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Abstract

Our society relies on the correct functioning of software systems and their

failures can result in humanitarian and �nancial damages. Hence, a high

con�dence of the reliability of software systems is usually required. Exist-

ing software reliability assessment approaches are either theoretical sound

but time-consuming and labor-intensive (huge number of test cases, proof

conduction, etc.), or practical but based on unrealistic assumptions and usu-

ally deliver overestimation of the reliability. For ultra-high reliable software

systems, like for example �ight control systems, a failure rate of 10
−9

with

a con�dence of at least 99.99% is usually required. This means that at least

9, 210, 340, 628 failure-free test cases should be executed to assess such a

reliability requirement. If we assume that we can execute 10 test cases per

second, this would mean that a total of 10, 660 days of testing are required.

This obviously prohibitively impractical and impossible. We think that our

approach is the right direction to make the assessment of ultra-high reliable

software possible.

This thesis developed an automatic approach for the assessment of software

reliability which is both theoretical sound and practical. The developed

approach extends and combines theoretical sound approaches in a novel

manner to systematically reduce the overhead of reliability assessment.

More precisely, the developed approach formulates software reliability assess-

ment as an uncertainty reduction approach about the unknown reliability of

the software. Existing approaches are assessing the software reliability with-

out making use of the information available from previous test executions,

the software source code or previous proof of correctness attempts. The

presented approach, however, formulates such available information as prior

knowledge and uses such knowledge to systematically reduce the overhead

of software reliability assessment by reducing the required number of test

cases executions to reach a target con�dence on the reliability estimate.
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Abstract

This thesis makes the following statements: available knowledge about the

failure rate of the software should reduce uncertainty about its future relia-

bility and hence reduce the required overhead to assess it.

The approach makes use of previous black-box test cases executions to op-

timally select the future test cases to execute in order to reach a target

con�dence on the reliability estimate with less test cases than state-of-art

approaches. If the source code of the software under study is available, the

approach uses the information provided by the source code to further reduce

the required number of test cases. If a proof of correctness of the source code

or parts of it has been conducted, the approach make use of the con�dence

gained by the proof to further reduce the required testing overhead.

Software reliability assessment based on testing executes test cases with

respect to an operational pro�le, which is a quantitative approximation of the

software’s operational use. The reliability estimation is usually sensitive to

variations of the operational pro�le. We show how our approach can reduce

such sensitivity based on variance reduction and systematic software input

domain pruning.

The approach has been validated on several case studies. The validation

shows the e�ciency of the approach compared to state-of-the-art techniques

to reduce the overhead required for software reliability assessment.
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Kurzfassung

Heutzutage ist unsere Gesellschaft sehr abhängig von der korrekten Funk-

tion von Softwaresystemen. Ein Software-Ausfall könnte zu humanitären

und �nanziellen Schäden führen. Daher ist in der Regel ein hohes Maß an

Kon�denz der Zuverlässigkeit von Softwaresystemen erforderlich. Die be-

stehenden Bewertungsansätze der Software-Zuverlässigkeit sind entweder

theoretisch fundiert aber sehr aufwendig oder praxisnah aber basierend auf

unrealistische Annahmen.

Diese Doktorarbeit entwickelt einen automatischen Ansatz für die theoretisch

fundierte und gleichzeitig praxisnahe Bewertung der Software-Zuverlässigkeit.

Der entwickelte Ansatz erweitert und verbindet solide theoretische Ansätze

in einer Art und Weise, um den Aufwand der Zuverlässigkeitsbewertung

systematisch und sukzessive zu reduzieren.

Diese Dissertation macht die folgende Aussage: jedes Wissen über die Aus-

fallrate der Software soll die Unsicherheit bez. der Zuverlässigkeit reduzieren,

und damit minimiert es den Aufwand sie zu bewerten. Der Ansatz nutzt

frühere Ausfürungen von Black-Box-Testfällen, um die zukünftigen Testfälle

optimal zu wählen. Ziel ist es, die Zuverlässigkeit mit weniger Testfällen als

Stand-der-Technik-Verfahren zu erreichen. Ist der Quellcode der Software

vorhanden, dann nutzt der Ansatz die Informationen aus dem Quellcode

aus, um die erforderliche Anzahl von Testfällen weiter zu reduzieren. Falls

der Quellcodes oder Teile davon formal veri�ziert wurden, nutzt der An-

satz die aus dem Beweis erlangte Kon�denz zur weiteren Reduzierung des

erforderlichen Testaufwands.

In der Regel reagiert die Zuverlässigkeitsschätzung emp�ndlich auf Schwan-

kungen des Benutzungspro�ls. Wir zeigen, dass unser Ansatz solch eine

Emp�ndlichkeit basierend auf Varianzreduktion und systematischer Reduzie-

rung des Eingaberaum reduzieren kann.

Wir haben unseren Ansatz anhand mehrerer Fallstudien validiert.
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1. Introduction

Software reliability assessment is one of the most controversial issues in

software engineering today. Software systems are omnipresent in our daily

life and their failure can result in serious �nancial and humanitarian damages.

Nevertheless, software development organizations are considering software

reliability assessment as a cost rather than a return. The target of any com-

pany is to create visible bene�ts with least possible overhead. However,

existing software reliability assessment techniques are time-consuming and

labor-intensive tasks. For any realistic software system neither proof of cor-

rectness (by applying formal methods) nor existing testing and assessment

techniques can guarantee failure-free software unless an unrealistic or at least

impractical time and e�ort is taken into consideration [15]. Since proving

the correctness of real software system is in most of the cases impractical to

achieve, quantitative assessment of the software system reliability is usually

performed. However, existing approaches for quantitative reliability assess-

ment are controversial. Even if proof of correctness has been applied to some

parts of the software, existing approaches do not formally and quantitatively

account for the contribution of the con�dence gained from partial proofs to

the overall software reliability estimation. Consequently, software develop-

ment organizations may not see direct and quanti�able return on investment

when applying formal methods for reliability assessment. Furthermore, cur-

rent software reliability assessment approaches, which try to be practical

from the cost and overhead point of view, are usually making use of reliabil-

ity prediction models based on unrealistic assumptions about the software

failure process. Such assumptions result in too optimistic reliability estimate

compared to real situations [62]. As a consequence, software development

organizations loose their trust on such approaches and do not necessarily

see the bene�t of applying them. Additionally, existing software reliability

assessment approaches require special knowledge, training and quali�cation

of the software engineers involved in the reliability assessment, which makes

the adoption of such approaches within a development organization a costly

1



1. Introduction

task. Therefore, credible and cost-e�ective reliability assessment techniques

are urgently needed [59].

In this dissertation, we developed an automated approach for the assess-

ment of the reliability of software systems which, compared to the existing

approaches:

• reduces the cost and time required for reliability assessment given a

target statistical con�dence on the reliability estimate

• guarantees a return on investment for any invested testing e�ort: our

approach guarantees that for a given test budget, the approach

returns the best possible reliability estimate with the highest possible

statistical con�dence

• avoids possible overestimation of the reliability estimate: our

approach uses theoretical sound models for reliability estimation to

avoid unrealistic assumptions about the software failure process

• guarantees a return on investment when applying formal veri�cation

techniques even when partially applied to parts of the software

source code: our approach integrates formal veri�cation in the

quantitative software reliability assessment, by quantitatively

assessing the con�dence gained from the qualitative formal

veri�cation of the source code or part of it in the reliability estimate

• reduces possible errors introduced by the software engineer when

parameterizing prediction models: our approach uses non-parametric

models for reliability prediction

• reduces the quali�cation and knowledge required from the software

engineers to assess software reliability: our approach is automated

and hides the mathematical and theoretical details used for assessing

the reliability

1.1. Motivation

Software reliability is de�ned as the probability of failure-free software oper-

ation for a speci�ed period of time and environment [4].

2



1.1. Motivation

Software systems have become larger and more complex and our dependence

on them is growing. Due to the availability of computing resources at a low

cost, software systems are used in a variety of applications where their failure

can result in human life and/or environmental and �nancial damages. Soft-

ware systems are used in a common applications such as mobile phones and

navigation systems; in more complex applications such as banking systems

and telecommunication systems; and even in life-critical applications such as

radiation systems in medicine and railway tra�c control systems.

The increasing usage of software systems has resulted in an increased con-

cern about the reliability of the software systems, which do not only concern

software development organizations but also the users of such software sys-

tems. Software development organizations are concerned with the reliability

of their software to face the increasing competition and in some cases to

satisfy the requirements of regulatory agencies. The users are increasingly

aware of the failure of software systems especially in critical applications.

The media has highlighted the consequences of unreliable software such as

the recent crash of the Airbus A400M in May 9, 2015 because of a software

failure [1].

The fact that a software system can lead to operational failures sets a press-

ing need to ensure that, when a software system is used, its reliability is

adequate. This means that the reliability of the software system should be

assessed before using it. It must be possible either to demonstrate that the

software system will execute reliably in all expected operational scenarios

or to estimate the unreliability of the software system and make sure that it

is adequate for the application scenario. Software reliability assessment is

needed to certify software systems by regulatory agencies, or to determine

the conditions of service level agreements and warranties.

The increasing complexity and the induced cost of modern software systems

as well as the market competitiveness are forcing software companies to reuse

existing software components whenever possible or purchase (Commercial

O�-The-Shelf components, COTS) components from third-party providers.

The reliability of a component-based software systems can be determined

based on the reliability of the constituent components and their interaction

[13]. Assessing the reliability of a component can be very important in cases

of re-using the component. Furthermore, regulatory agencies usually �x

reliability requirements for each component constituting a software system

3



1. Introduction

[59]. Consequently, it is necessary to assess the reliability of the components

used in a software system.

Therefore, the reliability assessment of a software system can be broken

down into the assessment of the constituent components. Such component

can be (i) black-box, i.e., the source code implementing the component is

not available (e.g., purchased COTS components) or (ii) white-box, i.e., the

source code is available. Di�erent reliability assessment techniques has been

proposed for the reliability assessment of black-box as well as of white-box

components. In the following section, we will give an overview about these

techniques and their limitations.

1.1.1. Existing Reliability Assessment Approaches:
State of the Art, Challenges and Limitations

We give a high-level overview of the state-of-the-art, their limitations and the

challenges related to the approach presented in this thesis. A more detailed

description of related techniques is given in Chapter 7.

The novel techniques we present in this thesis are extensions as well as novel

combinations of the two main approaches for the assessment of software

systems reliability: deductive formal veri�cation of source code and testing.

Deductive formal veri�cation requires the availability of the source code

as well as formal speci�cation of the functionalities implemented by the

source code. Consequently, formal veri�cation can only be used for formally

speci�ed white-box components. Testing can be used for white-box as well

as black-box components
1
.

1.1.1.1. Deductive Source Code Verification

Deductive source code veri�cation is a technique to prove the correctness of

a software with respect to a formal speci�cation. The speci�cation describes

the expected behavior of the software consumed and provided methods based

on pre-and post-conditions following the design-by-contract [64] and Hoare-

style [53] principles. For instance, state-of-the-art deductive veri�cation

1
Note that testing also requires some kind of speci�cation, e.g., test oracles.

4



1.1. Motivation

systems include KeY [8], ESC/Java2 [24], VCC [23], as well as the proof

assistants PVS [74] and Isabelle/HOL [93]. Most of these tools make use of

symbolic execution or weakest precondition computation to transform the

source code and the speci�cation into �rst-order logic formulas called proof

obligations. Proof obligation are generated by a veri�cation tool and if theses

obligations can be veri�ed (or closed), for example using theorem provers

like KeY or SMT solvers like Z3 [31] then the reliability of the software is

proven, i.e., the software is reliable w.r.t the speci�cation. The goal of the

veri�cation tools is to close all generated proof obligations.

When the software is correct with respect to its speci�cation, then, experience

shows, that veri�cation tools can usually prove the correctness of the program

automatically. Under the assumption that the speci�cation is correct (i.e.,

conform to the expected behavior of the software), source code veri�cation

can be used to induce the software reliability. However, because of the semi-

decidability of �rst-order logic, if the program contains faults, the proof

search may never terminate (unless a timeout is set). In such as case the user

does not know whether the program is correct or not, and usually a user

interaction may be required to advance the proof. Recent techniques [41],

are making use of the information provided with the open proof obligations

to detect faults and generate counterexamples. However, none of the existing

techniques, as far as we know, is able to quantify the software reliability

in the presence of open proof obligations. Therefore, the challenge is (i)

how to formally and quantitatively account for any veri�cation e�ort in the

reliability estimate and (ii) how can we give a statement about the software

reliability when not all proof obligations are proved.

In practice, however, it is usually impractical to rigorously apply formal

veri�cation to all relevant components (e.g. compiler, hardware, network)

related to the execution environment of the software. In addition, a software

can use COTS components where usually the source code is not available.

In such as case, veri�cation based test cases [6, 42] are generated. The goal

of testing is to reveal software faults. The bene�t of formal veri�cation in

this case is to generate high coverage test cases that are strong at revealing

software failures [6]. However, exhaustive testing (veri�cation by testing) is

practically impossible for complex software systems with large input domains.

The challenge is then, how to avoid exhaustive testing when veri�cation is

done.
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1.1.1.2. Testing based on Operational Profiles

Since exhaustive testing is usually impractical for complex real software

systems with large input domains, statistical testing is proposed as a resort

[57]. Statistical testing is random black-box testing where test cases are

randomly drawn from the software input space according to an operational

pro�le. The operational pro�le is a quantitative approximation of the soft-

ware’s operational use. Formally, an operational pro�le can be de�ned as

OP = {(Di ,pi )|i ∈ {1, 2, . . . ,L},
∑L

i=1
pi = 1} [69]. The OP is a set of pairs

(Di ,pi ), where Di represents a set of sub-domains of the global input domain

D to describe a possible operational scenario, and pi is the probability that

an operational input belongs to Di . Usually, a reliability tester has reliability

targets consisting of the required reliability value of the software and the

required statistical con�dence on the reliability estimate. Statistical testing is

then applied to the software and testing stops when (i) the required reliability

value cannot be reached because testing revealed failures, or (ii) the required

reliability value is estimated with the target statistical con�dence.

Given an operational pro�le, statistical testing estimates the reliability of the

software using the following statistical estimator R̂ = 1 −
∑L

i=1
piFPi . The

crucial part of the estimation is the approximation of the failure probability

FPi when the software is executed with inputs from Di . Existing models to

approximate FPi can be grouped in three di�erent categories: (i) fault seeding

models, (ii) software reliability growth models and (iii) sampling models.

Fault seeding models are statistical fault injection models which make as-

sumptions about the distribution of faults remaining in the program after

testing. Such assumptions cannot be rigorously justi�ed and the represen-

tativeness of the injected faults is questionable [79]. Software reliability

growth models (SRGMs) extrapolate the future failure probability based on

failure data indexed by time. Such models, however, have many shortcomings

related to their unrealistic assumptions and inaccurate predictability [98].

Sampling models are theoretically sound [87], but they su�er from several

practical problems. Sampling models require a large number of test cases

[15] to gain high con�dence on the reliability estimate.

Consequently, in order to avoid unrealistic assumptions about the software

failure process, and in order to increase the trust of software reliability prac-

titioners on the reliability estimate produced by statistical testing, sampling

6
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models have to be used. The remaining challenge is how to reduce the re-

quired number of test cases to gain a target con�dence on the reliability

estimate. Recently published approaches such as [92] and [37] present tech-

niques to accelerate statistical testing based on path coverage criteria. Both

techniques assume that a single test case pro program path is enough for reli-

ability testing. They assume that repeated testing of the same program path

cannot contribute to fault detection. They generate randomly only one input

to execute each program path. However, we believe that their assumption can

be very misleading. If a program path does not contain faults, then all inputs

executing that path will execute successfully. However, when a program

path contains faults, some inputs executing that path may coincidentally

produce correct outputs. Consequently, a single test case selected from the

program path input domain may not be able to detect the faults and this may

cause an overestimation of the software reliability. An illustrative example of

such faults are domain faults, which are faults in the control �ow that cause

wrong program paths to be executed [96]. Domain faults build shifts in the

domain boundaries of the inputs executing the program path. If such shifts

are small, then most of the inputs executing the faulty program path will

produce correct outputs. Consequently, there is a very low probability that a

single randomly generated input from the program path input domain can

be the fault revealing input.

Furthermore, these approaches usually rely on bounded symbolic execution

to extract the program paths. Bounded symbolic execution is used to avoid the

path explosion problem, in the presence of recursive method calls and loops.

The bound limits the search depth of the symbolic execution procedure.

However, such a bound is user de�ned and is arbitrary set without any

connection to the reliability estimation targets (i.e., the required reliability

value of the software as well as the required con�dence). The higher the

bound of symbolic execution, the more program paths are explored, the

higher the con�dence on the reliability estimate. The challenge is how to

formally de�ne bounds for the symbolic execution which are related to the

reliability estimation targets.

Another approach [27], accelerates testing by applying monotonic trans-

formations to the software program and the execution environment (e.g.,

program slicing, replacing function computation by table lookup, use of fast

process simulation or use of centralized instead of distributed computing).

Such transformations imply the correctness of the original program, and a

7
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failure of the transformed program does not necessary means that the orig-

inal program would fail. This would require the invocation and test of the

original version. In addition, the approach presented in [27] is labor-intensive

requiring the formal veri�cation of each transformation by skilled software

engineers, which would limit the applicability of the approach.

All the existing approaches to reduce the number of required test cases are

based on source code information with the exception of one recently pub-

lished approach [54], which is adapted for black-box testing and formulates

testing as an optimization problem based on the gradient-descent method.

In order to reduce the risk to get stuck in a local minimum when using the

gradient-descent method, the approach in [54] introduces an arti�cial bias in

the reliability estimate. Furthermore, the approach in [54] does not generate

the test cases according to the distribution of the operational pro�le, which

would additionally bias the reliability estimate. Thus, the challenge is how to

reduce the number of required test cases to reach a target statistical con�-

dence on the reliability estimate when we have no source code available and

without biasing the reliability estimate as in [54].

Reliability assessment based on testing is usually su�ering from the high

sensitivity of the reliability estimates to variations of the operational pro�le.

Indeed, specifying the operational pro�le is an erroneous and di�cult task

[69]. The speci�ed probability pi of a sub-domain Di may be erroneous to

some extent. In order to cope with such di�culties, the reduction of the

input space was proposed in the literature as the promising solution [69].

[26] proposes reducing the input domain using vertical slicing and program

transformation, which can be labor-intensive for realistic programs.

1.1.2. So�ware Reliability in terms of Probabilities

One can wonder why software reliability is described in terms of probabilities.

Indeed, a software does not wear out or break while executing it. A software

execution is deterministic, either it is fault free and will never fail or it contains

faults and any inputs which execute the faults will always cause the faults.

Hardware components, however, can fail randomly during execution in the

same circumstances where they previously have worked failure-free.

8



1.2. Problem Statement

Usually, software failures are distinguished from random hardware failures

by calling them systematic failures [59]. This can be sometimes misleading

suggesting that we might handle software failure deterministically. However,

it should be noted that the calling software failures as systematic failures

refers to the mechanism how a fault is revealed as failure and does not refer

to the failure process. The term systematic, refers to the fact that if a software

failures is triggered by a particular input, then the software will always fail

on that input until the responsible software fault is repaired. Consequently,

the term systematic should not be considered as a form of determinism.

However, a software system is embedded in a stochastic environment (i.e., the

execution environment consisting of the hardware and software environment

as well as the users of the software). Such an environment subjects the

software program to unpredictable inputs over time. Indeed, we cannot

predict with certainty all the future inputs that will execute the software.

Each input can either execute an existing software fault or not. Thus, in a

system context, the software system fails in a stochastic manner. The software

failure process is described by the random execution of software faults by the

uncertain future inputs. Such an uncertainty can only be described using the

theory of probability which is the classical theory to deal with uncertainty.

Describing software reliability by a probabilistic models allows us to express

our uncertainty and our con�dence on the reliability estimation of software

systems.

Consequently, we can consider software reliability assessment as the pro-

cess to resolve the uncertainty about the software future behavior and gain

knowledge of it. This resembles the famous Schrödinger’s cat problem [83].

1.2. Problem Statement

Formal veri�cation can prove the correctness of an implementation with

respect to a speci�cation. However, it is usually not practical to rigorously

apply formal veri�cation to all relevant components of the execution envi-

ronment. If formal veri�cation has been applied to only the source code of

the software or part of it, existing reliability assessment approaches do not

quantitatively and formally account for the con�dence gained from formal

veri�cation in the reliability estimation.
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Statistical testing based on sampling models is theoretical sound but requires

a large number of test cases to reach a target con�dence on the reliability

estimate. Furthermore, the reliability estimate when statistical testing is used

is usually sensitive to variations in the operational pro�le.

In this thesis, we developed an automated software reliability assessment

approach which is both theoretical sound and practical. We believe that

software reliability assessment is a process to resolve the uncertainty about

the future behavior of the software under study in analogy to the famous

Schrödinger’s cat problem [83]. We formulated our approach as an uncer-

tainty reduction technique, which aims to use the available information about

the software in order to e�ciently assess and reduce the uncertainty about the

software future behavior. The information can be provided from (i) previous

test cases execution, (ii) the source code of the software (ii) previous formal

veri�cation attempts. Consequently, the more information we have about

the software under study the more our approach gains on e�ciency and the

more the uncertainty about the software failure process is systematically

reduced.

Furthermore, we show that our approach is able to reduce the sensitivity

of the reliability estimate to variations of the operational pro�le based on

variance reduction of the reliability estimate and systematic input domain

pruning of the software.

1.3. Main Idea of the Approach

In the following we illustrate the main idea behind our approach based on

two software assessment scenarios the assessment of software components

with required (i) moderate reliability, and (ii) ultra-high reliability. The levels

of required reliability are de�ned as [15]:

• Ultra-High reliability: failure rate < 10
−7

• Moderate reliability: failure rate between 10
−3

and 10
−7

• Low reliability: failure rate > 10
−3

10
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1.3.1. Moderate Reliability Assessment

Consider the following reliability assessment scenario: a regulatory agency

wants to assess the reliability of a software component. The required reliabil-

ity is 1 − 10
−5

with a con�dence level of 0.9999 (i.e., 99.99%).

Using hypothesis testing, the required number of failure-free test cases exe-

cution is computed as: n = d
loд(1−0.9999)

loд(1−10
−5)
e = 921030 (derivation can be found

in Section 2.2.3).

The test cases are then executed according to an expected operational pro�le

as shown in Section 2.1.3. When the test execution terminates:

• either no failures are revealed and consequently, the software

component is reliable as required

• or some failures are revealed, in such a case the reliability of the

software as well as its variance is higher that expected

In the case when testing reveals failures, the responsible faults should be

repaired and 921030 new test cases are executed. Consequently, the problem

causing the huge number of test cases in the case of assessing moderate

reliable software, arises when failures are revealed during testing.

Existing approaches would start new testing after repairing software faults,

without taking into consideration the previous e�ort invested in testing and

the distribution of the revealed failures across the operational pro�le sub-

domains. However, such information is very valuable. Sub-domains where

no failures are revealed should not receive the same importance as the ones

where failures are revealed. The intensity of the failures in each sub-domain

should be an indicator of where testing should be focused. Our approach

makes use of the information provided by previous test runs, to optimally

allocate future test cases across the operational sub-domains in order to

reduce the required number of test cases to reach a target con�dence on the

reliability estimate.
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1.3.2. Ultra-High Reliability Assessment

Now, let’s consider the case of assessing ultra-high reliable software compo-

nents. Assume that the required reliability is 1 − 10
−9

with a con�dence of

at least 99.99%. This would require the execution of 9, 210, 340, 628 failure-

free test cases. If we assume that we can execute 10 test cases per second,

this would mean that a total of 10, 660 days of testing are required. This is

obviously impossible to realize.

In the case of ultra-high reliable software, we assume that some e�ort of

formal veri�cation has been done during the development of such software.

Even, if the formal veri�cation of such a software has been done only to

some parts of it, it would delivers us some con�dence that such parts will

execute failure-free. Our approach proposes a method to quantitatively

account for the con�dence gained from applying formal veri�cation. We use

such information to systematically reduce the required number of test cases

execution.

Even if a formal veri�cation attempt terminates without closing all proof

obligations as illustrated in 1.1.1.1, we believe that we can bene�t from it as

follows. Closed proof branches should make us more con�dent that parts of

the software will perform correctly. On the other side, open proof branches

should reduce the user con�dence on the software reliability.

We present a novel approach to quantitatively assess the contribution of the

closed proof obligations to the software reliability and the contribution of the

open proof obligations to the con�dence (or uncertainty) about the software

reliability. The approach we present is able to make a quantitative statement

about the software reliability even when the proof attempt fails.

1.4. Contributions

The contributions of this thesis can be arranged in three groups:

Black-box Reliability Assessment: we developed an adaptive black-box

reliability assessment approach based on sampling models. The approach

learns from previous test cases executions and computes in an iterative man-

ner the required number of test cases to be executed based on user required

12
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con�dence level. The approach, compared to state-of-the-art approaches,

reduces the required number of test cases to reach a target statistical con�-

dence on the reliability estimate. Furthermore, the approach allows to predict

the failure rate for future test cases executions based on a non-parametric

reliability model. This allows to reduce the overhead of testing. The pre-

diction model makes e�ective use of previous test executions during model

inference. Based on the uncertainty on the prediction and con�dence goals

on the reliability estimate, the approach decides whether to execute the test

cases or not.

White-box Reliability Assessment: If in addition to the operational pro-

�le, the source code if available, our approach bene�ts from the white-box

information available to further enhance the e�ciency of the black-box ap-

proach. We developed an automated probabilistic analysis approach of source

code based on symbolic execution. The white-box approach propagates the

uncertain information provided by the operational pro�le while executing the

source code symbolically. Compared to the black-box approach, the white-

box approach makes use of the source code information to further reduce the

number of required test cases to reach a target statistical con�dence on the

reliability estimate. More importantly, we show that the white-box approach

is able to systematically reduce the sensitivity of variations of the operational

pro�le on the reliability estimate.

Veri�cation-Based Reliability Assessment: Traditionally, formal veri�-

cation techniques and statistical testing were studied in separate research

communities. However, when used separately, none of them is su�ciently

powerful and practical to provide high con�dence in reliability assessment. If

in addition to the source code, a formal speci�cation of the software compo-

nent is also available, we propose a software reliability assessment approach

which combines the strengths of formal veri�cation and statistical testing

in a uni�ed and coherent form. The reliability estimate is derived from the

proof tree. If the reliability goal cannot be reached by symbolic computation

of the reliability, the approach complements the reliability estimate by test

cases derived from the open proof branches. The test cases are derived using

the white-box reliability assessment approach. The developed approach ana-

lyzes the reliability of a program in a runtime environment without explicitly

modeling the environment in the veri�cation logic.
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1.5. Outline

This dissertation is structured as follows: In Chapter 2, we will present the

foundations and current practices related to our approach. The �rst contribu-

tion of this dissertation will be the black-box reliability assessment approach,

which is presented in Chapter 3. The concepts of the white-box reliability

assessment approach are described in Chapter 4. Chapter 5, describes the

veri�cation-based reliability assessment approach, and related work is dis-

cussed in Chapter 7. We will discuss case studies for the validation of our

approach in Chapter 6. The thesis closes with a look at future work the

conclusion in Chapter 8.
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2. Foundations and Current
Practices

2.1. So�ware Reliability Assessment

This section presents basic de�nition and principles related to software relia-

bility assessment.

