
The Cryptographic Strength of
Tamper-Proof Hardware

zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

der Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Tobias Nilges

aus Siegen

Tag der mündlichen Prüfung: 16. Dezember 2015

Erster Gutachter: Prof. Dr. Jörn Müller-Quade

Zweiter Gutachter: Prof. Jesper Buus Nielsen, PhD

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu

Acknowledgements

I want to deeply thank my advisor Jörn Müller-Quade for giving me the chance to
pursue my PhD. He supported me all along the way and pointed me to interesting
problems. We had many inspiring discussions, not limited to the topic of this thesis
or cryptography. I also want to thank Jesper Buus Nielsen for taking the time and
interest necessary to co-referee my thesis. And also for the After-TCC-Party in
Warsaw.
The working atmosphere with my current and former colleagues was very enjoyable

and I want to thank them all for the many fruitful discussions on- and off-topic,
sometimes just lending an ear to let me get a better grasp of what I was trying to
do.
Thanks to Masayuki Abe for giving me the opportunity to do an internship at

NTT, providing me with a look outside of the box and giving me a new view on the
topics I was working on. I learned a lot during those two months.
Last but not least, I want to express my heartfelt gratitude to Sabine, my friends

and my family for their countless encouragements and their support over the years.

iii

Abstract

Tamper-proof hardware has found its way into our everyday life in various forms, be
it SIM cards, credit cards or passports. Usually, a cryptographic key is embedded in
these hardware tokens that allows the execution of simple cryptographic operations,
such as encryption or digital signing. The inherent security guarantees of tamper-
proof hardware, however, allow more complex and diverse applications.
The Universal Composability (UC) framework provides very strong security guar-

antees, in particular for the case of protocol composition. To prove a protocol secure
in this framework, a setup (like a common reference string or a public key infrastruc-
ture) usually has to be established by a trusted authority. In 2007, Katz showed that
two mutually distrusting parties can instead use tamper-proof hardware as a setup
assumption. In this scenario, one party creates and programs a tamper-proof hard-
ware token. Katz showed that although the other party does not trust the token to
operate according to the protocol, UC-secure two-party computation is possible. A
trusted authority is thus no longer necessary. The security of the protocols is based
on two physical assumptions: (1) The sender of the hardware token has no direct
means of communication with the token (isolation assumption), and (2) the receiver
of the hardware token cannot learn anything about the internal workings or secrets
of the token apart from its input/output behavior (tamper-resilience assumption).
In a series of works, it was shown that stateful tamper-proof hardware allows

statistically UC-secure non-interactive two-party computation, which means that
even an unbounded adversary cannot break the security of the protocol. Here, by
stateful hardware we mean that the token has a reliable internal state which can
persistently store new information. This assumption, however, is relatively strong
and does not accurately model most available realizations of tamper-proof hardware.
It does e.g. not take into account that many tamper-proof hardware tokens rely on an
external power source. Thus, a weaker model was proposed that allows a malicious
adversary to reset the hardware arbitrarily.
Our contributions to this research area are manifold. On the one hand, we present

optimal protocols with respect to the computational assumptions and number of
tokens in existing models. On the other hand, we develop new models of tamper-
proof hardware, and investigate the feasibility of UC-secure interactive and non-
interactive two-party computation in our models. All our results assume untrusted
tokens, i.e. a malicious sender can arbitrarily program the token. To achieve the
above results, we develop new cryptographic tools and proof techniques. In a little
more detail, our contributions are as follows:

Partially isolated stateful tamper-proof hardware.
We define two weaker models of stateful hardware where the isolation assump-
tion is assumed to hold only in one direction, i.e. either the malicious sender
is allowed to send messages to the token, or vice versa. We provide a full char-

v

vi

acterization of these models with respect to the feasibility of (non-)interactive
two-party computation, and show that our constructions are optimal with re-
spect to the number of tokens that we need in the protocols.

Resettable tamper-proof hardware.
We improve upon previous work in the area of resettable, or equivalently state-
less, tokens and provide optimal constructions for (non-)interactive two-party
computation with respect to the number of tokens, and assume only one-way
functions for our constructions.

Bounded-resettable tamper-proof hardware.
We define a slightly more restrictive model of resettable tamper-proof hardware
that allows unconditionally UC-secure protocols, which are provably impossi-
ble with “standard” resettable hardware. In this model, we show the feasibility
of statistically UC-secure interactive two-party computation, and also provide
non-interactive protocols for several interesting cryptographic primitives.

Reusable resettable tamper-proof hardware.
We investigate the possibility of reusing a hardware token for several protocols
and show that a reusable untrusted signature card can be used to UC-realize
non-interactive two-party computation.

Zusammenfassung

Manipulationssichere Hardware ist ein Bestandteil des alltäglichen Lebens, beispiels-
weise in Form von SIM-Karten, Bankkarten oder auch Ausweisen. In diese soge-
nannten Token ist üblicherweise ein kryptographischer Schlüssel eingebettet, sodass
einfache kryptographische Operationen wie digitales Signieren oder Verschlüsseln
umgesetzt werden können. Die inhärenten Sicherheitgarantien von manipulationssi-
cherer Hardware erlauben jedoch deutlich komplexere Anwendungen.
Universell komponierbare (UC) Sicherheit bietet starke Sicherheitsgarantien ins-

besondere für parallele und verschachtelte Protokollausführungen. Um ein Protokoll
in diesem Modell als sicher zu beweisen muss ein sogenanntes Setup (wie etwa eine
Public-Key Infrastruktur oder ein echt zufälliger Bitstring) üblicherweise von einer
vertrauenswürdiger Instanz erstellt werden. Katz zeigte im Jahr 2007, dass zwei sich
gegenseitig misstrauende Parteien mit manipulationssichere Hardware als Setup be-
liebige Berechnungen sicher durchführen können. Dabei erstellt und instanziiert eine
Partei ein manipulationssicheres Token mit einem Programm. Katz konnte zeigen,
dass UC-sichere Zweiparteienberechnung möglich ist, obwohl die empfangende Partei
dem Token nicht vertraut. Es ist also keine vertrauenswürdige Instanz mehr nötig.
Die Sicherheit des Protokolls basiert dabei auf zwei physikalischen Annahmen: (1)
Der Sender der manipulationssicheren Hardware hat keine Möglichkeit, mit dieser zu
kommunizieren, nachdem sie beim Empfänger angekommen ist (Isolationsannahme),
und (2) der Empfänger der manipulationssicheren Hardware kann keine Daten aus
der Hardware lesen, sondern nur über das Ein- und Ausgabeverhalten Informationen
gewinnen (Manipulationssicherheit).
In einer Reihe von Arbeiten wurde gezeigt, dass zustandsbehaftete manipulati-

