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Introduction

The history of the Standard Model (SM) is a history of many theoretical and experimen-

tal successes and achievements. It has found its most recent success in the unambiguous

discovery of the Higgs boson by the ATLAS and CMS collaborations [1, 2]. This discov-

ery follows a range of impressive quantitative confirmations of SM predictions in many

experiments.

There are thousands of confirmations of the SM and only very few deviations from SM

predictions at particle physics experiments. Nevertheless, we know from cosmological ob-

servations that the SM is insufficient to describe cosmological aspects of particle physics.

The SM does neither explain neutrino masses nor the baryon asymmetry nor dark mat-

ter. Furthermore, the SM is also unsatisfying from a theoretical point of view because

its parameters range over large scales from O (1) for the top-quark Yukawa coupling to

O (10−6) for the electron Yukawa coupling. Moreover, the overall pattern of the couplings

remains to be understood. Therefore, it is most likely that the SM is not the final theory

of particle physics in our universe and that, eventually, deviations from SM predictions

will be measured.

One possibility to measure these new-physics effects is the direct discovery of new

particles if they contribute via new decay channels or enhance differential decay rates.

The complementary method is to measure the quantum corrections that are induced by

new particles. Since the particles do not need to be produced on-shell, this indirect method

is sensitive to particles that are much heavier than the particles that can be found with

direct detection experiments.

In flavor physics, the measurement of charge-parity (CP ) asymmetries is such an in-

direct method to search for new physics (NP), since the couplings of the new particles

in general should violate the CP symmetry. Flavor physics deals with the transitions of

flavored hadrons which are mediated by the weak interaction. In the SM these processes

always involve entries of the Cabibbo-Kobayashi-Maskawa (CKM) matrix [3, 4]. Some

of these CKM entries have a complex phase called weak phase. If two decay amplitudes

1



with two different weak phases contribute to the same process this leads to the breaking

of the CP symmetry called CP violation. Roughly speaking this means that matter and

antimatter behave differently. CP violation is quantified in terms of CP asymmetries, for

the decay of a B̄ meson to a final state f the CP asymmetry is defined as

ACP (B → f) ≡ Γ(B̄ → f̄)− Γ(B → f)

Γ(B̄ → f̄) + Γ(B → f)
. (1)

To identitify CP -violating new-physics contributions, it is important to have reliable pre-

dictions of CP -violating observables in the SM. We will determine CP -violating observ-

ables in exclusive decays that are dominated by the quark level process b→ cc̄q, q ∈ {d, s}.
The most famous representatives of these decays are B̄d → J/ψKS, B̄s → J/ψφ, and

B̄s → D+
s D

−
s [5]. They are the prime candidates to measure the B̄p − Bp mixing phases

φp with p ∈ {d, s} which can be directly linked to weak phases in the CKM matrix. Fur-

thermore, measuring the B̄p−Bp mixing phases is one of the best probes for indirect new

physics because the B̄p −Bp mixing amplitudes are sensitive to scales above 100 TeV.

We will refer to the exclusive decays that are dominated by the quark-level transition

b → cc̄q as B̄ → ψX and B̄ → DD̄ decays. In these decays the framework of QCD

factorization [6–10] that is very successful in describing most B̄ decays is not applicable.

The reason for this is that in calculations the hadronization effects of the final- and initial-

state mesons cannot be systematically separated. Thus, there exist no first-principles

predictions for decay amplitudes and direct CP asymmetries in B̄ → ψX and B̄ →
DD̄ decays. The aim of this thesis is to improve this situation.

We will exploit that there is a large momentum transfer q2 from the initial to the final

state to expand the decay amplitude in ΛQCD/
√
q2. This corresponds to the formalization

of the Bander-Silverman-Soni (BSS) mechanism [11] by an operator-product expansion

(OPE) which leads to as simpler structure of the decay amplitude. This allows together

with 1/NC counting [12] to set first-principles bounds on CP -violating quantities in B̄ →
ψX and B̄ → DD̄ decays. In particular, we derive for the first time first-principles

theoretical uncertainties of the determination of the mixing phases φd and φs.

Outline

In the first chapter, we introduce basic properties of B̄ meson decays in the SM. We focus

on the flavor-changing transitions that cause B̄ decays and CP violation and motivate the

necessity of this thesis in more detail. In the second chapter, we present the OPE that
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we use to simplify the decay amplitudes in B̄ → ψX and B̄ → DD̄ decays. This includes

the factorization formula and some general properties. The third chapter is dedicated

to the proof of the OPE, most notably we investigate in depth the infrared structure of

the up-quark penguin and spectator scattering. We also generalize our results to B̄ →
DD̄ decays. In the fourth chapter, we investigate the phenomenological consequences

of our OPE and predict a plethora of CP -violating observables in B̄ → ψX and B̄ →
DD̄ decays.

In the fifth chapter we conclude. A list of abbreviations and variables is given in the

appendix.
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Chapter 1

B̄ Physics in the Standard Model

In this chapter, we introduce notation and basic properties of B̄ decays to which we will

refer throughout this thesis. We discuss how CP violation is generated in the Standard

Model (SM) and how the measurement of CP asymmetries in the aforementioned decay

modes can be related to the CP -violating phases β and βs. Subsequently, we identify

the theoretical uncertainties of this determination and discuss their origin. In the next

chapter, we will discuss how we aim at the improvement of these theoretical uncertainties

by means of an operator product expansion.

1.1 CP violation in B̄ meson decays

1.1.1 CP violation in the Standard Model

In the SM all quark flavor changing processes, such as B̄ decays, are induced by charged

weak currents. In the SM Lagrangian these are described by the coupling of W± bosons

to left-handed quarks. The relevant part of the SM Lagrangian is given by [13–15]

LW =
gW√

2

∑
j,k=1,2,3

[
Vjk ujL γ

µdkLW
+
µ + V ∗jk dkL γ

µujLW
−
µ

]
, (1.1)

here gW is the real-valued weak coupling constant and Vjk are entries of the unitary

Cabibbo-Kobayashi-Maskawa (CKM) matrix [3, 4]

VCKM =

 Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 . (1.2)
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6 CHAPTER 1. B̄ PHYSICS IN THE STANDARD MODEL

Requiring that LW is Hermitian implies that gW is real. However, VCKM is not real-

valued, as a consequence LW is not CP invariant because the weak quark transitions me-

diated by Vjk ujL γ
µdkLW

+
µ and its CP conjugate process V ∗jk dkL γ

µujLW
−
µ have complex-

conjugated phases. This leads to CP violation if two weak transitions with two different

phases contribute to the same process.

The sum in Eqn. (1.1) runs over the quark flavors with (u1, u2, u3) = (u, c, t) and

(d1, d2, d3) = (d, s, b). Quarks only appear in bound states because they are colored

objects, this confinement into hadrons is induced by quantum chromodynamics (QCD).

Therefore, in weak flavor transitions there is always an intricate interplay of the weak

interaction and QCD. The QCD Lagrangian is given by [16]

LQCD = −1

4
Ga
µνG

a,µν +
∑
p

p̄(i /D −mp)p, (1.3)

where p runs over the quark flavors u, d, s, c, b, t. Dµ = ∂µ+igSA
a
µT

a denotes the covariant

derivative and Ga
µν = ∂µA

a
ν−∂νAaµ−gSfabcAbµAcν the field strength tensor. The field Aaµ is

the gauge field of the strong interaction and associated to the gluon, the gauge boson of the

strong interaction. Hence, the non-abelian term in −1
4
Ga
µνG

a,µν also leads to gluon-gluon

interactions. Requiring LQCD = L†QCD implies a real coupling constant gS. Thus, it seems

that the QCD Lagrangian does not lead to CP violation but this is only true because we

did not include the term εµνρσGa
µνG

a
ρσ into the Lagrangian [17, 18]. This term is gauge

invariant but violates P , T and CP . However, it has not been observed experimentally so

far which means that it must have a very small coefficient [19]. The absence/smallness of

this term is referred to as the strong CP problem and will not be further considered.

We conclude that the CKM matrix is the only source of CP violation in the SM.1

Since we want to use CP violation as a tool to find new physics we are interested in the

properties and the structure of the CKM matrix to which we draw our attention in what

follows. In particular, we are interested in the CKM-element combination

λpq ≡ V ∗pqVpb (1.4)

because it appears in B̄ → ψX and B̄ → DD̄ decays that are governed by the quark-level

process b→ p̄pq with p ∈ {u, c, t} and q ∈ {d, s}.
1In the SM neutrinos are assumed to be massless. In reality they have very small but nonzero masses.

Depending on whether these are Dirac or Majorana masses this may lead to up to three additional
CP -violating phases but these are irrelevant for our considerations.
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1.1.2 CKM metrology

In the SM, all weak flavor changing transitions are proportional to entries of the CKM

matrix. The CKM matrix is an unitary 3 × 3 matrix. A generic U(3) matrix can be

parametrized by three real Euler angles and six phases. In the CKM matrix, however,

only one phase is physical. Indeed, by redefining the phases of the quark fields ui and

di in Eqn. (1.1), one can remove five phases. The remaining complex phase induces all

CP violation the SM. Thus, the CKM matrix can be parametrized by three real and one

phase. How the phase is chosen is convention dependent; the standard parametrization

is due to Wolfenstein [20, 21]

VCKM =

 1− λ2/2 λ Aλ3(ρ̄− iη̄)

−λ 1− λ2/2 Aλ2

Aλ3(1− ρ̄− iη̄) −Aλ2 1

+O
(
λ4
)
. (1.5)

Conveniently, the Wolfenstein parametrization makes the experimentally observed size

pattern of the matrix elements explicit with an expansion in λ = 0.225 [22]. Since VCKM is

unitary, VCKMV
†

CKM = 1 leads to a plethora of testable relations that are phase-convention

independent. Of these, the six vanishing relations can be represented as triangles in the

complex plane. In particular

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 (1.6)

is most advantageous because all three terms are O (λ3). Furthermore, these CKM entries

contribute to b→ p̄pd quark transitions with p ∈ {u, c, t}, this means we obtained a sum

rule

λ∗ud + λ∗cd + λ∗td = 0 (1.7)

for the λpq defined in Eqn. (1.4). The angles of this triangle are

α ≡ arg

(
− VtdV

∗
tb

VudV ∗ub

)
, (1.8)

β ≡ arg

(
−VcdV

∗
cb

VtdV ∗tb

)
, (1.9)

γ ≡ arg

(
−VudV

∗
ub

VcdV ∗cb

)
, (1.10)

they are physical quantities and have the advantage that their size is of several ten degrees.

An illustration of these angles within the unitarity triangle (UT) can be found in Fig. 1.1.
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Figure 1.1: The Bd − B̄d unitarity triangle in the ρ̄− η̄ plane [22]. Several measurements
(colored bands) constrain the sides and angles (the base is normalized to one). The apex
is overconstrained: if an experimental constraint deviates from the SM prediction, the
different constraints will not overlap pointing to new physics.

It also displays several colored bands that represent the current experimental constraints

on the angles and sides. The aim is to overconstrain the triangle as much as possible and

to find tensions between the different measurements. If there are significant tensions this

implies that the CKM matrix is insufficient to describe all flavor changing transitions and

points to NP contributions.

The triangle relevant for b→ p̄ps transitions

VusV
∗
ub + VcsV

∗
cb + VtsV

∗
tb = 0 (1.11)

λ∗us + λ∗cs + λ∗ts = 0 (1.12)

is quite squashed. The first term is O (λ4) and the two latter terms are O (λ2). Hence, it

is almost an isosceles triangle and has one very small angle

βs ≡ arg

(
−VtsV

∗
tb

VcsV ∗cb

)
. (1.13)

The value βs = 0.0188± 0.0004 is very precisely known from global fits [22, 23].

In general the length of the triangle sides are accessible in branching ratio measure-

ments and the angles are observable in CP asymmetries. How the angle β and βs can be

accessed in measurements will be discussed in the following.
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W W

d b

b d

B̄d Bd

t

t

Vtb V ∗
td

V ∗
td Vtb

Figure 1.2: Due to the weak interaction neutral mesons can oscillate into their antiparti-
cles. B̄d −Bd oscillations are dominated by the top quark.

1.1.3 Neutral particles and CP violation

Before we discuss CP -violating observables in detail we must first discuss neutral-meson

oscillations that enrich the neutral meson phenomenology considerably. At fourth order

in gW the Lagrangian LW leads to neutral-meson oscillations. This means, the neutral

mesons K0, D0, Bd and Bs can transform into their antiparticle. We are interested in the

oscillations of B̄d and B̄s mesons. In the following we discuss B̄d mesons, for B̄s mesons

every d must be replaced by an s. The quark-level diagram of B̄d oscillations is shown in

Fig. 1.2. Even though all up-type quarks contribute at the intermediate level, this process

is dominated by the top quark, the dominant contribution is [24]

〈Bd|H∆B=2
eff |B̄d〉 ≈M12 ∼ (VtbV

∗
td)

2m2
t/M

4
W (1.14)

where H∆B=2
eff is an effective Hamiltonian that can be derived from Eqn. (1.1), for details

and the derivation of this formula we refer to references [24, 25]. A consequence of neutral-

meson oscillation is that the flavor eigenstates are no mass eigenstates. However, we may

define the mass eigenstates as

|BL〉 ≡ p |Bd〉+ q
∣∣B̄d

〉
(1.15)

|BH〉 ≡ p |Bd〉 − q
∣∣B̄d

〉
. (1.16)

with q and p being coefficients that obey |q|2 + |p|2 = 1. The flavor eigenstates that are

produced at colliders propagate as linear combinations of the mass eigenstates. Hence,

the flavor eigenstates evolve in time and a B̄d may oscillate into a Bd. These oscillations
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are characterized by the ratio q/p. The evaluation of the diagram in Fig. 1.2 leads to [26]

q

p

∣∣∣∣
Bd

≈ −
√
M∗

12

M12

= −V
∗
tbVtd
VtbV ∗td

+ small corrections. (1.17)

This means that |q/p| = 1 is a good approximation for B̄d mesons (and B̄s mesons).

On the other hand arg(q/p) gives us access to the phases of the CKM parameters in

the standard phase convention, more precisely2

φd ≡ − arg(−q/p)|B̄d = 2β +O
(
λ4
)
,

φs ≡ − arg(−q/p)|B̄s = −2βs +O
(
λ6
)
. (1.18)

Hence, measuring the B̄d−Bd (B̄s−Bs) mixing phase φd (φs) allows us to determine the

CKM angle β (βs). It remains to be shown how the mixing phase can be accessed via an

observable. These observables are CP asymmetries which we discuss now.

1.1.4 CP -violating observables for a general B̄ decay

CP violation is, roughly speaking, the difference in the behavior of particles and antipar-

ticles, since the CP symmetry relates particles with their antiparticles. It can be observed

by considering rate differences of CP -conjugated decays

ACP (B → f) ≡ Γ(B̄ → f̄)− Γ(B → f)

Γ(B̄ → f̄) + Γ(B → f)
. (1.19)

There are three kinds of CP violation, direct CP violation, CP violation in mixing and

mixing-induced CP violation. They are explained in detail in references [24, 25]. We

focus on mixing-induced CP violation which appears in the interference of decay with

and without mixing. It is possible if a neutral meson, e.g. B̄p with p ∈ {d, s}, decays into

a CP eigenstate f with (CP ) |f〉 = ηf |f〉. This means the interference of the processes

B̄p → f and Bp → B̄p → f (1.20)

2The phase of q/p is in fact dependent on the choice of the CP phase ξ in (CP ) |Bd〉 = ei2ξ
∣∣B̄d〉 and

is in principle an unphysical quantity. However, it is correct to say that once we have chosen ξ = ξ0 we
can relate arg(q/p) to a physical quantity.
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leads to CP violation. In this case the CP asymmetry is time-dependent and can be

written as [27, 28]

ACP (Bp → f)(t) ≡ Γ(B̄p(t)→ f)− Γ(Bp(t)→ f)

Γ(B̄p(t)→ f) + Γ(Bp(t)→ f)
(1.21)

=
Sf sin(∆mpt)− Cf cos(∆mpt)

cosh(∆Γpt/2) + A∆Γpt/2 sinh(∆Γpt/2)
. (1.22)

where ∆mp and ∆Γp are the mass and width difference of the mass eigenstates BH and

BL in the B̄p −Bp system defined in Eqn. (1.16). The CP -violating coefficients are given

by

Cf ≡
1− |λf |2
1 + |λf |2

, Sf ≡
2Imλf

1 + |λf |2
, A∆Γp ≡ −

2Reλf
1 + |λf |2

. (1.23)

All information on CP violation is encoded in

λf ≡
q

p

Āf
Af

. (1.24)

The decay amplitudes Af and Af̄ have the general form3

Af = A(Bp → f) = λ∗cqtf + λ∗uqpf , (1.25)

Āf = A(B̄p → f) = −ηf (λcqtf + λuqpf ), (1.26)

which exploits the unitarity of the CKM matrix. The CKM combinations λcq and λuq

have been defined in Eqn. (1.4). In b → cc̄q decays, the dominant contribution to tf

is tree-level, and to pf only loop-suppressed (penguin) diagrams can contribute. For a

B̄d decay the denominator in Eqn. (1.22) can be set to one since ∆Γd is very small and

∆Γd = 0 is a very good approximation.

With εq ≡ λuq/λcq, af ≡ pf/tf and the mixing phases defined in Eqn. (1.18) we rewrite

λf as

λf = ηfe
−iφp 1 + εqaf

1 + ε∗qaf
. (1.27)

and expect |af | < 1.

For the measurement of φd = 2β and φs = −2βs reference [5] suggested the de-

3Some inconsistency appears here in the notation, while the LHS is only a function of f the RHS also
shows dependence on the quark flavors p and q. When we give generic expressions they will always only
carry an index f . We keep the f as a gentle reminder that the decay amplitude is dependent on the final
state f and the quark flavors p and q. In a specific decay we fix the quark flavors p and q and the final
state f according to the decay mode.
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cays B̄d → J/ψKS and B̄s → J/ψφ, respectively. The authors realized that in these

decay modes the term O (|εsaf |) in Eqn. (1.27) is small because the amplitude pf is loop-

suppressed and the CKM-element combination |εs| = 0.02 is small. With terms O (|εsaf |)
neglected the CP -violating observables simplify to

Cf = 0, Sf = −ηf sin(φp), A∆Γp = −ηf cos(φp). (1.28)

Thus, the time-dependent rate asymmetries allow for the measurement of β and βs under

the condition |εsaf | � 1 .

The decays B̄d → J/ψKS and B̄s → J/ψφ have also the experimental advantages that

the J/ψ is reconstructed via J/ψ → µ+µ− which has a not too small (≈ 6%) branching

ratio and a clear signature. Similarly, the KS is reconstructed via KS → π+π− (69%) and

the φ is reconstructed via φ→ K+K− (49%).

When β finally had been measured by the B factories BABAR and Belle, this was the

ultimate confirmation the of the KM model [4] and led to the award of the 2008 Nobel

Prize in Physics to Kobayashi and Maskawa. The current world averages [29] are

SJ/ψKS = sin(φd) = 0.691± 0.017, SJ/ψφ = sin(φs) = −0.034± 0.033. (1.29)

The measurement of SJ/ψKS represents the most precise direct determination of β and

makes β the best-determined CKM angle. The measurement of SJ/ψφ is not yet significant

because the expected value − sin(2βs) is tiny due to βs = 0.0188± 0.0004 [22, 23].

From the picture drawn above it becomes clear that measuring the CP violation in

B̄d → J/ψKS and B̄s → J/ψφ gives access to the B̄p − Bp mixing phases. However,

this was made under the assumption that |εsaf | � 1. The assumption |af | < 1 is based

on the fact that pf in af = pf/tf is loop-suppressed. However, pf cannot be exactly

calculated and could also be enhanced by some nonperturbative dynamics. Furthermore,

depending on the value of |af | . 1 the experimental uncertainties ∼ 0.02 − 0.03 in

Eqn. (1.29) are similar to |εs| = 0.02 which is the size of the theoretical uncertainty.

Therefore, it is of utmost importance to get control over the penguin pollution af = pf/tf

in Eqn. (1.27), in particular in view of the increasing experimental precision. So far the

only serious estimates of this penguin in Bd → J/ψKS have been achieved by the use of

flavor symmetries [30–34]. This approach is based on an approximate SU(3)F symmetry

which rotates the light quarks into each other (The SU(2) subgroup rotating only d and s

is called U-Spin), but these flavor symmetry approaches have considerable disadvantages

(unknown size of SU(3)F breaking and low statistics in b→ c̄cd ’control channels’). The
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use of flavor symmetries entirely fails in Bs → J/ψφ because the φ does not belong to a

single representation of the SU(3)F symmetry but is an admixture of singlet and octet.

It is desirable to have a constraint on af from first principles, which will be the subject

of this thesis. The formalism that will be presented in the next chapters will not only be

applied to these two famous decays but to all B̄ → ψX and B̄ → DD̄ decays. Before

we come to this we will discuss the standard approaches to calculate exclusive B̄ decay

amplitudes and why they fail in B̄ → ψX and B̄ → DD̄ .

1.2 B̄ meson decay amplitudes

In the preceding section it became clear that we need to understand the structure of B̄

decay amplitudes to get a handle on the penguin pollution af . Therefore, we will now

discuss the low-energy effective Hamiltonian that is used to derive B̄ decay amplitudes.

Furthermore, we discuss naive factorization, QCD factorization and 1/NC counting, since

with these approaches some B̄ meson decay matrix elements can be evaluated. We also

discuss why these approaches do not work (sufficiently) in B̄ → ψX and B̄ → DD̄

decays.

1.2.1 The low-energy effective Hamiltonian

The decays B̄ → ψX and B̄ → DD̄ are mediated by the quark-level process b → c̄cq

with q ∈ {d, s}. The energy release is of the order of the mass of the decaying meson

mB ≈ 5.3 GeV. This scale is considerably smaller than the mass of the weak gauge boson

MW = 80.4 GeV that mediates these decays. Therefore, it is favorable to integrate out

the heavy degrees of freedom instead of using the full SM Lagrangian in Eqns. (1.1) and

(1.3). The contributions of Z and W bosons and of the top quark are then described

by an effective Hamiltonian. Consequently, we describe the b → c̄cq processes by the

low-energy effective Hamiltonian [35]

H∆B=1 =
GF√

2

∑
p′∈{u,c}

λp′q

[(
C1Q

p′

1 + C2Q
p′

2

)
+

6,8G∑
i=3

CiQi

]
. (1.30)

Here, GF is Fermi’s coupling constant and λp′q = V ∗p′qVp′b the typical combinations of

CKM elements that contribute. The Wilson coefficients Ci with i ∈ {1, 2, 3, 4, 5, 6, 8G}
represent the effective couplings of the effective operators Qi. These are the current-
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current operators, defined by

Qp′

1 ≡ (p̄′αbβ)V−A(q̄βp
′
α)V−A (1.31)

Qp′

2 ≡ (p̄′b)V−A(q̄p′)V−A, (1.32)

and the penguin operators, defined by

Q3 ≡ (q̄b)V−A
∑
p

(p̄p)V−A, (1.33)

Q4 ≡ (q̄αbβ)V−A
∑
p

(p̄βpα)V−A, (1.34)

Q5 ≡ (q̄b)V−A
∑
p

(p̄p)V+A, (1.35)

Q6 ≡ (q̄αbβ)V−A
∑
p

(p̄βpα)V+A, (1.36)

Q8G ≡ gS
8π2

mbq̄σ
µν(1 + γ5)T aGa

µνb. (1.37)

The sum over p runs over the active quark flavors u, d, s, c and b. The indices α and β are

color indices with summation of repeated indices implied. The subscripts (V ±A) indicate

the Lorentz structure of the operator, e.g. (q̄b)(V−A)(p̄p)(V±A) ≡ (q̄γµ(1 − γ5)b)(p̄γµ(1 ±
γ5)p). Furthermore, the QCD Lagrangian in Eqn. (1.3) describes the effects of the strong

interaction of energies below the renormalization scale µ ∼ mb. Thus, the sum in LQCD

does not run over t anymore.

The current-current operators derive from QCD-improved W exchange. The penguin

operators derive from a (full Standard Model) one-loop penguin diagram involving the

top quark and the W boson. For this reason we refer to them as the top penguins in

contrast to the penguin diagrams in the effective theory that arise from insertions of the

up and the charm quark current-current operators, see Fig. 1.3c. Note that we neglect

electromagnetic effects in the whole thesis since they are negligible w.r.t. the leading

QCD contributions.