2.1.1. So�ware Reliability Definition and Key Concepts

Software reliability is de�ned by ANSI/IEEE standards as "the probability of

failure-free operation of a software in a speci�ed environment for a speci�ed

time" [4]. Here, we should di�erentiate between the software implementation
or the program, and the software system or shortly the software, which consists

of the program as well as the execution environment. In the context of

reliability assessment, the subject of study is the program together with its

execution environment (i.e., software system), since software reliability is

assessed when the program is executed or in operation.

Software unlike hardware do not wear out. Software failures are caused

by faults that are present at the beginning of the software lifetime. The

presence of such faults can cause the software to fail occasionally. Hence, it

is useful, and sometimes because of regulatory issues necessary, to estimate

the likelihood of a software failure.

Usually a program behaves deterministically. Consequently, a software failure

is not a random process. However, when the program is executed in a concrete

runtime environment it will be subject to stochastic random events which

can compromise the correct execution. For each event, the program either

operates failure-free or not. Such stochastic random events are produced by
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the user inputs to the software. The user inputs are usually speci�ed with

some uncertainty, and probability theory is the calculus of reasoning with

uncertainty. In fact, assumptions about the inputs which will be supplied

to the software are usually modeled as a stochastic process to describe such

uncertainty. Consequently, software reliability is de�ned as the probability

that an input supplied to the software would lead to a failure-free execution

of the software.

It may be argued that it should be possible to deterministically detect which

inputs to the software would lead to a failure. This can be achieved by proving

the correctness of the implementation and the execution environment with

respect to a speci�cation using formal veri�cation techniques. However, it is

usually not practical to rigorously apply formal veri�cation to all relevant

components (e.g. compiler, hardware, network) related to the execution

environment of the program. Another possible solution to the reliability

problem would be to test all admissible inputs of the software. However,

this would generally not be possible since the number of admissible inputs

is usually prohibitively large for real world programs. As an illustration,

consider the portion of code in Listing 2.1. The FLAG array will generate

2
100 = 1.2676506 × 10

30
possible inputs and testing all of them will be very

challenging.

Consequently, software reliability is not a quality of the software alone but a

function of the software’s quality together with the way how the software

is used. therefore, it does not make sense to talk about software reliability

estimate without associating the estimate with assumptions about how the

software will be used.

In the following section, we describe how such assumptions are formulated

in form of operational pro�les which quantify the likelihood that an input is

supplied to the software.

2.1.2. Operational Profile

The idea of an operational pro�le and its relation to the reliability estimate can

be illustrated by the following standard example taken from [85]. Consider we

have a program which uses a stack data structure with the three operations (i)

PUSH(a), which puts the value a on top of the stack, (ii) POP(), which removes
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2.1. Software Reliability Assessment

if(FLAG[0] == false) {

M0();

}

if(FLAG[1] == false) {

5 M1();

}

if(FLAG[2] == false) {

M2();

}

10 if(FLAG[3] == false) {

M3();

}

.

.

15 .

if(FLAG[100] == false) {

M100();

}

Listing 2.1:A sample portion of code
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the value on the top of the stack and (iii) TOP(), which returns the value on

the top of the stack.

Suppose that the implementation of the operation TOP() contains the follow-

ing fault: two successive calls to the operation TOP() will return di�erent

values, with the second one being wrong.

Now if we would test the three operations randomly with the assumption

that all operations are equally likely to be invoked, we would then get a low

reliability estimate for the studied program. However, it is generally rare to

call the operation TOP() twice successively because the user knows that TOP()

does not change the top value of the stack. Additionally, the probability to

call the operation TOP() after calling PUSH(a) is very low, because the caller

knows that the actual top value of the stack is the value a just put on top of

the stack. If we would test the program with a probability distribution that

re�ects such facts, we expect the reliability of the program under study to be

high because the situations which would execute the fault in the operation

TOP() would rarely arise.
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Consequently, in order to make a software reliability assessment which is

relevant to the expected users of the software, the software should be tested

while taking into account the patterns of usage speci�c to the expected

users. The way how the users interact with the software is usually a non-

deterministic process. Therefore, probabilistic models are used to describe the

interaction of the users with the software. Such patterns are quantitatively

captured by the operation pro�le speci�c to the expected users.

The operational pro�le is composed by two parts:

• the set of all possible executions of the software, to be denoted by E

• a probability distribution over E

Following [85], E describes all sequences of executions the user can perform

on the software:

E = {EV i , EV j , EV iEV j , EV iEV jEVk , . . .}

Each execution consists of one or more events EV . Each event consists of one

or more method or operation calls which are implemented by the software

under study. Each execution is also assigned a probability which indicate the

frequencies with which the user would issue the execution.

For each execution Ii ∈ E , the corresponding probability is denoted by

P(Ii ). In order to have a proper probability distribution, the following two

conditions should hold:

• 0 ≤ P(Ii ) ≤ 1 ∀Ii ∈ E
•

∑
Ii ∈E P(Ii ) = 1

An input oriented presentation of the operational pro�le, as proposed by

[69], is to represent each execution Ii with the possible inputs that would

lead to its execution. Assume that the operational pro�le describes L possible

executions and that the input domain of the software under study is denoted

by D. Following [69], the operational pro�le divides then the input domain

D of the software to test in L sub-domains: D1,D2, . . . ,DL . Each sub-domain

represents a possible operational use or a possible execution of the software

and has a probability of occurrence according the operational pro�le. Let pi
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be the probability of occurrence of sub-domain Di . The OP can therefore

represented as OP = {(Di ,pi )|i = {1, 2, . . . ,L},
∑L

i=1
pi = 1}.
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2.1.3. Statistical Testing

Statistical testing is a special form of random testing where test cases are

selected based on the input distributions speci�ed by a given operational

pro�le. Statistical testing is a treatment of the software testing process as

a statistical inference task. In such a statistical inference task, the input

domain D as speci�ed by the operational pro�le is the population of study,

the sub-domains Di are the strata, the test cases are the samples and the

probability pi of sub-domain Di is the sampling distribution. The inference is

then the process of estimating the reliability of the software when executed

with inputs from the population based on the distribution speci�ed by the

operational pro�le.

Statistical Testing as proposed by Musa [69] generates by random sampling

test cases according to the operational pro�le.

Let A a sequence de�ned as follows: A = {A0,A1, . . . ,AL}, |A| = L + 1,

where Ai =
∑i

k=1
pi for i = 1, . . . ,L, and A0 = 0.

The generation of the test cases is then as follows:

1. Generate a uniformly distributed random number ζ ∈ (0, 1), if

ζ ∈ [Ai ,Ai+1], then the sub-domain Di+1 will be randomly sampled

since Ai+1 −Ai = pi+1, where pi+1 the probability of occurrence of

sub-domain Di+1.

2. Generate input variables from the sub-domain Di+1 based on the

provided input distributions, and execute the test case.

3. Repeat the above steps until a stopping criteria is reached (e.g, target

reliability value reached, target con�dence on the estimated reliability

reached, required test time reached, etc,...)

The test selection approach proposed by Musa [69] is based on proportional

strati�ed sampling. The selection is controlled by the uniformly distributed

random variable ζ ∈ (0, 1).
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Since testing cannot guarantee the absence of faults, exposing the software to

the inputs expected to be the most frequently used should detect the failures

most likely to appear during operational use. The outcome of testing is used

to estimate the reliability of the software system. Statistical testing as an

inference task requires the de�nition of a statistical estimator which will be

used to estimate the population statistic which is the software reliability in

our case. The software reliability estimate is modeled as a random variable

and a statistical estimator is de�ned to approximate the reliability estimate.

Given the operational pro�le OP = {(Di ,pi )|i = {1, 2, . . . ,L},
∑L

i=1
pi = 1},

the reliability can be estimated through the following general statistical

estimator R̂ = 1 −
∑L

i=1
piFP i , where R̂ is a random variable representing

the reliability estimate and FP i is a random variable representing the failure

probability of the software when executed with inputs from the sub-domain

Di . The variance of the statistical estimator de�nes the statistical con�dence

on the computed estimate. Greater levels of variance yield larger con�dence

intervals, and hence less precise estimates of the software reliability.

Consequently, the goal of statistical testing as a statistical inference task is to

make a precise inference about the failure probability of the software which

will be used to quantify the software reliability.

In the following sections we will introduce di�erent current practices and

approaches for the estimation of the failure probability of software based on

testing.

2.2. So�ware Reliability Models

In the following subsections we present di�erent approaches to quantify the

failure rate of software in order to estimate its reliability.

2.2.1. So�ware Reliability Growth Models

Software reliability growth models are time-based reliability models because

they aim at predicting the evolution of the software reliability in the future.

Software reliability growth models use failure data obtained after testing or

operational use to extrapolate the future failure rate of the software.
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A software reliability growth model is usually build in three steps. The

�rst step is to select the mathematical model structure based on preliminary

assumptions about the software system characteristics and the testing envi-

ronment. Such models are usually parametric regression models. The second

step is to parameterize the model by �tting the available failure data to the

model. The last step is to deduce rules for the �tted model to be used to

predict the future failure rate of the software under study.

Generally, software reliability growth models can be grouped in two cate-

gories: (i) time between failure models and (ii) failure count models.

2.2.1.1. Time Between Failure models

Our investigation in this model class will include the time as variable which

occurs between failures. Ti is a random variable speci�ed as time between

the (i − 1)st and the ith failures. Let us assume that Ti convert to a known

distribution and its parameters depends on the amount of errors remaining

in the program after the (i − 1)st failure. The observation of the time between

failures during the testing phase will give us those parameters. The �tted

model can then be used to estimate the software reliability, mean time to

failure, etc. [43] The most known model in this study is the Jelinski/Moranda

(JM) De-eutrophication Model ([38]). According to the JM model t1, t2, ... are

independent and random variables that have exponential probability density

functions and is described through the following equation:

P(ti/z(ti )) = z(ti )e
−z(ti )ti ), ti > 0 (2.1)

z(ti ) is de�ned as the failure rate at time ti and ti stand for the time between

the (i − 1)st and the ith failures:

z(ti ) = Φ[N − (i − 1)], (2.2)

Φ and N are both model parameters. Φ is a proportional constant and N is

the total number of faults that exists originally in the program.

Those several faults depends on each other and the probability causing a

system breakdown is the same. To avoid this from happening a fault is

detected and deleted in each intervals between the (i − 1)st and ith failures

so that no new faults occurs.
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Both models parameters N and Φ can be estimated using the maximum

likelihood method. If t1, , t2, ..ti−1 are the observed data, then we can predict

the reliability through the following equation:

R̂i (t) = e−(N̂−(i−1)Φ̂)
(2.3)

R̂i (t) is a predication of Ri (t) = P(ti < t).

The problem of using this model is the ideal debugging process and that all

faults create the same failure rate.

There are also other models that works on the basics of the JM model but with

some extensions and small modi�cation. For instance the Schick/Wolverton

model [82] is basically the same as the JM model except that the failure rate

function depend on the current fault content of the program and the time

elapsed since the last failure:

z(ti ) = Φ[N − (i − 1)]ti (2.4)

Another revised model based on the JM model is the Goel/Okumoto imperfect

debugging model [45]. The Goel/Okumoto model treats the amount of faults

occurring in this system at time t , X (t) through the Markov process. The

software here has the ability to change its own failure randomly and conduct

its transition probability by imperfect debugging. In this process the time

X (t) is assumed to be distributed exponentially, where its rates depends on

the amount of the fault content in the system. Such a failure can be described

through the following function:

z(ti ) = [N − p(i − 1)]λ (2.5)

where (p) the probability of imperfect debugging and λ is the failure rate per

fault.

Another model which approaches the problem di�erently to the JM model is

the Littlewood/Verrall Bayesian Model [60]. The time between the failures

in this model is exponentially distributed. The main di�erence here lies in

the distribution z(ti ) which is a random variable and depends on a gamma

distribution and given by the following relationship:

f (z(ti )|α ,Ψ(i)) =
[Ψ(i)]αz(ti )

α−1e−Ψ(i)z(ti )

Γα
(2.6)

where α and Ψ(i) are model parameters.
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2.2.1.2. Failure Count Models

The failure count models investigate the variable which is the number of

failures detected during the testing intervals. We consider in this models the

time intervals to be �xed and the failures or faults between the intervals as

random variable which are independent and have Poisson distribution.

The Goel/Okumoto Nonhomogenous Poisson Process (NHPP) Model [46]

is one of the earliest and simplest Poisson model. The model assumes that

software is subject to failures at random times caused by faults present in

the system. Let N (t) be the number of failures monitored at any given time

t . This model describes N (t) as a nonhomogeneous Poisson process with a

failure rate that depends on time:

P(N (t) = y) =
(m(t))y

y!

e−m(t ),y = 0, 1, 2, ... (2.7)

where m(t) is the mean value function and gives the expected number of

failures monitored by time t as:

m(t) = a(1 − e−bt ) (2.8)

The following mathematical equation describes the failure rate:

z(t) ≡m′(t) = abe−bt (2.9)

where a describes the number of failures that can be observed and b the

occurrence rate of an individual fault.

This model is identical to the JM model. It assume a direct proportionality

between the failure rates and the number of remaining fault. However the

di�erence lies in the modeling process which is continuously and not dis-

crete. The model permits imperfect debugging in which the new faults are

introduced during the debugging process.

The experiments shows that the failure rate �rst increase and then decreases.

To describe this behavior, Goel [44] proposed a generalization of Goel/Oku-

moto Nonhomogeneous Poisson Process Model. The model uses the mean

value function form:

m(t) = a(1 − e−bt ) (2.10)
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where a is the same parameter as in the Goel/Okumoto Nonhomogeneous

Model and b, c are constants that describe the quality of testing. In this case

the failure rate function z(t) is described as follows:

z(t) ≡m′(t) = abce−bt tc−t (2.11)

According to the equation, a delay exists between the fault detection and the

fault removal. So the testing consist of two phases. The �rst phase is fault

detection and the second phase is fault removal. S-shaped NHPP model is

supposed to re�ect this proposal([71], [47]). The mean value functionm(t) is

described through the following relationship

m(t) = a(1 − (1 + bt)e−bt ) (2.12)

a, b are the same parameter from the NHHP model. The failure rate is

represented through the following equation:

z(t) ≡m′(t) = b2te−bt (2.13)

2.2.1.3. Limitations and Advantages of So�ware Reliability Growth Models

The advantage in such a software is modeling any kind of behavior during the

test phase by choosing the right an appropriate model. Thus, they are easy to

implement, applied and automated on all kinds of software from the simple

ones to the most complex modules such as a �ight control system. However,

the growth models also have some limitations. First, the assumption that all

the faults resulting in a software crash are probably equal. This assumption is

however unrealistic because the probability that the faults appear may vary

signi�cantly. Another problem is that the capacity of the model depends on

an operational pro�le which is considered to be available and thus all the

testings runs on it. However, the pro�le may have big errors and changes

in the operational pro�le which will may not produce good results. Many

research has been done to analyze the sensitivity of the model predictions

to error ([25], [18]). Also the predictions of the growth models are not very

accurate.

We can summarize that expanded models treat the software as a black box

and it doesn’t take the architecture of the target software into consideration.

We have also seen that there are many kinds of expanded models which have
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di�erent assumption methods are used to catch the di�erent target system

architecture and their testing processes. Though some experiments have

shown that such methods are not reliable and trustworthy enough to be

used.

2.2.2. Fault Seeding Models

The base knowledge in this class is to implement known faults in a program

that contains already a various amounts of unknown native faults. After

seeding the faults in the program, the system will be tested and after that the

implemented and native faults are recorded. According to the recorded data

a prediction is made to estimate the software reliability.

Some models in this class include the Lipow Model and the Basin Model are

economical and easy to implement. However, they are build upon an assump-

tion that the implemented and seeded faults don’t depend on each other and

both have the same probability to be detected. Another disadvantage of such

a model is the unreliability to �nd and calculate the failure rate function.

Thus this limits the usage of such a model.

2.2.3. Sampling Models

The stack of all relevant inputs of a program is known as an input domain.

The input domain itself exists through several input sub domain and it is

uniform only if all its member causes together the system to fail or succeed.

So this means in other words that every member is equally important and

represent the whole sub domain. The path describes the path in a program

through its sub domain.

The idea behind this model is to indicate speci�c amount of test cases from

the input domain which represent the operation of the program. Thus the

program reliability can be predicted from monitoring the failures during

the execution of the test cases. The input distribution is often impossible to

achieve, to simplify this complexity we split the input domain into sub domain

and run the test in those layers upon a uniform distribution. be An estimate

of the program reliability is obtained from the failures observed during the

execution of the test cases. Since the input distribution is very di�cult to
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obtain, the input domain is often divided into sub domains and test cases are

generated randomly in each sub domain based upon a uniform distribution.

There are two kinds of testing: random testing and sub domain/partition

testing.

2.2.3.1. Random Testing

This random testing method select multiple test cases from the whole input

domain. The oldest model that describes the Random Testing is the Nelson

Model. A program P can be de�ned through the input domain D and it

is size is given as d (> 0). We describe m (0 6 m 6 d) as the number of

failure-causing inputs that produce incorrect output in D. In this way the

failure rate of the program, θ , can be described as follows:

θ =
m

d
(2.14)

The total number of inputs selected for testing is de�ned as n which is the

number of failure monitored during the execution process on the inputs. θ is

estimated through the following mathematical relationship:

ˆθ =
ne
n

(2.15)

We assume that the program is being tested for along time using certain input

distribution, this will increase the failure rate of a program to the probability

that it will fail to execute upon the chosen input distribution. Therefore an

equitable estimation of the software reliability per execution R̂is described as

follows:

R̂ = 1 − ˆθ = 1 −
ne
n

(2.16)

To evaluate the strength of the random testing principal in comparison to

other testing methods, we de�ne Pr as the probability of �nding at least one

error in n tests.

Pr = 1 − (1 − θ )n (2.17)
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2.2.3.2. Subdomain/Partition Testing

Both testing classes (sub domain testing and partition testing) splits the input

domain into sub domains. So that di�erent test cases can be selected from

each sub domain to test the program. We use the description sub domain

testing when the sub domains may or may not be separated. However in

comparison the term partition testing is used if all sub domains are disjoint

([20]).

The partition testing method is used to separate the input domain and select

at least one test case from each sub domain. Let us partition the domain D in

k sub domains and are described by Di „ where i = 1, 2, ..k . Each sub domain

Di is characterized by di and the failure inputs m, (0 6 mi 6 di ). Now we

can describe the failure rate as follows:

θi =
mi

di
(2.18)

By describing pi as a probability in which the random selected input comes

from the sub domain Di , the failure rate of the whole program can be inter-

rupted through the following equation:

θ =
k∑
i=1

piθi (2.19)

ni (> 1) denote the number of test cases and nei denote the number of test

cases selected from the subdomain Di which result in program failures. All

the random selections are also assumed to be independent, with replacement,

and based upon a uniform distribution. This means that when a test case is

selected from Di , the probability will be exactly θi . Using equation (2.15) we

can obtain an estimate of the overall failure rate of the program. Another

estimate of θ is given as follow:

ˆθ2 =
∑
i=1

pi ˆθi =
k∑
i=1

pi (
nei
ni
) (2.20)

To estimate software reliability the equation equation (2.16) can be used.
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The probability of �nding at least one error in n tests is Pp :

Pp = 1 −

k∏
i=1

(1 − θi )
ni

(2.21)

2.2.3.3. Discussion

Input domain sampling models unlike reliability growth models do not depend

upon unrealistic assumptions such as the assumption that all the failures have

the same contribution to the unreliability of the software. Sampling models

implicitly weigh the contribution of each failure rate of each sub-domain to

the unreliability based on the probabilities pi of the sub-domains.

2.2.4. Palladio Component Model for Reliability Assessment

The reliability of a full PCM instance is be predicted in terms of the prob-

ability of successful execution PSE = 1 − POFOD (Probability of Failure

on Demands). The prediction part starts with a PCM instance as input and

outputs a system reliability value. The process requires in between solving

parameters dependencies. It turns all parameters in the model into their

system-usage implied probability distributions, and joins possible sources of

failure into an analytical approach which quantify system-level reliability

[13].

A system failure may occur if an unavailable hardware is accessed during its

unavailability state. In PCM, system deployers annotate hardware resources

with Mean Time To Failure (MTTF ) and Mean Time To Repair (MTTR) val-

ues.

2.2.4.1. Solving Parameter Dependencies

We reuse the existing PCM Dependency Solver to solve all the parameter de-

pendencies across a PCM instance. The behavior of each software component

in PCM is abstractly modeled by so-called SEFFs (Service E�ect Speci�ca-

tion). SEFFs may contain parameter dependencies that re�ect the in�uence
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of input parameter values on the control and data �ow. The Dependency

Solver traverses recursively the speci�ed SEFFs and resolves all parameter

dependencies in its way. The dependency solver is only able to solve linear

parameter dependencies. For the case of non-linear parameter dependen-

cies, we use Monte-Carlo Integration to approximate such dependencies by

simulation.

2.2.4.2. Determining Probabilities of Physical System State

The next step after solving the parameters dependencies is determining every

possible physical system states and their probability of occurrence. The

physical system state is built through all individual states of the system’s

hardware resources. Those are de�ned in the PCM resource environment

and allocated to resource containers.

We de�ne R = r1, r2, ..., rn the set of resources in the system. Each resource

ri is de�ned by its MTTRi and MTTFi and has two possible states OK and

NA. For the reliability prediction we are not going to use in our approach

the speci�ed MTTRi and MTTFi values directly. Therefore, we calculate the

steady-state availability Av of resource ri :

Av(ri ) = MTTFi/(MTTRi +MTTFi )

So Av(ri ) can be interpreted as a probability that the resource is available

when required through an internal action during service execution. We set t
as an arbitrary point in time and s(ri , t) the state for the resource ri at time t .
Consequently, we have:

P(s(qi , t) = OK) = Av(qi )

P(s(qi , t) = NA) = 1 −Av(qi )

This equation ignores the arbitrary point in time t and act as if the system

is in its steady-state. We will go further and de�ne S that includes a set of

possible physical system states, where each state sj ∈ S is a combination of

possible states for all n resources at time t .

sj = (sj (r1, t), sj (r2, t)..., sj (rn , t)) ∈ {OK ,NA}n
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As each resource has two states OK and NA, there are 2
n

physical system

state. Let P(sj , t) be the probability of a system that can exist in a state sj at

time t . The probability of each physical system state is the product of the

individual resource-state probabilities

∀j ∈ {1, ...,m} : P(sj , t) =
n∏
i=1

P(s(ri , t) = sj (ri , t))

2.2.4.3. Generating and Evaluating the Markov Model

In order to predict the reliably of a system in a recursive way, we have to

generate and evaluate the Discrete-Time Markov Chains. (DTMCs). DTMCs

is based on PCM dependencies parameter solver and a known physical system

state with probability of happening. The DTMCs algorithm consist of two

section. The �rst section is generation and evaluation which exist in a

physical system state. In the second section the �nal result is obtained

through gathering all the individual results. The behavioral action of the

PCM instance are continually transformed into Markov chains as shown in

�gure section 2.2.4.3.

Figure 2.1.:Markov chain generation [13]
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2.3. Statistical Inference and Sampling

Mathematical statistics is the science of dealing with uncertain phenomenon

and events. Two basic concepts of statistics are population and sample. The

de�nitions in this section are taken from [40] and [97].

De�nition 2.1. Population is the collection of all individuals or items under
consideration in a statistical study.

The features of the population under investigation can be usually summarized

by numerical parameters.

De�nition 2.2. Sample is that part of the population from which information
is collected.

De�nition 2.3. A probability space over a �nite set is a triple (Ω,F , P) con-
sisting of

1. a sample space Ω which is a non-empty �nite set,

2. the set F of all subsets of Ω,

3. a probability measure on (Ω,F), that is, a map P : F → R which is

• positive: P(A) ≥ 0 for all A ∈ F ,

• normed: P(Ω) = 1, and

• additive: if A1,A2, ...,An ∈ F are mutually disjoint, then

P(
n⋃
i=1

Ai ) =

n∑
i=1

P(Ai )

The elements of Ω are called outcomes, the elements of F are
called events.

De�nition 2.4. For any events A and B of the probability space (Ω,F , P) we
have

1. P(A) + P(Ac ) = 1.

2. P(∅) = 0.
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3. if A ⊆ B,then P(B A) = P(B) − P(A)and hence P(A) ≤ P(B) (and so P is
increasing).

4. P(A ∪ B) = P(A) + P(B) − P(A ∩ B).

Point distribution

De�nition 2.5. Let (Ω,F , P) be a probability space over a �nite set Ω. The
function

P : Ω → [0; 1]

ω 7→ P(ω)

is the point probability function (or the probability mass function) of P . Point
probabilities are often visualized as "probability bars".

De�nition 2.6. Let (Ω,F , P) be a probability space, letA and B be events, and
suppose that P(B) > 0. The number

P(A|B) =
P(A ∩ B)

P(B)

is called the conditional probability of A given B.

De�nition 2.7. Let (Ω,F , P) be a probability space, letA and B be events, and
suppose that P(B) > 0. The function

P(.|B) : F → [0; 1]

A 7→ P(A|B)

is called the conditional distribution given B.

Bayes’ formula: shows how to calculate the posterior probabilities P(Bj |A)
from the prior probabilities P(Bj ) and the conditional probabilities P(A|Bj ).

De�nition 2.8. LetA = ∪ki=1
A∩Bi where the setsA∩Bi are disjoint, we have

P(A) =
k∑
i=1

P(A ∩ Bi ) =
k∑
i=1

P(A|Bi )P(Bi )
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and since P(Bj |A) = P(A ∩ Bj )/P(A) = P(A|Bj )P(Bj )/P(A),we obtain

P(Bj |A) =
P(A|Bj )P(Bj )∑k
i=1

P(A|Bi )P(Bi )

De�nition 2.9. The events A1,A2, ...,Ak are said to be independent, if it is
true that for any subset Ai1 ,Ai2 , ...,Aim of these events,

P(
m⋂
j=1

Ai j ) =

m∏
j=1

P(Ai j )

RandomVariable: random variables are most frequently denoted by capital

letters (such as X ,Y ,Z ).

De�nition 2.10. Let (Ω,F , P) be a probability space over a �nite set. A
random variable ((Ω,F , P) is a map X from Ω to R, the set of reals. More
general, an n-dimensional random variable on (Ω,F , P) is a map X from Ω
to R\.

Distribution Function

De�nition 2.11. The distribution function F of a random variable X is the
function

F → [0; 1]

x 7→ P(X 6 x)

A distribution function has certain properties:

De�nition 2.12. If the random variable X has distribution function F , then

P(X 6 x) = F (x)

P(X > x) = 1 − F (x)

P(a < X 6 b) = F (b) − F (a)

for any real numbers x and a < b.

33



2. Foundations and Current Practices

The distribution function is not the best way to give an informative visualisa-

tion of the distribution of a random variable. The probability function is a far

better tool. The probability function for the random variable X is considered

as a function de�ned on the range of X :

f : x 7→ P(X = x)

De�nition 2.13. The probability function of a random variable X is the func-
tion

f : x 7→ P(X = x)

De�nition 2.14. For a given distribution the distribution function F and the
probability function f are related as follows:

f (x) = F (x) − F (x−)

F (x) =
∑
z :z≤x

f (z)

Independent random variables Let X1,X2, ...,Xn be random variables on

the same �nite probability space. Their joint probability function is the

function

f (x1,x2, ...,xn) = P(X1 = x1,X2 = x2, ...,Xn = xn).

