwave
Heating

Based on the introduction to microwave heating and HEPHAISTOS in
the previous chapter, the mathematical models of the microwave heat-
ing process in HEPHAISTOS are built in this chapter. A brief introduc-
tion of mathematical modeling is given first, followed by two different
modeling approaches, the grey-box modeling and the black-box mod-
eling. For each modeling approach, the corresponding system identi-
fication (SID) algorithms, which are used to estimate the unknown pa-
rameters in the model, are also explained. Both approaches have been
implemented, to identify the most suitable modeling scheme for the
temperature control system of HEPHAISTOS. The performance com-
parison can be found in chapter 5.

In this dissertation, we are focusing on controlling and improving the
surface temperature distribution of a rectangular dielectric foil setup,
such as shown in figure 3.1.

Two assumptions have been made:

1. The load receives most of electromagnetic energy (heating energy)
from the top surface.

2. The thickness of the load is much smaller than the wavelength of
the microwave (� 12.5 cm).

These two assumptions guarantee that the surface temperature distri-
bution of the load is equivalent to the temperature distribution within
the load (similar assumptions are used in [CRB08] and [BRS01]). In
other words, the temperature difference in the vertical direction (z-
direction as in figure 3.1) is sufficiently small. Thus the heat conduc-
tion on the vertical direction can be neglected, which simplifies the
entire model and following derivations. If the surface temperature
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Figure 3.1. Sketch of microwave heating setup.

distribution is controlled and improved, the inner temperature distri-
bution can be controlled and improved consequently.

Besides above two assumptions, it also should be noted that the heat
conduction effect caused by the tool (in figure 3.1) is not included in
the modeling process. In many cases the heat conduction effect caused
by the tool has a significant influence to the final temperature distri-
bution of the load. It directly determines the accuracy of the control
model (constructed in this chapter), even the controllability [Dor95] of
the entire microwave heating system. However, many practical fac-
tors have to be taken into account to fully analyze this influence and
there is no appropriate way to include it in the control model. Influ-
ences of tools made of different materials are compared and explained
in chapter 5.

3.1. Mathematical Modeling

In general, the objective of mathematical modeling is to identify ac-
curate and comprehensive mathematical concepts or equations to de-
scribe the dynamics of a system. Based on the mathematical model,
the future behaviors of a system can be predicted, and different
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properties of the system can be analyzed. As mentioned in chap-
ter 1, a good mathematical model should be able to both describe
the main characteristics of a system, but also keep the complexity at
a low level. Depending on the nature of different systems, the corre-
sponding mathematical models are distinguished into static, dynamic,
explicit, implicit, deterministic, stochastic or other models. Essen-
tially there are three main categories of mathematical modeling ap-
proaches.

Black-box modeling

In black-box modeling [Lju97], as the name suggests, the investigated
system is treated as a completely unknown object. No physical or any
other kind of prior knowledge is available, and the whole system only
consists of three parts: the input, the output and the transfer relation-
ship (function) such as in figure 3.2. In a black-box, the choice of input
and output components is based on observations and requirements
accordingly. The critical task is to select an appropriate model and
function structure [JHB+95]. For example, for a system with multiple
input and output variables, the state-space model [Lju97] is preferable
to the transfer function formed model [Lju97]. The principle of select-
ing the right model structure is to guarantee that the main features of
the system can be reflected by the model. Besides, the number of as-
sumptions should be as few as possible. Normally the model structure
is chosen on the basis of experimental data or empirical knowledge
[SZL+95].

Black-box Model 
(unknown function)

OutputInput

Figure 3.2. Diagram of black-box modeling.
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White-box modeling

The white-box modeling is the opposite of black-box modeling. In
a white-box system, all properties and details of the system are well
defined by first principles, and system parameters are also perfectly
known [JHB+95]. Although white-box modeling is theoretically clear,
it is rarely used to solve real problems. In many cases the white-box
model is too complicated or even impossible to implement and solve
within a given time.

Grey-box modeling

Grey-box modeling is a combination of the black-box and the white-
box modeling, where not all but a certain part of the physical insight
is available [JHB+95]. The model structure can be directly determined
by prior knowledge and physical insight, but many system param-
eters still remain unknown. These unknown parameters have to be
estimated using experimental data via either online or offline system
identification (SID) methods. In many cases, the grey-box model is
sufficiently accurate to interpret the relationship between inputs and
outputs of the system, without going into unneeded details.

A pure white-box system seldom exists in practice, therefore for real
problems, the black-box modeling and the grey-box modeling are
mainly used. Both of them have their advantages and disadvantages.
Black-box modeling is essentially more flexible and it can be applied
to all kinds of systems. In theory, black-box modeling can reach arbi-
trarily high accuracy given an adequate amount of experimental data
[JHB+95]. No other knowledge or additional assumptions are needed.
But on the other side, the performance of a black-box model depends
on many factors, which means the model itself has to be tuned and
optimized to get an acceptable performance.

For instance, as one of the most popular black-box modeling meth-
ods, the neural network (NN) method has been implemented in many
areas. The performance of a neural network is determined by sev-
eral components, such as the number of hidden layers or the num-
ber of nodes in each hidden layers. There is no sophisticated guide
how to choose these elements. All elements have to be compared and
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adjusted according to the specific situation, which could take a long
time and require extra efforts. Although black-box modeling has great
potential to achieve a good performance, it is normally considered
as the last resort and only utilized when no alternative is available
[Lju97].

In comparison with black-box modeling, the number of unknown pa-
rameters and the amount of experimental data required in grey-box
modeling are generally less. Moreover, the first principles used in
grey-box modeling also give certain physical interpretations to the
parameters being estimated, which double-check the estimation ac-
curacy and help to understand the internal physical properties of the
system. However, in many cases the first principles are still too com-
plicated to be directly applied or not complete to cover all dynamics
of the original system.

In order to identify the most suitable model for the microwave heating
process and make HEPHAISTOS adaptive to different heating scenar-
ios, both grey-box and black-box modeling approaches are applied in
this dissertation.

3.2. Grey-box Modeling

There are mainly three procedures to apply the grey-box modeling ap-
proach. The first step is to identify the physical principles that govern
the entire energy exchange process. If necessary, certain simplification
and approximation have to be implemented to transfer the original
principles into controllable forms. The last step is to organize and dis-
cretize the resulted models, in order to make them suitable for the
following controller design.

3.2.1. First Principles

For any unit cell on the surface of the heated load such as in figure 3.1
with size of l × l × l (e.g. l =1 cm), the complete energy (temperature)
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changing equation can be derived according to the law of conservation
of energy [LNS04], such as indicated by the equation
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Net amount of
absorbed power Pab

= Dissipated power due to heat convection Pcv

+ Dissipated power due to heat radiation Prd

+ Dissipated/heating power due to heat
conduction Pcd

+ Microwave heating power Pmw.

(3.1)

Each element in the above equation can be calculated as follow-
ing.

• Net amount of absorbed power

The net amount of absorbed power Pab within this unit cell is rep-
resented by [LNS04]

Pab = ρcp
dT

dt
· l3, (3.2)

with

ρ : mass density, kg/m3

cp : specific heat per unit mass at constant pressure, J/ (K · kg)

• Dissipated power due to heat convection

The power flux density of convective heat transfer pcv (W/m2) is
given by Newton’s Law of cooling [Win99], such as

pcv = −h(T − Ta), (3.3)

where T − Ta is the temperature difference between the load and
the surrounding air flow (Ta). The parameter h is the convection
heat transfer coefficient (W/

(
m2 ·K

)
), which is determined by the

geometry of the load, the velocity of the air flow, the angel between
the surface and air flow and other elements. The negative sign
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indicates the heat is flowing from the load to the surrounding air.
According to equation 3.3, the dissipated power due to the heat
convection Pcv can be calculated as

Pcv = pcv · l2 = −h(T − Ta) · l2, (3.4)

where l2 denotes the area of the contacting surface between the cell
and the surrounding air.

• Dissipated power due to heat radiation

The maximum radiation flux density prd from a black surface is
defined by the Stefan-Boltzmann Law [LNS04], which is

prd = −σ′T 4, (3.5)

where σ′ = 5.669×10−8W/
(
m2 ·K4

)
is the Stefan-Boltzmann con-

stant. But in practice for a setup as in figure 3.1 with a non-black
surface, where the load is completely surrounded by a much larger
volume of air, the flux density prd can be also calculated by the
equation [LNS04]

prd = −%σ′(T 4 − T 4
a ), (3.6)

where % is the emissivity of the surface (0 ≤ % ≤ 1, 1 for black sur-
face), indicating the radiation ability of the material [Sie01]. The
dissipated power due to the heat radiation Prd can be similarly rep-
resented as

Prd = prd · l2 = −%σ′(T 4 − T 4
a ) · l2. (3.7)

• Dissipated/heating power due to heat conduction

According to aforementioned assumptions 1 and 2, the provided
or dissipated power by the heat conduction can be decomposed
into the components in the x- and y-directions [LNS04], such as

Pcd =
∂

∂x

(
κxl

2 ∂T

∂x

)
· l +

∂

∂y

(
κyl

2 ∂T

∂y

)
· l, (3.8)

where κx and κy indicate thermal conductivities in the x- or y-
direction, respectively. If the heated load has the same thermal con-
ductivity in different directions like κx = κy = κ, then the above
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term can be further written as

Pcd =
∂

∂x

(
κxl

2 ∂T

∂x

)
· l +

∂

∂y

(
κyl

2 ∂T

∂y

)
· l

=
∂

∂x

(
κ
∂T

∂x

)
· l3 +

∂

∂y

(
κ
∂T

∂y

)
· l3

= ∇ · (κ∇T ) · l3,

(3.9)

where ∇ is the two-dimension differential operator. If the sign of
∇ · (κ∇T ) is positive, the energy goes from other parts of the load
to this cell, and vice versa.

• Microwave heating power

According to equation 2.6, the microwave heating power density
is written as

pmw =
1

2
σe(T )

∥∥∥−→E∥∥∥2 , (3.10)

where σe(T ) is the electrical conductivity of the heated load at tem-
perature T (equation 2.6). The electric field strength as well as
the entire EM field distribution is determined by the well-known
Maxwell’s equations [Mer98] [Y+66]. Unlike numerical simula-
tion approaches, the exact solutions of the Maxwell’s equations are
not required for the temperature control system. Instead the mi-
crowave heating power densities are approximated and estimated
using different system identification methods that will be intro-
duced later this chapter. For a small cell as defined in figure 3.1,
it is assumed that the electric field is constant within the cell, and
correspondingly the microwave heating power is given by

Pmw = pmw · l3. (3.11)

Replacing the corresponding terms in equation 3.1 by above expres-
sions, there is the complete heat transfer equation for any location (cu-

44

bic cell) on the surface of the heated load
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Pab︷ ︸︸ ︷
ρcp

dT

dt
· l3 =

Pcd︷ ︸︸ ︷
∇ · (κ∇T ) · l3

Pcv︷ ︸︸ ︷
−h(T − Ta) · l2

Prd︷ ︸︸ ︷
−%σ′(T 4 − T 4

a ) · l2

+
1

2
σe(T )

∥∥∥−→E∥∥∥2 · l3︸ ︷︷ ︸
Pmw

.

(3.12)

It should be noted that in the above equation the power absorption or
dissipation is already reflected by the sign of individual terms.

3.2.2. Approximation and Simplification

The above equation 3.12 is a complicated parabolic partial differential
equation (PDE). This equation can be only solved in special cases like
the one-dimensional scenario. For a microwave heating system like
HEPHAISTOS, where the electromagnetic field distribution is com-
plex and varying all the time during the heating, a general solution is
impossible to be obtained. In order to make equation 3.12 suitable for
a control system, approximation and simplification have to be done
here, regarding different terms on the right-hand side.

Approximations of the thermodynamic terms

From equation 3.12, the overall dissipated power can be deduced,
such as

Pdiss = Pcd + Pcv + Prd

= ∇ · (κ∇T ) · l3 − h(T − Ta) · l2 − %σ′(T 4 − T 4
a ) · l2,

(3.13)

where the three terms on the right-hand side correspond to the power
of conduction, convection and radiation, respectively. A very effective
scheme to approximate this heat loss part is to ignore the rate of con-
duction and only keep the rate of convection and radiation, because
the effect of conduction is quantitatively much smaller than the effect
of the convection or the radiation.

45



3. Modeling Microwave Heating

For instance, a rectangular dielectric foil is heated to 350 K, and the
temperature of surrounding air is 300 K. For the dielectric materi-
als, it is assumed the corresponding heat conductivities are below 10
W/(m ·K). For example, the conductivity of silicon rubber (the mate-
rial that is mostly used in our experiments) is between 0.2 W/(m·K) to
1.3 W/(m · K) [Sil12], and the conductivity of CFRP using epoxy ma-
trices is 5 W/(m ·K) to 7 W/(m ·K) in plane [Tia11]. The second spa-
tial derivative of the temperature is difficult to be defined. Based on
the moderately homogeneous EM field distribution within HEPHAIS-
TOS, it is feasible to use ±0.1K/cm2 as the second spatial derivatives.
Other parameters are assumed as

% = 0.9, h =20 W/(m2 ·K),

Using above values, for a simple cell on the surface (1 cm × 1 cm × 1
mm) the rates of thermal conduction, convection and radiation can be
calculated as ∣∣Pcd

∣∣ < 0.01 W,

Pcv = − 0.1 W,

Prd = − 0.035 W.

(3.14)

Above results show that the dissipated power of either thermal con-
vection or thermal radiation is much larger than that of thermal con-
duction, therefore the thermal conduction term in equation 3.13 can
be omitted. Furthermore, the dissipated power of both thermal con-
vection and thermal radiation are proportional to the temperature dif-
ference T − Ta and the area of the unit cell l2. In this case, the overall
dissipated power is rewritten as

Pdiss ≈ Pcv + Prd

≈ − h̃(T ) (T − Ta) · l2,
h̃(T ) := h+ %σ′(T 2 + T 2

a ) · (T + Ta),

(3.15)

where h̃(T ) is defined as the overall power dissipation coefficient that
contains effects of both thermal convection and thermal radiation.
Substituting the above equation 3.15 into equation 3.12, the resulted
system models has a similar ARMAX form like the models used in
[RCVI99] and [SBA00].
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Approximations of the microwave heating term

Compared with the heat loss part, the approximation of the mi-
crowave heating term is more difficult, because of the complex mi-
crowave heating power superpositions. In general, there are two types
of microwave power superposition principles. The first power su-
perposition principle corresponds to the situation when the EM fields
from different sources are incoherent. In this case, the instantaneous
microwave heating power of each source is varying, but the aver-
age heating power is constant. Therefore the superposed heating
power is equivalent to the addition of heating power of individual
sources.

For instance, assuming there are two microwave heating sources, the
electric fields from two sources at the same location n are

−→
En,1 and−→

En,2, respectively. The heating power from the two sources are repre-
sented by

Pn,1mw ∝
∥∥−→En,1

∥∥2, Pn,2mw ∝
∥∥−→En,2

∥∥2.
Then the superposed heating power [BPJD99] is

Pnmw = Pn,1mw + Pn,2mw ∝
∥∥−→En,1

∥∥2 +
∥∥−→En,2

∥∥2. (3.16)

For HEPHAISTOS, considering multiple heating sources and control-
lable feeding power, the total effective microwave heating power at
the location n can be written as

Pnmw =

M∑
m=1

umP
n,m
mw , (3.17)

where um (1 ≤ m ≤ M ) stands for the portion of heating power from
them-th feeding source andPn,mmw is the maximum heating power from
them-th source to the n-th location. The above equation 3.17 is rewrit-
ten in a matrix multiplication form as

Pnmw = Pn
mwU, (3.18)

with

U := [u1, u2, . . . , uM ]T,

Pn
mw := [Pn,1mw , P

n,2
mw , . . . , P

n,M
mw ],
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where U is the control input vector that is used to adjust the mi-
crowave heating power and corresponding heating rate.

The scalar superposition rule is simple to implement and control,
which is the main approximation approach used in former researches
about temperature controller design of microwave heating, such as
[RMTV85] and [SBA00]. Since the above expression is a linear super-
position, it is named as the linear microwave heating power approxi-
mation.

Besides the scalar addition rule, there is another principle of heat-
ing power superposition, which deals with the situation when all
EM fields from different sources are coherent. When the EM fields
have the same frequency and constant phase differences between each
other, the microwave heating power of different sources superposes
following the rule of vector addition. Using the same example as in
equation 3.16, the superposed electric field at the location n can be
represented by the equation

−→
En =

−→
En,1 +

−→
En,2,

and the corresponding total heating power [BPJD99] is

Pnmw ∝
∥∥−→En

∥∥2 =
∥∥−→En,1

∥∥2 +
∥∥−→En,2

∥∥2 + 2 ·
∥∥−→En,1

∥∥ · ∥∥−→En,2
∥∥ cos Φ,

(3.19)

where Φ is the phase difference between
−→
En,1 and

−→
En,2. While cos Φ ≥

0, the superposition is constructive; otherwise while cos Φ < 0, the
superposition is destructive.

Equation 3.19 can be extended to a more general case like HEPHAIS-
TOS. Assuming there areM microwave heating sources, for each heat-
ing source m, its radiated electric field at the location n is denoted by
−→
En,m, which is defined as

−→
En,m := En,mx

−→ex + En,my
−→ey + En,mz

−→ez , (3.20)

where En,mx (En,my , En,mz ) and −→ex (−→ey , −→ez ) are the amplitude of electric
field component and unit vector in the x (y, z) -direction, respectively.
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−→
En,m = En,m :=

 En,mx
En,my
En,mz

 , (3.21)

with

−→ex = ex :=

 1
0
0

 , −→ey = ey :=

 0
1
0

 , −→ez = ez :=

 0
0
1

 .
Therefore the overall superposed electric field at the location

−→
En can

be replaced by the vector En, such as

En =

M∑
m=1

vm ·En,m =

 Enx
Eny
Enz

 , (3.22)

where

Enx = v1En,1x + v2En,2x + · · ·+ vMEn,Mx ,

Eny = v1En,1y + v2En,2y + · · ·+ vMEn,My ,

Enz = v1En,1z + v2En,2z + · · ·+ vMEn,Mz ,

(3.23)

and vm (1 ≤ m ≤ M ) is the portion of amplitude of the electric field
from the m-th feeding source.

Defining the new vectors as

V =
[
v1, v2, . . . , vM

]T
,

En
x =

[
En,1x , En,2x , . . . ,En,Mx

]
,

En
y =

[
En,1y , En,2y , . . . ,En,My

]
,

En
z =

[
En,1z , En,2z , . . . ,En,Mz

]
,

(3.24)

the components in the vector En can be expressed as

Enx = En
xV, Eny = En

yV, Enz = En
zV. (3.25)
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Then there is∥∥∥−→En
∥∥∥2 = EnTEn

= Enx
2 + Eny

2 + Enz
2

=
(
En
xV
)T

En
xV +

(
En
yV
)T

En
yV +

(
En
zV
)T

En
zV

= VTEn
x
TEn

xV + VTEn
y
TEn

yV + VTEn
z
TEn

zV

= VT
(
En
x
TEn

x + En
y
TEn

y + En
z
TEn

z

)
V

(3.26)

The original microwave heating power Pnmw can be rewritten using
equation 3.26 as

Pnmw =
1

2
l3 σe(T ) ·

∥∥∥−→En
∥∥∥2

=
1

2
l3 σe(T ) ·VT

(
En
x
TEn

x + En
y
TEn

y + En
z
TEn

z

)
V

= VT [Φn
c (T )] V,

(3.27)

where the matrix [Φn
c (T )] is defined by

[Φn
c (T )] :=

1

2
l3 σe(T ) ·

(
En
x
TEn

x + En
y
TEn

y + En
z
TEn

z

)
. (3.28)

The matrix [Φn
c (T )] is a M × M symmetric square matrix, which is

the effective heating matrix at this location n, and V is the control
input vector that has to be calculated by a controller. In contrast to
the case of scalar superposition, the vector superposition rule is much
more complicated due to its high computation complexity. However,
it is accurate and effective to describe the power superposition of mi-
crowave heating systems with multiple feeding sources, as shown by
the simulation results in [BPJD99] and [THN01].

3.2.3. Formulation and Discretization

In this section, above approximations 3.15, 3.18 and 3.27 will be
further formulated and the resulted equations will be discretized, to
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make sure they can be directly used in the following controller de-
sign. For each location n, the original heat transfer equation 3.12 is
converted into two different forms, regarding different approxima-
tions. For the case of scalar superposition, the corresponding linear
heat transfer equation is shown as

ρcp
dTn

dt
· l3 = −h̃n(Tn) (Tn − Ta) · l2 + Pn

mwU, (3.29)

where Tn is the measured temperature at the n-th location, and
−h̃n(Tn) is the power dissipation coefficient. Defining the new vari-
able Y n = Tn − Ta, the above equation is rewritten as

ρcp
dY n

dt
· l3 = −ĥn(Y n) · Y n · l2 + Pn

mwU, (3.30)

with

ĥn(Y n) = h+ %σ′
[
(Y n + Ta)2 + T 2

a

]
· (Y n + 2Ta) (3.31)

In microwave heating applications, the temperatures of the load are
always changing along time. All temperature dependent variables in
equation 3.30, as well as the heating power vector Pn

mw and the con-
trol input vector U, can be written as time varying variables. There-
fore equation 3.30 can be formulated into a continuous-time equation,
such as

dY n(t)

dt
=
−ĥn(t)

ρcp l
· Y n(t) +

1

ρcpl3
·Pn

mw(t)U(t). (3.32)

From another point of view, in the above equation all these time-
varying parameters, e.g. Y n(t), represent not functions depending on
time, but rather values of vectors or matrices at the time t.

Defining

Anc (t) :=
−ĥn(t)

ρcp l
,

Bn
c (t) :=

1

ρcpl3
·Pn

mw(t)

=
[
Bn,1c (t), Bn,2c (t), . . . , Bn,Mc (t)

]
,

(3.33)
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then equation 3.32 is further transferred into

dY n

dt
= Anc (t) · Y n + Bn

c (t)U(t). (3.34)

Based on this single output model, a continuous-time MIMO model is
built as

dY

dt
= [Ac(t)] Y + [Bc(t)] U(t), (3.35)

where Y is the output vector defined as

Y =
[
Y 1, Y 2, . . . , Y N

]T
, (3.36)

and the state matrix and the output matrix are defined as

[Ac(t)] :=


A1

c(t) 0 · · · 0
0 A2

c(t) · · · 0
...

...
. . .

...
0 0 · · · ANc (t)

 ,

[Bc(t)] :=


B1,1

c (t) B1,2
c (t) · · · B1,M

c (t)

B2,1
c (t) B2,2

c (t) · · · B2,M
c (t)

...
...

. . .
...

BN,1c (t) BN,2c (t) · · · BN,Mc (t)

 .
(3.37)

Before above models can be used in real controller design, the last step
is discretization, because in practice the controller is always operated
in discrete-time. Different discretization methods exist and in this dis-
sertation the Euler method [Lju98] is applied. When the sampling time
∆t is a sufficiently small constant (1.5 s or even less), the temperature
changing rate on the left-hand side of equation 3.35 can be approxi-
mated by

dY

dt
≈ 1

∆t

(
Y(k + 1)−Y(k)

)
,

where k indicates the discrete time interval.
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The final linear discrete-time MIMO heat transfer model is

Y(k + 1) =
(

[IN ] + ∆t [Ac(k)]
)
Y(k) + ∆t [Bc(k)] U(k),

= [A(k)] Y(k) + [B(k)] U(k)
(3.38)

with

[A(k)] := [IN ] + ∆t [Ac(k)] =


A1(k) 0 · · · 0

0 A2(k) · · · 0
...

...
. . .

...
0 0 · · · AN (k)

 ,

[B(k)] := ∆t · [Bc(k)] =


B1,1(k) B1,2(k) · · · B1,M (k)

B2,1(k) B2,2(k) · · · B2,M (k)

...
...

. . .
...

BN,1(k) BN,2(k) · · · BN,M (k)

 .
(3.39)

and

An(k) = 1 + ∆t ·Anc (k), Bn,m(k) = ∆t ·Bn,mc (k). (3.40)

The matrix [IN ] is an identity matrix with the dimension N ×N . The
equation 3.38 indicates that the future temperature vector Y(k+ 1) at
time k + 1 can be determined by the current temperature vector Y(k)
and the control input vector U(k) at time k. Therefore the current
temperature vector Y(k) (equation 3.38) is written as

Y(k) = [A(k − 1)] Y(k − 1) + [B(k − 1)] U(k − 1), (3.41)

which will be used later (section 3.2.4) for the linear system identifi-
cation derivation.

Following the similar derivation process, a nonlinear discrete-time
MIMO model can also be constructed such as

Y(k + 1) = [A(k)] Y(k) + Ψ(k), (3.42)
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where Y(k) and A(k) are the same as defined in the linear model
(equation 3.41). The vector Ψ is a augmented column vector which
is defined as

Ψ(k) :=
[

Ψ1(k),Ψ2(k), . . . ,ΨN (k)
]T
,

Ψn(k) :=
∆t

ρcpl3
·VT(k) [Φn

c (k)] V(k), 1 ≤ n ≤ N.
(3.43)

In order to have a more clear notation, the discrete-time effective heat-
ing matrix [Φn(k)] is defined as

[Φn(k)] :=
∆t

ρcpl3
· [Φn

c (k)] , (3.44)

which leads to

Ψn(k) = VT(k) [Φn(k)] V(k). (3.45)

Similar to equation 3.41, the current temperature vector (equation
3.42) is represented as

Y(k) = [A(k − 1)] Y(k − 1) + Ψ(k − 1), (3.46)

which will be used for the nonlinear system identification.

The grey-box modeling approach starts from the very basic heat trans-
fer model, combining processes represented by equation 3.12. It ne-
glects minor influences (thermal conduction) and approximates com-
plex heating terms with computable expressions. In the end, two
discrete-time models (equations 3.41 and 3.46) are generated. If all
unknown matrices in the model, e.g. the matrix [A(k)], are accurately
estimated, the control input vector U(k) or V(k) can be calculated to
control the system for achieving the desired target.

3.2.4. Online System Identification

All unknown parameters and matrices in a system model can be esti-
mated using different system identification algorithms. With the esti-
mated parameters, the future behaviors of the system can be predicted
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and the system can be controlled accordingly. In order to get a good
control performance for the temperature control system of HEPHAIS-
TOS, the system identification algorithm used in our case needs to ful-
fill the following requirements:

• Implementation in a recursive or online form.

• Ability of dealing with high-dimensional systems.

• Ability of tracking time-varying behaviors.

• Guaranteed convergence and fast converging speed.

According to these four requirements, the exponentially weighted
recursive least squares (RLS) [Lju98], recursive Kalman filter (RKF)
[Lju98] and extended Kalman filter (EKF) [Lju98] [WVDM00] algo-
rithms were selected as the system identification algorithms, with re-
spect to the two different models (equations 3.41 and 3.46).

Linear Recursive System Identification

The task of the linear recursive system identification is to estimate the
value of matrices [A(k)] and [B(k)] in a online (recursive) form. In the
linear model (equation 3.41), both matrices are assumed to be time-
varying. Since there is no prior knowledge indicating the varying
trend of [A(k)] or [B(k)], the best choice is to assume both matrices
fulfill the following equations [ZL03]

[A(k)] = [A(k − 1)] + [ε1(k − 1)] ,

[B(k)] = [B(k − 1)] + [ε2(k − 1)] .
(3.47)

Both [ε1(k − 1)] and [ε2(k − 1)] are zero-mean white noise added at
time k − 1, and their covariance matrices are donated as [Ω1] and
[Ω2] respectively. At the current time k, the matrices [A(k − 1)] and
[B(k − 1)] can be estimated using the current temperature vector Y(k)
and historical data sets

{
U(k− 1), Y(k− 1), U(k− 2), Y(k− 2), . . .

}
.

Then the future matrices [A(k)] and [B(k)] can be predicted using
these estimations.