onssichere Hardware sogar statistisch UC-sichere und nicht-interaktive Zweipartei-
enberechnungen erlaubt, also selbst unbeschränkte Angreifer die Sicherheit nicht
brechen können. Zustandsbehaftete Hardware bedeutet hier, dass ein verlässlicher
interner Speicher zur Verfügung steht, in den neue Informationen dauerhaft abgelegt
werden können. Diese Annahme ist allerdings vergleichsweise stark und triff nicht
auf jede Realisierung von manipulationssicherer Hardware zu. Es wird beispielsweise
nicht abgebildet, dass die meisten manipulationssicheren Hardwaretoken von einer
externen Stromquelle abhängen. Daher wurde ein schwächeres Modell vorgestellt,
welches es einem bösartiger Empfänger zusätzlich erlaubt, die Hardware beliebig
häufig neuzustarten.
Im Rahmen dieser Dissertation leisten wir vielfältige Beiträge zu diesem For-

schungsbereich. Einerseits präsentieren wir Protokolle für bestehende Modell, welche
optimal in Bezug auf die kryptographischen Annahmen und die Anzahl an verwen-
deten Token sind. Andererseits entwickeln wir neue Modellierungen von manipulati-
onssicherer Hardware und untersuchen diese auf die Realisierbarkeit von interaktiver
und nicht-interaktiver UC-sicherer Zweiparteienberechnung. Alle unsere Ergebnisse

vii

viii

gehen von nicht-vertrauenswürdiger Hardware aus, d.h. ein bösartiger Sender darf
eine beliebige Funktion in der Hardware implementieren. Zum Erlangen unserer
Ergebnisse entwickeln wir neue kryptographische Werkzeuge und Beweistechniken.
Zusammengefasst leisten wir die folgenden Beiträge:

Teilweise isolierte zustandsbehaftete manipulationssichere Hardware.
Wir definieren zwei neue Modelle für zustandsbehaftete manipulationssichere
Hardware, welche eine schwächere einseitige Isolation zwischen der Hardware
und ihrem Sender beschreiben, d.h. entweder darf der Sender Nachrichten an
die Hardware schicken, oder umgekehrt. Wir geben eine vollständige Charakte-
risierung dieser Modelle in Bezug auf Realisierbarkeit von (nicht-)interaktiver
Zweiparteienberechnung an und zeigen, dass unsere Protokolle eine optimale
Anzahl von manipulationssicherer Hardwaretoken nutzen.

Rücksetzbare manipulationssichere Hardware.
Wir entwickeln verbesserte Protokolle für (nicht-)interaktive Zweiparteienbe-
rechnung basierend auf zurücksetzbarer (oder äquivalent zustandsloser) ma-
nipulationssicherer Hardware und zeigen deren Optimalität bezüglich Anzahl
der Hardwaretoken. Die einzige komplexitätstheoretische Annahme, die wir
benötigen, sind Einwegfunktionen.

Begrenzt rücksetzbare manipulationssichere Hardware.
Wir entwickeln ein etwas eingeschränktes Modell rücksetzbarer Hardware, bei
dem die Anzahl an Neustarts durch einen bösartigen Empfänger a priori be-
grenzt wird. In diesem Modell kann, im Gegensatz zu „normaler“ zurücksetz-
barer Hardware, statistisch sichere Zweiparteienberechnung realisiert werden.

Wiederverwendbare zurücksetzbare manipulationssichere Hardware.
Wir definieren ein neues Modell für zurücksetzbare manipulationssichere Hard-
ware, welches die Wiederverwendung von Hardware in mehreren Protokollen
erlaubt. Dies ist üblicherweise im Rahmen von UC-Sicherheit nicht möglich. In
diesem Modell erreichen wir effiziente (nicht-)interaktive Zweiparteienberech-
nung basierend auf einer nicht-vertrauenswürdigen Signaturkarte.

Contents

Abstract v

Zusammenfassung vii

1 Introduction 1
1.1 Contribution of the Thesis . 3
1.2 Structure of the Thesis . 4

2 Preliminaries 7
2.1 General Notations . 7
2.2 Basic Primitives . 8

2.2.1 One-Way Functions . 8
2.2.2 Pseudorandom Generators and Functions 8
2.2.3 Secret Sharing Schemes . 9

2.3 Commitment Schemes . 9
2.4 Digital Signature Schemes and Message Authentication Codes 11

2.4.1 Message Authentication Codes 11
2.4.2 Digital Signatures . 12

2.5 Zero-Knowledge and Witness-Indistinguishable Proofs 14
2.5.1 Zero-Knowledge . 14
2.5.2 Witness-Indistinguishability 15

2.6 Information Theory and Randomness Extraction 16
2.7 Security Model . 17

2.7.1 The Universal Composability Framework 17
2.7.2 Common Ideal Functionalities 18

3 Stateful Tamper-Proof Hardware 21

4 Partially Isolated Stateful Tamper-Proof Hardware 25
4.1 Communication from Token Issuer to Token 26

4.1.1 Model . 27
4.1.2 Limitations . 27
4.1.3 Protocols . 29
4.1.4 Relation to Two-Party Computation 37

4.2 Communication from Token to Token Issuer 37
4.2.1 Model . 38
4.2.2 Limitations . 40
4.2.3 Protocols . 40
4.2.4 Relation to Two-Party Computation 47

ix

x Contents

5 Resettable Tamper-Proof Hardware 49
5.1 Model . 52
5.2 Limitations . 53
5.3 Computationally Secure Two-Party Computation 56

5.3.1 Compiler from Non-Black-Box Techniques 58
5.3.2 Compiler from Seed-OTs . 63
5.3.3 Optimizations . 65
5.3.4 Implications . 67

5.4 Computationally Secure Non-Interactive Two-Party Computation . . 68
5.4.1 Resettable Functionalities in the UC-Framework 68
5.4.2 Solution Using One Token with Interaction 71
5.4.3 Solution Using Two Resettable Tokens Without Interaction . . 77
5.4.4 Implications . 84

5.5 Relation to Two-Party Computation 85

6 Bounded-Resettable Tamper-Proof Hardware 87
6.1 Model . 89
6.2 Tools . 90

6.2.1 Query-Once Oracle Validation Scheme 91
6.2.2 Oracle Validation Scheme for a q-Bounded Oracle 92

6.3 Statistically Secure Two-Party Computation 99
6.3.1 Commitments from Token Sender to Token Receiver 99
6.3.2 Commitments from Token Receiver to Token Sender 102
6.3.3 Multiple OT from a Constant Number of Tokens 110

6.4 Statistically Secure Non-Interactive Two-Party Computation 116
6.4.1 Bounded-Resettable Zero-Knowledge Proofs of Knowledge . . 116

6.5 Relation to Two-Party Computation 120

7 Reusable Resettable Tamper-Proof Hardware 123
7.1 Limitations . 125
7.2 Real Signature Cards . 126

7.2.1 Model . 127
7.2.2 Protocols . 129

7.3 Ideal Signature Cards . 138
7.3.1 Model . 138
7.3.2 Protocols . 139

7.4 Relation to Two-Party Computation 146

8 Conclusion and Prospects 147

Bibliography 150

1. Introduction

Cryptographic tamper-proof hardware tokens are ubiquitous in everyday life. Tam-
per-proof chips are embedded in SIM-cards, Trusted Platform Modules, credit cards
and even passports. When we talk about tamper-proof hardware, we usually assume
two properties.