For each j the function

fj (x j ) = P(X j = x j )

is called the marginal probability function of X j . If we have a non-trivial set

of indices i1, i2, ..., ik ⊂ 1, 2, ...,n, then

fi1,i2, ...,ik (xi1 ,xi2 , ...,xik ) = P(Xi1 = xi1 ,Xi2 = xi2 , ...,Xik = xik )

is the marginal probability function of Xi1 ,Xi2 , ...,Xik . The independence of

random variables:
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De�nition 2.15. Let (Ω,F , P) be a probability space over a �nite set. Then
the random variables X1,X2, ...,Xn on (Ω,F , P) are said to be independent,
if for any choice of subsets B1,B2, ...,Bn of R, the events X1 ∈ B1, X2 ∈ B2,...,
Xn ∈ Bn are independent.

De�nition 2.16. The random variables X1,X2, ...,Xn are independent, if and
only if

P(X1 = x1,X2 = x2, ...,Xn = xn) =
n∏
i=1

P(Xi = xi )

for all n-tuples x1,x2, ...,xn of real numbers such that xi belongs to the range
of Xi , i = 1, 2, ...,n.

De�nition 2.17. The random variables X1,X2, ...,Xn are independent, if and
only if their joint probability function equals the product of the marginal prob-
ability functions:

f12...n(x1,x2, ...,xn) = f1(x1)f2(x2)... fn(xn).

Expectation The expectation or mean value of a real-valued function is a

weighted average of the values that the function takes.

De�nition 2.18. The expectation, or expected value, or mean value, of a real
random variable X on a �nite probability space (Ω,F , P) is the real number

E(x) =
∑
ω ∈Ω

X (ω)P(ω)

De�nition 2.19. If X and Y are independent random variables on the proba-
bility space (Ω,F , P), then E(XY ) = E(X )E(Y ).

De�nition 2.20. If A is an event and 1A its indicator function, then E(1A) =
P(A).

Variance and covariance

De�nition 2.21. The variance of the random variable X is the real number

Var (X ) = E
(
(X − EX )2

)
= E(X 2) − (EX )2.

The standard deviation of X is the real number
√
Var (X )
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De�nition 2.22. The covariance between two random variables X and Y on
the same probability space is the real number

Cov(X ,Y ) = E ((X − EX )(Y − EY )) .

The following rules are easily shown:

De�nition 2.23. For any random variables X , Y ,U , V and any real numbers
a, b, c , d

Cov(X ,X ) = Var (X )

Cov(X ,Y ) = Cov(Y ,X )

Cov(X ,a) = 0

Cov(aX + bY , cU + dV ) = ac ·Cov(X ,U ) + ad ·Cov(X ,V )

+ bc ·Cov(Y ,U ) + bd ·Cov(Y ,V )

If X and Y are independent random variables, then Cov(X ,Y ) = 0.

2.4. Useful Probability Distributions

The de�nitions in this section are taken from [40] and [97].

2.4.1. Gamma Distribution

The gamma distribution has special importance in probability and statistics.

De�nition 2.24. The gamma function is de�ned as follow

Γ(k) =

∫ ∞

0

xk−1e−xdx ,k ∈ (0,∞)

The function is well de�ned, that is, the integral converges for any k > 0. On
the other hand, the integral diverges to∞ for k 6 0. Two of its key properties
are

Γ(k) = (k − 1)Γ(k − 1)
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and

Γ(k)Γ(1 − k) =
π

sin(πk)

De�nition 2.25. A random variable X has the standard gamma distribution
with shape parameter k ∈ (0,∞) if it has the probability density function f
given by

f (x) =
1

Γ(k)
xk−1e−xdx , 0 < x < ∞

2.4.2. Beta Distribution

De�nition 2.26. The beta function B is de�ned as follows:

B(a,b) =

∫
1

0

ua−1(1 − u)b−1du,a > 0,b > 0

The beta function is well-de�ned, that is, B(a,b) < ∞ for any a > 0 and b > 0.

De�nition 2.27. The beta function can be written in terms of the gamma
function as follows:

B(a,b) =
Γ(a)Γ(b)

Γ(a + b)
;a,b ∈ (0,∞)

De�nition 2.28. The (standard) beta distribution with left parameter a ∈
(0,∞) and right parameter b ∈ (0,∞) is the continuous distribution on (0, 1)
with probability density function f given by

f (x) =
1

B(a,b)
xa−1(1 − x)b−1, 0 < x < 1

2.4.3. Normal approximation to the Beta
posterior distribution

The results for the Binomial distributions are both modeling randomness.

A Bayesian analysis gives the conveniently simple result s successes in n
random trials:

p = Beta(s + a,n − s + b)
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where a Beta(a,b) prior is assumed. The posterior density has the function:

f (θ ) ∝ θ 5(1 − θ )(n−5)

Taking logs gives:

L(θ ) = k + s loge [θ ] + (n − s)loдe [1 − θ ]

and

dL(θ )

dθ
=

s

θ
−
n − s

1 − θ

d2L(θ )

dθ 2
= −

s

θ 2
−

n − s

(1 − θ )2

The best estimate q0 of q will be �nd:

dL(θ )

dθ
|θ0
=

s

θ0

−
n − s

1 − θ0

which gives:

θ0 = s/n

The standard deviation s for the Normal approximation to this Beta distribu-

tion is:

d2L(θ )

dθ 2
|θ0
= −

s

θ 2
−

n − s

(1 − θ )2

which gives:

σ =

[
d2L(θ )

dθ 2
|θ0

]
1/2

=

[
θ0(1 − θ0)

n

]
1/2

and then the approximation is:

θ ≈ Normal

(
θ0,

[
θ0(1 − θ0)

n

]
1/2

)
= Normal

(
s

n
,

[
s(n − s)

n3

]
1/2

)
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2.5. Stratified Sampling

Strati�ed sampling is based on the idea of iterated expectations [22]. Let Y
be a discrete random variable taking values y1,y2, ...,yL with probabilities

p1,p2, ...,pL . Then,

E[X ] = E[E[X |Y ]] =
L∑
l=1

E[X |Y = yl ]pl

Suppose that the population can be divided into L > 1 groups, known as

strata. Suppose then that a stratum l contains Nl units from the population

(

∑L
l=1

NL = N ), and the value for the units in stratum l are x1l ,x2l , ...,xNl l .

LetWl =
Nl
N and µl =

1

Nl

∑Nl
i=1

xil , then it follows that the population mean

is:

µ =
1

N

L∑
l=1

Nl∑
i=1

xil =
1

N

L∑
l=1

Nl µl =
L∑
l=1

Wl µl

Then, instead of taking a simple random sample (SRS) of n units from the

total population, we can take a SRS of size nl from each stratum (

∑L
l=1

nl = n).

Here,

µl = E[X |stratum l]

Wl = P[Stratum ł]

so the overall mean satis�es the setup of an iterated expectation.

Let X1l ,X2l , ...,Xnl l be a sequence of independent and identically distributed

random variables samples from stratum l , the sample mean is de�ned as:

X̄l =
1

nl

nl∑
i=1

Xil

and the sample variance:

Sl
2 =

1

nl − 1

nl∑
i=1

(Xil − X̄l )
2
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Then, an estimate of the population mean µ is:

X̄S =

L∑
l=1

Nl

N
X̄l

=

L∑
l=1

Wl X̄l

=

L∑
l=1

Wl
1

nl

nl∑
i=1

Xil

Since, the random variables Xl are independent, then it follows:

var(X̄S ) =

L∑
l=1

Wl
2Var (X̄l )

=

L∑
l=1

Wl
2

1

nl
(1 −

nl − 1

Nl − 1

)σl
2

where σ 2

l =
1

Nl

∑Nl
i=1
(xil − µl )

2
is the variance of stratum l .

If we assume that nl � Nl for each stratum l so that the �nite population

factor FPC = 1 −
nl−1

Nl−1
≈ 1 can be ignored, then

var(X̄S ) =

L∑
l=1

Wl
2

1

nl
σl

2 =
1

N

L∑
l=1

Wl
2
σl

2

al

where al = nl/N indicates the fraction of samples drawn from the stratum

l .

This variance is controllable through the allocation ratio al . For example,

the proportional allocation, where al =Wl .N /N =Wl , yields the variance

var( ¯XSP ) =
1

N
∑L
l=1

Wlσl
2
, where X̄SP denotes the sampling mean when

proportional sampling is used.
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By Lagrange multiplier method, the optimal allocation a∗ := (a∗
1
, . . . ,a∗L) is

derived in closed form [22]:

a∗k =
Wk .σk∑L
l=1

Wl .σl
(2.22)

achieving the minimal variance var( ¯XSO) =
1

N
∑L
l=1

Wl
2 σl 2

a∗l
= 1

N (
∑L
l=1

Wlσl )
2

[22]. Here, X̄SO denotes the sampling mean when optimal sampling is used.

Moreover, due to the mutual independence of samples across the strata, the

empirical mean X̄S is asymptotically normal [22].

Before, we show which strati�ed sampling scheme (i.e., random, proportional

or optimal) works better, we recall the population variance:

var(X ) = E[var(X |Stratum)] + var[E(X |Stratum)]

=

L∑
l=1

Wlσl
2 +

L∑
l=1

Wl (µ − µl )
2

=
1

N

L∑
l=1

Nl∑
i=1

(xil − µ)
2 = σ 2

Theorem 2.1.

var(X̄SP ) ≤ var(X̄S )

That is, proportional strati�ed sampling is never worse than single simple
random sample of the same total sample size N

Proof.

var(X̄ ) − var(X̄SP ) =
1

N
(

L∑
i=1

Wlσl
2 +

L∑
i=1

Wl (µ − µl )
2) −

1

N

L∑
l=1

Wlσl
2

=
1

N

L∑
i=1

Wl (µ − µl )
2

=
1

N
var(E[X |Stratum]) ≥ 0

�
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The result of theorem 2.1 means that the more separated the strata means

the better is proportional sampling.

Theorem 2.2.

var(X̄SO ) ≤ var(X̄SP )

That is, optimal strati�ed sampling is never worse than proportional strati�ed
sample of the same total sample size N

Proof.

var(X̄SP ) − var(X̄SO ) =
1

N

L∑
i=1

Wlσl
2 −

1

N
(

L∑
l=1

Wlσl )
2

=
1

N

L∑
i=1

Wl (σl − σ̄ )
2

=
1

N
var(SD[X |Stratum]) ≥ 0

where SD denotes the standard deviation. �

2.6. Active Learning and Uncertainty Sampling

Supervised Learning is an important Machine Learning technique. A Learner

learns a predictor or a model by observing value for samples. These samples

are provided by the Environment. The input samples and their corresponding

values represents the training data.

The choice of a sample is not in�uenced by the previously observed samples.

Learning a predictor is to request the value for a sample drawn at random

from a pre-determined distribution.

Furthermore in Active Learning the learner utilizes the information gained

from previous observation. Then the learner choose which sample to observe

next. The Learner has the �exibility to sample any point form the input

domain.
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The goal of the Learner is to minimize the number of observed samples

required to achieve a certain level of accuracy. Based on the values for

samples, the learner decide which samples it should request a value for. Then

the learner decide from the environment which samples it should request a

value for.

2.7. Bayesian Statistics

Bayesian statistics is a system for describing uncertainty using the mathe-

matical language of probability.

2.7.1. Probability as a Measure of Conditional Uncertainty

The probability P(E |C) is a measure of belief in the occurrence of the event

E under conditions C . E is the event whose uncertainty is being measured,

andC the conditions under which the measurement takes place. P(E |D,A,K)
is to be interpreted as a measure of belief in the occurrence of the event E,

given data D, assumptions A and any other available knowledge K .

A survey is conducted to estimate the proportion θ of individuals in a popu-

lation. Interesting is to use the results from the sample to establish regions of

[0, 1] where the unknown value of θ may plausibly be expected to lie. This

information is provided by probabilities of the form

P(a < θ < b |r ,n,A,K)

An experiment is made to count the number r of times that an event E takes

place in each of n replications of a well de�ned situation. E take place ri
times in replication i , and it is desired to forecast the number of times r and

E will take place in a future. This is a prediction problem on the value of

an observable (discrete) quantity r , given the information provided by data

D. Hence, simply the computation of the probabilities P(r |r1, ..., rn ,A,K), for

r = 0, 1, ..., is required.
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2.7.2. Statistical Inference and Decision Theory

Let A be the class of possible actions. Moreover, for each a ∈ A, let Θa be

the set of relevant events which may a�ect the result of choosing a, and let

c(a,θ ) ∈ Ca , θ ∈ Θa , be the consequence of having chosen action a when

event θ takes place. (Θa ,Ca),a ∈ A describes the structure of the decision

problem.

Di�erent options for the set of acceptable principles:

1. a real-valued bounded utility function u(c) = u(a,θ ) measures the

preferences

2. a set of probability distributions (p(θ |C,a),θ ∈ Θa),a ∈ A measures

the uncertainty of relevant events.

3. the expected utility of the available actions measures the desirability

u(a |C) =

∫
Θa

u(a,θ )p(θ |C,a)dθ ,a ∈ A

It is often convenient to work in terms of the non-negative loss function

de�ned by

l(a,θ ) = sup

a∈A
u(a,θ ) − u(a,θ ),

which directly measures, as a function of θ . The relative undesirability of

available actions a ∈ A is then measured by their expected loss

l(a |C) =

∫
Θa

l(a,θ )p(θ |C,a)dθ ,a ∈ A

2.8. Symbolic Execution

The white-box reliability assessment approach we present in this thesis bases

mainly on the ability to symbolically execute the code under consideration.

Algorithm 1 shows an abstract procedure of our symbolic execution. For a

given program starting with statement s and an initial update U0, the call of

symExe(U0, s, true, ∅) will return the path conditions of all feasible paths of
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the program. Until a branching condition is found the procedure accumulates

the state changes in form of update expressions (lines 5-7). In the case of a

branching statement a new path condition is constructed for each branch

outcome based of the current path condition Φ and the branch conditions

(cond(s) and ¬cond(s)). Only if a constructed path condition is satis�able, the

corresponding branch code is further proceeded (lines 8-11).

Here, we give an abstract formalism for what is meant with symbolic exe-

cution. For simplicity, we abstract from real programming languages and

categorize program statements s to branching statements, if branch(s) = true
and non branching statements, otherwise. The next scheduled statement after

a statement s is denoted by next(s) and is possibly empty. For a branching

statement s we further de�ne its branching condition as cond(s) and the �rst

statement of its body as �rst(s). The state updates cause during the symbolic

execution are captured using update expressions U . The state update causes

by a single statement s is denoted by update(s). Updates concatenations are

denoted by “◦”. The evaluation of a formulaΦ with respect to an update U is

denoted by {U }Φ.

Algorithm 1: An abstract symbolic execution procedure – symExe

Data: U : Update, s : Statement, Φ : Formula, PCs : Set<Formula>
Result: PCs : Set<Formula>

1 begin
2 if s = ∅ then
3 PCs← PCs ∪Φ
4 else
5 while ¬branch(s) do
6 U ← U ◦ update(s)
7 s ← next(s)

8 if SAT (Φ ∧ {U }cond(s)) then
9 symExe(U ,�rst(s),Φ ∧ {U }cond(s), PCs)

10 if SAT (Φ ∧ {U }¬cond(s)) then
11 symExe(U , next(s),Φ ∧ {U }¬cond(s), PCs)
12 return PCs
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For example, the constraint solver can decide that the following constraint is

satis�able: (x ≥ 10) ∧ ((x < 5) ∨ (x > 90)). The constraint solver can found

a solution, e.g., x = 95. The found solution can serve as an input value in a

test case. When the program path is executable, i.e., the corresponding path

condition is satis�able, one can ask how many possible input values satisfy

the path condition. Generally, the more inputs satisfy the path condition, the

more probable the path can be executed. We discuss this intuition in the next

section. Note that the symbolic execution description in Algo. 1, does not

address performance issues. Especially the incremental call of the solver on

incrementally extended conjunctions (lines 8 and 10) can make use of the

incremental solving ability supported by most solvers, e.g., Z3 [31].

2.9. KeY Verification Approach

KeY [7] is an interactive software veri�cation system which can verify se-

quential Java programs speci�ed with the Java Modeling Language. It uses a

sequent calculus for JavaDL [7], a dynamic logic for Java. JavaDL extends

�rst-order logic with modal operators such as 〈p〉 for every program p. The

formula 〈p〉φ means that the formula φ is true in the state after executing

p, hence φ is the postcondition of p. During the veri�cation process, KeY

creates a proof tree, with sequents as nodes. A sequent typical has the form

Γ ⇒ 〈p〉φ, where Γ is a comma-separated conjunction of conditions which

constitute a path condition. As part of the veri�cation process, KeY symbol-

ically executes the program, thus taking all possible execution paths into

consideration. Besides formal veri�cation, KeY also provides a basis for com-

plementary approaches like testing, and can generate test cases with high

coverage from a proof.
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In this chapter we consider the case where the only information we have

about the software under study is the operational pro�le OP = {(Di ,pi )|i =
{1, 2, . . . ,L},

∑L
i=1

pi = 1}. In this case, we treat the software as a black-

box. Our goal in this chapter is to create a test selection approach which

should outperform existing current practices in the sense that it reduces

the number of required test cases to be executed in order to reach a target

statistical con�dence on the reliability estimate. The approach we present

here makes use of novel mathematical sampling models and information

theoretic principles to e�ciently select the test cases to be executed while

the only information provided to the approach is the operational pro�le of

the software under study.

Before we discuss our approach, it is necessary to introduce some related

terms. The input domain of a software represents all relevant inputs to the

execution of the software. The operational pro�le sub-domains represents

subsets of the input domain. A sub-domain is homogeneous if either all of its

elements cause the software to succeed or all cause it to fail. Consequently,

any input from a homogeneous sub-domain is a good representation of the

entire sub-domain. A sub-domain is heterogeneous if some (but not all) of its

elements cause the software to fail.

3.1. Problem Definition

Statistical testing based on sampling models is theoretical sound but requires

a huge number of test cases to reach a target statistical con�dence on the

unknown reliability estimate, if testing reveals failures. Existing approaches
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for sampling based statistical testing are formulating testing as proportional

strati�ed sampling process (see Section 2.1.3), and are not making use of the

information provided by previous testing e�ort.

The main idea behind standard statistical testing approaches is to ensure that

when the testing process is terminated because of (for example) imperative

software project constraints, then the most used operations will have received

the most testing e�ort. Musa also claims that "the reliability level will be the

maximum that is practically achievable for the given test time" [69]. However,

the reliability estimate of such approaches may be inaccurate, when testing

reveals failures. Indeed, the reliability estimate across the operational pro�le

sub-domains may have di�erent statistical properties (i.e., mean and variance).

This means that the operational pro�le sub-domains may be heterogeneous in

regard to the failure rate. Using conventional proportional random sampling

to select test cases from heterogeneous sub-domains does not guarantee that

a statistically su�cient number of test cases will be selected from every sub-

domain (see theorem 2.2). Hence, the statistical quality of the samples may be

compromised for some sub-domains. This may lead to inaccurate statistical

estimate. The accuracy of the reliability estimate, since it is a random variable,

is measured by its variance. In order to increase the accuracy of the reliability

estimate, further test cases are needed to be executed to reduce the variance.

It would be ideal if we could separate successful program execution from the

failing ones. However, this is not likely, because failures are often caused

by faults in a large program. A software fault is a hidden programming

error in one or more program statements. A program consists of a set of

statements. A program execution is a program path executed with an input

value from the program’s input domain. A program path is a sequence

of statements. Each program path has an input and an executed output

which usually depends on the input. Consequently, a program execution is

considered as a failure if the corresponding executed program path deviates

from the expected output. Two similar software executions may di�er only

whether a fault is reached or not. Two program execution are similar if

they execute the same program path with di�erent input value, if the same

input value is used then the two executions are equal. Two similar program

executions may di�er only in regard to executing a particular fault, with

the result that one execution fails while the other does not. Conversely,

two dissimilar program execution may both fail because they execute the

same faulty program statement. Consequently. we may not group if the
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failing program executions together even if they have the same causing fault.

Hence, it is realistic to assume that the reliability estimate across the test

sub-domains have di�erent statistical properties (i.e., mean and variance).

For a given test budget, optimal strati�ed sampling as shown in theorem 2.2,

can estimate the reliability with less variance than proportional strati�ed

sampling, especially when the variability between the sub-domains is high. In

this chapter, we formulate statistical testing as an optimal strati�ed sampling

process. In order, to learn from previous testing e�ort, we formulate testing

as an active learning problem.

3.2. Idea of the Approach

Software reliability assessment based on testing formulates software testing

as a statistical inference task as explained in Section 2.1.3. The goal of the

inference task is to estimate the reliability of the software by using a statistical

estimator speci�c to the inference task. Main focus when doing statistical

inference is to reduce the variance of the estimate as possible.

The variance of an estimator describes the closeness of the future estimate to

the previous estimate when rerunning the estimation with the same setting.

An estimator with low variance increases the con�dence on the predicted

estimate. In fact, a low variance usually implies tighter con�dence interval

for the estimate. Consequently, we can improve the accuracy of the reliability

estimation by minimizing the variance of the estimator.

The result of an estimation is a sum of the true value to be estimated and a

random error. The lower the variance is, the more likely the error will be

close to zero. Therefore, the variance of the estimator should be lowered as

possible to restrict the error to an enough tight interval in order to provide an

accurate enough estimate. It is also important to note that the more tests are

executed the more will the variance of the estimator decrease. Consequently,

an estimator with low variance can �nd an accurate estimation with fewer

test cases.

Strati�ed sampling is a statistical technique to reduce the variance of an

estimator. Optimal strati�ed sampling is shown to reduce the variance of
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the estimator more than proportional sampling, especially when the vari-

ability between the strata (sub-domains in our case) is high. Consequently,

by choosing the proportional strati�ed sampling to sample the operational

pro�le, we may sacri�ce a possible e�ciency we could obtain when using

optimal strati�ed sampling.

We developed a test selection approach which is based on active learning

toward optimal strati�ed sampling. For a required statistical con�dence on

the reliability estimate, our approach computes the number of test cases to

execute from each sub-domain. If the selected test cases revealed failures,

the responsible faults are repaired, and the approach recomputes the number

of test cases to execute. The number of test cases to execute from each

sub-domain of the operational pro�le is computed based on the uncertainty

reduction principle of active learning.

We proved in theorem 3.2, that our approach asymptotically converges to

optimal sampling. Consequently, for a given test time, our approach deliv-

ers a reliability estimate with lower variance than state-of-the-art existing

approaches, which are based on proportional sampling. This also means,

for a required statistical con�dence on the reliability estimate, our approach

can estimate the true unknown reliability with less test cases than standard

approaches.

3.3. Research Goals and Challenges

Software reliability testing is a continuous process: the software is frozen and

tested based on the given operational pro�le to estimate its current reliability.

Usually, the reliability tester wants to estimate the reliability of the software

with a required con�dence and up to a maximal allowed margin of estimation

error. The number of required test cases to reach the target con�dence and

margin of error are not known in advance. Statistical hypothesis testing can

be used to estimate the number of test cases that should be executed failure-

free to reach the target reliability with the required con�dence. However,

when testing revealed failures, than the responsible faults should be repaired

and testing should be re-executed with same number of test cases initially

computed using hypothesis testing. This process should be iterated until the

required con�dence on the estimated reliability is reached.
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The continuous nature of testing possibly heterogeneous software executions

for reliability estimation introduces the following additional challenges. First,

the number of of required test cases executions from each sub-domain as well

as the statistical properties (i.e., mean and variance of the failure rate) of the

software when executed with inputs from each sub-domain are not known

in advance. Consequently, it is not possible to optimally allocate a strati�ed

sample of test cases to the operational pro�le sub-domains prior sampling.

Second, the statistical properties of the sub-domains may change over testing

time. Hence, the allocation should be able to adapt to such changes.

The approach we present here addresses the problem of allocating a strati�ed

sample of test cases over heterogeneous operational pro�le sub-domains

to deliver an unbiased low variance reliability estimator. There are four

challenges in this problem. The �rst challenge is to allocate the test cases

optimally among the sub-domains while not knowing the total number of

test cases in advance. The optimality criteria is the estimator quality (i.e.,

mean and variance). We solve this issue by adopting the Neyman method [97]

for optimal allocation in strati�ed sampling. This method method assumes,

however, that the sample size is �x. We present an adaptive version of

this method to account for the unknown sample size. The second issue

is to account for the probability of occurrence of each sub-domain while

allocating the test cases optimally over the sub-domains. The intuition behind

software statistical testing is that the higher the probability of occurrence

of a sub-domain, the larger the number of test cases will be executed from

that sub-domain. We solve this issue by constraining the adaptive optimal

allocation with a utility cost function. The cost for selecting a test case

from a sub-domain is de�ned as the inverse probability of the probability of

occurrence of the sub-domain. The third issue is to quantify the similarity

of the selected test cases over the sub-domains to the operational pro�le.

Test cases executions simulate the expected software behavior according

to the operational pro�le. We de�ne a similarity con�dence metric and we

provide an approach to adjust the test cases allocation toward 100% similarity

con�dence. The fourth issue is to determine when to stop testing. We present

a test stopping criteria based on the software tester required (i) con�dence

on the reliability estimate, and (ii) the maximal margin of estimation error.

We call the algorithm solving this issues adaptive constrained statistical

testing.

We have published part of the following results in [72].
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3.4. Assumptions

In order to formulate the concerned research goal, some assumptions on the

software are presented.

1. The software is frozen when estimating the reliability, since reliability

estimation aims at testing the current status of the software. The

software will not be modi�ed during the estimation process. The

software can be modi�ed after the estimation process.

2. The output of each test is independent of the testing history. In some

cases, it is possible that a test case is judged to be failure free

although it actually leads to some faults which cannot be observed

due to limited test oracles. We consider such test cases to be failure

free. However, such unobserved faulty program states can cause the

failure of some following test cases. Consequently, the latter test

cases can be mistakenly considered as faulty test cases. This leads to

an error in the reliability estimation. However, this is not a reliability

estimation approach concern rather is a test oracle problem.

3. Each test case either fails or succeeds. A test oracle is used to verify

the behavior of the software under test.

4. We assume that a proper test oracle is available, since this work

focuses on the e�ectiveness and e�ciency of reliability estimation.

5. We assume that failures are uniformly distributed over the

sub-domains. This assumption is inherited from the principle of

strati�ed sampling and random sampling as presented in Section 2.5.

6. In each operational use represented by a sub-domain Di , all possible

software operations and possible inputs are equally likely to arise.

7. We assume that an operational pro�le is provided for the tested

software.
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3.5. The Statistical Model for Reliability Estimation

The OP = {(Di ,pi )|i ∈ {1, ...,L},
∑L

i=1
pi = 1} de�nes the expected input

domain of the program’s input variables. Each partition (Dl ,pl ) is a subset

of the OP , and pl ≥ 0 is the probability that a program input belongs to

sub-domain Dl . The OP is a natural de�nition of the strata for strati�ed

random sampling. Each stratum l corresponds to the sub-domain Dl and has

a weightWl = pl .

Based on assumption 3, each test case execution is a Bernoulli trial. Let Xi,l
be the outcome of test case ti from sub-domain Dl , then:

Xi,l =

{
1, if test case ti fails

0, if test case ti not fails

.

Let µi = P(test cases from sub-domain Di fail) be the probability of failure on

demand when the software system is executed with inputs from Di , where

i = {1, 2, . . . ,L} and µi ∈ [0, 1].