The system identification process applied here is done in a multiple-
input single output (MISO) way. In the beginning, the linear MIMO
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model (equation 3.41) has to be transformed into N different MISO
ARX models (AutoRegressive model with eXogenous inputs) [BJR13],
such as

Y n(k) = An(k − 1)Y n(k − 1) + Bn(k − 1)U(k − 1)

= θn(k − 1) Πn(k − 1), (3.48)

θn(k − 1) :=
[
An(k − 1), Bn(k − 1)

]
,

=
[
An(k − 1), Bn,1(k − 1), . . . , Bn,M (k − 1)

]
, (3.49)

Πn(k − 1) :=
[
Y n(k − 1), UT(k − 1)

]T
,

=
[
Y n(k − 1), u1(k − 1), . . . , uM (k − 1)

]T
, (3.50)

where Y n(k) is the true temperature value at time k, θn(k − 1) is the
augmented coefficient vector for the output Y n(k) with the dimension
1× (1 +M), and Πn(k − 1) is the augmented data vector with the di-
mension (1+M)×1. According to the assumptions made in equations
3.47, the coefficient vector θn(k) can also be represented as a varying
variable, such as

θn(k) =θn(k − 1) + ε(k − 1),

θn(k − 1) =θn(k − 2) + ε(k − 2),
(3.51)

where ε is a zero-mean white noise with the covariance matrix [Ω].
The first equation indicates that the future augmented coefficient vec-
tor θn(k) can be predicted based on the current θn(k − 1). The second
equations means that the current θn(k− 1) can be estimated using the
former vector θn(k − 2). The definitions of estimation and prediction
as well as other parameters used in the linear system identification can
be found in table 3.1.

In equation 3.48, both Y n(k) and Πn(k − 1) are known at time k. The
unknown augmented vector θn(k−1) has to be estimated, from which
both An(k − 1) and B(k − 1) can be obtained simultaneously. In prac-
tice, the real measured temperature value Y nr (k) is written as

Y nr (k) = Y n(k) + ς(k) = θn(k − 1) Πn(k − 1) + ς(k), (3.52)
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Definition Interpretation

θne (k − 1) = E
[
θn(k − 1)

∣∣Y nr (k)
] Estimation: expectation of

θn(k − 1) based on the
current measured
temperature Y nr (k)

θnp(k − 1) =

E
[
θn(k − 1)

∣∣Y nr (k − 1)
] Prediction: expectation of

θn(k − 1) based on the
former measured
temperature Y nr (k − 1)

ene (k− 1) = θn(k− 1)− θne (k− 1)
Estimation error between
θn(k − 1) and θne (k − 1)

enp(k− 1) = θn(k− 1)− θnp(k− 1)
Prediction error between
θn(k − 1) and θnp(k)

[Pn
e (k − 1)] =

E
[
ene (k − 1)

(
ene (k − 1)

)T] Covariance matrix of the
estimation error ene (k − 1)[

Pn
p(k − 1)

]
=

E
[
enp(k − 1)

(
enp(k − 1)

)T] Covariance matrix of the
prediction error enp(k − 1)

Table 3.1. Parameters and vectors used in the linear system identification

where ς(k) is the measurement error at time k. It is also assumed that
the measurement error has zero mean value and a covariance of σ2.
The currently available estimation of the temperature value is

Y ne (k) = θne (k − 2) Πn(k − 1), (3.53)

where θne (k − 2) is the former estimated coefficient vector. Following
the procedures in [KV86], the new estimation θne (k−1) can be obtained
using the following equation

θne (k − 1) = θne (k − 2) + Kn(k − 1)
[
Y nr (k)− Y ne (k)

]
, (3.54)
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where Kn(k − 1) is defined as the estimation gain vector at time k
with the dimension 1 × (1 + M). Equation 3.54 indicates that the
new estimation θne (k− 1) can be obtained using the former estimation
θne (k − 2) plus a correction term. This correction term is proportional
to the gain vector Kn(k − 1), as well as the difference between Y nr (k)
and Y ne (k). A brief illustration of the linear system identification is
represented by figure 3.3.

· Measure the temperature Yn(k)

· Estimate the vector θn(k-1) (An(k-1), Bn(k-1))

· Update θn
e (k-1) using θn

e (k-2)

· Consider θn
e (k-1) as θn(k) and use it for prediction of

Yn(k+1)

k-1 k+1k

Time

Yn
r(k-1) Yn

r(k) Yn
r(k+1)

U(k-1)

Available: Yn(k), U(k-1), θn
e (k-2); Target: θn

e (k-1)

U(k)

θn(k-1) θn(k)

Figure 3.3. Illustration of the linear system identification process.

Two linear recursive system identification algorithms have been ana-
lyzed and tested in our experiments.
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3.2. Grey-box Modeling

• Exponentially Weighted Recursive Least Squares (RLS)

The exponentially weighted recursive least squares (RLS) algo-
rithm is one of the most used algorithms in adaptive filtering and
system identification [Li08], for tracking time-varying parameters.
Given all observations

(
Y n(i),Πn(i)

)
from the beginning (i = 1)

to the current time (i = k), the cost function JRLS(k) of the expo-
nentially weighted RLS is defined as [Lju98]

JRLS(k) =
1

k − 1

k∑
i=2

λk−i
(
Y nr (i)− θne (i− 1) Πn(i− 1)

)2
, (3.55)

where λ is a forgetting factor with 0 < λ ≤ 1.

A cost function is the function defined to be minimized. The mini-
mization of the cost function leads to the optimal coefficient vector
θne , such as

θne (k − 1) = argθ min JRLS(k). (3.56)

The involvement of λ indicates that the above cost function assigns
more credits to recent data than old data, endowing the exponen-
tially weighted RLS the ability of tracking time-varying systems.
The smaller λ is, the faster it forgets old data.

The detailed derivation process of the estimation θne (k) can be
found in [WP97]. The final update equations of the exponentially
weighted RLS with k ≥ 2 are given as [Pol03]

Kn(k − 1) = [Pn
e (k − 2)] Π(k − 1)

[
λσ2

+ ΠT(k − 1) [Pn
e (k − 2)] Π(k − 1)

]−1
,

θne (k − 1) = θne (k − 2) + Kn(k − 1)
[
Y nr (k)− Y ne (k)

]
,

[Pn
e (k − 1)] =

1

λ

[
1−Kn(k − 1)Π(k − 1)

]
[Pn

e (k − 2)] .

(3.57)

In practice, the vector θne (0) is randomly initialized. and the co-
variance matrix [Pn

e ] is initialized as [Pn
e (0)] = r [I1+M ], where r is

a real number [Lju98]. The value of r denotes the level of the initial
estimation error. For example, a large r indicates a large estimation
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error and then the estimation θne will jump away from the current
state quickly. In this dissertation r = 100 is used.

• Recursive Kalman filter (RKF)

Kalman filter [Rib04] is another powerful algorithm that has been
widely implemented in adaptive filtering, adaptive control and
system identification areas. In RKF the system is assumed the same
as in the RLS algorithm as

Y nr (k) = θn(k − 1) Πn(k − 1) + ς(k), (3.58)
θn(k − 1) = θn(k − 2) + ε(k − 2), (3.59)

where ς(k) is the measurement error as in equation 3.52 and ε(k−
2) is the white noise as in equation 3.51. This assumption also
provides RKF the ability to track time-varying parameters.

The complete update process of RKF can be divided into two parts.
The first part is the prediction of the unknown vectors at the cur-
rent time k, based on the data obtained at the former time step k−1,
as given in [Rib04] with k ≥ 2

θnp(k − 1) = θne (k − 2),[
Pn

p(k − 1)
]

= [Pn
e (k − 2)] + [Ω] .

(3.60)

The first equation in 3.60 indicates that the predicted coefficient
vector θp(k − 1) based on the old data is the equivalent to the pre-
vious estimation θe(k − 2). The influence of the unknown noise
variable ε(k − 1) is reflected in the second equation, where the co-
variance matrix of prediction error Pp(k) equals to the covariance
matrix of the previous estimation error Pe(k − 1) plus the covari-
ance matrix of the noise Ω.

The second part is called estimation, which is to estimate the cur-
rent variables using the currently measured temperatures and for-
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Kn(k − 1) =
[
Pn

p(k − 1)
]
Π(k − 1)

[
σ2

+ ΠT(k − 1)
[
Pn

p(k − 1)
]
Π(k − 1)

]−1
,

θne (k − 1) = θnp(k − 1) + Kn(k − 1)
[
Y nr (k)− θnp(k − 1)Π(k − 1)

]
,

[Pn
e (k − 1)] =

[
1−Kn(k − 1)Π(k − 1)

] [
Pn

p(k − 1)
]
.

(3.61)

The vectors updated from the prediction part (equations 3.60) can
be directly used in the estimation part (equations 3.61). After the
estimation, the estimated coefficient vector θne (k − 1) can be em-
ployed to predict future temperature value Y n(k + 1) because of
θnp(k) = θne (k− 1). Both [Ω] and σ2 can be either predefined by the
user or estimated online using other approaches [ÅJPJ08]. When
the covariances of the noise signals are perfectly known, RKF is
guaranteed to provide the optimal estimation [Rib04]. But in prac-
tice, this condition is not always fulfilled. Normally the covari-
ances [Ω] and σ2 are used as the tuning elements of RKF to ad-
just the estimation properties. Detailed derivation process of RKF
refers to [WVDM00] or [Rib04].

It should be noted that, if λ is set to be 1 and the matrix [Ω] is set to
be a zero matrix, the two results (equations 3.55 and 3.61) would be
exactly the same. In other words, the RLS solution coincidis es with
the RKF solution when the coefficient vector θn(k) is deterministic and
the cost function JRLS(k) (equation 3.55) is non-weighted.

As mentioned in the beginning of this section, the solutions of RLS
and RKF given by equations 3.55 and 3.61 are expressed in a MISO
form. For a MIMO model that contains N different measured tem-
peratures, the update process has to be repeated for N times per esti-
mation period. An alternative to the MISO-form system identification
is to replace equation 3.48 by the MIMO equation 3.41, and directly
apply RLS or RKF to the MIMO ARX model. In this case, only one up-
date process is needed per estimation period. But the problem is that
the state matrix [A(k − 1)] resulted from the MIMO update approach
is not diagonal, which is against equation 3.39. Correspondingly the
estimation result of the MIMO-form system identification is signifi-
cantly different from the result of the MISO-form. The performance
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of both RLS and RKF is compared in real experiments, which will be
presented in chapter 4.

Nonlinear Recursive System Identification

The task of nonlinear recursive system identification is to estimate the
matrices [An(k − 1)] and [Φn(k − 1)] in equation 3.46. Compared
with the linear case, the nonlinear system identification process is
more complicated because of the nonlinear heating term Ψ. There is
no way to combine the parameter An(k − 1) and the effective heating
matrix [Φn(k − 1)] in one matrix (as in the vector θn(k)), and estimate
them at the same time. Instead, in the nonlinear system identifica-
tion, a two-step identification procedure has been developed, to es-
timate them separately at different time using the extended Kalman
filter (EKF) method. This estimation is also applied on the MISO-form
model, which is similar as in the linear case.

• Step 1: Estimate the first part [A(k − 1)]

This step is done during the cooling part or whenever no power is
injected from the microwave sources (vm(k) = 0 for all 1 ≤ m ≤
M ). Since the input vector is zero, the nonlinear MIMO system
model (equation 3.46) can be decomposed into N MISO systems,
such as

Y n(k) = An(k − 1)Y n(k − 1), 1 ≤ n ≤ N. (3.62)

The parameter An(k − 1) can be estimated directly as

An(k − 1) = Y n(k)/Y n(k − 1), 1 ≤ n ≤ N. (3.63)

• Step 2: Estimate the effective heating matrix [Φn(k − 1)]

When the input vector V is not zero, the state parameter An(k− 1)
is assumed to be constant likeAn(k−1) = Anct, whereAnct is the last
updated value of An. This assumption is valid in practice because
the parameter An(k − 1) is mainly determined by the convection
heat transfer coefficient h (see equation 3.15 and the comparison in
equation 3.14) which is a constant. The varying part of An(k − 1)
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caused by different thermal radiation effects can be omitted, es-
pecially when the temperature is in a stable range. Then the n-th
MISO systems can be written as

Y n(k) =Anct · Y n(k − 1) + Ψn(k − 1),

Ψn(k − 1) = VT(k − 1) [Φn(k − 1)] V(k − 1).
(3.64)

At any time k, the value of Ψn(k − 1) can be calculated by

Ψn(k − 1) = Y n(k)−Anct · Y n(k − 1), (3.65)

and then the effective heating matrix [Φn(k − 1)] can be estimated
according to the value of Ψn(k − 1).

As in the linear RKF (equation 3.59), in EKF it is also assumed that
the system fulfills the following equations

Ψn
r (k − 1) = VT(k − 1) [Φn(k − 1)] V(k − 1) + ς(k − 1),

[Φn(k − 1)] = [Φn(k − 2)] + [ε(k − 1)] ,
(3.66)

where Ψn
r (k−1) is the real calculated value of Ψn(k−1), ς(k−1) is

a zero-mean measurement or calculation error with the covariance
σ2 and [ε(k − 1)] is a zero-mean white noise with the covariance
matrix [Ω]. The definitions of parameters and vectors used in EKF
is shown by table 3.2.

The detailed derivation process is enclosed in the appendix A.1.
The update rule of EKF is given as following.

Prediction part with k ≥ 2 :[
Φn

p(k − 1)
]

= [Φn
e (k − 2)] ,[

Pn
p(k − 1)

]
= [Pn

e (k − 2)] + [Ω] .
(3.67)

63



3. Modeling Microwave Heating

Estimation part with k ≥ 2 :

[Kn(k − 1)] =
[
Pn

p(k − 1)
]

[Jn(k − 1)]
T
(

[Jn(k − 1)]
[
Pn

p(k − 1)
]

· [Jn(k − 1)]
T

+ σ2 [IM ]
)−1

,

[Φn
e (k − 1)] =

[
Φn

p(k − 1)
]

+ [Kn(k − 1)]
(

Ψn
r (k − 1)

−VT(k − 1)
[
Pn

p(k − 1)
]
V(k − 1)

)
,

[Pn
e (k − 1)] =

(
[IM ]− [Kn(k − 1)] [Jn(k − 1)]

) [
Pn

p(k − 1)
]
,

(3.68)

with

[Jn(k − 1)] := V(k − 1)VT(k − 1).

According to equation 3.67, at each time k the estimated effective
matrix Φn

e (k − 1) is expected to be equivalent to Φn(k), and then
used for the prediction of future temperatures.

3.3. Black-box Modeling

Although grey-box modeling is simple to implement and control, it
has several constraints, such as the fixed type of setup (figure 3.1) and
restrictions such as the assumptions 1 and 2. Compared with the
grey-box modeling, black-box modeling is much more flexible, with-
out any restrictions in the setup type. In order to enhance the adaptiv-
ity of the temperature control system and improve the model accuracy,
the black-box modeling approach is also applied.

The scope of black-box structures is diverse, covering methods from
neural networks, radial basis networks, wavelet networks, to fuzzy
logic models. These different methods are used not only for model-
ing, but also for pattern classification, controller design, self-learning
systems, and artificial intelligence systems. The principle used in
most black-box methods is a two-layer mapping. The first mapping
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Definition Interpretation

[Φn
e (k − 1)] =

E
[

[Φn(k − 1)]
∣∣Ψn

r (k − 1)
] Estimation of [Φn(k − 1)]

based on the current
measured temperature
Ψn

r (k − 1)

[
Φn

p(k − 1)
]

=

E
[

[Φn(k − 1)]
∣∣Ψn

r (k − 2)
] Prediction of [Φn(k − 1)]

based on the former
measured temperature
Ψn

r (k − 2)

[ene (k − 1)] =
[Φn(k − 1)]− [Φn

e (k − 1)]

Estimation error between
[Φn(k − 1)] and [Φn

e (k − 1)][
enp(k − 1)

]
=

[Φn(k − 1)]−
[
Φn

p(k − 1)
] Prediction error between

[Φn(k − 1)] and
[
Φn

p(k − 1)
]

[Pn
e (k − 1)] =

E
[
[ene (k − 1)] [ene (k − 1)]

T
] Covariance matrix of the

estimation error [ene (k − 1)][
Pn

p(k − 1)
]

=

E
[[

enp(k − 1)
] [

enp(k − 1)
]T] Covariance matrix of the

prediction error
[
enp(k − 1)

]
Table 3.2. Parameters and vectors used in EKF

is from the input or observed space to an intermediate regressor vec-
tor [Bri12], and the second layer mapping is from the regressor vector
to the output space. From a mathematical point of view, the two-layer
mapping can be also considered as a basis function expansion, which
extract the information from the original system and represent it using
different combinations of basis functions.

The black-box modeling method used here is the neural network (NN)
approach [JMM96]. In the temperature control system of HEPHAIS-
TOS, two different neural networks are applied, functioning as the
system estimator and the controller respectively. The NN system es-
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timator is introduced in this section, and the NN controller will be
addressed in chapter 4.

3.3.1. Introduction of Neural Network

The neural network (NN) structure was originally inspired by the con-
cept of biological neural networks, and then gradually extended and
extensively utilized in different areas. In control engineering, it is con-
sidered as a powerful alternative to conventional modeling and con-
trol methods [LV09]. It has been proven in [HSW89] that, with the ap-
propriate network architecture, a multilayer feedforward neural net-
work is a universal approximator for all kinds of linear and nonlinear
dynamics. Due to this universal approximation ability, NN has be-
come one of the most popular system identification methods that are
applied in various applications.

N1,1

N1,2

N2,1

N2,2

N2,3

N3,1

Input Layer

Hidden Layer

Output Layer

W1
1,1

W2
1,1

Y1

u1

W1
3,3

Bias = 1

N3,2 Y2

W2
2,4

Bias = 1

u2

Figure 3.4. Neural network structure

A basic NN structure is illustrated in figure 3.4. Normally it con-
sists of several elements such as nodes, synaptic links and weights. A
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node is also called a neuron, which is the fundamental unit in neural
networks. Each node can have multiple inputs from the input of the
network or other nodes, but it has only one output. The output could
be either the sum of all inputs (e.g. nodes in the output layer), or the
result of some local functions (perceptron) [Bar98].

The local function of each node is called the activation function, which
could be either linear or nonlinear. There are different choices of
activation functions (shown in figure 4.9), including the hyperbolic
tangent function, softmax function, sinusoidal function, and sigmoid
function [HDB+96]. It has been stated in [Hor91] that it is the archi-
tecture of the multilayer neural network not the selection of activation
functions that gives the neural networks the universal approximation
ability, therefore the performance difference between different activa-
tion functions is quite small. In the NN estimator and controller used
in this dissertation, the hyperbolic tangent function (tanh) [HDB+96]
is selected (figure 3.5d), which is defined as

tanh(x) =
sinh(x)

cosh(x)
=

ex − e−x

ex + e−x
. (3.69)

It is selected because its derivative is easy to calculate.

The interconnection between any two nodes is called a synaptic link,
or synapse, which can transfer the data from one node to another.
Each synaptic link has its own weight, which can be considered as
the strength of this link. One or more nodes with the same type of
functions constitute a block, which is called one layer in neural net-
works. Besides normal nodes, in each layer there is one extra node
called the bias node, whose output is always one. It never receives
any data from other nodes and only transmits the output to nodes in
the next layer. The function of bias nodes is to shift activation func-
tions to different directions so that the resulted network is adaptive to
different input-output dynamics [HDB+96].

In principle, a neural network comprises at least two layers, one in-
put layer and one output layer. In most cases, a neural network also
contains one or more hidden layers, which lie between the input and
the output layers. Hidden layers are important for the approximation
ability of neural networks. An intuitive interpretation to the function
of hidden layers is that the hidden layers receive the raw information
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(d) Tanh (equation 3.69)

Figure 3.5. Illustration of different activation functions.

or feature that is fed from the input layer, extract the more valuable in-
formation from the raw information, and then transmit it to the output
layer for the final determination [AN15].

In other words, the task being solved by the neural network can be
decomposed into a number of small subproblems, and subproblems
are solved and united layer by layer. Theoretically, the neural net-
works with more hidden layers (also known as deep neural networks)
are able to perform more complicated and accurate approximations
to highly dynamic systems, and have a better performance than the
so-called shallow networks that have only one or few hidden layers.
However, in deep neural networks there are a number of obstacles
that are still not well understood, such as the vanishing gradient prob-
lem [BSF94] or influences caused by weight initializations [SMDH13].
In practice as well as many literatures [Hay98], it is suggested to use
a neural network with an appropriate number of layers instead of a
deep network.
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According to how different nodes are interconnected, neural networks
can be divided into two types. The first type is called feedforward neu-
ral networks (FNN), as the one shown in figure 3.4, where the data is
sent from the input layer, passing through hidden layers to the output
layer. FNN assume that the output of the system being approximated
is only determined by the input, and there is no interconnection be-
tween nodes in the same layer or feedbacks from the following layers
to the former layer (m+1-th layer to m-th layer).

In contrast to FNN, there is another type of neural networks, called re-
current neural networks (RNN), where interconnections are allowed
between any arbitrary nodes. The concept of RNN contains differ-
ent possibilities, like the networks with feedbacks from hidden lay-
ers to the input (context) layer (like the Elman networks [Elm90]), or
asynchronous fully connected networks (like the Hopfield networks
[Hop82]). Feedbacks within the RNN creating internal loops or states
give the network the ability to approximate more complicated systems
with dynamic temporal behaviors. In principle, RNNs can be much
more complex and powerful than FNNs. A RNN structure consisting
of a simple feedback loop is shown in figure 3.6.

The overall function of a neural network f(x) is the expansion of all
activation functions. For the NN in figure 3.4, the overall function of
the first output can be represented as

YNN,1 = f1(uNN,1, uNN,2)

= g3,1

 3∑
i=1

w2
1,ig2,i

 2∑
j=1

w1
i,jg1,j(uNN,j) + w1

i,3

+ w2
1,4

 ,

(3.70)

where gi,j is the activation function of j-th node in i-th layer, and wli,j
represents the weight from j-th node in the l-th layer to the i-th node
in the (l + 1)-th layer (the bias node is labeled as the last node in each
layer). If there is no interconnection between any two nodes, then
the corresponding weight equals to zero. By adjusting the weight of
each synaptic link or number of nodes in hidden layers, the behavior
of the neural network is also changed. Adjustments of weights are
repeated iteratively or recursively until the desired system dynamics
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Figure 3.6. Diagram of recurrent neural network

are achieved by the network, and the corresponding process is called
learning or training.

As stated in [WF05], training is the mindless kind of learning. In this
dissertation, they are assumed to be equivalent. A more formal defi-
nition of learning is given in [Hay98]:

Learning is a process by which the free paramters of a neural
network are adapted through a process of stimulation by the en-
vironment in which the network is embedded

.

According to the definition, all free parameters in neural networks can
be modified during learning. There are mainly two types of learning.
One is similar with the process mentioned in the last paragraph, where
the topology of the network is fixed and only weights are adjusted.
The second type of learning involves the modification of the topol-
ogy of the neural network [SM04] [EUDC07]. It increases the num-
ber of nodes in hidden layers and evolves weights of each link at the
same time, according to predefined principles until the performance
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of the network meets the learning requirement. Compared with the
first fixed-topology scheme, the second learning strategy needs more
computation resources and time because of the involvement of the
topology adjustment [SM96]. For applications requiring fast or on-
line learning (explained in the later section 3.3.2), the second strategy
is not suitable. Therefore in this dissertation, the fixed-topology learn-
ing scheme is used. For this scheme, there are mainly three different
learning approaches due to different tasks and applications.

Supervised learning

Neural Network
UNN

∑ 
YNN

- +

Yd

e

Figure 3.7. Principle of supervised learning

The name of supervised learning indicates the idea of involving a su-
pervisor that teaches the network to learn. The principle of supervised
learning is shown in figure 3.7 [HDB+96]. In supervised learning, the
vector UNN is the input of the NN and Yd is the corresponding desired
(correct) output vector. They are given as data pairs

(
UNN,Yd

)
. The

objective of supervised learning is to find the optimal (correct) weights
for all links that make the output of the NN YNN equivalent to the de-
sired output Yd for all trained data pairs. Supervised learning is the
most common learning method used in the system modeling and the
system identification. Detailed introductions of supervised learning
will given later in the following section 3.3.2.

Unsupervised learning

Unlike supervised learning, there is no explicit target output or super-
visor regarding each input in unsupervised learning [HDB+96]. In-
stead of the desired output Yd, for each input vector UNN, the net-
work itself decides what is the corresponding output and adjust its
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weights accordingly. The learning process is based on the goal of the
network, normally a objective or cost function. Unsupervised learn-
ing is more used in applications of exploring statistical structure of
the overall input space, such as pattern classification, decision making
or data compression. In control related fields, unsupervised learning
can be also applied in the controller design, where the controlling rule
is discovered automatically. Unsupervised learning will be explained
in the chapter 4 with more details.

Reinforcement learning

Compared with supervised and unsupervised learning, reinforcement
learning is a modified combination of both [Bar98]. In reinforcement
learning, for each input UNN there is also no desired output Yd. In-
stead, here the network receives a feedback signal R from the plant
(system being controlled) [Bar98], called reward or cost. The reward
(cost) is not the direct output of the real controlled plant, but a real
number indicating how good (bad) the corresponding input UNN is.
The final objective of reinforcement learning is to choose an input pol-
icy π to maximize the overall rewards.

Reinforcement learning is essentially closer to the principle of hu-
man behaviors, which is based on the concept of learning from ex-
periences and interactions with the environment. Compared with su-
pervised learning, reinforcement learning is much more flexible. In
theory, an optimal control rule can be obtained by using a trial-and-
learn strategy [Bar98], and no concrete system model is needed in
advance. More important, reinforcement learning is suitable for con-
trolling more complicated tasks which are difficult to be described by
middle-complexity mathematical models. Due to these advantages,
reinforcement learning method is also used in the temperature con-
trol system of HEPHAISTOS, and detailed information will be given
in chapter 4.
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3.3.2. Neural Network Modeling of HEPHAISTOS

In this section, the neural network modeling of HEPHAISTOS is ex-
plained. In the beginning, the fundamental principles of supervised
learning are introduced. Then the neural network structures used in
HEPHAISTOS are presented. In the end, the learning (training) algo-
rithms used in this dissertation are discussed.

Fundamentals in Supervised Learning

The training data set is represented by

D =
{(

UNN(1),Yd(1)
)
,
(
UNN(2),Yd(2)

)
, . . . ,

(
UNN(Q),Yd(Q)

)}
,

UNN(q) =
[
uNN,1(q), uNN,2(q), . . . , uNN,M (q)

]T
, 1 ≤ q ≤ Q,

Yd(q) =
[
Yd,1(q), Yd,2(q), . . . , Yd,N (q)

]T
, 1 ≤ q ≤ Q.

The number Q indicates the size of the training data set D. The vector
UNN(q) is the input vector and Yd(q) is the corresponding desired
(correct) output vector. The target of supervised learning is to find the
weight w∗ that makes the estimated output of the network YNN(q) =
f
(
w∗,UNN(q)

)
equivalent to Yd(q) for all 1 ≤ q ≤ Q.

In order to find the best weight vector w∗, an objective or cost function
J has to be defined, which measures the error between the real and de-
sired outputs. There are several different ways to define the cost func-
tion. For instance, a simple choice is to use the L1-norm [HDB+96],
such as

JL1 =

Q∑
q=1

‖YNN(q)−Yd(q)‖ . (3.71)

This L1-norm formed cost function is intuitive, but not very com-
monly used in practice because the derivative is not easy to calculate.
The most common cost function used in supervised learning is the fol-
lowing L2-norm [HDB+96]

JL2 = min
1

2Q

Q∑
q=1

(
YNN(q)−Yd(q)

)T(
YNN(q)−Yd(q)

)
, (3.72)
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which is the averaged quadratic error over all training data pair.