From the effective Hamiltonian we derive the structure of the decay amplitudes of a

B̄ meson to a generic final state f

A(B̄ → f) = λcqtf + λuqpf (1.38)

with
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b q

c c
Qc

2

(a)

b q

c c
Q3,4,5,6

(b)

b q

c c

u u

Qu
2

(c)

b q

c c

Q8G

(d)

Figure 1.3: LO terms of a B̄ → f decay that is governed by the process b → cc̄q .
Depending on how the quarks hadronize these diagrams contribute to B̄ → ψX or B̄ →
DD̄ and possibly involve further soft gluons. At tree-level only the c̄c component of the
top penguins contribute. (a) Current-current operator insertion. (b) Top-penguin
operator insertion. (c) Current-current operator insertion Qu

2 into the penguin diagram.
(d) Insertion of the chromomagnetic dipole operator.

tf = −i
GF√

2
〈f |C1Q

c
1 + C2Q

c
2 +

6,8G∑
i=3

CiQi|B̄〉, (1.39)

pf = −i
GF√

2
〈f |C1Q

u
1 + C2Q

u
2 +

6,8G∑
i=3

CiQi|B̄〉. (1.40)

In Fig. 1.3 we show the corresponding LO Feynman diagrams on the quark level.

The Wilson coefficients C1 − C6 are calculated via a matching to the full SM and are

known to next-to-leading order (NLO)[35] in the modified minimal subtraction scheme

(MS) [36] of naive dimensional regularization (NDR) we γ5 take to be anti-commuting.

The matrix elements 〈Qi〉 are the fundamental difficulty in the evaluation of the B̄ decay

amplitude. Their calculation from first principles is impossible with current methods,

since they cannot be evaluated in perturbation theory.

1.2.2 Evaluation of the matrix elements

Even though the calculation of the four quark matrix elements is not possible from first

principles, there is a long history of approximate methods that had reasonable success in

the description of the four-quark matrix elements. Most notable are naive factorization

[37–39] and QCD factorization (QCDF) [6–8], whose applicability, however, has a limited

scope. To explain these two concepts in order to relate them to our work let us discuss
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the decay B̄d → D+π− in naive factorization and QCDF.

The assumption of naive factorization (a very concise discussion may be found in

reference [40]) is that one of the final state particles (the π−) separates itself very fast

from the point-like effective vertex in an exclusive, nonleptonic, two-body decay. The

hadronization of the decay products happens on much longer time scales than the decay.

Hence, the two quarks, which ultimately form the pion, separate themselves from the

(B̄D) system before they hadronize. Since they must be in a color singlet to form the

pion, they are very insensitive to soft interactions because of color transparency [41]. In

our example, the four-quark interaction is then split up into two separate currents

〈D+(p′)π−(q)|(c̄b)V−A(d̄u)V−A|B̄d(p)〉
∣∣
fact

= 〈π−(q)|d̄γµγ5u|0〉〈D+(p′)|c̄γµb|B̄d(p)〉.
(1.41)

Let us define the form factors FBD
0 (q2) and FBD

1 (q2) of the B → D transition

〈D(p′)| q̄γµb |B(p)〉 ≡ FBD
1 (q2)

(
(p+ p′)µ −

m2
B −m2

D

q2
qµ

)
+FBD

0 (q2)
m2
B −m2

D

q2
qµ (1.42)

with q = p− p′. Furthermore, we define the pion decay constant fπ〈
π−(q)

∣∣ d̄γµγ5u |0〉 ≡ ifπqµ. (1.43)

Form factors and decay constants can be be determined in (semi-) leptonic decays. They

are general properties of the involved particles and not decay-specific. We use them to

rewrite the factorized matrix element as

〈D+(p′)π−(q)|(c̄b)V−A(d̄u)V−A|B̄d(p)〉
∣∣
fact

= iFBD(m2
π−)fπ−(m2

B̄d
−m2

D0). (1.44)

Thus, the unknown four-quark matrix element has been expressed by simpler and general

hadronic quantities.

Clearly, this phenomenological approach does not include all QCD contributions since

it neglects all interactions between the two hadronic currents. However, given the motiva-

tion above they should represent the dominant part of the full four-quark matrix element.

We refer to terms that are neglected in naive factorization as ’nonfactorizable’ terms.

Naive factorization has reasonable success in many decay modes. Today, this success has

been understood because naive factorization represents the (or a) zeroth order term of

the amplitude in QCDF.
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QCDF exploits that the energy release in B̄ meson decays, O (mb), represents a hard

scale in the four-quark matrix elements. This allows an expansion of the matrix elements

in
ΛQCD

mb
and leads to a similar decomposition as in Eqn. (1.41). The difference to naive

factorization is that in QCDF dominant ’nonfactorizable’ effects can be calculated sys-

tematically. A short introduction to QCDF can be found in reference [42].

In references [6, 7] it was realized that the ’nonfactorizable’ hard-gluon exchange between

the two hadronic currents can be calculated perturbatively. It can be described by a hard-

scattering kernel, denoted by T Iij(u). The ’nonfactorizable’ soft-gluon exchange between

the two currents is suppressed by
ΛQCD

mb
. If M1 is a heavy meson and M2 is a light meson

the four-quark matrix element can then be written as [42]

〈M1M2|Qi|B̄〉 =
∑
j

FBM1
j (m2

M2
)

∫ 1

0

duT Iij(u)ΦM2(u) +O
(

ΛQCD

mb

)
. (1.45)

In our example, M1 = D+ and M2 = π−, the form factor FBM1
j (m2

M2
) that describes the

B̄ →M1 transition is same as in Eqn. (1.42). The hard-gluon exchange of this transition

with M2 is described by a convolution of the hard-scattering kernel T Iij(u) with ΦM2(u)

which is the light-cone distribution amplitude (LCDA) of M2. The ΦM2(u) describes the

hadronization probability of an energetic quark carrying the light-like hard momentum

fraction u and of an antiquark with momentum fraction 1− u.

QCD factorization can be used to compute four quark matrix elements in the decays of

a B̄ meson to two light pseudoscalar or vector mesons or to a heavy-light final state, if the

heavy meson (D meson) picks up the spectator quark. In contrast, QCDF is not applicable

to light-heavy decays where the light meson picks up the spectator quark and to decays

into heavy-heavy final states such as B̄ → DD̄ . QCD factorization formally applies to

B̄ decays to charmonia but, actually, is not applicable because the formal suppression

factor of soft contributions
ΛQCD

αS(mb)mc
∼ 1 is not small. For example, the branching ratio

B(B̄d → J/ψKS) has been calculated in QCDF in reference [9, 10] but fails to describe the

experimental data by a factor of eight. QCDF fails if the emission particle M2 separates

itself too slowly from the B → M1 transition because the final-state particles begin to

hadronize when they are still close. Thus, the hadronization of the final state particles

cannot be separated and is dependent on decay-specific conditions.

Another interpretation of naive factorization is that it represents the lowest-order term

in the large NC limit [12, 40, 43, 44]. NC = 3 is the number of colors. The NC → ∞
limit while keeping NCg

2
S = const. allows to order four-quark matrix elements in terms of

NC . The naively-factorizable terms are leading while soft or hard gluon exchange lead to
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terms suppressed by 1/NC .

Estimating matrix elements in the large NC limit is a nonperturbative method inde-

pendent of the perturbative expansion in αS and also applicable to low-energy matrix

elements such as matrix elements in B̄ → DD̄ or B̄ → ψX decays. The disadvantages of

NC counting are that correction terms cannot be computed rigorously and that in view

of NC = 3 correction terms could be larger than expected.

The above discussion makes it clear that it is rather difficult to make reliable pre-

dictions about amplitudes in b → cc̄q transitions with the current theoretical means.

Nevertheless, this calculation seems rather desirable in view of the fact that they are the

limiting theoretical uncertainty in the prediction of CP asymmetries and in the extraction

of CKM parameters from observables.

This failure is due to our inability to compute four-quark matrix elements from first

principles. The problem of calculating matrix elements can be divided into two subprob-

lems.

First, there are the matrix elements of the four-quark operators that produce directly

a c̄c pair such as Qc
2 = (c̄b)V−A(q̄c)V−A. The matrix elements of these operators largely de-

termine the tree amplitude tf and, therefore, are important for the prediction of branching

ratios. It is possible to control these matrix elements with NC counting.

Second, there are effective operators that do not directly produce a c̄c pair, they

lead to nonlocal, multiscale matrix elements, such as 〈Qu
i 〉. They represent the dominant

uncertainty in the penguin-to-tree ratio af which determines the CP -violation observables.

It is our aim to clarify the significance of these matrix elements. Their treatment

will be the subject of the next two chapters. In Chapter 2, we will suggest an operator

product expansion (OPE) to describe the arising nonlocal processes via local operators.

In Chapter 3, we will prove that this OPE is viable. In the subsequent chapters, we focus

on the phenomenology of B̄ → ψX and B̄ → DD̄ decays.



Chapter 2

Operator Product Expansion

We have identified the four-quark matrix elements as the dominating uncertainty in the

determination of CP violation observables. In particular, the operators that lead to

nonlocal matrix elements, such as 〈Qu
i 〉, are problematic.

The diagrams that lead to nonlocal matrix elements are given in Fig. 2.1. We observe

that there is a large momentum transfer q2 ∼ m2
ψ ∼ 10 GeV2 to the c̄c line running

through the loop and through the gluon. There has been the general conjecture of Bander,

Silverman, and Soni (BSS) [11] that a loop process, if a large momentum runs through it,

can be computed perturbatively. This conjecture is not proven for b→ cc̄q decays but the

momentum running through the up quark loop q2 certainly represents a large momentum

in the sense that q2 � Λ2
QCD. The formal interpretation of the BSS conjecture is to

describe the loop within an operator product expansion (OPE) that exploits q2 � Λ2
QCD.

Our aim is to prove that it is possible to describe the nonlocal matrix elements in b →
cc̄q transitions with an OPE.

Unlike in the derivation of the low-energy effective Hamiltonian, no particles but

merely a scale is integrated out in this OPE. Light quarks or gluons with an off-shellness

of q2 cannot contribute anymore. The consequence is that the diagrams in Fig. 2.1 are

effectively a point-like process and can be represented by an effective interaction. The

coupling strength of this interaction is then encoded in a perturbative Wilson coefficient.

In the literature we find already some OPEs that formalize the BSS conjecture. In

particular QCDF includes the BSS idea but is a lot more sophisticated. Another OPE in

the spirit of BSS has successfully been applied in B → K(∗)l+l− decays [45–47]. Here, the

momentum transfer q2 to the l+l− pair is used to expand in Λ2
QCD/q

2.

We will prove and apply an OPE to describe the nonlocal matrix elements in b→ cc̄q

transitions. This resolves the problem of nonlocal matrix elements and reduces them to

19
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b q

q2

c c

u u

Qu
i
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b q
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q2
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Figure 2.1: LO terms of the full theory that lead to nonlocal, multiscale matrix elements
and which we describe with the OPE. (a) Insertion of a local four-quark operator into
the penguin diagram. (b) Insertion of the chromomagnetic dipole operator.

matrix elements of local operators. The operator basis of these local operators consists

of dimension-six and dimension-seven operators. We choose the following basis for the

six-dimensional operators

Q0V ≡ qγµ(1− γ5)b cγµc,

Q0A ≡ qγµ(1− γ5)b cγµγ5c,

Q8V ≡ qγµ(1− γ5)T ab cγµT ac,

Q8A ≡ qγµ(1− γ5)T ab cγµγ5T
ac. (2.1)

This basis can easily be related to Qc
1 and Qc

2 but has the advantage that it is color

orthogonal and allows a transparent color counting later on.

Except for chiral and color structure there are only two genuine dimension-seven op-

erators possible in the SM, all other operators can be reduced to dimension-six operators

times a mass. We use as a basis for the dimension-seven operators

Q0T ≡ 1

mb

∂ν(q̄σµν(1 + γ5)b) cγµc,

Q8T ≡ 1

mb

∂ν(q̄σµν(1 + γ5)T ab) cγµT ac,

Q0T̃ ≡ 1

mb

q̄γµ(1− γ5)b ∂ν(cσ
µνc),

Q8T̃ ≡ 1

mb

q̄γµ(1− γ5)T ab ∂ν(cσ
µνT ac). (2.2)
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These operators can be derived from the operators Hq, H̃q, Hq, and H̃q in reference [48]

where all dimension-seven operators in b→ s transitions have been identified. The above

basis implies that there is no dimension-seven four-quark-one-gluon effective interaction

possible in the SM. The basis derived in reference [48] conceals this fact.

Let us now identify the terms that cannot directly be described by the basis in

Eqn. (2.1) and Eqn. (2.2) and need to be treated in the OPE. For this we consider

A(B̄ → f) = λcqtf + λuqpf , (2.3)

with

tf =
GF√

2
〈f |C1Q

c
1 + C2Q

c
2 +

6,8G∑
i=3

CiQi|B̄〉, (2.4)

pf =
GF√

2
〈f |C1Q

u
1 + C2Q

u
2 +

6,8G∑
i=3

CiQi|B̄〉 (2.5)

in more detail. We decompose the penguin operators into a charm and a non-charm

component, e.g.,

Q3 = (q̄b)V−A
∑

p∈{u,d,s,c,b}

(p̄p)V−A = Qc
3 +Qnc

3 (2.6)

with Qc
3 ≡ (q̄b)V−A(c̄c)V−A and Qnc

3 ≡ (q̄b)V−A
∑

p∈{u,d,s,b}(p̄p)V−A and analogous defini-

tions for Q4, Q5 and Q6. The matrix elements of Qc
1, Qc

2 and the charm component of

the penguin operators Qc
i with i ∈ {3, 4, 5, 6} emit the c̄c quark pair necessary for the

final state. These matrix elements can simply be expressed with the operator basis in

Eqn. (2.1). In contrast, the matrix elements of Qu
1 , Qu

2 , Q8G and Qnc
i with i ∈ {3, 4, 5, 6}

must be nonlocal because the valence quark content of the operators does not match the

final state. For example, the up quark pair of Qu
2 annihilates into a gluon that subse-

quently produces a c̄c pair as it is shown in Fig. 2.1a. Similarly, in the matrix element of

the chromomagnetic dipole operator, depicted in Fig. 2.1b, the gluon annihilates into a

c̄c pair. In the mentioned diagrams the charm quark pair is in a color octet state because

the diagrams represent only the hard process, the correct color charges are arranged by

soft gluons.

With the αS-counting C1, C2 ∼ O (1) and C3, C4, C5, C6 ∼ O (αS) for the Wilson

coefficients, the insertions of Qnc
i with i ∈ {3, 4, 5, 6} into the penguin diagrams are

O (α2
S). This is why we will neglect them for now, the inclusion of the Qnc

i insertions is a

straight-forward generalization of the Qu
i insertions and will be done in section 4.1.1 after
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the validity of the OPE has been shown. Hence, we only have to consider the insertions

of Qu
1 , Qu

2 and Q8G into the penguins for the OPE. It is then our aim to show that these

insertions can systematically be expanded in the basis 2.1 and 2.2,

〈f |Q(u)
j |B̄〉 =

∑
k

C̃j,k〈f |Qk|B̄〉+O
(

ΛQCD

M

)
, (2.7)

for j ∈ {1, 2, 8G} and k running over k = 0V, 0A, 8V, 8A, 0T, 8T, 0T̃ , 8T̃ . The validity of

the OPE is expected to be true up to O (ΛQCD/M) with M ≡
√
q2.

The coefficients C̃j,k = C̃
(0)
j,k + αS(µ)

4π
C̃

(1)
j,k + . . . can be calculated perturbatively, we find

C̃
(0)
2,8V = P (q2) and C̃

(0)
8G,8T = −m

2
b

q2

αs(µ)

π
. (2.8)

with the penguin function defined as

P (q2) ≡ 2

3

αs(µ)

4π

[
ln

(
q2

µ2

)
− iπ − 2

3

]
. (2.9)

All other coefficients vanish. The coefficients depend on the renormalization scale µ and

on the momentum transfer q2.

Before we dwell on to the proof of the relation in Eqn. (2.7), let us comment on some

features.

• Since the OPE requires a certain kinematical configuration (q2 must be transferred

from the b−s line to the c̄c pair), the OPE does not represent a full effective theory

and cannot be represented by an effective Hamiltonian. Nevertheless, we will refer

to the processes after the OPE as the effective theory and to the low-energy effective

Hamiltonian in Eqn. (1.30) as the full theory because we will not refer to the full

SM Lagrangian anymore.

• We only integrate out the hard penguin diagrams and cannot resolve the problem

that the wave functions of the final-state particles have a large overlap and cannot

be separated. This is why the OPE results into four-quark matrix elements.

• The dimension-seven operators must be counted as a dimension-six operator in our

OPE because the derivative ∂ν is replaced by iqν ∼ M in the matrix element. Of

the operators in Eqn. (2.2) only Q8T arises in the OPE at LO and derives from the

Q8G penguin. It can be reduced to a proper dimension-six operator plus a dimension
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seven operator which introduces a coupling to a gluon

1

mb

∂ν(q̄σµν(1 + γ5)T ab) cγµT ac = Q8V +
2

mb

q̄i
←−
Dµ(1 + γ5)T ab c̄γµT ac (2.10)

= Q8V +O
(
Eq
mb

)
(2.11)

Here, we used that ∂ν =
←−
D ν +

−→
D ν and i /

−→
Db = mbb. A term q̄ii

←−
Dµ ≡ i∂µq̄i−gq̄jAaµT aji

arises. This term is suppressed by Eq/mb, where Eq is the energy of the light quark

q in the B̄ meson rest frame.

• The OPE still results into “unknown” matrix elements but the structure of the

decay amplitude is greatly simplified in our approach. In particular, it becomes

clear that the matrix element that controls the penguin pollution is already present

in the branching ratio and consequently under control. Thus, our method is mostly

suitable to make predictions for CP -violating observables and less suited to predict

branching ratios but, of course, the simplified decay amplitude structure leads also

to testable relations of decay amplitudes and, therefore, to testable relations of

branching ratios.

• The OPE implies to good approximation that

pf ∝ (2C2C̃2,8V + 2C4 + 2C6 + C8GC̃8G,8T ) 〈Q8V 〉 . (2.12)

Since
2C2C̃2,8V +C8GC̃8G,8T

2C4+2C6
≈ i

2
at the scale µ = mb, this implies that the the up-

quark and chromomagnetic penguin only add a small correction to the penguin

pollution. The dominant contribution to the penguin pollution arises from the top-

quark penguins.

It is the goal of this thesis to prove the validity of the OPE in Eqn. (2.7) and to apply it

to decays that are governed by the quark-level process b→ cc̄q . In the next chapter we

will perform the proof. The reader interested in the phenomenological application may

continue with reading Chapter 4.





Chapter 3

Factorization

In this chapter, we will first discuss the conditions and assumptions of the OPE and then

prove the validity of the OPE to one-loop order.1 Here, we use the term factorization

unrelated to naive factorization or QCDF in the sense of ’factorization of scales’. It

means that we can systematically separate long and short-distance effects in a particular

process. Consequently, factorization implies that we can apply an OPE. This corresponds

to integrating out high energy scales and to describe their effects by a Wilson coefficient.

The low energy effects can be encapsulated into the matrix elements of effective operators

or are power-suppressed. Proving factorization involves to show:

1. the factorization of hard and soft scales in b→ cc̄q , i.e. on the quark level.

2. the suppression of soft and hard-collinear spectator scattering.

3. the suppression of soft penguins.

4. the suppression of additional soft or hard partons.

We will elaborate on these topics in the second section, they represent the main findings

of this chapter.

In this thesis we consider the two decay classes B̄ → ψX and B̄ → DD̄ which both

derive from the quark-level transition b → cc̄q . The difference between both decay

modes is that the final valence quarks hadronize in different configurations. Whereas in

B̄ → ψX decays the charm quarks hadronize into a charmonium, in B̄ → DD̄ decays the

charm quarks hadronize into different final mesons. This leads to a different kinematic

situation and a different treatment of the spectator quark. Therefore, we will first discuss

1One additional loop to the up-quark or chromomagnetic penguin

25
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the proof for B̄ → ψX modes to be more explicit, and discuss the necessary modifications

for B̄ → DD̄ decays in section 3.8.

Furthermore, we will first only discuss the B̄ decay as a b quark decay and ignore the

spectator quark. The aspects due to the inclusion of the spectator quark are discussed in

sections 3.3, 3.6 and 3.7.

3.1 Conditions and assumptions

We begin by spelling out the kinematical situation and then introduce our power counting.

The assumptions will be discussed in the second subsection.

3.1.1 Kinematics

We will chose the B̄ rest frame as the reference frame to describe the B̄ → ψX decay.

Even though the subsequent discussion does not depend on this choice, it simplifies our

analysis. The momenta of the mesons are all fixed by four-momentum conservation (see

Fig. 3.1a)

pB =


mB

0

0

0

 , pX =


pcm

0

0

−pcm

 = pcmn−, and pψ =


Eψ

0

0

pcm

 (3.1)

with Eψ =
√
m2
ψ + p2

cm and where X is considered massless. Consequently, pX is on the

light cone, this has been parametrized with the light-cone vector n± = (1, 0, 0,±1)⊥. The

center-of-mass momentum is

pcm ≡
m2
B −m2

ψ

2mB

(3.2)

and a typical value is pcm = 1.7 GeV. We consider the B̄ meson in the heavy quark limit in

its rest frame. In this case the b quark is at rest and the momentum pb ' mb/2(n+ +n−).

Since the b quark is confined in a B̄ meson, this is only true up to corrections O (ΛQCD).

Therefore, we use the “'” which we use “as equal up to higher orders”, here in ΛQCD. The

momentum that runs through the hard gluon that creates the ψ must have momentum

q ' pψ. Since a ψ cannot be created by a single gluon, there are soft gluons that correctly

arrange the quantum numbers but these are not drawn, since we only draw hard lines.

p′ ' pcmn− is the momentum of the light quark q that stems from the effective vertex,
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B̄(pB) X(pX)

ψ(pψ)

(a)

b q

q2

c c

u u

pb p′

pc̄ pc

(b)

b q

c c

q2

Q8G

(c)

Figure 3.1: Naming conventions. (a) Naming convention for the external momenta
mesons. (b) Naming convention for the external momenta quarks. (c) Q8G penguin.

see Fig. 3.1b. Note, that we use the symbol q for the light quark created at the effective

vertex and for the momentum transfer to the ψ, however, this should not lead to confusion

since it should be clear from the context whether we refer to the momentum transfer or

to the light quark.

Power counting: In the following we will rely on the heavy-mass limit with mb →∞
and mc/mb fixed. The center-of-mass momentum pcm is treated as a separate scale with

mb � pcm � ΛQCD. (3.3)

This is done because in reality pcm is an intermediate scale between mb and ΛQCD, even

though the heavy-mass limit implies pcm ∼ mb
2

(
1− 4m2

c

m2
b

)
∼ mb → ∞. Furthermore,

instead of distinguishing mb and
√
q2 we will generally employ

mb ∼
√
q2 ∼M →∞. (3.4)

3.1.2 Assumptions

The factorization is subject to the assumption that there is no coherent configuration of

soft gluons that transfers a hard momentum.

The result for C̃
(0)
2,8V in Eqn. (2.8) has an imaginary part, this reflects that the interme-

diate up quarks can go on shell. One may argue that this leads to resonances that cannot

be described in perturbation theory. Indeed, the perturbative calculation as a function

of q2 does not necessarily describe the process correctly point-by-point. Nevertheless, if
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q2 is far away from the resonant region the penguins are correctly described. Such that

at q2 ∼ (2mπ)2 the OPE fails but since the virtuality q2 ∼ m2
ψ is far above the ūu reso-

nances the perturbative description is expected to be correct. This assumption is similarly

made in the OPE in B → K(∗)l+l− decays [45–47] and in QCDF [49]. Furthermore, it

corresponds to the smearing method in the calculation of inclusive cross sections [50].

3.2 Factorization of hard and soft scales

We want to evaluate the contributions of the up-quark and chromomagnetic penguin

in Figs. 3.1b and 3.1c. Since there is the large momentum transfer q2 = M2 in these

processes, we want to extract the perturbative part of these penguins with an OPE.

This is only possible if the perturbative part can systematically be separated from the

nonperturbative contributions. In particular this means that by integrating out the scales

ofO (M), we should obtain Wilson coefficients that are infrared (IR) finite. To understand

the IR structure of the penguins we will first give a short general introduction on IR

divergences in QCD and then search for solutions of the Landau equations which are a

necessary criterion for an IR divergence. To examine the solutions of the Landau equations

we will subsequently employ a power counting to evaluate which of the solutions eventually

leads to an IR divergence. We do not aim at an all order statement but will only consider

the two-loop NLO penguin diagrams to get an understanding of our process. Furthermore,

we do not need to consider diagrams in which the second gluon only connects external

legs, since these factorize into the matrix elements. We will limit the discussion of the IR

structure on the Qu
i penguin insertions and comment shortly on the IR structure of the

Q8G penguins at the end of this section.