Based on assumption 2, {Xi,l } are independent random variables, and since∑L
i=1

pi = 1, then it can inferred that P(Xi,l = 1) = µi (i.e., the probability that

test case i from sub-domain Dl fails). Each test case will lead the software

under test to failure or success. And in each sub-domain the probability of

failure of each test case is equal for all test cases in the sub-domain. Hence

the distribution of Xil is Binomial with µi . Thus, the number of failures

in n demands executed with inputs from sub-domain Dl , has a Binomial

distribution:

P(Xl = k) =

(
n

k

)
µkl (1 − µl )

n−k
(3.1)

and in particular

P(Xl = 0) = (1 − µl )
n

(3.2)

Consequently, the sample mean of the failure on demand when using inputs

from sub-domain Dl ,
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3. Adaptive Constrained Statistical Testing

X̄l =
1

nl

nl∑
i=1

Xil (3.3)

is an unbiased point estimator of µi . Thus, µi is Binomial distributed.

The reliability of the tested software can be de�ned as the weighted sum of the

reliability of the sampled OP sub-domains Di, {i ∈{1, ...,L }} : R =
∑L

i=1
pi (1−µi ).

An unbiased estimator of the reliability is then de�ned as:

R̂ = 1 −

L∑
i=1

piX̄i = 1 −

L∑
l=1

1

nl
.pl

nl∑
i=1

Xil (3.4)

Since the distribution of Xil is a binomial distribution with µi it follows:

E[R̂] = 1 −

L∑
i=1

pi µ̂i (3.5a)

var[R̂] =
L∑
i=1

pi
2
µ̂i .(1 − µ̂i )

ni
=

L∑
i=1

pi
2
σi

2

ni
(3.5b)

where µ̂i an estimation of the true failure rate µi and σi
2

its variance. The

goal of the next sections is to show how µ̂i and σi
2

are iteratively computed

to actively compute the required number of test cases to select from each

sub-domain Di at each iteration.

3.6. Optimal Test Cases Selection

The Problem of selecting the test cases optimally from the OP sub-domains

is an adaptive optimization problem formulated as follows. Given the OP, we

want to select a total number n of test cases, where (i) ni test cases are selected

from each sub-domains Di i ∈{1, ...,L } and (ii)

∑L
i=1

ni = n, with the goal to

minimize var[R̂]. For mathematical tractability, we assume in this section that

the total number of required test case n as well as the sub-domains failure

rates σi and consequently their variances are known. In the next sections,
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3.7. Constrained Optimal Selection

we will show how n and σi are computed actively in an adaptive manner.

According to Section 2.5:

ni = n
piσi∑L

k=1
pkσk

(3.6)

Note that the larger the variance σi
2

of the failure rate of the software when

executed with inputs from the sub-domain Di , the more test cases should

be selected from that sub-domain. This makes sense, since the sub-domain

with higher estimated/observed failure rate variability should require more

testing to attain the same degree of precision as those with lower variability.

If the variances of all sub-domains are all equal, the optimal allocation is

proportional allocation.

Consequently, by sampling the OP proportionally to their probabilities of

occurrence, we assume implicitly that the failure rate (i.e, their variances)

are all equal. This a hart-to-justify assumption, since we do not know the

failure rates of the software in advance, neither can we realistically �nd a

partition of the software input domain that guarantees equal or quasi-equal

failure rate across the partitions. In contrary, we may know from previous

software testing experience that some operations in the software are expected

to have a bigger failure rate than other operations. In addition, when using

Commercial O�-the-Shelf (COTS) software for example, we usually do not

know the level of quality of the integrated COTS software and consequently

we usually assume that the operations implementing the integration logic

with the COTS software are likely to have a big failure rate. Intuitively, a

software tester would focus his test cases on the parts of the software where

the most failures are observed. This intuition is incarnated in the principle

of optimal strati�ed sampling.

3.7. Constrained Optimal Selection

The intuition behind statistical testing is that the highest the probability of

occurrence of a sub-domain, the larger the number of test cases executed

from that sub-domain.
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3. Adaptive Constrained Statistical Testing

To account for this, the optimal allocation introduced in the previous section

is formulated as a constrained optimization to a utility cost function c∗ de�ned

as follows. Let ci = 1 − pi the cost of selecting a test case from a sub-domain

Di that has a probability of occurrence pi , and the overall cost of testing

de�ned as:

c∗ =
L∑
i=1

cini (3.7)

The goal is to minimize the variance of the reliability estimate de�ned in

equation (3.5b) as:

var[R̂] =
L∑
i=1

pi
2
µi .(1 − µi )

ni
=

L∑
i=1

pi
2
σi

2

ni
(3.8)

by selecting appropriate number of test cases ni with respect to the cost

function de�ned in equation (3.7).

We derive the appropriate number of test cases ni using a Lagrange multiplier

technique.

Based on equations (3.5b, 3.7) we form the following Lagrangian:

L =
L∑
i=1

pi
2
σi

2

ni
− λ(

L∑
i=1

cini − c
∗) (3.9)

By taking the �rst derivate to ni and λ and setting them to 0 we obtain:

−pi
2σi

2

ni 2
+ λci = 0, i = 1 . . . ,L (3.10a)

c∗ =
L∑
i=1

cini (3.10b)
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3.8. Similarity Con�dence

ni =
1

√
λ

piσi
√
ci

i = 1 . . . ,L (3.11)

Now we use the cost function in equation (3.7) to solve for
1√
λ

:

c∗ =
L∑
i=1

cini =
1

√
λ

L∑
i=1

ci
piσi
√
ci

(3.12a)

=
1

√
λ

L∑
i=1

√
cipiσi (3.12b)

Consequently, it follows:

1

√
λ
=

c∗∑L
i=1

√
cipiσi

(3.13)

Substituting equation (3.13) in equation (3.11) leads to:

ni = c
∗.

piσi/
√
ci∑L

k=1
pkσk/

√
ck

(3.14)

Note, that the higher the cost ci of selecting a test case from sub-domain Di ,

the smaller the sub-domain sample size ni .

Since the cost function ci is de�ned as ci = 1 − pi then equation 3.14 means:

the smaller the probability of occurrence of a sub-domain Di , the less test

cases ni will be selected from Di .

3.8. Similarity Confidence

When testing a software according to an operational pro�le, the goal is to

simulate the expected software execution as described by the operational

pro�le. Consequently, it is interesting to quantify the similarity of the total set

of selected test cases to the expected operational pro�le. It is also interesting
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3. Adaptive Constrained Statistical Testing

to control the testing process toward a 100% similarity to the operational

pro�le.

Let TDi be the set of test cases selected from the sub-domain Di {i ∈1, ...,L } .

Let |TDi | = ni , i.e., the set TDi contains ni di�erent test cases selected

from the sub-domain Di {i ∈1, ...,L } . Let TOP = {T(Di ,pi ) |(Di ,pi ) ∈ OP =

{(Di ,pi )|i ∈ {1, ...,L},
∑L

i=1
pi = 1}} the set of selected test cases from the

operational pro�le. The similarity of T(Di ,pi ) to the OP when a total number

n = |
⋃

Di ∈OP TDi | = |TOP | of test cases is selected from the operational

pro�le sub-domains, is de�ned as follows:

SC(TDi ) =

{
ni
dpi .n e

, if ni ≤ dpi .ne

−
ni
dpi .n e

, if ni > dpi .ne
(3.15)

The similarity con�dence of the total selected test cases is consequently

de�ned as follows:

SC(
⋃

Di ∈OP

TDi ) =

∑L
i=1

SC(TDi )

L
(3.16)

Let SCmin = min{SC(TDi )|i ∈ {1, ...,L}} = SC(TDk )k ∈{1, ...,L } , the mini-

mum computed similarity to the operational pro�le.

Algorithm 2: Adjust to Proportional Sampling

if SC(TOP ) , 1 ∧ SCmin = SC(T(Dk ,pk )) < 0 then
n = dnkpk e T(Dk ,pk ) is over-proportional sampled

for T(Di ,pi ) ∈ T ∧ T(Di ,pi ) , T(Dk ,pk ) do
ni = dn.pi e
//select extra (dn.pi e − ni ) test cases

5: end for
else
for T(Di ,pi ) ∈ T do
ni = dn.pi e

end for
10: end if
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3.9. Bayesian Inference and Stopping Criteria

Algorithm 2, adjusts the allocation of the test cases from each sub-domain

Di {i ∈1, ...,L } to reach a similarity con�dence of 100%. The steps of the algo-

rithm are as follows. If the selected tested cases TOP is not similar to the OP

and if SCmin = SC(Dk ) is negative (line 1), then it means that the sub-domain

Dk is over proportionally sampled. In this case, the total number of test case

n is updated proportionally to nk (line 3), and for each sub-domain except

the sub-domain Dk , extra (dn.pi e − ni ) test case are selected (lines 4-6).

Otherwise, the sub-domains are under proportionally sampled, and for each

sub-domain Di , extra (dn.pi e − ni ) test case are selected (lines 8-9).

3.9. Bayesian Inference and Stopping Criteria

We de�ne a test stopping criteria based on the tester required (i) maximal

error of the reliability estimate d , and (ii) con�dence level (1 − α). The goal

of reliability testing is then to estimate the reliability R̂ to within d with

100(1 − α)% con�dence.

For any test case ti selected from sub-domain Dl , we can according to as-

sumption 3, deterministically decide its outcome Xil (i.e., whether ti fails

or not). Let ul = P(test cases from Dl fail), be the probability of failure on

demand as introduced in Section 3.5. The outcome Xil is a Bernoulli random

variable according to assumption 2. Thus, the conditional probability density

function associated with Xil is:

f (Xil |µl ) = µ
Xil
l (1 − µl )

1−Xil
(3.17)

Within the Bayesian framework, we assume that µl is given by a random

variable Ml over (0, 1), whose density f (.) is called the prior density. The

prior is a representation of a knowledge based on previous experiences or

beliefs about the parameter of interest, here µl .

Based on equation 3.3, µl is Binomial distributed. The conjugate prior to

the Binomial distribution is the Beta distribution. Consequently, we use

the Beta distribution for the prior density of µl . The advantage in using a

prior distribution from the conjugate family is that both prior and posterior

distributions are members of the same parametric distribution family. This
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3. Adaptive Constrained Statistical Testing

allows us to have a kind of homogeneity in the way the belief about µl
changes as extra information are received. Thus, the conjugate distribution

is the Beta(β1, β2) distribution:

µl ∼ Beta(β1, β2) (3.18a)

f (µl ) =
µ
β1−1

l (1 − µl )
β2−1

B(β1, β2)
(3.18b)

∝ µ
β1−1

l (1 − µl )
β2−1

(3.18c)

where the approximation in equation (3.18c) is the result of ignoring the

constant of proportionality represented by the Beta function B(β1, β2). The

beta function is parameterized with the two parameters β1 > 0, β2 > 0

representing the belief about µl prior seeing any test results:

B(β1, β2) =

∫
1

0

uβ1−1(1 − u)β2−1du (3.19)

By exploiting the relationship between the beta function and the gamma

function (see Section 2.4.2), namely that:

B(β1, β2) =
Γ(β1)Γ(β2)

Γ(β1 + β2)
(3.20)

it follows:

f (µl ) =
Γ(β1 + β2)

Γ(β1)Γ(β2)
µ
β1−1

l (1 − µl )
β2−1

(3.21)

The prior distribution summarizes all the information —including its lack—

gathered through testing about the failure probability µl . The prior is param-

eterized based on previous experience and information about the software

systems and its development process. One way to encode such knowledge is

to parameterize β1 and β2 as follows:

β1 = µ̂lT (3.22a)

β2 = (1 − µ̂l )T (3.22b)
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3.9. Bayesian Inference and Stopping Criteria

where µ̂l is an initial knowledge-based or experience-based estimate of the

true and unknown failure probability µl , and T ≥ 1 represents a trust factor.

The trust factor is speci�ed based on knowledge and previous observations

about the software system. We propose as in [40], to set the trust factor T to

the number of test cases executed to get the initial estimate of µ̂l .

In some cases, however, such information may not be available. In such a

case, the non-informative or ignorance uniform prior with β1 = β2 = 1 can be

used.

Suppose now that n test cases ti , . . . , tn from sub-domain Dl are executed.

The test cases has the outcome X1,l , . . . ,Xn,l . Suppose that k failures are

observed, meaning

∑n
i=1

Xi,l = k . The posterior distribution over µl is then

given by:

f (µl |
n∑
i=1

Xi,l = k, β1, β2) =
f (

∑n
i=1

Xi,l = k |µl )f (µl )∫
1

0
f (

∑n
i=1

Xi,l = k |ω)f (ω)dω
(3.23a)

∝ f (
n∑
i=1

Xi,l = k |µl )f (µl ) (3.23b)

=

(
n

k

)
µkl (1 − µl )

n−k
(3.23c)

×
Γ(β1 + β2)

Γ(β1)Γ(β2)
µ
β1−1

l (1 − µl )
β2−1

(3.23d)

∝ µkl (1 − µl )
n−k × µ

β1−1

l (1 − µl )
β2−1

(3.23e)

= µ
k+β1−1

l (1 − µl )
n−k+β2−1

(3.23f)

Note that the approximations in equation (3.23b) and equation (3.23e) are the

result when ignoring the constants of proportionality.

Recall equation (3.18c), it follows from equation (3.23) then:

µl |
n∑
i=1

Xi,l = k ∼ Beta(β1 + k, β2 + n − k) (3.24)

Equation (3.24) describes the conjugacy property. The conjugacy property

together with the Bayes theorem are used to update the prior information
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3. Adaptive Constrained Statistical Testing

on the probability µl after each iteration of our approach. This leads to

the construction of the posterior distribution of µl which will be used for

statistical estimation of the reliability R̂ as explained below.

Recall the stopping criteria: for a given test budget, we want to stop reliability

testing as soon as the reliability is estimated with a con�dence level of 1 − α ,

with a margin of error d . This means, we want to compute E[R̂] such that:

P(E[R̂] − d ≤ R ≤ E[R̂] + d) ≥ 1 − α (3.25)

where E[R̂] = 1 −
∑L

i=1
pi µ̂i .

In Section 3.9.1, we show how we estimate iteratively the failure rate µ̂i as

well its variance σi for each sub-domain Di,i ∈{1, ...,L } . Then, in Section 3.9.2,

we show how we use the failure rate to compute the required number of test

cases to select from each sub-domain Di,i ∈{1, ...,L } based on the user target

con�dence level 1 − α and margin of error d .

3.9.1. Iterative Estimation of the Failure Rate pro Sub-Domain

According to Bayes theorem, each test case executed from a sub-domain Dl
is a sample from a density f (.|µl ). Recall that µl is an unknown probability

given by the random variable Ml whose density is f (.) as given in equation

3.18. Consequently, the posterior density of Ml after executing the test cases

t1, . . . , tn , whose outcome is X1l , . . . ,Xnl is:

f (µl |X1l , . . . ,Xnl ) =
f (X1l , . . . ,Xnl |µl )f (µl )∫

1

0
f (X1l , . . . ,Xnl |ω)f (ω)dω

(3.26)

Based on assumption 2 of our approach (the independence of the test cases

outputs), it follows:

f (µl |X1l , . . . ,Xnl ) =

∏n
i=1

f (Xil |µl )f (µl )∫
1

0
f (X1l , . . . ,Xnl |ω)f (ω)dω

(3.27)
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3.9. Bayesian Inference and Stopping Criteria

where f (Xil |µl ), introduced in equation 3.17, is the conditional density func-

tion associated with the i − th test case executed from sub-domain Dl .

Since the posterior density of Ml is a distribution (see equations 3.26 and

3.27), we can estimate µl by the posterior mean based on the result we got

from equation (3.24), which indicates that the posterior distribution of µl
is Beta(β1 + k, β2 + n − k). By using the property of the Gamma function

Γ(x + 1) = xΓ(x) (See Section 2.4.1), the posterior mean is:

µ̂l = E[µl |
n∑
i=1

Xi,l = k, β1, β2] (3.28a)

=

∫
1

0

µl f (µl |
n∑
i=1

Xi,l = k, β1, β2)dµl (3.28b)

=

∫
1

0

µl
Γ(β1 + β2 + n)

Γ(β1 + k)Γ(β2 + n − k)
µ
β1+k−1

l (1 − µl )
β2+n−k−1dµl (3.28c)

=
Γ(β1 + β2 + n)

Γ(β1 + k)Γ(β2 + n − k)

∫
1

0

µ
β1+k
l (1 − µl )

β2+n−k−1dµl (3.28d)

=
Γ(β1 + β2 + n)

Γ(β1 + k)Γ(β2 + n − k)
×
Γ(β1 + k + 1)Γ(β2 + n − k)

Γ(β1 + β2 + n + 1)
(3.28e)

=
Γ(β1 + k + 1)

Γ(β1 + k)
×

Γ(β1 + β2 + n)

Γ(β1 + β2 + n + 1)
(3.28f)

=
β1 + k

β1 + β2 + n
(3.28g)

The variance of µl is then computed based on the above equation (3.28g) and

by means of few algebraic steps as follows:

var [µl ] = E[µl
2] − (E[µl ])

2
(3.29a)

=
(β1 + k)(β2 + nl − k)

(β1 + β2 + nl )2(β1 + β2 + nl + 1)
(3.29b)

3.9.2. Iterative Computation of the Number
of Test Cases to Select

Beta(β1, β2) to a normal distribution.
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Now, recall that after executing nl test cases from a sub-domain Dl , where

k test cases failed, the distribution of the failure rate µl is given by equa-

tion (3.24): µl |
∑nl

i=1
Xi,l = k ∼ Beta(β1 + k, β2 + nl − k).

Consequently, we can approximate the distribution of each µl, l ∈{1, ...,L } with

a normal distribution:

N (E[µl ],
√
var [µl ]) = N

(
β1 + k

β1 + β2 + nl
,

√
(β1 + k)(β2 + nl − k)

(β1 + β2 + nl )
2(β1 + β2 + nl + 1)

)
(3.30)

that means, the Beta distribution of each µl,l ∈{1, ...,L } is approximated by

a normal distribution, which has as a mean E[µl ] and standard deviation√
var [µl ].

Since, from equation (3.5a) the expected mean of the reliability we are estimat-

ing, R̂, is de�ned as E[R̂] = 1 −
∑L

i=1
piµi , it follows that we can approximate

the distribution of R̂ to a normal distribution.

Now, we want to compute based on the failure rate µl,l ∈{1, ...,L } and its vari-

ance var [µl ] = σl , the number of test cases to select optimally from each

sub-domain Dl, l ∈{1, ...,L } to meet with the stopping criteria (i.e, stop relia-

bility testing as soon as the reliability is estimated with a con�dence level of

1 − α , with a margin of error d).

Let al (as de�ned in Section 2.5) be the allocation ratio for the sub-domain

Dl , with nl = n.al and n the total number of selected test cases de�ned as

n =
∑L

i=1
nl .

Let z be the upper α/2 critical point of the standard normal distribution.

Then, we want to �nd n such that z[var[R̂]]1/2 = d (margin of error equation),

where var[R̂] =
∑L

i=1
pi

2 σi 2

ni
(recall equation (3.5b)).

From equation (2.22), we have nl = c
∗al with al de�ned as:

al =
σl/
√
cl∑L

i=1
pi .σi .

√
ci
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var[R̂] =
L∑
i=1

pi
2
σi

2

c∗al
(3.31)

=
1

c∗
.

L∑
i=1

pi
2
σi

2

al
(3.32)

Now, we compute the total cost c∗ required to reach the desired level of

accuracy. By solving the margin of error equation z[var[R̂]]1/2 = d , for c∗

and by ignoring the �nite population factor as in Section 2.5 we get:

c∗ =
z2

d2

[
L∑
i=1

pi .σi .
√
ci

]
2

Having computed both al and c∗, we can compute each nl = alc
∗
.

3.10. Adaptive Constrained Statistical Testing

Based on the discussions above, the adaptive constrained statistical testing

approach works as described in algorithm 7.

In the initialization phase (lines 1-3), �rst algorithm 3 is called. Since our

approach is based on variance computation of the failure rate in each sub-

domain, we require at least 2 test cases pro sub-domain. Based on this

requirement, algorithm 3 computes the number of test cases to start with

n
start

(line 2 in algorithm 3). This means that at least 2 test cases should be

selected from the sub-domain with the smallest probability of occurrence

pmin . Having computed n
start

, the algorithm selects |T(Di ,pi ) | test cases from

each sub-domain Di randomly proportional to its probability pi (line 4 in

algorithm 3). In the second step of the initialization phase (line 2), algorithm

4 is called to compute the failure rate in each sub-domain in the initialization

phase. Algorithm 4 initializes the Beta prior of the failure rate of each sub-

domain with a non-informative uniform prior, since at the initialization phase

we have no information about the failure rate (line 2 in algorithm 4). Then,

the |T(Di ,pi ) | test cases are executed (line 2 in algorithm 4), and the number of
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failures are counted (line 4 in algorithm 4). Based on the number of failures

k , compute the failure rate µ̂i (line 5 in algorithm 4) and its variance σi
2

(line

6 in algorithm 4) are computed as proposed in equations (3.28g, 3.29b). µ̂i
and σi

2
are then used to update our Beta prior (lines 7-8 in algorithm 4) as

proposed in equations (3.22a, 3.22b).

In the adaptive constrained test selection phase (lines 4-12), algorithm 5 is

called to compute the optimal required number of test cases to be select

from each sub-domain, based on the stopping criteria formula (lines 3-5 in

algorithm 5). Extra test cases are then selected if required (lines 6-8 algorithm

5). Otherwise, test cases have been optimally selected from that sub-domain

(line 9 algorithm 5). In the case, when extra test cases should be selected

from a sub-domain, the new failure rate µ̂i and its variance σi
2

(line 9) are

computed by calling algorithm 6.

The algorithm stops and returns the estimated reliability if (i) a maximal

allowed test time interval ∆ has passed or (ii) for all sub-domains the optimal

required number of test cases has been selected and the total selected test

cases are 100% similar to the operational pro�le (line 6).

Important Note: for presentation purposes, we illustrate the execution of

the selected test cases from each sub-domain in a batch mode. However, in

reality the test cases are selected from each sub-domain. Then, the execution

is done based on the operational pro�le as illustrated in Section 2.1.3.

Algorithm 3: computeInitialTestCases

Require: OP = {(Di ,pi )|i ∈ {1, ...,L},
∑L

i=1
pi = 1}

pmin =min{pi |i ∈ {1, . . . ,L}}
n

start
= 2

pmin

for (Di ,pi ) ∈ OP do
|T(Di ,pi ) | ← dnstart

.pi e
5: end for
return TOP = {T(Di ,pi ) |(Di ,pi ) ∈ OP}
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Algorithm 4: computePriorFailureRate

Require:
TOP = {T(Di ,pi ) |(Di ,pi ) ∈ OP = {(Di ,pi )|i ∈ {1, ...,L},

∑L
i=1

pi = 1}}

for (Di ,pi ) ∈ OP do
β1

i = β2

i = 1 set uniform prior

execute the |T(Di ,pi ) | test cases

k ← number of failures after execution

5: µ̂i ←
1+k

2+ |T(Di ,pi ) |
see equation (3.28g)

σi
2 ←

(1+k )(1+ |T(Di ,pi ) |−k )
(2+ |T(Di ,pi ) |)

2(3+ |T(Di ,pi ) |)
see equation (3.29b)

// update prior as proposed in equations (3.22a, 3.22b)

β1

i ← µ̂i |T(Di ,pi ) |

β2

i ← (1 − µ̂i )|T(Di ,pi ) |

end for
10: return OPnew = {(Di ,pi , µ̂i ,σi

2, β1

i , β2

i )|i ∈ {1, ...,L}}}

Algorithm 5: computeOptimalTestCases

Require: OPnew = {(Di ,pi , µ̂i ,σi
2, β1

i , β2

i ))|i ∈ {1, ...,L}}
opt = 0

for (Di ,pi , µ̂i ,σi
2, β1

i , β2

i )) ∈ OPnew do

c∗ = z2

d2

[∑L
i=1

pi .σi .
√
(1 − pi )

]
2

ai =
pi .σi /
√
(1−pi )∑L

k=1
pk .σk .

√
(1−pk )

5: noi = dc
∗ai e

if |T(Di ,pi ) | < noi then
|T(Di ,pi ) | ← noi select extra (noi − |T(Di ,pi ) |) test cases from (Di ,pi )

else
opt = opt + 1

10: end if
end for
Adjust to proportional sampling: call Algorithm 1

return (TOP , opt)
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Algorithm 6: computePosteriorFailureRate

Require: OPnew = {(Di ,pi , µ̂i ,σi
2, β1

i , β2

i ))|i ∈ {1, ...,L}}
for (Di ,pi , µ̂i ,σi

2, β1

i , β2

i )) ∈ OPnew do
execute the |T(Di ,pi ) | test cases

k ← number of failures after execution

//update statistics

µ̂i ←
β1

i+k
β1

i+β2

i+ |T(Di ,pi ) |
see equation (3.28g)

5: σi
2 ←

(β1

i+k)(β2

i+ |T(Di ,pi ) |−k )
(β1

i+β2

i+ |T(Di ,pi ) |)
2(β1

i+β2

i+ |T(Di ,pi ) |+1)
see equation (3.29b)

end for
return {(Di ,pi , µ̂i ,σi

2, β1

i , β2

i )|i ∈ {1, ...,L}}

Algorithm 7: Adaptive constrained statistical testing

Require: OP = {(Di ,pi )|i ∈ {1, ...,L},
∑L

i=1
pi = 1}

∆ : maximal allowed test time

1 − α : con�dence level

d : margin of error

//1. Initialization

TOP = computeIntialTestCases(OP)
{(Di ,pi , µ̂i ,σi

2, β1

i , β2

i )|i ∈ {1, ...,L}} = computePriorFailure(TOP )

Repair faults if failures are revealed

//2. Adaptive constrained test selection

while true do
5: (TOP , opt) = computeOptimalTestCases({(Di ,pi , µ̂i ,σi

2, β1

i , β2

i )|i ∈
{1, ...,L}}})
if ∆ passed or (opt = L ∧ SC(TOP ) = 100%) then

break;

end if
{(Di ,pi , µ̂i ,σi

2, β1

i , β2

i )|i ∈ {1, ...,L}} =
computePosteriorFailureRate(TOP , {(Di ,pi , µ̂i ,σi

2, β1

i , β2

i )|i ∈
{1, ...,L}})

10: Repair faults

opt = 1

end while
return R̂ =

∑L
i=1

pi .(1 − µ̂i ), var[R̂] =
∑L

i=1
pi

2 σi 2

|T(Di ,pi ) |
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3.11. Predictive Adaptive Constrained Statistical Testing

3.11. Predictive Adaptive Constrained
Statistical Testing

Algorithm 6 requires at each iteration of the approach the execution of

|T(Di ,pi ) | test cases. The number of failures after the execution of the test

cases as well as the total number of executions are used to build the posterior

failure rate for each sub-domain Dl . The posterior is speci�ed by the expected

failure rate µ̂l and its variance σl
2
.

Instead of executing the |T(Di ,pi ) | test cases for each sub-domain, we propose

to predict the failure rate in each sub-domain based on previous test cases

executions. The prediction model must be able to predict the failure rate as

well as to deliver some measure of uncertainty about the prediction, which is

the variance of the estimate.

We model the failure rate in each sub-domain as a Gaussian process distribu-

tion. A Gauss process over a univariate real function f (x) 1
is fully speci�ed

by its mean function µx and its covariance function k(x, x′). The kernel or

covariance function k captures regularity in the form of the correlation of

the marginal distributions f (x) and f (x′) [80].