The principle of gradient descent is used to solve the above learning
task, where the update rule for the weight vector (or matrix) is repre-
sented as [HDB+96]

wnew = wold + ∆w

= wold − η
∂JL2
∂w

,
(3.73)

where η is a positive step size and ∂JL2/∂w is the gradient vector of
w. The weight vector (or matrix) can be defined into different forms
depending on the application. For instance, in equation 3.82 weights
of different layers are represented by different weight vectors. But in
equation 4.21, all weights of the network are included in one weight
vector. To calculate the gradient vector, all activation function with
the neural network have to be differentiable. Therefore functions like
the unit step function are not appropriate. Depending on different
presentations of the training cost function, the learning process can be
applied in two ways.

1. Batch learning: The cost function used in batch learning is exactly
the same as equation 3.72, which learns from all data pairs within
the set D. In other words, the calculation of ∆w requires informa-
tion from all data pairs in D.

2. Incremental learning: in this mode of backpropagation, the cost
function is generated as [HDB+96]

JIL(q) =
1

2

(
YNN(q)−Yd(q)

)T(
YNN(q)−Yd(q)

)
, 1 ≤ q ≤ Q.

(3.74)

The cost function 3.74 consists of only one data pair in each up-
date. Instead of learning from all training date pairs at once, the
learning data pairs in incremental learning are presented one by
one to the network.

In neural network learning, one complete update of weights using the
entire data set D is called an epoch [Hay98]. In batch learning, since
the entire data set is included in the cost function (equation 3.72), each
update is equivalent to one epoch, which means all weights are up-
dated only once per epoch. In incremental learning, only one data pair
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3.3. Black-box Modeling

is taken into account in each update. Therefore all weights are updated
Q times in one epoch, starting from the first date pair

(
UNN(1),Y(1)

)
until the last data pair

(
UNN(Q),Y(Q)

)
is accounted for.

Online learning is a special incremental learning, with only one data
pair is available at one time, therefore the cost function 3.74 can be
rewritten in a online form as

JOL(k) =
1

2

(
YNN(k)−Yd(k)

)T(
YNN(k)−Yd(k)

)
, (3.75)

where YNN(k) is the estimated output from the NN at the current time
k and Yd(k) is the desired (real measured) output of the system at
time k. Online supervised learning is similar with the online system
identification introduced in the grey-box modeling part, which is more
suitable to describe the dynamics of time-varying systems.

Neural Network Modeling Approaches used in HEPHAISTOS

The implementation of neural networks in the temperature control
system of HEPHAISTOS is straightforward compared with the grey-
box modeling approaches. The aforementioned two learning strate-
gies are both used to solve different tasks, as in figure 3.8.

Neural Network

Estimator
Controller

Trained by historical Data Set D

Target 
temperature 

Yt

Control input 
U

Estimated 
temperature 

YNN

(a) Batch learning approach (offline)

In the first approach (see figure 3.8a), batch learning is used to train
the NN estimator. This well-trained NN is employed as an approxima-
tion of the real plant to test the performance of different system identi-
fication algorithms or control methods. For example, in the controller
design part, a controller could be firstly designed to control this NN in
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Neural Network

Estimator

Yr(k-1)
∑ 

- +

Yr(k)

e (k)

U(k-1)

YNN(k)

(b) Online learning approach

Figure 3.8. Neural network approaches used in this dissertation.

an offline mode. During the process of the controlling the NN estima-
tor, the controller becomes more and more familiar with the real plant
and finally it can be used to control the real plant. This method has
been widely used for controller design such as in [Sch90], [WMS92],
[LN95] and [GHLZ10]. In this case, an amount of historical exper-
imental data can be used and the batch learning mode is preferred
over incremental learning, due to the more stable learning results and
faster converging speed.

But the limitation of this approach is that the controller trained by this
NN estimator is not guaranteed to have the same performance in prac-
tice as in the test. That is because in HEPHAISTOS, the real heating
process is influenced by many different factors and it is not possible to
obtain experimental data that can cover all dynamics of the plant. De-
spite of this limitation, this NN estimator still provides valuable infor-
mation and the performance on it can be considered as the benchmark
to compare and select different control methods.

The second approach is to use a NN estimator for online system iden-
tification (see figure 3.8b), which functions similarly with the online
system identification algorithms introduced in the grey-box model-
ing part. In this approach, the input of the NN estimator UNN

(
with

the dimension (N + M) × 1
)

contains the former temperature vector
Yr(k − 1) and the control input vector U(k − 1), such as

UNN(k) =

[
Yr(k − 1)
U(k − 1)

]
. (3.76)
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The output of the NN estimator YNN(k) has the same dimension as
the measured temperature vector Yr(k). The cost function is defined
as in equation 3.75 with Yd(k) = Yr(k).

Compared with the batch learning approach, the online learning ap-
proach is more suitable for the real time system identification of the
plant. It has a stochastic nature that makes the weight update less
likely to be trapped in a local minimum [HDB+96]. Nevertheless, on-
line learning itself suffers from a problem that is called ”catastrophic
interference” or ”stability-plasticity dilemma” [MC89] [Rob95]. This
problem is caused by the fact that the minimum of the cost function
3.75 based on the single data pair may be far away from the minimum
that is based on the whole training data set (the minimum of equation
3.72), which leads to the network completely drops all information
provides by former training data pairs (prior to the current time k).
In order to reduce the effect of ”catastrophic interference”, additional
strategies are taken during the training of the NN estimator, which
will be introduced in the next section.

Online Supervised Learning Algorithms in Neural Networks

The most common supervised learning algorithm used in neural net-
works is the backpropagation (BP) algorithm [HDB+96]. The term
”backpropagation”, short for the back propagation of error, refers
to the process that errors at the output layer are feed back to for-
mer hidden layers and used to adjust weights accordingly. The on-
line stochastic gradient descent backpropagation (SGBP) algorithm
[HDB+96], which combines principles of online backpropagation and
the aforementioned gradient descent method (see equation 3.73). is
presented in this section (the detailed derivation process can be found
in appendix A.2). In order to reduce the effect of ”catastrophic in-
terference”, three online learning algorithms evolving from the clas-
sical online SGBP algorithm are applied in this dissertation, includ-
ing the BP with momentum (BPM) algorithm, extended Kalman filter
(EKF) algorithm based BP and the so-called sliding window based BP
(SWBP) algorithm. Their principles are introduced in the end of this
section.
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3. Modeling Microwave Heating

Given the data set D, the complete learning process of the standard on-
line SGBP algorithm is shown below. The notations used in the update
of weights are shown in figure 3.9 and defined in table 3.3.

zp = ∑ wp,j xj Np

Output Layer

YNN,p = fo (zp)

Nj

Hidden Layer

xj = g (zj)

i
zj = ∑ wj,i uNN,i

 or

zj = ∑ wj,i xi
i

j

Figure 3.9. Notations used to denote the input and the output
nodes.

1. Initialization:

initialize all weights and determine activation functions fo and g.

2. At each time k with k ≥ 2:

arrange the input and output of the NN estimator as

UNN(k) =

[
Yr(k − 1)
U(k − 1)

]
, Yd(k) = Yr(k). (3.77)

Forward calculation: calculate the input x and output z of all
nodes in this neural network using the current weights and input
vector UNN(k), according to definitions in figure 3.9 and table 3.3.

Backward error propagation: starting from the output layer, cal-
culate the local gradient vector

δo(k) =
[
δo1(k), δo2(k) . . . δoN (k)

]
, (3.78)

where the element is given as [Hay98]

δoi (k) =
(
YNN,i(k)− Yd,i(k)

)
f ′o(zi(k)), 1 ≤ i ≤ N. (3.79)
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Definition Interpretation

Nl
Number of nodes in the l-th
hidden layer (1 ≤ l ≤ L)

xli(k)
Output of the i-th node in the l-th
layer at time k

zl+1
j (k) =

∑Nl

i=1 w
l
j,i(k) · xli(k)

Input of the j-th node in the
(l + 1)-th layer at time k

δlj(k) = ∂JOL(k)

∂zlj(k)

Local gradient of the j-th node in
the l-th layer at time k

fo, f
′
o(z) :=

df ′
o

dz

Activation function used in the
output layer and its first
derivative

g, g′(z) := dg′

dz

Activation function used in the
hidden layers and its first
derivative

Table 3.3. Parameters used in the update of weights (in NN).

The values YNN,i(k) and Yd,i(k) are the i-th element from the vector
YNN(k) and Yd(k), respectively.

For the l-th hidden layer (1 ≤ l ≤ L), the corresponding local gra-
dient vector is [Hay98][

δl(k)
]

=
[
δl1(k), δl2(k), . . . δlNl

(k)
]
, (3.80)

where the element is defined as

δli(k) = g′(zli(k)) ·
Nl+1∑
j=1

δl+1
j (k)wl+1

j,i (k − 1), 1 ≤ i ≤ Nl. (3.81)
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with

[
wl+1(k − 1)

]
=


wl+1

1,1 (k − 1) wl+1
1,2 (k − 1) · · · wl+1

1,Nl
(k − 1)

wl+1
2,1 (k − 1) wl+1

2,2 (k − 1) · · · wl+1
2,Nl

(k − 1)

...
...

. . .
...

wl+1
Nl+1,1

(k − 1) wl+1
Nl+1,2

(k − 1) · · · wl+1
Nl+1,Nl

(k − 1)

 .
(3.82)

The L + 1-th hidden layer is defined as the output layer
(
[
wL+1(k − 1)

]
= [wo(k − 1)] , Nl+1 = No).

Weight update: for weights of links connecting to the output layer,
the update rule is given by [Hay98]

[wo(k)] = [wo(k − 1)]− η ·
(
xL(k)δo(k)

)T
, (3.83)

with the output vector is defined as

xL(k) =
[
xL1 (k), xL2 (k), . . . , xLNL

(k)
]T
. (3.84)

For weights of links only connecting with hidden layers, the up-
date rule is given by [Hay98][

wl(k)
]

=
[
wl(k − 1)

]
− η ·

(
xl−1(k)δl(k)

)T
, 1 ≤ l ≤ L (3.85)

with the output vector is defined as

xl(k) =
[
xl1(k), xl2(k), . . . , xlNl

(k)
]T
. (3.86)

When the value l = 1, the vector xl−1(k) is defined as the input
vector of the NN

x0(k) = UNN(k). (3.87)

3. Procedure 2 is executed once per time step.

There are mainly two rounds of calculations in the backpropagation
algorithm. One is the forward pass which calculate the output of
each node from the input layer to the output layer. The other one
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3.3. Black-box Modeling

is the backward error propagation which computes the local gradient
of each node from the output layer to the input layer. After these two
rounds of calculations, all weights can be updated. Intuitively, the for-
ward pass provides necessary information for the backward pass, and
the backward pass calculates how much of the final output error be-
longs to each individual weights, which will be updated accordingly.
The backpropagation algorithm reduces the overall computation cost
significantly and promotes the development of neural networks a big
step forward.

Based on the standard online SGBP algorithm, additional strategies
have to be taken to reduce the effect of ”catastrophic interference”. As
stated in [Fre99], there are several possible strategies, by either using
noise-free training data, applying more constructive network architec-
tures or adding extra information storage besides pure weights of the
network. The first two approaches are difficult to implement in realis-
tic applications, therefore most practical online learning algorithms go
to the third direction, such as the following three algorithms.

• BPM is also named as enhanced backpropagation [Roj96], which
involves the momentum term in the weight update expression,
such as

∆w(q) = − η ∂JOL

∂w

∣∣∣∣
k

+ α∆w(q − 1), (3.88)

where α is a tuning factor indicating the influence from the mo-
mentum. The involvement of momentum brings information and
influences from past training date pairs, which effectively attenu-
ate weight oscillations during the iteration process and improves
the estimation stability.

• This idea of using EKF in neural networks learning was firstly ap-
plied in [SW89] and quickly became a powerful and efficient learn-
ing algorithm, especially in incremental learning mode [KV92]
[RRK+92] [WVDM00]. The update equations using EKF in NN
training is similar with the procedures described in former nonlin-
ear system identification (equations 3.67 and 3.68), and the corre-
sponding derivation process can also be found in [TP08].

• Sliding window based backpropagation [CMA94] is a way to use
batch learning mode in a online form. Instead of using the entire
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training set D as in classical batch learning, the basic idea is that at
each time k, the formerNs data pairs (sliding window) are used for
the training (from time k−Ns + 1 to the current time k). Therefore
the cost function is changed into

JSW(k) =
1

2Ns

k∑
q=k−Ns+1

(
Y(q)−YNN(q)

)T(
Y(q)−YNN(q)

)
.

(3.89)

At each time k, not only the current observed data pair but also Ns
former data pairs are included in this cost function JSW(k). The
similar idea is widely used in neural network based time series
predictions, such as in [FDH01].

These three algorithms are all fast and efficient online NN training
algorithms that are implemented in practical applications. They have
been tested and compared in real experiments of HEPHAISTOS, and
corresponding results can be found in chapter 5. Further details about
the neural network design and implementations refer to [HDB+96],
[Roj96], [Hay98] and [AN15].
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4. Control System Design

Controller design is the final and most important part in the temper-
ature control system. For microwave heating systems with multiple
distributed feeding sources as implemented in HEPHAISTOS, several
factors have to be considered before the selection of appropriate con-
trol algorithms:

• Highly coupled dynamics;

• High input and output dimensions;

• Linear and nonlinear systems with modeling uncertainties;

• Time-varying model parameters;

• Input constraints.

A number of currently main stream control methods are briefly ana-
lyzed below, with respect to aforementioned properties:

• MIMO PID [MKJ02] : PID is a powerful control scheme that is
mostly applied in SISO systems. The so-called MIMO PID is its ex-
tension to MIMO systems. The applicable systems are mostly sys-
tems that can be decentralized such as in [XCH06] and [PKM13], or
small scale fully coupled MIMO systems, for example, 2×2 MIMO
systems [RLRJGA06] [CC14]. For non-decoupled MIMO systems
with high input and output dimensions, the tuning of MIMO PID
parameters will become complex and inefficient.

• Linear quadratic regulator (LQR) [AM07]: LQR is one of the most
notable controllers that have been widely used in the last few
decades. The objective of LQR is to optimize a cost function based
on future system behaviors. Thus essentially it is a predictive con-
trol method. The control action of LQR comes from the solution of
a discrete-time algebraic Riccati equation (DARE) [LR95], which is
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a nonlinear equation normally solved by numerical methods. Al-
though LQR has a similar control principle as MPC, various results
[GBTH06] [FKÖS11] demonstrated that with equal or even more
control effort, the performance of LQR is not as good as MPC. It
was also suggested in [EDH05] that for MIMO systems which are
not fully decoupled, e.g. HEPHAISTOS, MPC is more suitable.

• H2 and H∞ control [Bur98]: both H2 and H∞ control are powerful
and robust methods that can be used for systems with noise and
model uncertainties [SP07]. However, high computation costs is
still the obstacle that limits their large scale applications. In many
cases it is difficult to use these two methods to get analytical solu-
tions, and they can only be solved numerically [Bur98]. Moreover,
both H2 and H∞ control methods are still too complicated to be
applied in high dimensional MIMO systems [vdB07].

• Fuzzy logic control (FLC) [Lee90]: FLC is a control method which
is widely applied in systems with unknown dynamics, benefiting
from empirical knowledge and experience. For SISO or MIMO sys-
tems with low dimensions, FLC is easily implemented and tuned.
But for MIMO systems with high dimensions, the numbers of
both fuzzy rules and membership functions are increasing expo-
nentially, which rises the difficulties in the controller design and
the tuning of FLC [MSH98]. In addition, for MIMO systems with
highly coupled dynamics, empirical knowledge is difficult to be
directly used for the generation of fuzzy rules, which leads to a
significant performance degradation of FLC.

Considering above reasons and analyses, two control schemes are in-
troduced in this chapter. The first adaptive control scheme includes
the model predictive control (MPC) [MHL99] and neural network con-
trol (NNC) methods [CK92], aiming to control temperatures of sep-
arated points. The other intelligent control scheme is based on the
reinforcement learning control (RLC) method [Bar98]. Instead of indi-
vidual temperatures, it directly controls characteristics of the heating
pattern. Both control schemes are optimized according to properties
of HEPHAISTOS, to reduce the computation complexity and improve
the control performance.
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4.1. Adaptive Control

In general, the control methods that adjust their control actions based
on the varying parameters of the controlled systems are called adap-
tive control [KV86]. They can be divided into two categories, indirect
and direct adaptive control. The indirect control scheme contains on-
line system identification to describe the system dynamics, using mea-
sured system data. In direct adaptive control, no online system iden-
tification is needed and the control action relies on direct feedbacks
from the plant, such as the most well-known PID controller. Indirect
control schemes are more suitable for systems modeled with unknown
constants and slow-varying parameters, while direct control schemes
are mainly used to deal with systems with quickly varying dynamics.
In HEPHAISTOS, both control schemes have been applied in the tem-
perature control system: model predictive control (MPC) as an indirect
adaptive control scheme and neural network based control (NNC) as
a direct/semi-direct adaptive control. Details of MPC and NNC are
introduced in this section.

4.1.1. Model Predictive Control

Model predictive control (MPC), oriented from the receding horizon
control (RHC) [MHL99], is an advanced and well-developed feed-
back control method. It was firstly implemented in the oil industry
[RRTP78] and then spread to other fields like chemistry and aerospace
[QB03]. In this section, the fundamentals of MPC are introduced at
first, and then details of MPC implementations regarding two former
derived models (equation 3.41 and 3.46) are presented (linear MPC
and nonlinear MPC).

No matter which type of models MPC is applied on, the control steps
are the same, which are according to [CA13]

• Predict the future system output based on the given or estimated
system parameters.

• Calculate a control sequence that minimizes the predefined objec-
tive function.
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At time k

FuturePast

Prediction Horizon

kk-1 k+1 . . . k+pk+2

Target output

Real output

Predicted output

Real control

Predicted control

Time

u(k)

Figure 4.1. Principle of MPC control algorithms.

• Apply the first control action of the sequence as the real control
input and drop the rest.

• Repeat above procedures at each time instants.

The idea of MPC is illustrated by figure 4.1. Further elaborations of
MPC can be found in [CBCB04] and [MHL99].

MPC has natural advantages over other control methods (mentioned
in the beginning of this chapter) in dealing with complex systems like
HEPHAISTOS:

• The principle is intuitive and easy implement.

• The state-space model formed control law is suitable when the in-
put and output dimensions are large.

• A great variety of dynamics including delay times and external
disturbances can be easily handled.

• It involves predictions for the future behaviors which are useful for
tracking time-varying trajectories.

• It can easily be extended to treat different kinds of input and out-
put constraints.
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Due to above reasons, MPC can be used in the temperature control
system of HEPHAISTOS. The entire structure of the MPC based tem-
perature control system is shown as in figure 4.2.

Plant
(HEPHAISTOS)

MPC Controller

Model Estimator
(System Identification)

Target 
Temperature 

Yt 

Measured 
Temperature 

Yr

Control 
Input 

U

Estimated System Dynamics
[A], [B] (or [Φ]) 

Figure 4.2. Temperature control system of HEPHAISTOS using MPC.

In this temperature control system, there are two key components that
determine the final control performance.

1. Model estimator

The model estimator is used to capture the dynamics of the HEP-
HAISTOS oven and send the estimated model dynamics, e.g. ma-
trices [A(k)] , [B(k)] or [Φn(k)], to the MPC controller. The accu-
racy of the estimated system model directly influences the final
control performance of any MPC algorithms, and the form of the
estimated model also determines which kind of MPC algorithms is
appropriate for the given application.

In principle, both the grey-box and black-box modeling ap-
proaches introduced in the last chapter could be used as the system
estimator in the above figure 4.2. But in practice, the evaluation of
the NN model takes much more time than that of grey-box models.
In order to keep a fast control pace, only the grey-box approaches
(linear 3.41 and nonlinear 3.46 models) are implemented in this
model estimator. The NN model will be used in the neural net-
work controller in section 4.1.2.
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2. MPC controller

The MPC controller is responsible for calculating the new control
input vector and giving it to the HEPHAISTOS oven, according to
the estimated model and the MPC principle.

In the MPC controller, the first task is to define the cost function,
which is the objective to be solved in the controller. It is assumed
that the modified target temperature vector at time k is

Yt(k) = Tt(k)− Ta(k), (4.1)

where Tt(k) is the real target temperature vector (N×1) and Ta(k)
is the temperature of the surrounding air. One of the most common
cost functions J(k) used in the MPC method is [Wan09]

J(k) =

p∑
l=1

[ (
Yt(k + l)−Y(k + l)

)T
Γ(l)

(
Yt(k + l)−Y(k + l)

)
+ UT(k + l − 1)Λ(l)U(k + l − 1)

]
,

(4.2)

with

Y(l) =


Y1(l)

Y2(l)

...
YN (l)

 , [Γ(l)] =


γ(l) 0 · · · 0

0 γ(l) · · · 0

...
...

. . .
...

0 0 · · · γ(l)

 ,

U(l) =


u1(l)

u2(l)

...
uM (l)

 , [Λ(l)] =


Λ(l) 0 · · · 0

0 Λ(l) · · · 0

...
...

. . .
...

0 0 · · · Λ(l)

 ,
(4.3)

where Γ(l) (N × N) and Λ(l) (M ×M) are both positive definite
tuning matrices used to adjust weights of future temperature and
control input vectors, respectively. The future temperature vectors
can be predicted using either the linear model 3.41 (linear MPC)
or the nonlinear model 3.46 (nonlinear MPC).
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In the above cost function p denotes the prediction and control
horizon length. In general, the prediction horizon length is not
equivalent to the control horizon length. But here in order to sim-
plify the derivation, it is assumed they are identical, which will not
affect the control performance.

Based on the cost function, the formal representation of the control
task can be expressed as

min J(k)

subject to 0 ≤ um(k + l − 1) ≤ 1, for 1 ≤ m ≤M, 1 ≤ l ≤ p,
(4.4)

where the constraints in equation 4.4 guarantees that the mi-
crowave feeding power is always between 0 and 100%. This con-
trol task consists of two aspects. The first aspect is to track the pre-
defined target temperature and minimize the quadratic difference
between the measured temperatures and the target temperature
(the first term in the cost function J(k)). The second aspect refers
to the minimization of the control power and save the heating en-
ergy (the second term in the cost function J(k)).

Defining a control sequence (as illustrated in figure 4.1)

Uset(k) =
{
U(k), U(k + 1), . . . , U(k + p− 1)

}
, (4.5)

the control solution U(k) can be obtained by searching for the op-
timal sequence U∗set(k) fulfilling

U∗set(k) = argU min J(k), (4.6)

and then implementing the first control input vector from the opti-
mal sequence. When the controlled system model is linear (such as
equation 3.41), normally an analytical expression can be derived
for U∗set(k) as well as U(k). Otherwise when the system model is
nonlinear (such as equation 3.46), an analytical control solution is
not feasible. In this case, the control task 4.4 has to be solved with
a numerical solution.

In the following, the linear MPC and the nonlinear MPC methods will
be introduced in detail.
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Linear MPC

In this section, procedures of how the control solution is derived in the
linear MPC system is presented. Linear MPC achieves great successes
in a number of applications, e.g. in [QB03] and [MHL99]. By now,
the linear MPC theory is widely implemented, and over 90% of MPC
applications are linear. Various linear MPC algorithms exist, includ-
ing the dynamic matrix control (DMC) [Wan09], predictive functional
control (PFC) [HBS11], model algorithmic control (MAC) [GPM89],
and generalized predictive control (GPC) [CMT87]. Among these
different algorithms, DMC is one of the most powerful and widely
implemented MPC algorithms, especially in industry. According to
the investigation in [OOH95], all major oil companies apply DMC-
like approaches to control process variables such as the temperature
and pressure in their new installations or revamps. Compared with
other MPC approaches like GPC, DMC is more suitable for multivari-
able state-space formed systems as well as ARX types of models. In
order to further involve the control input constraints, an improved
version of DMC - quadratic DMC (QDMC) [GM86] algorithm is ap-
plied.

The time-invariant QDMC algorithm is not designed to deal with
time-varying systems (such as equation 4.7), but still it is rational to
be implemented here. This algorithm is suitable because the currently
estimated system model (at time k) can predict the future behavior
(until time k + p) accurately. In microwave heating applications, the
system model parameters are changing slowly, especially when the
temperature of the load is varying within a small range (when the tar-
get temperature is fixed). As long as the current system parameters
are estimated accurately, it is reasonable to assume that the current es-
timated parameters can be used to predict future outputs with a high
accuracy. For instance, it has been demonstrated in [NP97] that the
time-invariant MPC approach can keep a suboptimal performance in
practical time-varying applications. On the other hand, although a
number of MPC approaches have been proposed specialized for spe-
cific time-varying systems, such as the approaches in [DC03] [ZL03]
and [Ric05], the performance gain of these approaches over conven-
tional time-invariant MPC approaches is limited. In this thesis, the
time-invariant QDMC algorithm is selected.
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QDMC contains two main steps. The first step is to apply the standard
DMC to the control task and obtain a control solution. If the control so-
lution fulfills the input constraint (as given by equation 4.4), it will be
directly used as the true control solution U(k). Otherwise if it does not
fulfill the input constraint, a new quadratic programming (QP) prob-
lem [GM86] has to be formulated and another control solution will be
calculated. Procedures of QDMC are given in the following.

In standard time-invariant DMC, the linear discrete-time equation 3.41
is firstly re-written in a complete state-space form as [Wan09]

X(k + 1) = [A(k)] X(k) + [B(k)] U(k),

Y(k) = X(k),
(4.7)

where X(k) is the state variable vector. Defining the difference state,
input and output vectors as

∆X(k) = X(k)−X(k − 1),

∆U(k) = U(k)−U(k − 1),

∆Y(k) = Y(k)−Y(k − 1),

there is

∆X(k + 1) = X(k + 1)−X(k) = [A(k)] ∆X(k) + [B(k)] ∆U(k).
(4.8)

In order to simplify notations during following derivations, new aug-
mented matrices are defined as [Wan09]

Xd(k) =

[
∆X(k)
Y(k)

]
, [Ad(k)] =

[
[A(k)] [ON ]
[A(k)] [IN ]

]
,

[Bd(k)] =

[
[B(k)]
[B(k)]

]
, [Cd(k)] =

[
[ON ] [IN ]

]
,

where [ON ] and [IN ] are zero and identity matrices (N ×N ).

Substituting above new defined matrices into equation 4.8, a new
state-space formed system model is generated as

Xd(k + 1) = [Ad(k)] Xd(k) + [Bd(k)] ∆U(k),

Y(k) = [Cd(k)] Xd(k)
(4.9)
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In time-invariant DMC and QDMC, the future temperatures can be
predicted (until the time k + p) using the the current temperature
and the current estimated parameters, such as in [Wan09] (1 ≤ l ≤
p)

Y(k + l) = [Cd(k)] Xd(k + l)

= [Cd(k)]
(

[Ad(k)] Xd(k + l − 1) + [Bd(k)] ∆U(k + l − 1)
)
.

(4.10)

All future temperature vectors from k + 1 to k + p can be generated
using this equation

Y(k + 1 | k) = [Cd(k)] [Ad(k)] Xd(k) + [Cd(k)] [Bd(k)] ∆U(k),

Y(k + 2 | k) = [Cd(k)] [Ad(k)]
2
Xd(k) + [Cd(k)] [Ad(k)] [Bd(k)] ∆U(k)

+ [Cd(k)] [Bd(k)] ∆U(k + 1),

...

Y(k + p | k) = [Cd(k)] [Ad(k)]
p
Xd(k)

+ [Cd(k)] [Ad(k)]
p−1

[Bd(k)] ∆U(k) + · · ·
+ [Cd(k)] [Bd(k)] ∆U(k + p− 1).

(4.11)

The whole system can be represented in a compact form as
[Wan09]

Yd(k) = [Fd(k)] Xd(k) + [Ξd(k)] ∆Ud(k), (4.12)

with

[Ξd(k)] =



[Cd(k)] [Bd(k)] [ON×M ] . . . [ON×M ]

[Cd(k)] [Ad(k)]
· [Bd(k)]

[Cd(k)] [Bd(k)] . . . [ON×M ]

...
...