3.2.1 Notions on infrared divergences

In the context of flavor physics, infrared divergences only rarely turn up, for this reason

we first discuss several general aspects of IR divergences before we consider them in our

special case. Here, we follow references [16, 51].

Many quantum theories use perturbative methods to describe transition amplitudes,

in perturbation theory usually Feynman integrals are necessary to make higher-order

computations. Feynman integrals are functions of external momenta and masses. The

singularities of Feynman integrals are called Landau singularities and depend on external

momenta and internal masses. The singularities that are independent of the orientation of

the external momenta and, consequently, only depend on external and internal masses are
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called mass singularities and are a special class of Landau singularities. They are due to

vanishing or finite loop momenta and are therefore called infrared (IR) singularities. More

specifically we distinguish soft and collinear IR divergences. Soft divergences arise when

a loop momentum goes to zero (becomes soft) and are related to massless gauge bosons,

collinear divergences appear if massless matter fields interact with gauge bosons and both

carry collinear momenta. In QCD, IR divergences arise if the long-distance structure

is not correctly described by perturbation theory and are usually due to hadronization

effects.

Ultraviolet (UV) singularities of Feynman integrals are due to infinite loop momentum,

they are a short distance phenomenon and can be treated by renormalization, therefore,

we will not consider them here.

If we are confronted with the exercise to investigate a given diagram on IR divergences,

we can compute the integral in naive dimensional regularization, the IR singularities will

then turn up as 1
ε

poles after proper renormalization of the UV poles. Nevertheless,

computing loop diagrams which involve different mass scales can be a tedious exercise,

furthermore the 1
ε

pole disguises the origin of the IR divergence. Fortunately, it is also

possible to investigate the IR structure of a diagram without actually computing it with

the help of the Landau equations [52] which enable us to find the possible IR singularities

of a Feynman diagram. Unfortunately, the Landau equations are only a necessary and no

sufficient criterion for an IR divergence. Thus, after having found possible IR divergences

we will use a power counting to see whether a given diagram is actually IR divergent.

A pedagogical introduction to the Landau equations is given in the book of Böhm,

Denner and Joos [51]. We follow their explanation here to introduce shortly the Landau

equations. Consider a general Feynman diagram G with E external legs carrying the

momenta pj. Furthermore, it has L loops with loop momentum kl and there are I internal

lines with masses mi and momenta qi. The qi must be linear combinations of some of the

kl and pj. We then write a general Feynman integral as

FG(pj,mn) =

∫ ( L∏
l=1

d4kl

)
N(pj, kl,mn)

I∏
i=1

i

q2
i −m2

i + iε
. (3.5)

Here, N(pj, kl,mn) is the numerator of the Feynman integral and a regular function of

its arguments. This integral can be IR divergent if the two Landau equations [52] are

fulfilled

λi(q
2
i −m2

i ) = 0 for all i = 1, . . . , I (3.6)
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and
I∑
i=1

λiqi
∂qi
∂kl

= 0 for all l = 1, . . . , L, (3.7)

for a set of nonvanishing λi. The numerator N(pj, kl,mn) is immaterial to the Landau

equations. The first equation requires that the respective denominator is actually zero.

This means that the momentum is on the mass shell, yet, owing to the +iε prescription

this does not necessarily lead to a divergence. Most often the integration contour can

still be deformed into the complex plane such that this vanishing denominator leads to

a branch point. However, if also the second equation is satisfied for nonvanishing λi, the

integration path cannot be deformed anymore in the complex plane in such a way that it

would avoid the singularity. In other words this second Landau equation requires that the

integration path is pinched between two or several singularities, such that the integration

contour cannot be deformed anymore and necessarily goes through the singular point.

For physical processes the λi must be real and positive. For a geometrical explanation of

the Landau equations we refer to reference [53].

If all the equations are satisfied with all λi nonzero, the corresponding singularity

is called the leading singularity. If, however, some λi need to be zero to satisfy all the

equations, we consider only the set of Landau equations with nonvanishing λi. This

corresponds to a reduced diagram, in which all propagators with λi = 0 are left out of

consideration (contracted to a point). An important property of the Landau equations

is that it is sufficient to find one nonvanishing Landau parameter to produce a potential

singularity. If all other λi are zero it is still possible that some denominators q2
j −m2

j =

0 vanish by themselves, the degree of divergence is then enhanced by these vanishing

propagators. There are two generic solutions of the Landau equations, that have been

identified by Kinoshita [51, 54]. These are soft divergences (one λi 6= 0 and collinear

divergences (two λi 6= 0), both divergences are always related to external legs. For one

loop diagrams these are the only mass divergences that can arise.

3.2.2 Two-loop diagrams

With the Landau equations we obtained a necessary criterion to find IR divergences in

any Feynman integral, we will apply this now to the NLO up quark penguin diagrams

in Fig. 3.2, where we do not draw self-energy diagrams. Self-energy diagrams of external

legs factorize they have a counterpart on the effective side of the OPE. The self-energy of

the gluon cannot be IR divergent because the gluon is off-shell. The self-energies of the

internal up quarks are regularized by the loop momentum that runs through them.
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1 2

5 6

3 4

7

(a) I12 (b) I13 (c) I14 (d) I23

(e) I24 (f) I34 (g) I15 (h) I16 (i) I17

(j) I25 (k) I26 (l) I27 (m) I35

(n) I36 (o) I37 (p) I56 (q) I57

Figure 3.2: One-loop (NLO) corrections to the up quark penguins. We do not plot self-
energies.
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(a) I13

b q

c c

(b) I13e

Figure 3.3: Diagrams in which the NLO gluon only connects external legs factorize in the
OPE

To name the integrals we numbered the lines (b, q, c̄, c, ū, u, g) → (1, 2, 3, 4, 5, 6, 7) as

can be seen in Fig. 3.2(a), we then label the diagrams by the numbers of the two lines that

are connected by the second gluon (the gluon not present in the LO penguin). The smaller

index number comes first. If this prescription is ambiguous, we choose the configuration

in which the first index is smaller.

The NLO diagrams in which the additional gluon only connects external legs – none of

the indices is equal to 5, 6 or 7 – have an equivalent on the effective side of the OPE, a

graphical example for I13 is given in Fig. 3.3. In contrast, the diagrams Iij with at least

one index equal to 5, 6, or 7 have no equivalent on the effective side of the OPE because

the second gluon couples to an internal line, these NLO processes should be described by

the perturbative OPE coefficient C̃
(1)
j,k , consequently they have to be free of IR divergences.

Hence, we will apply the Landau equations to I15, I16, I17, I25, I26, I27, I35, I36, I37,

I56, and I57 to investigate their IR structure. From the diagrams we derive the integral

expressions given in the appendix, the integrals that we discuss in detail are

I15 = − g4
s

(2π)8

C15

q2

∫
ddk ddlΓ1

/k − /q
(k − q)2

γµ
/k

k2
γν

/k + /l

(k + l)2
Γ2

/l + /pb +mb

(l + pb)2 −m2
b

γν
1

l2
⊗ γµ, (3.8)

I25 = − g4
s

(2π)8

C25

q2

∫
ddk ddlγν

/l − /p′
(l − p′)2

Γ1

/k − /q
(k − q)2

γµ
/k

k2
γν

/k + /l

(k + l)2
Γ2

1

l2
⊗ γµ, (3.9)

Some notation has been introduced, we stripped the integral expressions from the spinors

and separated the two quark currents with a “⊗” instead. The first current is sandwiched

between ūq(p
′) and ub(pb), the second current is sandwiched between ūc(pc) and vc(pc̄).

Furthermore we used the insertion of a generic operator Q = Γ1V1 ⊗ Γ2V2 instead of
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Number of nonzero Landau parameters λi
One Two Three

Diagram
I15, I16 (0,-), (-,0), (k0,−k0), (q,-) (q, 0), (q,−q) (0, 0)
I17 (-, 0), (k0,−k0), (q,-), (-,−q) (q, 0) (q,−q)
I25, I26 (0,-), (k0,−k0), (q,-) (q,−q)
I27 (k0,−k0), (−q,-), (-, q) (−q, q)
I35, I36, I56, I57 (0,-), (-, 0), (k0,−k0), (−q,-), (-, q) (0, q), (−q, 0) (0, 0), (−q, q)
I37 (0,-), (-, 0), (−q,-), (-, q) (0, 0), (−q, q),

(0, q), (−q, 0)

Table 3.1: Point-like solutions of the Landau Eqns. (3.6) and (3.7) given as tuples for the
loop momenta (k0, l0) for all NLO up-quark penguin diagrams that do not have an equiv-
alent after the OPE. A “-” means that the value is unconstrained e.g., in (-, 0) the loop
momentum k is not constrained by the Landau equations. The solution (k0,−k0) implies
that k = −l is also a solution this derives from the denominator (k+ l)2. The solutions of
the Landau equations are unique, but how we parametrize the solution depends on how
the loop momenta are routed through the diagram. These solutions correspond to the
integral expressions given in the Appendix A.1.

Number of nonzero Landau parameters λi
Two Three Four

Diagram
I25, I26 (-, γp′), (−δp′, γp′)
I27 (-,−γp′) (γp′,−γp′)

Table 3.2: Solutions to Landau equations 3.6 and 3.7 that lie on a linear manifold
parametrized by 0 ≤ δ ≤ γ ≤ 1 and with the basis vector p′. For more explanations
see the caption of Tab. 3.1.

specific Dirac (Γi) and color structure (Vi). We also factored out the color structures

C15 = V1T
aT bV2T

b ⊗ T a, C25 = T bV1T
aT bV2 ⊗ T a. (3.10)

The application of the Landau equations is not difficult but a bit laborious, therefore,

we simply present the solutions of the Landau equations in Tabs. 3.1 and 3.2 without

deriving them.

Two generic solutions of the Landau equations arise: points such as (k0, l0) = (0, 0)

or (k0, l0) = (−q, q), and the solutions in which l0 is collinear to p′ and k0 is arbitrary

indicated by a “-” or also collinear. The point-like solutions can lead to soft IR divergences

and are the only solutions for the integrals I15, I16, I56, I35, I36, I17, I57, and I37 (all

diagrams that do not have an index 2). In diagrams I25, I26, and I27, in which the second
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gluon couples to the light quark q, the possibility of a collinear singularity exists.

3.2.3 Power counting

We established in Tabs. 3.1 and 3.2 the solutions of the Landau equations which are the

location of the possible IR singularities, we now have to investigate whether the integrals

are actually IR divergent. For this we must understand whether in the specific integral

the numerator or denominator goes faster to zero when we approach the singularity. If

the solution is at a point such as (k0, l0) = (0, 0) we can use naive power counting. For

the solutions on a linear manifold such as l = γp′ with 0 ≤ γ ≤ 1 we must use a different

power counting. We will not discuss every diagram individually here but simply show for

every generic solution how the power counting is employed to investigate the properties

of a certain integral.

Naive power counting For singular points we can use naive power counting. This

means that, since we are considering a single point in the four (eight) dimensional loop-

momentum space, we can redefine the loop momentum (momenta) such that the origin

is at the singular point. We can then determine the degree of divergence of the integral

when we send all momentum components to zero. Let us consider the example

I15 = − g4
s

(2π)8

C15

q2

∫
ddk ddl Γ1

/k − /q
(k − q)2

γµ
/k

k2
γν

/k + /l

(k + l)2
Γ2

/l + /pb +mb

l2 + 2l.pb
γν

1

l2
⊗ γµ. (3.11)

We discuss the different solutions of the Landau equations. For (k0, l0) = (0,-) we use the

power counting

k ∼ λ, k2 ∼ λ2 d4k ∼ dλλ3 (3.12)

and all other momenta being O (1). We set d = 4 because we are only interested in the

IR structure. Since the value of l0 is arbitrary we only introduced the power counting for

k. We ignore the precise structure of the numerator, and assume that there are no extra

cancellations between the different terms, inserting the power counting, we find

I15 ∼
∫

dλλ3 λ

λ2
→ 0. (3.13)

The same power counting as in Eqn. (3.12) can also be used for the singular point (q,-)

and (k0,−k0) after the coordinate shift k → k − q and k → k − l, respectively, has been
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performed in both cases we find the scaling

I15 ∼
∫

dλλ3 λ

λ2
→ 0. (3.14)

If we consider (k0, l0) = (-, 0) instead, the counting is

l ∼ λ, l2 ∼ λ2, l2 + 2l.pb ∼ λ, d4l ∼ dλλ3. (3.15)

in this case the denominator 1
l2+2l.pb

enhances the divergence of the denominator l2 which

pinches the integration path to run along l = 0. However, altogether there is still no

divergence because there are only three powers of λ in the denominator

I15 ∼
∫

dλλ3 1

λ

1

λ2
→ 0. (3.16)

For the points (q, 0) and (q,−q) where two Landau parameters are nonzero we first

perform the loop momentum shifts k → k − q, l → l and k → k − q, l → l + q, respec-

tively, such that the singular point is in both cases at (0, 0) of the new loop-momentum

coordinates. We then investigate the degree of divergence of the diagram using the power

counting

k ∼ λ, l ∼ λ, k2 ∼ λ2, l2 ∼ λ2, (k + l)2 ∼ λ2, d4k d4l ∼ dλλ7. (3.17)

Since we consider a point in an eight-dimensional (loop-momentum) space the measure

refers to eight-dimensional spherical coordinates. At the point (q, 0) we find

I15 ∼
∫

dλλ7 λ

λ2

1

λ

1

λ2
→ 0, (3.18)

at the point (q,−q), we find

I15 ∼
∫

dλλ7 λ

λ2

1

λ2
→ 0. (3.19)

At last let us discuss the point (0, 0) where three Landau parameters are nonzero, the

power counting is as in Eqn. (3.17)

I15 ∼
∫

dλλ2 → 0. (3.20)

We conclude that the integral I15 has no soft divergences and is IR finite. Every possible
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singularity indicated by the Landau equations for I15 eventually turned out to be finite.

This way we can treat all singular points in Tab. 3.1 and find that there are no soft

divergences in these integrals. However, the integrals I12, I13, I14, I23, I24, and I34 have soft

divergences when the NLO gluon becomes soft. E.g the integral I13 has a soft divergence

at (-, 0) with the power counting in Eqn. (3.15) we find

I13 = − g4
s

(2π)8
C13

∫
ddk ddlsΓ1

/k − /q
(k − q)2

γµ
/k + /l

(k + l)2
Γ2

/l + /pb +mb

(l + pb)2 −m2
b

γν

⊗ 1

l2
1

(l + q)2
γµ
−/pc̄ − /l +mc

(pc + l)2 −m2
c

γν (3.21)

∼
∫

dλλ3

λ4
(3.22)

This is a logarithmic (soft) IR divergence. The soft divergences of this kind are connected

to the NLO gluon becoming soft and the external lines going on-shell. These processes

can be factorized into the matrix elements as can be seen in Fig. 3.3.

We have now treated all integrals except for I25, I26, and I27 and found that the only

soft divergences that arise factorize in the OPE. In the next paragraph, we describe how

the solutions on the linear manifolds can be treated in power counting

Power counting for collinear divergent diagrams

Hard-collinear We still need to deal with the solutions of the Landau equations for the

integrals I25, I26, and I27 described by e.g. k0 6= 0 arbitrary and l0 = γp′ with 0 ≤ γ ≤ 1.

Since all momenta are in general nonzero we count them as O (1), then for example, the

IR behavior of I25 can be simplified to

I25 ∼
∫

ddl
1

(l − p′)2

1

l2
. (3.23)

We cannot use the naive power counting method because the possible divergence is on a

linear manifold in the l space. Therefore, we have to use a power counting first proposed

by Sterman [55]. We decompose the coordinate space into two subspaces, one subspace

includes the points of the possible singularity, since p′ = pcmn− the basis vector of this

subspace is given by n−. The other subspace is parametrized by coordinates that are

Euclidean-orthogonal to n−. Hence, it is useful to employ the Sudakov decomposition

[56]

l = l+n+ + l−n− + l⊥ (3.24)
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with n± being light-cone vectors defined after Eqn. (3.1) that obey n2
+ = n2

− = 0. Fur-

thermore, the following relations hold

l⊥ = (0, l1, l2, 0), n+.n− = 2, n+.l⊥ = n−.l⊥ = 0, l2⊥ = −l2⊥, and l2 = 2l+l− − l2⊥.

(3.25)

On the manifold l0 = γp′ we have l2 = 0. Therefore, in a neighborhood of this manifold

l2 must be small with l2 ∼ λ2. This implies for nonzero l− that l+ ∼ l2⊥ ∼ λ2 and leads to

the scaling [7]

(l+, l−, l⊥) ∼ (λ2, 1, λ). (3.26)

Furthermore, the scaling of the measure is∫
d4l ∼

∫
dl+ dl− d2l⊥ ∼

∫
dλλ3 (3.27)

in d = 4 dimensions. Let us apply this scaling to I25 we find

I25 ∼
∫

d4l
1

(l − p′)2

1

l2
∼
∫

dl+ dl− d2l⊥
1

2l+.(l− − p′)− l2⊥

1

2l+l− − l2⊥
∼
∫

dλ
λ3

λ4
(3.28)

This means I25 has a logarithmic collinear IR divergence. Similarly, we find that I26 and

I27 are collinearly divergent on the manifold (-, γp′), since all three integrals have the same

structure

I2j =

∫
ddl ūq(p

′)γµ
/l − /p′

(l − p′)2

gµν
l2

Γ̃ν2j(l). (3.29)

where we implicitly defined the remainder Γ̃ν2j(l, q) and ūq(p
′) is the spinor of the outgoing

light quark q.

Collinear-collinear Let us now investigate the collinear-collinear solutions in Tab. 3.2,

these are (−δp′, γp′) with 0 ≤ δ ≤ γ ≤ 1 for I25 and I26 and (γp′,−γp′) for I27. In this

situation we obtain the power counting

(l − p′)2 ∼ λ2, (k − q)2 ∼ 1, k2 ∼ λ2, (k + l)2 ∼ λ2, l2 ∼ λ2. (3.30)

whereas the measure scales as

d4k d4l ∼ dλλ7. (3.31)
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Counting powers in I25 and neglecting the numerator once again, the integral seems IR

divergent in this region of loop-momentum space.

Ĩ25 =

∫
ddk ddl

1

(l − p′)2

1

(k + l)2

1

l2
1

k2

1

(k − q)2
∼
∫

dλλ7 1

λ2

1

λ2

1

λ2

1

λ2

1

1
∼
∫

dλ

λ
(3.32)

However, if we do not neglect the numerator and use /kγν = −γν/k + 2kν we arrive at

I25 ∼
∫

ddk ddlγν
/l − /p′

(l − p′)2
Γ1

/k − /q
(k − q)2

γµ
−γν/k + 2kν

k2

/k + /l

(k + l)2
Γ2

1

l2
⊗ γµ (3.33)

∼
∫

ddk ddlγν
/l − /p′

(l − p′)2
Γ1

/k − /q
(k − q)2

γµ
−γν/k
k2

/k + /l

(k + l)2
Γ2

1

l2
⊗ γµ

+

∫
ddk ddl2/k

/l − /p′
(l − p′)2

Γ1

/k − /q
(k − q)2

γµ
1

k2

/k + /l

(k + l)2
Γ2

1

l2
⊗ γµ, (3.34)

we observe that in the numerator the term

2/k(/l − /p′) ∼ γν/k(/k + /l) ∼ λ2 (3.35)

arises that vanishes as λ2 if all momenta become collinear. This additional factor of λ2

makes I25 in the collinear-collinear region finite. The same modifications can be used

to show that I26 is IR safe in the collinear-collinear region. In I27 there are only three

denominators that scale as λ2. Thus, it is clear that the the collinear-collinear region is

finite.

We also investigated the soft-collinear solution (0, γp′), however, these do not lead to

further singularities, this is why omit their discussion here.

The IR divergence found in the hard-collinear regions seems to imply that the fac-

torization of hard and soft scales is not possible, but this is not the case, it is expected

that collinear divergences only affect external legs [54]. It is due to our choice of the

Feynman-’t Hooft gauge that we see collinear divergences that affect the full two-loop

diagrams. We will make this explicit in the next section.

3.2.4 Absence of collinear divergences

In the preceding section we found that the individual diagrams of the loop corrections

to the up-quark penguin exhibit a collinear divergence. As such this seems to imply

that this process does not factorize since the (short-distance) OPE coefficient C̃
(1)
i,j in

Eqn. (2.7) would be IR divergent. However, collinear divergences are usually a property
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of external legs and not of high-energy processes. We chose the Feynman-’t Hooft gauge

to write down the amplitudes. The Feynman-’t Hooft gauge leads to a simple gluon

propagator but has the usual disadvantage that there are unphysical degrees of freedom

contributing to individual diagrams. In the sum of all diagrams (possibly also including

ghosts) lead to the cancellation of these unphysical degrees of freedom. This could also

lead to the cancellation of the collinear divergences in the two-loop integrals. There

are two possibilities to check this conjecture. We either compute the sum of all integrals

which expose the collinear divergence or change to a physical gauge in which no unphysical

degrees of freedom contribute.

The three diagrams which we found to have collinear divergences in the Feynman-

’t Hooft gauge have the general form

I2j =

∫
ddl ūq(p

′)γµ
/l − /p′

(l − p′)2

gµν
l2

Γ̃ν2j(l, q). (3.36)

The γµ arises through the gluon that couples to the quark line of the massless quark q and
gµν
l2

derives from the gluon propagator in the Feynman-’t Hooft gauge −igµν
l2

and leads to

the contraction with the remainder Γ̃ν2j(l, q) of the diagram. In a physical gauge [57, 58]

the gluon propagator has the form

i
∑
i=1,2

ε∗µ
(i)(l)εν

(i)(l)

l2
(3.37)

for l2 → 0. Obviously, the name derives from the fact that only the physical polarizations

of the gluon contribute. In addition to the Lorentz condition l.ε(l) = 0 the constraint

n±.ε(l) = 0 holds which proves to be very helpful for the investigation of IR properties of

these diagrams. If we replace gµν by the sum of the polarizations, we obtain

I2j = −
∫

ddl
∑
i=1,2

ūq(p
′)/ε∗

(i)(l)
/l − /p′

(l − p′)2

1

l2
ε∗ν

(i)(l)Γ̃ν2j(l, q). (3.38)

We then use

/ε∗
(i)(l)(/p

′ + /l) = −/p′/ε∗(i)(l)− /l/ε∗(i)(l) + 2p′.ε∗(i)(l) + 2l.ε∗(i)(l). (3.39)

The last term is identical to zero because of the Lorentz condition l.ε(i)(l) = 0. The

first term will vanish immediately in the integral expression because of the equation of

motion ūq(p
′)/p′ = 0. Furthermore, we find with the Sudakov decomposition ūq(p

′)/l =
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ūq(pcmn−)(l−/n−+ l+/n+ + /l⊥) = ūq(pcmn−)(l+/n+ + /l⊥) ∼ λ and p′.ε(i)(l) ∼ λ2 hold. Thus,

in the physical gauge we gain one power in λ in the numerator which leads to an IR-safe

integral. To be explicit

I2j = −
∫

ddl
∑
i=1,2

ūq(p
′)
−/l/ε∗(i)(l) + 2p′.ε∗(i)(l)

(l − p′)2

1

l2
ε∗ν

(i)(l)Γ̃ν2j(l, q) (3.40)

∼
∫

dλλ3 λ

λ2λ2
→ 0. (3.41)

Thus, we observe that the ’physical’ diagrams I2j are actually free of IR divergences,

it was merely due to our choice of gauge that we found collinear divergences. In the

Feynman-’t Hooft gauge this can be shown by considering the sum

7∑
j=1

I2j + I22 =
7∑
j=1

∫
ddl ūq(p

′)γµ
/l − /p′

(l − p′)2

gµν
l2

Γ̃ν2j(l, q) + I22 (3.42)

=
∑

j∈{1,2,2,3,4,5,6,7}

∫
ddl ūq(p

′)
−(/l − /p′) + 2(lν − p′ν)

(l − p′)2

1

l2
Γ̃ν2j(l, q)(3.43)

as above ūq(p
′)(/l − /p′) ∼ λ, on the other hand the term

∑
j∈{1,2,2,3,4,5,6,7}(lν − p′ν)Γ̃ν2j(l, q)

vanishes as λ if p′ ∝ l because of the (collinear) Ward identity shown in Fig. 3.4. There

is one subtlety to this, while the self-energy diagram of the q quark that enters as I22

in Eqn. (3.43) carries the typical factor 1
2

of self-energies. The Ward identity does not

include such a factor, this means we have to add a second term I22 to the sum. This is

possible because these self-energy terms can be factorized or included without invalidating

the OPE.