In our failure rate prediction setting, we model the failure rate in each sub-

domain Di as a Gauss process fi (x) in function of the number of test cases

to be executed, i.e., |T(Di ,pi ) |.

Each time t the algorithm 6 is called, instead of executing the |T(Di ,pi ) | test

cases, we make a prediction using the Gaussian process fi (x). This would

yield to:

µ̂i = fi (x) + ϵi

After T calls of the algorithm 6, we obtain a vector yT ,i = {y1,i , . . . ,yT ,i }. If

we assumen that ϵi ∼ N (0,σi n
2) (i.i.d. Gaussian noise), then the posterior

distribution of fi (x) is a Gaussian process de�ned by its mean value µT ,i (x),
covariance kT ,i (x, x′), and its variance σ 2

T ,i (x) de�ned as follows [80]:

1
bold symbols denote vectors
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3. Adaptive Constrained Statistical Testing

µT ,i (x) = kT ,i (x)T (KT ,i + σi n2I)−1yT ,i

kT ,i (x, x′) = ki (x, x′) − kT ,i (x)T (KT ,i + σi n2I)−1kT ,i (x′)

σ 2

T ,i (x) = kT ,i (x, x)

with x is a number of test cases to be executed from sub-domain Di , kT ,i (x) =
(ki (x, xt ))1≤t ≤T , and KT ,i = (ki (xl , xm))1≤l,m≤T .

Therefore, the failure rate of sub-domain Di can be estimated by:

µ̂i = µT ,i (x)

and the variance of the estimated failure rate is:

σi
2 = σ 2

T ,i (x)

Consequently, the posterior Gauss process provides a measure of uncertainty

about fi (x) for test cases that has not been yet executed. We design now our

predictive algorithm 8 which is informed by this uncertainty.

In the initialization phase of algorithm 8, the prior computed about the failure

rate in each sub-domain (line 2) as well as the number of test cases selected

from each sub-domain (line 1) are used to train a Gaussian process for each

sub-domain. The algorithm then works the same way as the non-predictive

algorithm 7, except in line 13, where the algorithm 9 is called.

In Algorithm 9, for each sub-domain its corresponding Gaussian process fi is

used to predict the failure rate µ̂i and get a measure of the uncertainty about

the prediction σi
2

(lines 2 and 3). Then, the condition in line 4 is veri�ed. The

condition sets an upper-bound for the predicted failure rate and its variance

based on the formulas used to compute the prior failure rate in lines 7 and 8.

Both formulas are parameterized with the variable k representing the number

of failures revealed after executing |T(Di ,pi ) | test cases. Consequently, the
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3.11. Predictive Adaptive Constrained Statistical Testing

Algorithm 8: Predictive adaptive constrained statistical testing

Require: OP = {(Di ,pi )|i ∈ {1, ...,L},
∑L

i=1
pi = 1}

∆ : maximal allowed test time

1 − α : con�dence level

d : margin of error

//1. Initialization

TOP = computeIntialTestCases(OP)
{(Di ,pi , µ̂i ,σi

2, β1

i , β2

i )|i ∈ {1, ...,L}} =
computePriorFailureRate(TOP )

t = 0 //Gaussian process training

for (µ̂i , |T(Di ,pi ) |) do
5: train Gaussian process fi (|T(Di ,pi ) |)

end for
Repair faults if failures are revealed

//2. Adaptive constrained test selection

while true do
(TOP , opt) = computeOptimalTestCases({(Di ,pi , µ̂i ,σi

2, β1

i , β2

i )|i ∈
{1, ...,L}}})

10: if ∆ passed or (opt = L ∧ SC(TOP ) = 100%) then
break;

end if
{(Di ,pi , µ̂i ,σi

2, β1

i , β2

i )|i ∈ {1, ...,L}} =
computeOrPredictPosteriorFailureRate(TOP , {(Di ,pi , µ̂i ,σi

2, β1

i ,
β2

i )|i ∈ {1, ...,L}})
Repair faults

15: opt = 1

t = t + 1

end while
return R̂ =

∑L
i=1

pi .(1 − µ̂i ), var[R̂] =
∑L

i=1
pi

2 σi 2

|T(Di ,pi ) |

If the prediction of the Gaussian process fi is judged unrealistic, based on the

condition in line 4, then the |T(Di ,pi ) | are executed and the Gaussian process

is trained with the computed posterior (line alg:TrainAgain).
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Many researches are showing that software faults can be well predicted using

software metrics (e.g., [36], [49], or [55]). Consequently, if such metrics are

available it would make sense to model them as independent variables (in

addition to the number of test cases) in the Gaussian process fi of the failure

rate. In Section 6.1.2, we show experimentally that considering software

metrics can indeed increase the accuracy of our prediction model.

Algorithm 9: computeOrPredictPosteriorFailureRate

Require: OPnew = {(Di ,pi , µ̂i ,σi
2, β1

i , β2

i ))|i ∈ {1, ...,L}}
for (Di ,pi , µ̂i ,σi

2, β1

i , β2

i )) ∈ OPnew do
µ̂i ← µt,i (|T(Di ,pi ) |)

σi
2 ← σt,i

2(|T(Di ,pi ) |)

if ¬((σi 2 <
(β1

i+ |T(Di ,pi ) |)β2

i

(β1

i+β2

i+ |T(Di ,pi ) |)
2(β1

i+β2

i+ |T(Di ,pi ) |+1)
) ∧ (µ̂i <

β1

i+ |T(Di ,pi ) |

β1

i+β2

i+ |T(Di ,pi ) |
)) then

5: execute the |T(Di ,pi ) | test cases

k ← number of failures after execution

//update statistics

µ̂i ←
β1

i+k
β1

i+β2

i+ |T(Di ,pi ) |
see equation (3.28g)

σi
2 ←

(β1

i+k )(β2

i+ |T(Di ,pi ) |−k)
(β1

i+β2

i+ |T(Di ,pi ) |)
2(β1

i+β2

i+ |T(Di ,pi ) |+1)
see equation (3.29b)

train Gaussian process fi with the new independent variable

|T(Di ,pi ) | and the new dependent variable σi
2

10: end if
end for
return {(Di ,pi , µ̂i ,σi

2, β1

i , β2

i )|i ∈ {1, ...,L}}

3.12. Asymptotic Analysis

In the following, we prove the termination of algorithm 7, when ∆ (maximal

allowed test time) is set to ∆ = ∞.

We also prove that our algorithm asymptotically converges to optimal strati-

�ed sampling.
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Theorem 3.1. The adaptive constrained test selection algorithm terminates
with probability one, if ∆ = ∞

Proof. Let µl , be the true failure rate of a sub-domain Dl (l ∈ {1, . . . ,L}). As-

sume, thatnl test cases are selected fromDl and the test cases has the outcome

X1,l , . . . ,Xnl ,l . Suppose that k failures are observed, meaning

∑nl
i=1

Xi,l = k .

Now, let β1 > 0 and β2 > 0 be the parameters of the Beta prior of the estimate

µ̂l of µl . From equation (3.28g), we know that:

µ̂l = E[µl ] =
β1 + k

β1 + β2 + nl

and:

σl
2 = var [µl ] = E[(µl − µ̂l )

2] =
(β1 + k)(β2 + nl − k)

(β1 + β2 + nl )2(β1 + β2 + nl + 1)

Since k ≤ nl and β1 > 0 and β2 > 0 it follows:

σl
2 ≤

(nl + β1)β2

β1 + β2 + nl )2(β1 + β2 + nl + 1)

≤
(nl + β1 + β2)(β2 + β1 + 1 + nl )

(β1 + β2 + nl )2(β1 + β2 + nl + 1)

=
1

β1 + β2 + nl

Consequently, it follows:

lim

nl→∞
σl

2 = 0 (3.34)

This means, that the posterior variance of the failure rate tend to be 0 as we

execute more test cases from sub-domain Di .

Therefore, since both β1 and β2 are �x, we can conclude from the law of large

numbers that:
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3. Adaptive Constrained Statistical Testing

lim

nl→∞
µ̂l = µl (3.35)

that is, µ̂l converges almost surely to the true failure rate µl .

Since our algorithm returns a con�dence interval which contains µl with a

posterior probability of at least 1 − α and margin of error d (i.e., it means the

con�dence interval has a width 2d), it follows from equation (3.35), that the

posterior probability P(µ̂l − d ≤ µl ≤ µ̂l + d) must converge almost surely to

1 as nl →∞.

�

Theorem 3.2. The adaptive constrained test selection algorithm converges
asymptotically to optimal strati�ed sampling

Proof. Our approach adjusts the test allocation at each iteration to 100%

similarity to the operational pro�le, which means that our approach is in fact

a proportional strati�ed sampling.

From theorem 3.1, we proved in equation (3.34) that the variance of the failure

rate of each sub-domain Dl converges to 0 as nl → ∞. This means, that

asymptotically, the standard deviations of the failure rate in all sub-domains

are all equal, more precisely equal to 0. According to theorem 2.2, it follows

that our sampling scheme converges asymptotically to optimal strati�ed

sampling.

�

3.13. Discussion

After each iteration of our approach, if failures are revealed, then the re-

sponsible faults are repaired. Therefore, one could argue that after repairing

the faults the failure rate is expected to decrease. However, our approach

assumes that the failure rate remains the same after fault repair. We defend

our decision on the ground that there is no quanti�able measure of the con-

tribution of individual faults to the failure rate of the software as proposed

by [58].
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However, our approach does not consider the case when a fault repair intro-

duces new faults and hence increases the failure rate. In order to address such

a limitation, a model for fault-repair operation may be needed to account for

erroneous fault repairs. The development of such a model can be considered

as a future work.
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4. Adaptive ConstrainedWeighted
White-Box Statistical Testing

In this Chapter, we consider the case where in addition to the operational

pro�le of the software component under study, we have access to the source

code implementing the component. Our goal is to make use of the information

provided by the source code to enhance the black-box approach presented

in Chapter 3 by further reducing the number of test cases to be executed to

reach a required statistical con�dence on the reliability estimate.

Before introducing our approach, it is necessary to introduce the following

terms. we di�erentiate between two type of faults [96]: (i) domain faults, and

(ii) computation faults. Domain faults are faults in the control �ow of the

program, which cause the execution of the wrong program paths for some

inputs because they create a shift in the input boundaries of the the program

path. Computation faults are faults that cause the wrong computation of a

function for one or more inputs.

4.1. Problem Definition

The black-box approach we developed in Chapter 3 is based on the principle

of optimal strati�ed sampling. The goal of optimal strati�ed sampling is to

decrease the variance of the failure rate within each sub-domain to decrease

the overall variance of the reliability estimator. This can be illustrated using

the Anova (Analysis of variance) principle as follows:

var (total) = var (within sub-domains) +var (between sub-domains)
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4. Adaptive Constrained Weighted White-Box Statistical Testing

Since per construction, the operational pro�le sub-domains are disjoints, and

since we assume that the test cases outputs are independent (assumption 2

in Section 3.4), then it follows var (between sub-domains) = 0.

Consequently, the goal of the black-box approach we presented in Chapter 3

is to reduce the variance of the failure rate within each sub-domain of the

operational pro�le.

If, we could reduce the variance of the failure rate in each sub-domain we

could reduce the required test cases to execute from each sub-domain. More

precisely, if the sub-domains were homogeneous, then we would require to

execute only one test case from each sub-domain.

Di�erent studies has been conducted to compare the performance of random

testing and partition testing ([33], [94]), where the results were conform to

the theory of strati�ed sampling (see Section 2.5). The results con�rm that for

the same testing e�ort, partition testing is more cost e�ective than random

sampling only if proportional sampling is used. Furthermore, if the partitions

are homogeneous then the number of test cases required by partition testing

will be signi�cantly reduced compared to random sampling (since only one

test case is needed for each partition). However, homogeneous partitions

of the input domain are very di�cult to obtain in practice, as we show in

Section 4.2.

We present in the following an approach to transform the given operational

pro�le sub-domains in �ne-grained ones by using the information provided

by the source code. The goal is to de�ne new sub-domains which are more

or less homogeneous. These sub-domains will be then used to generate

statistical test cases to assess the reliability of the software under study.

We compute for each of the new de�ned sub-domains a probability. This

probability weigh the contribution of each test case execution on the overall

reliability estimate.

4.2. Research Goals

The failure rate of a software program when executed with inputs from a sub-

domain Di, i ∈{1, ...,L } is the failure rate of the possible program executions

induced by the inputs of Di, i ∈{1, ...,L } . It would be ideal if we could separate
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successful program execution from the failing ones. However, this is not

likely, as explained in Section 3.1.

A program execution is a program path executed with an input value from

the program’s input domain. A program path is a sequence of statements, and

each program path de�nes an equivalence class on the input values which

can execute it. Consequently, the failure rate of the program when executed

with inputs from Di, i ∈{1, ...,L } is the failure rate of the possible program paths

when executed with inputs from that sub-domain.

We propose the strati�cation of each sub-domain Di, i ∈{1, ...,L } into partitions

of inputs, where each partition executes a program path (i.e., similar program

executions). Each partition (i.e., strata) is then a program path.

Symbolic execution (de�nition can be found in Section 2.8) is a technique

for grouping program inputs which produce the same symbolic output. The

output of symbolic execution is a set of path conditions. A path condition is

a set of constraints on the program inputs. The satisfaction of the constraints

lead to the execution of the program path represented by the path condition.

If we assume that the symbolic execution of a program always terminates

(we will relax this assumption in Section 4.8), then all path conditions de�ne

a complete partition of the input domain. Therefore, the path conditions

de�ne the strata of our strati�cation scheme. The inputs which satisfy a path

condition lead to the execution of the corresponding program path.

The inputs satisfying a path condition are not necessarily homogeneous. If

the program path contains some faults, then some inputs would still execute

failure-free. For example the shifts caused by domain faults can be very

small, then most of the inputs would execute failure-free. Furthermore,

arithmetic over�ow failures are data-dependent which would contradict with

homogeneity assumption of the path conditions.

[96] proposed a technique to detect domain faults. The technique generates

test inputs in the boundaries of the input domain of each program path to

detect possible shifts. However, it is di�cult and impractical to determine

the input domain boundaries of each program path, which would require

among other thing the exhaustive counting of all inputs satisfying the path

condition representing the program path. A practical alternative to the above

technique is to randomly execute inputs for each program path to increase

the probability of revealing both domain faults and computation errors.
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Consequently, since the inputs executing a program path are not truly ho-

mogeneous, then more than a test case pro program path is required. The

important question that arises is for each path condition, how many input

values which satisfy that path condition should be selected?

Furthermore, the program paths induced by the path conditions are not

equally likely to be executed when the program is executed according to the

operational pro�le. Consequently, the next question that arises is: which

program paths are likely to be executed and how probable is the execution

of each program path?

The goal of this Chapter is to present an approach to compute the probability

of execution of a path condition given an operational pro�le, which is the

answer for the second question.

The �st question is answered by using our black-box approach we presented

in Chapter 3. We give the black-box approach as input the program path con-

ditions together with their probability of execution as the new sub-domains

of the original operational pro�le.

We have published part of the following results in [73].

4.3. Assumptions

We adopt the same assumptions as in Section 3.4, with the following excep-

tions:

• We relax assumption 5 in 3.4 as follows: we assume that failures are

uniformly distributed over the program paths.

• We assume that the input domain of the software under study is �nite.

4.4. Motivating Example and Challenges

Consider the code in Figure 4.1. Assume we want to estimate the probability

of not reaching line 9, where an exception can arise. Assume the input
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4.4. Motivating Example and Challenges

[ true ] method(X,Y)

[ Y!=X*10 ] S1[ Y=X*10 ] S0

[X>5 & 10<!=X*10] S2

[Y!=X*10 & !(X>5 & Y>10)] assert false

[X>5 & 10<Y=X*10] S2

[Y=X*10 & !(X>5 & Y>10)] assert false

(9990)(10)

(4)

(6)

(1454)

(8536)

 1 void method(int x, int y) {
 2  if(y == x*10)
 3   S0;
 4  else
 5   S1;
 6  if(x > 5 && y > 10) 
 7   S2;
 8  else
 9   assert false;
10 }

Figure 4.1.: Illustrative example and its symbolic execution tree

Consider the symbolic execution tree in Figure 4.1. Each node in the tree is a

branching constraint over the program inputs.

Assume now, that we want to compute the probability of executing the

statement assert false at line 9. The are two path conditions which would

execute line 9:

1. PC1 = Y = X ∗ 10&![X > 5&Y > 10]

2. PC2 = Y =!X ∗ 10&![X > 5&Y > 10]

where ! stands for the logical not.

If we assume that the inputs are uniformly distributed within the input

domain, then the probability of line 9 is:

P(line 9) = P(PC1) + P(PC2)

The probability of executing PC1, is de�ned as:

P(PC1) =
#(x,y) satisfying PC1 given that x ∈ [1, 100] and y ∈ [1, 100]

cardinality of the input domain

=
cardinality of the solution space of PC1 given the de�ntion domain

cardinality of the input domain

Since the constraints in the program in Figure 4.1 are all linear, we can use

model counting, to count for each constraint the number of values from the

input domain that satisfy that constraint (the counter is in bracket under
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each constraint). Based on the counting result of the solution space of each

constraint we can compute P(line 9):

P(line 9) =
6

10000

+
1454

10000

= 0.146

However, when the path constraints are not linear (e.g, contain cosine, sine

functions, etc,.), then model counting cannot be used. In the following, we

motivate our idea in computing the solution space of path conditions even if

it contains non-linear constraints.

4.4.1. Constraints Solution Space Computation

When solving a constrained problem, one is usually interested in �nding one

solution or assessing that there is no solution at all. However, knowing the

number of solutions can give a new perspective on the constrained problem.

In mathematics, a set of linear inequalities form a bounded geometric object.

A solution to the set of inequalities is one point in the geometric object. The

number of possible solutions is the volume of the geometric object. In the

context of program analysis, each path condition is represented as a Boolean

combination of constraints. Knowing the volumes of the path conditions

allows to compute the probability of executing each path condition.

4.4.2. Interval Branch-and-Prune Algorithms

Consider a vector x = (x1, . . . ,xn) ∈ R
n

of unknowns. A constrained problem

is de�ned by a set C = {c1, . . . , cl } of l constraints and a bounded domain

Dx = Dx1
× . . . × Dxn where xk ∈ Dxk := {r ∈ R|ak ≤ r ≤ bk },k =

1, . . . ,n.

The solution set of the constrained problem, de�ned by the constrains set

C, is the set of tuples from x that satisfy all the constraints in C. Counting

the solution set of a constrained problem de�ned over continuous domains

involves computing an integral over the geometric object formed by the

constraints. However, the constraints may contain nonlinear expressions

which can be not di�erentiable. For this reason, the solution set can be
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approximated using interval analysis techniques such as Interval Branch-and-

Prune algorithms [48]. Interval Branch-and-Prune algorithms generate a set

of n−dimensional boxes whose union de�ne the solution set of a constrained

problem. Such algorithms alternates iterativ branch and prune tasks to

generate boxes from the initial bounded domain de�ned by the Cartesian

product Dx. The algorithm stops when a �xed precision is reached. The

pruning task eliminates inconsistent values and hence reduces the size of a

box. The branch task splits the box into smaller boxes [48].

4.5. Overview of the Approach

Figure 4.2 depicts the approach for the adaptive white-box statistical testing.

The approach takes as input (i) the source code of the software program, (ii)

the expected operational pro�le and (iii) the reliability assessment goals (i.e,

required con�dence on the reliability estimate). The approach is based on the

ability to execute the source code symbolically. Symbolic execution outputs

a set of path conditions. We present in Section 4.8 an extension of symbolic

execution, which is probabilistic. The probabilistic symbolic execution gets

as input (i) the source code, and (ii) a probabilistic bound. The probabilistic

bound is a replacement for the static bound usually set in the context of

bounded symbolic execution to limit the symbolic search. The goal of the

bound is to avoid the problem of path explosion in the presence of looping

constructs. In contrast to state-of-the-art symbolic execution approaches, we

control the symbolic execution using a probabilistic bound and not a static

one which has no quantitative relation to the reliability estimation goal. The

probabilistic bound is incrementally updated and is computed based on the

reliability assessment goals. During the symbolic execution of the code, the

approach computes the probability of executing each path condition in a

compositional manner as shown in Sections 4.6 and 4.7.

The �rst iteration of the approach starts with the adaptive constrained black-

box statistical testing, which we presented in Chapter 3. If the stopping

criteria as de�ned in Section 3.9 is not reached, then this means that fail-

ures are revealed. Consequently, the responsible faults should be repaired.
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Figure 4.2.:Adaptive Constrained White-Box Statistical Testing

this number, we compute a probabilistic bound. The probabilistic symbolic

execution uses then the probabilistic bound and the source code to compute

the probability of occurrence of the path conditions. The set of (PCi ,pi ) is

then the new operational pro�le, which will used in the next iterations by

adaptive constrained black-box statistical testing. The approach iterates until

the stopping criteria is reached.
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The adaptive constrained black-box statistical testing approach computes

then the required number of test cases to be further executed. Based on
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Figure 4.3.:Compositional Solution Space - Divide

approximations of the splits are merged to compute the probability of each

path condition in a compositional manner.

4.6. Compositional Path Condition Solution
Space Computation

We consider the problem of e�ciently computing the solution space of an

individual path condition. A path condition is a conjunction of a set of

branching constraints. In real world applications, a path condition can be

very large (i.e., include a large number of branching constraints). We propose

to split a path condition into disjoint sets of branching constraints whose

solution space can be determined independently from each other.

4.6. Compositional Path Condition Solution Space Computation
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In real world programs, the path conditions can very large. Consequently,

the quanti�cation of their solution space can be very expensive. We propose

a compositional approach to compute the probability of executing each path

condition based on the divide and conquer principle as depicted in Figures

4.3 and 4.4. In the divide step in �gure 4.3, the path conditions are splitted

into a set of variable-independent constraints. The solution space quanti�-

cation is then executed on each split. In the conquer step in �gure 4.4, the
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Figure 4.4.:Compositional Solution Space - Conquer

Each branching constraint de�nes a relation between its variables. Each

variable has a de�nition domain. A constraint ranges over a given de�ni-

tion domain and speci�es which values from the domain of its variables

are compatible to the relation. More formally, we introduce the following

de�nitions.

De�nition 4.1. (Branching Constraint). A branching constraint c is a triple
<Vc ,Bc ,Rc>, whereVc is a set of l variables <v1,v2, . . . ,vl>,Bc is the Cartesian
product I1 × I2, . . . × In with Ik the de�nition domain of variable vk , and Rc
the constraint relation de�ned as:
Rc ⊆ {<i1, i2, . . . il>|i1 ∈ I1, i2 ∈ I2, . . . , il ∈ Il }
Rc is a subset of the Cartesian product I1×I2, . . . Il with Ik the de�nition domain
of variable vk and ik a possible value for variable vk .

The de�nition of a path condition follows from the de�nition of a branching

condition as follows:

4. Adaptive Constrained Weighted White-Box Statistical Testing
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De�nition 4.2. (Path Condition). A path conditionΦ is a triple <VΦ ,BΦ , CΦ>
where VΦ is a set of n variables <v1,v2, . . . ,vn>, BΦ (a box) the Cartesian
product I1 × I2, . . . × In of the variables de�nition domains where each variable
vi ranges over the interval Ii , and CΦ is a �nite set of branching constraints
expressed as linear or nonlinear equations or inequalities on subsets of the
variables V . Consequently, a path condition can be de�ned asΦ =

∧
ci ∈CΦ ci =

<VΦ ,BΦ , CΦ>.



4.6. Compositional Path Condition Solution Space Computation

Now we move to the de�nition of the solution space of a path condition. We

start with de�ning a solution to a branching constraint:

Lemma 4.1. (Branching Constraint Solution). A solution of a branching con-
straint c = <Vc ,Bc ,Rc>, is a tuple sc ∈ Rc where sc ⊆ Bc .

Our ultimate goal is to characterize the complete set of solutions:

Lemma 4.2. (Branching Constraint Solution Space). The solution space of a
branching constraint c = <Vc ,Bc ,Rc>, is a set of tuples Sc ⊆ Bc where:

• ∀ s ∈ Sc : s ∈ Rc (only solutions inside the set)

• ∀b ∈Bcb < Sc : b < Rc (no solutions outside the solution space)

We propose to split a path condition into a set of disjoint branching constraints

that have input variables in common. We de�ne dependent constraints as

follows:

De�nition 4.3. (Dependent Branching Constraints). Two branching con-
straints ci = <Vci ,Bci ,Rci > and ck = <Vck ,Bci ,Rck > are called dependent if:
Vci ∩ Vck , ∅.

We introduce now a dependency relation among the constraints of a path

condition:
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De�nition 4.4. (Constraint Dependence Relation). The constraint dependence
relation DEP : C × C → Boolean, where C a set of constraints, is recursively
de�ned as follows:

• ∀c ∈ C : DEP(c, c) = true

• ∀ci , c j ∈ C, if Vci ∩ Vck , ∅, then DEP(ci , c j ) = true

• ∀ci , c j , ck ∈ C, if DEP(ci , c j ) = true ∧DEP(c j , ck ) = true ,
then DEP(ci , ck ) = true

Intuitively, two constraints are dependent if they share at least one input

variable.
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Lemma 4.3. (Independent Branching Constraint Solution Space). The solution
space of the conjunction of two independent branching constraints ci and c j is
S(ci∧c j ) = Sci ∪ Sc j .

The dependency relation allows us to split a path condition in a set of disjoint

sets containing independent constraints.

De�nition 4.5. (Path Condition Split). We can split the formula of a path
condition Φ =

∧
ci ∈C ci = <VΦ ,BΦ , CΦ> into mutually exclusive and collec-

tively exhaustive sets of constraints (or sub-formulas) based on the constraint
dependence relation DEP as follows:

• CΦ = ∪i ∈{1, ...,m }Cs
i

• For i , j, the sets Cs
i and C

s
j are disjoint: C

s
i ∧C

s
j = ∅.

• ∀ci , c j ∈ Cs
k : DEP(ci , c j ) = true

• ∀ci ∈ Cs
i and ∀c j ∈ Cs

j : DEP(ci , c j ) = f alse

The splitted path conditionΦ is de�ned then as: Φsplit = Φ1 ∧Φ2 ∧ . . . ∧Φm ,
whereΦi =

∧
ck ∈Csi ck = <VΦi ,BΦi ,Cs

i >.

Note that the dependency relation (see Def. 4.4) is by construction an equiva-

lence relation over the set of constraints. Note also that for two independent

constraints c1 and c2, the satisfaction of c1 is independent from the satisfac-

tion of c2. Additionally, for two independent constraint sets C1 and C2, the

satisfaction of the constraints in C1 is independent form the satisfaction of

the constraints in C2.
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Lemma 4.4. (Path Condition Solution Space). The solution space of a path
conditionΦ =

∧
ci ∈C ci = <VΦ ,BΦ , CΦ> is a set of tuples SΦ ⊆ BΦ where:

• ∀S∈SΦ∀s ∈S∀c ∈ C : s ∈ Rc (only solutions for all path constraints
inside the set)

• ∀B⊂BcB 1 SΦ : ∃b ∈B b < Rc (no solutions outside the solution space)

• SΦ = SΦspl it = ∪i ∈{1, ...,m }SΦi
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Remarks. The composition of the solution space of a path condition allows

us to split the quanti�cation of the solution space of a large path condition

into the analysis of smaller and simpler constraints. This allows to parallelize

the quanti�cation procedure of the solution space. It also allows us to reuse

already quanti�ed constraints (i.e., caching).