. . .
...

[Cd(k)] [Ad(k)]
p−1

· [Bd(k)]
[Cd(k)] [Ad(k)]

p−2

· [Bd(k)]
. . . [Cd(k)] [Bd(k)]


,
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[Fd(k)] =



[Cd(k)] [Ad(k)]

[Cd(k)] [Ad(k)]
2

[Cd(k)] [Ad(k)]
3

...
[Cd(k)] [Ad(k)]

p


, Yd(k) =



Y(k + 1|k)

Y(k + 2|k)

Y(k + 3|k)

...
Y(k + p|k)


,

∆Ud(k) =



∆U(k)

∆U(k + 1)

∆U(k + 2)

...
∆U(k + p− 1)


,

(4.13)

where [ON×M ] is the zero matrix with the dimension N ×M .

With the modified state-space system model 4.12, the original cost
function 4.2 is also modified into [Wan09]

JLM(k) =

[(
Yd,t(k)−Yd(k)

)T
[Γ]
(
Yd,t(k)−Yd(k)

)
(4.14)

+ ∆Ud(k)T [Λ] ∆Ud(k)
]

=
[(

Yd,t(k)− [Fd(k)] Xd(k)
)T

Γ
(
Yd,t(k)− [Fd(k)] Xd(k)

)
− 2∆UT

d (k) [Ξd(k)]
T

[Γ]
(
Yd,t(k)− [Fd(k)] Xd(k)

)
+ ∆UT

d (k)
(

[Ξd(k)]
T

[Γ] [Ξd(k)] + [Λ]
)

∆Ud(k)
]
,

(4.15)

with

[Γ] :=


[Γ(1)] [ON ] · · · [ON ]

[ON ] [Γ(2)] · · · [ON ]

...
...

. . .
...

[ON ] [ON ] · · · [Γ(p)]

 ,
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[Λ] :=


[Λ(1)] [OM ] · · · [OM ]

[OM ] [Λ(2)] · · · [OM ]

...
...

. . .
...

[OM ] [OM ] · · · [Λ(p)]

 ,
and Yd,t(k) is the modified target temperature vector as

Yd,t(k) =
[
Yt(k)T Yt(k + 1)T . . . Yt(k + p− 1)T

]T
.

Both [Γ] (Np×Np) and [Λ] (Mp×Mp) are positive definite diagonal
matrices that are used to adjust weights of ∆U(k) and Yd,t(k) respec-
tively. Substituting the equations 4.12 and 4.13 into the above cost
function and differentiating both sides with respect to ∆Ud(k), the
analytical formed solution is given as [Wan09]

∆Ud(k) =
(

[Ξd(k)]
T

[Γ]
T

[Γ] [Ξd(k)] + [Λ]
)−1

[Ξd(k)]
T

[Γ]
T

[Γ](
Yd,t(k)− [Fd(k)] Xd(k)

)
,

U(k) = U(k − 1) + ∆U(k),

(4.16)

where ∆U(k) is the first vector taken from ∆Ud(k).

Equation 4.16 is the final control solution of the standard DMC algo-
rithm. For non constrained system, it can be directly implemented to
calculate U(k). However, for systems with control constraints, the re-
sulted control solution U(k) does not automatically fulfill the desired
control constraints (such as equation 4.4). If the resulted U(k) does
not fulfill the input constraint, an additional quadratic programming
step is needed. Due to the modified system model 4.12, the form of
input constraint also has to be adjusted as [Wan09]

Ud(k) = [Id] U(k − 1) + [Πd] ∆Ud(k),

with

Ud(k) =


U(k)

U(k + 1)

...
U(k + p− 1)

 , Id =


[IM ]

[IM ]

...
[IM ]

 ,
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Πd =


[IM ] [OM ] . . . [OM ]

[IM ] [IM ] . . . [OM ]

...
...

. . .
...

[IM ] [IM ] . . . [IM ]

 ,
where [IM ] and [OM ] are identical and zero matrices (M ×M ), respec-
tively. The dimensions of [Id] is Mp×M and the dimension of [Πd] is
Mp ×Mp. Using the above notations, the control constraint in equa-
tion 4.4 is converted into

− [Πd]
−1

[Id] U(k − 1) ≤ ∆Ud(k) ≤ [Πd]
−1 (

1− [Id] U(k − 1)
)
,

(4.17)

where 1 is an all-ones vector (Mp× 1) as

1 =
[

1, 1, 1, . . . , 1︸ ︷︷ ︸
Mp

]T
.

The original control task (equation 4.15) can be described by a regular
quadratic programming (QP) problem [GM86]

min JLM(k) = min
[

∆UT
d (k)

(
[Ξd(k)]

T
[Γ] [Ξd(k)] + [Λ]

)
∆Ud(k)

− 2∆UT
d (k) [Ξd(k)]

T
[Γ]
(
Yd,t(k)− [Fd(k)] Xd(k)

))
+
(
Yd,t(k)− [Fd(k)] Xd(k)

)T
Γ
(
Yd,t(k)− [Fd(k)] Xd(k)

)]
,

(4.18)

subject to

− [Πd]
−1

[Id] U(k − 1) ≤ ∆Ud(k) ≤ [Πd]
−1 (

1− [Id] U(k − 1)
)
,

The above QP problem can be solved using different numerical meth-
ods [Wan09]. In the practical MPC system of HEPHAISTOS, the con-
trol solution is firstly calculated using the standard DMC algorithm. If
the resulted control vector U(k) is within the control constraint, it will
be directly implemented. Otherwise, the control task will be trans-
ferred into the QP problem (equation 4.18) and solved using the nu-
merical method.
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Nonlinear MPC

There are generally two different ways to control the nonlinear system
3.46. The first one is to linearize the model and use linear MPC. Ac-
cording to the nonlinear model (equation 3.46), the microwave heat-
ing term is

Ψn(k) = VT(k) [Φn(k)] V(k).

The corresponding linearized term is

Ψn(k) ≈ Ψn(k − 1) +
∂Ψn

∂V

∣∣∣∣
k−1

(
V(k)−V(k − 1)

)
≈ Ψn(k − 1) + 2VT(k − 1) [Φn(k − 1)]

(
V(k)−V(k − 1)

)
≈ 2VT(k − 1) [Φn(k − 1)] V(k)−VT(k − 1) [Φn(k − 1)] V(k − 1)

(4.19)

which is a ’random walk’ model [ZL03] depending on the former in-
put vector V(k − 1). In this case, errors from nonlinear system identi-
fication and linearization are accumulated, and this linearized model
(equation 4.19) does not have a good prediction ability for future out-
puts. Therefore the linearization approach is not a good choice and
the nonlinear MPC method has to be implemented.

Compared with the popularity of linear MPC, nonlinear MPC was
not widely interested and studied until the 1990s [MHL99]. One of
the most important driven reasons for the development of nonlinear
MPC is the need for more accurate system models and better control
performance. As mentioned previously, the control principle of non-
linear MPC is the same as linear MPC, except the prediction and con-
trol policy are derived from a nonlinear model. In our case, unlike
the linear model, there is no analytical control solution derived from
the cost function (equation 4.2) using the nonlinear model (equation
3.46). Therefore, a numerical control scheme is proposed combin-
ing the idea of bang-bang control [MTA+06] and genetic algorithms
[Whi94], which is the binary genetic control scheme.

The so-called bang-bang control [MTA+06], also known as binary con-
trol or hysteresis control, is a control strategy where the control action
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switches between only two states [MTA+06]. When the bang-bang
control scheme is used in the nonlinear model of HEPHAISTOS, it
is defined that the control input variables switch between 0 and 1,
which indicate the feeding source is turned off or turned on with full
power respectively. Compared with normal control where the control
variable can take any value between 0 and 1, it seems that the bang-
bang control schemes loses a large part of the overall control diversity.
But when the dimension of control inputs is large enough such as in
HEPHAISTOS, the remained control diversity of such a binary con-
trol scheme is considerably large. For instance, in the new HEPHAIS-
TOS Cavity 3, the number of feeding sources is 18 (the old HEPHAIS-
TOS Cavity 3 had 36 sources), the total number of different heating
combinations is 218. It means in theory the system could provide 218

different heating patterns, which is still sufficient to provide a rather
uniform heating.

To derive the control solution in the bang-bang control schemes, a
binary programming algorithm [Sch98] has to be used. But due to
the special nonlinear form of 3.46, normal binary programming al-
gorithms are difficult to be implemented (most binary programming
algorithms can only deal with linear optimization problems [Sch98]).
Under this circumstance, the genetic algorithm (GA) is used here. GA
is a powerful global optimization and search algorithm inspired by
the natural evolution process [DAJ02]. Although many parts of GA
are still not well understood such as its converging and stability prop-
erties, it can achieve surprisingly good performance for many prac-
tical problems where traditional algorithms could not work [HJK95].
Nowadays it has been one of the most successful optimization algo-
rithms that are widely used in computer science, engineering, eco-
nomics and other fields. Explicit introductions about GA can be found
in [Whi94]. The binary GA based nonlinear MPC system of HEPHAIS-
TOS contains the following four procedures.

• Step 1: Initialization

At each time k, a number of possible control sequences are ran-
domly generated, such as

Vc
i =

[
Vi(k)T Vi(k + 1)T . . . Vi(k + p− 1)T

]T
, 1 ≤ i ≤ Ng,
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where Ng is the total number of control sequences that are initial-
ized. Each control sequence is called one individual or chromo-
some, and all individuals form a population. In the real application
of HEPHAISTOS, it is assumed that

Vi(k) = Vi(k + 1) = · · · = Vi(k + p− 1).

That is because in MPC the first input vector Vi(k) takes more
credits than the rest of the sequence. It may happen that a con-
trol sequence performs well referring to the cost function, but the
first input vector is actually not a good choice. In order to avoid
this situation, it is assumed that all following input vectors in the
control sequence are identical to the first one, to fully examine the
performance of Vi(k). Moreover, this arrangement also largely re-
duces the search space and raises the opportunity to quickly find
the best control solution.

• Step 2: Evaluation and selection

There are two important functions in GA. One is the evaluation
function and the other one is the fitness function [Whi94]. Here
the cost function (equation 4.2) is used as the evaluation function.
All individuals of one population are substituted into the nonlin-
ear model (equation 3.46) to predict their corresponding future
temperature vectors, such as

Yi(k + 1) = [A(k)] Y(k) + Ψ
(
Vi(k)

)
,

Yi(k + 2) = [A(k)] Y(k + 1) + Ψ
(
Vi(k + 1)

)
,

...

Yi(k + p) = [A(k)] Y(k + p− 1) + Ψ
(
Vi(k + p− 1)

)
.

Above predicted temperature vectors are further substituted into
the evaluation function 4.2 to calculate individual future costs Ji,
such as

Ji =
k+p∑
l=k+1

[ (
Yt(l)−Yi(l)

)T
[Γ(l)]

(
Yt(l)−Yi(l)

)
+ VT

i (l) [Λ(l)] Vi(l)
]
,

where Γ(l) and Λ(l) are defined the same as in equation 4.2.
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The fitness function fi is defined as

fi = exp(−α · Ji), 1 ≤ i ≤ Ng,

where α is a tuning constant. The value fi reflects how well the
control sequence is fit for the optimization problem. After the fit-
ness value is calculated for all individuals, the new generation of
population will be selected. The principle of selection is defined
as that for each old individual i, it has a probability of Pi to be
selected as a new individual j in the new generation, where Pi is
given by [Whi94]

Pi =
fi∑n
l=1 fl

, 1 ≤ i ≤ Ng.

It is clear that the larger fi is, the more suitable this control se-
quence is and the higher selected opportunity it has.

• Step 3: Crossover and mutation

After the new generation is selected, the population randomly
choose every two individuals into one pair and evolves these two
individuals into new individuals by doing crossovers. In our case,
the crossover occurs only for the first input vector and the rest of
input vectors will replicate the first one, such as

Vc
i

Vi(k)︷ ︸︸ ︷
0100101011

Vi(k+1)︷ ︸︸ ︷
0100101011 . . .

Vc
j 1010111001 1010111001 . . .

=⇒ 1100101011 1100101011 . . .

1010101001 1010101001 . . .

The length of crossover is predefined, but the starting point of
crossover could be determined randomly.

After crossover, the next step is mutation. For each bit of Vc
i , it has

a tiny probability Pm to be switched to the other state (from 0 to 1
or from 1 to 0). The probability is defined as Pm = 1/(mp), where
mp is the number of total bits in each individual. Similarly with
the crossover part, mutation is also taken only for bits of the first
input vector.
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• Step 4: Termination

The new individuals generated from crossover and mutation will
be evaluated and selected again to create another new genera-
tion. Steps 2 and 3 are iterated until the number of generations
is reached or a certain level of fitness value is achieved. The con-
trol sequence with the highest fitness value will be selected, and
the first control input vector within this sequence will be applied
as the real control input vector V(k).

The biggest advantage of GA is that the whole process can search
through the whole input space efficiently without being trapped in
a local optimum [Whi94]. During the searching process, a large num-
ber of predictions have to be performed, therefore the time spent on
each single prediction is a key element that affects the performance of
the whole algorithm. In order to have more iterations within a given
control period, the time for each prediction should be as short as pos-
sible. Compared with multiple layers calculations using nonlinear ac-
tivation functions in the neural network estimator, the time required
by the nonlinear model (equation 3.46) is much less. Therefore, the
nonlinear model is used for the prediction and GA controlling.

Stability is always one of the most important and fundamental issues
in the controller design. For the linear MPC, the general stability of
DMC is proved in [GM82] in situations where the prediction horizon
length p is significantly larger than the dimension of the input vector
p >> n. It was further demonstrated in [Cut83] that DMC is stable in
the case of p ≥ n + nd where nd is the largest input to output delay
time. So far there is no explicit proof about that under what circum-
stances a finite horizon input constrained QDMC algorithm is closed-
loop stable. However, as mentioned in [GM86] that in general cases
QDMC is more stable and robust than DMC, because of the loss of
control gain due to input constraints [Mor85]. The stability of QDMC
has also been verified by a large number of successful applications in
the oil industry.

Compared with the QDMC algorithm, the stability conditions of non-
linear MPC has not been well established. To the author’s knowledge,
currently there are no practically useful stability results established
for GA. Nevertheless, a number of empirical approaches can be done
to improve their stabilities and robustnesses in practical applications.
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For example, according to empirical evidences from numerous exper-
iments of HEPHAISTOS, a good upper power limit Umax can be ob-
tained by using a simple proportional-integral (PI) controller. In this
case, the number of totally activated feeding sources in the GA con-
troller is always bounded by the power calculated by the PI controller,
which not only guarantees the control stability but also reduces the
searching range of the input space. The practical GA based nonlinear
MPC system is shown as figure 4.3.

Plant
(HEPHAISTOS)

GA Controller

Nonlinear System 
Identification

Target 
Temperature 

Yt 

Measured 
Temperature 

Yr 

Control 
Input

U 

PI Controller

Power Limit 
Umax

Estimated 
System Dynamics

[A], [Φ]

Figure 4.3. Practically implemented GA based nonlinear MPC system.

4.1.2. Neural Network based Control

The idea of using neural networks as the controller has been stud-
ied and implemented massively in numerous applications [PSRJG00]
[LP02] [PW08]. In general there are two main structures that apply
neural network based control (NNC) [LV09], such as in figure 4.4.

The first structure ( 4.4a) is called indirect NNC, which has a simi-
lar topology with traditional feedback control system and involves
both the NN estimator and the NN controller. The estimator learns
the dynamics of the unknown system and the controller uses the es-
timated model to control the real plant. The second structure ( 4.4b )
contains only a NN controller which directly controls the real plant.
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Plant
(HEPHAISTOS)

NN Controller

NN Estimator

Target 
Temperature 

Yt

Measured 
Temperature 

Yr

Control 
Input 

U

Estimated Weights 
Vector or Matrix

(a) Indirect control structure

Plant
(HEPHAISTOS)

NN Controller

Target 
Temperature 

Yt

Measured 
Temperature 

Yr

Control 
Input 

U

(b) Direct control structure

Figure 4.4. Two control structures of NN controller.

The weights of this NN controller is usually tuned using the unsuper-
vised learning algorithms. Unlike in supervised learning, where the
target output of the NN is given in advance, in unsupervised learning
there is no explicit target output provided. Therefore the main chal-
lenge in using a direct NN controller is to determine a suitable and
realistic learning algorithm that can effectively tune the weights and
guarantee the control performance.

The dynamics of the real plant to be controlled can be described by the
expression, such as

Y(k + 1) = F (Y(k),U(k)) , (4.20)
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and the neural network controller is represented by

U(k) =G (Yt(k),Y(k),w(k)) ,

w(k) =
[
w1(k), w2(k), . . . , wNw

(k)
]T (4.21)

where F is the function that describes the dynamics of the real plant,
G is the function of the NN controller. and w(k) is the weight vector of
the NN controller (Nw × 1). Equation 4.21 means the control action is
directly calculated based on the target and current measured temper-
atures as well as the weights of the NN. With the same cost function
in equation 4.2, the objective of unsupervised learning in this NNC is
defined to find the optimal weight vector w∗ that minimizes the cost
function, which is

w∗ = argw min J(k) ⇒ ∂J(k)

∂w∗
= 0. (4.22)

The weight update in the NN controller still uses the standard gradi-
ent descent principle, following the direction that minimizes the cost
function, such as

w(k + 1) = w(k)− α(k) · ∂J(k)

∂w

∣∣∣∣
k

= w(k)− α(k) · ∂J(k)

∂Y
· ∂Y

∂U
· ∂U

∂w

∣∣∣∣
k

,

(4.23)

where α(k) is the step size of the update.

If the dynamics of the real plant F is perfectly known, the partial dif-
ferentiation ∂Y/∂U can be calculated and the gradient term can be
directly implemented. However, for most cases, including HEPHAIS-
TOS, the real dynamics of the controlled plant is incompletely known,
and the partial differential term ∂Y/∂U is not directly computable. In
this case, a stochastic approximation (SA) algorithm [KY97] has to be
applied [SC98]

w(k + 1) = w(k)− α(k) · ( approximated gradient )k , (4.24)

which replaces the true gradient by an approximated gradient to up-
date the weights of the NN controller.
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SA is a powerful method that is used for optimization problems where
traditional analytical methods could not solve. In this section, the
so-called simultaneous perturbation stochastic approximation (SPSA)
learning algorithm is introduced to demonstrate how the NN con-
troller is designed and applied in HEPHAISTOS. SPSA was firstly de-
veloped in [Spa87] as a general SA algorithm used in parameter esti-
mation. Since the middle of the 1990s, it has been gradually extended
to the field of neural network learning and control, and widely im-
plemented in practical applications, such as in [SC94] [Spa98] [BK04]
[SSSN08]. The procedures to implement SPSA in a NN controller are
described in the following.

At each time k, the weight vector of the NN controller is updated by
the equation

w(k + 1) = w(k)− α(k) · h (w(k)) , (4.25)

where h (w(k)) is the simultaneous perturbation approximation of the
original gradient ∂J(k)/∂w. The approximation term is calculated by
the equation

h (w(k)) =
J (+)(k)− J (−)(k)

2 c(k) ∆(k)
, (4.26)

where

∆(k) = [ ∆1(k),∆2(k), . . . ,∆Nw
(k) ]

T
,

w(±)(k) = w(k)± c(k) ∆(k),

U(±)(k) =G
(
Yt(k),Y(k),w(±)(k)

)
,

Y(±)(k) = Y(k + 1) = f
(
Y(k),U(±)(k)

)
,

J (±)(k) = J
(
Y(±)(k),U(±)(k)

)∣∣∣
p=1

,

(4.27)

and c(k) is the tuning constant that fulfills certain regularity condi-
tions. Several points need to be noticed regarding the implementation
of the learning process:

• The simultaneous perturbation vector ∆(k) is randomly gener-
ated. All elements ∆i(k) are independent, bounded and symmet-
rically distributed random variables [SC98]. In practice, these el-
ements could be randomly generated around 0 with amplitudes
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smaller than 1. Another simpler method is to randomly choose
∆i(k) to be either 1 or -1. Different methods of determining ∆i(k)
can be applied accordingly.

• In the standard SPSA control system, one complete weight update
of w(k) takes three control periods. In the beginning time k, the
NN controller generates ∆(k),w(±)(k) and U(±)(k). and imple-
ments the new control action U(+)(k). At time k + 1, it measures
corresponding system output Y(+)(k) (which is also Y(k+1)), cal-
culates the first evaluation value J (+)(k) using Y(+)(k), and then
implements U(−)(k). The same procedures are repeated at time
k + 2 to calculate J (−)(k). After that the weight w(k) will be up-
dated using equation 4.25. The resulted new weight is not strictly
w(k+ 1), but w(k+ 3) which will be used to calculate new control
action for the period k + 3. In principle, the output sequence can
be expressed as (see figure 4.5)

O = {. . . ,Y(k),Y(+)(k),Y(−)(k),

Y(k + 3),Y(+)(k + 3),Y(−)(k + 3), . . .}.
(4.28)

k k+1 k+5k+2
Time

U(k)

k+3 k+4

Y(k) Y+(k) Y-(k) Y+(k+3) Y-(k+3)Y(k+3)

U+(k)

U-(k)
U(k+3) U+(k+3)

U-(k+3)

update of weights update of weights

Figure 4.5. Weights update in the standard SPSA algorithm.

The standard SPSA algorithm (equation 4.26) has a critical limita-
tion that makes it difficult to be realized in practice. It is defined
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in equation 4.27 that both Y(+)(k) and Y(−)(k) are generated based
on Y(k), which means in the sequence (equation 4.28) the controller
should wait until Y(+)(k)(Y(k + 1)) equivalent to Y(k) to implement
the next control action U(−)(k). This condition requires extra wait-
ing time and also brings more disturbances for continuous multiple-
output systems, where two adjacent outputs are hardly identical. In
addition, the weight update frequency in the standard SPSA algorithm
is limited as one update per three control periods, which slows down
the whole controller converging speed and correspondingly degrades
the control performance.

In order to make the SPSA algorithm more efficient in the practical
heating process, a semi-direct NN controller is implemented in this
dissertation. The first modification is to change the approximation of
the gradient from equation 4.26 to a simpler form as [SC98]

h (w(k)) =
J (+)(k)

c(k) ∆(k)
. (4.29)

Although the two-measurement strategy (equation 4.26) is gener-
ally more preferable, it has been proved in [Spa97] that this one-
measurement strategy (equation 4.29) is also suitable for highly non-
stationary systems, where the parameters of the plant or external dis-
turbances might change during one control period (from k+ 1 to k+ 2
or from J (+)(k) to J (−)(k)). In order to further speed up the learning
process, the control structure is also modified from the direct control
scheme to a semi-direct scheme that involves an additional NN esti-
mator (figure 4.6 ).

In this semi-direct scheme, the NN estimator keeps learning the dy-
namics of the real plant and monitoring the error between its predic-
tion and real output of the plant. If the prediction of the NN esti-
mator is constantly accurate for certain time (the MSE of prediction
is lower than a given threshold, described in figure 4.7), it will also
be used in the weight update. This NN estimator can be considered
as an approximation of the real plant, to provide information such as
Ŷ(+)(k), Ĵ (+)(k) to the NN controller. During each control period, the
NN controller can take one or more updates based on the NN estima-
tor, and the number of updates per control period can be adjusted. The
principle can be found in the controller description (figure 4.7).
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Plant
(HEPHAISTOS)

NN Controller

NN Estimator

Target 
Temperature 

Measured 
Temperature 

Control 
Input 

Estimated 
Dynamics

Figure 4.6. Semi-direct control structure. The blue dashed line represents two
possible learning approaches.

The main advantage of the semi-direct control structure is that the
overall weight update of the NN controller is significantly acceler-
ated. The average weight update rate can be increased to once per
control period or even higher. In addition, there is no extra waiting
time spent on the states or outputs recovery. The NN controller us-
ing one-measurement SPSA learning can quickly evolve from the ini-
tialized state to a nearly optimal state, which guarantees acceptable
control performance in the starting period. Defining the modulo op-
eration as

r = Mod(a, n) = a− nba
n
c, for a, n, r ∈ R,

where r is the reminder of a divided by n.

The complete procedures of the semi-direct control scheme is shown
in figure 4.7.

4.2. Intelligent Control

Intelligent control is a class of control methods that utilize ideas and
approaches from the artificial intelligence or biological systems to
solve the control problem [WSF94]. Technically, both aforementioned
nonlinear GA control and NNC methods can be classified as intelli-
gent control approaches. Nevertheless, in this dissertation intelligent
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control is defined not only by characterizing applied control methods,
but also by characterizing the control task being optimized. In other
words, the control task used in the intelligent control system is also
”intelligent”. The so-called intelligent control task is named in com-
parison with traditional control tasks. In conventional heating prob-
lems, the mean square error (MSE) between measured temperatures
and the target temperature is used as the cost (objective) function of
the control task, such as equation 4.2 used in the MPC method.

In many cases, the expression 4.2 is not always the best choice for the
cost function. On the one hand, the true temperature distribution is
not well represented by the value of the cost function. For example,
during the heating process, there are a number of hot spots and cold
spots that are not measured, and thus not reflected by the value of
the cost function (equation 4.2). On the other hand, in applications
where the entire temperature profile is available, only a small part of
the profile is used in the control of the cost function 4.2. The most part
of the information from the thermal picture is wasted.

Initialize weights of the NN controller and the NN estimator
as wc and we;
Initialize functions of the NN controller and the NN estimator
as G and F ;
Set the estimation error indicator χind and its lower threshold χth;
Set the parameters c(k), α(k), the counter number Ct = 1 and the
indirect training timer nt = 1;
Take the first control action as U(k) = Fc(Y(k), Ytar(k)) at time k = 1;

Figure 4.7. Procedures in the semi-direct NN control system (part 1).

In this case, it is better to replace the traditional cost function by more
innovative and reliable definitions, which are the intelligent control
tasks as previously mentioned. For example, using a infrared camera
to measure the temperature profile of the heated load, the maximum
and the minimum temperatures of the whole heated load Ymax, Ymin

can be obtained in real time, and a more reliable cost function can be
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At each time k (k > 1) :
repeat

1 Receive the measured temperature vector Y(k);
2 Calculate the estimation RMSE of the NN estimator as χ(k),

and update the estimation error index via

χind = 0.95 · χind + 0.05 · χ(k).

3 Update the weights of the NN estimator using the EKF
algorithm;
if Mod(Ct, 2) = 0 then

if χind < χth then
4 Use the NN estimator to train the NN controller for nt

times to get new wc(k) and update the training timer
nt = nt + 1;

5 Calculate the new control input
U(k) = G (Ytar(k),Y(k),wc(k));

else
4 Reset the training timer nt = 1;
5 Calculate the training control input as

w+(k) = w(k) + c(k) ∆(k),

U(k) = U+(k) = G
(
Yt(k),Y(k),w(+)(k)

)
;

6 Update the counter number Ct = Ct+ 1;

else
4 Update the weights of the NN controller by

h (wc(k)) =
J
(
Y(k),U(+)(k)

)
c(k) ∆(k)

wc(k + 1) = wc(k)− α(k) · h (wc(k)) ;

5 Update the counter number Ct = Ct+ 1;
6 Calculate the new control input

U(k) = G (Ytar(k),Y(k),wc(k));

until the end of the control process;

Figure 4.7. Procedures in the semi-direct NN control system (part 2).

109



4. Control System Design

generated as

JIC =
1

N

N∑
i=1

(Yi − Yt)2 + αmax (Ymax − Yt)2 + αmin (Ymin − Yt)2 ,

(4.30)

where αmax and αmin are coefficients to adjust weights of Ymax and
Ymin, respectively. In equation 4.30, the maximum and the minimum
temperatures of the whole load are also included in the cost function,
which is more accurate to reflect the true temperature homogeneity of
the heated load. However, the problem regarding this cost function
is that the maximum and the minimum temperatures are not fixed in
certain locations, and their locations are varying during the heating
process. It is not feasible to build a model to describe the relationship
between the maximum and the minimum temperatures and individ-
ual microwave feeding power. As a result, normal control techniques
are difficult to be applied in this situation.