• Isolation: After the sender created the token, he has no possibility to directly
communicate with the token.

• Tamper-resilience: The receiver cannot learn the program that the sender
input into the token, apart from its input/output behavior.

Applications for such hardware tokens are manifold. In the area of software protec-
tion, tamper-proof hardware can be used to hide critical information of the software
from the buyer, as shown by Goldreich and Ostrovsky [GO96]. The tamper-proof
property of the token prevents a malicious buyer from copying the token, which in
turn prevents unwanted redistribution of the program. A scenario similar to this
is Pay-TV, where the broadcaster issues a tamper-proof token to the viewer. It is
essential that the viewer cannot duplicate or manipulate such a token, otherwise he
would be able to watch TV programs that he did not pay for.
Canetti et al. [CGGM00] show that tamper-proof hardware can also be used for

identification purposes without releasing any information about the individual. Sim-
ilarly, passports allow to create unforgeable digital signatures. The tamper-resilience
property is required to prevent identity theft.
Another concept that is directly related to tamper-proof hardware are physically

unclonable functions (PUFs) by Pappu [Pap01]. PUFs are functions that can be
evaluated very efficiently, but have an intrinsic probabilistic behavior that cannot
be cloned due to variations in the physical manufacturing process. The output of a
PUF has high entropy and can therefore be applied to cryptographic protocols. On
an abstract level, the behavior of a PUF is similar to a one-way function, but relies
solely on physical properties.
All these scenarios have in common that the receiver of the token trusts the

functionality that is stored on the token. In contrast, tamper-proof hardware was
also proposed for electronic wallets by Chaum and Pedersen [CP93], where one
party issues a small token that is on the one hand not trusted by the receiver, and

1

2 1. Introduction

on the other hand cannot communicate with its sender. The physical separation
of a party from its token allows strong security guarantees: [CP93] and following
results [Bra94, CP94] show that tamper-proof hardware tokens can provide both
privacy to its user and security of transactions for the issuing party.
With practical attacks on the tamper-resilience of hardware becoming increas-

ingly sophisticated, e.g. [KJJ99, GMO01, SA03, Koc96], theoretical solutions to this
problem were investigated. Ishai et al. [ISW03] present a solution that guarantees
the security of a token program even if an adversary has access to some wires of the
circuit representation of this program. This models a large class of side-channel at-
tacks. Gennaro et al. [GLM+04] investigate a model where the adversary may apply
some function to the secret stored inside the token to influence the behavior of the
program. The most general model was proposed by Micali and Reyzin [MR04], who
presented a model where an adversary may specify a leakage function that is applied
to the computation and releases specific information about the computation to the
adversary, possibly including information about the secret keys. This model later
spawned the cryptographic research area of leakage-resilient cryptography [DP08].
In 2001, Canetti [Can01] introduced a new security model for composable security

of protocols, the Universal Composability (UC) framework. This model provides
very strong security guarantees for protocols that are executed concurrently. Most
security definitions did not consider concurrent executions of protocols, which led
to protocols that are insecure when executed in complex environments such as the
internet, see e.g. Goldreich and Krawczyk [GK96b] for the case of zero-knowledge.
However, Canetti and Fischlin [CF01] showed that even simple functionalities such
as commitment schemes cannot be realized in the UC framework without further
setup assumptions.
Intrigued by this impossibility, Hofheinz et al. [HMQU05] investigated the fea-

sibility of UC-secure computation with a trusted tamper-proof signature card as
a setup assumption. They presented a UC-secure commitment protocol which, in
combination with general results on UC-secure multi-party computation [CLOS02]
yields UC-secure two-party computation. While this work already shows the power
of tamper-proof hardware in the context of UC-secure computation, it was not until
Katz [Kat07] proposed untrusted stateful tamper-proof hardware as a setup assump-
tion for the UC framework that the concept was widely adopted. He showed that
UC-secure two-party computation can be based on physical assumptions without
requiring a trusted setup, in contrast to setups like a public key infrastructure or
a common reference string. The result of Katz was improved in a series of works
[MS08, CGS08, GIS+10] until Döttling et al. [DKMQ11] showed that statistically
UC-secure two-party computation is possible using a single untrusted and stateful
hardware token.
Thus, the general focus shifted from using tamper-proof tokens for specific ap-

plications to investigating the cryptographic strength of such tokens with respect
to two-party computation. Realizing secure two-party computation already allows
to securely compute arbitrary functionalities. The problem of efficient and secure
two-party computation is one of the most active areas in cryptographic research. In
secure two-party computation, two parties, let us call them Alice and Bob, want to
correctly compute a function f . Both have their own input, xA and xB, respectively,
but neither of them wants to disclose the input to the other one. Additionally, the
inputs of Alice and Bob are supposed to be independent. As a motivational example,
consider Alice and Bob to be two millionaires that want to find out who has more

1.1. Contribution of the Thesis 3

money. If Alice tells her amount to Bob, Bob can cheat by announcing a larger (or
smaller) amount than he actually has. So this poses a problem for the independence
of inputs. Additionally, Alice might not want Bob to know the exact amount of
money, because she fears of being robbed. Thus, Alice also wants to have input
privacy.
Yao [Yao82] was the first to propose a general solution for this problem via so-

called garbled circuits. Intuitively, Alice generates an “encrypted” circuit of the
function f with her own input hardwired into the circuit. Bob learns the decryption
keys corresponding to his input via oblivious transfer (OT) and can thereby evaluate
the garbled circuit with his input. A different approach was proposed by Goldreich et
al. [GMW87], who use a more interactive protocol. They also use a circuit represen-
tation of the function f , but they share the inputs among the parties and evaluate
this circuit gate by gate via oblivious transfer. Since then, countless improvements
upon these initial protocols have been made, e.g. [DPSZ12, FJN+13, LR14, LPSY15]
to name a few recent works.
This rekindled interest in tamper-proof hardware also led to new protocols and

applications outside of the UC framework, e.g. one-time programs [GKR08] and set
intersection [HL08]. Recently, PUFs were also introduced into the UC framework as a
setup assumption by Brzuska et al. [BFSK11] and Ostrovsky et al. [OSVW13], but it
was shown that PUFs are not as powerful as stateful tamper-proof hardware tokens:
Dachman-Soled et al. [DFK+14] showed that if one allows maliciously created PUFs,
OT and thus two-party computation is not possible.