4.6.1. Solution Space of Constraints over Finite
Floating Domains

We consider now the problem of counting the solution space of constraints

de�ned over �nite �oating domains. Counting the solution set of constraints

de�ned over continuous domains involves computing an integral over the

geometric object formed by the constraints. However, the constraints may

contain nonlinear expression which are not di�erentiable. For this reason,

we approximate the solution space of a conjunction of dependent constraints

with a set of boxes that cover the exact solutions of the constraints. The

union of the boxes is an over-approximation of the solution space but never

an under-approximation.

The boxes representing the solution space are extracted using constraint

propagation techniques [67]. Constraint propagation techniques implement

local reasoning on constraints to eliminate inconsistent values from the

de�nition domains of the constraints variables. Such techniques prune and

subdivide the de�nition domain of the constraints until a stopping criteria is

satis�ed. Note that the de�nition domain of the constraints as a Cartesian

product of intervals is a set of boxes (See Def. 4.2 and Def. 4.1). The following

de�nitions are adapted from [67], [10] and [9].
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De�nition 4.6. (Consistency). A setB ⊆ BΦ is consistent with a path condition
Φ =

∧
ci ∈C ci = <VΦ ,BΦ , CΦ> i� it contains at least one solution ofΦ. Otherwise,

it is called inconsistent.
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In order to eliminate input values that do not satisfy a constraint, a projection

function is associated with each constraint:

De�nition 4.7. (Projection Function). For a path condition Φ =
∧

ci ∈C ci =
<VΦ ,BΦ , CΦ>, a projection πc of a constraint c ∈ CΦ with a solution space Sc ,
is a mapping between the subsets of BΦ where ∀B ⊂ BΦ :

• πc (B) ⊆ B

• ∀b ∈B b < πc (B) : b < Sc

Usually the implementation of projection functions relies on interval analysis

methods (e.g., the interval newton method). The set of projection functions

associated with the constraints are then used to eliminate values from the

de�nition domain that do not satisfy the constraints. The pruning of a box is

done using constraint propagation. When a projection function eliminates a

value of a variable, this information is propagated to the other constraints

depending on that variable. This process terminates when the projection

functions cannot further eliminate values (i.e. cannot further reduce the size

of the boxes).

De�nition 4.8. (Constraint Propagation). For a path conditionΦ =
∧

ci ∈C ci =
<VΦ ,BΦ , CΦ>, let πCΦ be the set of projections for all the constraints CΦ . Con-
straint propagation CP de�nes a mapping between the the subsets of BΦ where
∀B ⊂ BΦ :

• CP(B) ⊆ B (contractance)

• ∀b ∈B b < CP(B) : ∃c ∈ CΦ b < Sc (correctness)

• ∀π ∈πCΦ
π (CP(B)) = CP(B) (�xed point)

The pruning level we can achieve using constraint propagation is dependent

on the ability of the projection function to identify value combinations that

do not satisfy the analyzed constraint [9]. However, projection functions

do not miss any solution [9]. In order to further prune the result boxes, the
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boxes are subdivided and constraint propagation is applied to each sub-box.

Such algorithms are called branch-and-prune algorithms. Such algorithms

terminate when for example the box is judged too small to be considered for

branching.
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Constraint reasoning techniques do not loose any solution during the process

of approximating the solution space of a set of constraints. Consequently,

using such techniques, we get a safe enclosure for the solution space of a

constraint.

Constraint reasoning techniques maintain two coverings for the solution

space SΦ of path conditionΦ. We assume that the variables VΦ are de�ned

over R, i.e., BΦ ⊆ R |VΦ |

De�nition 4.9. (Outer Box Cover). An outer box cover of SΦ is a set of disjoint
boxes S�

Φ = {B1, . . . ,Bn} where:

• ∀i ∈{1, ...,n }Bi ⊆ BΦ ∧ vol(Bi ) > 0

• ∀i, j ∈{1, ...,n }∧i,j vol(Bi ∩ Bj ) = 0

• SΦ ⊆
⋃n

i=1
Bi

vol(Bi ) is computed as the product of the intervals forming the box Bi .

Complementary to the concept of outer box cover, we de�ne the concept of

inner box cover.

De�nition 4.10. (Inner Box Cover). An inner box cover of SΦ is a set of disjoint
boxes S�

Φ = {B1, . . . ,Bn} where:

• ∀i ∈{1, ...,n }Bi ⊆ BΦ ∧ vol(Bi ) > 0 ∧ Bi ⊆ SΦ
• ∀i, j ∈{1, ...,n }∧i,j vol(Bi ∩ Bj ) = 0

•
⋃n

i=1
Bi ⊆ SΦ

The solution space SΦ of the path conditionΦ is approximated with a joint

cover of S�
Φ = <S�

Φ ,S
�
Φ > of the outer and inner cover box where S�

Φ ⊆ S�
Φ .
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Constraints over Integer Domains and Mixed Domains: The presented ap-

proach works also for integer domains and mixed integer constrains (i.e.,

constraints which contain both integer and �oating variables). As suggested

in [10], we can handle integer variables as �oating variables when each

domain modi�cation is followed by rounding the computed bounds to the

nearest integer inside the interval domain. The resulting integer value is

represented as a point interval to be conform to the de�nitions above of the

solution space enclosure.

Disjunctive Domains: Consider the case when a variable x is de�ned over

the union of intervals [−100, 2] ∪ [7, 100] ∪ [200, 500]. We can de�ne the

variable x over the interval [−100, 500] and add the constraint

min(x − 2,min(max(7 − x ,x − 100), 500 − x)) ≤ 0

Note that such operations are not di�erentiable. However, constraint rea-

soning techniques need only that the operations can be evaluated over the

intervals.

4.6.2. Solution Space of Constraints Over Data Structures

The computation of the solution space for constraints over data structures

deserves special interest. Such constraints are called heap constraints. The

solution space in the case of data structure variables is discrete. Quantifying

the solution space means counting the model formed by the constraints.

As before, we restrict ourselves to �nite input domains. Consequently, the

number of possible heap nodes in the input domain is �nite.

We propose to use Korat [12] to count the input data structure that satisfy a

constraint over data structures within pre-de�ned bounds. Korat is a frame-

work for the constraint-based generation of structurally complex inputs for

Java programs. Korat provides also e�cient counting of input data structures.

Korat generates the inputs by solving constraints written as a boolean method

called repOk. The body of such a method can contain any arbitrary complex

predicate. The scope of the input domain is speci�ed using speci�c Korat

methods. Scope methods are used to specify bounds on the size of the input
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data structures and bounds on the de�nition domain of the primitive �elds

of the data structure.

We encode the constraints we obtain from symbolic execution as a predicate

in the repOk methods. Korat counts then the data structures that satisfy the

constraints for a given scope.

Example: Consider the Java code in Listing 4.1 for swapping a node in a

linked list. The �eld element represent the integer value of the node. The

�eld next represent the next node in the list. The method swapNode updates

the input list which is referenced by the parameter this. The update is done

through a nonlinear condition on the nodes n and next.

class Node {

int element;

Node next;

5 Node swapNode () {

if(next!=null) {

if(element > next.element) {

//location to analyze

Node n = next;

10 next = n.next;

n.next = this;

return n;

}

}

15 return this;

}

}

Listing 4.1: Example swapping a node in a linked list

We illustrate now the use of Korat to count the data structure models. First

of all we scope our domain, and assume that the nodes can take the values

1 or 2. Additionally, we bound the size of the linked list to 2 nodes. These

bounds are passed to Korat via its scope methods.
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The path condition to reach the second branching condition in the swapNode

(i.e., the location at line 8) is:

node!=null ∧ node.next!= null ∧ node.next!=node ∧

node.element>node.next.element

We pass the path condition to the repOk method of Korat. The total number

of of valid input data structures that satisfy the path condition under the

speci�ed scope is 17. This means, there is 17 possible inputs to reach the

location at line 8 of the code in Listing 4.1.

Remark: Constraints over numerical domains that contain transitive de-

pendencies on the data structure encoded by the heap constraints are also

counted by Korat.

4.7. Probability of Satisfying a Path Condition

The theory of probability is a classical model to deal with uncertainty. A

probabilistic model is de�ned by a set of random variables and a set of events.

A random variable is a function from the sample space to the real numbers.

An event is an assignment of values to all the variables of the model.

We want to compute the probability of satisfying a path condition. In our

case here, the model is the path condition and the random variables are the

variables of the path condition. An event is an assignment of values to the

variables such that the path condition is satis�ed.

In order to specify a probabilistic model, a full joint probability distribution

should be explicitly or implicitly used. This distribution assigns a probability

measure to each possible event. Such distributions can be provided by an

operational pro�le.

Operational profile Example: Consider a method with a single input vari-

able x de�ned over a �oating domain. A possible operational pro�le can be

of the form OP = {(x ∈ [1, 10], 0.3), (x ∈ [20, 30], 0.7)}. This means that the

probability that the variable x takes values from the interval [1, 10] is 0.3 and

that it takes values from [20, 30] is 0.7.
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More formally, an OP can be de�ned as OP = {(Ci ,pi )|i ∈ {1, ...,L},∑L
i=1

pi = 1}: it is a set of pairs (Ci ,pi ) where Ci represents constraints over

the de�nition domain to describe a possible operational scenario, and pi is

the probability that an operational input belongs to Ci .

4.7.1. Probability of a Path Condition over Data Structures

For heap path conditions, we use model counting as described in Section

4.6.2. Let #(ci ) denotes the function which counts the number of elements

from a de�nition domain D, which satisfy ci . The probability of ci is then:

P(ci ) = #(ci )/#D.

Consider we have the following operational pro�le:

OP = {(Ci ,pi )|i ∈ {1, ...,L},
L∑
i=1

pi = 1}

For a path conditionΦ, it follows from the law of total probability:

P(Φ |OP) =
L∑
i=1

P(Φ |Ci ).pi

Furthermore, it follows from the de�nition of conditional probability:

P(Φ |Ci ) =
P(Φ ∧ Ci )
P(Ci )

Consequently, we obtain:

P(Φ |OP) =
L∑
i=1

#(Φ ∧ Ci )
#(Ci )

.pi
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4.7.2. Probability of a Path Condition over Numeric Domains

De�nition 4.11. (Probability of a Path Condition) The probability of a path
condition Φ = <VΦ ,BΦ , CΦ> given the indicator function 1SΦ (x) : R |VΦ | →
{1, 0} de�ned as follows:

1SΦ (x) =

{
1, if x ∈ SΦ
0, if x < SΦ

is de�ned as:

P(Φ) =

∫
BΦ
1SΦ (x). fVΦ (x)dx

where fVΦ is a full joint probability density function (p.d.f) over the path
constraint variables VΦ , SΦ the solution space of the path condition and BΦ the
de�nition domain of the path condition.

Generally, the multidimensional integral in Def. 4.11 may have no closed

form solution since the constraints of a path condition may de�ne a complex

nonlinear integration boundary. Our approach approximates the solution

space of a path condition with a joint cover S�
Φ = <S�

Φ ,S
�
Φ >.

Monte Carlo methods provide an approach to approximate the value of mul-

tidimensional integrals by randomly sampling N points in the multidimen-

sional de�nition space and averaging the integral values at the samples.

De�nition 4.12. (Monte Carlo Integration) Let SΦ ⊆ R |VΦ | , and B a |VΦ |-
dimensional box. If we sample uniformly N random values {x1, . . . ,xn} inside
B, then by the law of large numbers it follows:∫

B
1SΦ (x). fVΦ (x)dx u ÎSΦ (B, fVΦ ) =

∑N
i=1
1SΦ (xi ). fVΦ (xi )

N
.vol(B)

where vol(B) the volume of the box B.

By the central limit theorem, one can estimate the uncertainty in the approx-

imation of the Monte Carlo integration.

96



4.7. Probability of Satisfying a Path Condition

De�nition 4.13. (Standard Deviation of the Estimate) The standard deviation
of the approximation of the integral ÎSΦ (B, fVΦ ) follows from the central limit
theorem as follows:

σ (̂ISΦ (B, fVΦ )) =
vol(B)

N

√√√ N∑
i=1

(1SΦ (xi ). fVΦ (xi ))
2 −
(
∑N
i=1
(1SΦ (xi ). fVΦ (xi ))

2

N

The standard deviation describes a statistical estimate of the error on the

integral approximation.

De�nition 4.14. (Approximate Probability of a Path Condition) Given a joint
box cover S�

Φ = <S�
Φ ,S

�
Φ > of the solution space of a path condition Φ, an

approximation for the probability of satisfyingΦ is:

[P(Φ)] =
∑

Bi ∈S�
Φ

[∑N
i=1
1SΦ (xi ). fVΦ (xi )

N
.vol(Bi )

]
Monte Carlo Integration may su�er from a slow convergence rate especially

when the approximated integral gets close to zero. One may need a large

number of random samples N to approximate the probability to some given

con�dence. Strati�ed sampling and importance sampling are well-know

techniques to reduce the variance of Monte Carlo integration methods. We

integrate these techniques in our approximation as follows:

De�nition 4.15. (Approximate Probability of a Path Condition) Given a joint
box cover S�

Φ = <S�
Φ ,S

�
Φ > of the solution space of a path condition Φ, an

approximation for the probability of satisfyingΦ is:

[P(Φ)] =
∑

Bi ∈S�
Φ

[∑N
i=1
1SΦ (xi ). fVΦ (xi )

N
.P(Bi )

]
=

∑
Bi ∈S�

Φ

[
p̂i .P(Bi )

]

The scheme

∑
Bi ∈S�

Φ

[
p̂i .P(Bi )

]
integrates both strati�ed sampling and im-

portance sampling. Each box Bi can be written as the Cartesian product

of intervals: Bi : [a1,b1] × [a2,b2] × . . . × [ai ,bi ]. P(Bi ) is de�ned then
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as: P(Bi ) = Px1
([a1,b1]).Px2

([a2,b2]) . . .Pxi ([ai ,bi ]) with Pxi ([ai ,bi ]) =∫ bi
ai

fi (xi )dxi and fi the probability distribution function over the variable xi .

Such a distribution can be speci�ed in an OP.

4.8. Looping Constructs: Incremental Probabilistic
Symbolic Execution

Usually a bound on the exploration depth is set when executing a program

symbolically. Instead of setting a static bound, we introduce a probabilistic

bound Pdepth. Given an OP, the user may be interested in only exploring

program paths which have a probability higher than Pdepth. Algorithm 10

sketches our extension to symbolic execution to incrementally compute the

path condition probabilities. For a given program starting with statement

s , an initial update U0, an operational pro�le OP , and a probabilistic bound

Pdepth the call of IncProbSymExe(U0, s, true, ∅,OP, Pdepth) will return the path

conditions of all feasible paths of the program together with their computed

probabilities. Until a branching condition is found the procedure accumulates

the state changes in form of update expressions (lines 5-7). In the case of a

branching statement a new path condition is constructed for each branch

outcome based of the current path condition Φ and the branch conditions

(cond(s) and ¬cond(s)). Only if a constructed path condition is satis�able,

algorithm 11 computes its probability (usually SAT solving is less expensive

than model counting). The corresponding branch code is further proceeded

if the computed probability is higher than the bound Pdepth. Algorithm 11

splits the conjunction (line 1) as de�ned in Def. 4.5. It then computes the

probability ofΦ as described in Section 4.7.

4.9. Adaptive ConstrainedWhite-Box
Statistical Testing

Algorithm 12 works until line 11 as explained in Section 3.10. If the stopping

criteria (line 6) is not reached, then algorithm 12 executes the black-box test

cases and computes the posterior failure rate (line 9). Then faults are repaired.
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Algorithm 10: An abstract incremental probabilistic symbolic execution

procedure – IncProbSymExe

Data: U : Update, s : Statement, Φ : Formula, PCs : Set<Formula>
OP = {(Di ,pi )|i ∈ {1, ...,L},

∑L
i=1

pi = 1}, Pdepth
1 begin
2 if s = ∅ then
3 PCs← PCs ∪Φ
4 else
5 while ¬branch(s) do
6 U ← U ◦ update(s)
7 s ← next(s)

8 if SAT (Φ ∧ {U }cond(s)) then
9 P(Φ ∧ {U }cond(s)) ← computeProbs(OP ,Φ, {U }cond(s))

10 if P(Φ ∧ {U }cond(s)) ≥ Pdepth then
11 IncProbSymExe(U ,�rst(s),Φ ∧ {U }cond(s), PCs)

12 if SAT (Φ ∧ {U }¬cond(s)) then
13 P(Φ ∧ {U }¬cond(s)) ← computeProbs(OP ,Φ, {U }¬cond(s))
14 if P(Φ ∧ {U }¬cond(s)) ≥ Pdepth then
15 IncProbSymExe(U ,�rst(s),Φ ∧ {U }¬cond(s), PCs)

16 return <PCs, Probabilities>

Pdepth is computed as
1

|TOP |
, where |TOP | is the total number of test cases

that must be executed from the operational pro�le (OP). This describes the

smallest probability that a test case can take to be conform to the probability

distribution of the operational pro�le.

Using the computed Pdepth the incremental symbolic execution is called (line

12) to extract a set of path conditions together with their probability of satis-

faction according to the OP, PCi ,P(PCi ). Then, algorithm 12 is recursively

called using the new extracted operational pro�le PCi ,P(PCi ) line (13).
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4. Adaptive Constrained Weighted White-Box Statistical Testing

Algorithm 11: Compute formula probability and search depth –

computeProbs

Data: OP = {(Di ,pi )|i ∈ {1, ...,L},
∑L

i=1
pi = 1},

Φ : Formula, c : Formula
1 begin
2 <Φdep ,Φnotdep> = split(Φ, c)
3 P(Φ) ← P(Φ(notdep)) //Previously computed and in cache

4 P(Φ) ← P(Φ) +P(Φdep |OP)
5 return P(Φ)

4.10. Discussion

In algorithm 12, the incremental symbolic execution is restarted at each

iteration of the algorithm (line 12). This is explained by the fact that after

fault repair, the behavior of the software program is expected to change.

Therefore, it may happen that some path condition disappear after fault

repair. Consequently, it is necessary to restart symbolic execution at each

iteration of the algorithm.

Furthermore, we do use the predictive approach presented in Section 3.11,

since the available test inputs per path condition may be not su�cient to

train the Gaussian process.
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4.10. Discussion

Algorithm 12: Adaptive Constrained White-Box Statistical Testing -

adaptiveWhiteBox

Require: OP = {(Di ,pi )|i ∈ {1, ...,L},
∑L

i=1
pi = 1}

∆ : maximal allowed test time

1 − α : con�dence level

d : margin of error

//1. Initialization

TOP = computeIntialTestCases(OP)
{(Di ,pi , µ̂i ,σi

2, β1

i , β2

i )|i ∈ {1, ...,L}} = computePriorFailure(TOP )

Repair faults if failures are revealed

//2. Adaptive constrained test selection

while true do
5: (TOP , opt) = computeOptimalTestCases({(Di ,pi , µ̂i ,σi

2, β1

i , β2

i )|i ∈
{1, ...,L}}})
if ∆ passed or (opt = L ∧ SC(TOP ) = 100%) then

break;

end if
{(Di ,pi , µ̂i ,σi

2, β1

i , β2

i )|i ∈ {1, ...,L}} =
computePosteriorFailureRate(TOP , {(Di ,pi , µ̂i ,σi

2, β1

i , β2

i )|i ∈
{1, ...,L}})

10: Repair faults

Pdepth ←
1

|TOP |

(PCi ,P(PCi )) ← IncProbSymExe(U0, s, true, ∅,OP, Pdepth)
adaptiveWhiteBox(PCi ,PCi)
opt = 1

15: end while
return R̂ =

∑L
i=1

pi .(1 − µ̂i ), var[R̂] =
∑L

i=1
pi

2 σi 2

|T(Di ,pi ) |
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5. Verification-Based Reliability
Assessment

In the following we consider a white-box software component, where its

provides and required methods are formally speci�ed (e.g., JML contracts).

Furthermore, we require a speci�cation of its execution environment (e.g.,

provided by using the Palladio Component Model). We use in the following

the KeY theorem prover as the deductive source code veri�cation system to

illustrate our approach. However, we believe that our approach can be easily

extended to other deductive veri�cation systems.

5.1. Problem Definition

Deductive source veri�cation can automatically prove the correctness of a

software with respect to a formal veri�cation. If we formally verify the soft-

ware program as well as its environment, then the veri�cation system would

certify the 100% reliability of the software system with total con�dence (i.e.,

perfect reliability). However, usually it is not practical to verify the software

program as well the execution environment. In such as case only the software

program may be veri�ed. In order to consider the execution environment

of the software program, exhaustive testing is executed (veri�cation-based

testing). However, exhaustive testing is usually impractical for real work

software systems. Furthermore, without doing exhaustive testing, we cannot

make any statement about the reliability of the software under study. Existing

reliability assessment approaches do not make use of the certainty gained

after the veri�cation of the software program and rely on veri�cation for the

generation of exhaustive test cases. Can we make use of the certainty gained

from veri�cation for the reliability assessment to avoid exhaustive testing?
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5. Veri�cation-Based Reliability Assessment

Now, let us assume that veri�cation is only done for the software program.

Because of the semi-decidability of �rst-order logic, the KeY theorem prover

may never terminate (e.g., because of existing software faults). If a timeout is

set, then KeY would not close all proof obligations, i.e, some proof obligations

will remain open. In such as case, the open branches are usually exhaustively

tested to detect possible faults. However, in order to estimate the reliability

of the software system, the whole software should be exhaustively tested as

explained above.

We believe, however, that the closed proof obligations give us some certainty

about the reliability of the software systems, and the open branches should

reduce our con�dence on the software reliability

5.2. Research Goals

Our �rst goal is to make it possible to assess the reliability of a software system

without explicitly modeling the execution environment in the veri�cation

logic. This would allow us to quantify the reliability of the software system

after veri�cation is done without the need to exhaustively test it to take the

environment into consideration.

The second goal, uses the �rst goal to quantify the reliability of the software

system when some proof obligations are open. This means, our goal is to

quantify the uncertainty produced by the open proof obligations on the

reliability estimate.

5.3. Assumptions

The veri�cation-based reliability assessment approach we present in this

Chapter makes use of both the white-box and the black-box approaches from

Chapters 4 and 3. Consequently, we adopt the same assumptions as in Section

4.3 and 3.4.

Furthermore, we assume that:
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• a speci�cation of the reliability of the execution environment is

provided as described in Section 2.2.4.

• each required method is formally speci�ed in order to be able to run

the veri�cation.

5.4. Motivating Example

Deployment Model

«resource container»
Server2

«resource»
CPU2

«resource»
HD1

«resource container»
Server1

«resource»
CPU1

MTTF: 150h
MTTR: 8h

MTTF: 200h
MTTR: 8h

MTTF: 100h
MTTR: 6h

fp:
0.00002

user

delegatedSort

localSort

advancedSort
clusterSort

mergeSort

mergeSortclusterSort

d.size <1000d.size >1000

sort
d.size > 1000 (0.2) / 
d.size < 1000 (0.8)

sort

Usage Model

<<uses>>

<<implements>>

Component Service Behavior Model

<<allocated>>

<<allocated>>

<<allocated>>

Figure 5.1.:Motivating Example – PCM Instance
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Figure 5.1 shows a motivating example for our veri�cation-based reliability

assessment approach. The example shows a Palladio Component Model in-

stance. The example consists of three software components. The delegatedSort

component requires an advancedSort component and a localSort compo-

nent. The dependencies between the components is described by the compo-

nent service behavior model.



5. Veri�cation-Based Reliability Assessment

/*@ ensures isSorted(\result); *@/

public Data delegatedSort(Data d){

if(d.size < N){

5 return mergeSort(d);

}else{

return clusterSort(d);

} }

10 /*@ ensures ...; *@/

public boolean isSorted(Data d);

/*@ ensures isSorted(\result); *@/

15 public Data mergeSort(Data d);

/*@ ensures isSorted(\result); *@/

public Data clusterSort(Data d);

Figure 5.2.:Motivating example Code

The provided method sort is supposed to sort the data of a class Data which

is provided as argument d. If the size of the data is smaller than some number

1000, then the method mergeSort provided by the component localSort is

invoked to perform the sorting, otherwise the method clusterSort provided

by the component advancedSort is invoked.

The usage model speci�es how the provided method sort will be called by

the user. According to the usage model, we expect that d.size > 1000 in

20% of the cases, and d.size < 1000 in 80%. The Palladio Component Model

uses the usage model and the component service behavior model to solve

parameter dependencies, and output an operational pro�le for each provided

method.

Assume now that the component advancedSort is a COTS component and

its code is not available. We use then our black-box reliability assessment

approach to estimate the reliability of its provided method clusterSort.
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5.5. Reliability Assessment When Proof Attempt Succeeds

Assume that the component localSort is not planned for formal veri�cation,

but its source code is at hand. We use then our white-box reliability approach

to estimate the reliability of the provided method mergeSort.

Using KeY the correctness of the implementation in Figure 5.2 of delegatedSort

wrt. its speci�cation can be easily proved—but, how reliable is the method in

practice?

The deployment model as depicted in Figure 5.1, de�nes the execution en-

vironment consisting of physical computing nodes connected via network

links. Each component is deployed on a physical computing node. The

availability of each physical node can be computed as described in Section

2.2.4. Furthermore, the method clusterSort is called via network and the

failure probability of the network should be considered when estimating the

reliability.

5.5. Reliability Assessment When Proof
Attempt Succeeds

Assume, that we used KeY to verify the correctness of the provided method

sort of the component delegatedSort and the proof attempt succeeded. In

such a case we obtain a set of closed proof obligations with PCs, PCc =

{PCc
1
, PCc

2
, . . . , PCc

m}.

The reliability of the software is thus estimated as:

R̂ =
m∑
i=1

P(PCc
i |OP).(1 − FRi )

where P(PCc
i |OP) the probability of executing the path condition PCc

i given

the operational pro�le OP , computed as explained in Chapter 4. Let M be the

set of required methods called within PCc
i , that isM = {m1

r equired , . . . ,m
|M |
r equired }.

Then, FRi is de�ned as follows:

FRi = (1 −Av(ei )).

|M |∏
j=1

µ̂(mj
r equired ).r

j
cr
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5. Veri�cation-Based Reliability Assessment

FRi = 1 −Av(ei ).

|M |∏
j=1

(1 − µ̂(mj
r equired )).r

j
cr

with Av(ei ) the availability of the execution environment where the pro-

gram path represented by PCc
i is executed (i.e, the availability of the physical

computing node where the component delegatedSort is deployed), and

µ̂(mj
r equired ) is the failure rate of the methodmj

r equired , and r jcr is the relia-

bility of call and return of the required methodmj
r equired de�ned as:

• r jcr = 1, ifmj
r equired is called within the same physical computing

node as the program path represented by PCc
i .

• r jcr = (1 − f p(L))2, otherwise, where f p(L) is the failure probability of

the network link used for the two message transports call and return.

A software component per de�nition should encapsulate its state or behav-

ior behind an interface. Furthermore, a component is only dependent on

its framework and other components in its operating environment, where

the dependencies are explicitly de�ned through the required and provided

interfaces.

Therefore, we can assume that the failure rate of the required methods

M = {m1

r equired , . . . ,m
|M |
r equired } called within PCc

i are independent.