4.2.1. Reinforcement Learning

The development and implementation of reinforcement learning (RL)
in the control field provides a perfect alternative to deal with afore-
mentioned intelligent control tasks. The idea of reinforcement learn-
ing was originally inspired by the biological learning process [LV09],
like the learning behaviors of human beings and other animals. In RL
if an action is followed by a satisfactory state of affairs or an improve-
ment in the state of affairs, it will receive a positive (or less negative)
reward and the tendency to produce that action is strengthened, which
is reinforced. Otherwise if an action is followed a non-satisfactory
state of affairs, it will receive a negative (worse than the first case)
reward and the tendency to produce that action is weakened [Bar94].
The ultimate objective of RL is to find the optimal action (control) pol-
icy that maximizes the overall rewards obtained during the entire con-
trol process.

Unlike the supervised learning approach introduced in the previous
chapter 3, where the learning is based on datasets provided by a
knowledgable supervisor, there is no predefined learning target given
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in RL. In most cases the plant to be controlled is completely unknown
to the learner. Therefore the learner has to use a trial-and-error search-
ing strategy to consistently explore the environment by performing
different actions, and improve the action policy according to the re-
ceived rewards from the environment. RL is more practical and useful
than supervised learning in many cases, because it is often impossi-
ble to obtain training datasets that are both correct and representative
to describe all dynamics of the real problem. That is also why RL is
considered as the closest learning approach to functionalities of the
human brain, and widely applied and studied in artificial intelligence,
robotics and computer science areas [GBLB12].

RL was extended and implemented in the control field starting from
the 1980s and 1990s [BSB81] [Sut84], and gradually developed as an
influential control method [SBW92] [WD92] [WMS92]. The main dif-
ference between RL control (RLC) and other control methods is that in
RLC a different tool is utilized to describe the dynamics of the plant
being controlled. Instead of transfer equations (polynomials) or state-
space models used in conventional control methods, in RL the plant is
modeled by a Markov decision process (MDP) [Bel57] that only con-
sists of different state-action pairs and transition probabilities between
any two states. The complete dynamics of the plant are described by
the probability distribution

Pa(s, s′, r) = Pr (R(k + 1) = r, S(k + 1) = s′ |S(k) = s,A(k) = a) ,
(4.31)

where Pa(s, s′, r) is the transition probability from state s to state s′

with a reward r, caused by the action a at time k.

From a conventional control engineering point of view, the actionA(k)
is equivalent to the control input (U(k)) decided by the controller, and
the state S(k) is the basis for making control actions, which functions
similarly with the output variable (Y(k)). The reward R(k) is the ba-
sis for evaluating the control actions, to tell a control action is good or
not, and it has the same functionality with the cost defined by the cost
function (such as equation 4.30). In order to keep a good consistency
in matters of notations and descriptions, in the following the symbols
U(k) and u are utilized to replace A(k) and a, as the selected control
action at time k and the random control action (vector), respectively.
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Meanwhile, the name ’plant’ is used to denote the external environ-
ment in RL.

In most cases, states in a MDP are discrete and finite, but the above
expression 4.31 can be extended into situations of infinite or contin-
uous states [SK00]. An important property always assumed in MDPs
is that the next state S(k + 1) and reward R(k + 1) depends only on
the current state S(k) and action U(k), which makes the MDP simi-
lar to an ARX model with one-step delay. For plants where the above
property does not fully hold, it is still appropriate to consider them as
approximated MDPs, as long as the current state can provide a good
basis for predicting the next state and reward.

Despite significant differences regarding the process of system mod-
eling and the controller design, it was found that RLC is closely re-
lated to conventional control methods. It has been proved in [SBW92]
that RLC is essentially an optimal control approach, and the relation-
ship between RLC and adaptive feedback control was well explained
in [LV09]. More and more applications implement the principle of
RL in conventional control frameworks, such as the RL based fuzzy
controller [JLL00] [Lin03] and RL based online PID tuning algorithm
[HB00]. Detailed information of RL refers to literatures as [Bar98],
[Alp04] and [B+06].

The structure of a normal RLC system is shown in figure 4.8. In gen-
eral, a RLC system consists of following four parts.

RL Controller

Action U(k)

Plant
(HEPHAISTOS)

Reward R(k)State S(k)

R(k+1)

S(k+1)

Figure 4.8. Reinforcement learning controller.
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Control policy π(s,u)

The control policy is a stochastic or deterministic rule by which the
controller decides its future (next) actions based on the current state.
It could be represented by a lookup table, a probability distribution
or a function, mapping from individual states to control actions to be
taken under each state. The control policy is the core of a RLC, which
is equivalent to the control solution in conventional controllers.

Reward function R(k)

The reward function is defined as the future rewards that the con-
troller tries to maximize. It maps each control action to a scalar value,
which is the reward, evaluating the intermediate desirability of the ac-
tion. If the plant goes from a state of less (higher) value (the value of
a state is determined by the value function such as introduced below)
to a state of higher (less) value, the corresponding reward is positive
(negative), indicating this transition is good (bad) for the plant and
controller. The value of rewards could be finite predefined values or
calculated results from a function, depending on different formula-
tions of the reward function.

Value function

A value function specifies the long-term expected rewards for each
state or state-action pair under a certain control policy. There are two
types of value function defined. One is the state value function Vπ(s),
which denotes the long-term expected reward starting from the state
s using the control policy π. The state value function is defined as
(according to [Bar98])

Vπ(s) = E [G(k) |S(k) = s, π ] , (4.32)

where G(k) represents the long-term expected reward. The long-term
expected reward can be formulated according to different criteria, and
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reward [Bar98]

G(k) = lim
n→∞

1

n

n∑
k=1

R(k), (4.33)

and the discounted long-term expected reward [Bar98]

G(k) =

n∑
k=1

γk−1R(k), (4.34)

where 0 < γ < 1 is the discount factor. The involvement of the dis-
count factor is to avoid situations where the values of certain states
go to infinite during the learning process. In this dissertation, the dis-
counted long-term expected reward (equation 4.34) is used to within
value functions.

The other type of value function is called state-action value function
Qπ(s,u) (Q-function), which is defined as the expected long-term re-
ward starting from the state s, taking the action a and thereafter fol-
lowing the control policy π. It also has different formulations such as
the above shown state value function. Here the expression similar to
equation 4.34 is used as the state-action value function [Bar98]

Qπ(s,u) =E [G(k) |S(k) = s,U(k) = u, π ]

=E

[
n∑
k=1

γk−1R(k)
∣∣S(k) = s,U(k) = u, π

]
.

(4.35)

Whereas rewards determine the immediate, intrinsic desirability of in-
dividual states of the plant, the value function indicate the long-term
desirability of states or state-action pairs by taking into account suc-
ceeded states and rewards [Bar98].
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The relationship between the state and state-action value functions are
represented by the following two equations [Bar98]

Vπ(s) =
∑
u

π(u|s)Qπ(s,u), (4.36)

Qπ(s,u) =
∑
s′

Pu(s, s′, r) [ r(s,u, s′) + γVπ(s′) ] , (4.37)

where π(u|s) is the probability of taking action u in the state s under
the control policy π. Combining these two equations together, there is
the so-called Bellman equation given as [Bar98]

Vπ(s) =
∑
u

π(u|s)
∑
s′

Pu(s, s′, r) [ r(s,u, s′) + γVπ(s′) ] . (4.38)

Defining the optimal state and state-action value functions as

V ∗(s) = max
π

Vπ(s), (4.39)

Q∗(s,u) = max
π

Qπ(s,u), (4.40)

respectively, the Bellman optimality equations are expressed as
[Bar98]

V ∗(s) = max
u

E
[
R(k + 1) + γV ∗(S(k + 1))

∣∣S(k) = s,U(k) = u
]

= max
u

∑
u

π(u|s)
∑
s′

Pu(s, s′, r) [ r(s,u, s′) + γV ∗(s′) ] ,

(4.41)

Q∗(s,u) =E
[
R(k + 1) + γmax

u′
Q∗(s,u′)

∣∣S(k) = s,U(k) = u
]

=
∑
s′

Pu(s, s′, r)
[
r(s,u, s′) + γmax

u′
Q∗(s′,u′)

]
.

(4.42)

The Bellman optimality equation is the foundation of RLC as well as
the conventional optimal control [LV09]. It reveals the relationship be-
tween the current state (or state-action pair) and its successor state (or
state-action pair), which transfers the process of determining the long-
term optimal control sequence into a one-step search of equation 4.41
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or 4.42 . In other words, any control policy that is greedy [ZSWM00]
[RS07] with respect to the optimal state-action value function 4.42 is
an optimal policy [Bar98], such as

π∗(s,u) : u = u∗ = arg max
u

Q∗(s,u), (4.43)

where u∗ indicates the optimal control action.

Model of the plant

The function of the model is to mimic the dynamics of the plant and
predict future states and rewards. It is not a compulsory element for
all RLC methods. Classical RLC methods use the pure trial-and-error
strategy, where all of their learning and approximations are based on
explicitly experienced interactions, and the model of the plant is not
needed. In modern RLC methods, planning based on the model of the
plant is often utilized to speed up the learning process [Die99]. Be-
sides real experiences, simulated experiences from the model of the
plant is also useful to improve and update the control policy [AR01].
Although RLC with the incremental/online planning costs more com-
putation power than the direct RLC, it showed in [AS97] and [LV09]
that a faster learning speed and a higher expected return can be ob-
tained because of the involvement of explicit models.

Several points are worthy of note regarding these four parts. Firstly,
RL is able to deal with different types of problems and control tasks,
as long as the value function is clearly defined and rewards are appro-
priately assigned. From this point of view, the task (equation 4.30)
can be solved using RL. Secondly, In practical control applications, the
state-action value function 4.35 makes more sense than the state value
function 4.34. Because as shown in equation 4.43, the state-action
value function directly defines how good or bad a control action is,
and the optimal controller can be simply constructed using the greedy
algorithm, which makes the controller design more straightforward
than using the state value function. Due to this reason, all following
RL methods are introduced in the the state-action value function form.
Finally, as previously emphasized, the value function is the core of all
RLC methods. Using different approaches to calculate or approximate
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the value function and then using the value function to derive the con-
trol policy are the procedures followed by all RLC methods.

Temporal difference methods

According to different applicable situations and different approaches
of updating the value function, RLC can be classified into three
types: dynamic programming (DP) [BBBB95] [Si04], Monte Carlo
(MC) [BC06] methods and temporal difference (TD) [Tes92] methods.
DP is the most basic and classical RLC scheme, which requires com-
plete knowledge of the plant. When the complete dynamics of the
plant are known in advance, the transition probability distribution is
easily obtained. The value function and corresponding optimal con-
trol policy can be directly calculated via iterative updates according to
equations 4.37 and 4.43, respectively. In DP methods, both the value
function and the control policy are updated simultaneously through
interactions between each other, using either the policy iteration (PI)
algorithm, the value iteration (VI) algorithm and other generalized
policy iteration (GPI) algorithms. Differences between among algo-
rithms and detailed introductions can be found in [KLM96] and [Si04].
DP methods are guaranteed to converge to the final optimality for fi-
nite MDPs, but they are thought of limited usage in practice because
of its inefficiency for high-dimensional problems and requirement of
complete knowledge of the environment [Bar98].

When the dynamics of the plant are not completely known, both MC
and TD methods can be applied to approximate the value function
based on real time experiences. MC is a learning strategy based on
random explorations. In MC methods, the update of the value func-
tion is done episode by episode [BC06]. Each episode starts from a
random state, takes control actions defined randomly or from a con-
trol policy π, and ends at a predefined terminal state. For each state
occurred in an episode, its value function is simply calculated as the
accumulated rewards from its first (or every) appearance until the end
of the episode. After multiple episodes, the mean value function can
be obtained and the greedy algorithms is applied to generate the fi-
nal deterministic control policy (such as equation 4.43). The idea of
MC methods is easy but the main problem is that the update is only
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performed at the end of each episode rather than at each time step,
which makes MC methods inconvenient to be implemented in the on-
line form.

TD methods are the combination of DP and MC [Tes95]. On the one
hand, TD methods can estimate the the value function directly from
raw experiences without any prior information of the plant, just like
MC methods. In addition, the update of the value function in TD is
easy to be implemented in the online form without waiting until the
end of each episode, which is similar to DP methods. As the name
indicates, the update of the state-action value function in TD methods
is based on the so-called TD error [Tes95]. Depending on different
definitions of TD error and different update rules, TD methods can be
classified into three types as following [Bar98].

• Sarsa (State-Action-Reward-State-Action)

At each time k, the update rule for the state-action value function
in sarsa is defined as [Bar98]

Q(S(k),U(k)) =Q(S(k),U(k)) + α(k) [R(k)

+ γQ(S(k + 1),U(k + 1))− Q(S(k),U(k)) ] ,

(4.44)

where α(k) is the time-varying learning rate and the term within
the square brackets is used as the TD error as [Bar98]

δtd = R(k) + γQ(S(k + 1),U(k + 1))−Q(S(k),U(k)). (4.45)

In order to guarantee the state-action value function converges to
the optimal value function, the time-varying learning rates have to
fulfill the condition as [Bar98]

∞∑
k=1

α(k) =∞, and
∞∑
k=1

α(k)2 <∞. (4.46)

After the state-action value function is updated, the controller can
be constructed by using the greedy algorithm (equation 4.43), or
the more robust ε-greedy algorithm, such as [Bar98]

π(u|s) =

{
1− ε+ ε/|U(s)|, u = u∗,
ε/|U(s)|, others, (4.47)
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where |U(s)| is defined as the total number of available control ac-
tions at the state s and 0 ≤ ε ≤ 1 is the probability factor represent-
ing the total probability to select other non-greedy control actions.

The involvement of the probability factor ε is to achieve a trade-
off between exploration and exploitation, which is important for
not only sarsa but all TD methods [Thr92] [AN05] [ALL+09]. On
the one hand, the controller has to make the best action according
to the greedy algorithm (exploitation), trying to obtain a high long-
term expected reward. But on the other hand, the controller should
also occasionally explore other non-greedy actions to test if there
are better control actions. This is helpful for future improvements
of both the value function and the control policy, especially when
the value function is not optimal, or when the plant is stochastic or
time-varying.

The value of the probability factor ε is determined mainly depend-
ing on the plant. In principle, the value of ε is large in the begin-
ning of the learning process and then gradually decreasing. For
deterministic plants, the value could eventually be zero after all
state-action pairs are experienced at least once, because the state-
action value can accurately learn rewards of individual state-action
pairs by only one time searching. But for stochastic or time-varying
plants, the value of ε should always keep a small but non-zero
value, in order to have more accurate estimations regarding ex-
ternal disturbances and track time-varying dynamics.

Besides the ε-greedy algorithm, there are also several other algo-
rithms that aim to balance the trade-off between exploration and
exploitation, such as the ε-soft algorithm [Tho97] and softmax al-
gorithm [Bar98] [IYY02].

• Q-learning:

The update rule for the state-action value function in Q-learning is
defined as [Bar98]

Q(S(k),U(k)) =Q(S(k),U(k)) + α(k)
[
R(k)

+γmax
u′

Q(S(k + 1),u′)−Q(S(k),U(k))
]
.

(4.48)
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The only difference between Q-learning and sarsa is the definition
of the TD error, which in Q-learning is [Bar98]

δtd = R(k) + γmax
u′

Q(S(k + 1),u′)−Q(S(k),U(k)). (4.49)

This difference reflects two different update principles of TD meth-
ods, which are called on-policy and off-policy. Sarsa is an on-policy
algorithm because the update rule (equation 4.44) strictly follows
the control policy π and all data used in equation 4.44 are actually
experienced by the plant. Q-learning is an off-policy algorithm be-
cause the term maxu′ Q(S(k+ 1),u′) used in the update rule might
not be the real experience of the plant. For example, if both sarsa
and Q-learning are coupled with the greedy algorithm as the con-
trol policy, there is no difference. But if they use the ε-greedy al-
gorithm as the control policy, the performance will be different.
Because in Q-learning the update still follows a greedy algorithm,
while in sarsa the update strictly follows the ε-greedy algorithm
and the influence of exploration actions will be reflected in the up-
date result. Compared between Q-learning and sarsa, Q-learning
is in general more efficient because of the use of full knowledge
rather than following the control policy.

• Actor-critic (AC) methods:

AC methods are significantly different with sarsa and Q-learning
[PS08b]. In both sarsa and Q-learning, the control policy is ob-
tained based on the state-action value function, using stochastic
searching algorithms such as the greedy algorithm or ε-greedy al-
gorithm. Evaluation of the value function is the key of the en-
tire control system and the control policy is only updated accord-
ingly. This kind of algorithms is usually called critic-only algo-
rithms (critic is the structure where the value function is updated).

In AC methods, there are two separately structures which update
the control policy and the value function independently, called the
controller (actor) and the critic respectively (such as figure 4.9).
The value function is updated in the critic using the same method
as in Q-learning or sarsa. Meanwhile, the control policy is also
updated in the controller. Instead of the probability distribution
directly inferred from the value function using equation 4.43, the
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4.2. Intelligent Control

control policy used in AC methods is a parameterized family. The
parameters of the control policy are updated either directly using
the TD error, such as the Gibbs softmax algorithm [BV03] [PL05]
and the adaptive heuristic critic learning architecture (AHCON)
[Lin93], or using the gradient term that is influenced by the critic,
like the policy gradient method [SMSM99] and the natural policy
gradient method [PVS05] [PS06] [PS08a].

PlantController (Actor)

Critic

Current State 
S

New State 
S

Control Action 
U

Reward

Reward 
R

Figure 4.9. Actor-critic control system [GBLB12].

The structure of the AC control system seems similar with the con-
ventional feedback controller (such as figure 4.2). To be more spe-
cific, the principle of AC methods is very close to the semi-direct
SPSA based NN controller proposed previously (see figure 4.6).
Despite minor differences with respect to different forms of realiza-
tions, both controllers are updated using terms either from direct
interactions with the plant (TD error or direct SPSA) or gradients
approximated from direct interactions (gradient methods or indi-
rect SPSA). The critic use in AC methods can be represented by a
lookup table such as in Q-learning or sarsa, but it can also be ap-
proximated using either linear or nonlinear (such as NN) functions
[BM95] [Sut96] [SK00], which is similar with the system estimator
in semi-direct SPSA NN control system. From another aspect, AC
methods can also be considered as the combination of a critic-only
algorithm and a model-free controller [LV09].

One advantage of AC methods over classical Q-learning and sarsa
is that it is able to deal with continuous states and actions. Both
the control policy and the value function in AC methods can be
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generalized in the continuous states and actions spaces by using
various function approximation methods [SK00], respectively.

After its release in the 1980s, TD immediately became one of the most
popular RLC methods. Until now many improvements have been
done based on conventional TD methods (as introduced above). For
instance, that function approximation based approaches have been
proposed to extend the conventional critic-only methods into more
general methods which can deal with continuous states and actions,
such as the CMAC based Q-learning [SSR97] or the wire-fiited NN
based Q-learning [GWZ99]. More detailed introductions about TD
learning methods refer to [Boy02] and [Si04].

4.2.2. Design of Reinforcement Learning Controller

Although TD methods have been widely implemented in various ap-
plications, most of systems being controlled have simple architectures,
which means they have either discrete states and actions, or low in-
put and output space dimensions. When a TD learning controller is
used to deal with complex systems with both continuous variables
and high dimensions (such as HEPHAISTOS), the control system be-
comes much more complicated and in most cases the corresponding
learning process will become extremely slow. It is acceptable if the
controller can be trained with experimental data episodes in the offline
form. However, in HEPHAISTOS it is impossible to generate training
data which can comprehensively cover all dynamics of the plant. In
this case, the TD learning control system has to be specially designed
and optimized. Generally it is developed and implemented according
to the following principles.

Hybrid multi-agent control structure

The hybrid multi-agent control structure is shown in figure 4.10. The
entire control system consists of two independent controllers that are
designed for different control objectives. One is a conventional adap-
tive controller that could use either MPC or NNC, and the other one is
a lookup table based TD learning controller which will be introduced
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Plant
(HEPHAISTOS)

Adaptive Controller
(MPC or NNC)

Q(λ) Learning 
Controller

Target 
Temperature 

Yt

Measured 
Temperature 

Yr

Control 
Input 

U 

No Power Input

Controller Selection

Figure 4.10. Hybrid TD learning control system.

later. This special hybrid control structure is developed because of
several reasons.

First, in most control tasks the target temperature is varying along
time such as shown in figure 4.11. Apparently, a randomly initialed
TD learning controller has the worse ability to follow the target tem-
perature change than conventional adaptive controllers. Because it
does not use the same system estimation approach as in conventional
adaptive control systems and it has to take a large number of explo-
ration actions to get the accurate state values. Besides, it is not rec-
ommended to use a varying target in TD learning controllers, and the
highly varying and stochastic environment/plant will also influence
its learning results. Based on these reasons, it is better to use a con-
ventional adaptive controller to handle the raising-temperature period
(the blue part in figure 4.11).

Second, according to numerous experimental data (can be found in
the next chapter), no matter which control method is applied, the con-
trolled temperature distributions of different control algorithms are
very similar to each other during the first raising-temperature period.
All control algorithms have to control based on inaccurate system esti-
mations and no effective control actions can be made. In other words,
as long as the target temperature curve is defined, it is not likely to
improve the temperature distribution on the first raising-temperature
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period. Compared with the first raising-temperature period, what
is more important to the final temperature distribution is the flat-
temperature period (the second red part in figure 4.11). In this case,
the TD learning controller is perfectly suitable because of its ability to
deal with intelligent control tasks and highly nonlinear plants.

Finally, the entire control task of the TD learning controller is signif-
icantly simplified by the hybrid control structure, from following a
varying temperature in a large temperature range to converging to a
fixed temperature in a small temperature range. As a result, the struc-
ture of the TD learning controller is also simplified and correspond-
ingly the whole learning process is shortened.

Lookup table based Q(λ)-learning

After defining its applicable region, the next step is to determine the
form of the TD learning controller. In principle, all kinds of TD learn-
ing controllers could be applied in HEPHAISTOS. An intuitive way to
generate the MDP is to treat the temperature value as the state vari-
able and the control input as the action variable. Both state and action
variables are all continuous and it follows logically that the function
approximation based AC methods (both the critic and the actor use the
function approximation approach) should be implemented. However,
it is also natural to convert the continuous states and actions into dis-

Time

Temperature

Raising-temperature 
period

Flat-temperature 
period

Target Temperature Curve

Figure 4.11. Target temperature curve during the heating process.
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crete using either discretization [DKS+95] or fuzzy descriptions [LJ00]
[Lin03], and then apply the lookup table based TD learning such as
Q-learning and sarsa. After some preliminary tests and comparisons,
the lookup table based Watkins’ Q(λ)-learning [WD92] is selected as
the TD learning control method.

The aforementioned sarsa (equation 4.44) and Q-learning (equation
4.48) are the most basic one-step TD methods that only update the
value function of the current state or state-action pair based on the
next state or state-action pair. At each time only one state or state-
action value is updated and the overall convergence speed is limited.
In order to fully exploit the usefulness of each reward and speed up
the entire learning process, a more efficient TD(λ) learning method is
developed [Tes95] [WS98]. The parameter λ refers to the use of an
eligibility trace [LS98], which is normally defined as

e(s,u) =

{
γλe(s,u) + 1, if s,u is the current state-action pair,
γλe(s,u), Otherwise,

(4.50)

where γ is the same as in equation 4.44 or 4.48 and 0 ≤ λ ≤ 1 is
the fading factor. Intuitively, the eligibility trace is considered as the
temporary memory of the occurrence of each state-action pair. Each
time when there is a reward, not only the current state-action pair but
also former implemented state-action pairs should be assigned credit.
The relevance between each state-action pair and the current reward
is adjusted using the fading factor λ, indicating the fact that the rele-
vance is decaying exponentially and the current state-action pair takes
the main credit.

The involvement of the eligibility trace makes the TD(λ) method a
combination of MC and pure TD (or TD(0)). When λ = 0, there is
no former state-action pair recorded and then the method is equiv-
alent to pure TD. When λ = 1, all former state-action pairs are
recorded and the memory never fades, which means all state-action
pairs take the same weight of credit from the current reward. Then the
method becomes a online version of MC method. When the eligibility
trace is combined with Q-learning, there are mainly two different ap-
proaches, the so-called Watkins’ Q(λ) and Peng’s Q(λ) [PW96]. Here
the Watkins’ Q(λ) learning algorithm is selected because it is practi-
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cally easier to be implemented. Its procedures are described in figure
4.12.

Initialize Q(s,u) arbitrarily for all state-action pairs;
Initialize e(s,u) = 0 for all state-action pairs;
Take the first control action U(k) at time k = 1 using the ε-greedy
control policy;
At each time k (k > 1) :

repeat
1 Receive the reward R(k − 1) and observe the current state S(k)

based on the last state-action pair (S(k − 1),U(k − 1));
2 Update the eligibility trace matrix by

e(S(k − 1),U(k − 1)) = e(S(k − 1),U(k − 1)) + 1;
3 Update the temporal difference by

δtd = R(k − 1) + γmaxu′ Q(S(k),u′)−Q(S(k − 1), U(k − 1));
4 Update the Q values for all state-action pairs by

Q(s,u) = Q(s,u) + αδtde(s,u);
5 Choose the control action U(k) from the current state S(k)

using the ε-greedy control policy;
6 If U(k) is the greedy control action, then e(s,u) = γλe(s,u)

and otherwise e(s,u) = 0;
until the end of the control process;

Figure 4.12. Procedures in the Watkins’ Q(λ) learning control.

The lookup table based Q(λ) is selected as the TD learning control
method here mainly under the consideration of control stability. The
lookup table based TD learning is generally more stable than the func-
tion approximation based AC methods. On the one hand, TD learning
with linear feature based approximation functions has been proved to
converge to the optimal control policy [TVR97], but it is difficult to
approximate the dynamics of HEPHAISTOS using linear features, es-
pecially to cover the part that how different control actions influence
the state-action values . On the other hand, TD methods with non-
linear function approximations can easily become unstable during the
learning process [B+95] [PSD01]. In contrast, the lookup table based
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TD learning always converges to the optimal control policy with the
appropriate learning rate (equation 4.46) and additional assumptions
[Bar98]. Therefore it is more stable to be applied in the practice.

Empirical knowledge based discretization and optimization

Most lookup table based TD learning methods suffer the curse of di-
mensionality [Sut96], which means the overall computational time
and memory of the learning grows exponentially with the the dimen-
sion of states and actions space. For example, it is assumed that the
temperature vector consists of temperatures of 5 different locations
and the control input vector contains inputs of 6 different heating
sources. Each temperature value takes 3 possible states (temperature
high/middle/low) and each control input variable takes 2 possible
states (switch ON/OFF). The number of overall possible state-action
pairs of the MDP is 35×26 = 15552, which means the lookup table has
to estimate and save 15552 different Q values. If the control period is
1 s, then it needs at least 15552 s to go through all state-action pairs,
not even mentioning to get the accurate estimation of each individual
state-action values.

As stated in [BM03], empirical knowledge based options and policies
are great approaches to accelerate the learning and provide guaran-
tees about the system performance during the learning. In order to
make the TD learning controller more realistic in practice, empirical
knowledge based optimization is employed to further simplify the en-
tire MDP and the corresponding Q(λ) learning controller. Since the
complexity of the controller mainly depends on the state and the ac-
tion spaces, the simplification focuses on the reduction of dimensions
of both the state and the action spaces.