We conclude that there are no physical collinear divergences in the diagrams of the

hard process. The only physical collinear divergence appears in I22 and is associated to

the self-energy of the quark q. In fact even this diagram is not IR-divergent in the case

that we consider. Since we set ms = 0 and p′2 = 0, there is no scale in the self-energy

diagram and it must be zero in NDR. In reality ms 6= 0 and p′2 6= 0 is not on-shell. Thus,

in the physical process there is no collinear divergence.

3.2.5 IR structure of the Q8G penguins

Hitherto, we limited the IR-structure discussion to the Qu
i penguin insertions. The NLO

corrections to the Q8G penguins are only one-loop diagrams see Fig. A.1 and the expres-

sions in the Feynman-’t Hooft gauge can be found as well in the appendix in A.2. Since
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b q

c c

lν

lν = 0

Figure 3.4: The graphical representation of the Ward identity which leads to the absence
of collinear divergences in the two-loop diagrams in Figs. 3.2 and A.1.

these integrals are one-loop diagrams the IR divergences are easily identifiable. Soft IR

divergences arise if a soft gluon couples to external legs only, but since this only involves

external legs these soft divergences factorize. Every diagram in which a gluon couples

to the light quark q has a collinear divergence in the Feynman-’t Hooft gauge it may be

written as

I2jG

∫
ddl ūq(p

′)γµ
/l − /p′

(l − p′)2

gµν
l2

Γ̃ν2jG(l). (3.44)

where we implicitly defined the remainder of the diagram Γ̃ν2jG(l) and ūq(p
′) is the spinor

of the light quark. However, if we use the physical gauge as in the preceding section we

can show that the hard process is in fact free of these collinear divergences.

We conclude that in the Q8G penguin the soft and hard scales factorize at NLO as

well.

3.2.6 Conclusions

The discussion in this section was rather long. Therefore, we summarize the most relevant

points in this section. We investigated the IR structure of the two-loopQu
i penguin and the

one-loop Q8G penguin that both contribute to the penguin pollution. We were interested

in the IR structure to prove the factorization of soft and hard scales which is necessary two

describe the penguin pollution by an OPE. We found that soft and hard scales factorize.

We first introduced some notions on the IR divergences and the Landau equations.

The Landau equations are a necessary criterion for an IR divergence. We solved the

Landau equations for the relevant two-loop Qu
i penguin diagrams and investigated the

actual divergence by means of naive and collinear power counting. We only found the

standard soft IR divergences that arise if a soft gluon couples to two external legs and
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c c

u u

b s

c c

Figure 3.5: All soft divergences factorize they can be matched on diagrams in which the
penguin loop is contracted to a point and described by an effective operator.

factorize because of this, see Fig. 3.5. Furthermore, we found collinear divergences in

diagrams in which a gluon couples to the light quark q. These divergences correspond to

the mass divergences that have been identified by Kinoshita [54]. We then showed in the

physical gauge that the collinear divergence is a property of the external q leg and not of

the up quark penguin. This can also be understood in terms of a collinear Ward identity

in the Feynman-’t Hooft gauge.

The physical picture is that soft gluons can only interact with external, i.e. asymptotic

particles because they cannot resolve the short time scale of the hard interaction. Collinear

divergences arise if massless particles couple to each other and if their momenta become

collinear. This is the case for the gluons that couple the light quark q, all diagrams of

the form in Fig. 3.6 exhibit a collinear divergence, yet the sum of all diagrams is IR

safe, except for the light quark self-energy I22 which, however, factorizes. The remaining

divergence is due to the well known property of colored particles that for example a strange

quark cannot be distinguished from strange quark accompanied by an infinite number of

collinear gluons. Physically, these IR divergences are regularized by hadronization. In

contrast, in inclusive cross sections the cancellation of IR divergences is ensured by the

Kinoshita-Lee-Nauenberg (KLN) theorem [54, 59] which requires the summation over

degenerate final and initial states.

We note that the general IR structure of massive QCD one and two-loop scattering

amplitudes has been derived in [60, 61].

We may compare the situation to QCDF where the soft divergences are either ab-

sorbable into the form factor or the LCDA, if they cannot be absorbed they are power

suppressed [7]. Since our OPE results into four quark operators all soft divergences factor-

ize into the four quark matrix elements. Similarly, the collinear divergence is a property
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b s

c c

Figure 3.6: Generic diagram with a collinear divergence in the Feynman-’t Hooft gauge.
The sum over all diagrams has no collinear divergence.

of q that can be absorbed into the matrix element and that is physically regularized by

the hadronization.

3.3 Spectator scattering

In the preceding section we saw that the IR structure of the full and the effective theory

can be matched onto each other. Thus, we concluded that the factorization of hard and

soft scales is possible. However, we ignored the existence of the second valence quark in

the B̄ and X meson. To represent this light quark which does not participate directly

in the b quark decay we may draw a spectator quark in addition to the diagram of the b

decay, see Fig. 3.7a. The effects of the spectator quarks are usually included in the matrix

elements. However, interactions of the hard process with the spectator quark displayed in

Figs. 3.7b and 3.7c could spoil the factorization that is necessary for the OPE. Therefore,

we will discuss these interactions in this section.

Let the momentum transferred to the spectator quark be l. This leads to a propagator

1/l2 in the expressions that describe spectator scattering perturbatively. Naturally, the

question arises what happens for l2 = O
(
Λ2

QCD

)
with l being soft or light-like. The region

where l2 = O
(
Λ2

QCD

)
is not perturbative and may dominate this process, this would

imply a failure of our OPE because it does not include spectator scattering. Hence, it is

necessary to show that soft spectator scattering is power suppressed.

In addition we will consider hard-collinear spectator scattering. Let us explain this, if

the spectator quark is ignored the final meson X receives its full hard momentum, which
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Figure 3.7: Qu
2 penguins with spectator quark and spectator-quark interaction.

(a) Leading-order Diagram, including the spectator quark. (b) Leading-order spectator-
scattering diagram for the up quark penguin. The crosses (1) to (7) are possible places
where the open end of the gluon can be attached. (c) Leading-order spectator-scattering
diagram of the Q8G penguin, the crosses (1) to (4), (7) and (8) are possible places where
the open end of the gluon can couple to. (d) Spectator-scattering of the full theory is
partly factorizable, the crosses (1) to (4) indicate spectator scattering diagrams after the
OPE that match the spectator scattering in the full theory.

is pX = pcmn−, from the light quark q. This kinematical configuration is disfavored w.r.t.

the configuration where the energetic X meson is formed by two partons of similar hard

momentum. Hence, if the momentum transfer to the spectator quark is hard-collinear,

l ' pcm/2n−, the hadronization of the X meson is more likely than in the LO diagram

where X receives its full hard momentum from light quark q.

The suppression of the asymmetric momentum configuration of the partons can be

seen explicitly in the light-cone distribution amplitude (LCDA, the meson wave function

integrated over transverse momenta) of a light meson [7]

ΦX(u) ∼
{

1 for generic u,

ΛQCD/pcm for u, ū ∼ ΛQCD/pcm

(3.45)

here u (ū) is the longitudinal momentum fraction carried by the valence (anti-)quark in

the meson X. The LCDA describes the probability of forming an X meson from two

partons with momentum upX and ūpX (ū = 1− u). Since the LCDA is of O (ΛQCD/pcm)

in a small region of O (ΛQCD/pcm) of the u integral (which we, however, do not perform

explicitly), the LO process has an end-point suppression of O
(
Λ2

QCD/p
2
cm

)
.

We do not explicitly use the LCDA because the hadronization of the X has a soft over-

lap with B̄ψ system. Nevertheless, we use the power counting that can be inferred from
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the LCDA to investigate the importance of hard-collinear spectator scattering. Conse-

quently, we find that the leading-order process has a suppression factor Λ2
QCD/p

2
cm because

of the asymmetric momentum configuration. In contrast, the hard spectator interactions

do not have such a suppression via the LCDA but are at least suppressed by Λ2
QCD/p

2
cm

because there is an additional hard momentum running through the diagram e.g., the off-

shellness of the hard-collinear gluon propagator yields 1/l2 ∼ 1/(ΛQCDpcm). Depending

on the suppression, hard-collinear spectator scattering might simply be an O (α2
s) correc-

tion. However, this correction is inconvenient because it would mean that at O (α2
s) we

would have to introduce six-quark matrix elements. It is preferable if we can show that

hard-collinear spectator interactions are power suppressed as we want to show it for soft

spectator scattering. We will first discuss soft spectator scattering and then hard-collinear

spectator scattering.

Before we go into detail let us clarify our power counting. We considered the LO

diagram up to now as a four quark process whereas the spectator scattering process is a

six quark diagram. In the amplitude this leads to four and six-quark matrix elements that

have mass dimension 6 and 9, respectively. Since both processes contribute to the same

amplitude they must have the same mass dimension. The difference in mass dimension

of the matrix elements is compensated by the hard-scattering part of the diagrams. This

makes the comparison by power counting of these two contributions somewhat intrans-

parent. To circumvent this difficulty, we will just count hard suppression factors. This

means that we will only count factors of 1/M and 1/pcm ignoring powers of ΛQCD, if all

hard contributions are identified, all other contributions are O (ΛQCD). In particular, this

means that the terms O (ΛQCD) that appear in the denominator in some expressions are

always canceled by termsO (ΛQCD) in the numerator. This method is equivalent to adding

another soft-gluon exchange to both processes which connects the spectator current with

the LO diagram and adds an integration over soft momentum in the spectator diagram.

From Eqn. (3.45) and the discussion thereafter we find that the LO diagram is sup-

pressed by 1/p2
cm, the suppression factors of the spectator scattering diagrams labeled by

the attachments (1)-(7) in Fig. 3.7b and by (1)-(4),(7), and (8) in Fig. 3.7c are evaluated

in what follows.

Soft spectator scattering In the case of soft spectator scattering with l2 = O
(
Λ2

QCD

)
,

the insertions (1)-(4) for the Qu
i and Q8G penguin in Figs. 3.7b and 3.7c, respectively, do

not need to be considered. These diagrams have the same end-point suppression as the LO

diagram but do not carry any further suppression factor, however, they trivially factorize

in the OPE. The corresponding diagrams after the OPE are given by the insertions (1)-(4)
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in Fig. 3.7d. The reason is simply that in these diagrams the spectator interacts with the

external legs.

The contributions from spectator-quark interactions as given by the insertions (5)-(8)

have no possible equivalent at the leading order of the OPE. Therefore, we have to show

that these processes are power suppressed by 1/M and are described by operators of

higher order in the OPE.

For the insertion (5) and (6) in Fig. 3.7b we obtain2

I5 =
−2g2

sαS
q2l2

Iρστ (−q, l) γλγργµT aγσγνT bγτγλ(1− γ5)⊗ γµT a ⊗ γνT b, (3.46)

I6 =
−2g2

sαS
q2l2

Iρστ (−l, q) γλγργνT bγσγµT aγτγλ(1− γ5)⊗ γµT a ⊗ γνT b, (3.47)

where we used the “⊗” notation to separate different quark currents. The first Dirac

and color structure is sandwiched between the spinors of the b and q quark, the second

between the c̄ and c spinors and the third between the spinors of the spectator quarks.

Furthermore, the up-quark loop becomes a three-point function

Iρστ (q, l) =
(2πµ)4−d

iπ2

∫
ddk

kρ + qρ

(k + q)2

kσ

k2

kτ + lτ

(k + l)2
. (3.48)

This three-point function is IR safe for l = 0 by naive power counting but has a collinear

divergence for light-like but nonzero l. For example, with l = ūpcmn− we infer from section

3.2.3 that we can count (k+, k−, k⊥) ∼ (λ2, 1, λ) and d4k2 ∼ dλλ3 near the singularity.

This leads to a logarithmic divergence

Iρστ (q, l) ∼
∫

dλλ3

(λ2)(λ2)
∼
∫

dλ

λ
. (3.49)

Nevertheless, we expect that the divergence is not present in I5 and I6 because we usually

associate collinear divergences only to external legs. The easiest way to show the absence

is again the use of the physical gauge, we rewrite the gluon propagator of the collinear

gluon in the physical gauge

−igµν
l2
→ i

∑
i=1,2

ε∗µ
(i)(l)εν

(i)(l)

l2
. (3.50)

2For the insertions (5) and (6) it is also possible to insert the operator Q1 instead of Q2 at the
effective vertex, however, this only affects the color structure of the diagram and not the power counting.
Therefore, we do not treat this here. The suppression of the Q1 insertions is the sames as for the Q2

insertion.
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Consider now I5

I5 ∝
∑
i=1,2

ε∗ν
(i)(l)ερ

(i)(l)

l2

∫
d4k

/k − /q
(k − q)2

γµ
/k

k2
γν

/k + /l

(k + l)2
⊗ γµ ⊗ γρ (3.51)

∼ 1

l2

∫
d4k

1

(k − q)2
γµ

/k

k2
/ε∗

(i) /k + /l

(k + l)2
(3.52)

Before, we saw that the measure together with the denominators lead to a logarithmic di-

vergence, we will now show that the numerator scales like λ if the loop momentum becomes

collinear to l, for this we use the notation and counting introduced before Eqn. (3.49) and

that only the 1 and 2 component of the polarization vector ε(i) are nonzero, consider the

numerator

/k /ε∗
(i)

(l)(/k + /l) = 2 ε∗(i)(l).k︸ ︷︷ ︸
∼λ

(/k + /l)− /ε∗
(i)

(l) (k2 + /k)/l︸ ︷︷ ︸
∼λ2

∼ ε∗(i)(l).k⊥ ∼ λ. (3.53)

An equivalent reasoning can be applied to I6. Hence, the three-point function in I5 and

I6 is finite for l2 = 0 and has mass dimension one in four dimensions, consequently it

scales after renormalizing the UV poles with the largest mass scale that appears in the

loop which is
√
q2 ∼M .

Iρστ (q, l) ∼
√
q2 ∼M (3.54)

Thus

I5 ∼ I6 ∼
1

q2l2
Iρστ (q, l) ∼ 1/M (3.55)

we remind the reader that l2 ∼ Λ2
QCD is canceled by terms of ΛQCD in the denominator.

The insertion (7) leads to

I7 = −g2
S

P ((q + l)2)

q2l2
ifabcVµνρ(−q,−l, q + l)γρ(1− γ5)T c ⊗ γµT a ⊗ γνT b (3.56)

where the three gluon function Vµνρ(−q,−l, q + l) is defined in Eqn. (A.29) it is linear in

its arguments, this implies the scaling

Vµνρ(−q,−l, q + l) ∼
√
q2 ∼M, (3.57)

and the penguin function P (q2) ∼ [1 + log(q2/µ2)] is given in Eqn. (2.9) and derives from
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the evaluation of the up quark loop, we find

I7 ∼
P ((q + l)2)

q2l2
Vµνρ(−q,−l, q + l) ∼ 1

M2
M ∼ 1

M
(3.58)

thus if l is soft the insertions (5), (6), and (7) are suppressed by 1/M . The expressions

for the insertions (7) and (8) in Fig. 3.7b are given by

I7G =
−i4α2

Smb

q2l2(q + l)2
Vµνρ(−q,−l, q + l)σρλ(q

λ + lλ)(1 + γ5)T cifabc ⊗ γµT a ⊗ γνT b,(3.59)

I8G = i4α2
S

mb

q2l2
σµν(1 + γ5)T cifabc ⊗ γµT a ⊗ γνT b. (3.60)

the 1/M suppression is quite explicit

I7G ∼ mb

q2l2(q + l)2
Vµνρ(−q,−l, q + l)(qλ + lλ) ∼ 1

M
, (3.61)

I8G ∼ mb

q2l2
∼ 1

M
. (3.62)

We conclude that soft spectator scattering with a gluon of momentum l2 = O
(
Λ2

QCD

)
does not impede the OPE. If the gluon couples to external legs it is unsuppressed w.r.t.

the LO process but factorizes [insertions (1)-(4) in Figs. 3.7b and 3.7c] and it is 1/M

suppressed if the gluon couples to internal lines [insertions (5)-(8)]. The soft spectator

scattering diagrams have the same suppression from the LCDA as the LO process, namely

1/p2
cm. The power-counting behavior results from the simple fact, that the external lines

have an off-shellness of O (ΛQCD) that cannot add further suppression factors. On the

contrary, the internal lines are off-shell by O (M). Thus, the attachment of an additional

line results into a 1/M suppression.

Hard-collinear spectator scattering After this thorough discussion of soft spectator

scattering let us discuss now hard-collinear spectator scattering which is unsuppressed

by the LCDA but obtains suppression factors since an additional hard momentum runs

through it. We first discuss the spectator scattering in Fig. 3.7b and thereafter the

spectator scattering processes in Fig. 3.7c.

The simplest situation are the attachments (1) or (2) in this case the spectator scat-

tering factorizes as in the soft case. The spectator scattering diagrams corresponding to

insertions (3) and (4) in Fig. 3.7b are partly factorizable and partly power suppressed. In

contrast to soft scattering these diagrams do not factorize entirely because the momentum



CHAPTER 3. FACTORIZATION 49

transfer through the up-quark loop differs between the full and the effective theory. The

momentum transfer is (q + l)2 in the full theory, in contrast in the OPE it is fixed to q2

in the OPE coefficient C̃j,k. Let us elucidate this for the insertion (4). Evaluating the

diagram with the Q2 insertion leads to

I full
4 = −g2

S

P [(q + l)2]

l2
γµ(1− γ5)T a ⊗ γνT b /pc + /l +mc

(pc + l)2 −m2
c

γµT a ⊗ γνT b. (3.63)

where P (q2) is as before the penguin function from Eqn. (2.9), the 1/l2 derives from the

propagator of the hard-collinear gluon. In the OPE this process is described by

IOPE
4 = −g2

S

P (q2)

l2
γµ(1− γ5)T a ⊗ γνT b /pc + /l +mc

(pc + l)2 −m2
c

γµT a ⊗ γνT b. (3.64)

The only element that has changed is that P [(q + l)2] is replaced by P (q2). This reflects

that we fix the momentum flow from the b − q line to the c̄ − c line in the OPE to q2.

The term IOPE
4 represents the part that factorizes in the OPE, consequently, the part of

spectator scattering that does not factorize is

I full
4 − IOPE

4 = −g2
S

P ((q + l)2 − P (q2)

l2
γµ(1− γ5)T a ⊗ γνT b /pc + /l +mc

(pc + l)2 −m2
c

γµT a ⊗ γνT b.
(3.65)

Let us now evaluate this nonfactorizing contribution with power counting, l ' pcm/2n−,

the difference of the penguin functions gives

P ((q + l)2)− P (q2) = ln

(
(q + l)2

q2

)
' 2q.l

q2
∼ pcm

M
(3.66)

Additionally, the charm-quark propagator scales as

/pc + /l +mc

(pc + l)2 −m2
c

∼ /pc
2pc.l

∼ Ec
Ecpcm

∼ 1

pcm

. (3.67)

In order to find the scaling of the charm propagator we exploited the fact that the largest

component of the charm four vector is given by the charm quark energy Ec > mc. If we

combine these scalings we obtain

I full
4 − IOPE

4 ∼ P ((q + l)2 − P (q2)

l2
/pc + /l +mc

(pc + l)2 −m2
c

∼ pcm

Mpcm

1

pcm

∼ 1

pcmM
, (3.68)
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similarly we derive

I full
3 − IOPE

3 = −g2
S

P ((q + l)2 − P (q2)

l2
γµ(1− γ5)T a ⊗ γµT a

−/pc̄ − /l +mc

(pc̄ + l)2 −m2
c

γνT b ⊗ γνT b

∼ P ((q + l)2 − P (q2)

l2
−/pc̄ − /l +mc

(pc̄ + l)2 −m2
c

∼ pcm

Mpcm

1

pcm

∼ 1

pcmM
,

(3.69)

hence, the nonfactorizing part of the insertions (3) and (4) is suppressed by pcm
M

w.r.t the

LO process.

The contributions from spectator-quark interactions as given by the insertions (5), (6)

and (7) have no possible equivalent at the leading order of the OPE.

The expression for insertions (5) and (6) were given in Eqns. (3.46) and (3.47), since

l2 ∼ pcmΛQCD the three point function has the scaling Iρστ (q, l) ∼
√
q2 ∼M . This implies

the following scaling for the insertions (5) and (6)

I5 ∼ I6 ∼
Iρστ (q, l)

q2l2
∼ M

M2pcmΛQCD

∼ 1

Mpcm

(3.70)

From Eqn. (3.56) we derive

I7 ∼
P ((q + l)2)

q2l2
Vµνρ(−q,−l, q + l) ∼ 1

M2pcmΛQCD

M ∼ 1

Mpcm

(3.71)

We have now discussed all hard-collinear insertions in Fig. 3.7b. We found that they do

not spoil factorization. Insertions (1), (2) and a part of (3) and (4) also appear in the

effective theory and therefore factorize. Insertions (5), (6), (7) and the other part of (3)

and (4) are power-suppressed by pcm/M w.r.t. the LO term which has a suppression of

O (1/p2
cm).

Hard-collinear spectator scattering for the Q8G penguin: We still have to dis-

cuss the hard-collinear spectator scattering for the chromomagnetic penguin Q8G shown

in Fig. 3.7c. The treatment has great similarities to the previous discussion, thus the

discussion will be quite short. In the OPE the LO process has the amplitude

IG = i
αs
π

mb

q2
σµνqν(1 + γ5)T a ⊗ γµT a. (3.72)

The insertions (1) and (2) in Fig. 3.7c trivially factorize and can be matched on the

insertions (1) and (2) in the OPE in Fig. 3.7d as in the case of the up-quark penguin.



CHAPTER 3. FACTORIZATION 51

Similarly, the insertions (3) and (4) partly factorize and the nonfactorizing part is power

suppressed. We find for the insertions (3) and (4) the expressions

I3G =
−i4α2

Smb

l2(q + l)2
σµλ(q

λ + lλ)(1 + γ5)T a ⊗ γµT a
−/pc̄ − /l +mc

(pc̄ + l)2 −m2
c

γνT
b ⊗ γνT b (3.73)

I4G =
−i4α2

Smb

l2(q + l)2
σµλ(q

λ + lλ)(1 + γ5)T a ⊗ γνT b
/pc + /l +mc

(pc + l)2 −m2
c

γµT a ⊗ γνT b. (3.74)

For example, let us treat I3G. The difference between the full and the effective theory

is the different momentum transfer from the b − q to the c̄ − c line. In analogy with

Eqn. (3.65), we find the nonfactorizing part to be

I full
3G − IOPE

3G =
−i4α2

Smb

l2
σµλ

[
qλ + lλ

(q + l)2
− qλ

q2

]
(1 + γ5)T a⊗ γµT a

−/pc̄ − /l +mc

(pc̄ + l)2 −m2
c

γνT
b⊗ γνT b

(3.75)

which leads to the scaling

I full
3G − IOPE

3G ∼ 1

l2

[
qλ + lλ

(q + l)2
− qλ

q2

] −/pc̄ − /l +mc

(pc̄ + l)2 −m2
c

(3.76)

∼ 1

pcm

pcm

M

1

pcm

∼ 1

Mpcm

. (3.77)

An equivalent procedure leads to

I full
4G − IOPE

4G ∼ 1

Mpcm

. (3.78)

The insertions (7) and (8) do not have an equivalent after the OPE but this is not

fatal since we can use Eqns. (3.59) and (3.60) to show that they are power suppressed

I7G ∼ mb

q2l2(q + l)2
Vµνρ(−q,−l, q + l)(qλ + lλ) ∼ mb

M2pcmΛQCDM2
MM ∼ 1

Mpcm

, (3.79)

I8G ∼ mb

q2l2
∼ 1

Mpcm

. (3.80)

Conclusion about spectator scattering Soft spectator scattering with external lines

is unsuppressed w.r.t. the LO process but factorizes [insertions (1) - (4) in Figs. 3.7b and

3.7c]. Soft spectator scattering with internal lines is power suppressed by 1/M w.r.t. to the

LO [insertions (5) - (8)]. Under the assumption that we can use the LCDA of the X meson

to evaluate the suppression of the LO process, we find that it is suppressed by 1/p2
cm due to

the end-point suppression of the LCDA. In contrast, hard-collinear spectator scattering is
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unsuppressed by the LCDA but these interactions either fully factorize [insertions (1) and

(2)], factorize partly and are pcm/M suppressed w.r.t. the LO process otherwise [insertions

in (3) and (4)], or are simply power suppressed by pcm/M (w.r.t. the LO process) [(5)-(7)

in Fig. 3.7b and (7) and (8) in Fig. 3.7c]. Furthermore, hard-collinear spectator scattering

has a suppression from αS(
√
l2). The suppression of hard-collinear spectator scattering

relies on the assumption pcm � M . Since in reality pcm/M ∼ 1/2 we justify our choice

in more detail. Given that pcm ≈ 1.7 GeV is not such a large scale the discussion about

hard-collinear spectator scattering is somewhat academical from the start. In reality, the

end-point suppression is probably weaker than assumed above. Furthermore, the LCDA

should have its largest contribution for l ' pcm/2 ≈ 0.85 GeV, when the momentum of

the valence quarks in the X meson is completely symmetric. This is in fact barely a hard

momentum. Here, it is convenient that we showed that soft spectator scattering with

l2 ∼ Λ2
QCD is suppressed by 1/M , hence, also counting pcm ∼ ΛQCD leads to a viable OPE.