1.1 Contribution of the Thesis
The central question of this thesis is whether weaker models of untrusted tamper-

proof hardware can be used to UC-realize two-party computation. In the following,
we thoroughly investigate the cryptographic strength of weaker hardware models
derived from the original definition of [Kat07] with respect to UC-secure two-party
computation. In a little more detail, we provide formal definitions and general
feasibility results for the following models:

Partially isolated stateful tamper-proof hardware:
The isolation between the sender and the token is removed in one direction,
i.e. the sender can send messages to the token, or vice versa.

Resettable tamper-proof hardware:
The receiver of the token is allowed to reset the state of the token.

Bounded-resettable tamper-proof hardware:
The receiver of the token is allowed to reset the state of the token only up to
an a priori fixed bound.

Reusable resettable tamper-proof hardware:
The same hardware token can be used by the receiver for different crypto-
graphic protocols.

Our results are summarized in Table 1.1. Results shaded in gray were already
known and are added as a reference, the other results are either completely new
or are an improvement over previous results. A checkmark in parentheses means

4 1. Introduction

computational 2PC statistical 2PC
Model interactive non-interactive interactive non-interactive
stateful 3 3 3 3

stateful
(inc. com.) 3 3 3 3

stateful
(outg. com.) 3 3 7(3) 7

resettable 3 3 7(3) 7

bounded-
resettable 3 3 3 (3)

reusable
resettable 3 3 7(3) 7

Table 1.1: Overview of our results. A checkmark indicates the feasibility of compu-
tational/statistical two-party computation with/without interaction. A
checkmark in parentheses indicates constructions of cryptographic prim-
itives that do not imply two-party computation. Results shaded in gray
are added for reference.

that constructive results for interesting functionalities exist in the corresponding
area, but they do not imply computational/statistical (non-)interactive two-party
computation. A detailed discussion both of the state of the art for each model as
well as our corresponding results is given in the respective chapter.

1.2 Structure of the Thesis
This thesis is structured as follows. In each chapter, we first introduce a model,

define tools and study limitations, and then present protocols for various crypto-
graphic tasks. At the end of each chapter, our results are put into context with
two-party computation. A brief summary of each chapter is given hereafter.

• In Chapter 2, we define the general notation and the security model for our
proofs. We also present standard tools and definitions that will be used
throughout this thesis. More exotic tools and definitions will be provided
separately within the chapters.

• Chapter 3 gives an overview over UC-secure results in the stateful tamper-
proof hardware model, and provides a more detailed introduction to UC-secure
protocols based on tamper-proof hardware tokens.

• In Chapter 4, we define two new models of stateful tamper-proof hardware
where the isolation assumption is weakened. These models cover the case of
communication from the sender to the token and the case of communication
from the token to the sender. The result was originally published in ICITS
2015 [DMQN15].

• In Chapter 5, we present our results in the resettable hardware model. These
results are an improvement over Goyal et al. [GIS+10] and were originally
published in TCC 2013 [DMMQN13] and ProvSec 2015 [DKMQN15].

1.2. Structure of the Thesis 5

• In Chapter 6, we define a new model for resettable tamper-proof hardware,
where the number of resets is bounded a priori. This allows statistically secure
OT, which is impossible with normal resettable hardware. This result was
originally published in TCC 2015 [DKMN15].

• In Chapter 7, we propose a new model for resettable hardware that allows
to reuse the hardware token in several protocols. Our results imply efficient
UC-secure computation from untrusted signature cards.

• Chapter 8 summarizes our results and addresses some questions that arise from
this work.

2. Preliminaries

In this chapter, we introduce the tools and notations that will be used throughout
this thesis.

2.1 General Notations
We will first state some conventions. In this thesis, we investigate the feasibility of

two-party protocols based on tamper-proof hardware. Unless stated otherwise, the
protocol parties are called sender S and receiver R. We use the terms token sender,
token issuer and token creator interchangeably.
The concatenation of two elements x and y is denoted by x‖y. For a value x,

we define the following conventions. x∗ denotes a value chosen or computed by an
adversary and x̂ denotes a value chosen or computed by the simulator.
An algorithm A that has access to an oracle algorithm O is denoted by AO.

In our protocols, the notation Scheme.Algorithm(·) denotes applying the Algorithm-
algorithm of the scheme Scheme.
By x ← X, we denote that x is drawn according to the distribution X via a

probabilistic process. For two distributions X and Y , we denote the computational
indistinguishability of X and Y by X ≈

c
Y and the statistical indistinguishability

by X ≈
s
Y . Uκ denotes the uniform distribution over {0, 1}κ.

In the case of computational cryptography, the security of cryptographic construc-
tions is usually stated with respect to asymptotic parameters, meaning that for a
large enough security parameter, the proven statement holds. We denote the security
parameter by κ, unless explicitly stated otherwise.

Definition 2.1. We call a function f : N → [0, 1] negligible if there exists a value
n0 ∈ N for every polynomial p(n) such that for every n > n0, f(n) < 1

p(n) . We will
later use negl(κ) to signify an unspecified function that is negligible in the security
parameter κ. Similarly, we call a function f : N → [0, 1] overwhelming, if 1 − f is
a negligible function.

By definition, manipulation of a negligible function by a polynomial factor does
not influence its asymptotic behavior, i.e. multiplication of a negligible function by
a polynomial yields a negligible function.

7

8 2. Preliminaries

By PPT, we denote a probabilistic polynomial time algorithm. We call an al-
gorithm efficient if it runs in probabilistic polynomial time. In particular, any
adversary against a computationally secure protocol must be efficient.
We say that x is polynomial in κ, or x = poly(κ), if there exist some constants

α, c such that x ≤ ακc.
In the context of statistical security, we write ∆(x, y) for the statistical distance

between x and y. The inner product of x and y is denoted as 〈x | y〉. By Fq, we
denote the finite field with q elements.
We canonically extend the notion of polynomials over a field F as follows. By

F
n[X] we denote the set of all n-tuples of polynomials p1, . . . , pn ∈ F[X]. Each poly-

nomial p := (p1, . . . , pn) ∈ Fn[X] defines a function F→ F
n, x 7→

(
p1(x), . . . , pn(x)

)
whose degree is deg(p) := maxni=1(deg(pi)). We treat Fn[X] as an F-linear vector
space in the natural way.

2.2 Basic Primitives
In this section we define basic cryptographic primitives. We will later use one-

way functions, pseudorandom functions and generators in our protocols. Also the
concept of a secret sharing scheme will be useful.