Recalling the control task represented in equation 4.30 which aims to
control N measured temperatures converge to the target temperature
and meanwhile reduce the temperature window between Ymax and
Ymin. To reduce the number of the state space, this control task can be
modified into a simpler task such as control Ymax and Ymin converge
the target temperature. Because the modified control task is a neces-
sary condition for the original control task. In other words, the over-
all temperature distribution will be improved if both Ymax and Ymin
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are converging to the target temperature. Using this control task, the
number of controlled temperatures can be reduced to 2. For each of
them, the number of possible states can also be reduced. For example,
in many practical applications Ymax and Ymin does not necessarily to
reach the target temperature, and a more realistic objective is to con-
strain them within a range as [Ytar− 5, Ytar + 5]. In this case, both Ymax

and Ymin can be assigned with only 2 possible states, such as

State of Ymax Smax =

{
1, when Ymax <= Ytar + 5,

0, Otherwise,
(4.51)

and

State of Ymin Smin =

{
1, when Ymax >= Ytar − 5,

0, Otherwise.
(4.52)

This discretization method abstract all temperature distribution into 4
(2 × 2) different states, which significantly simplifies the whole state
space. Due to the limited discretization resolution, several situations
are not able to be well represented by the state. Therefore additional
controller selection mechanism has to be added such as

The active controller⇐


MPC/NNC, when Ymax <= Ytar,

No Power, when Ymin >= Ytar,

Q(λ) learning, otherwise
(4.53)

However, unlike other measured temperatures, the positions of the
maximum and the minimum temperatures are not fixed and vary-
ing along the heating process. In order to successfully control both of
them, the information about their positions should also be discretized
and included in the state variable. For instance, a rectangular work-
piece is heated in the HEPHAISTOS cavity and its thermal picture can
be shown as in figure 4.13. The whole heating area is divided into 5
different regions (R1, R2, R3, R4, R5) and each region represents one
possible state for the position of Ymax and Ymin. In addition, according
to the empirical knowledge, the minimum temperature Ymin never oc-
curs in the center region of the workpiece (R3), therefore the number
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of possible states for Ymin is 4. The number of total position states is
5× 4 = 20.

Based on the discretization schemes of temperatures and positions,
the overall number of possible states for the modeled MDP should be
4 × 20 = 80. This number could be further reduced using the state
abstraction strategy [Die99]. The control objective is to constraint both
Ymax and Ymin in the predefined temperature range. As long as they
are in the range, the states of positions of Ymax and Ymin become less
important. Therefore all states with Smax = 1 and Smin = 1 can be
combined into one state. Although this state abstraction makes state-
action value related with this state more stochastic, the number of total
state-action pairs can be largely reduced due to this abstraction. As a
result, the number of total states after the state abstraction is |S| =
20× 3 + 1 = 61.

Besides the states, the number of total actions is also reduced based
on the empirical knowledge. In the new HEPHAISTOS cavity 3, there
are 18 microwave heating sources. Apparently there is no way to in-
clude all of them in the Q(λ) learning controller (218 actions). Consid-
ering the applicable scenario of this controller is the flat-temperature
period where no high power heating is needed, several rules are made
to screen for the suitable control actions as following.

1. Each HEPHAISTOS module has 6 heating sources, but only 4 of
them are used. Heating sources no. 5 and no. 8 (see figure 2.5) are

R1 R2

R4 R5

R3

Figure 4.13. Area discretization.
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neglected. Because they locate below the setup and their heating
effects are weaker than the other 4. In total 12 different heating
sources are used.

2. All control combinations consisting of more than 2 activated
sources are neglected, because 2 heating sources (maximum 4 kW
power) is enough to keep the workpiece of middle sizes (1m2 ∼
2m2) at the target temperature range (70◦C ∼ 100◦C).

3. After the first two screenings, all left control combinations are fur-
ther tested and the combinations that only heat the center region
of the workpiece are eliminated.

Following the above three rules, 30 different control actions are finally
selected to generate the action space. Combining the state and the ac-
tion spaces together, there are entirely 1830 (61×30) differentQ values
to be estimated and saved by the Q(λ) learning controller. In theory,
even the control period is 1 s, it need at least 1830 s to go through the
overall state-action space. But in practice, the hot spots and cold spots
are not moving through the whole workpiece during one heating pro-
cess. It often happens that the states of the system stay in a limited
number of states and never go to other states, which means the num-
ber of practically possible state-action space is much smaller than the
theoretical value. In this case, the control task is realistic to be solved
in real time (see the results shown in chapter 4). The complete control
procedures of the hybrid multi-agent control system are shown as in
figure 4.14.
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Define the state space S and the action space U;
Initialize Q(s,u) arbitrarily for all s ∈ S, u ∈ U;
Initialize e(s,u) = 0 for all s ∈ S, u ∈ U;
Initialize the adaptive controller Cad(Y, Ytar) (either MPC or NNC);
Take the first control action U(k) at time k = 1 based on the equation
U(k) = Cad(Y, Ytar)

At each time k (k > 1) :
repeat

1 Select the active controller Cact(k) according to

Cact(k)⇐


Cad(Y, Ytar), when Ymax <= Ytar,

No Power, when Ymin >= Ytar,

Q(s,u), otherwise.

if Cact(k) = Q(s,u) then
2 Calculate the control action U(k) and update the Q values

according to the Q(λ) learning algorithm (see figure 4.12);
else

2 Calculate the control action U(k) = Cact(k);
3 Reset the eligibility trace matrix e(s,u) = 0 for all

s ∈ S, u ∈ U;

until the end of the control process;

Figure 4.14. Procedures in the hybrid multi-agent Q(λ) learning
control system.

131
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In this chapter, the results of practical experiments will be presented.
In the beginning, a number of preliminary trials are performed in or-
der to verify the validity of the linear and the nonlinear models (given
by the equation 3.41 and 3.46 respectively). Then the system identifi-
cation algorithms introduced in chapter 3 are tested and compared, to
identify the most appropriate system identification method for practi-
cal heating experiments. In the end, both the adaptive and the intelli-
gent control methods are applied, and the corresponding experimen-
tal results are presented and compared.

5.1. Verification in HEPHAISTOS

Due to its complicated structure, some fundamental characteristics of
HEPHAISTOS are difficult to determine theoretically, e.g. the proper-
ties of the EM field distributions. In order to understand the capabili-
ties and limits of the HEPHAISTOS system better, a number of prelim-
inary tests have been done with respect to one fundamental question,
which is the practical power superposition principle.

According to the introductions in chapter 3, there are two different
power superposition principles, defined as the scalar addition and the
vector addition principles. These two principles are the basis of the
linear 3.41 and the nonlinear 3.46 state-space models, respectively,
which are also the foundations of the entire MPC system. From this
point of view, to verify the power superposition principle is equivalent
to the verification of validities of these two grey-box models.

The entire verification procedures contain three aspects. The first as-
pect is to check if each individual feeding source can provide a sta-
ble heating pattern. For each microwave source of HEPHAISTOS,
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whenever it is switched on, the frequency and phase of the output mi-
crowave is not fixed. If there is no stable heating pattern from each
source, the whole microwave heating system will become a highly
stochastic system where the future temperature is not predictable by
neither of the two models.

If a stable heating pattern from each source can be guaranteed, the
second part is to see if the combinations of any two or more feed-
ing sources can provide stable heating patterns. This is important for
the modeling. Because in practice when multiple feeding sources are
switched on at the same time, unexpected coupling effects will occur
between different sources. It is possible that when multiple sources
are switched on simultaneously, the resulting superposed heating pat-
terns differ a lot from time to time, which could also make the system
identification process more difficult and the models unreliable. After
the first two aspects are confirmed, the last part of the validation is to
verify that if the scalar and the vector addition principles are able to
describe the power superpositions correctly.

The setup used in the validations is shown as in figure 5.1. The tem-
perature distribution of this setup was monitored by an infrared cam-
era in real time. All following experiments were done at the same
temperature range (30 ◦C ∼ 32 ◦C) and the temperature of surround-
ing air was also the same (19 ◦C ∼ 21 ◦C), therefore all temperature-
dependent parameters can be considered as constants.

(a)

y

x.z

Sealant

Vacuum 
Bagging Film

Thermo-electrical 
Foil

Vacuum Hose

Silicone Rubber 
Foil

Aluminum
Plate 

(b)

Figure 5.1. The setup used in verification experiments.
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Step 1: Heating patterns of single feeding source

The heating stability verified in the experiment refers to two parts.
The first part is to see how the heating pattern changes with time, and
the other one is to test if the heating patterns are equivalent when the
same source is switched on and off multiple times. If a feeding source
has the same heating pattern at different trials and this pattern is stable
over time, then it is guaranteed that this source can provide a stable
power output as well as a stable EM field distribution.

For all different heating sources j in the first two modules (see figure
2.13, 1 ≤ j ≤ 12):

repeat
repeat

1 Wait until the temperature of the workpiece is cooled down
to 30 ◦C ∼ 32 ◦C;

2 Switch the heating source j for 10 s;
3 Record the heating pattern from the infrared camera at time

t = 0, 2, 4, 6, 8, 10 s.
until for three times;

until all sources are tested;

Figure 5.2. Procedures to test the heating patterns of single source.

The procedures for the experiment are described in figure 5.2. For
individual sources, the typical results are illustrated as in figure 5.3
and 5.4. The numbers within figures 5.3 represent the temperature
changes of this point at this time compared with the initial tempera-
ture in the first figure at t = 0 s. For example, the number +0.60 ◦C
in location 3 at time t = 2 s represents that the temperature of this lo-
cation increases 0.60 ◦C during the last 2 s. Although the temperature
increasings are not entirely linear, the whole temperature distribution
(thermal pattern) stays the same during the 10 s, which indicates a
stable heating pattern from this source.

Compared with this heating stability of time, what is more important
is the stability of the heating patterns at different trials. Because in
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Figure 5.3. Heating patterns of source No. 3 (new CA3) at different time of the
same trial.

(a) Trial 1 at time t = 2s (b) Trial 2 at time t = 2s (c) Trial 3 at time t = 2s

Figure 5.4. Heating patterns of source No. 3 (new CA3) at the same time of
different trials.

practical applications, the control input changes quickly and it seldom
happens that a heating source is switched on for a long time. As shown
in figures 5.4, the heating patterns of different trials are almost identi-
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cal. The same results are also reflected by the heating rates as in figure
5.5.
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Figure 5.5. Heating rates comparison of 3 trials during the first two seconds.

The heating rates shown in figure 5.5 are calculated using the follow-
ing equation

R =
1

∆t

(
Y(k + 1)−A(k)Y(k)

)
∝ Pmw. (5.1)

Since the heating rates are directly proportional to the microwave
heating power, therefore they can be used as representatives of the
heating power. In other words, if the heating rates of different sources
follow the scalar addition rule, it means the heating power also fol-
lows the scalar addition rule. This principle will be used later in the
third step of the verification.

Step 2: Heating patterns of multiple feeding sources

The second step is to test the heating stability of multiple feeding
sources. The procedures used in this setup is the same as described in
figure 5.2, except the objective is switched to different combinations
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of heating sources. The verification results can be found in fi gures 5.6 
and 5.7. Since the transient heating rates are more relevant to the prac-
tical applications, only results about the short time heating patterns  
(t = 2 s) are demonstrated and analyzed in the following.

(a) Trial 1 at time t = 2s (b) Trial 2 at time t = 2s (c) Trial 3 at time t = 2s
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(d) Heating rates of 3 trials.

Figure 5.6. Heating patterns (a, b, c) and rates (d) of source No. 1 and 5 at 3
different trials.

The results in figures 5.6 and 5.7 both indicate that even multiple
heating sources are switched on simultaneously, the corresponding
superposed heating patterns are still stable. Meanwhile, the number
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5.1. Verification in HEPHAISTOS

of heating sources does not have any influences to this stability. Re-
sults from the first and the second steps prove that HEPHAISTOS is
a non-stochastic system. The dynamics of HEPHAISTOS are possible
to be modeled and learned via repeated experiments and tests, which
provides a solid foundation to all previous introduced modeling and
control methods.

Step 3: Validity of linear and nonlinear models

In the last verification step, the previously mentioned principle of
heating rates is utilized, to verify if models 3.41 and 3.46 are accu-
rate approximations of practical heating situations. In order to get a
more comprehensive result, more temperatures were included in the
following verification experiment such as in figure 5.8 . Correspond-
ing Verification procedures are described as in figure 5.9.

It is easy to test the linear superposition rule, by comparing the lin-
early superposed heating rate Rlinear with the real overall heating rate
Rreal. If the linear superposed heating rate Rlinear is equivalent to
the real heating rate Rreal, it means that the linear superposed power
also equals to the practical overall heating power, and consequently,
it proves the validity of the linear model 3.41 . The corresponding
verification result for two different feeding sources is shown in the
following figure 5.10 .

From the above figure it is noted that the linear superposed heating
rate Rlinear is close to the real heating rate Rreal. For situations with
more sources, the same result still holds 5.11.

(a) Trial 1 at time t = 2s (b) Trial 2 at time t = 2s (c) Trial 3 at time t = 2s
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(d) Heating rates of 3 trials.

Figure 5.7. Heating patterns (a, b, c) and rates (d) of 12 sources (from 1 to 12)
at 3 different trials.

Results in 5.10 and 5.11 are just epitomes of a large scale of experi-
mental data. In most cases accuracies of the linear superposed heat-
ing rates are over 85%. The accuracies are even higher (over 90%) for
for combinations of a large number of heating sources (more than 4).
Therefore, in general the linear model 3.41 is considered as a accu-
rate approximation of the practical heating scenarios. Nevertheless,
on the other hand, in certain cases the differences between real and es-
timated heating rates can be drastic. such as the results shown in the
following figure 5.12. It is clear that there are 4 hot spot areas in the
heating pattern of No. 3 and 7 (as illustrated by the dashed circles in
figure 5.12), three of which can be interpreted by the linear superpo-
sition principle. But the heating rate of the upper left corner is much
higher than the linear superposed value (as index ’1’ in figure 5.12d).
In fact, both the first two thermal patterns have low heating rates (cold
spot) in the upper left corner, but the pattern of the heating combina-
tion has a clear hot spot in this region. Meanwhile, it is also worthy
to notice that in many cases (including the case shown in figure 5.12),
the thermal pattern of the heating combination is not exactly equiva-
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+ + + +

+ + + +

+ + + +

+ + + +

1 4

13 16

Figure 5.8. Measured points on the load.

Perform following trials at similar environments (the temperature of
the load at about 30 ◦C, and the temperature of its surrounding air
at about 20 ◦C);

repeat
1 Randomly select m different heating sources and switch them

on simultaneously for 2 s;
2 Calculate the overall heating rate using the equation 5.1,

denoted by Rreal;
for for each selected source j do

3 Switch each heating source j for 2 s;
4 Calculate the individual heating rate using the equation

5.1, denoted by Rj ;

5 Calculate the linearly superposed heating rate Rlinear, such as

Rlinear =

m∑
j=1

Rj .

6 Compare the real heating rate Rreal and the linear superposed
Rlinear.

until the end of the process;

Figure 5.9. Procedures of the verification of heating rate superpositions.
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Figure 5.10. Comparison between real and linear superposed heating rates of
2 sources (No. 1 and 2) at 16 different points.

lent to the linear superposition of individual thermal patterns. For the
case shown in figure 5.12, a legitimate explanation is that the EM field
created by the sources No. 3 and 7 have constructive superpositions in
the upper left corner and the corresponding heating power follows the
vector addition rule. From this point of view, although the nonlinear
system model 3.46 can not be directly verified in the same way as the
linear model, it is still reasonable to use the nonlinear model and the
vector addition principle to explain the thermal pattern superposition
phenomena, especially for scenarios with a small number of different
feeding sources.

According to all experimental results, a brief conclusion can be made
as that the general heating power (rates) superposition within HEP-
HAISTOS can be regarded as a combination of both scalar and vec-
tor additions. The practical heating scenario is a varying combination
of both the equations 3.41 and 3.46. It tends towards 3.41 when
the number of feeding sources is large, because of stronger cross in-
fluences between multiple microwave generators, and towards 3.46
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(a) Result of 4 feeding sources (No. 1−4).
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(b) Results of 8 feeding sources (No. 1−8).

Figure 5.11. Comparison between real and linear superposed heating rates
of 4 (a) or 8 (b) feeding sources at 16 different points.

when the number of feeding sources is low, particularly for cases
where sources are from different modules.

After above 3 steps, assumptions used in the grey-box modeling have
been verified and guaranteed to be accurate to a great extent. In
addition, heating patterns and corresponding heating rates obtained
from the verification experiments are quite helpful in the following
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(a) Heating pattern of
No. 3.

(b) Heating pattern of
No. 7.

(c) Heating pattern of
No. 3 and 7.
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(d) Comparison of heating rates at 5 different points.

Figure 5.12. Comparison of Heating patterns (a, b, c) and rates (d) of No. 3
and 7.

controller design, especially for the intelligent controller construc-
tion.
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5.2. Results of System Identification

5.2. Results of System Identification

Based on the verification results, different system identification al-
gorithms have been tested and compared in this section, to identify
which one is more accurate to estimate the real dynamics of the HEP-
HAISOTS system. Data from practical experiments are used to certify
the reliability of each algorithm. The validation of system identifi-
cation algorithms contain two different tests. The first test is to use
different algorithms to learn the dynamics of the plant from the exper-
imental data, and check their one-step prediction accuracies. The one-
step prediction accuracy indicates the ability to predict the future tem-
peratures based on the current temperatures and control input values,
which is how the system estimator functions in real control process.
The second test is the regeneration of temperature curves. Given the
same initial temperature value and the whole control input sequence,
the estimators trained by the first test are used to regenerate the entire
temperature sequence. The regenerated data are compared with the
real data, to test if individual algorithms really capture the dynamics
of HEPHAISTOS.

It is assumed that the data used in two tests are given as

D1 =
{(

Ud1(1),Yd1(1)
)
,
(
Ud1(2),Yd1(2)

)
, . . . ,

(
Ud1(Q1),Yd1(Q1)

)}
,

D2 =
{(

Ud2(1),Yd2(1)
)
,
(
Ud2(2),Yd2(2)

)
, . . . ,

(
Ud2(Q2),Yd2(Q2)

)}
,

where D1 and D2 are data sets obtained from experiments using the
same setup and the same heating environment. In the first test, the
objective is to use each algorithm for online system identification (the
data pair is presented and estimated one by one), and compare the
one-step predicted temperature Ypre and the real temperature Yd1.
The one-step prediction is expressed as

Ypre(1) = Yd1(1),

Ypre(q + 1) = fq(Yd1(q),Ud1(q)), 1 ≤ q ≤ Q1 − 1,

where fq represents the function of the system estimator (after the up-
date of the q-th data pair).
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After the first test, the second test aims to regenerate the whole data
set T2 by

Yreg(1) = Yd2(1),

Yreg(q + 1) = fQ1−1(Yreg(q),Ud2(q)), 1 ≤ q ≤ Q2 − 1,

The regenerated temperature Ypre will also be compared with the
real data Yd2 to determine the regeneration error. Compared with
the one-step prediction, the test of regeneration can more comprehen-
sively reflect the estimation accuracy of each system identification al-
gorithm, and hence, is an important factor to be taken into account
for the determination of the final implemented system identification
algorithm.

5.2.1. Grey-box Approaches

For the grey-box modeling approach, four different system identifica-
tion schemes have been tested, including the nonlinear MISO EKF, the
linear MISO RKF, the linear MISO RLS and the linear MIMO RKF. Dif-
ferences among these algorithms can be found in chapter 3. The data
used in these tests are obtained from experiments with eight heating
sources and two controlled temperatures. Results of the different al-
gorithms are shown in figures 5.13, and 5.14.

In order to get more reliable evaluations to the performance of each
algorithm, each algorithm was tested for 20 times and the averaged
performance is shown in table 5.1. In following tests, the sampling
(discretization) period is ∆t = 1 s, which means the processing time is
equivalent to the number of data pairs (1 data pair per second).

The results shown in the figures can generally reflect the performance
of individual algorithms in practical heating experiments. Several
brief conclusions are obtained from above results.

• From the converging speed point of view, the nonlinear MISO EKF
algorithm has the fastest converging speed among these four algo-
rithms, using less than 100 seconds to reach the general MSE level
of 0.1. In comparison, both MISO RKF and MIMO RKF took about
100 seconds to reach that MSE level. MISO RKF has the slowest
converging speed, with about 450 seconds to reach that error level.
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(a) One step predictions of nonlinear MISO EKF.
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(b) One step predictions of linear MISO RKF.
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(c) One step predictions of linear MISO RLS.
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(d) One step predictions of linear MIMO RKF.

Figure 5.13. One-step prediction performance of four different system identi-
fication algorithms.
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(a) Validation of T1.
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(b) Validation of T2.
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(c) Standard deviation (SD) with respect to the true values during the
validation.

Figure 5.14. Validation of each algorithm using data of another experiment.

• In the accuracy aspect, the nonlinear MISO EKF algorithm has the
minimum MSE for both the on-line system identification and the
validation (see table 5.1). Compared between the other three lin-
ear algorithms, both the MISO RKF and MIMO RKF approaches
are more accurate than the MISO RLS algorithm, which means the
RKF algorithms is more suitable for HEPHAISTOS. On the other
side, the MISO RKF is better than the MIMO RKF. The main rea-
son is that in the MISO approach, only the diagonal elements of
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Algorithm SID MSE Mean SD of
validation Time (per call)

Nonlinear
MISO EKF 0.0697 1.0698 0.00103 s

Linear
MISO RKF 0.1205 2.5691 0.00150 s

Linear
MISO RLS 0.1214 5.5467 0.00149 s

Linear
MIMO RKF 0.1068 4.1431 0.00148 s

Table 5.1. Performance comparison of 4 grey-box SID algorithms.

the matrix A have to be estimated, but in the MIMO approach the
entire matrix is estimated. More estimation variables bring a larger
estimation error and therefore degrade the estimation accuracy.

According to the above results, in practical experiments, the MISO
RKF algorithm is used for the linear MPC and the nonlinear MISO
EKF is used for the nonlinear MPC.

5.2.2. Black-box Approaches

There are three algorithms introduced for the training of the NN, and
their system identification performance regarding the real experimen-
tal data is shown in figures 5.15 and 5.16. As in the test of grey-box
approaches, different algorithms were also tested for 20 times and the
averaged parameters are shown in table 5.2.

Above results approximately reflect the performance of the three dif-
ferent learning in practice. SWBP has the minimum prediction MSE
and a fast converging speed, but its validation error is the largest.
More important, SWBP needs much more time compared with the
other two algorithms. If the input or output dimensions increase, this
execution time will become larger, which means it is not appropriate
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(a) One-step prediction results of EKF.
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(b) One-step prediction results of BPM.

to be used in the practical fast and high-dimensional system identifi-
cation tasks.
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(c) One-step prediction results of SWBP.

Figure 5.15. One-step prediction results of three algorithms.
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(a) Validation using the new experimental data.

Among these three algorithms, EKF has the minimum validation error,
which means its true estimation accuracy is the highest. Meanwhile,
its prediction accuracy and execution time are also acceptable. Due
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(b) Comparison of the standard deviation.

Figure 5.16. Validation results of three algorithms.

Algorithm Learning
MSE

Mean SD of
validation

Time (per
update)

EKF 0.1172 0.7743 0.0031 s

BPM 0.0990 9.8806 0.0015 s

SWBP 0.0974 10.4665 0.3446 s

Table 5.2. Performance comparison of three online NN training algorithms.

to the highest estimation accuracy and more comprehensive perfor-
mance, the EKF algorithm is applied in the NNC system to train the
system estimator.

Performance of both grey-box and black-box approaches can be com-
pared qualitatively according to above results. On the one hand, both
linear and nonlinear on-line recursive system identification algorithms
have fast converging speed than the NN approaches. But on the other
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hand, the EKF based NN approach has a much smaller MSE than the
nonlinear EKF algorithm in the validation part, which indicates the
black-box approach is a more powerful tool to model systems with
unknown dynamics.

5.3. Results of Different Control Methods

The performance of different control methods is the most important
result of this dissertation. In this section, the control performance of
all aforementioned control methods is presented, with respect to dif-
ferent setups. Before the experimental results of temperature control
are demonstrated, an important question that has to be discussed is
the controllability of the system.

Controllability is an important property of a system. According to the
definition in [Dor95], a system is controllable if any initial state of the
system can be moved to any other state in a finite time interval us-
ing the external input. Take HEPHAISTOS for example, it is control-
lable if any desired temperature distributions can be obtained within
a finite time interval using the control input from the initial tempera-
ture distribution. Compared with this complete controllability, what
is more important to the heating applications is the reachability of cer-
tain states in HEPHAISTOS. A particular state of the system is reach-
able if any initial states can be transfered to this state within a finite
time intervals using a corresponding control input sequence [Rug96].
In HEPHAISTOS, the control task is to achieve a homogeneous tem-
perature distribution for the whole workpiece, therefore the reacha-
bility of the homogeneous temperature distribution becomes the most
important property of the system.

Although it has been proved in [WYT12] that any arbitrary tempera-
ture distribution could be achieved by a corresponding EM field distri-
bution in microwave heating, it neglected that not all EM field distri-
butions can be realized within a microwave cavity. Moreover, the EM
field distribution of HEPHAISTOS is so far not possible to be obtained
in neither analytical nor numerical ways. Due to these reasons, it is
more realistic to analyze the controllability quantitively via a number
of real experiments.
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Through numerous practical heating experiments, the main conclu-
sion can be obtained that the controllability of HEPHAISTOS is largely
determined by the heating setup. To be more specific, different heat-
ing setups create different boundary conditions for different parts
of the workpiece, which significantly affects the overall controllabil-
ity. For example, for the setup shown in figure 5.1 with large sizes
(1.2m×1m×2mm), it is inevitable to have hot spots in the central part
of the workpiece and cold spots in the corners and edges. A typical
heating process can be illustrated by the figures in 5.17.

(a) t = 5 min. (b) t = 10 min.

(c) t = 15 min. (d) t = 20 min.

Figure 5.17. Heating process ( from (a) to (d) ) with the setup of aluminum
plate.

That is mainly due to different thermal conduction impacts from the
aluminum plate and the metal table below the aluminum plate. Dur-
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ing the heating process, the central part of the aluminum plate is al-
ways hotter than the corners and edges, because of less heat dissipa-
tion to the ambiance. Therefore for the workpiece, the heat dissipated
to the aluminum plate through thermal conduction in the central part
is always lower than the other parts, leading to a lower cooling rate
and higher temperature. In addition, the heat convection effect of the
central part is also lower than that of the other parts, because of the
inhomogeneous temperature distribution of the surrounding air. As
a result of above impacts, the temperature of the central part of the
workpiece is always higher than temperatures of corners and edges
and correspondingly, this setup is not fully controllable.

When the aluminum plate is replaced by a teflon plate, the tempera-
ture distribution is completely changed, such as shown in figure 5.18.
Since teflon has a much lower thermal conductivity (0.25 W/(m · K)

Figure 5.18. The setup with the teflon plate.

[tef]) compared with aluminum (237 W/(m · K)), the heat conduction
effect caused by the teflon tool is weak. The temperature distribu-
tion of the teflon plate is similar to the temperature distribution of
the workpiece. The temperature differences between different parts of
the workpiece and their contacting parts of the teflon plate are simi-

156



5.3. Results of Different Control Methods

lar, which lead to the same level of heat dissipation rates at different
parts of the workpiece. Therefore the hot spots in the central part of
the workpiece would be eliminated, which has been confirmed by the
experimental results such as shown in figure 5.19.

(a) t = 5 min. (b) t = 10 min.

(c) t = 15 min. (d) t = 20 min.

Figure 5.19. Heating process ( from (a) to (d) ) with the setup of teflon plate.

Although the hot spots are removed, there is another problem oc-
curred due to the heat dissipation from the teflon plate to the metal
table. When the workpiece is heated to a high temperature, the tem-
perature of the teflon plate is also high, which causes deformations on
the edges (see figures 5.20). For the central part of the plate, it has di-
rect contact with the metal table and the heat dissipation rate from the
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teflon plate to the metal table is high. But for the corners and the edges,
due to the deformations there is no contact as well as heat exchange
between the teflon plate and the metal table. The different heat dis-
sipation effects between the central and other parts of the workpiece
lead to the cold area in the central and hot areas in the corners and the
edges. This phenomenon exists during the entire heating process, and
it is also not compensatable using different control methods.