The failure rate ofmj
r equired can be estimated using:

• the black-box reliability assessment approach presented in Chapter 3,

if the component implementingmj
r equired is black-box

• the white-box reliability assessment approach presented in Chapter 4,

if the component implementingmj
r equired is white-box

• the approach presented in this Section, ifmj
r equired is implemented

by a component we want to formally verify its correctness

In all cases, a failure rate µ̂m j
r equired

and a variance σ̂ 2

m j
r equired

are estimated

for eachmj
r equired .
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5.5. Reliability Assessment When Proof Attempt Succeeds

Recall that for independent random variables X1, . . . ,Xn , we have:

var (
n∏
i=1

Xi ) = E[(
n∏
i=1

Xi )
2] − (E[

n∏
i=1

Xi ])
2

= E[(
n∏
i=1

Xi
2)] − (

n∏
i=1

E[Xi ])
2

=

n∏
i=1

E[Xi
2] −

n∏
i=1

(E[Xi ])
2

=

n∏
i=1

(var (Xi ) + (E[Xi ])
2) −

n∏
i=1

(E[Xi ])
2

Consequently, the variance the failure rate for PCc
i can be computed as

follows:

σ̂ 2

i =

|M |∏
i=1

(σ̂ 2

m j
r equired

+ (µ̂m j
r equired

)2) −

n∏
i=1

(µ̂m j
r equired

)2

Now using equation (3.5b), the variance of the reliability estimate R̂ can be

computed as follows:

var (R̂) =
m∑
i=1

P(PCc
i |OP)

2
σ̂ 2

i

ni

=

m∑
i=1

P(PCc
i |OP)

2
σ̂ 2

i

#(OP)P(PCc
i |OP)

=

m∑
i=1

P(PCc
i |OP)

σ̂ 2

i

#(OP)

where ni the number of test cases (samples) executed from PCc
i , de�ned

as ni = #(OP)P(PCc
i |OP), with #(OP) the cardinality of the input domain

which we assume �nite. Since PCc
i is veri�ed as correct, this means that all
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5. Veri�cation-Based Reliability Assessment

possible inputs satisfying PCc
i will execute it correctly. Since the variance σ̂ 2

i
is computed based on the fact that PCc

i is veri�ed as correct, then it follows

that ni is the number of all test cases that can execute PCc
i .

Now, if a con�dence level 1 − α is required for the reliability estimate R̂ with

a margin of error d , then we can compute based on the variance var (R̂), the

actual margin of error as:

z α
2

√
var (R̂)√
#(OP

where z α
2

is the upper
α
2

critical value for the standard normal distribution.

If d < z α
2

√
var (R̂)
√

#(OP
, then testing is required. In such a case, since all PCs

are correct, then the black-box reliability assessment approach presented in

Section 3.10, can be used to decrease var (R̂) and hence decrease the margin

of error d .

5.6. Reliability Assessment When Proof
Attempt not Succeed

If the proof attempt does not succeed, then we obtain open proof obligations

with PCs, PCo = {PCo
1
, PCc

2
, . . . , PCo

p }. Here we di�erentiate between two

cases: (i) some proof obligations are closed, (ii) all proof obligations are

open.

5.6.1. Some Proof Obligations are Closed

In such as case we can estimate the reliability as well as its variance as shown

in Section 5.5.
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5.7. Recursive Method Calls and Looping Constructs.

The PCo
s decrease our con�dence on the reliability estimate to

c = 1 −

p∑
i=1

P(PCo
i |OP)

If the con�dence c or the reliability estimate R̂ are less than the user required

values, then we execute statistical testing only on the PCo
s. The PCs identi�ed

by KeY de�ne disjoint input sets of the software program. Consequently,

symbolic execution de�nes a �ne grained representation of the OP:

OPsym = {(PCi ,P(PCi |OP))|i = 1, 2, . . . , (n + p),

n+p∑
i=1

P(PCi |OP)) = 1}

that we use as input to our adaptive test selection approach. The approach

uses the symbolically estimated reliability and the �ne grained OPsym to

e�ciently select test cases across the PCs. Assume that the adaptive selection

approach requires that nc test cases should be selected from the PCc
s and

no from the PCo
s. We do not execute PCc

s, but we take their failure rates,

the variances of the failure rate as well as the probabilities of PCc
to be

executed into account when computing the required number of test cases

to estimate the unknown failure rate of the PCo
s and bound its unknown

variance. Therefore, instead of executing no + nc test cases, we execute only

no test cases.

5.6.2. All Proof Obligations are Open

In such as case, the white-box reliability assessment approach is used to

estimate the reliability and its variance.

5.7. Recursive Method Calls and
Looping Constructs

In our approach we treat recursive method calls and looping constructs

by bounded unrolling. This allows full automation of the approach. The

standard solution is to set a static bound on the exploration depth. We
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5. Veri�cation-Based Reliability Assessment

guide the construction of the proof tree based on the user required reliability

goal. Based on user reliability goal, our adaptive white-box approach (See

Section 3) computes the required number n of test cases to be executed to

reach the target reliability goal. Each test has a corresponding PC . Given

an OP = {(Di ,pi )|i = 1, 2, . . . ,L,
∑L

i=1
pi = 1}, each test execution from a

subdomain Di has at least the probability pi/n. At each unrolling attempt

of a loop we compute the probability of the obtained PC and unroll the loop

if P(PC |Di ) < pi/n. This bound is computed based on the reliability goals

and adaptively updated after test cases are executed and reliability goals not

reached (see previous section when proof attempt not succeeds).
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6. Validation

In this Chapter, we experimentally evaluate the goal of our approach in

reducing the number of test cases required to reach a target con�dence on the

reliability estimate. Our approach is composed of three techniques (i) Black-

Box reliability assessment, (ii) White-Box reliability assessment, and (iii)

Veri�cation-based reliability assessment. Consequently, we experimentally

evaluate the ability of each of the three techniques in reducing the testing

overhead. A subset of the presented case studies have been presented in our

publications [72] and [73]. Furthermore, we study the ability of our approach

in reducing the sensitivity of the reliability estimation to variations of the

operational pro�le.

6.1. Black-Box Reliability Assessment

The goals of the following experimental validation are:

1. validate the reliability estimation e�ciency and accuracy of the

black-box reliability assessment approach compared to

state-of-the-art statistical testing approaches

2. validate the prediction accuracy of the non-parametric reliability

prediction model compared to state-of-the-art reliability models

6.1.1. Reliability Estimation E�iciency and Accuracy

We conduct a set of experiments on two real subject programs to evaluate the

performance of the adaptive constrained statistical test selection (ACSTS) ap-

proach against the standard proportional test selection approach as proposed
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by Musa [69] (PS), and the (theoretical
1
) optimal test selection approach (OS)

with respect to the estimated reliability accuracy and precision.

6.1.1.1. Subject Programs

Two real subject programs are used to evaluate the e�ciency of ACSTS:

TCAS: Tra�c Alert and Collision Avoidance System prevents aircraft from

midair collisions. The correct versions, 41 faulty versions of the programs as

well as a suite of 1608 test cases were downloaded from [84]. TCAS is 173

LOCs big.

Space: a language oriented user interface developed by the European Space

Agency. It allows the user to describe the con�guration of an array of antennas

with a high level language. The correct version as well as the 38 faulty versions

and a test suite of 13, 585 test cases are downloaded from the software-artifact

infrastructure repository (http://sir.unl.edu). In these experiments, three

faulty versions are not used because we did not �nd test cases that failed on

these faulty versions. Space is 9126 LOCs big.

A failure of an execution is determined by comparing the outputs of the

faulty version and the correct version of the program. A failure is a deviation

from the expected output. The failure rates for both studied programs are

empirically computed by executing all the available test cases against each

faulty version of a program and recording the number of failed test cases.

6.1.1.2. Operational Profiles

Operational pro�les for TCAS and Space are not available. We create op-

erational pro�les for TCAS and Space as follows. We assume that in each

sub-domain Di , all possible inputs are equally likely to arise. Hence, it follows

that the number of sub-domains (greater or equal to two sub-domains) as

well as the number of inputs in each sub-domain may not bias the statistical

properties (i.e., variance and mean) of the estimated reliability. The estimated

reliability is in�uenced by the probability of occurrence of the sub-domains,

as well as the true failure rate of the tested software when executed with

1
We assume here that we know the failure rates in advance, and we sample accordingly
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6.1. Black-Box Reliability Assessment

inputs from each sub-domain. In that sense, we partition the test cases of

TCAS and Space in six disjoint sub-domains. All six sub-domains contain the

same number of test cases except for rounding issues. For each sub-domain,

test cases are randomly selected without replacement from the pool of test

cases. In order to minimize possible bias due to the choice of the test cases

in each sub-domain, we repeat the allocation of the test cases of each sub-

ject program into the six sub-domains twice. This results into 2 possible

allocations of the test cases to sub-domains Di for each subject program.

We de�ne two di�erent pro�les for the probability of occurrence of the

sub-domains:

1. uniform pro�le: the probability of occurrence of each sub-domain is

the same except for rounding error

2. optimal pro�le: the probability of occurrence of each sub-domain is

proportional to the number of test cases allocated to each sub-domain

using optimal allocation

These two pro�les are some typical or extreme pro�les and cannot represent

all usage scenarios in �eld use.

Consequently, for each subject program, 4 di�erent operational pro�les are

created.

The 1608 test cases of TCAS are partitioned into six disjoint classes each

contains 268 test cases. The 13, 585 test cases of Space are partitioned into

six disjoint classes: 2264, 2264, 2264, 2264, 2264 and 2265.

6.1.1.3. Performance Metrics

ACSTS, PS and OS are randomized test selection strategies. For statistical

signi�cance, we conduct 200 independent repetitions of each experiment for

each test selection strategy.

We compare the performances of ACSTS, PS and OS by comparing the accu-

racy and precision of the estimated reliability by each approach. The accuracy

of an estimate is a measure of how close the estimated value is to its true

value. The precision of an estimate is a measure of how close the estimates

measured from di�erent samples are to another, when the samples are taken

115



6. Validation

from the same data set. We use the sample variance as metric for the reli-

ability estimation accuracy. The sample variance is an unbiased estimator

of the variance. We use the root mean squared error (RMSE) to quantify the

estimate precision.

Based on assumption 6 in Section 3.4, the reliability estimates delivered by

ACSTS, PS, and OS are unbiased. Consequently, we can compare the relative

e�ciency of the estimates using the sample variance. For each experiment E
we de�ne the mean value of the reliability estimate (R), its sample variance

( S2

199
(R̂)), its root mean squared error (RMSE(R̂)), and the relative e�ciency

of the reliability estimator using ACSTS to PS and OS as follows:

R =
1

200

200∑
i=1

R̂i , S2

199
(R̂) =

1

199

200∑
i=1

(R̂i − R)
2

RMSE(R̂) =

√√√
1

200

200∑
i=1

(R̂i − R)2

e�(R̂ACSTS , R̂PS ) =
RMSE(R̂PS )

RMSE(R̂ACSTS )

e�(R̂ACSTS , R̂OS ) =
RMSE(R̂OS )

RMSE(R̂ACSTS )

where R is the true reliability calculated based on the true failure rates, R̂i the

reliability estimate in repetition i of the experiment, R̂ACSTS the reliability

estimate using ACSTS, R̂PS the reliability estimate using PS and R̂OS the

reliability estimate using OS.

The di�erences in reliability mean values between the di�erent test selection

strategies is con�rmed using the the non-parametric Matt-Whitney U test

[97]. The di�erences between the sample variances are tested using the

Brown-Forsythe test[97].

For each experiment and for each test selection strategy, we compute the

reliability estimate at seven checkpoints: 200, 250, 350, . . . , 500. After 200

repetitions of the experiment, we compute the mean value, sample variance

116



6.1. Black-Box Reliability Assessment

Variance Mean
Scenarios ACSTS OS ACSTS OS

TCAS pro�le1 PS 0/7 1/7 7/7 0/7

OS 0/7 – 7/7 0/7

TCAS pro�le2 PS 0/7 0/7 7/7 0/7

OS 0/7 – 7/7 –

TCAS pro�le3 PS 1/7 0/7 7/7 0/7

OS 0/7 – 7/7 -

TCAS pro�le4 PS 0/7 0/7 7/7 0/7

OS 0/7 – 7/7 –

Table 6.1.:Matt-Whitney U and Brown-Forsythe test results for the sample means

and variances for TCAS

117

and the root mean square error of the reliability estimates for each test

selection strategy. Note that the more test cases are executed the more will

the variance of the estimator decrease. In addition, the experimental dataset

is selected randomly from the population and the selection is repeated 200

times. Consequently, the selected dataset do not a�ect the e�ciency and the

generalizability of ACTS.

6.1.1.4. Experimental Results

The goal of this set of experiments is to assess the e�ciency and precision of

our reliability estimation approach.

Figures 6.2 and 6.1 present the sample means and sample variances for TCAS

and Space respectively. The dashed lines are the true reliability values for

the subject programs.

According to the experimental results, the means as well as the sample

variances of the reliability estimates of ACSTS are closer to the true values

than those of PS and OS. This is con�rmed by the statistical tests Matt-

Whitney U test and Brown-Forsythe test in tables 6.1 and 6.2. Both tables

con�rm that ACSTS signi�cantly deliver more accurate reliability estimate

that PS and OS.
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Figure 6.1.: Sample means and variances of the reliability estimates for Space
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6.1. Black-Box Reliability Assessment

Figure 6.2.: Sample means and variances of the reliability estimates for TCAS
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Variance Mean
Scenarios ACSTS OS ACSTS OS

Space pro�le1 PS 0/7 4/7 6/7 0/7

OS 0/7 – 7/7 –

Space pro�le2 PS 0/7 1/7 7/7 7/7

OS 1/7 – 7/7 –

Space pro�le3 PS 1/7 1/7 7/7 5/7

OS 1/7 – 5/7 –

Space pro�le4 PS 0/7 1/7 5/7 1/7

OS 2/7 – 6/7 –

Table 6.2.:Matt-Whitney U and Brown-Forsythe test results for the sample means

and variances for Space

During the experiments some failures are not observed, since the number

of test cases used in each experiment is limited. Consequently a bias is

introduced intro the reliability assessment. Figure 6.3 depicts the RMSEs for

the studied approaches. Figure 6.3 shows that ACSTS provide low RMSEs

compared to PS and OS. Consequently, ACSTS introduces less bias to the

reliability estimate that PS and OS.

The computed mean of the relative e�ciency of the reliability estimator using

ACSTS compared to the one using PS for the TCAS experiments was 1, 71.

This means, that PS will yield a reliability estimate as accurate as ACSTS only

if 71 % more test cases are selected.

The computed mean of the relative e�ciency of the reliability estimator using

ACSTS compared to the one using OS for the TCAS experiments was 1, 32.

This means, that OS will yield a reliability estimate as accurate as ACSTS

only if 32 % more test cases are selected.

For the Space experiments, the relative e�ciency to PS and OS estimators

was 1, 57 and 1, 23 respectively.
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Figure 6.3.: RMSEs of the reliability estimates for TCAS and Space
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6.1.1.5. Threats to Validity

There are several potential threats to the validity of the experiments, which

are not limited to the following.

Construct validity: The experiments make use of operational pro�les that

were synthetically created based on available test suites. However, assump-

tions on the operational pro�les may cause bias. In order to minimize possible

bias due to the choices of the test cases in each sub-domain, the allocation of

the test case to the sub-domains is repeated four times. We conduct then the

experiments on all the created operational pro�les.

Internal validity: The experiments compare the performance of test selec-

tion strategies with a focus on variance minimization. For each test selection

strategy, 200 repetitions are conducted in each experiment to ensure con-

�dence and statistical signi�cance of the computed results. For each test

selection strategy, the sample means, the sample variances and the RMSEs of

the reliability estimates are compared using the Matt-Whitney U test and the

Brown-Forsythe test to avoid possible statistical bias during the comparison.

The used statistical tests are less sensitive to the data distribution allowing

us to avoid assumptions about distribution of data. Another important threat

to validity is that mutation and similar fault injection techniques were used

to create faulty versions of the studied subject. Primary motivator for this is

that faulty software version were not readily available. In addition, mutation-

based fault injection have been actively used in software testing research like

[3] and [32], where it has been shown that mutation is an e�ective approach

to simulate realistic faults and provide a low-cost way to obtain sets used

to obtain statistically signi�cant conclusions. Consequently, while mutation

techniques represent a potential threat to the validity of our experiments, we

think it is a necessary technique to enlarge our data sets.

6.1.2. Prediction Accuracy of the Reliability Prediction Model

We perform an extensive evaluation of our reliability prediction model, de-

scribed in Section 3.11, based on benchmark data set presented in [29]. The

experiments are applied on bug and test data of the following open source

software: Mylyn, Equinox framework and Eclipse JDT Core. Table 6.3, sum-

marizes the experiments subjects.
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System Prediction
Release

Time period

#C
la
ss
es

#V
er
si
on

s

#T
es
tC

as
es

#P
os
t-
re
l.
de

fe
ct
s

Eclipse JDT

Core

3.4 1.1.2005 – 6.17.2008 997 91 9, 135 463

Equinox

framework

3.4 1.1.2005 – 6.25.2008 439 91 1, 616 279

Mylyn 3.4.1 1.17.2005 – 3.17.2009 2, 196 98 9, 189 677

Table 6.3.: Summary of characteristics of the considered benchmark systems

6.1.2.1. Experimental Setup and Metrics

For a given release of the subject software, we predict the post release failure

rate for each class of the software. As independent variables for our Gauss

regression-based reliability model, we use the number of existing test cases

per class as well as two di�erent software metrics as proposed by [29]:

1. Entropy of changes, which measures how changes to the source code

are distributed in the software over a time interval when repairing

faults. This metric computes the Shannon entropy of code changes

[51]. The intuition of this metric is as follows: the more distributed

the changes, the higher the complexity of the repair.

2. Entropy of source code, which extends the entropy of changes metric

with the concept of the CK source code metric [21].

Both metrics have been computed and provided by [29].

We compare the prediction accuracy of our prediction model with:

1. the poisson generalized linear model (pGLM) [35], which is the basis

of most of the software reliability models
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System pGLM Our Model NN

Eclipse JDT Core 1.41(0.45) 1.03(0.36) 1.48(0.58)

Equinox framework 1.18(0.36) 1.03(0.26) 1.86(0.21)

Mylyn 1.23(0.08) 0.97(0.07) 1.31(0.33)

Table 6.4.: Entropy of Change Metric and # test cases

Since all models are randomized, we repeat our experiments 20 times. Each

experiment gets di�erent training set at each repetition. We report then the

means of the estimated accuracy as well as the standard deviations. In order

to compare the accuracy of the prediction models, we compute the root mean

squared error (RMSE) between the actual and the predicted failure rate and

the standard deviations over the 20 rauns of our experiments.

6.1.2.2. Evaluation Results Using Entropy of Change Metric

Table 6.4 summarizes the obtained performances of the evaluated prediction

models when using entropy of changes and the number of test cases as

independent for model training and prediction generation. As shown in table

6.4, our model yields better performance than both GLM and NN.

6.1.2.3. Evaluation Results Using Entropy of Source Code Metric

Table 6.5 summarizes the obtained performances of the evaluated prediction

models when using entropy of source code and the number of test cases

as independent for model training and prediction generation. As shown in

table 6.5, our model yields better performance than both GLM, and better

performance than NN with only one exception.
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2. the standard feed forward neural network, which has been used in

[86], and outperformed the traditional software reliability models.

The prediction accuracy of the three prediction models is assessed using cross

validation as follows: 80 % of the available classes are used for model training

and the rest of classes are used to test the accuracy.
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System pGLM Our Model NN

Eclipse JDT Core 1.50(0.43) 0.96(0.23) 0.84(0.16)

Equinox framework 1.02(0.46) 0.92(0.21) 1.01(0.11)

Mylyn 1.26(0.32) 0.60(0.18) 1.25(0.37)

Table 6.5.: Entropy of Source Code Metric and # test cases

System pGLM Our Model NN

Eclipse JDT Core 1.09(0.18) 1.03(0.40) 1.35(0.51)

Equinox framework 1.06(0.19) 0.92(0.24) 1.47(0.44)

Mylyn 1.13(0.39) 1.10(0.14) 1.35(0.23)

Table 6.6.:Only # test cases

6.1.2.4. Evaluation Results Without So�ware Metrics

Table 6.6 summarizes the obtained performances of the evaluated prediction

models when using only the number of test cases as independent for model

training and prediction generation. As shown in table 6.6, the performance

of all models is poor compared to the case when software metric are used in

tables 6.5 and 6.4.

Consequently, using software metrics for the prediction of the failure rate

should increase the accuracy of our model.

6.2. White-box Reliability Assessment

The goals of the following validation are:

1. validate the accuracy and performance of our approach for

computing the probability of path conditions compared to

state-of-the-art approaches

2. show the applicability of our approach in aiding during program

understanding and testing
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3. validate the reliability estimate e�ciency of the source code based

reliability assessment approach compared to the black-box one

6.2.1. Implementation Details and Experimental Setup

Implementation: The prototype implementation of the probabilistic sym-

bolic execution approach works with the symbolic execution engine of both

KeY and Java Path�nder. In order to split a path condition into disjoint sets

of dependent constraints (see Def. 4.5), we model the constraints of each

path condition as an undirected graph. The nodes of the graph are the con-

straints and the edges encode a dependency between the constraints: when

constraints share the same input variable, an edge is added between the

corresponding nodes. The computation of the connected components of

the graph delivers us the split. In order to approximate the solution space

of the constraints with a union of boxes, we base our implementation on

an interval branch-and-prune constraint propagation framework, RealPaver

[48]. The original RealPaver de�nes a user de�ned stopping criteria for the

branch-and-prune algorithm by specifying (i) a maximal time budget per

query, or (ii) the number of boxes reported per query, or (iii) lower bound on

the size of box eligible for branching. We extended RealPaver by introducing

a new stopping criteria which is more suitable to our probabilistic setting.

Our goal when approximating the solution space of a path condition is the

accurate computation of the probability of that path condition. The stopping

criteria we introduced to the branch-and-prune algorithm imposes a used

de�ned accuracy to the probability enclosure computed with Monte Carlo

integration over the outer box cover. This allows us to control the branch-

ing part toward the boxes with the highest uncertainty in their computed

probability. Consequently, we can e�ciently reduce the uncertainty on the

computed probability. In the case that the user required accuracy is too sharp

and the required accuracy cannot be reached (because of the accumulation

of rounding errors), the branch-and-prune algorithm stops when the lower

bound on the size of the boxes reached (there are no more eligible boxes).

All the following experiments are executed on an Mac Pro 2.66 Ghz with

8Gb of memory running OSX 10.9. Our tool implementation as well as the

source code of the examples used in the experiments and the evaluation can

be downloaded from [77].
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Experimental Setup and Metrics: The following experiment evaluates how

our approach compares with recently developed techniques, VolComp [91,

81] and qCoral [78, 11]. VolComp and qCoral are both recent techniques

to approximate the probability of constraints. We use the built-in method

NProbability (with the default parametrization) of the mathematical tool

Mathematica [63] as a baseline for comparison. NProbability computes

numerical integrals over predicates and probabilities, terminates when default

accuracy requirements are met, and noti�es when the accuracy requirements

are not met.

VolComp bounds the solution with an interval. qCoral as well as our approach

report the approximated solution and a standard deviation of the approxi-

mation. Our approach was con�gured as follows: (i) for the Monte Carlo

integration, we use N = 1000 random samples, (ii) we set the lower bound on

the size of the boxes eligible for branching to 10
−5

and (iii) we set the required

accuracy to 0.005 (the stopping criteria of our approach). We used the same

con�guration for qCoral, except the accuracy stopping criteria, since qCoral

do not provide such a feature. Both our approach and qCoral implement

randomized algorithms. We report averaged estimate and standard deviation

over 20 runs.

To compare the three approaches, we selected benchmarks from the publicly

available VolComp benchmarks [91]. The comparison subjects are: (i) ARTRIAL:

the Framingham artial �brillation risk calculator, (ii) CORONARY: the Fram-

ingham hypertension risk calculator, (iii) PACK: a model of a robot packing

objects with varying weights and (vi) VOL: controller for �lling a tank with

�uid at certain rates. The path conditions for these programs are produced

using VolComp.

6.2.1.1. Experimental Results

Table 6.7 summarizes the comparison between our approach and VolComp

and qCoral. The �rst column of Table 6.7 state the program event whose

probability is computed. The second column #PCs states the number of path

conditions that reach the event.

In summary, our approach was almost always faster than qCoral, VolComp

and NProbability (except for the VOL example, where VolComp was slightly
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faster). Note that the performance of NProbability depends usually on ad-

vanced settings. The tuning of such settings requires a deep understanding of

the mathematical properties of the function to integrate. Such an understand-

ing may not be derived from the code during the analysis. The e�ciency

of our approach compared to qCoral can be explained by the fact that we

apply Monte Carlo Integration only on the outer box cover of the approxi-

mated solution space. However, qCoral samples randomly over the whole

approximated solution space. Our approach required more than 30 minutes

to compute the Vol event count ≥ 20. This is caused by the accumulation of

rounding errors. Rounding errors accumulation magni�es when the quanti-

�ed probability is close to 1. The rounding errors increase the uncertainty

about the estimate. More uncertainty means more sampling.

We notice that the estimates computed by our approach as well as the esti-

mates computed by qCoral fall within the bounds extracted by VolComp. The

estimates delivered by our approach were closer to the exact solutions deliv-

ered by NProbability than the estimates produced by qCoral and VolComp.

The precision of our approach is due to the integration of importance sam-

pling and strati�ed sampling which reduce the uncertainty of the estimate.

In addition, we control the branching step of the interval branch-and-prune

algorithm toward branching the boxes with the highest uncertainty. This

should decrease the overall uncertainty.

We observe that our approach as well as qCoral were equal slow for the

benchmark PACK. The reason for that is that RealPaver generated only an

outer box cover for the solution space. This means we sampled randomly

over the whole solution space. This reduces the impact of our sampling

strategy.

6.2.2. Applicability in ProgramUnderstanding and Testing

The goal of this evaluation is to see whether our approach can aid during

program understanding and testing. We consider in our evaluation the Binary

Tree implementation that was used by [90] to show that the Binary Tree

example contains a bug in the delete method.
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Method

Branch

Location

# PCs [1 ... 10] [1 ... 50] [1 ... 100]

add

1

2

3

4

7

10

7

10

6.1218 ×10
−2

3.3261 ×10
−1

6.1218 ×10
−2

3.3261 ×10
−1

6.4499 ×10
−2

3.5542 ×10
−1

6.4499 ×10
−2

3.5542 ×10
−1

6.8939 ×10
−2

3.7677 ×10
−1

6.8939 ×10
−2

3.7677 ×10
−1

delete

5

6

7

8

7

14

14

1

4.3999 ×10
−1

3.5834 ×10
−1

5.3759 ×10
−2

0.9399 ×10
−6

4.7931 ×10
−1

3.7464 ×10
−1

5.7464 ×10
−2

2.4310 ×10
−7

4.9165 ×10
−1

3.8802 ×10
−1

6.1537 ×10
−2

1.3728 ×10
−9

Table 6.8.: Probability for covering branches in a Binary Search Tree

Coverage Probability and Program Understanding: The following experi-

ments are conducted on a Binary Tree implementation with a correct imple-

mentation of the method delete as proposed by [90]. The implementation can

be found in the Appendix and in [77]. We want to examine how the probabil-

ity of covering a certain program location changes when changing the input

values. We used our approach to compute the probability of reaching di�erent

branches in the code implementing the methods add(n) and delete(n). The

source code can be found in Appendix. Both methods take integer values as

input. We bounded the scope input domain to data structures with 3 nodes

with increasing data value ranges [1 . . . 10], [1 . . . 50] and [1 . . . 100]. We

compute for di�erent branches in the code all path conditions that reach

the branch as well as their probabilities. The probability of the branch is

approximated by the sum of the probabilities of the path conditions reaching

it. The results are presented in Table 6.8. The probabilities are rounded for

presentation purposes. The Branch Location column indicates the location in

the code, # PCs refers to how many path conditions reach the branch and the

three following columns show the computed probability to reach the branch.