In QCDF pcm ∼ mb ∼M is employed, this is why hard-collinear spectator scattering of

the Qu
2 penguin is unsuppressed in reference [62]. However, they find that it only yields a

tiny contribution because of numerical cancellations. In fact, in the case of hard-collinear

spectator scattering, it is possible to separate the hadronization of X meson from the

B̄ → ψ transition. The reason is that also the spectator quark becomes energetic. This

means that the X meson is only connected via energetic lines with the B̄ → ψ system.

Hence, we may invoke the color transparency argument to argue that the X has no soft

overlap with the B̄ → ψ system. This means that assuming pcm ∼ mb ∼ M it should be

possible to calculate hard-spectator scattering by

〈J/ψX|Qu
i |B̄〉

∣∣
hard-collinear Sp. Sc.

= 〈J/ψ|(c̄c)V (p̄b)V−A|B̄〉(m2
X)

∫
duTi(u)φX(u), (3.81)

where T ui is the hard-scattering kernel that connects the B̄ → ψ transition and the quark

fields that create the X meson and 〈J/ψ|(c̄c)V (p̄b)V−A|B̄〉(m2
X) describes the B̄ → ψ

transition. However, we will not pursue this further here, because the hadronic quantity

〈J/ψ|(c̄c)V (p̄b)V−A|B̄〉(m2
X) is unknown.

Consequently, we find that the interactions with the spectator quark are suppressed

by pcm/M and by 1/M and do not obstruct the OPE.
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Λ2
QCD

q2

(a) Q2 insertion.

Λ2
QCD

q2

(b) Q8G insertion.

Figure 3.8: The NLO diagrams where the momentum that flows through the penguin
loop is soft and the additional gluon is hard. This NLO contribution is suppressed by
1/M3.

3.4 Soft penguins

There is the possibility at NLO that the hard momentum does not run through the

penguin but runs through another gluon as depicted in Fig. 3.8 in this case the penguin

cannot be described by an OPE because it is soft. We will now show that this process

is power suppressed and does not impede the OPE. We will discuss the soft penguin in

Fig. 3.8a, the discussion for the soft Q8G penguin is analogous. There are four possible

diagrams in which a hard gluon connects the the b− q line with the c̄− c line, these are

I13, I14, I23 and I24. We will explain for the diagram I13 in Fig. 3.8a how the suppression

arises. The three other cases are analogous. The full diagram in Fig. 3.8a corresponds to

computing:

I13 = G̃C13

∫
ddk1 ddk2 Γ1

/k1

k2
1

γµ
/k1 + /k2

(k1 + k2)2
Γ2

/k2 + /p′ +mb

(k2 + p′)2 −m2
b

γν
1

(k2 − q)2

1

k2
2

⊗γµ /pc − /k2 +mc

(pc − k2)2 −m2
c

γν (3.82)

the k1 integral is trivial and leads to (inserting the effective operator Q2 and the corre-

sponding counter term)

I13 = G̃C13

∫ ΛQCD

d4k2
4

3

[
log

(
µ2

k2
2

)
+ iπ +

2

3

](
gµρ − kµ2k

ρ
2

k2
2

)
γρ(1− γ5)

×
/k2 + /p′ +mb

(k2 + p′)2 −m2
b

γν
1

(k2 − q)2
⊗ γµ /pc − /k2 +mc

(pc − k2)2 −m2
c

γν (3.83)
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we are only interested in the region where k2
2 ∼ Λ2

QCD is small, since the integral is IR

finite in this region we set d = 4. Let us only consider the scaling of the diagram, we

therefore neglect the Dirac and color structure. The different components then scale as

d4k2 ∼ Λ4
QCD, log

(
µ2

k2
2

)
∼ log

(
M2

Λ2
QCD

)
,

kµ2k
ρ
2

k2
2

∼ 1,

/k2 + /p′ +mb

(k2 + p′)2 −m2
b

∼ 1

M
,

1

(k2 − q)2
∼ 1

M2
,

/pc − /k2 +mc

(pc − k2)2 −m2
c

∼ 1

ΛQCD

.

(3.84)

By multiplying all factors we then derive the scaling of I13 to be

I13 ∼ log

(
M2

Λ2
QCD

)
Λ3

QCD

M3
(3.85)

In any of the four diagrams there is always a hard gluon and a bottom or light quark q

that are off-shell by M2, if the penguin loop is soft. Hence, these diagrams all have the

following scaling

I13 ∼ I14 ∼ I23 ∼ I24 ∼
Λ3

QCD

M3
(3.86)

w.r.t. to the LO penguin in the region where k2 ∼ ΛQCD. The same line of arguments

is effective for the soft Q8G penguins at NLO shown in Fig. 3.8b. In other words, these

NLO diagrams are suppressed for small loop momentum k2 and described by operators

of higher order in the OPE.

3.5 Additional partons

In Fig. 3.9, we show a tree-level diagram that contributes to the process B̄ → ψX . The

up quark pair of the effective vertex does not contribute to a loop correction but takes part

in the hadronization of the X meson. This diagram contributes to the penguin pollution

pf but is not described by the OPE at LO. Similar to the soft penguin process in the

preceding section, this diagram is suppressed by

1

M3
. (3.87)

The suppression is due to the off-shell b propagator and the gluon propagator with vir-

tuality q2 ∼ M2. The alternative diagrams where the hard gluon is attached to one of

the light quarks, q, ū or u have the same suppression. Even though the OPE has only a
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p

c c
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q2

Figure 3.9: A higher Fock state contributions to the process B̄ → ψX . The light meson
is formed by four quarks, the quarks q and p̄ carry the quantum numbers of the X meson.
This contribution is not loop suppressed.

validity up to terms 1/M this process in which the X hadronizes from the partons p̄qūu

is worth mentioning. The reason is that this process does not carry the typical loop-

suppression factor 1/(16π2) because it is a tree-level diagram. For the Q8G penguin this is

not the case, it carries a loop-suppression factor in the operator, see Eqn. (1.37). There-

fore, we solely need to consider the contribution of diagram 3.9 where additional hard or

soft partons contribute to the hadronization of the X meson. In the limit pcm � ΛQCD

we can describe these contributions with a higher order term in the Fock state expansion

of the X meson [63]

|X(pcm)〉 ' |p̄q〉+O
(

1

pcm

)
|p̄qg〉+ · · ·+O

(
1

p3
cm

)
|p̄qūu〉+ . . . . (3.88)

The hadronization of several energetic partons to one hadron is suppressed by orders of

1/pcm with respect to the LO process in which the hadron is only formed by an energetic

quark pair. Hence, the hadronization of an energetic quark configuration p̄qūu into the

X meson has a 1/M3 suppression from the hard-scattering graph in Eqn. (3.87) and a

suppression from the coefficient in the Fock-state expansion.

Nonetheless, pcm � ΛQCD is a rather academic limit, the realistic value pcm = 1.7 GeV

divided to three or four partons results into an average energy of 400− 600MeV ∼ ΛQCD

which means that the partons rather are soft. If all partons are soft, this cannot be

described by the Fock-state expansion anymore. However, this configuration violates the

starting assumption that a coherent configuration of soft particles cannot mediate a hard

process. In this case this means that four soft (anti-)quarks do not hadronize into an

energetic meson.

The remaining possibility is that two or three soft partons contribute to the hadroniza-
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b

u

uq

cc
q2

Figure 3.10: Exchange diagrams with up quarks created at the effective vertex in the full
theory. The OPE makes it apparent that these diagrams are strongly suppressed.

tion of one or two energetic partons. In this case, all soft partons must end up in the

same final meson to conserve all quantum numbers. The quantitative evaluation of this

situation is not really possible because soft partons defy theoretical description. However,

the qualitative picture is that, since this configuration only covers a small subspace of

the possible phase-space configurations this leads to a suppression. This may be seen in

Eqn. (3.88) considering the limit where some parton momenta go to zero. In this case the

term |p̄qūu〉 still has a suppression of O
(

1
p3cm

)
. We conclude that additional partons do

not lead to a dominant contribution because the hard-scattering part is suppressed by

Λ3
QCD

M3
.

1

16π2
(3.89)

and because the hadronization of several partons into an X meson is suppressed.

3.6 Exchange diagrams with up quarks

In the case that the light quark at the effective vertex q is equal to the spectator quark

p in the B̄ meson, p = q, exchange and annihilation processes3 are possible. We show

an exchange diagram in Fig. 3.10. We limit the discussion to exchange processes, the

discussion of annihilation processes is equivalent. Furthermore, we only discuss the case

that an up-quark pair is created at the effective vertex.

In the tree-level processes that we hitherto considered the spectator quark takes part in

the hadronization of one of the final state mesons (the X meson), in contrast, in exchange

diagrams the spectator quark is annihilated at the effective vertex. The exchange diagrams

in which light (up) quarks are produced at the effective vertex in Fig. 3.10, are terms

3Exchange diagrams are possible for B̄p decays with p ∈ {d, s}, annihilation type diagrams are possible
for B− decays. In this case the ū and q quark in Fig. 3.10 must be interchanged.
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Figure 3.11: (a) Penguin annihilation diagram in the full theory. (b) The penguin anni-
hilation diagram becomes an exchange diagram in the OPE.

O
(
Λ3

QCD/M
3
)
. This suppression is due to the gluon with virtuality q2 = M2 and one off-

shell fermion propagator that adds a suppression 1/M . This off-shell fermion propagator

arises when the open gluon in Fig. 3.10 is attached to any of the crosses. The suppression

factor Λ3
QCD/M

3 is essentially the same as in the case of the soft penguins in section

3.4 or higher Fock states in section 3.5. Hence, the OPE makes explicit that exchange

and annihilation processes in which light quarks are created at the effective vertex are

negligible after the scales M ∼
√
q2 are integrated out.

3.7 Penguin annihilation diagrams

If the light quark q at the effective vertex is equal to the spectator quark p in the B̄

meson, p = q also penguin annihilation processes are possible. We show an example in

Fig. 3.11a in the full theory and in Fig. 3.11b in the effective theory. This process arises if

the up quarks that are created at the effective vertex contribute via a loop correction and

the large momentum q2 flows through this loop. In contrast to the exchange diagrams

discussed in the previous section these diagrams are not suppressed in the OPE. However,

in B̄ → ψX decays these diagrams are only relevant if the X meson has a flavor singlet

component, e.g. X = η(′), φ(1020) but not π0 nor ρ0(770).

From a phenomenological point of view one may claim that these diagrams are sup-

pressed by the OZI rule [64–66] but we avoid to invoke the OZI rule because of its phe-

nomenological origin. Furthermore, also the penguins in Fig. 2.1 for which we developed

our OPE have OZI-rule suppression. Thus, using the OZI rule only for penguin annihi-

lation processes would be inconsistent. We pursue our discussion of penguin annihilation
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diagrams independently of the OZI rule.

The diagram in Fig. 3.11a is matched on Fig. 3.11b in the effective theory. The

isolated q̄q line carries the momentum of the meson X. Therefore, there must be a hard

gluon with momentum l ' pX that connects this line to the rest of the diagram. In

fact the momentum configuration is very similar to the one in hard-collinear spectator

scattering in section 3.3 and the penguin annihilation diagrams factorize as hard-collinear

spectator scattering. The processes that are integrated out with the OPE have an pcm/M

suppression. Hence, penguin annihilation diagrams do not impede the factorization, they

become exchange processes where charm quarks are produced at the effective vertex by

the OPE.

In contrast to the exchange processes discussed in the previous section 3.6, the ex-

change processes in Fig. 3.11b are not suppressed. The exchange processes due to the

penguin annihilation processes are not the only exchange processes, in addition there are

exchange processes due to the current-current operators Qc
i . Consequently, whenever the

X meson has a flavor-singlet component, the decay amplitude receives contributions from

exchange processes in addition to the tree-level decays where the spectator quark does

not take part at the effective vertex. This means that every four-quark operator con-

tributes with two different Wick contractions to a matrix element. In tf this derives from

the current-current operators Qc
i , in pf it derives from the penguin annihilation processes

that are integrated out in the OPE.

Thus, penguin annihilation diagrams are unproblematic in the proof of the OPE, how-

ever, they influence the phenomenology because they lead to additional Wick contractions

for every four-quark operator.

3.8 OPE in B̄ → DD̄

We intentionally limited the discussion of the OPE to the decays B̄ → ψX up to now

and disregarded possible differences for B̄ → DD̄ decays which we will discuss now.

B̄ → DD̄ and B̄ → ψX decays are driven by the same quark-level process. However, in

B̄ → DD̄ decays the charm quarks hadronize into separate mesons, see Fig. 3.12, whereas

they form a charmonium in B̄ → ψX decays. This raises the question whether there is still

a large momentum flow through the up-quark penguin shown in Fig. 3.12b. Therefore, we

analyze the momentum flow in the decay. The hard energy release stems from the decay

of the b quark and the spectator quark can only contribute via soft interactions. This can

be seen from the light-cone distribution amplitude (LCDA) of the B̄ meson [7]. Let ξ be
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(a) Qci contribution to the decay B̄ → DD̄
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(b) Qu2 contribution to the decay B̄ → DD̄ in the
full theory.

Figure 3.12: Full-theory contributions to the decay B̄ → DD̄ . The insertion of the
operator Qu

2 is integrated out in the OPE, this exploits that the momentum transfer
through the up quark loop and the gluon must be O (m2

B). On the quark level, it is the
same penguin diagram that we discussed so far in B̄ → ψX decays. The difference is that
the charm quarks do not hadronize into a charmonium but into a DD̄ pair.

the momentum of the spectator quark normalized to the B̄ momentum, then

ΦB(ξ) ∼
{
mb/ΛQCD; ξ ∼ ΛQCD/mb,

0; ξ ∼ 1.
(3.90)

Hence, it is not possible that the spectator quark carries hard momentum, the same is

true for the spectator quarks of the D mesons in the heavy quark limit. In reality the

suppression might not be as strong as in the case of B̄ mesons, since mc is rather an

intermediate mass than a heavy mass but we maintain the the heavy quark limit for mc.

In the opposite limit mc → 0, B̄ → DD̄ decays could be treated in QCDF but this

description fails.

It follows that in any DD̄ production process the charm quarks must carry the mo-

mentum of the D mesons up to soft corrections. We are now able to derive the kinematic

configuration for the mesons and quarks. Four-momentum conservation implies

pB =


mB

0

0

0

 , pD =


ED

0

0

−pcm

 and pD̄ =


ED̄

0

0

pcm

 (3.91)



60 CHAPTER 3. FACTORIZATION

b

q

c

cu

u

(a)

b

q

c

c

(b)

Figure 3.13: The penguin annihilation diagram in the full theory (a) becomes an exchange
diagram after the OPE (b). Since we discuss B̄ → DD̄ decays here, we arrange the quark
lines differently than in B̄ → DD̄ decays.

with ED =
√
m2
D + p2

cm. The center-of-mass momentum is

pcm ≡
1

2mB̄

√
(m2

B̄
− (mD̄ +mD)2)(m2

B̄
− (mD̄ −mD)2) ≈ 1

2

√
m2
B̄
− 4m2

D (3.92)

and a typical value is pcm = 1.9 GeV. Thus, on the quark level the LCDAs imply

pb =
mb

2
(n+ + n−), pc̄ ' pD̄, pc ' pD, q ' (pc̄ + pc) ' ED(n+ + n−). (3.93)

Hence, q2 ' 4E2
D ' m2

B represents a large scale that makes the OPE possible and we can

come to the modifications that are necessary to perform the proof.

The proof of factorization is almost identical to the proof in the previous sections. One

fundamental difference is that in a B̄ → DD̄ decay, p′ is soft in contrast to B̄ → ψX decays

in which it is pcmn+. We will now discuss the implications of this.

The proof of factorization of hard and soft scales is independent of the actual hadrons

and the value of the momentum p′ is not essential. Hence, soft and hard scales also

factorize in B̄ → DD̄ just as in discussed in section 3.2. Similarly, the discussion about

soft spectator scattering is in one-to-one correspondence to the discussion in section 3.3.

In B̄ → ψX decays, the discussion about hard-collinear spectator scattering is necessary

because of the LCDA of the X meson disfavors an asymmetric momentum configuration.

In B̄ → DD̄ decays hard-collinear spectator scattering is penalized by the D meson LCDA

and therefore absent. Soft penguins have a suppression of O
(
Λ3

QCD/M
3
)

in analogy to

section 3.4. Similarly, the full-theory exchange diagrams where an up-quark pair is created

at the effective vertex in Fig. 3.10 are suppressed as in B̄ → ψX decays.

Penguin annihilation processes in B̄ → DD̄ decays have the same kinematic configura-

tion as soft spectator scattering. Consequently, they factorize as soft spectator scattering
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in section 3.3. This becomes clear when we consider the penguin annihilation diagram

that is integrated out with the OPE in Fig. 3.13a the gluon that creates the pair of light

valence quarks only needs to be soft l2 = O
(
Λ2

QCD

)
. The momentum transfer through

the effective vertex is q2 ∼ m2
B. Hence, the penguin annihilation processes do not im-

pede factorization. Nevertheless their phenomenological role in B̄ → DD̄ decays is more

pronounced than B̄ → ψX decays. Since the charm quarks hadronize into different D

mesons, it suffices that the final DD̄ state is a CP eigenstate to have a contribution from

the penguin annihilation process. In contrast to B̄ → ψX decays where penguin annihi-

lation diagrams are only possible if X has a flavor singlet component. The implications

of this will become clearer in the chapter on phenomenology.

We conclude that the OPE is also applicable to B̄ → DD̄ decays but that there

are some differences between B̄ → ψX and B̄ → DD̄ decays: The momentum transfer

q2 ∼ mB is larger in B̄ → DD̄ decays. From the LCDA of the D mesons we conclude

that light quark q must be soft, as a consequence hard-collinear spectator scattering is

absent in B̄ → DD̄ decays because it is penalized by the D meson LCDAs. The penguin

annihilation processes in B̄ → DD̄ decays factorize like soft-spectator scattering.

3.9 Conclusion of the factorization chapter

In this chapter, we showed that the penguin diagrams in Fig. 2.1 can be described by the

OPE that we suggested in the previous Chapter 2. The demonstration of factorization

first specialized to B̄ → ψX decays and then generalized to B̄ → DD̄ decays which only

requires little additional considerations.

We consider all possible contributions to the full-theory matrix element and discuss

their equivalents in the effective theory. The proof of the OPE makes it clear that all full-

theory contributions are either: a) perturbative computable and described by the Wilson

coefficients C̃i,j, b) nonperturbative but included in the matrix elements, or c) suppressed

by ΛQCD/M (pcm/M in the case of hard-collinear spectator scattering in B̄ → ψX decays).

The large scale M =
√
q2 is defined by means of the momentum transfer q2 that is

transferred from the b quark to the c̄c pair in the quark-level transition b → cc̄q . The

soft effects are characterized by the hadronic scale ΛQCD. The OPE results into four-

quark operators because the hadronization of the final state particles in B̄ → ψX and

B̄ → DD̄ cannot be separated.

We first showed that it is possible to separate soft and hard scales in the quark-level

transition b → cc̄q . The IR divergences that we found all factorize into the matrix
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elements. In fact, none of the IR divergences that we found would be present if we

would maintain the quarks off-shell by O (ΛQCD) and the quark q massive. However, the

factorization of scales must be independent of these soft scales. Therefore, the soft scales

were set to zero at the cost of obtaining IR divergences that can be absorbed in the matrix

elements and are physically regularized by hadronization.

Subsequently, we discussed soft and hard-collinear spectator scattering and showed

that interactions with the spectator quark do not invalidate the OPE. We also considered

the soft penguins in which q2 does not flow through the penguin that we describe by

the OPE. These processes are suppressed by Λ3
QCD/M

3 because of two off-shell propa-

gators. Higher Fock states and the exchange diagrams where up quarks are created at

the effective vertex have the same suppression for the same reason. At last we discussed

penguin annihilation diagrams these factorize like hard-collinear spectator scattering in

B̄ → ψX decays and do not invalidate the OPE.

The quark q must be soft in B̄ → DD̄ decays because of the D meson LCDA. This

results into a larger value of q2 than in B̄ → ψX decays and leads to the absence of

hard-collinear spectator scattering. The penguin annihilation diagrams factorize as soft

spectator scattering in B̄ → DD̄ decays.

Higher order terms are suppressed by
ΛQCD

M
∼ 1

10
or by O

(
pcm
M
∼ 1

2

)
. This suppression

could in some terms be compensated by large factors in the expansion such that formally

suppressed terms are larger than expected. In this case, it is important to recall that

the most significant contribution to the penguin pf actually does not derive from the

up-quark or chromomagnetic penguin but from the top-quark penguins, see Eqn. (2.12).

Consequently, even if in some cases the corrections to the up-quark or chromomagnetic

penguin of
ΛQCD

M
are sizable, this has only a small influence on the overall result.



Chapter 4

Phenomenology

With the OPE for the penguin pollution at hand we are now able to make predictions for

CP -violating observables and to determine a first-principles theory error on the extraction

of the mixing angles φd and φs in the decays B̄d → J/ψKS, B̄s → J/ψφ, and B̄s → D+
s D

−
s .

The derivation of these results still needs some work. With the OPE we could show

that all contributions in b → cc̄q decay amplitudes are mediated by the operators in

equations 2.1 and 2.2. These operators have perturbative coefficients but the matrix

elements of theses operators have not yet been discussed. We will discuss how these

matrix elements can be controlled with 1/NC counting.

4.1 Preparations

4.1.1 Computation of the remaining Wilson coefficients

For simplicity, we have neglected the insertion of the penguin operators into the penguin

diagrams in the proof of the OPE. The proof of the OPE in Chapter 3 is independent of

the particular color or Dirac structure of the inserted operator. Therefore, we can compute

now the full coefficient instead of the counting C1, C2 ∼ O (1) and C3, C4, C5, C6 ∼ O (αS)

which we used in Chapter 2. We count all Wilson coefficients to be O (1). Consequently,

we also include penguin mixing into the running of the Wilson coefficients. As a result

the matrix elements in the amplitude are full NLO matrix elements. We compute the

Qnc
i insertions into the penguin diagram in Fig. 2.1a and find the following additional

coefficients for the OPE in Eqn. (2.7)

C̃4,8V = C̃6,8V =
αS
4π

[
8

3
ln
q2

µ2
− 3GX(0)−GX(sb)

]
(4.1)

63
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C̃3,8V =
αS
4π

[
4

3
ln
q2

µ2
+

4

3
−GX(0)−GX(sb)

]
(4.2)

with sb = m2
b/q

2 and GX(s) = G(s− iε, 1)

G(s, 1) = −4

∫ 1

0

duu(1− u) ln [s− u(1− u)] . (4.3)

and

G(0, 1) =
10

9
+

2

3
iπ, G(1, 1) =

34

9
− 2

3

√
3π. (4.4)

These results and the notation agree with the results of the penguins P u
4 and P u

6 in QCDF

from [8]. Note, that P (q2) = αS
4π

[
2
3

ln q2

µ2
+ 2

3
−GX(0)

]
. Hence, the penguin operator

insertions into the penguin diagram lead to nonvanishing coefficients C̃j,8V for j ∈ {3, 4, 6}.

4.2 CP violation

In this section, we give the expressions of Cf , Sf and A∆Γs as a function of af and the

numerical values of the CKM parameters that we use for the evaluation of our formulae.