Good contact

Deformation

Figure 5.20. Deformation of the teflon plate (no contact between the plate and
metal table).

Based on above observations, a simple and straightforward way to
maintain a good controllability of the system is to reduce the size of the
heated workpiece. The disturbance caused by different heat conduc-
tion effects of the tool is less severe for a small-tool setup, compared
with the case in figure 5.17. As a result, the corresponding tempera-
ture distribution of the workpiece can be controlled using aforemen-
tioned control methods. Therefore a smaller setup, where the surface
areas of both the workpiece and the aluminum plate are reduced into
approximately 0.5m× 0.5m, is used in following experiments.
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5.3.1. Performance of Adaptive Control Methods

In this part, four control methods have been tested and compared in
the new HEPHAISTOS cavity 3 (new CA3, total 18 heating sources),
including the PID control, the linear and the nonlinear MPC methods
and the SPSA based NNC method. The PID control method is used
as a benchmark for all other control methods. In the PID controller,
only one temperature can be controlled and normally the maximum
temperature is selected. The PID controller will calculate the control
input value according to the following equation [ACL05]

u(k) =Kp · e(k) +Ki ·
k∑
i=0

e(i) +Kd ·
e(k)− e(k − 1)

∆t
,

e(k) =Yt(k)− Y (k),

(5.2)

where e(k) is the difference between the target temperature and the
selected temperature value. The coefficient Kp, Ki, Kd are the propor-
tional gain, the integral gain and the derivative gain, respectively. All
control input element ui(k) in the control vector U(k) take the same
value as u(k).

The same setup as shown in figure 5.1 is used as the heated workpiece
(0.5m × 0.5m), and temperatures of five different locations are mea-
sured by the infrared camera and controlled, such as in figure 5.21.

The silicone rubber setup is used instead of real CFRP material in the
experiments. In principle the control methods introduced in this dis-
sertation can be applied to all different kinds of materials. For dif-
ferent materials, the control performance would be different, and the
final controlled temperature distribution mainly depends on the ther-
mal conductivity of the setup or material. The thermal conductivity
directly determines the accuracy of the estimated model and the ef-
fective control diversity. From this point of view, the silicone rubber
setup is a good experiment material, because it has a similar thermal
conductivity with certain CFRP materials, e.g. the thermal conductiv-
ity of silicone rubber is 0.2W/(m · K) ∼ 1.3W/(m · K) [Sil12], and the
thermal conductivity of a typical CFRP epoxy prepreg is 0.6W/(m ·K)
[AD10]. If the control methods can perform well using the silicone
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rubber setup, it is reasonable to believe they can achieve a similar tem-
perature homogeneity using the real CFRP prepregs.

The target temperature curve defined in the experiments is shown by
figure 5.22. Considering the safety issue and the reliability of the vac-
uum bagging, the maximum target temperature is set to be 100◦C and
the temperature increasing rate is 8◦C/min. The target temperature
curve is defined as shown in figure 5.22, which is similar with the
target temperature curve used in real CFRP curing process [PPW+02].

A typical control performance of PID is shown in figure 5.23. The
control period used in the PID controller is ∆t = 1.5 s. In figure 5.23,
the first temperature T1 is used as the controlled temperature. For the
controlled temperature T1, it can be perfectly controlled by the PID
controller and it follows the target temperature curve closely during
the entire heating process. However, the problem for the PID con-
troller is that all other temperatures are not controlled at all. All dif-
ferent temperature curves have the same changing trend and the tem-
perature differences between each other are almost constant during
the flat-temperature period. Although the final temperature window
∆T1 and ∆T2 (temperature difference between the maximum and the
minimum temperatures) in the end of both flat-temperature periods

(a) Workpiece used in the experiment.

+ +

+

+ +

T1 T2

T3

T4 T5

(b) Measured temperatures.

Figure 5.21. Picture of the workpiece and measured temperatures.
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Time

Temperature

75°C

100°C

8°C/min

Figure 5.22. Illustration of the target temperature curve.
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Figure 5.23. Control performance of PID control method (new cavity 3, 12
sources).

are slightly smaller than the value in the beginning, that is due to the
combined thermal conduction effect of the aluminum plate and the
workpiece itself. The PID controller itself does not have the ability to
reduce the temperature window and improve the temperature distri-
bution. It should be noted that the second temperature window ∆T2
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is significantly larger than ∆T1. It indicates that the temperature win-
dow in PID control mainly depend on the setup and other external
factors (such as the target temperature), which also reflect the fact that
the PID controller does not have the active ability to improve the tem-
perature distribution.

In principle, all 18 heating sources within the new CA3 could be used
for the controlling, but in the above as well as following experiments,
only 12 of them (the first two modules) are used. That is because for
the other 6 heating sources using the low-ripple power supplies, they
are not able to output power lower than 10% of the maximum power.
They can work properly when the control input value u(k) is larger
than 0.1, but when the value is lower than 0.1, the practical output
power is always fixed at 10% × 2kW = 200W. This behavior would
cause extra disturbances to the system estimation and it is also not re-
liable considering some safety issues. Therefore in these experiments,
only the first 12 heating sources are used. In the future, additional
micro controllers or frequency converters will be attached to the low-
ripple power supplies to make sure that they will work in a securer
PWM mode.

However, for PID the number of heating sources and different types of
power supplies do not have any severe impacts to the control perfor-
mance. The control results of the PID controller in the old HEPHAIS-
TOS CA3 using 36 heating sources are shown in figure 5.24. Compar-
ing the results in these two experiments, they have the similar control
behaviors and the same level of final temperature windows. More
heating sources does not necessarily lead to a better control perfor-
mance and a more homogeneous temperature distribution. As long as
the number of the heating sources is enough to provide a diverse heat-
ing (which depends on the specific application) and they are properly
distributed spatially, the control diversity as well as the correspond-
ing control performance can be guaranteed. This phenomenon is also
reflected by some of the following results, and it is one of the reasons
why in the new CA3 the number of sources is halved.

162



5.3. Results of Different Control Methods

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0
2 0

4 0

6 0

8 0

1 0 0

1 2 0
D T 2 = 1 6 ° C

T a r g e t
T 1
T 2
T 3
T 4
T 5

Te
mp

era
tur

e(°
C)

T i m e ( s )

D T 1 = 1 2 ° C

0

2 0

4 0

6 0

8 0

1 0 0

Po
we

r(
%)

Figure 5.24. Control performance of PID control method (old cavity 3, 36
sources).

Model Predictive Control

Besides the PID control method, all other adaptive control methods
introduced in this dissertation have also been tested. In the tests of
the MPC methods, the control period is ∆t = 1.5 s and the prediction
length is p = 5. In theory, the prediction length should be defined as
large as possible, because a large prediction length normally leads to
a better control performance [Wan09] [CA13]. But in practice, a large
prediction length is not affordable because of the increased compu-
tation time, especially for the nonlinear MPC. In order to keep a fast
control pace (1.5 s), the prediction length is set to be 5 in our experi-
ments. The performance of the linear and the nonlinear MPC methods
are shown in figures 5.25.

The two dashed lines in figure 5.25a are used to denote the control
’accident’ occurred in the heating process, such as in figure 5.26. In
HEPHAISTOS, to guarantee the reliability of the whole system, a ex-
ternal watchdog timer [Mur00] is equipped as a hardware switch to
the power supplies. During the normal operation, the LabVIEW con-
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(a) Linear MPC (with RKF, 12 sources).
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(b) Nonlinear MPC (12 sources).

Figure 5.25. Control results of the linear MPC (a) and nonlinear MPC (b).
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trol interface regularly sends a pulse signal to the watchdog timer e
200 ms, to prevent it from elapsing. If any software or hardware ac-
cidents happen, the LabVIEW control interface fails to the send this
pulse signal. Then the watchdog timer will elapse and switch off the
power supplies.
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Figure 5.26. Control ’accident’ in the heating process.

In practical applications, since LabVIEW is not a pure real-time soft-
ware, the time cost in each LabVIEW loop is not fixed. In some cases
the loop takes more than 200 ms, and then the watchdog timer will
elapse and switch off the power supplies. What happens in the next
is shown in figure 5.26. No matter what control input is sent to the
HEPHAISTOS cavity, there is no microwave heating power and hence
the temperatures drop quickly. In such cases, the LabVIEW control
interface and the MATLAB control program are not interrupted since
there is no signal from the power supplies or the watchdog timer to
report their status. They continuously update the estimated system
model and calculate new control input, based on the incorrect power-
temperature pairs.

This kind of failure is difficult to be eliminated from a hardware as-
pect (the timeout value of the watchdog timer is fixed), and it is also
hard to be detected in the control program. Normally when a single
’accident’ occurs, the system can recover from it quickly, owing to the
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adaptive system identification algorithms. However, when several ac-
cidents occur in a row during a short time, it could cause much larger
unexpected system estimation errors and corresponding wrong con-
trol inputs (see the results later)

From the results in figure 5.25, it is clear that both the linear and the
nonlinear MPC methods are much better than the PID control method,
with respect to the final temperature window. Both of them have much
smaller final temperature windows compared with the PID controller.
More important, the temperature curves in figures 5.25 have obvious
converging behaviors, which indicate temperatures of different loca-
tions are effectively controlled towards the target temperature value.
For example, in the first figure 5.25a, the temperature window in
the beginning of the flat-temperature period is more than 10◦C. Dur-
ing the heating process, all different temperature curves are gradually
converging to the target temperature value (75◦C) and the tempera-
ture window is also decreasing. In the end of the flat-temperature
period, the final temperature window ∆T1 is between 3.6◦C and 4◦C.
This converging behavior occurs in both the linear and the nonlinear
MPC methods, and it reflects the active temperature distribution im-
proving ability of both MPC methods.

For the linear MPC, there are two system identification methods avail-
able such as introduced in chapter 3. Both RLS and RKF have been
tested and compared in our experiments, and corresponding results
can be found in figures 5.27. There is no obvious difference between
the performance of RLS and RKF, which also coincides with the sys-
tem identification results shown before. It should also be noted that
the control performance of the linear MPC method with more heating
sources (in figure 5.27) is comparable to the results in the new CA3
with fewer heating sources(in figure 5.25a). It indicates that the num-
ber of heating sources does not influence the control performance and
final temperature homogeneity of the linear MPC method, which is
similar with the situation in the PID control.

The control performance of nonlinear MPC is similar with that of the
linear MPC. The converging behavior is obvious and the final tem-
perature window is also much smaller than in the PID controller. A
problem occurred in the nonlinear MPC is that the large temperature
overshoot in the beginning of the flat-temperature period (see figure
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(a) Linear MPC using RLS (old CA3, 36 sources).
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(b) Linear MPC using RKF (old CA3, 36 sources).

Figure 5.27. Control results of Linear MPC with RLS (a) and RKF (b).
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5.25b). The problem is caused by the error from either the system iden-
tification or the GA controller. The high control input dimension of
HEPHAISTOS is a large computation burden for both of them, espe-
cially for the GA algorithm. The overall searching space in the GA
algorithm increases exponentially with the input dimension. When
all other parameters (such as the number of generations used and the
number of the individuals in each generation) are fixed, a higher input
dimension leads to a much larger searching space in the GA algorithm,
which correspondingly lowers the probability that a good control so-
lution can be obtained. In practical experiments, the most simple and
effective way to reduce the temperature overshoot and enhance the
entire control performance is to use less heating sources.

For example, in the experiment shown by figure 5.28, all heating
sources below the metal table are not used during the heating pro-
cess (in each module only sources No. 2, No. 4, No. 10 and No. 11
are switched on, see figure 2.13). Overall 8 heating sources are used
for the controlling. On the one hand, the computation burdens for
both the system estimator and the controller are largely reduced. On
the other hand, the total 8 sources still guarantee a huge control space
and control diversity. With fewer heating sources, the accuracies of
the system identification and the GA controller both can be improved.
Hence, from the results in figure 5.28, it is clear that both the temper-
ature overshoot and the final temperature window are significantly
reduced using less sources.

As aforementioned in the system modeling part (chapter 2) and the
beginning of this section, thermal conduction plays an important rule
in the model derivation as well as controlling process. In order to fur-
ther test how different conduction effects influence the control perfor-
mance, a different setup was implemented in our experiments, such
as in figure 5.29. This setup has the same aluminum plate, vacuum
bagging and other components, except one big difference. Instead of
one big silicone rubber workpiece, in the second setup 5.29 there are
five independent small workpieces. Compared with the first setup
5.21, apparently the second setup has a much lower influence from the
thermal conduction and convection parts. In other words, all cooling
effects including the thermal convection, radiation and conduction for
the five workpieces are almost the same. Therefore in such cases, the
properties of each control method can be more greatly reflected.
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Figure 5.28. Control results of nonlinear MPC using 8 heating sources (new
CA3).

(a) The second setup used in the
experiment.

T1 T2

T3

T4 T5

(b) Thermal view and the temper-
atures measured.

Figure 5.29. The setup with independent small workpieces.

The control performance of the three aforementioned control methods
is presented in figures 5.30.
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Comparing the results in figures 5.30 to the results of the first setup
(in figures 5.23 and 5.25), there are a number of obvious distinc-
tions. For the PID controller, the temperature windows are even larger
than the results in the first setup, which indicates that the conduction
based temperature improvement effect in the second setup is much
lower than in the first setup. Unlike the PID controller, the perfor-
mance of the linear and the nonlinear MPC methods is both better
than the results in the first setup (see figure 5.25), regarding the tem-
perature overshoot and the final temperature window aspects. For
the linear MPC, it has smaller temperature windows as well as much
lower temperature overshoot and oscillations, especially in the high
temperature range. This performance fully reflect that without extra
disturbances from the thermal conduction, the model constructed in
the equation 3.41 is more accurate and close to describe the heating
dynamics, which results in better control results.

For the nonlinear MPC, the performance improvement is even more
obvious than the linear MPC. That is partly because less heating
sources are used. At the same time, it profits more from the reduced
impact of the thermal conduction. In both MPC methods, the influ-
ences from all cooling effects including the thermal conduction can be
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(a) PID (new CA3, 12 sources).
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(b) Linear MPC (new CA3, 12 sources)
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(c) Nonlinear MPC (new CA3, 8 sources).

adjusted by the self-cooling matrix A. But due to the system identifica-
tion procedures introduced in chapter 3, the nonlinear MPC method
has much less opportunities to update the matrix A. Therefore it does
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(d) Standard deviation with respect to the target temperature.

Figure 5.30. Control performance of PID, linear MPC and nonlinear MPC in
the second setup. Due to slightly different duration in the three
experiments, the comparison of standard deviation lasts until
2760 s.

not have the flexibility to deal with fast varying effects from the ther-
mal conduction, and this kind of influence is further transmitted to the
estimation error of the heating effect. Using the setup 5.29, the cool-
ing effect of each workpiece is more stable than the first setup, and
correspondingly the accuracy of the nonlinear system identification is
higher than the case with the first setup. Consequently, the final con-
trol performance is improved.

In figure 5.30c, when the target temperature is increasing from 75◦C
to 100◦C, there are three control accidents occurred consecutively. Due
to these three accidents, the controlled temperatures fail to follow the
target temperature curve and the standard deviation becomes much
larger than the normal level (from 1600 s to 1800 s). But after that
period, the system estimator takes a short time to recover from the
accidents and the control behavior is back to normal quickly. It also
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reflects the robustness of the system identification algorithm and the
MPC method.

A phenomenon is worthy noted that in former results (figures 5.23
and 5.25), the highest temperature is mostly measured in the central
part of the workpiece (T3). But in the second setup, the hot spot is
possible to occur in any workpieces. For example, in the experiment
shown in figure 5.30a the highest temperature is always T4. This phe-
nomenon denotes the same cooling effects of these five workpieces
and also confirms that the active temperature distribution improve-
ment is generated by the MPC methods.

Neural Network based Control

The SPSA based NNC method has also been tested using the same
setup and temperature measurement scheme shown in figure 5.21.
Before its real implementation, it was firstly tested in a number of
simulations. These simulations use the similar idea that is the sys-
tem identification part, which is that a NN was trained based on real
experimental data to act as the plant, and then the NNC was applied
to control this well-trained NN. The structure of simulations is shown
in figure 5.31.

Simulated Plant
(Well-trained NN)

NN Controller

NN Estimator

Target 
Temperature 

Measured 
Temperature

Control 
Input 

Estimated dynamics 
of the simulated plant

Figure 5.31. Structure used in the NNC simulations (the NN estimator was
trained based on experimental data from the new CA3 with 8
heating sources).
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Figure 5.32. Simulation results of NNC.

The results from the simulations are shown in figure 5.32. From the
simulated results, it is clear that the simulated plant is well controlled
using the NNC method and the final temperature window is small.
Comparing with former presented MPC results, there are one notable
difference between the NNC and MPC methods. It is that in the be-
ginning of the control process, the controlled temperatures always lag
behind the target temperature. Because the controller has to take a
certain time to update its weights from the plant or the NN estima-
tor. After the update is finished, the controlled temperatures gradu-
ally converge to the target temperature in a faster pace and they track
the target temperature perfectly.

The same control behavior also occurred in the real experiments of
NNC, as shown by figure 5.33. At both raising-temperature periods,
the controlled temperatures have lower temperature increasing rates
than the required value. But on the other hand, the lower heating rates
lead to a small temperature window in NNC during the whole heating
process, and there is no temperature overshoot at the flat-temperature
period. This is the advantage that NNC outperforms the MPC meth-
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ods. Compared with the PID controller, NNC is also much better be-
cause of the better temperature homogeneity.
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Figure 5.33. Control performance of NNC (new CA3, 8 sources).

When the weights of the NN controller are properly initialized, this
temperature lag phenomenon can be significantly reduced. For exam-
ple, the control results of another NNC experiment is shown in figure
5.34. In this experiment, the controller is initialized with the same
weights as the trained controller in 5.33. In other words, after the ex-
periment shown in figure 5.33, the same controller is used again in the
same environment to deal with the same control task.

From the results in figure 5.34, a big improvement can be observed is
that the controlled temperatures follow the target temperature closely
almost from the beginning of the control process. There is no tem-
perature overshoot and the temperature window is smaller than the
results shown in figure 5.33. This performance improvement is due to
the appropriate initialization of the NN controller. A good initializa-
tion would speed up the entire controller update and lead to a more
reliable control performance in the beginning period.

From the control results shown by these pictures, all three adaptive
control methods, including the linear MPC, the nonlinear MPC and
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Figure 5.34. Control results of NNC initialized with the same weights of the
controller trained in 5.33 (new CA3, 8 sources).

the NNC methods, achieve the same level of control performance,
regarding the final temperature window and the temperature homo-
geneity aspects. Although there is no essential difference among the
control results, different properties can be observed for individual con-
trol methods. The linear MPC method is the most robust and easily ap-
plicable control method. Benefiting from the well established system
identification method (which estimates A and B simultaneously) and
(partially analytical) control solution, the computation requirements
in the linear MPC is the lowest among the three methods. Therefore
it is able to control high input/output dimensional systems with a
guaranteed control performance. Compared with the linear MPC, the
performance of the nonlinear MPC is partly influenced by the input
dimension. In order to get a more reliable control performance, the
number of heating sources has to be limited. However, on the other
hand, as long as the control diversity and the performance can be guar-
anteed, there is no need to use more heating sources. In addition, the
nonlinear MPC could achieve a slightly better control result than the
linear MPC method in the second setup, which means it is preferred
to be applied in situations with more stable cooling effects.
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5.3. Results of Different Control Methods

In both MPC methods, only the parameters in the system estimator
have to be updated. In other words, as long as the system estimator
is able to estimate and predict the dynamics of the plant perfectly, the
corresponding control solution is also perfect or guaranteed. But in
the NNC system, both the controller and the system estimator have
to be updated and trained during the heating process. Since the con-
troller is a NN trained by the unsupervised learning scheme, it takes
much longer time to reach the same level of control performance as the
MPC methods. Nevertheless, a well trained NNC can achieve even
better control performance than the MPC methods, without any ex-
tra requirements of the setup or the material. There is also another
big advantage that the NNC method outperforms the MPC methods,
which is that the NNC method is model-free. It can be implemented
to control both linear and nonlinear plants and no additional physical
insight is needed. Therefore the NNC method could be more easily
transferred to any other control applications.

5.3.2. Performance of Intelligent Control Methods

Compared with the adaptive control methods, the implementation of
the intelligent control method is more complicated. Additional Lab-
VIEW operations are required to obtain the coordinates of the max-
imum and the minimum temperatures such as illustrated in figure
5.35. These coordinates are then compared with predefined region
boards (such as in figure 4.13) to determine which region the high-
est and the lowest temperatures are.

Figure 5.35. LabVIEW program (steps) to obtain the coordinates of the maxi-
mum temperature.
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5. Experimental Results

As mentioned in chapter 4, the Q(λ) based RLC is only tested in the
flat-temperature period. The setup 5.21 is used in these experiments
and the target temperature curve is the same as in figure 4.11. Be-
fore the controller is tested in real experiments, it was also tested in a
number of simulations. The control task in the simulations is different
to the task 4.30 mentioned in chapter 4 because there is no way to
simulate the whole temperature distribution. The same well-trained
NN used in the NNC simulations 5.31 is also used here. Instead of
the maximum and the minimum temperatures of the whole thermal
picture, the maximum and the minimum temperatures from the five
simulated temperatures are used as the controlled temperatures. Cor-
respondingly, the indexes of these two temperatures are considered
as the location states. For instance, T1 is the highest temperature is
equivalent to the idea that the hot spot is the region R1 (illustrated in
figure 4.13).

This simulation can be considered as the simplified version of the real
control task. The purpose of this simulation is to test if all five tem-
peratures can be limited within a certain range by only controlling the
maximum and the minimum temperatures. The corresponding simu-
lation results are shown in figure 5.36. The entire simulation lasts 9000
s, but the controller takes around 3000 s (3000 control periods) to re-
duce the temperature window from more than 10◦C to about 1◦C. This
result reflects that the Q(λ) RLC method is effective to affect all other
uncontrolled temperatures by only controlling the maximum and the
minimum temperatures.

Based on this result, the hybrid control structure (figure 4.14) was
tested in real experiments. The total controlled area is slightly smaller
than the one shown in figure 4.13 to prevent any uncontrollable lo-
cations in the corners or edges. The corresponding control results are
shown in figure 5.37.

In the first trial 5.37a, the raising-temperature period is controlled by
using the linear MPC controller. In the flat-temperature period, the
temperature window between the maximum and minimum temper-
atures is not effectively reduced. Because the Q(λ) controller has to
learn the correct state-action values during the controlling and it also
has to take many exploration control actions. The exploration proba-
bility ε used in the Q(λ) controller decreases from 0.9 in the beginning
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Figure 5.36. Simulation results of the Q(λ) based RLC method.
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(a) The first trial.

to 0.1 in the end of the heating process. In order to have a more stable
control performance, meanwhile also keep a certain exploration abil-
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(b) The second trial (using the same controller trained from the first trial).
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(c) The third trial (using the same controller trained from the second trial).

Figure 5.37. Control results of the Q(λ) based RLC method in three consecu-
tive trials.
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5.3. Results of Different Control Methods

After the first trial, the preliminarily trained Q(λ) is directly used in
the second trial, just as the case in the NNC experiments. The first
raising-temperature period of the second trial is controlled using the
nonlinear MPC method. In the flat-temperature period, the minimum
temperature is oscillating around the target temperature, therefore ac-
cording to the principle defined in the hybrid control scheme (figure
4.14), the activated controller switching between the ’no power’ con-
trol and the Q(λ) controller. The temperature state mainly stays as
(Smax = 0, Smin = 1), which means the minimum temperature is in
the desired temperature range but the maximum temperature is not.
Although the locations states may vary during this oscillation period,
all state-action values related with (Smax = 0, Smin = 1) are tested for
multiple times and updated to a higher accuracy than the others. After
the oscillation, the states of the system enters into the desired tempera-
ture range with (Smax = 1, Smin = 1), which means all temperatures in
the controlled area are within the desired range and the control target
is achieved.

In order to further test the effectiveness of theQ(λ) controller, the third
trial is carried out consecutively. The state-action values trained in the
second trial is loaded in the third trial. The raising-temperature pe-
riod of this trial is controlled by a NN controller. On the one hand,
the results in figure 5.37c are similar with the results in the second
trial. Both the maximum and the minimum temperatures stay in the
desired range for the most time of this trial, which means the Q(λ)
controller is effective to control the temperature distribution. On the
other hand, its effectiveness can not be fully confirmed by the results
in figure 5.37c. Because the temperature state in the third trial is the
same as the state in the second trial. In other words, after the update
process in the second trial, the Q(λ) controller may already have ac-
curate state-action values for all state-action pairs related to the state
(Smax = 0, Smin = 1). But it does not mean this Q(λ) controller also
have the capability to deal with other temperature states. For exam-
ple, if the temperature state in the third trial is (Smax = 1, Smin = 0)
(the maximum temperature is within the range but the minimum tem-
perature is not), the controller may need a long time to update the
state-action values related with this state again.
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5. Experimental Results

Despite the question whether the Q(λ) controller is fully trained dur-
ing the experiments, the results in figures 5.37 show its great poten-
tial and capability to control the entire temperature distribution of the
workpiece. Unlike the adaptive control scheme that is based on the in-
dividual temperatures, the Q(λ) based RL controller is able to directly
control the maximum and the minimum temperatures. The entire tem-
perature distribution is guaranteed to improve if both these two tem-
peratures are limited. From this point of view, the intelligent RLC
scheme is more usefull for practical industrial applications.
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6. Summary and Conclusion

This dissertation gives a detailed introduction of microwave heating
systems with spatially distributed heating sources. The innovative
temperature control methods that are implemented in HEPHAISTOS
achieved promising performance with respect to the temperature ho-
mogeneity of the heat load. The basic principles of microwave heating
and microwave heating systems are explained. In order to accurately
describe the dynamics of the the microwave heating process, three dif-
ferent heating models have been developed: the linear heating model,
the nonlinear heating model and the neural network based black-box
model. Parameters within each model are estimated online using the
corresponding system identification method.

Based on the estimated parameters, various adaptive control methods,
including the model predictive control (MPC) method and the neural
network based control (NNC) method, are implemented. Both control
methods have been modified and optimized according to the practical
situations and requirements of the microwave heating system, in order
to improve control performance.

Besides the adaptive control scheme that focuses on individual mea-
sured temperatures, another reinforcement learning based intelligent
control (RLC) scheme is built in this dissertation. The dynamics of
HEPHAISTOS are described by a Markov decision process. Then the
control task is solved using a look-up table based Q(λ) controller,
which is simplified and optimized based on the empirical knowl-
edge.

The aforementioned heating models and control methods have been
tested in practical experiments and the corresponding experimental
data are presented. Firstly the validity of different models is verified
through numerous preliminary tests. Then different system identifica-
tion algorithms are tested and compared using real experimental data.
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6. Summary and Conclusion

Finally, all aforementioned control methods are tested in practical ex-
periments, and different properties have been observed for individual
control methods.

For the adaptive control scheme, both MPC and the NNC are able to
let multiple temperatures converge at the target temperature. The final
temperature distribution and the temperature window in both control
methods are significantly improved compared with the conventional
PID controller. The control models used in the MPC method imply
that they are well suited to materials and setups with lower ther-
mal conductivities or multiple independent workpieces. The NNC
method can be used in more general situations without special re-
quirements on the properties of the heated material.

For the adaptive control scheme, the intelligent Q(λ) based reinforce-
ment learning controller also shows great control performance, re-
flected by its effective control of the temperature window between the
maximum and the minimum temperatures. It is suitable for applica-
tions where the entire temperature profile can be monitored in real-
time. Compared with conventional control schemes, it is more pow-
erful because the temperature distribution can be directly controlled
and improved.

The main contributions of this dissertation are:

• The nonlinear state-space and the neural network microwave heat-
ing models developed in this dissertation provide powerful al-
ternatives to the traditional linear microwave heating models (as
in [HPE97] and [RCVI99]). The dynamics of the distributed mi-
crowave heating systems are accurately described and estimated
by these multiple-input multiple-output (MIMO) models that have
been constructed in this dissertation.