2.2.1 One-Way Functions
A one-way function is the most basic primitive in the context of computational

security. It describes a function that is easy to compute, but hard to invert.

Definition 2.2. An efficiently computable function OWF : {0, 1}∗ → {0, 1}∗ is called
(strongly) one-way if for every PPT algorithm A

Pr[A(OWF(Uκ), κ) ∈ OWF−1(OWF(Uκ))] ≤ negl(κ).

2.2.2 Pseudorandom Generators and Functions
A pseudorandom generator basically expands a random string by some factor,

thus creating a longer string that is indistinguishable from a truly random string of
the same size.

Definition 2.3. An efficiently computable function PRG : {0, 1}κ → {0, 1}l(κ) with
a polynomial l(·) and l(κ) > κ is called a pseudorandom generator if for every PPT
algorithm A

Pr[A(PRG(Uκ)) = 1]− Pr[A(Ul(κ)) = 1] ≤ negl(κ).

Håstad et al. [HILL99] showed that a PRG can be constructed from any OWF. A
PRG is somewhat limited in providing random access to a pseudorandom string.
This problem is solved by pseudorandom functions.

Definition 2.4. An efficiently computable function PRF : {0, 1}n×{0, 1}κ → {0, 1}m
is called a pseudorandom function if for every PPT algorithm A

Pr
s←Uκ

[APRF(·,s) = 1]− Pr
h←H

[Ah = 1] ≤ negl(κ),

where H is the uniform function family {h : {0, 1}κ → {0, 1}κ}.

2.3. Commitment Schemes 9

As Goldreich et al. [GGM86] showed, PRFs can be constructed from PRGs, hence
PRFs can be constructed from OWFs.

2.2.3 Secret Sharing Schemes
A secret sharing scheme allows to split a value into several parts, the so-called

shares, such that one share by itself does not reveal the original value. A very simple
secret sharing scheme is to split a value v ∈ {0, 1}κ into two parts v1, v2 ∈ {0, 1}κ
such that v = v1 ⊕ v2.

Definition 2.5. A (k, n)-secret sharing scheme for messages m ∈ {0, 1}κ consists
of two PPT algorithms Share and Reconstruct with the following properties:

• Share(κ,m) takes as input a message m and security parameter κ and outputs
n shares (s1, . . . , sn).

• Reconstruct(S) takes as input a set S of shares and outputs m if |S| ≥ k.

It has to hold that k− 1 shares leave m undetermined, i.e. for every algorithm A,

Pr[m← A(S, κ) with |S| ≤ k − 1] ≤ negl(κ).

Shamir’s secret sharing scheme [Sha79] satisfies this definition.

2.3 Commitment Schemes
We use several types of commitment schemes in this thesis. A commitment is a

(possibly interactive) protocol between two parties and consists of two phases. In
the commit phase, the sender commits to a value and sends the commitment to the
receiver. The receiver must not learn the underlying value before the unveil phase,
where the sender sends the unveil information to the receiver. The receiver can check
the correctness of the commitment. A commitment must thus provide two security
properties: a hiding property that prevents the receiver from extracting the input of
the sender out of the commitment value, and a binding property that ensures that
the sender cannot unveil a value other than the one he committed to.

Definition 2.6. A commitment scheme COM between a sender S and a receiver R
consists of two PPT algorithms Commit and Open with the following functionality.

• Commit takes as input a message s and computes a commitment c and unveil
information d.

• Open takes as input a commitment c, unveil information d and a message s
and outputs a bit b ∈ {0, 1}.

We require the commitment scheme to be correct, i.e. for all s:

Open(Commit(s), s, d) = 1

Throughout this theses, we mainly use statistically binding and computationally
hiding commitments. The hiding property basically states that for all two messages,
the receiver cannot distinguish which message is hidden in the commitment. We use
a definition similar to IND-CPA security for encryption.

10 2. Preliminaries

Definition 2.7. We say that COM = (Commit,Open) is computationally hiding if
for every PPT algorithm AR:

Pr[(s0, s1)← AR(κ); b← {0, 1}; (c, d)← Commit(sb); b′ ← AR(c)∧b = b′] ≤ 1
2+negl(κ).

Definition 2.8. We say that COM = (Commit,Open) is statistically binding if for
every algorithm AS:

Pr[(c, d, d′, s, s′)← AS(κ) s.t. d 6= d′∧s 6= s′∧Open(c, d, s) = Open(c, d′, s′) = 1] ≤ negl(κ).

There are constructions of statistically binding commitments from one-way func-
tions, e.g. Naor [Nao90]. The commitment from [Nao90] requires an interactive
commit phase, where the receiver first draws a random value and sends it to the
sender. We will call this value k and include it into the commit algorithm, i.e. we
write COM.Commit(k,m).
Further, we need extractable commitments. Extractabilty is a stronger form of

the binding property which states that the sender is not only bound to one input,
but that there also exists an (efficient) extraction algorithm that extracts this value.
Our definition of extractable commitments is derived from Pass and Wee [PW09].

Definition 2.9. We say that COM = (Commit,Open) is extractable, if there exists
a PPT algorithm Ext that, given black-box access to any malicious PPT algorithm
AS, outputs a pair (ŝ, τ) such that

• (simulation) τ is identically distributed to the view of AS at the end of inter-
acting with an honest receiver R in the commit phase,

• (extraction) the probability that τ is accepting and ŝ = ⊥ is negligible, and

• (binding) if ŝ 6= ⊥, then it is infeasible to open τ to any value other than ŝ.

Extractable commitments can be constructed from any commitment scheme via
additional interaction, see e.g. [Gol01, MOSV06]. The definition of extractable com-
mitments implicitly allows the extractor to rewind the adversarial sender to extract
the input. In some scenarios, especially in the context of concurrently secure proto-
cols, it is necessary that the extractor can extract the input without rewinding. This
is obviously impossible in the plain model, as a malicious receiver could employ the
same strategy to extract the sender’s input. Thus, some form of setup (e.g. tamper-
proof hardware) is necessary to obtain straight-line extractable commitments.

Definition 2.10. We say that COM = (COM.Commit,COM.Open) is straight-line
extractable if in addition to Definition 2.9, the extractor does not use rewinding.

Another tool that we need is a trapdoor commitment scheme, where the sender
can equivocate a commitment if he knows a trapdoor. We adapt a definition from
Canetti et al. [CJS14].

Definition 2.11. A trapdoor commitment scheme TCOM between a sender S and a
receiver R consists of five PPT algorithms KeyGen, TVer, Commit, Equiv and Open
with the following functionality.

• KeyGen takes as input a security parameter and creates a key pair (pk, sk),
where sk serves as the trapdoor.