4.2.1 Observables

Up to now, we evaluated Cf , Sf , and A∆Γ only in the limit af → 0. We generalize

the expressions now for af 6= 0. For a decay of a B̄p meson via the quark level process

b→ cc̄q we use λf from Eqn. (1.27) to rewrite the CP -violating observables in Eqn. (1.23)

as

Cf = 2
Im(af )Im(εq)

1 + 2Re(af )Re(εq)) + |a2
fε

2
q|
' 2Im(af )Im(εq), (4.5)

Sf = ηf
− sin(φp) + 2Re(af )Im(εqe

−iφp) + |a2
f |Im(ε2qe

−iφp)

1 + 2Re(af )Re(εq) + |a2
fε

2
q|

(4.6)

' −ηf [sin(φp)− 2Re(af )Im(εq) cos(φp)], (4.7)

A∆Γs = −ηf
cos(φs) + 2Re(af )Re(εqe

−iφs) + |a2
f |Re(ε2qe

−iφs)

1 + 2Re(af )Re(εq) + |a2
fε

2
q|

(4.8)

' −ηf [cos(φs) + 2Re(af )Im(εq) sin(φs)]. (4.9)

The ' approximations correspond to an expansion in |εqaf | and are valid up to terms

O (|εqaf |2). We set φp = φs in A∆Γ because A∆Γ is only observable for Bs decays. The
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CP -violating observables are not independent of each other but obey the relation

C2
f + S2

f + A2
∆Γ = 1 (4.10)

for every decay separately. The reason for this is that only the absolute value and the

phase of λf are physical, after setting |q/p| = 1 which is a very good approximation for

neutral B̄ decays.

We note that Cf and Sf are quasi-independent functions in terms of af , whereas

Cf measures Im(af ), Sf measures a combination of sin(φp) and Re(af ). In the litera-

ture [34, 67], the observables are often expressed in terms of the absolute value and the

phase of af instead as functions of imaginary and real parts. However, this disguises

the quasi-independence. Physically, it may seem unrealistic that the imaginary part is

gigantic whereas the real part vanishes but mathematically real and imaginary part are

independent quantities and we adopt this more careful point of view.

4.2.2 Observable shifts

Since we are interested in the corrections that arise due to a nonzero penguin it is useful

to introduce the observable shifts [30, 33]

∆Sf ≡ Sf + ηf sin(φp), ∆A∆Γ ≡ A∆Γ + ηf cos(φs) (4.11)

these are less dependent on the actual value of φp. Alternatively, one can express the

contributions of the penguin-to-tree ratio af to the observable Sf as a shift of the angle

[31] φp, which is defined as follows

∆φp ≡ − arg

(
1 + εqaf
1 + ε∗qaf

)
(4.12)

this leads to

tan(∆φp) = − 2Re(af )Im(εq) + |af |2Im(εq
2)

1 + 2Re(af )Re(εq) + |af |2Re(εq2)
(4.13)

and one may rewrite Sf ' −ηf sin(φp + ∆φp). If we once more expand in |εqaf | we obtain

tan(∆φp) ' −2Re(af )Im(εq) (4.14)

which is certainly a good approximation for q = s.
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4.2.3 Numerical Values

We use the standard Wolfenstein parametrization of the CKM matrix as in reference [21].

The numerical values are taken from CKMfitter collaboration [22]1. For the numerical

analysis we use the global fit results

λ = 0.22543, A = 0.8227, ρ̄ = 0.1504, η̄ = 0.3540. (4.15)

The ratio εq = λuq/λcq specifies the CKM parameters that contribute to the CP -violating

observables,

εd =
V ∗udVub
V ∗cdVcb

, εs =
V ∗usVub
V ∗csVcb

. (4.16)

Their size is given by |εd| = Ru = 0.385+0.0070
−0.0068 and |εs| = Ruλ

2 = 0.0196, here Ru is one

side of the unitarity triangle. The phases are

arg(εd) = 180◦ − γ, arg(εs) = −γ. (4.17)

The current best-fit values for the angles are

α = (90.4+2.0
−1.0)◦, β = (22.62+0.44

−0.42)◦, γ = (67.0+2.0
−0.9)◦, βs = (1.078+0.021

−0.024)◦. (4.18)

The direct measurements are most precise for the angle β. The angle βs, on the other

hand, is very strongly constrained by the global fit.

4.3 Phenomenology in B̄ → ψX

In this section we will present the CP -violating observables in B̄ → ψX decays. Here,

the B̄ meson, with B̄ ∈ {B−, B̄d, B̄s}, decays into a charmonium ψ ∈ {ηc(1S), J/ψ(1S),

χc0(1P ), χc1(1P ), ψ(2S)} and X is either a light pseudoscalar meson X = P with P ∈
{π0, π−, KS, K

−, η, η′(958)} or a light vector meson X = V with V ∈ {ρ0(770), ρ−(770),

K∗(892), φ(1020)}.
The prediction of the CP -violating observables leads in particular to a first-principles

theoretical uncertainty on the extraction of the UT angles β and βs in the decays B̄d →
J/ψKS and B̄s → J/ψφ, respectively. The CP -violating observables are determined

with the ratio af = pf/tf . Thanks to our OPE, we can write af = pf/tf as a function

of Wilson coefficients and matrix elements of local four-quark operators. Whereas the

1See update on homepage, fit from EPS 2015
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Wilson coefficients are determined using perturbation theory, the matrix elements are

treated with 1/NC counting. Before we apply the 1/NC counting in the determination of

af , we test its validity with the branching ratios.

After the derivation of the decay amplitude, we discuss some of its aspects in 1/NC

counting and then give the numerical results. Subsequently, we compare our results to

the available measurements and to other theoretical estimates.

4.3.1 Decay amplitude

In this section we explain the details of the numerical evaluation of the decay amplitude

in B̄ → ψX decays. From the Hamiltonian in Eqn. (1.30) and the OPE in Eqn. (2.7), we

derive the decay amplitude

A(B̄ → f) = λcqtf + λuqpf (4.19)

with

tf = −i
GF√

2

[
(a1 + a3 + a5) 〈Q0V 〉+ (2C2 + C8V − C8GC̃8G,8T ) 〈Q8V 〉

−(a1 + a3 − a5) 〈Q0A〉 − (2C2 + 2C4 − 2C6) 〈Q8A〉+ C8GC̃8G,8T 〈Q8T 〉
]
, (4.20)

pf = −i
GF√

2

[
(a3 + a5) 〈Q0V 〉+ (2C2C̃2,8V + C8V − C8GC̃8G,8T ) 〈Q8V 〉

−(a3 − a5) 〈Q0A〉 − (2C4 − 2C6) 〈Q8A〉+ C8GC̃8G,8T 〈Q8T 〉
]
. (4.21)

We use the shorthand-notation 〈Q〉 ≡ 〈f |Q|B̄〉, and the standard Wilson coefficient com-

binations ai ≡ Ci + 1
NC
Ci+1 for i ∈ {1, 3, 5}, moreover, we defined

C8V ≡ 2C4 + 2C6 + 2C3C̃3,8V + 2C4C̃4,8V + 2C6C̃6,8V + C8GC̃8G,8T . (4.22)

We evaluate the Wilson coefficients in the NDR scheme at the scale µ = mJ/ψ =
√
q2.

They have the values

C2 = 1.10,

C1 = −0.23, C4 = −0.04, C6 = −0.05,

C8V = −0.16, 2C2C̃2,8V = −0.01− 0.07i, C8GC̃8G,8T = 0.02,

C3 = 0.01, C5 = 0.01. (4.23)
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We will mainly use the 1/NC counting to order the matrix elements in size but it is also

possible to attribute a 1/NC counting to the Wilson coefficients [44]

C2 ∼ O (1) , C1, C4, C6, C8V ∼
1

NC

, C3, C5 ∼
1

N2
C

. (4.24)

Hence, the size of the Wilson coefficient is in principle as the 1/NC ordering implies but

perturbative effects lead to a variation from the 1/NC expectation.

With Eqn. (2.11) we write

〈Q8T 〉 = 〈Q8V 〉
(

1 +O
(
pcm

mb

))
(4.25)

to reduce the number of matrix elements by one in Eqns. (4.20) and (4.21). The suppres-

sion of O
(
pcm
mb

)
is not very small but the Wilson coefficient of 〈Q8T 〉 is small,

∣∣∣C8GC̃8G,8T

C8V

∣∣∣
= 0.1, such that we incur an O (5%) error on pf . We treat the term O

(
pcm
mb

)
as a theo-

retical uncertainty and omit it in the following expressions but take it into account in the

numerical result.

We remain with the matrix elements 〈Qj〉 with j ∈ {0V, 0A, 8V, 8A} which we estimate

in the following by means of color counting [12, 40, 43, 44], see also section 1.2.2. It

is convenient to define the factorized color-singlet matrix element V0 ≡ −i 〈Q0V 〉, for

example, in the decay mode B̄d → J/ψK0 we obtain (See appendix B.1 for more details)

V0 ≡ −i
〈
J/ψK0

∣∣Q0V

∣∣B̄d

〉∣∣
fact.

(4.26)

= −i
〈
J/ψK0

∣∣ (c̄c)V−A(s̄b)V−A
∣∣B̄d

〉∣∣
fact.

(4.27)

= −i 〈J/ψ| c̄γµ(1− γ5)c |0〉
〈
K0
∣∣ s̄γµ(1− γ5)b

∣∣B̄d

〉
(4.28)

= 2fJ/ψmBdpcmF
BK
1 (m2

J/ψ). (4.29)

This means, if we neglect the gluon exchange between the c̄c and s̄b current, the matrix

element 〈Q0V 〉 can be computed. Corrections to this require the exchange of at least

two gluons between the currents which leads to suppression of 1/N2
C of these corrections.

In every decay mode separately, we normalize the matrix elements to V0 and define the

normalized hadronic matrix elements v0, v8, a0 and a8 as

〈Q0V 〉 ≡ V0 v0, 〈Q0A〉 ≡ V0 a0, 〈Q8V 〉 ≡ V0 v8, 〈Q8A〉 ≡ V0 a8. (4.30)

The matrix element 〈Q0V 〉 represents the leading term in 1/NC , the color counting of the
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normalized matrix elements is

v0 = 1 +O
(

1

Nα
C

)
, a0 = O

(
1

Nα
C

)
, v8 = O

(
1

NC

)
, a8 = O

(
1

NC

)
. (4.31)

with α = 1 if X has a color singlet component and α = 2 if not (as in the example for

B̄d → J/ψKS). Thus, we obtain2

tf =
GF√

2
V0 [(a1 + a3 + a5)v0 + (2C2 + C8V )v8

−(a1 + a3 − a5)a0 − (2C2 + 2C4 − 2C6)a8] , (4.32)

pf =
GF√

2
V0

[
(a3 + a5)v0 + (2C2C̃2,8V + C8V )v8

−(a3 − a5)a0 − (2C4 − 2C6)a8] , (4.33)

and identify the dominating terms in the amplitudes by means of the 1/NC counting

tf =
GF√

2
V0

[
a1v0 + 2C2(v8 − a8) +O

(
1/N2

C

)]
∼ O

(
1

NC

)
, (4.34)

pf =
GF√

2
V0

[
(a3 + a5)v0 + (2C2C̃2,8V + C8V )v8 +O

(
1/N3

C

)]
∼ O

(
1

N2
C

)
, (4.35)

with v0 = 1 and the expectation 0 ≤ v8, a8 ≤ 1/NC . The comparison of these expressions

with the experimental branching ratios allows a test of the 1/NC counting. For this test

we compare the theoretical amplitude in LO of the 1/NC counting

A(B̄ → f) =
GF√

2
V0λcq [a1 + 2C2(v8 − a8)] , (4.36)

with the experimental amplitude

Aexp(B̄ → f) ≡
√

8πm2
B̄
B(B̄ → f)τB̄/pcm. (4.37)

This leads to bounds on |v8 − a8| which are given in Tab. 4.1. The fact that in no

decay mode |v8 − a8| is larger than 1/NC = 1/3 is a good confirmation of the 1/NC

counting. The bounds in Tab. 4.1 do not constrain |v8| and |a8| separately. Thus, they

do not exclude that |v8| and |a8| interfere negatively, such that they are larger than the

combination |v8 − a8|. However, in most decays the bound |v8|, |a8| ≤ 1/3 holds as long

as |v8|, |a8| ≤ 2|v8 − a8|. Consequently, |v8| > 1/3 or |a8| > 1/3 would require some fine

2Note that the parameters a1–a6 are the Wilson-coefficient combinations known from the literature.
a0 and a8, on the other hand, are normalized hadronic matrix elements.
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min(|v8 − a8|) max(|v8 − a8|)
Decay
B̄d → J/ψπ0 0.05 0.18
B̄d → J/ψKS 0.07 0.19
B̄d → J/ψη 0.06 0.18
B̄d → J/ψη′ 0.05 0.17
B̄d → ηcKS 0.05 0.17
B̄d → ηcK

∗ 0.04 0.16
B̄d → ψ(2S)KS 0.10 0.22
B̄d → χc1π

0 0.02 0.15
B̄d → χc1KS 0.02 0.14
B̄s → J/ψKS 0.06 0.18
B̄s → J/ψη 0.10 0.22
B̄s → J/ψη′ 0.10 0.23
B̄s → ψ(2S)η 0.17 0.29
B̄s → ψ(2S)η′ 0.12 0.24
B̄d → (J/ψρ0)0 0.04 0.16
B̄d → (J/ψρ0)‖ 0.02 0.14
B̄d → (J/ψρ0)⊥ 0.04 0.16
B̄d → (J/ψK∗)0 0.04 0.17
B̄d → (J/ψK∗)‖ 0.02 0.14
B̄d → (J/ψK∗)⊥ 0.03 0.15
B̄d → (ψ(2S)K∗)0 0.04 0.16
B̄d → (ψ(2S)K∗)‖ 0.00 0.12
B̄d → (ψ(2S)K∗)⊥ 0.05 0.17
B̄s → (J/ψφ)0 0.03 0.15
B̄s → (J/ψφ)‖ 0.01 0.13
B̄s → (J/ψφ)⊥ 0.03 0.15
B̄s → (J/ψK∗)0 0.03 0.15
B̄s → (J/ψK∗)‖ 0.01 0.13
B̄s → (J/ψK∗)⊥ 0.04 0.16

Table 4.1: Upper and lower values that are allowed for the normalized hadronic matrix
element combination |v8−a8| by the experimental branching ratio B(B̄p → f). None of the
combinations is larger than our expectation of O (1/NC). The experimental uncertainties
are not included but their inclusion does not change the fundamental picture.
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tuning of these matrix elements to conform with the bound from the branching ratio. We

see this as evidence that 1/NC counting is applicable in B̄ → ψX decays and use (for

exceptions see below)

|v0| = 1, a0 = 0, and 0 ≤ |v8|, |a8| ≤
1

NC

. (4.38)

with NC = 3 for the numerical evaluation of af = pf/tf . We set |v0| = 1 and |a0| = 0

because the omission of O (1/Nα
C) terms in these quantities induces an error O

(
1/Nα+1

C

)
on tf and O

(
1/Nα+2

C

)
on pf . This uncertainty is negligible, since the uncertainty due to

the values of v8 and a8 is O (1/NC).

Interestingly, in the decays B̄d → χc0K
(∗) the singlet matrix element 〈QV 0〉 vanishes

at LO in 1/NC . The quantum numbers JPC = 0++ of the χc0 do not permit that a vector

or axial current generates a χc0

〈χc0| γµ(1± γ5) |0〉 = 0. (4.39)

In these decays

tf =
GF√

2
2C2 (〈QV 8〉 − 〈QA8〉) (4.40)

is the leading contribution in 1/NC , this allows the determination of | 〈QV 8〉 − 〈QA8〉 |
up to O (10%). Normalizing to a typical value GF√

2
V0 = 3 × 10−5 GeV we obtain for

B̄d → J/ψKS

| 〈QV 8〉 − 〈QA8〉 |
V0

= |v8 − a8| = 0.04. (4.41)

This value |v8 − a8| is on the low side of the ranges in Tab. 4.1 and may be seen as an

additional confirmation of the 1/NC counting. However, it is unclear whether χc0 can be

related this easily to the other charmonium decays.

Since the factorized singlets V0 are absent in decays where the charmonium is a χc0,

we cannot normalize the matrix elements to V0 in these decays. However, the absence

of V0 also means that the decay amplitude is largely determined by 〈QV 8〉 and 〈QA8〉.
The size of | 〈QV 8〉 − 〈QA8〉 | can be determined as in Eqn. (4.41), we use this to set the

following limit on the matrix elements

| 〈QV 8〉 |, | 〈QA8〉 | ≤ x| 〈QV 8〉 − 〈QA8〉 |. (4.42)

We set x = 2 by arguing that the matrix elements should not too fine-tuned, i.e. that

their combination | 〈QV 8〉−〈QA8〉 | should not be a lot smaller than the individual matrix
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elements | 〈QV 8〉 | and | 〈QA8〉 |.
In the case that the charmonium is an ηc, the factorized singlet 〈QV 0〉|fact. vanishes.

In contrast, 〈QA0〉|fact. is nonzero because ηc is a pseudoscalar particle. Therefore, we

normalize the matrix elements to 〈QA0〉|fact. instead to 〈QV 0〉|fact. and the 1/NC counting

of the normalized color singlet matrix elements is modified, we use |a0| = 1 and v0 = 0.

For the numerical evaluation we need to determine the factorized color singlets V0 in

every decay. For their determination, we use the form factors from references [68–75] and

evaluate them at the charmonium mass mψ. Furthermore, we use the decay constants

[76–78]

fJ/ψ = 0.405± 0.005 GeV, fψ(2S) = 0.288± 0.002 GeV, fηc = 0.387± 0.007 GeV.

(4.43)

In decays that involve the χc1, we estimate the decay constant to be fχc1 = 0.45 GeV.

To our knowledge there is no numerical value of the χc1 decay constant available in the

literature. This is why we choose a typical value that tends to overestimate the real value.

The results in Tab. 4.2 are to good approximation linear in the decay constant and can

be simply rescaled by fχc1/(0.45 GeV) to obtain a result for the other values.

In all decays we require that the theoretical amplitude as a function of Wilson co-

efficients and (normalized) matrix elements obeys the experimental constraint from the

branching ratio

λcqtf + λuqpf
!

= Aexp(B̄ → f), (4.44)

with Aexp defined in Eqn. (4.37). We leave the phases of the normalized matrix elements

free and exploit that the overall phase of an amplitude is unphysical and can be chosen

to be zero. The size of the normalized matrix elements is left free in the ranges given in

and below Eqn. (4.38).

With the given experimental bound, the decay-specific singlets V0, the bounds in

Eqn. (4.38) and the Wilson coefficients in Eqn. (4.23) we derive the CP -violating coeffi-

cients that we discuss in the next section.

4.3.2 B̄ → ψX results

The results for the CP -violating coefficients are given in Tabs. 4.2–4.5. Several comments

apply

• The expected value for −ηfA∆Γs = cos(φs) = 0.99929 ± 0.00003 is very close to

1. Consequently, the values for 103 ×max(|∆A∆Γs|) in Tabs. 4.3 and 4.5 are lower
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Final State max(|∆φd|) max(|∆Sf |) max(|Cf |)
Unit 1◦ 10−2 10−2

B̄d → J/ψπ0 15 16 27
B̄d → J/ψKS 0.68 0.84 1.13
B̄d → J/ψη 15 17 25
B̄d → J/ψη′ 17 19 30
B̄d → ηcKS 0.92 1.13 1.59
B̄d → ψ(2S)KS 0.69 0.85 1.17
B̄d → χc0KS 2.15 2.70 3.85
B̄d → χc1π

0 21 25 39
B̄d → χc1KS 1.08 1.35 1.78

Table 4.2: CP -violating parameters in B̄d → ψP decays (P is a pseudoscalar meson). The
maximum size of the hadronic phase shift ∆φd, the maximal shift of the mixing-induced
CP asymmetry Sf and of the direct CP asymmetry Cf . The values are functions of the
penguin-to-tree ratio af which is computed by means of the OPE and the 1/NC counting.

Final State max(|∆φs|) max(|∆Sf |) max(|Cf |) max(∆A∆Γs|)
Unit 1◦ 10−2 10−2 10−3

B̄s → J/ψKS 14 24 23 38
B̄s → J/ψη 0.57 0.99 0.95 0.33
B̄s → J/ψη′ 0.55 0.95 0.91 0.32
B̄s → ψ(2S)η 0.40 0.70 0.68 0.24
B̄s → ψ(2S)η′ 0.52 0.91 0.88 0.31

Table 4.3: CP -violating parameters in B̄s → ψP decays. For more explanations, see
caption of Tab. 4.2.

bounds for −ηfA∆Γs , if they are larger than 0.71× 10−3.

• In decays B̄p → ψV in which V and ψ are vector mesons3 the final state has

three possible polarizations. We classify these by the polarization of the final state

mesons [79]. Either both vector mesons are longitudinally polarized (0), or they are

transversely polarized and the polarization vectors are either perpendicular (⊥) or

parallel (‖). The factorizable part of the singlet matrix elements 〈QV 0〉 is evaluated

according to reference [80].

• If V = K∗ we assume that the K∗ is reconstructed via (KSπ
0). Only this recon-

struction allows to measure Sf (and A∆Γ). If the K∗ is reconstructed via (K±π∓)

the CP asymmetry is time-independent and only direct CP violation is possible be-

3The charmonia ηc(1S) and χc0 are no vector meson but pseudoscalar and scalar mesons, respectively.
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Final State max(|∆φd|) max(|∆Sf |) max(|Cf |)
Unit 1◦ 10−2 10−2

B̄d → (J/ψρ0)0 18 20 29
B̄d → (J/ψρ0)‖ 20 25 37
B̄d → (J/ψρ0)⊥ 18 20 30
B̄d → (J/ψK∗)0 0.85 1.06 1.41
B̄d → (J/ψK∗)‖ 1.00 1.22 2.03
B̄d → (J/ψK∗)⊥ 0.93 1.16 1.54
B̄d → ηcK

∗ 0.96 1.17 1.63
B̄d → χc0K

∗ 1.81 2.27 3.24
B̄d → (ψ(2S)K∗)0 0.93 1.15 1.53
B̄d → (ψ(2S)K∗)‖ 1.47 1.84 2.57
B̄d → (ψ(2S)K∗)⊥ 0.85 1.05 1.40

Table 4.4: CP -violating parameters in B̄d → ψV decays. For more explanations, see
caption of Tab. 4.2.

cause the final state is no CP eigenstate. Hence, only the prediction for Cf is valid

in this situation.

• The charged B− mesons cannot decay into CP eigenstates. This situation is similar

to the situation when the K∗ is reconstructed via K±π∓. The CP asymmetry is

time-independent and only direct CP violation is possible. Thus, only the coefficient

of direct CP violation Cf can be measured. The results for B− decays are not listed

because they can be obtained by using isospin symmetry. For example, we derive

from Tab. 4.2

max(|CB−→J/ψπ−|) = 27× 10−2. (4.45)

• The dominant theory uncertainty of the results derives from the 1/NC estimate of

v8 because the penguin pf is dominated by v8. Hence, the allowed value of |v8|
which we set to 1/NC determines to a large extent the size of af . The size of tf is

determined by the branching ratio with tf ≈ Aexp./λcq. All other uncertainties are

subdominant. These are uncertainties from the branching ratios, CKM parameters

and higher-order terms of the OPE and the O (pcm/mb) term in Eqn. (4.25).

4.3.3 Comparison to experimental measurements

Of the results given in the previous section the most remarkable results are ∆Sf , respec-

tively ∆φp, in B̄d → J/ψKS, B̄d → J/ψπ0, and B̄s → J/ψφ. We compare them to the
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Final State max(|∆φs|) max(|∆Sf |) max(|Cf |) max(∆A∆Γs|)
Unit 1◦ 10−2 10−2 10−3

B̄s → (J/ψφ)0 0.98 1.70 1.61 0.68
B̄s → (J/ψφ)‖ 1.12 1.96 2.18 0.93
B̄s → (J/ψφ)⊥ 0.99 1.73 1.64 0.69
B̄s → (J/ψK∗)0 20 35 35 82
B̄s → (J/ψK∗)‖ 28 47 48 140
B̄s → (J/ψK∗)⊥ 18 30 29 59

Table 4.5: CP -violating parameters in B̄s → ψV decays. For more explanations, see
caption of Tab. 4.2

experimental values, we distinguish: Single-experiment measurements, the world-average

of a measurement and the expected SM value. We cite BABAR, Belle, LHCb or CMS

for single-experiment determinations, for the global fit of an observable we cite the heavy

flavor averaging group (HFAG) [29] and we use the global fit to the CKM matrix which

represents the SM expectation of CKM parameters from the CKMfitter group [22].

The measurement of SJ/ψKS in B̄d decays represents the best determination of the UT

angle β. The most precise determination by a single experiment has been achieved by

the LHCb collaboration [81], we compare their determination to a global fit of all SJ/ψKS
measurements by HFAG and a fit of CKMfitter of sin(2β) excluding measurements of

SJ/ψKS ,

LHCb: SJ/ψKS = 0.731± 0.035± 0.020,

HFAG: SJ/ψKS = 0.691± 0.017,

CKMfitter (excl. J/ψKS) : sin(2β) = 0.748± 0.032,

Theory uncertainty: ∆SJ/ψKS = ±0.008.