• Based on the MIMO models, different MIMO control systems are
designed and applied to control the distributed microwave heat-
ing system - HEPHAISTOS. The temperature homogeneity (re-
flected by the final temperature window ∆T ) obtained using the
the advanced MIMO control system (∆T = 4◦C - 6◦C at 100◦C
for both MPC and NNC) is much better than the conventional PID
controller (∆T ≥ 13◦C at 100◦C). The experimental results pre-
sented in this dissertation provide evidence that the heating per-
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formance of the distributed microwave heating system can be sig-
nificantly improved by the advanced MIMO control system. The
global temperature window (temperature window of the entire
heat load) achieved by the RLC system (5◦C - 6.5◦C) is also com-
parable to normal commercial industrial heating equipments, such
as the standard in [Ind13](±2.5◦C).

• The control concept that combines the real time thermal picture
and the intelligent control system (Q(λ) controller) is unique. It is
able to control the complete temperature distribution of the entire
workpiece, and more straightforward than conventional methods
based on individual temperature values. Its effectiveness has been
proved by experimental results.

• The temperature control system and software developed in this
dissertation have a great potential to be implemented in practical
industrial applications, to promote the use of microwave heating
to broader areas. They can also be transferred to other distributed
microwave feeding systems, such as the octagonal microwave cav-
ity (proposed in [LLHG14]) and other related applications.

Based on the work done in this dissertation, the MIMO temperature
control system could be further optimized in order to improve its re-
liability and control performance. For example, more experiment pa-
rameters could be monitored and taken into account in the modeling
process, e.g. the air flow speed in the oven and the real-time tem-
perature of the metal table. The involvement of such parameters will
increase the accuracy of the control model, as well as the reusability of
the controller. With a high reusability, control performance could be
improved by reusing the former well-trained controller (such as the
results of repeated trials shown in figures 5.34 and 5.37), especially
for the reinforcement learning controller. In this case, a more power-
ful reinforcement learning controller could be built based on a compli-
cated function approximator (nonlinear function or neural network)
and long time practical experiment training. Another research direc-
tion would be the combination of microwave and hot air heating. The
hot air flow could be controlled using an independent PID controller
to heat the cold area of the load, which will be of great help to achieve
a more homogeneous temperature distribution between the inner core
and surface of the entire load.
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[Bot10] Léon Bottou. Large-scale machine learning with
stochastic gradient descent. In Proceedings of COMP-
STAT’2010, pages 177–186. Springer, 2010.

[Bow99] JR Bows. Variable frequency microwave heating of
food. Journal of Microwave Power and Electromagnetic
Energy, 34(4):227–238, 1999.

190



Bibliography

[Boy02] Justin A Boyan. Technical update: Least-squares
temporal difference learning. Machine Learning,
49(2-3):233–246, 2002.

[BPJD99] John R Bows, Maria L Patrick, Ruth Janes, and
David C Dibben. Microwave phase control heat-
ing. International journal of food science & technology,
34(4):295–304, 1999.

[Bri12] David R Brillinger. A generalized linear model with
Gaussian regressor variables. In Selected Works of
David Brillinger, pages 589–606. Springer, 2012.

[BRS01] Yu V Bykov, KI Rybakov, and VE Semenov. High-
temperature microwave processing of materials.
Journal of Physics D: Applied Physics, 34(13):R55, 2001.

[BSB81] Andrew G Barto, Richard S Sutton, and Peter S
Brouwer. Associative search network: A reinforce-
ment learning associative memory. Biological cyber-
netics, 40(3):201–211, 1981.

[BSF94] Yoshua Bengio, Patrice Simard, and Paolo Frasconi.
Learning long-term dependencies with gradient de-
scent is difficult. Neural Networks, IEEE Transactions
on, 5(2):157–166, 1994.

[Bur98] Jeff B Burl. Linear Optimal Control: H (2) and H (Infin-
ity) Methods. Addison-Wesley Longman Publishing
Co., Inc., 1998.

[BV03] Hamid R Berenji and David Vengerov. A convergent
actor-critic-based FRL algorithm with application to
power management of wireless transmitters. Fuzzy
Systems, IEEE Transactions on, 11(4):478–485, 2003.

[BV04] Stephen Boyd and Lieven Vandenberghe. Convex op-
timization. Cambridge university press, 2004.

[CA13] Eduardo F Camacho and Carlos Bordons Alba.
Model predictive control. Springer, 2013.

[Cas12] EG Cason. The future of carbon fiber to 2017: global
market forecasts. Leatherhead, UK, 2012.

191



Bibliography

[CBCB04] Eduardo F Camacho, Carlos Bordons, Eduardo F
Camacho, and Carlos Bordons. Model predictive con-
trol, volume 2. Springer London, 2004.

[CC14] Wei-Der Chang and Chih-Yung Chen. PID con-
troller design for MIMO processes using improved
particle swarm optimization. Circuits, Systems, and
Signal Processing, 33(5):1473–1490, 2014.

[CCHB89] Scott H Clearwater, Tze-Pin Cheng, Haym Hirsh,
and Bruce G Buchanan. Incremental batch learn-
ing. In Proceedings of the sixth international workshop
on Machine learning, pages 366–370. Morgan Kauf-
mann Publishers Inc., 1989.

[cfr] Price of CFRP per kilogram for the year 2014.
http://www.reuters.com/article/2014/03/28/
sgl-fibres-idUSL5N0MP2RP20140328. Accessed:
2015-02-09.

[Che03] Wen-Hua Chen. Closed-form nonlinear mpc for
multivariable nonlinear systems with different rel-
ative degree. In American Control Conference, 2003.
Proceedings of the 2003, volume 6, pages 4887–4892.
IEEE, 2003.

[Chr05] Christos Christopoulos. The transmission-line mod-
eling (TLM) method in electromagnetics. Synthe-
sis Lectures on Computational Electromagnetics, 1(1):1–
132, 2005.

[CK92] Fu-Chuang Chen and Hassan K Khalil. Adap-
tive control of nonlinear systems using neural net-
works. International Journal of Control, 55(6):1299–
1317, 1992.

[CMA94] Jerome T Connor, R Douglas Martin, and Les E At-
las. Recurrent neural networks and robust time se-
ries prediction. Neural Networks, IEEE Transactions
on, 5(2):240–254, 1994.

192



Bibliography

[CMT87] David W Clarke, C Mohtadi, and PS Tuffs. Gener-
alized predictive controlpart i. the basic algorithm.
Automatica, 23(2):137–148, 1987.

[Cog92] Frederic Neil Cogswell. Thermoplastic aromatic poly-
mer composites: a study of the structure, processing and
properties of carbon fibre reinforced polyetheretherketone
and related materials. Elsevier, 1992.

[Cor01] JM Corum. Basic properties of of reference crossply
carbon-fiber composite. Technical report, Oak Ridge
National Lab., TN (US), 2001.

[CRB08] S Curet, O Rouaud, and L Boillereaux. Microwave
tempering and heating in a single-mode cavity: Nu-
merical and experimental investigations. Chemi-
cal Engineering and Processing: Process Intensification,
47(9):1656–1665, 2008.

[Cro81] Lawrence Crone. Second order adjoint matrix equa-
tions. Linear Algebra and its Applications, 39:61–71,
1981.

[CS93] Hown-Wen Chen and Von-Wun Soo. Design of
adaptive and incremental feed-forward neural net-
works. In Neural Networks, 1993., IEEE International
Conference on, pages 479–484. IEEE, 1993.

[CS02] Tien-Chi Chen and Tsong-Terng Sheu. Model refer-
ence neural network controller for induction motor
speed control. Energy Conversion, IEEE Transactions
on, 17(2):157–163, 2002.

[CU93] A Cochocki and Rolf Unbehauen. Neural networks
for optimization and signal processing. John Wiley &
Sons, Inc., 1993.

[Cut83] Charles Ray Cutler. Dynamic matrix control: An
optimal multivariable control algorithm with con-
straints. 1983.

[CYC02] Shi-Yuan Chen, Fang-Ming Yu, and Hung-Yuan
Chung. Decoupled fuzzy controller design with

193



Bibliography

single-input fuzzy logic. Fuzzy Sets and Systems,
129(3):335–342, 2002.

[CZ05] LA Campanone and NE Zaritzky. Mathematical
analysis of microwave heating process. Journal of
Food Engineering, 69(3):359–368, 2005.

[DAF90] AAP De Alwis and PJ Fryer. The use of direct re-
sistance heating in the food industry. Journal of Food
Engineering, 11(1):3–27, 1990.

[DAJ02] Kalyanmoy Deb, Ashish Anand, and Dhiraj Joshi.
A computationally efficient evolutionary algorithm
for real-parameter optimization. Evolutionary com-
putation, 10(4):371–395, 2002.

[Dat01] Ashim K Datta. Handbook of microwave technology for
food application. CRC Press, 2001.

[DC03] Danielle Dougherty and Doug Cooper. A practical
multiple model adaptive strategy for multivariable
model predictive control. Control Engineering Prac-
tice, 11(6):649–664, 2003.

[dFNGD00] João FG de Freitas, Mahesan Niranjan, Andrew H.
Gee, and Arnaud Doucet. Sequential Monte Carlo
methods to train neural network models. Neural
computation, 12(4):955–993, 2000.

[Dib95] David Dibben. Numerical and experimental modelling
of microwave applicators. PhD thesis, University of
Cambridge, 1995.

[Die98] Thomas G Dietterich. The MAXQ method for hi-
erarchical reinforcement learning. In ICML, pages
118–126. Citeseer, 1998.

[Die99] Thomas G Dietterich. Hierarchical reinforcement
learning with the MAXQ value function decompo-
sition. arXiv preprint cs/9905014, 1999.

[DKS+95] James Dougherty, Ron Kohavi, Mehran Sahami,
et al. Supervised and unsupervised discretization of
continuous features. In ICML, pages 194–202, 1995.

194



Bibliography

[DLT12] Gouri Dhatt, Emmanuel Lefrançois, and Gilbert
Touzot. Finite element method. John Wiley & Sons,
2012.

[DM07] Ernest O Doebelin and Dhanesh N Manik. Measure-
ment systems: Application and design. 2007.

[Dor95] Richard C Dorf. Modern control systems. Addison-
Wesley Longman Publishing Co., Inc., 1995.
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[JHB+95] Anatoli Juditsky, Håkan Hjalmarsson, Albert Ben-
veniste, Bernard Delyon, Lennart Ljung, Jonas
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A. Appendix

A.1. Derivation of Extended Kalman Filter

When the input vector V(k)is not zero, the state parameter An(k − 1)
is assumed to be constant like An(k − 1) = Anct, where Anct is the last
updated value of An. Then the n-th MISO systems can be written as
such as

Y n(k) =Anct · Y n(k − 1) + Ψn(k − 1),

Ψn(k − 1) = VT(k − 1) [Φn(k − 1)] V(k − 1).
(A.1)

At any time k, the value of Ψn(k − 1) can be calculated by

Ψn(k − 1) = Y n(k)−Anct · Y n(k − 1), (A.2)

and then this value is used to estimate [Φn(k − 1)] in equations
A.1.

In order to make the derivation process more intuitive to understand,
the original variables V(k−1), Ψn(k−1) and [Φn(k − 1)] are replaced
by new notations as

Γ(k) = V(k − 1), ∆Y n(k) = Ψn(k − 1), [Λn(k)] = [Φn(k − 1)] .
(A.3)

Then the second equation in A.1 can be rewritten as

∆Y n(k) = ΓT(k) [Λn(k)] Γ(k). (A.4)

As in the linear RKF (equation 3.59), in EKF it is also assumed that the
system fulfills the following equations

∆Y nr (k) = ΓT(k) [Λn(k)] Γ(k) + ς(k),

[Λn(k)] = [Λn(k − 1)] + [ε(k − 1)] ,
(A.5)
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where ∆Y nr (k) is the real measured/calculated value of ∆Y n(k),
ς(k−1) is a zero-mean measurement/calculation error with the covari-
ance σ2 and [ε(k − 1)] is a zero-mean white noise with the covariance
matrix [Ω]. The definitions of parameters in EKF is shown by table
A.1.

Definition Interpretation

[Λn
e (k)] =

E
[

[Λn(k)]
∣∣∆Y nr (k)

] Estimation of [Λn(k)] based on
the current measured
temperature ∆Y nr (k)

[
Λn

p(k)
]

=

E
[

[Λn(k)]
∣∣∆Y nr (k − 1)

] Prediction of [Λn(k)] based on
the former measured
temperature ∆Y nr (k − 1)

[ene (k)] = [Λn(k)]− [Λn
e (k)]

Estimation error between
[Λn(k)] and [Λn

e (k)]

[
enp(k)

]
= [Λn(k)]−

[
Λn

p(k)
] Prediction error between [Λn(k)]

and
[
Λn

p(k)
]

[Pn
e (k)] = E

[
[ene (k)]

[
ene (k)T

]] Covariance matrix of the
estimation error [ene (k)][

Pn
p(k)

]
=

E
[[

enp(k)
] [

enp(k)T
]] Covariance matrix of the

prediction error
[
enp(k)

]
Table A.1. Parameters and vectors used in EKF

According to the definitions in table A.1, the relationship between the
estimation and the prediction of Λn(k) can be expressed by[

Λn
p(k)

]
= E

[
[Λn(k)]

∣∣∆Y nr (k − 1)
]

= E
[

[Λn(k − 1)] + [ε(k − 1)]
∣∣∆Y nr (k − 1)

]
= E

[
[Λn(k − 1)]

∣∣∆Y nr (k − 1)
]

= [Λn
e (k − 1)]

(A.6)
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Then the prediction error matrix
[
enp(k)

]
can be rewritten as[

enp(k)
]

= [Λn(k)]−
[
Λn

p(k)
]

= [Λn(k)]− [Λn
e (k − 1)]

= [Λn(k − 1)] + [ε(k − 1)]− [Λn
e (k − 1)]

= [Λn(k − 1)]− [Λn
e (k − 1)] + [ε(k − 1)]

= [ene (k − 1)] + [ε(k − 1)]

(A.7)

Based on this result, the covariance matrix
[
Pn

p(k)
]

can also be trans-
ferred into another form, such as[

Pn
p(k)

]
= E

[[
enp(k)

] [
enp(k)

]T]
= E

[(
[ene (k − 1)] + [ε(k − 1)]

)(
[ene (k − 1)] + [ε(k − 1)]

)T]
= E

[
[ene (k − 1)] [ene (k − 1)]

T
+ [ε(k − 1)] [ε(k − 1)]

T
]

= [Pn
e (k − 1)] + [Ω]

(A.8)

As represented by equation 3.61, the update equation of [Λn
e (k)] in the

recursive system identification is represented by

[Λn
e (k)] =

[
Λn

p(k)
]

+ [Kn(k)]
[

∆Y nr (k)− ΓT(k)
[
Λn

p(k)
]
Γ(k)

]
(A.9)

Substituting the above expression into the definition of [ene (k)], the es-
timation error matrix can be written as

[ene (k)] = [Λn(k)]− [Λn
e (k)]

= [Λn(k − 1)] + [ε(k − 1)]− [Λn
e (k)]

= [Λn(k − 1)] + [ε(k − 1)]−
[
Λn

p(k)
]

− [Kn(k)]
[

∆Y nr (k)− ΓT(k)
[
Λn

p(k)
]
Γ(k)

]
= [Λn(k − 1)] + [ε(k − 1)]− [Λn

e (k − 1)]

− [Kn(k)]
[

∆Y nr (k)− ΓT(k)
[
Λn

p(k)
]
Γ(k)

]
(A.10)
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The real measured/calculated ∆Y nr (k) can be approximated by its
Taylor series at [Λn(k)] =

[
Λn

p(k)
]
, such as

∆Y nr (k) = ΓT(k)
[
Λn

p(k)
]
Γ(k) + [Jn(k)]

[
[Λn(k)]−

[
Λn

p(k)
] ]

+ ς(k)

+ H.O.T.

≈ ΓT(k)
[
Λn

p(k)
]
Γ(k) + [Jn(k)]

[
[Λn(k)]−

[
Λn

p(k)
] ]

+ ς(k)

≈ ΓT(k)
[
Λn

p(k)
]
Γ(k) + [Jn(k)]

[
enp(k)

]
+ ς(k)

≈ ΓT(k)
[
Λn

p(k)
]
Γ(k) + [Jn(k)]

[
[ene (k − 1)] + [ε(k − 1)]

]
+ ς(k),

(A.11)

where H.O.T. stands for higher order terms and [Jn(k)] is the Jacobian
matrix defined by

[Jn(k)] =
∂∆Y nr
∂ [Λn]

∣∣∣∣
[Λn(k)]=[Λn

p (k)]
= Γ(k)ΓT(k). (A.12)

Substituting the above expression A.11 into equation A.10, the esti-
mation error matrix is further transferred into

[ene (k)] = [Λn(k − 1)] + [ε(k − 1)]− [Λn
e (k − 1)]

− [Kn(k)]
[

∆Y nr (k)− ΓT(k)
[
Λn

p(k)
]
Γ(k)

]
= [Λn(k − 1)] + [ε(k − 1)]− [Λn

e (k − 1)]− ς(k) [Kn(k)]

− [Kn(k)] [Jn(k)]
[

[ene (k − 1)] + [ε(k − 1)]
]

= [ene (k − 1)] + [ε(k − 1)]− ς(k) [Kn(k)]

− [Kn(k)] [Jn(k)]
[

[ene (k − 1)] + [ε(k − 1)]
]

=
[

[IM ]− [Kn(k)] [Jn(k)]
][

[ene (k − 1)] + [ε(k − 1)]
]

− ς(k) [Kn(k)]

=
[

[IM ]− [Kn(k)] [Jn(k)]
] [

enp(k)
]
− ς(k) [Kn(k)] ,

(A.13)

where [IM ] is the identity matrix with the dimension M ×M .
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Then finally the covariance matrix of the estimation error can be ex-
pressed by

[Pn
e (k)] = E

[
[ene (k)] [ene (k)]

T
]

= E

[((
[I]− [Kn(k)] [Jn(k)]

) [
enp(k)

]
− ς(k) [Kn(k)]

)
((

[I]− [Kn(k)] [Jn(k)]
) [

enp(k)
]
− ς(k) [Kn(k)]

)T]
=
(

[I]− [Kn(k)] [Jn(k)]
) [

Pn
p(k)

] (
[I]− [Kn(k)] [Jn(k)]

)T
+ σ2 [Kn(k)] [Kn(k)]

T

=
[
Pn

p(k)
]
− [Kn(k)] [Jn(k)]

[
Pn

p(k)
]

−
[
Pn

p(k)
]

[Jn(k)]
T

[Kn(k)]
T

+ [Kn(k)] [J]
n

(k)
[
Pn

p(k)
]

[Jn(k)]
T

[Kn(k)]
T

+ σ2 [Kn(k)] [Kn(k)]
T

(A.14)

The objective of EKF is to minimize the estimation error [ene (k)] re-
garding the gain matrix [Kn(k)], which in other words, is equivalent
to find an appropriate matrix [Kn(k)] minimizing the covariance ma-
trix [Pn

e (k)].

Following the principle of

[Kn(k)] = arg[K] min [Pn
e (k)] ⇒ ∂ [Pn

e (k)]

∂ [Kn(k)]
= 0, (A.15)

the gain matrix is obtained as

[Kn(k)] =
[
Pn

p(k)
]

[Jn(k)]
T
(

[Jn(k)]
[
Pn

p(k)
]

[Jn(k)]
T

+ σ2 [IM ]
)−1

.

(A.16)
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Using the above expression, equation A.14 can be further simplified
as

[Pn
e (k)] =

(
[IM ]− [Kn(k)] [Jn(k)]

) [
Pn

p(k)
]
−
( [

Pn
p(k)

]
[Jn(k)]

T

− [Kn(k)] [Jn(k)]
[
Pn

p(k)
]

[Jn(k)]
T

− σ2 [Kn(k)]
)

[Kn(k)]
T

=
(

[IM ]− [Kn(k)] [Jn(k)]
) [

Pn
p(k)

]
−
[ [

Pn
p(k)

]
[Jn(k)]

T

− [Kn(k)]
(

[Jn(k)]
[
Pn

p(k)
]

[Jn(k)]
T

+ σ2
)]

[Kn(k)]
T

=
(

[IM ]− [Kn(k)] [Jn(k)]
) [

Pn
p(k)

]
−
( [

Pn
p(k)

]
[Jn(k)]

T

−
[
Pn

p(k)
]

[Jn(k)]
T
)

[Kn(k)]
T

=
(

[IM ]− [Kn(k)] [Jn(k)]
) [

Pn
p(k)

]
(A.17)

Combining equations A.6, A.8, A.12, A.14 and A.16, the entire
update rule in EKF is represented as in the following.

Prediction part: [
Λn

p(k)
]

= [Λn
e (k − 1)] ,[

Pn
p(k)

]
= [Pn

e (k − 1)] + [Ω] .

Estimation part:

[Kn(k)] =
[
Pn

p(k)
]

[Jn(k)]
T
(

[Jn(k)]
[
Pn

p(k)
]

[Jn(k)]
T

+ σ2 [I]
)−1

,

[Λn
e (k)] =

[
Λn

p(k)
]

+ [Kn(k)]
(

∆Y nr (k)− ΓT(k)
[
Λn

p(k)
]
Γ(k)

)
,

[Pn
e (k)] =

(
[IM ]− [Kn(k)] [Jn(k)]

) [
Pn

p(k)
]
,

with

[Jn(k)] = Γ(k)ΓT(k).

226



A.2. Derivation of Backpropagation Algorithm

Replacing the new defined variables by the original variables, the co-
variance matrices of the estimation and the prediction errors are

[Pn
e (k − 1)]

= E
[(

[Φn(k − 1)]− [Φn
e (k − 1)]

)(
[Φn(k − 1)]− [Φn

e (k − 1)]
)T]

[
Pn

p(k − 1)
]

= E
[(

[Φn(k − 1)]−
[
Φn

p(k − 1)
] )(

[Φn(k − 1)]−
[
Φn

p(k − 1)
] )T]

.

(A.18)

Then at each time k, the effective heating matrix [Φn] can be updated
as following.

Prediction part: [
Φn

p(k − 1)
]

= [Φn
e (k − 2)] ,[

Pn
p(k − 1)

]
= [Pn

e (k − 2)] + [Ω] .

Estimation part:

[Kn(k − 1)] =
[
Pn

p(k − 1)
]

[Jn(k − 1)]
T (

[Jn(k − 1)]
[
Pn

p(k − 1)
]

[Jn(k − 1)]
T

+ σ2 [IM ]
)−1

,

[Φn
e (k − 1)] =

[
Φn

p(k − 1)
]

+ [Kn(k − 1)]
(

Ψn
r (k − 1)

−VT(k − 1)
[
Φn

p(k − 1)
]
V(k − 1)

)
,

[Pn
e (k − 1)] =

(
[IM ]− [Kn(k − 1)] [Jn(k − 1)]

) [
Pn

p(k − 1)
]

with

[Jn(k − 1)] = V(k − 1)VT(k − 1).
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N1,1

N1,2

N2,1

N2,2

N2,3

N3,1

Input Layer

Hidden Layer

Output Layer
W1

1,1

YNN,1

u1(k)

u2(k)

W1
3,4

Bias = 1

N3,2 YNN,2

W2
2,4

Bias = 1

W2
2,1

Figure B.1. Error flow in the output layer.

A.2. Derivation of Backpropagation
Algorithm

Case 1: For weights connecting to the output layer

If the destination of the link is in the output layer, such as the blue link
in figure B.1, any error of the weight only affects one output and the
corresponding weight update is simple and straightforward. For the
destination node j in the output layer, according to the definition in
table 3.3 its input can be represented by

zoj (k) =

NL∑
i=1

wo
j,i(k)xLi (k), (B.19)

228



A.2. Derivation of Backpropagation Algorithm

where xLi (k) is the input from the i-th node of the L-th hidden layer.
Then the output of this node is

YNN,j(k) = fo(zoj (k)), (B.20)

where fo represents the activation function of the output layer.

The corresponding update rule of any weight wo
j,i(k) connecting with

this node is

wo
j,i(k + 1) = wo

j,i(k) + ∆wo
j,i(k),

where

∆wo
j,i(k) = − η ∂J(k)

∂wo
j,i(k)

= − η ∂J(k)

∂YNN,j(k)

∂YNN,j(k)

∂fo(zoj (k))

∂fo(zoj (k))

∂zoj (k)

∂zoj (k)

∂wo
j,i(k)

.

(B.21)

Substituting following expressions into the above equation (for each 
node in this layer)

∂J(k)

∂YNN,j(k)
= YNN,j(k)− Yd,j(k),

∂YNN,j(k)

∂fo(zoj (k))
= 1,

∂fo(zoj (k))

∂zoj (k)
= f ′o(zoj (k)),

∂zoj (k)

∂wo
j,i(k)

= xLi (k),

then equation B.21 will be transformed into

∆wo
j,i(k) = − η ·

(
YNN,j(k)− Yd,j(k)

)
f ′o(zoj (k))xLi (k)

= − η · δoj (k)xLi (k),

δoj (k) =
(
YNN,j(k)− Yd,j(k)

)
· f ′o(zoj (k)),

(B.22)

where δoj (k) is the local gradient equivalent to ∂J(k)/∂zoj (k). When
the activation function in the output layer is the identity function as
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fo(zoj (k)) = zoj (k), the completed update equation is

wo
j,i(k + 1) = wo

j,i(k)− η · δoj (k)xLi (k),

= wo
j,i(k)− η · δoj (k)xLi (k).

(B.23)

Case 2: For weights only connecting to hidden layers

N1,1

N1,2

N2,1

N2,2

N2,3

N3,1

Input Layer

Hidden Layer

Output Layer

YNN,1

u1(k)

u2(k)

W1
3,4

Bias = 1

N3,2 YNN,2

W2
2,4

Bias = 1

W1
1,2

Figure B.2. Error flows from hidden layers to the output layer.

When both ends of the link are connected to nodes in hidden layers,
the update of its weight becomes complicated. There is no specified
desired output for nodes in hidden layers to directly calculate the error(
YNN,j(k)− Yd,j(k)

)
. In addition, all nodes in the output layer have to

be considered because the error flows from the node in the hidden
layer to all nodes in the output layer, such as indicated by the blue
arrows in figure B.2.

Using a similar equation as in the first case to calculate ∆wo
j,i(k), for

the L-th layer there is

∆wLj,i(k) = − η ∂J(k)

∂wLj,i(k)
= −η ∂J(k)

∂zLj (k)

∂zLj (k)

∂wLj,i(k)

= − η · δLj (k)xL−1i (k).

(B.24)
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By applying the chain rule, the local gradient δLj (k) can be calculated
as

δLj (k) =

N∑
p=1

∂J(k)

∂fo(zop(k))

∂fo(zop(k))

∂zop(k)

∂zop(k)

∂g(zLj (k))

∂g(zLj (k))

∂zLj (k)
. (B.25)

where N is the number of nodes in the output layer.

According to the notations shown in figure 3.9 and the definitions in
B.22, the terms in the above equation B.25 are expressed as

∂J(k)

∂fo(zop(k))
= δop(k),

∂fo(zop(k))

∂zop(k)
= 1,

∂zop(k)

∂g(zLj (k))
=wo

p,j(k),

∂g(zLj (k))

∂zLj (k)
= g′(zLj (k)).

(B.26)

Substituting these expressions into the above equation B.25, it is
rewritten as

δLj (k) =

N∑
p=1

δop(k)wo
p,j(k) g′(zLj (k))

= g′(zLj (k))

N∑
p=1

δop(k)wo
p,j(k).

(B.27)

Equations B.24 and B.27 can be extended into a more general case
where the node j is in former hidden layers [Hay98], such as

∆wlj,i(k) = − η · δlj(k)xli(k)

= − η ·

g′(zl+1
j (k))

Nl+1∑
p=1

δl+1
p (k)wl+1

p,j (k),

 xli(k).
(B.28)
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