2.4. Digital Signature Schemes and Message Authentication Codes 11

• TVer takes as input pk and sk and outputs 1 iff sk is a valid trapdoor for pk.

• Commit takes as input a message s and computes a commitment c and unveil
information d.

• Equiv takes as input the trapdoor sk, message s′ and commitment c and outputs
an unveil information d′ for s′.

• Open takes as input a commitment c, unveil information d and a message s
and outputs a bit b ∈ {0, 1}.

The algorithm Equiv has to satisfy the following condition. For every PPT algo-
rithm AR, the following distributions are computationally indistinguishable.

• (pk, c, d, s), where (pk, sk) ← AR(κ) such that TVer(pk, sk) = 1 and (c, d) ←
Commit(pk, s)

• (pk, c′, d′, s), where (pk, sk) ← AR(κ) such that TVer(pk, sk) = 1, (c′, z) ←
Commit(pk, ·) and d′ ← Equiv(sk, z, s)

For example, the commitment scheme by Pedersen [Ped92] satisfies the above defi-
nition.

2.4 Digital Signature Schemes and Message Au-
thentication Codes

2.4.1 Message Authentication Codes
Message authentication codes (MACs) provide an unforgeable message digest.

Both parties have to share a common key to compute and verify the MAC. In our
constructions, we require statistically secure MACs, e.g. the construction of Wegman
and Carter [WC81].

Definition 2.12. A message authentication code MAC consists of three PPT algo-
rithms KeyGen,Mac and Verify with the following functionality:

• KeyGen(κ) takes as input a security parameter κ and outputs a key k.

• Mac(k,m) takes as input a key k and a message m and outputs a tag t.

• Verify(k,m, t) takes as input a key k, a message m and a tag t. It outputs a
bit b.

We require correctness, i.e. for all m and k ← KeyGen(κ):

Verify(k,m,Mac(k,m)) = 1,

and statistical unforgeability of the MAC, i.e. for all A:

Pr[k ← KeyGen(κ); (m∗, t∗)← AMac(k,·); Verify(k,m∗, t∗) = 1] ≤ negl(κ),

where m∗ was not sent to the MAC oracle.

12 2. Preliminaries

2.4.2 Digital Signatures
Similar to MACs, digital signatures allow to compute an unforgeable message

digest. In contrast to MACs, however, digital signatures are an asymmetrical cryp-
tosystem, i.e. the signer has a signing key sgk, and he can publish the verification
key vk such that anyone can verify the correctness of a signature.
Definition 2.13. A digital signature scheme SIG consists of three PPT algorithms
KeyGen, Sign and Verify.

• KeyGen(κ) takes as input the security parameter κ and generates a key pair
consisting of a verification key vk and a signature key sgk.

• Sign(sgk,m) takes as input a signature key sgk and a message m, and outputs
a signature σ on m.

• Verify(vk,m, σ) takes as input a verification key vk, a message m and a pre-
sumed signature σ on this message. It outputs 1 if the signature is correct and
0 otherwise.

We require correctness, i.e. for all m and (vk, sgk)← KeyGen(κ):

Verify(vk,m, Sign(sgk,m)) = 1.

For our constructions, the signature schemes have to fulfill the security property
existential unforgeability under chosen messages (EUF-CMA), i.e. an adversary is
not supposed to be able to forge a signature for any message of his choosing. In the
EUF-CMA-security experiment, the experiment first executes the KeyGen algorithm
to create a key pair (vk, sgk). The adversary A is given the verification key vk and
access to a signature oracle OSIG.Sign(sgk,·) that signs arbitrary messages. A wins the
experiment if he manages to forge a valid signature σ∗ for a message m∗ without
having queried the signature oracle with m∗.
A signature scheme SIG is called EUF-CMA-secure if no PPT adversary A wins

the EUF-CMA-experiment with non-negligible probability. For the sake of simplic-
ity, we require signature schemes with a deterministic verification procedure and
succinct signature length (i.e. the length of σ does not depend on m). Standard
hash-and-sign constructions based on any one-way function [NY89, Rom90] satisfy
these requirements.
Additionally, we require the signing procedure to be deterministic. However, this

is no restriction since the random coins used for signing can be chosen by a pseudo-
random function, which is seeded by a part of the signing key.

2.4.2.1 Unique Digital Signatures

An additional property of some digital signature schemes is the uniqueness of the
signatures. Our definition is taken from Lysyanskaya [Lys02]. Such schemes are
known only from specific number theoretic assumptions.
Definition 2.14. Let SIG be a digital signature scheme. A signature scheme is called
unique if additionally to the properties of Definition 2.13 the following property
holds. There exists no tuple (vk,m, σ1, σ2) such that SIG.Verify(vk,m, σ1) = 1 and
SIG.Verify(vk,m, σ2) = 1 with σ1 6= σ2.
We point out that in the above definition, vk, σ1, and σ2 need not be created honestly
by the respective algorithms, but may be arbitrary strings.

2.4. Digital Signature Schemes and Message Authentication Codes 13

2.4.2.2 Sig-Com Schemes

In search for protocols based on weaker assumptions, Chung et al. [CPS13] define
an interactive analogue of collision resistant hash functions from commitments and
signatures, which can be based on one-way functions. In a sense, the interaction
is a trade-off for a weaker assumption. They show that a tree based on signatures
and commitments, a so-called sig-com tree, can be compressing and has a collision
resistance property.
In their scheme, one party creates the signature and verification keys, and sends

the verification key to the other party. The other party sends a commitment on its
input and obtains a signature on the commitment, i.e. the party with the signature
key acts as a signature oracle. It is necessary to separate the signature key from the
input for the sig-com tree. Without this separation, the security of the signature
scheme (and hence the collision resistance property) would no longer hold. The
commitments to the input are necessary because otherwise the sender could abort
depending on the received message. The commit-then-sign step can be applied se-
quentially to create a tree structure analogous to Merkle trees. In the following
definition, the commitment is non-interactive, but this is only for ease of presenta-
tion. Any interactive statistically binding commitment scheme, e.g. [Nao90], can be
used as well.
Definition 2.15 ([CPS13]). Let SIG = (KeyGen, Sign,Verify) be an EUF-CMA-
secure length-κ signature scheme and let COM be a non-interactive commitment
scheme. Define a Sig-Com scheme SIG′ = (KeyGen′, Sign′,Verify′) to be a triple of
PPT algorithms defined as follows:
• KeyGen′ = KeyGen.

• Sign′(sgk,m): computes a commitment (c, d) ← COM.Commit(m), sets σ ←
SIG.Sign(sgk, c) and outputs (σ, d).