(4.46)

The single-experiment determination of LHCb has still a relatively large uncertainty of

±0.035± 0.020. With the LHCb upgrade this should should reduce to ±0.008 [82] and is

then of the same size as our theory error. The difference of the HFAG and the CKMfitter

results should be in the absence of penguin pollution and of NP only attributable to

experimental uncertainties. Currently, these two values only deviate slightly (1–2 σ) from

each other.

In B̄s → J/ψφ there are three possible polarizations of the final state 0, ⊥, or ‖ which

lead to three separate and polarization-dependent measurements of φs but it is not yet

possible to separate these measurements with significance.
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LHCb: SJ/ψφ = 0.058± 0.049,

CMS: SJ/ψφ = 0.075± 0.102,

HFAG: SJ/ψφ = 0.034± 0.033,

CKMfitter: sin(2βs) = 0.038± 0.001,

Theory uncertainty: ∆S(J/ψφ)0 = ±0.017.

(4.47)

The direct measurements of φs = −2βs by CMS [83] and by LHCb [84] and the global

fit of all direct measurements (HFAG) are still compatible with zero and with the SM

expectation (CKMfitter).

The CP -violating observables in B̄d → J/ψπ0 decays have been measured by Belle

[85] and BABAR [86].

Belle: SJ/ψπ0 = −0.65± 0.22, CJ/ψπ0 = −0.08± 0.17,

BABAR: SJ/ψπ0 = −1.23± 0.21, CJ/ψπ0 = −0.20± 0.19,

CKMfitter (incl. J/ψKS) : sin(2β) = 0.701± 0.011,

Theory uncertainty: ∆SJ/ψπ0 = ±0.16, |CJ/ψπ0| ≤ 0.27.

(4.48)

In this mode in particular the value of SJ/ψπ0 is interesting. Our results for Bd → J/ψπ0

favor the Belle measurement over the BABAR result. The BABAR result is outside

the physical range – which is |SJ/ψπ0| ≤ 1 – but implies that SJ/ψπ0 should be minimal.

The measurements of Cf in Bs → J/ψK∗ decays [87] agrees with our prediction Tab. 4.5.

Furthermore, the measurements of Sf and Cf for the Bd → J/ψρ0 polarization amplitudes

[88] comply with the ranges in Tab. 4.4.

The current measurements of CP -violating observables in Cabibbo-favored decays

(governed by b→ c̄cs and involving εs) have larger uncertainties than our predicted theory

error. We observe no tension between theory prediction (CKMfitter + our uncertainties

in Tabs. 4.2– 4.5).

In Cabibbo-suppressed decays (governed by b→ c̄cd and involving εd) our uncertainties

are in the same range as the experimental uncertainty. There is a long-standing discrep-

ancy between BABAR and Belle in the measurement of SJ/ψπ0 , our result is compatible

with Belle. We observe no other discrepancy between experiment and theory.

4.3.4 Comparison to the literature

The BSS idea [11] has already been applied to predict the size of the penguin pollution in

B̄d → J/ψKS [89]. However, the estimate of this paper misses the dominant contribution
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Reference ∆SJ/ψKS ∆φd Method
This thesis |∆S| ≤ 0.008 |∆φd| ≤ 0.7◦ OPE
[34] −0.01± 0.01 −1.1◦ ± 0.7◦ SU(3) flavor
[33] |∆S| . 0.01 |∆φd| . 0.8◦ SU(3) flavor
[32] 0.00± 0.02 0.0◦ ± 1.6◦ U-spin
[31] [−0.05,−0.01] [−3.9,−0.8]◦ U-spin
[89] −(2± 2) · 10−4 0.0◦ ± 0.0◦ BSS

Table 4.6: Evaluation of the penguin pollution in B̄d → J/ψKS in the literature. The
values quoted in gray have been determined from the values in the literature in black.
The BSS determination missed the dominant contribution from the top penguins.

from the top penguins. Additionally, they make the assumption that (we use our notation)

v8 = |v8−a8|. This means they assume a lower value for the matrix element than we and in

addition they assume that the phase is small because of the light-cone sum rules (LCSR)

calculation in reference [90]. However, the LCSR calculation misses the prediction of the

branching ratio B(B̄d → J/ψKS) by a factor of two. Therefore, this does not seem to be

a reliable estimate.

The only reliable estimate is v8 ∼ O (1/NC), consequently, it is a matter of taste which

value of v8 one uses in the BSS approach. Our aim was to find a bound on the penguin

pollution, therefore, we used the conservative bound |v8| ≤ 1/NC . With less conservative

assumptions it is possible to obtain stronger bounds at the risk of overestimating the

theoretical predictability. This is done in reference [89], yet, the omission of the top

penguins is certainly incorrect and leads to the very small value given in Tab. 4.6.

The estimates of ∆φd in reference [31, 34] and of ∆SJ/ψKS in reference [32, 33] rely

on flavor symmetries, either SU(3)F or U-spin (a SU(2) subgroup of SU(3)F that rotates

down quarks into strange quarks). Even though we think that the use of flavor symmetries

in principle is a viable approach, we would like to state some caveats. Experimentally,

the U-spin estimates rely on the measurement of Sf in control modes, these are primarily

B̄d → J/ψπ0 and B̄s → J/ψKS. However, the branching ratios of these control modes

are Cabibbo suppressed because the leading contribution is ∝ λcd instead of ∝ λcs, this

leads to the suppression |λcd/λcs|2 = 0.05. Consequently, the control channels have lower

statistics. Furthermore and more importantly, flavor symmetries are not exact and the

breaking of the flavor symmetry between a signal and control channel can neither experi-

mentally nor theoretically be determined. The usual expectation is that these effects are

O (ms/ΛQCD) = 30% but it is not possible to show that this is the case for the penguin

pollution.

References [31, 34] model the breaking of the flavor symmetry with naive factorization
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but this cannot be correct because the decays have large nonfactorizable contributions.

Furthermore, the use of naive factorization leads to a pseudo-sensitivity which relates the

branching ratio and the coefficient Cf to the penguin pollution. This yields an additional

bound on the penguin pollution. However, this bound is spurious and, in fact, absent if

flavor symmetry breaking is correctly parametrized.

In reference [33] a fit based on (generically broken) SU(3)F flavor symmetry is per-

formed. We think that this is the correct way to describe the decays with flavor symme-

tries. However, also in this case there is no possibility to extract the SU(3)F breaking

parameters that contribute to the penguin pollution. By means of the flavor symmetry

it is possible to extract the size of the penguin pollution. However, the error on this

determination cannot be rigorously determined but must be implemented by assuming a

reasonable value of maximal SU(3)F breaking. The maximal value of |∆SJ/ψKS | obtained

by reference [33] given in Tab. 4.6 is centered around zero. This is a consequence of in-

cluding generic SU(3)F breaking. In contrast references [31, 34] obtain a central value of

∆φd that is shifted from zero. This is due to the use of naive factorization to estimate

flavor-symmetry breaking and the resulting additional spurious constraint on the penguin

pollution.

We conclude that flavor symmetries are another viable method to estimate the penguin

pollution. This method requires the correct implementation of flavor symmetry breaking

which leads to a residual theoretical uncertainty.

4.4 Results for B̄ → DD̄ decays

This section is dedicated to the phenomenology in B̄ → DD̄ decays. There are ten

decay channels with B̄ ∈ {B−, B̄d, B̄s}, D ∈ {D+, D0, D+
s }, and D̄ ∈ {D−, D̄0, D−s }.

The most important representative of these decays is the decay B̄s → D+
s D

−
s because

it allows similarly to B̄s → J/ψφ the extraction of the B̄s − Bs mixing phase φs. This

is in particular interesting because the final state D+
s D

−
s does not require an angular

analysis. Furthermore, the influence of the penguin pollution is different in B̄s → J/ψφ

and B̄s → D+
s D

−
s , which allows a completely independent determination of φs.

In section 3.8 we discussed that the OPE can also be applied to the penguin pollution

in B̄ → DD̄ decays. In B̄ → DD̄ decays the charm quarks end up in different mesons,

as a consequence, we will discuss exchange and penguin annihilation diagrams in detail.

Moreover, this results into a more elaborate discussion of subleading 1/NC terms than in

B̄ → ψX decays.
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First, we discuss the generic structure of the decay amplitude in B̄ → DD̄ decays.

Subsequently, we establish the 1/NC counting of the individual contributions and test the

expected 1/NC behavior. Finally, we derive the CP -violation observables and compare

them to the available measurements. At last we compare our results to discussions in the

literature.

4.4.1 The B̄ → DD̄ decay amplitude

We explained in section 3.8 that the OPE is also applicable to the penguin pollution in

B̄ → DD̄ decays. From the OPE it follows that at LO in
ΛQCD

M
, M ∼ mB all processes

are mediated by the operator basis in Eqns. (2.1) and (2.2). In the preceding section we

have seen that in fact the basis in Eqn. (2.1) is sufficient if certain terms O
(
pcm
M

)
are

neglected using Eqn. (2.11). In B̄ → DD̄ decays this situation is even simpler, since

〈Q8T 〉 = 〈Q8V 〉
[
1 +O

(
ΛQCD

mb

)]
. (4.49)

The terms O
(

ΛQCD

M

)
derive from the momentum p′ of the light quark q which is soft in

B̄ → DD̄ decays. Thus, the basis in Eqn. (2.1) is sufficient to describe all B̄ → DD̄ decays

and we may write the decay amplitude in B̄ → DD̄ decays as

A(B̄ → f) = λcqtf + λuqpf , (4.50)

with

tf = −i
GF√

2
[ (a1 + a3 + a5) 〈Q0V 〉+ (2C2 + C8V ) 〈Q8V 〉

−(a1 + a3 − a5) 〈Q0A〉 − (2C2 + 2C4 − 2C6) 〈Q8A〉] , (4.51)

pf = −i
GF√

2

[
(a3 + a5) 〈Q0V 〉+ (2C2C̃2,8V + C8V ) 〈Q8V 〉

−(a3 − a5) 〈Q0A〉 − (2C4 − 2C6) 〈Q8A〉] . (4.52)

There are two possibilities how the operators can be Wick-contracted in B̄ → DD̄ ma-

trix elements. We give the two corresponding diagrams in Fig. 4.1. If the q quark from

the b → cc̄q transition hadronizes into the D̄ this is the tree insertion which we denote

by an index T. If the spectator quark p in the B̄p meson is equal to q, p = q, exchange

diagrams are possible denoted by an index E. We split tf and pf up into the contributions
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b
c

c

q

B̄ D

D̄

(a) T insertion.

b
c

c
q

B̄

D

D̄

(b) E insertion.

Figure 4.1: In the effective theory, there are only two possible insertions of the operators
in B̄ → DD̄ matrix elements. If q hadronizes in D̄ this is the tree-level (T) insertion. If
the spectator quark is annihilated at the effective vertex this is the exchange (E) insertion.

that derive from T and E insertions

tf = tTf + tEf , pf = pT
f + pE

f (4.53)

and refer to tTf , tEf , p
T
f , and pE

f as effective parameters [44]. They are given by

tTf ≡ GF√
2

[ (a1 + a3 + a5) 〈Q0V 〉T + (2C2 + C8V ) 〈Q8V 〉T
−(a1 + a3 − a5) 〈Q0A〉T − (2C2 + 2C4 − 2C6) 〈Q8A〉T] , (4.54)

pT
f ≡ GF√

2

[
(a3 + a5) 〈Q0V 〉T + (2C2C̃2,8V + C8V ) 〈Q8V 〉T
−(a3 − a5) 〈Q0A〉T − (2C4 − 2C6) 〈Q8A〉T] , (4.55)

tEf ≡
GF√

2
[ (a1 + a3 + a5) 〈Q0V 〉E + (2C2 + C8V ) 〈Q8V 〉E
−(a1 + a3 − a5) 〈Q0A〉E − (2C2 + 2C4 − 2C6) 〈Q8A〉E] , (4.56)

pE
f ≡

GF√
2

[
(a3 + a5) 〈Q0V 〉E + (2C2C̃2,8V + C8V ) 〈Q8V 〉E
−(a3 − a5) 〈Q0A〉E − (2C4 − 2C6) 〈Q8A〉E] , (4.57)

The expressions of tTf and tEf (pT
f and pE

f ) are identical except for the index of the matrix

elements denoted by T and E. Whether an effective parameter is nonzero in a specific

decay depends on whether the T or E Wick contraction contributes to the specific decay.

We list this for all B̄ → DD̄ decays in Tab. 4.7.

We did not consider this decomposition before because all B̄ → ψX decays have



CHAPTER 4. PHENOMENOLOGY 81

Mode q tTf tEf pT
f pE

f Class

B− → D0D̄− d × × A
B− → D0D−s s × × A
B̄0 → D+D

−
s s × × A

B̄s → D+
s D

− d × × A
B̄0 → D0D̄0 d × × B
B̄0 → D+

s D
−
s d × × B

B̄s → D+D− s × × B
B̄s → D0D̄0 s × × B
B̄0 → D+D− d × × × × C
B̄s → D+

s D
−
s s × × × × C

Table 4.7: The parametrization of the B̄ → DD̄ decay amplitudes in terms of the effective
parameters tTf , tEf , p

T
f , and pE

f . An × indicates that a effective parameter contributes to a
decay, q ∈ {d, s} specifies q in λcq and λuq. The classes are defined after Eqn. (4.57).

leading contributions from tTf and pT
f . Only those decays in which X has a flavor singlet

component also receive contributions from tEf and pE
f but this can be neglected in the

determination of CP -violating observables. In contrast, inspecting Tab. 4.7 we observe

that the B̄ → DD̄ decays can be grouped into three classes. We call these classes A, B

and C. The decays of class A only obtain contributions from effective parameters with

T insertions, the decays of class B only obtain contributions from E insertions and the

decays of class C obtain contributions from T and E insertions. Hence, in B̄ → DD̄ decays

some modes are dominated by E insertions and the E insertions are decisive for the

determination of the CP -violating observables.

A further advantage of the decomposition into T and E insertions becomes clear when

we consider the effective parameters in 1/NC counting. To allow a transparent discussion

of NC effects of T insertions, it is preferable to switch to another operator basis in which

the color-singlet operators create the final D̄ mesons as color singlets. This basis is

Q0 = (c̄b)(V−A)(q̄c)(V−A),

Q8 = (c̄T ab)(V−A)(q̄T
ac)(V−A),

QS0 = −2(c̄b)(S−P )(q̄c)(S+P ),

QS8 = −2(c̄T ab)(S−P )(q̄T
ac)(S+P ). (4.58)

It is equivalent to the basis in Eqn. (2.1) after Fierz transformation and use of the color
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algebra. For example, one rewrites Q8V as

Q8V =
1

2NC

(CFQ0 −Q8 + CFQS0 −QS8) , (4.59)

where NC = 3 is the number of colors and CF =
N2
C−1

2NC
. With this basis we rewrite tTf and

pT
f as

tTf = −iGF√
2

[(a2 + a4) 〈Q0〉T + (2C1 + 2C3) 〈Q8〉T + a6 〈QS0〉T + 2C5 〈QS8〉T] ,

pT
f = −iGF√

2
[(a4 + CF/(2NC)C8Ṽ ) 〈Q0〉T + (2C3 − C8Ṽ /(2NC)) 〈Q8〉T

+ (a6 + CF/(2NC)C8Ṽ ) 〈QS0〉T + (2C5 − C8Ṽ /(2NC)) 〈QS8〉T] .

(4.60)

Here, it is convenient to introduce the Wilson coefficient combinations a2i ≡ C2i+
1
NC
C2i−1

for i ∈ {1, 2, 3} and C8Ṽ ≡ 2C2C̃2,8V + 2C3C̃3,8V + 2C4C̃4,8V + 2C6C̃6,8V + C8GC̃8G,8T .

We will now discuss the 1/NC counting of the effective parameters to clarify why the

decomposition into effective parameters is reasonable. For this we recall, that the 1/NC

ordering of the Wilson coefficients has been given in the B̄ → ψX phenomenology section.

Numerically, we evaluate the Wilson coefficients at the scale µ = mb in B̄ → DD̄ decays.

We discuss the 1/NC counting of the T matrix elements first. We normalize them to

the factorized color singlet matrix element which is given by

− iV0 ≡ −i
〈
D̄D|Q0|B̄

〉
T

∣∣
fact.

= fD̄F
B̄D
0 (m2

D̄)(m2
B −m2

D). (4.61)

This leads to the definition of the normalized matrix elements q0, q8, s0, and s8〈
D̄D|Q0|B̄

〉
T
≡ V0q0 (4.62)〈

D̄qD|QS0|B̄
〉

T
≡ V0χD̄qs0 (4.63)〈

D̄D|Q8|B̄
〉

T
≡ V0q8 (4.64)〈

D̄qD|QS8|B̄
〉

T
≡ V0χD̄qs8. (4.65)

In Eqn. (4.63) the factor

χD̄q ≡
2m2

D̄q

(mb −mc)(mc −mq)
(4.66)

is due to the equations of motions that are used to compute the naively factorized scalar-

penguin matrix element 〈QS0〉|fact. = χD̄qV0. In χD̄q the masses mb,mc,mq and mq′ are

the MS masses of the b, c, and q quark, respectively. q is the non-charm quark in the

D̄ meson. We normalize the scalar octet matrix element
〈
D̄qD|QS8|B̄

〉
T

to the scalar
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singlet, consequently also a factor factor χD̄q enters Eqn. (4.65). The 1/NC counting of

the normalized matrix elements is

q0 = 1 +O
(

1

NC

)
, s0 = 1 +O

(
1

NC

)
, q8 = O

(
1

NC

)
, s8 = O

(
1

NC

)
. (4.67)

Altogether, we obtain the 1/NC scaling

tTf
V0

=
GF√

2
[(a2 + a4)q0 + a6χDs0] +O

(
1

N2
C

)
∼ O (1) , (4.68)

pT
f

V0

=
GF√

2

[
(a4 +

CF
2NC

C8Ṽ )q0 + (a6 +
CF

2NC

C8Ṽ )χDs0

]
+O

(
1

N2
C

)
∼ O

(
1

NC

)
.(4.69)

In B̄ → DD̄ decays of the first class we can hence compute the decay amplitude in LO

in 1/NC .

For the discussion of the the E matrix elements we maintain the operator basis in

Eqn. (2.1) because in this basis the dominant contributions to tEf and pE
f are very trans-

parent. The LO term in 1/NC vanishes

〈DD̄|Q0V |B̄q〉E
∣∣
fact

= 〈DD̄|(c̄c)V |0〉〈0|(q̄b)A|B̄q〉 (4.70)

= ifBF
DD̄(m2

B̄)(m2
D −m2

D̄) (4.71)

= 0. (4.72)

This is due to current conservation as it has been also noted in references [91, 92]. Hence,

there is no factorizable exchange matrix element to which the E matrix elements can be

normalized and all E matrix elements are of the same order in 1/NC . Thus, the 1/NC

counting expectation is

〈Q0V 〉E ∼ 〈Q0A〉E ∼ 〈Q8V 〉E ∼ 〈Q8A〉E . (4.73)

This leads to

tEf =
GF√

2
[2C2(〈Q8V 〉E − 〈Q8A〉E)]

(
1 +O

(
1

NC

))
(4.74)

pE
f =

GF√
2

[
(2C2C̃2,8V + C8V ) 〈Q8V 〉E

](
1 +O

(
1

NC

))
(4.75)

These relations are in fact even better obeyed than up to terms O (1/NC) but rather up

to O (10%) since the Wilson coefficients of the neglected terms are smaller than the NC
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counting implies because of perturbative effects. For example, in tEf the neglected terms

O (a1/(2C2)) are formally O (1/NC) but in fact smaller. We conclude that there are only

two E matrix elements that contribute significantly to the decay amplitudes. The effective

parameter tEf receives the main contribution from 〈Q8V 〉E−〈Q8A〉E which has the normal

V − A structure of the weak interaction. The subleading term pE
f receives its dominant

contribution from 〈Q8V 〉E.

This ends the discussion about the structure of B̄ → DD̄ decay amplitudes, thanks

to the OPE we found that all B̄ → DD̄ transitions are mediated by the operators given

in Eqn. (2.1) or alternatively in Eqn. (4.58). Exchange processes are important B̄ →
DD̄ decays this is why we separated the matrix elements in T and E insertions. We

then proceeded with evaluating the T and E matrix elements in 1/NC counting. We

find a surprisingly simple situation. Namely, that tTf and pT
f are dominated by q0 and

s0 and that tEf and pE
f are dominated by 〈Q8V 〉 and 〈Q8A〉. This may seem idle since

we only reexpressed the four unknown effective parameters tTf , pT
f , tEf and pE

f by four

a priori unknown normalized matrix elements. However, the advantage is that we can

order the normalized matrix elements in size by 1/NC counting and can test this 1/NC

counting with the branching ratios. If the branching ratios follow the 1/NC counting we

can confidently apply it to determine the CP -violating observables.

Test of NC counting Let us test the 1/NC counting in B̄ → DD̄ decays. The LO

amplitude in 1/NC is

ALO(B̄ → DD̄ ) =
GF√

2
λcqa2V0q0, (4.76)

with q0 = 1 for all decays that get contributions from tTf . The terms tEf and pf are

subleading in 1/NC . We show |ALO(B̄ → DD̄ )/Aexp(B̄ → DD̄ )| in Fig. 4.2. We observe

that ALO generally overestimates the experimental branching ratio. However, except in

the decay modes B̄d → D+D− and B̄s → D+
s D

−
s the experimental amplitude lies within

the range expected from 1/NC counting.

It is also possible to include some subleading terms in 1/NC . The inclusion of the terms

∝ s0 with s0 = 1 is trivial. In addition, we may extract the size of tEf = 2C2 〈Q8V 〉E −
〈Q8A〉E from the class B decays. We use

〈Q8V 〉E − 〈Q8A〉E = −(2.3± 0.2)× 10−6 GeV. (4.77)
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0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
ALO/Aexp

B̄0 → D+D−

B̄0 → D+D−s

B− → D0D−s

B− → D0D−

B̄s → D+
s D

−
s

B̄s → D+
s D

−

Figure 4.2: Check of the 1/NC counting. The leading order term of the decay amplitude
in 1/NC is given by ALO = GF√

2
|λc|a2V0. The LO term overestimates the experimental

amplitude in general. Uncertainties due to the input parameters (branching ratios, decay
constants and form factors) are indicated by the error bars. The range that is expected
from 1/NC counting is limited by the dashed lines.

The relative phase arg(tEf /t
T
f ) = π is deduced from the fact that the isospin sum rule4

Aexp(B̄d → D+D−) = Aexp(B̄− → D0D−) +Aexp(B̄d → D0D̄0) (4.78)

can only be satisfied if arg(tEf /t
T
f ) ≈ π. We then use

tTf =
GF√

2
λcqV0 [(a2 + a4)q0 + a6χDs0] , tEf =

GF√
2

2C2 [〈Q8V 〉E − 〈Q8A〉E] (4.79)

to determine the ratios |ANLO/Aexp| which are displayed in Fig. 4.3. The inclusion of the

first order subleading 1/NC terms leads to a better agreement between experiment and

1/NC counting. There is one unknown subleading 1/NC correction. These are the terms

O
(

1
NC

)
in q0 = 1 + O

(
1
NC

)
. Our interpretation of the situation is that 1/NC counting

is effective but that all terms of the subleading 1/NC contributions interfere negatively

with the LO contribution in 1/NC . Furthermore, since also in Fig. 4.3 the experimental

4This sum rule is valid since we neglect the processes where up quarks are produced at the effective
vertex as discussed in sections 3.6 and 3.8.
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0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
ANLO/Aexp

B̄0 → D+D−

B̄0 → D+D−s

B− → D0D−s

B− → D0D−

B̄s → D+
s D

−
s

B̄s → D+
s D

−

Figure 4.3: Check of the 1/NC counting including subleading terms in 1/NC . All theo-
retical values overestimate the experimental values but all ratios are within the expected
range.

amplitudes are still overestimated by the 1/NC counting this means that the term O
(

1
NC

)
in q0 = 1 +O

(
1
NC

)
most likely has a negative sign.

4.4.2 CP -violating parameters in B̄ → DD̄ decays

The test of the 1/NC counting makes us confident that we can apply it to estimate the

matrix elements. With these estimates we derive the CP -violating observables in the

classes A, B, and C.