The parameter values are chosen uniform randomly from the intervals.

First observation to make is that there is no correlation between the number

of path conditions reaching a branch and the probability of covering that

branch. For example, the branch at location 7 of method delete is reached by

14 PCs and the probability to cover it is smaller than the branch at location

7 which is reached by only 7 PCs. Considering the implementation code of
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6.2. White-box Reliability Assessment

the method add, the branches at locations 1 and 3 as well as the branches at

location 2 and 4 are symmetric around the check whether the value to add is

less or greater than current root value. This code aspect is captured by our

probabilistic approach.

Next observation we can make is that for some branches the probability to

reach them increases when the range of value increases. For example, adding

values to the binary tree is easier when the range of values to select from is

larger: it is less likely to select and add a value that is already in the binary

tree. The branch at location 8 in the method delete is the least likely to be

reached. This event becomes more rare when the range of allowed input

values increases. Based on the implementation code, this branch corresponds

to the case when we try to delete the root node when the tree is empty. This

is an unlikely behavior since it simulates deleting an element from an empty

tree.

Scalability Remarks: Korat enumerates each possible data structure includ-

ing all input values. Such an enumeration can be very expensive especially

when the range of possible input values increases. For counting data structure

models with values in [1 . . . 10], Korat took less than 2 seconds on average.

However, for values in the range [1 . . . 50] Korat took 17 minutes and more

than 2 hours on average for values in the range [1 . . . 100].

Probability of a Bug: For the next set of experiments we study the probabil-

ity of triggering the bug reported by [90] under di�erent operational pro�les.

We use the buggy implementation which can be found in [77]. The code has

a bug in the delete method. The bug makes it impossible to remove the root

element of the tree and sometimes incorrectly deletes subtrees [90]. We limit

the data values in the container to the range [1...50] and perform the calls

add and delete randomly. We evaluate sequences of 7 calls after which we

check whether the bug was triggered by using an assertion.

The operational pro�le as shown in Table 6.9 vary the probability of perform-

ing the calls and the probability of choosing the values. The �rst scenario

considers the case where both the calls and the inputs are selected uniformly

from their domains (i.e. each with 0.5 probability). The second and the third

scenarios consider respectively the cases where 70 % of the time delete is
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Calls Distribution Values Distribution

Probability to

trigger the bug

Uniform Uniform 0.000 641

70 % delete Uniform 0.001 13

30 % delete Uniform 0.008 26

No delete in the last call Uniform 0.001 63

No delete in the last two calls Uniform 0

Table 6.9.: Probability of triggering a bug in a the Binary Tree

6.2.3. Reliability Estimation E�iciency and Accuracy

In order to compare the e�ciency of the white-box reliability assessment

approach with the black-box one, we conduct several experiments on two

software artifacts. We compare then for each approach the number of test

cases required until reaching a target con�dence level and margin of error.

For all two artifacts, we assume a uniform operational pro�le, where we

divide the de�nition domain into two equally probable sub-domains. The

artifacts are the following:

• MER: models a component of the �ight software for JPL Mars

Exploration Rovers (MER) [5]. It consists of a resource arbiter an two

other components competing for �ve resources. MER has 4697 LOC

including the Polyglot framework.

• Windy: a standard example from the reinforcement learning

literature; a robot, a�ected by wind, moves in a grid with start and

target positions. We analyze two versions: simple (5x4 grid) and

complex (9x6 grid) [61].
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called and where only 30 % of the time delete is called. This follows the

intuition that the bug is in the delete method. However, in fact the more

we delete the less will be the probability to trigger the bug. This means that

the execution of the buggy code region is related to how and when delete is

called. This is justi�ed by the two last scenarios where no delete is called

last and where the last two calls are not a delete call in the sequence (the

probability to trigger the bug is zero).
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# testcases

1 − α d Black-Box White-Box

0.99 10
−2

12028 10351

0.99 10
−3

13089 12804

0.99 10
−4

16293 14618

(a)MER(small)#path: 122

#testcases

1 − α d Black-Box White-Box

0.99 10
−2

13082 6297

0.99 10
−3

14762 6845

0.99 10
−4

14914 6938

(b)Windy(small) #path: 614

Table 6.10.:White-Box Reliability Assessment v.s. Black-box Reliability Assessment

The software artifacts contain injected faults for the purpose of testing [5].

MER contains one known fault, Windy contains 3 faults.

Table 6.10 summarizes the number of test cases required by each technique

(i.e, black-box and white-box) to reach a target con�dence level and margin

of error. Here, we do not repair faults if failures are revealed.

Table 6.10 con�rms the mathematical theory of strati�ed sampling. Since the

white-box reliability assessment approach considers each path condition as a

sub-domain, then it will decrease systematically the variance of the reliability

estimate. The black-box approach divides, however, the test cases over only

two sub-domains. Another observation is: when we decrease the margin

of error, the required number of test cases to reach the con�dence goal, for

both approaches does not vary too much. We explain this phenomena with

the fact that our both approaches are designed to systematically reduce the

variance of the estimate.
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6.3. Verification-based Reliability Assessment

The goal of this section is to show the applicability of the veri�cation-based

reliability assessment approach in the following two scenarios:

1. when a proof attempt succeeds, i.e., all proof obligations are closed:

all path conditions are veri�ed as correct with regard to a formal

speci�cation

2. when a proof tree fails, i.e., some proof obligations remain open: only

some path conditions (but not all) are veri�ed as correct.

6.4. Implementation Details

The prototype implementation uses the KeY system to extract the symbolically

executed proof obligations. Each proof obligation is then represented by

a path condition. Based on a given operational pro�le, we compute the

probability of each path condition using our tool for probabilistic program

analysis (see section 6.2.1).

In order to generate JUnit test cases, we use the tool Korat.

6.5. Experiment Subject

We use for this validation a standard KeY example, a banking example code,

which implements the following three methods

1. Bank.login(userdid, password)

2. UserAccount.getBankAccount(num)

3. UserAccount.tryLogin(userid, password)

We assessed the reliability of the method UserAccount.tryLogin using our

black-box approach. Each call of the method UserAccount.tryLogin is anno-

tated with its reliability and corresponding variance.
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Our goal now is to assess the reliability of the methods Bank.login

and UserAccount.getBankAccount using the veri�cation-based approach. We

assume that the execution environment has an availability of 0.9

We de�ne an operational pro�le for our reliability assessment scenario using

the following two parameters:

1. numus : the number of user accounts

2. numacc : the number of bank accounts

We de�ned the operational pro�le for this scenario as follows:

1. Scenario 1 : numus in [0, 3000], numacc in [0, 7500]: 40 %

2. Scenario 2 : numus in [3000, 6000], numacc in [7500, 18000]: 60 %

Both methods are formally veri�ed using KeY. Table 6.11 lists the simpli�ed

path conditions of the method Bank.login with their probabilities.

Table 6.13 lists the simpli�ed path conditions of the method getBankAc-

count.

WhenAll PathConditions Verified In this case, the reliability of each method

is de�ned as presented in Section 5.5 as:

R̂ =
3∑
i=1

P(PCc
i |OP).(1 − FRi )

For example, the reliability of the method Bank.login is estimated as fol-

lows:

Rloдin = 0.37 ∗ ˆµ(tryLogin) ∗ 0.9 + 0.11 ∗ 0.9 + 0.52 ∗ 0.9
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index Path Conditions Probability

1 userid >= 0, userid < numus 0.37

2 userid <0 0.11

3 userid >= 0, userid > numus 0.52

Table 6.11.: Path Conditions and their Probabilities- Bank.login

Index Path Conditions Probability veri�ed?

1 userid >= 0, userid + 500 <numus 0.31 veri�ed

2 userid <0 0.11 veri�ed

3 userid >= 0, userid + 500 >= numus 0.58 n.a

Table 6.12.: Path Conditions and their Probabilities after Fault Injection- Bank.login

When Some Path Conditions are not Verified We inject some faults in both

methods. The obtained results are illustrated in the tables 6.12 and 6.14.

For example, the reliability of the method UserAccount.getBankAccount is:

R
getBankAccount

= 0.08 ∗ 0.9 + 0.36 ∗ 0.9

with a con�dence c = 1 − 0.58

In this case, the con�dence c = 1 − 0.58 is too low. In order to increase the

con�dence, the white-box reliability assessment should be used.

Index Path Conditions Probability

1 num <0 0.08

2 num >= 0, numacc >num 0.38

3 num >= 0, num >= numacc 0.52

Table 6.13.: Path Conditions and their Probabilities - UserAccount.getBankAccount
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Index Path Conditions Probabilities veri�ed?

1 num <0 0.08 veri�ed

2 num >= 0, num + 500 <numacc 0.36 veri�ed

3 num >= 0, num + 500 >= numacc 0.56 n.a

Table 6.14.: Path Conditions and their Probabilities after Fault Injection -

UserAccount.getBankAccount

6.6. Sensitivity Analysis

Software statistical testing characterizes the �eld of use of the tested software

using an operational pro�le. Determining an operational pro�le can be

di�cult in practice and might introduce some errors when estimating it.

We conduct a sensitivity analysis to investigate the e�ect of an error in the

operational pro�le on the change of the reliability estimate variance.

The sensitivity value of an error in the operational pro�le is computed based

on the analytical approach presented in [68]. Let Dj be the sub-domain

whose probability is in error, and let εDj be the error in probability. We use

the subscript F to indicate quantities associated with the true operational

pro�le in �eld use and T to indicate erroneous quantities associated with

the testing operational pro�le. Then εDj = pTDj
− pFDj

, where pTDj
the

estimated probability of occurrence of Dj used when testing and pFDj
the

true probability of occurrence. Since probabilities can vary between 0 and

1, it follows: −pFDj
≤ εDj ≤ 1 − pFDj

. Let ηDj be the relative error de�ned

as ηDj = εDj /pFDj
. Then −1 ≤ ηDj ≤ (1/pFDj

− 1). Since we only select

tests from sub-domains speci�ed in the operational pro�le, the sum of the

probabilities pFDj
and pTDj

for the operational pro�le sub-domains are both

1. Consequently, the sum of errors εDk over the sub-domains must be 0 [68].

Therefore, the existence of the error εDj implies the existence of other errors

in probability or di�erence between the test and �eld operational pro�les

εDk that are nonzero. There are no known factors that would cause εDj to

a�ect the other εDk . Hence, we can assume that all εDk are a�ected in the

137

same relative way so they have the same relative error η. Since the sum the

probabilities of occurrence is equal 1, we obtain



6. Validation

η = −ηDj .pFDj

(1 − pFDj
)

Consequently, an error in one occurrence probability of the operational

pro�le causes errors in other probabilities of occurrence. The sensitivity of

the reliability estimator variance on an error in the probability of occurrence

of a sub-domain Di can be then de�ned as the ratio of of relative errors for

the variances as follows:

SDj = (
varT −varF

varF
)

ηDj

(6.1)

The goal of our white-box reliability assessment approach is to generate �ne-

grained sub-domains, which even if they are not truly homogeneous, they

are usually less heterogeneous than the original sub-domains. Consequently,

if an error in the probability of a sub-domain occurs, it might not a�ect the

variance signi�cantly. Since the total variance of the reliability estimate is

de�ned as var[R̂] =
∑L

i=1
pi

2 σi 2

ni
, then an error in the probability of a sub-

domain would lead to small variations of
varT −varF

varF
. Consequently, when

our white-box approach is used, then the sensitivity will tend to zero.

Asymptotically, our black-box approach would reduce the variance within

each sub-domain through extra testing. So asymptotically, the black-box

approach would be able to reduce the sensitivity of the reliability estimation

to variations of the operational pro�le.

The veri�cation-based approach is able to reduce the input domain of the

software since it does not execute path conditions veri�ed as correct. The

reduction of the input domain reduces the probability to introduce errors

when estimating the probabilities of the operational pro�le sub-domains.
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This chapter highlights existing approaches and addresses the relationship

to our work.

7.1. Statistical Testing based on Sampling

Strati�ed sampling is linked to the idea of partition testing or sub-domain

testing of a software.

In [50] and [95], partition testing is compared to simple random sampling

from a program’s input domain with respect to the probability of detecting

at least one failure during testing. Inputs were selected randomly from each

partition. Di�erent combinations of partition size, partition probability of

occurrence, partition failure rate and overall failure rate were considered.

[50] and [95] conclude that partition testing is signi�cantly more e�ective

than random testing when one ore more partition have a relative high failure

rate. Our approach is aligned with the conclusions of [50] and [95]. since

the program failure rates are usually not known in advance, it is safer to use

partition testing instead of simple random testing to assess the failure rate of

a program. Our approach adaptively selects inputs from each partition, more

inputs are selected from the partitions which have a relative observed high

failure rate. In addition, our approach considers the probability of occurrence

of each partition by adaptively selecting inputs towards a 100% similarity to

the operational pro�le probabilities.

[88] present the usage of probabilistic test generation for fault detection. They

generate automatically tests to address di�erent behavioral and structural test

criteria. Apparently, in [88], they view the evaluation of tests as inexpensive.
They call their approach "statistical testing" although it dos not involve

reliability estimation. In contrast to [88], we think that evaluating test is an
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expensive process. Our approach aims to reduce the variance of a reliability

estimator and consequently reduce the required number of executed and

evaluated test cases to reach a target reliability con�dence.

Techniques to estimate software reliability using partition testing, which

resemble conventional strati�ed sampling, are proposed in [14], [34] and [70]

for example. They introduced the idea of sampling to reliability estimation

but did not specify a sampling design. To account for operational pro�le, [14]

present a strati�ed reliability estimator similar to the reliability estimator (see

equation 3.4) we present in our approach. They assume that the estimator is

unbiased, when all sub-domains are sampled using simple random sampling

within the entire program’s input domain. This assumption is repeated in

[76]. This assumption is incorrect however: the estimator is generally biased

unless we further assume that all possible inputs are equally likely to arise in

operational use. ([14] and [76] do not make such an assumption.)

[65] present a strati�ed estimator of the the failure rate when no failures

occur during testing by incorporating prior assumptions about the failure

rate in the estimation. They reuse the approach presented in [14] and they

do not consider the variance of the estimator.

The work of [75] is related to our research. However, they only used the idea

of equal strati�cation using clustering to estimate the software reliability

from software execution pro�les collected by capture/replay tools. Failure

rates have been extensively used in the area of adaptive random testing

([16], [19], [56]). Adaptive random testing aims to distribute the selected test

cases as spaced out as possible to increase the chance of hitting the failure

patterns. The intuition behind adaptive random sampling can be added in a

future work to our approach to probably further enhance the e�ciency of the

reliability estimator. [16], [19], [56] do not address the problem of reliability

estimator e�ciency. A recent work on adaptive testing [54], allocates test

cases using a gradient search method based on the variance variation of the

failure rate. However, their approach introduces bias resulting from the use of

the gradient method: it is possible that all test cases are selected from the sub-

domain that �rst reveals a failure. They avoid such situations by introducing

a biased estimator using Bayesian estimation. Consequently, their reliability

estimator, in contrast to our estimator, is biased. Contrary to [54], we adopt

a global optimization scheme for test cases selection which guarantees that

our approach converges to globally optimal solution as testing proceeds.
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Furthermore, the approach presented in [54] does not generate test cases

which are conform the probabilities of the operational pro�le sub-domains,

which would further bias the reliability estimate.

[58] developed a Bayesian-based stopping criteria for statistical testing. In

contrast to the stopping criteria presented in [58], our approach does not

use uniform prior but updates the prior after test execution. Furthermore,

our stopping criteria allows to specify a margin of error in addition to the

required con�dence level as a stopping criteria. In addition, the stopping

criteria in [58], in opposition to our approach is not designed with setting

to distribute the test cases across the operational pro�le sub-domains, or to

consider the failure rate of the di�erent sub-domains.

7.2. Combining Statistical Testing with
Formal Verification

[28] presents a transformational approach for the assessment of software

reliability. The main idea of [28] is to apply vertical slicing to reduce the

dimension of the software input domain, and horizontal slicing to reduce the

cardinality of the input domain. The reduction of the input domain is achieved

through the veri�cation of the slices. The goal of the combination of formal

veri�cation and statistical testing is to reduce the amount of testing required

to attain a target con�dence level on the reliability estimate. However, in

contrast to our approach, [28] makes no quantitative statements about the

gain of using formal veri�cation, does not de�ne how the software reliability

will be computed in the presence of formal proofs. Furthermore, [28] abstracts

from the execution environment and assumes that proved program slices do

not need to be tested. However, such an assumption is very misleading. Our

approach, however, is able to analyze the reliability of a software program in

an execution environment. The approach in [28] is actually not a combination

of formal veri�cation and statistical testing, rather formal veri�cation has

been used to reduce the input domain of software programs and hence reduce

the testing e�ort usually required by statistical testing.

Another work [27] accelerates statistical testing by applying monotonic

transformations to the software program and the execution environment (e.g.,
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program slicing, replacing function computation by table lookup, use of fast

process simulation or use of centralized instead of distributed computing).

Such transformations imply the correctness of the original program, and

a failure of the transformed program does not necessary means that the

original program would fail. This would require the invocation and test of

the original version. In addition, the approach presented in [27] is labor-

intensive requiring the formal veri�cation of each transformation by skilled

software engineers, which would limit the applicability of the approach.

7.3. So�ware Reliability Modeling and Prediction

The goal of Software Reliability Growth Models is to describe the software

failure process in form of a stochastic process. The stochastic process is

usually used for software reliability prediction and estimation. Software

reliability growth models assume that faults repair is made on the go as

testing progress, and that the faults repair results in decreasing failure rate.

Software reliability growth models received much attention with more than

100 di�erent models [62]. However, the usage of software reliability growth

models require usually assumptions, which are questionable and sometime

unrealistic [62], [2].

Therefore, many research solution has been presented to address the assump-

tions related to software reliability growth models such as applying time

series models, especially ARIMA models like [2]. However, such models re-

quire timed failure data, which is usually not always available. Furthermore,

in contrast to our non-parametric Gaussian process model, such models pro-

vide no measure of the uncertainty of the prediction. In addition, the usage

of such models requires special attention to satisfy the assumptions of the

time series models.

A recent work [89], presents a Gaussian process failure count prediction

model using software metrics as independent variables. [89] generates one

single model for the whole software and do not account for the number of

test cases executions. The generated model is trained on existing data to

predict future behavior. Our approach, however, generates a model for each

sub-domain of the failure. One main advantage of generating a Gaussian
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process for each sub-domain is as follows: each Gaussian process models a

di�erent subspace of the input domain, which allows learning multimodal

data distribution with more �exibility than a single model for the input do-

main. Furthermore, our model is trained adaptively (only when needed),

based on the uncertainty provided by the prediction. Another recent work

[17], predicts failure count using Bayesian-based support vector machines,

where the independent variables are software metrics as in [89]. Like [89],

the approach in [17] is not designed to adaptively train itself based on the

prediction uncertainty. Our prediction model makes e�ective use of previous

test executions during model inference. Based on the uncertainty on the pre-

diction and con�dence goals on the reliability estimate and cost constraints,

the approach decides whether to execute the test cases or not.

7.4. Probabilistic Program Analysis

Our white-box reliability assessment approach is related to many areas includ-

ing statistical model checking [52], analysis of probabilistic programs [66],

and integration methods over polyhedras [30]. We compute the probability

of a path condition or more generally a set of path conditions that lead to a

program behavior of interest. The techniques for the probability computation

of the path conditions di�er in the approach used to approximate the solution

space, the distribution type of the input variables and the linearity of the

constraints.

Geldenhuys et al. [39] present an approach that considers only uniform

distributed input variables and linear integer arithmetic constraints. They

used LattE Machiato [30] to count the solution space of the path conditions.

One main di�erence between this work and ours is that we support com-

plex nonlinear constraints and we use constraint propagation techniques to

approximate the solution space. In addition our approach is not restricted

to uniform distribution. The approach of Geldenhuys et al., in contrast to

our approach, do not handle symbolic data structures. They assume that

the structures are concrete and only the data is symbolic. In our approach

both the input structure as well as the input data is taken to be symbolic.

Sankaranarayanan et al. [81] recently proposed a technique to remove the
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restriction of uniform distribution by developing an algorithm for the un-

der and over-approximation of probabilities. They use Linear Programming

solvers to compute the over-approximations and heuristics to compute the

under-approximation. However, their approach is limited to linear con-

straints. More recently, Borges et al. [11] proposed an approach for handling

nonlinear constraints based on interval constraint propagation techniques

and Monte Carlo integration. One main technical di�erence between this

approach and our work is that our approach is incremental and computes

probabilities at each branching constraint which allows for better scalability

of symbolic execution. The approach of Borges et al. computes the prob-

abilities after symbolic execution �nishes. In addition, our work extends

interval constraint propagation by allowing to control the e�ciency of the

solution space approximation. The approximation procedure is controlled

based on a user-de�ned accuracy parameter on the computed probability of

a target program behavior. Furthermore, our work makes use of the joint box

cover structure computed by the interval constraint propagation techniques

and applies Monte Carlo integration only on the outer cover. Borges et al.

apply Monte Carlo integration on the whole approximated solution space.

Consequently, their approach as shown in our experiments may require more

samples to compute the probabilities with a given accuracy. Moreover, our

work supports constraints over data structure which is not supported by

Borges et al.
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Our society rely on the correct functioning of software systems and our

dependence on them is growing. The failure of software systems can be dis-

astrous resulting in humanitarian and �nancial damages. Consequently, it is

necessary to assess the reliability of software systems with high con�dence.

However, existing software reliability assessment techniques are usually

either theoretical sound, labor-intensive and time-consuming or practical

but not trustworthy because of their underlying unrealistic assumptions and

poor estimation accuracy. Therefore, software development organizations

are considering software reliability assessment as a cost rather than a return.

The reliability of a software is usually assessed using formal veri�cation or

testing.

Formal veri�cation can prove perfect reliability of the software. However, it

is usually impractical to verify the program as well as its execution environ-

ment. Furthermore, if formal veri�cation is applied to only some parts of the

software, existing techniques do not account for the con�dence gained from

veri�cation in the reliability estimate.

Exhaustive testing is usually impossible for complex real world software

system. Therefore, statistical testing based on sample models according to an

operational pro�le has been proposed as the theoretical sound tools to assess

the software reliability. However, statistical testing requires a large number

of test cases to reach a target con�dence on the reliability estimate.

This dissertation proposes a solution to reduce the overhead required by

statistical testing, and developed a method to account for any formal veri-

�cation e�ort in the reliability estimation. In order to reduce the overhead

required by statistical testing, we formulated our approach as an uncertainty

reduction technique, which aims to use the available information about the

software in order to e�ciently assess and reduce the uncertainty about the
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software future behavior. The information can be provided from (i) previous

test cases execution, (ii) the source code of the software (iii) previous formal

veri�cation attempts. The more information we have about the software

under study the more our approach gains on e�ciency. In order to account

for any formal veri�cation e�ort, we developed a method to symbolically

estimate the software reliability before executing any test cases if the pro-

gram has been veri�ed even partially. Furthermore, we proposed a novel

combination of deductive formal veri�cation with statistical testing.

The main contribution of this dissertation can be arranged in three groups.

First, we developed a black-box reliability assessment approach which adap-

tively sample test cases from the sub-domains of an operational pro�le. The

approach learns from previous test cases executions and computes in an

iterative manner the required number of test cases to be executed based on

user required con�dence level. Compared to state-of-the-art approaches,

we could reach a target con�dence with less test cases. Furthermore, we

developed a non-parametric reliability prediction model based on Gaussian

process. The model is trained adaptively, and decides at each iteration to

predict the future failure rate or to execute the test cases.

The second contribution is white-box reliability assessment, which makes

use of the source code information to generate based on the operational

pro�le sub-domains �ner partitions. The �ner partitions are then used as the

new sub-domains. This required the development of a probabilistic symbolic

execution engine. The novel symbolic execution engine propagates the

uncertain information provided by the operational pro�le while executing the

source code symbolically. If in addition to the operational pro�le, the source

code if available, our approach bene�ts from the white-box information

available to further enhance the e�ciency of the black-box approach. We

developed an automated probabilistic analysis approach of source code based

on symbolic execution. The white-box approach propagates the uncertain

information provided by the operational pro�le while executing the source

code symbolically. Compared to the black-box approach, the white-box

approach makes use of the source code information to further reduce the

number of required test cases to reach a target statistical con�dence on the

reliability estimate.

The third contribution is veri�cation-based reliability assessment which

merges the strengths of both formal veri�cation and statistical testing in
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a coherent form. The reliability estimate is derived from the proof tree.

If the reliability goal cannot be reached by symbolic computation of the

reliability, the approach complements the reliability estimate by test cases

derived from the open proof branches. The test cases are derived using the

white-box reliability assessment approach. The developed approach analyzes

the reliability of a program in a runtime environment without explicitly

modeling the environment in the veri�cation logic.

The stopping criteria of our approach does not consider the case when a fault

repair introduces new faults. A possible improvement of our approach is to

develop models for fault-repair. Our prototype tool implementation for the

veri�cation-based reliability assessment is using Korat for the generation

of the JUnit test cases. KeY can however e�ciently generate test cases for

open proof obligations toward fault detection. Our approach can bene�t

from such capabilities. We also plan to investigate further applications of the

probabilistic symbolic execution approach in the analysis of Cyber physical

systems, or code-based security analysis. Idea of the probabilistic bound

which guides the symbolic execution can be used in the context of bounded

veri�cation to systematically increase the bound when needed.

147

8. Conclusion





A. Appendix

This appendix presents the code for the Binary Search Tree example used in

this thesis.

A.1. Implementation Code of the Method add

public void add(int x) {

Node current = root;

5 if (root == null) {

root = new Node(x);

return;

}

10 while (current.value != x) {

if (current.value > x) {

if (current.left == null) {

//Location 1

current.left = new Node(x);

15 } else {

//Location 2

current = current.left;

}

} else {

20 if (current.right == null) {

//Location 3

current.right = new Node(x);

} else {

//Location 4

25 current = current.right;
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}

}

}

}
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A.2. Implementation Code of the Method delete

A.2. Implementation Code of the Method delete

public boolean delete(int x) {

Node current = root;

Node parent = root;

5 boolean isLeftChild = true;

if (current == null)

return false;

10 while(current.value != x) {

//assign parent to current

parent = current;

if(current.value > x) {

//Location 5

15 isLeftChild = true;

current = current.left;

}

else {

//Location 6

20 isLeftChild = false;

current = current.right;

}

if(current == null) {

//Location 7

25 return false;

}

}

if(current.left == null && current.right == null) {

30 if(current == root) {

//Location 8

root = null;

}

else if(isLeftChild) {

35 parent.left = null;

}

else {

parent.right = null;
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}

40 }

else if(current.right == null)

if(current == root) {

root = current.left;

}

45 else if(isLeftChild) {

parent.left = current.left;

}

else {

parent.right = current.left;

50 }

else if(current.left == null)

if(current == root) {

root = current.right;

}

55 else if(isLeftChild) {

parent.left = current.right;

}

else {

parent.right = current.right;

60 }

else {

Node successor = getSuccessor(current);

65

if(current == root) {

root = successor;

}

else if(isLeftChild) {

70 parent.left= successor;

}

else {

parent.right = successor;

}

75

successor.left = current.left;

}

return true;

}
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