• Verify′(vk,m, σ, d): output 1 iff SIG.Verify(vk, c, σ) = COM.Open(c, d,m) = 1.
Using a sig-com scheme, one can create a tree structure that is defined in the fol-
lowing.
Definition 2.16 ([CPS13]). Let SIG = (KeyGen, Sign,Verify) be an EUF-CMA-
secure length-κ signature scheme, let COM be a non-interactive commitment scheme,
and let SIG′ = (KeyGen′, Sign′,Verify′) be the sig-com scheme corresponding to SIG
and COM. Let (vk, sgk) be a key pair of SIG′, and s be a bit string of length 2d. A
sig-com tree for s w. r. t. (vk, sgk) is a complete binary tree of depth d, defined as
follows.
• A leaf lγ indexed by γ ∈ {0, 1}d is set as the bit at position γ in s.

• An internal node lγ indexed by γ ∈ ⋃d−1
i=0 {0, 1}i satisfies that there exists some

rγ such that Verify′
(
vk, (lγ0 , lγ1), lγ, rγ

)
= 1. (By lγ0 , lγ1 we denote the left and

right child of an inner node lγ.)
Note that sig-com trees have a collision resistance property in the following sense:
no adversary with oracle access to a signature oracle OSIG.Sign(sgk,·) can output a root
and a sequence of signatures for both 0 and 1 for any leaf γ. This property stems
from the binding property of the commitment and the unforgeability of the signature
scheme.

14 2. Preliminaries

2.5 Zero-Knowledge andWitness-Indistinguishable
Proofs

We construct proof/argument systems for languages in NP . Let a language L be
in NP with witness relation RL and witness set wL(x) = {w : (x,w) ∈ RL}. We
distinguish between a proof system, which implies security against an unbounded
corrupted prover, and an argument system that is secure against computationally
bounded provers.

2.5.1 Zero-Knowledge
A zero-knowledge proof system is an interactive proof system that allows a prover

to prove that an element x is in a language L. Additionally, the zero-knowledge
property guarantees that the witness w remains hidden from the verifier. This
property is defined via a simulator which can simulate an accepting transcript that
is indistinguishable from a real one without knowing the witness.

Definition 2.17. A zero-knowledge proof system for a language L ∈ NP consists
of a pair of algorithms (P,V) such that there exist a PPT algorithm Sim and the
following conditions hold.

• Completeness: For every (x,w) ∈ RL,

Pr[〈P(w),V〉(x) = 1] = 1.

• Soundness: For every x /∈ L and every malicious prover P∗,

Pr[〈P∗,V〉(x) = 1] ≤ negl(|x|).

• Computational Zero-Knowledge: For every (x,w) ∈ RL and every PPT verifier
V∗, the distributions Real = {〈P(w),V∗〉(x)} and Ideal = {Sim(x,V∗)} are
computationally indistinguishable.

In the context of resettable tamper-proof hardware, we rely on resettably-sound
zero-knowledge arguments of knowledge for our proofs. In such a proof system,
the verifier is resettable and has to reuse his randomness for each protocol run. In
addition, the argument of knowledge property states that a convincing prover knows
a witness. This is formalized by an extractor that, given black-box access to the
prover, can extract the witness from the prover.

Definition 2.18. A resettably-sound zero-knowledge argument of knowledge system
(rsZKAoK) for a language L ∈ NP consists of a pair of PPT algorithms (P,V),
where the verifier V is resettable, such that there exist two PPT algorithms Sim and
Ext and the following conditions hold.

• Completeness: For every (x,w) ∈ RL,

Pr[〈P(w),V〉(x) = 1] = 1.

• Soundness: For every x /∈ L and every malicious PPT prover P∗ ,

Pr[〈P∗,V〉(x) = 1] ≤ negl(|x|).

2.5. Zero-Knowledge and Witness-Indistinguishable Proofs 15

• Computational Zero-Knowledge: For every (x,w) ∈ RL and every stateful
or resettable PPT verifier V∗, the distributions Real = {〈P(w),V∗〉(x)} and
Ideal = {Sim(x,V∗)} are computationally indistinguishable.

• Proof of Knowledge: For every x ∈ L and every PPT algorithm P∗, there exists
a negligible function ν such that Pr[Ext(x,P∗) ∈ wL(x)] > Pr[〈P∗,V〉(x) =
1]− ν.

Recent constructions of rsZKAoK can be based on one-way functions [CPS13, BP13].

2.5.2 Witness-Indistinguishability
A notion that is weaker than zero-knowledge but still provides a meaningful func-

tionality is witness-indistinguishabiliy. It basically states that a verifier cannot dis-
tinguish which witness the prover used to prove the statement, even if the verifier
knows all witnesses. A popular application of witness-indistinguishable proofs are
OR statements, where one part of the statement provides a trapdoor, that should
be hidden from the verifier.

Definition 2.19. A witness indistinguishable argument of knowledge system for a
language L ∈ NP consists of a pair of PPT algorithms (P,V), such that there exist
a PPT algorithm Sim and the following conditions hold.

• Completeness: For every (x,w) ∈ RL,

Pr[〈P(w),V〉(x) = 1] = 1.

• Soundness: For every x /∈ L and every malicious PPT prover P∗,

Pr[〈P∗,V〉(x) = 1] ≤ negl(|x|).

• Witness-indistinguishability: For every w1 6= w2 such that (x,w1) ∈ RL,
(x,w2) ∈ RL and every PPT verifier V∗, the distributions {〈P(w1),V∗〉(x)}
and {〈P(w2),V∗〉(x)} are computationally indistinguishable.

• Proof of Knowledge: For every x ∈ L and every PPT algorithm P∗, there exists
a negligible function ν such that Pr[Ext(x,P∗) ∈ wL(x)] > Pr[〈P∗,V〉(x) =
1]− ν.

Witness-indistinguishable arguments/proofs of knowledge are also sometimes re-
ferred to as witness-extractable. Similar to the case of extractable commitments,
one can also require the extractor to be straight-line, i.e. the extractor may not
rewind the prover. Again, this requires an additional setup assumption and is not
possible in the plain model.

Definition 2.20. We say that a witness-indistinguishable argument/proof system is
straight-line witness-extractable if in addition to Definition 2.19, the extractor does
not use rewinding.

16 2. Preliminaries

2.6 Information Theory and Randomness Extrac-
tion

We use the standard notions of information theory. For statistical security, we
usually need the min-entropy H∞—i.e. the worst case entropy—instead of Shannon-
entropy H.

Definition 2.21. Let X,Y be two random variables.

• Information: for x ∈ X,

I(x) = − log Pr[X = x].

• Entropy:
H(X) = E[I(X)] =

∑
x∈X

Pr[X = x]I(Pr[X = x]).

• Conditional Entropy:

H(X|Y) =
∑

x∈X,y∈Y
Pr[X = x, Y = y] log Pr[X=x]

Pr[X=x,Y=y] .