In the decays of class A only the effective parameters tTf and pT
f contribute. Thus,

the numerical evaluation can be done as in the B̄ → ψX section. We write af =
pTf
tTf

and

require that

A(B̄ → f) = λcqt
T
f + λuqp

T
f

!
= Aexp. (4.80)

within the experimentally allowed 1σ range of Aexp. We allow that the normalized

hadronic matrix elements vary in the ranges implied by 1/NC counting in Eqn. (4.67)

0 ≤ ||q0| − 1| ≤ 1

NC

, ||s0| − 1| ≤ 1

NC

, 0 ≤ |q8| ≤
1

NC

, 0 ≤ |s8| ≤
1

NC

, (4.81)



CHAPTER 4. PHENOMENOLOGY 87

B− → D0D− B− → D0D−s Bd → D+D−s B̄s → D+
s D

−

max(Cf )× 102 4.5 0.75 0.80 5.0
min(Cf )× 102 −11 −0.30 −0.35 −12

Table 4.8: Results for the extremal values of the direct CP -violating observable Cf in
class A decays.

with NC = 3. We obtain the results for Cf in Tab. 4.8.

In the decays of class B, we obtain

af =
pE
f

tEf
=

(2C2C̃2,8V + C8V ) 〈Q8V 〉E
(2C2 + 2C8V )(〈Q8V 〉E − 〈Q8A〉E)

. (4.82)

The size of the penguin pollution is dominated by the ratio

x ≡ 〈Q8V 〉E
〈Q8V 〉E − 〈Q8A〉E

. (4.83)

Even though the value of | 〈Q8V 〉E − 〈Q8A〉E | can be obtained from the branching ratios,

we do not need it to determine the penguin pollution because the penguin pollution is

only dependent on x. Yet, there is no experimental information on x. We exclude that

the matrix elements are fine-tuned and therefore impose |x| ≤ 2. Thus, we derive the

maximal size of the CP -violating observables in class B decays with |x| ≤ 2. They are

given in the first two columns of Tab. 4.9.

The results for the class C decays B̄d → D+D− and B̄s → D+
s D

−
s are given in the

third and fourth column of Tab. 4.9. They are derived by combining the methods for

class A and class B decays. However, it is necessary to use 〈Q8V 〉E − 〈Q8A〉E determined

in Eqn. (4.77).

To interpret the results in Tabs. 4.8 and 4.9 the following remarks should be taken

into account:

• We derive the values by extremizing the observables as functions of the normalized

matrix elements which are only allowed to float in the ranges given by Eqn. (4.81)

and for class B and C decays by |x| ≤ 2. The bounds in Tabs. 4.8 and 4.9 arise if

||q0| − 1| = ||s0| − 1| = |q8| = |s8| = 1/3 and |x| = 2, the phases of the normalized

matrix elements then arrange such that the constraint from the branching ratio in

Eqn. (4.80) is satisfied and the observable under consideration becomes maximal.

• Therefore, the dominant uncertainty is induced by the 1/NC counting, the second

largest source of uncertainty are the branching ratios which still have relatively large
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Decay mode B̄d → D+
s D

−
s B̄s → D0D̄0 B̄d → D+D− B̄s → D+

s D
−
s

B̄d → D0D̄0 Bs → D+D−

max(Cf )× 102 12.5 · |x
2
| 0.65 · |x

2
| −16 1.0

min(Cf )× 102 −12.5 · |x
2
| −0.65 · |x

2
| 8.0 −0.65

max (∆Sf )× 102 9.5 · |x
2
| 0.65 · |x

2
| −1.0 1.20

min (∆Sf )× 102 −8.0 · |x
2
| −0.65 · |x

2
| −13.0 0.0

max (∆φp) in ◦ 7.0 · |x
2
| 0.40 · |x

2
| 11 −0.05

min (∆φp) in ◦ −7.5 · |x
2
| −0.40 · |x

2
| 0.1 −0.80

max (∆A∆Γ)× 103 0.25 · |x
2
| 0.0

min (∆A∆Γ)× 103 −0.25 · |x
2
| −0.40

Table 4.9: CP violation observables in decays of class B and C. In the decays of
class B in the first two columns the result heavily depends on the assumption that
| 〈Q8V 〉E /(〈Q8V 〉E − 〈Q8A〉E)| = |x| ≤ 2.

errors. Other uncertainties, due to higher order terms in the OPE or the CKM input

are neglected.

• Similarly, the ad hoc choice of |x| ≤ 2 represents a large uncertainty in class B

decays. For a different choice of x one may rescale the CP asymmetries in Tab. 4.9

as it is indicated by the factor ·|x
2
|. The results in class C decays are less susceptible

to the maximal value of |x| because pE
f is subleading w.r.t. pT

f .

• The slight differences in isospin related decays B− → D0D− and B̄d → D+D−s are

due to the different input parameters (masses, branching ratios)

4.4.3 Comparison to experimental measurements

The CP -violating observables that have been measured up to date are given in Tab. 4.10,

all measurements are in agreement with our predictions except for the Belle measure-

ment of S(B̄ → D+D−) and C(B̄ → D+D−) [93], which disagrees with the BABAR

measurement [94] and is 0.5σ out of the physical range given by S2
f + C2

f ≤ 1.

4.4.4 Comparison to the literature

There are only few discussions about the size of CP violation in B̄ → DD̄ decays, these

are [67, 96–98]. References [67, 98] discuss B̄ → DD̄ decays using the approximate flavor

SU(3)F symmetry. In this case the same comments as in section 4.3.4 apply. Namely, that

the use of naive factorization to parametrize SU(3)F breaking [67] is questionable and
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Mode Sf Cf A∆Γ Reference
B̄s → D+

s D
−
s −0.02± 0.17 0.09± 0.20 −0.995± 0.019 LHCb [95]

B̄d → D+D− −0.62± 0.21 0.08± 0.17 BABAR [94]
B̄d → D+D− −1.06± 0.22 −0.43± 0.17 Belle [93]
B̄d → D+

s D
− 0.01± 0.03 Belle [93]

B− → D0D− −0.03± 0.07 PDG [28]

Table 4.10: Experimentally measured CP -violating observables in different B̄ →
DD̄ modes. The measurements are in good agreement with our predictions except for
the Belle measurement of C(B̄d → D+D−) and S(B̄d → D+D−) in the third line. Yet,
this one is also in tension with the BABAR measurement in the second line and 0.5 stan-
dard deviations out of the physical range. Statistical and systematic errors are added in
quadrature. In general the errors are statistically dominated.

that the implementation of flavor SU(3)F with generic SU(3)F breaking [98] is a viable

method but has residual theoretical uncertainties because of unknown SU(3)F breaking.

The authors in references [96, 97] deal with CP violation in B̄d → D+D− and B̄s →
D+
s D

−
s . They use the BSS mechanism and naive factorization to compute the penguin-

to-tree ratio af . Since their and our approach may seem somewhat similar, let us stress

the differences here.

The first important point is that without invoking the OPE a calculation of the up-

quark penguin is moot. Moreover, in [96, 97] the charm-quark penguin is calculated

perturbatively. This is not correct since the OPE necessarily fails for the charm-quark

penguin and thus the charm-quark penguin is not computable perturbatively. A further

difference is that we consider the matrix elements in 1/NC counting. While this comprises

also naive factorization it is better motivated within QCD and includes ’nonfactorizable’

contributions. The use of naive factorization in B̄ → DD̄ decays sets ’nonfactorizable’

contributions to zero which seems incorrect in view of the tests of the 1/NC counting in

Figs. 4.2 and 4.3.
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Conclusion

In this thesis we achieved first-principles predictions of CP -violating observables in B̄ →
ψX and B̄ → DD̄ decays. Since these decays are governed by the quark-level process

b → cc̄q with q ∈ {d, s}, there exist no first-principles predictions from QCD factor-

ization or other QCD based methods. Among the investigated decays are the modes

B̄d → J/ψKS, B̄s → J/ψφ and B̄s → D+
s D

−
s which are the best channels for the direct

measurement of the UT parameters β and βs. The extraction of these parameters is sub-

ject to theoretical uncertainties due to higher-order corrections in the decay amplitude,

the so-called penguin pollution. We derived first-principles expressions for the penguin

pollution with an operator-product expansion (OPE) and evaluated the matrix elements

with 1/NC counting.

The OPE exploits that there is a large momentum transfer q2 ∼ m2
ψ,m

2
b from the

decaying b quark to the c̄c pair. This momentum transfer allows the expansion of the

nonlocal and nonperturbative matrix elements in ΛQCD/M with M =
√
q2. The hard

effects can be described by a perturbative Wilson coefficient, the soft effects are either

described by matrix elements of local four-quark operators or suppressed by ΛQCD/M .

In B̄ → ψX decays, hard-collinear spectator interactions have a weaker suppression of

pcm/M but are not expected to invalidate our results (pcm is the center-of-mass momentum

of the X meson in the B̄ meson rest frame).

For the proof of the OPE we showed the factorization of soft and hard scales, the

suppression of spectator interactions, and the suppression of further soft effects. We also

explained how the OPE is applicable to B̄ → DD̄ decays.

We evaluate the four-quark matrix elements with 1/NC counting and test whether the

matrix elements obey the 1/NC counting with the branching ratios. Nevertheless, the

determination of the matrix elements with 1/NC counting represents the largest uncer-
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tainty in our approach. From the results given in the phenomenology section, the most

important results are the phase-shifts due to SM higher-order corrections ∆φd = φd − 2β

and ∆φs = φs + 2βs that are maximally possible. We find

Bound Decay

|∆φd| ≤ 0.7◦ B̄d → J/ψKS,

|∆φs| ≤ 1.0◦ B̄s → (J/ψφ)0,

−0.8◦ ≤ ∆φs ≤ 0.0◦ B̄s → D+
s D

−
s .

This means that the theoretical uncertainty on the extraction of β is ±0.35◦ in B̄d →
J/ψKS and of βs is ±0.2◦ in B̄s → D+

s D
−
s . The uncertainty in the extraction of βs

in B̄s → J/ψφ is larger with ±0.5◦. In the future, also the decays B̄s → D+D− and

B̄s → D̄0D0 will be interesting, since they also allow a very precise determination of βs.

Unfortunately, their statistics is 20 times smaller than that of the channel B̄s → D+
s D

−
s .

The validity of our predictions will be probed in the decays where the penguin pollution

is not Cabibbo suppressed, i.e. in the decays that are governed by the quark-level process

b → c̄cd. In these decays the CP violating parameters are possibly sizable and could

deviate from our predictions.

The measurement of SJ/ψπ0 at the BABAR experiment and the measurements of

SD+D− and CD+D− in the decay B̄d → D+D− at the Belle experiment are in 1-2σ tension

with our predictions. All other measurements are in agreement with our predictions.

Thus, there is currently no sign of new physics but the experimental uncertainties still

leave room for deviations from the SM.

Outlook

The OPE simplifies the structure of the decay amplitude but the evaluation of the four-

quark matrix elements remains as the largest uncertainty. The calculation of the matrix

elements on the lattice is not feasible because there is a large momentum transfer. It might

be possible to obtain better constraints on the matrix elements by employing flavor sym-

metries, such as SU(3)F , but we do not think that this will lead to massive improvements.

The use of flavor symmetries is a complementary approach with the main disadvantage

that the breaking of SU(3)F is inaccessible.

A more rigorous proof of the OPE might be possible by establishing a genuine effective

theory in which no particles are allowed to have an off-shellness of q2. In this effective

theory only soft light quarks and soft gluons remain. The off-shellness of the charm
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quarks should also be at most O
(
Λ2

QCD

)
. It could be that this theory is identical to the

soft-collinear effective theory (SCET) [99], however, the hadronic currents should not be

separated as it is done in SCET. Therefore, this effective theory also results into four-

quark matrix elements that need to be matched on the physical matrix elements that

can be estimated via 1/NC counting. In principle, these effective-theory matrix elements

should only contain soft effects. Therefore, it might even be possible to compute these

matrix elements on the lattice in the far future.

The future experimental situation will be mainly influenced by the LHCb and Belle

II experiments. While the Belle II experiment is currently still under construction, the

LHCb experiment restarted data taking this summer, after the first long shutdown of the

LHC ended this year. During its lifetime, the sensitivity of the LHCb experiment will

reach the same level as the theoretical uncertainties. Prospectively, the LHCb experiment

will reach the 1◦ sensitivity on the φs extraction in B̄s → J/ψφ in Run 3 during the years

2019-2021 [82]. The experimental uncertainty of the UT angle β will be σβ ≈ 0.3◦ at about

50 fb−1 in the years 2024-2026. Thanks to global fits and results on φs from the ATLAS

and CMS experiment the global experimental uncertainties will be smaller before that

time. LHCb has only very limited sensitivity to uncharged light mesons, in particular,

the final state J/ψπ0 is probably not accessible at the LHCb experiment. Therefore, only

when the Belle II experiment is operating new competitive measurements of CP -violating

observables with π0 in the final state will become available.
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Appendix A

Details to Factorization

A.1 Two-loop integrals

I13 = − g4
S

(2π)8
C13

∫
ddk ddl Γ1

/k − /q
(k − q)2

γµ
/k + /l

(k + l)2
Γ2

/l + /pb +mb

(l + pb)2 −m2
b

γν
1

l2
1

(l + q)2
(A.1)

⊗γµ /−pc̄ − /l +mc

(pc + l)2 −m2
c

γν

I15 = − g4
S

(2π)8

C15

q2

∫
ddk ddlΓ1

/k − /q
(k − q)2

γµ
/k

k2
γν

/k + /l

(k + l)2
Γ2

/l + /pb +mb

(/l + /pb)
2 −m2

b

γν
1

l2
⊗ γµ (A.2)

I16 =
g4
S

(2π)8

C16

q2

∫
ddk ddl Γ1

/k + /l

(k + l)2
γν
/k

k2
γµ

/k − /q
(k − q)2

Γ2
/pb + /l +mb

(pb + l)2 −m2
b

γν
1

l2
⊗ γµ (A.3)

I17 = − g4
S

(2π)8

C17

q2

∫
ddk ddl Γ1

/k − /q
(k − q)2

γρ
/k + /l

(k + l)2
Γ2

/l + /pb +mb

(l + pb)2 −m2
b

γν

⊗ 1

(q + l)2

1

l2
Vµνρ(−q,−l, l + q)γµ (A.4)

I23 = − g4
S

(2π)8
C23

∫
ddk ddl γν

/l + /p′

(l + p′)2

1

l2
Γ1

/k + /l

(k + l)2
γµ

/k + /q

(k + q)2
Γ2

1

(q − l)2

⊗γµ
/l − /pc̄ +mc

(l − pc̄)2 −m2
c

γν (A.5)

I24 = − g4
S

(2π)8
C24

∫
ddk ddl γν

/l + /p′

(l + p′)2

1

l2
Γ1

/k + /l

(k + l)2
γµ

/k + /q

(k + q)2
Γ2

1

(q − l)2

⊗γν /pc − /l +mc

(pc − l)2 −m2
c

γµ (A.6)
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I25 =
g4
S

(2π)8

C25

q2

∫
ddk ddl γν

/l − /p′
(l − p′)2

1

l2
Γ1

/k − /q
(k − q)2

γµ
/k

k2
γν

/k + /l

(k + l)2
Γ2 ⊗ γµ (A.7)

I26 = − g4
S

(2π)8

C26

q2

∫
ddk ddl γν

/l − /p′
(l − p′)2

1

l2
Γ1

/k + /l

(k + l)2
γν

/k

k2
γµ

/k − /q
(k − q)2

Γ2 ⊗ γµ (A.8)

I27 = − g4
S

(2π)8

C27

q2

∫
ddk ddl γρ

/l + /p′

(l + p′)2

1

l2
Γ1

/k + /l

(k + l)2
γν

/k + /q

(k + q)2
Γ2

⊗ 1

(q − l)2
Vµνρ(−q, q − l, l)γµ (A.9)

I35 = − g4
S

(2π)8
C35

∫
ddk ddl Γ1

/k

k2
γν

/k + /l

(k + l)2
γµ

/k + /q

(k + q)2
Γ2

1

(q − l)2

1

l2

⊗γν /pc − /l +mc

(pc − l)2 −m2
c

γµ (A.10)

I36 = − g4
S

(2π)8
C36

∫
ddk ddl Γ1

/k

k2
γν

/k + /l

(k + l)2
γµ

/k + /q

(k + q)2
Γ2

1

(q − l)2

1

l2

⊗γµ
/l − /pc̄ +mc

(l − pc̄)2 −m2
c

γν (A.11)

I37 = − g4
S

(2π)8

C37

q2

∫
ddk ddl Γ1

/k

k2
γν

/k + /q

(k + q)2
Γ2

1

(q − l)2

1

l2
Vµνρ(−l, q, l − q)

⊗γρ
/l − /pc̄ +mc

(l − pc̄)2 −m2
c

γµ (A.12)

I56 =
g4
S

(2π)8

C56

q2

∫
ddk ddl Γ1

/k

k2
γν
/l

l2
γµ

/q − /l
(q − l)2

γν
/k + /q

(k + q)2
Γ2

1

(k + l)2
⊗ γµ (A.13)

I57 = − g4
S

(2π)8

C57

q2

∫
ddk ddl Γ1

/k

k2
γρ

/k + /l

(k + l)2
γν

/k + /q

(k + q)2
Γ2

⊗ 1

(q − l)2

1

l2
Vµνρ(−q, q − l, l)γµ (A.14)

Some notation has been introduced, we stripped the integral expressions from the

spinors and separated the two quark currents with a “⊗” instead. The first current is

sandwiched between ūq(p
′) and u(pb), the second current is sandwiched between v̄c(pc̄)

and uc(pc). Furthermore we used the insertion of an generic operators Q = Γ1V1 ⊗ Γ2V2
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instead of specific Dirac and color structure. We also factored out the color structures

C15 = V1T
aT bV2T

b ⊗ T a, (A.15)

C16 = V1T
bT aV2T

b ⊗ T a, (A.16)

C13 = V1T
aV2T

b ⊗ T aT b. (A.17)

C25 = T bV1T
aT bV2 ⊗ T a, (A.18)

C26 = T bV1T
bT aV2 ⊗ T a, (A.19)

C23 = T bV1T
aV2 ⊗ T aT b, (A.20)

C24 = T bV1T
aV2 ⊗ T bT a, (A.21)

C56 = V1T
bT aT bV2 ⊗ T a, (A.22)

C35 = V1T
bT aV2 ⊗ T bT a, (A.23)

C36 = V1T
aT bV2 ⊗ T aT b, (A.24)

C17 = iV1T
bT cV2 ⊗ fabcT a, (A.25)

C27 = iT cV1T
bV2 ⊗ fabcT a, (A.26)

C57 = iV1T
cT bV2 ⊗ fabcT a, (A.27)

C37 = iV1T
bV2 ⊗ fabcT cT a. (A.28)

We use the tree-gluon vertex functions

Vµ1µ2µ3(k, l, k3) ≡ gµ1µ2(k − l)µ3 + gµ2µ3(l − k3)µ1 + gµ3µ1(k3 − k)µ2 . (A.29)
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A.2 The Q8G penguins

I17G =
α2
Smb

(2π2)2q2
CG
∫

ddl
1

l2
σρλ

qλ + lλ

(q + l)2
(1 + γ5)

/pb + /l +mb

(pb + l)2 −m2
b

γν

⊗Vµνρ(−q,−l, q + l)γµ (A.30)

I18G = − α2
Smb

(2π2)2q2
CG
∫

ddl
1

l2
σµν(1 + γ5)

/pb + /l +mb

(pb + l)2 −m2
b

γν ⊗ γµ (A.31)

I27G =
α2
Smb

(2π2)2q2
CG
∫

ddl
1

l2
γρ

/l − /p′
(l − p′)2

σνλ
qλ + lλ

(q + l)2
(1 + γ5)Vµνρ(−q, q + l,−l)⊗ γµ(A.32)

I28G = − α2
Smb

(2π2)2q2
CG
∫

ddl
1

l2
γν

/l − /p′
(l − p′)2

σµν(1 + γ5)⊗ γµ (A.33)

I37G = − α2
Smb

(2π2)2q2
CG
∫

ddl
1

l2
1

(q + l)2
σρλqλ(1 + γ5)Vµνρ(l,−q − l, q)

⊗γµ /pc + /l +mc

(pc + l)2 −m2
c

γν (A.34)

I38G = − α
2
Smb

(2π2)2
CG
∫

ddl
1

l2
1

(q + l)2
σµν(1 + γ5)⊗ γµ /pc + /l +mc

(pc + l)2 −m2
c

γν (A.35)

I78G =
2CF
NC

α2
Smb

(2π2)2q2
CG
∫

ddl
1

l2
1

(q + l)2
σνρ(1 + γ5)Vµνρ(−q, q + l,−l)⊗ γµ (A.36)

CG =
NC

2
T a ⊗ T a (A.37)

CF =
N2
C − 1

2NC

(A.38)
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(k) I37G (l) I38G (m) I78G

Figure A.1: One-loop (NLO) corrections to the Q8G penguins.





Appendix B

Details to Phenomenology

B.1 Factorized matrix elements

The naively factorized color singlet is given by

〈ψP |Q0V |B〉|fact. = 〈ψP | (c̄c)V−A(q̄b)V−A |B〉|fact. (B.1)

= 〈ψ| c̄γµ(1− γ5)c |0〉 〈P | q̄γµ(1− γ5)b |B〉 . (B.2)

The factorization separates the two currents and leads to a part that describes the pro-

duction of the ψ and a part which describes the transition B → P . These two processes

can be expressed by universal hadronic quantities

〈ψ(q, ε)| c̄γµc |0〉 = −ifψmψε
∗
µ, (B.3)

〈P (p′)| q̄γµb |B(pB)〉 =

(
(pB + p′)µ −

m2
B −m2

P

q2
qµ

)
FBP

1 (q2) (B.4)

+
m2
B −m2

P

q2
qµ F

BP
0 (q2). (B.5)

Here, εµ and fψ are the charmonium polarization vector and the charmonium decay con-

stant, respectively, the parameters FBP
1 and FBP

0 are the B → P form factors. Note that

the axial currents both vanish 〈ψ(q, ε)| c̄γµγ5c |0〉 = 〈P (p′)| q̄γµγ5b |B(pB)〉 = 0. Since

q.ε∗ = 0 the full matrix element takes a simple form

〈ψP |Q0V |B〉 = −i2fψmψε∗.pBF
BP
1 . (B.6)

Hence, the form factors FBP
0 are irrelevant for our considerations. In the center-of-mass

system ( see section 3.1.1) ε∗.pB = −pcm/mψmB such that matrix element simplifies even
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further to

〈ψP |Q0V |B〉 = i2fψmBpcmF
BP
1 . (B.7)

B.2 Rescaling the Branching Ratios of Bs Decays

According to references [27, 100], the experimentally measured time-integrated branching

ratio in Bs decays is not equal to what is understood as the ’theoretical’ branching ratio

because of the nonvanishing decay width difference in the Bs − B̄s system [29]

ys ≡
∆Γs
2Γs

= 0.0606± 0.0045. (B.8)

They derive the relation

BR(Bs → f)theo =

[
1− y2

s

1 +Af∆Γ

]
BR(Bs → f)exp. (B.9)

In general we use

A∆Γs = −ηf cos(φs) (B.10)

because the penguin pollution has only a very small influence on A∆Γs .



Appendix C

Abbreviations

BSS mechanism Bander-Silverman-Soni mechanism [11]

CKM matrix Cabibbo-Kobayashi-Maskawa matrix [3, 4]

e.g. Example given

i.e. This means Latin: id est

IR Infrared

KM mechanism Kobayashi-Maskawa mechanism [4]

LCDA Light-cone distribution amplitude

LHS Left-hand side

LO Leading order

MS Modified minimal subtraction scheme

NDR Naive dimensional regularization (scheme)

NLO Next-to-leading order

NP New physics

OPE Operator-product expansion

OZI rule Okubo-Zimmerman-Iizuka rule [64–66]

QCD Quantum chromodynamics

QCDF QCD factorization

RHS Right-hand side

SM Standard Model

UT Unitarity triangle

UV Ultraviolet

w.r.t With respect to
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Mathematical symbols

= equal (analytically)

= equal (numerically, rounded to last displayed digit)

≡ defining equation

≈ approximately equal (numerically, several digits rounded)

' equal up to higher orders

∼ scales as

. scalar product of four-vectors

B branching ratio

λ ∼ ΛQCD power-counting parameter

λ = 0.225 Wolfenstein parameter

λf quantity that encodes all CP violation

λpq = V ∗pqVpb combination of CKM elements

q quark that is created at the effective vertex

q hard momentum that creates the c̄c quark pair

p coefficient of |B〉 in the mass eigenstate |BH,L〉
q ± coefficient of

∣∣B̄〉 in the mass eigenstate |BH,L〉
p spectator quark in the (decaying) B̄p meson
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