• Mutual Information:

I(X;Y) =
∑
y∈Y

∑
x∈X

Pr[X = x, Y = y] log Pr[X=x,Y=y]
Pr[X=x] Pr[Y=y] .

• Min-entropy:
H∞(X) = − log(max

x∈X
Pr[X = x]).

In order to state the leftover hash lemma, we need several tools. First, we define
the notion of average min-entropy and a lemma to estimate the average conditional
min-entropy.

Definition 2.22 ([DORS08]). Let X and Y be random variables. Then the average
conditional min-entropy of X given Y is defined as

H̃∞(X|Y) := − logEy∈Y [2−H∞(X|Y=y)].

The following chaining lemma to estimate the average conditional min-entropy will
be useful when we want to apply the leftover hash lemma.

Lemma 2.23 ([DORS08]). Let X,Y and Z be random variables. Then

1. For any δ > 0, the conditional entropy H∞(X|Y = y) is at least H̃∞(X|Y)−
log 1

δ
with probability at least 1− δ over the choice of y.

2. If Y has at most 2λ possible values, then H̃∞(X|(Y, Z)) ≥ H̃∞((X, Y)|Z)−λ ≥
H̃∞(X|Z)− λ. In particular, H̃∞(X|Y) ≥ H∞((X, Y))− λ ≥ H∞(X)− λ.

The leftover hash lemma makes use of 2-universal hash functions. Basically, a 2-
universal hash function is a randomly drawn function from a set of hash functions
such that guarantees that the collisions on an input space are distributed uniformly.

2.7. Security Model 17

Definition 2.24. We say that H : X → {1, . . . ,m} is 2-universal if for all x, y ∈ X
with x 6= y,

Pr
h←H

[h(x) = h(y)] ≤ 1
m
,

where h← H means that h is selected uniformly at random from H.

We now state two versions of the generalized leftover hash lemma, which basically
states that a 2-universal hash function is a good randomness extractor, i.e. it is
possible to extract close to uniformly random strings from a leaky random source.

Lemma 2.25 (Generalized Leftover Hash Lemma [DORS08]). Let any finite sets
X, Y, Z and a tuple of random variables (x̂, z) with arbitrary joint distribution over
X×Z be given. Let H be a family of 2-universal hash functions {h : X → Y }, and
let h← H and u← Y . Then:

∆
(
(h(x̂), h, z) , (u, h, z)

)
≤ 1

2

√
2−H̃∞(X |Z) · 2|Y |

Sometimes the following reformulation of Lemma 2.25 will be useful.

Lemma 2.26. Let any finite sets X, Y, Z and a tuple of random variables (x̂, z) with
arbitrary joint distribution over X×Z be given. Let H be a family of 2-universal
hash functions {h : X → Y }, and let h← H and u← Y . Then:

∆
(
(h(x̂), h, z) , (u, h, z)

)
≤ 1

2

√
maxe:Z→X Pr[x̂= e(z)] · |Y |

2.7 Security Model
We state and prove our results in the Universal Composability framework of

Canetti [Can01]. Therefore, this section is meant to give a short overview over
the formalizations of the framework. We also provide a short description of common
primitives in the UC framework that will be used throughout this thesis. Non-
standard and more uncommon primitives are modeled in the respective sections.

2.7.1 The Universal Composability Framework
The Universal Composability (UC) framework was introduced by Canetti [Can01]

to solve the problem of defining security models for concurrent protocol executions.
While we will not go into detail here, it is commonly known that many cryptographic
protocols do not retain their security when executed in parallel with other protocols
(or even the same protocol), see e.g. [GK96b] for the case of zero-knowledge.
Security is defined via the comparison of an ideal model and a real model. In the

real model, a protocol Π between the protocol participants is carried out, while in
the ideal model the parties only communicate with an ideal functionality F that is
supposed to model the ideal security guarantees of the protocol. For an adversary
A in the real protocol who coordinates the behavior of all malicious parties, there
has to exist a simulator S for A in the ideal protocol. An environment Z, which is
plugged to both the real and the ideal protocol, provides the inputs to the parties
and can read the outputs, but Z must not be able to distinguish these models.
Thus, even with concurrently executed protocols (running in the environment) the
security holds. Usually, we assume that A is a dummy adversary controlled by Z,

18 2. Preliminaries

which means that Z can adaptively choose its inputs depending on protocol messages
it received and send messages on behalf of a (corrupted) protocol party.
Let RealAΠ(Z) denote the random variable describing the output of Z when inter-

acting with the real model, and let IdealSF (Z) denote the random variable describing
the output of Z when interacting with the ideal model. UC-security is defined as
follows:

Definition 2.27. A protocol Π UC-realizes a functionality F if for any (PPT)
adversary A, there exists a PPT simulator S such that for any (PPT) environment
Z,

RealAΠ(Z) ≈ IdealSF (Z).

Indistinguishability can be both statistically or computationally, so it is unspecified
in the above definition. In this thesis, we only consider static corruption, i.e. Z
is allowed to corrupt parties before the begin of the protocol. Similar to general
multi-party security definitions, one can also investigate adaptive corruption where
parties are adaptively corrupted during the protocol execution.
Let us briefly discuss how the protocol execution is modeled, because this is im-

portant when we model our ideal functionalities. In UC, all entities are modeled
as interactive Turing machines. The environment is first invoked with an input z,
and then sends a message to another party. This party is activated, processes the
input and sends an output to another party (according to the protocol), which is
then activated, and so on. If no message is sent by a party, Z is activated again.
The defining property of UC is its composability. Given two UC-secure protocols

Π and Ψ, where Ψ UC-realizes F and Π accesses Ψ as a subprotocol, the universal
composition theorem states that the security of Π remains intact. Π is said to run
in the F -hybrid model. This allows for a modular construction of protocols.

Theorem ([Can01]). Let F be an ideal functionality and let Ψ be a protocol that
UC-realizes F . Then ΠΨ UC-realizes ΠF .

Typically, the later described protocols realize some functionality while having access
to an ideal token functionality. Our protocols are thus stated in a token-hybrid
model.

2.7.2 Common Ideal Functionalities
Most ideal functionalities allow an adversary to schedule message delivery. In the

rest of this thesis, unless explicitly stated otherwise, we omit these messages when
describing the simulator to simplify the exposition. We now present common ideal
functionalities for primitives that we will later realize.

2.7.2.1 Ideal Functionality for a Single Commitment

The ideal commitment functionality defined in Figure 2.1 models the properties
we require from a commitment. The binding property is modeled by the fact that
the functionality will only accept one commit-message. Obviously, the receiver has
no possibility to learn the input before the unveil phase, thus the commitment is
also hiding.

2.7. Security Model 19

Functionality FCOM

Implicitly parametrized by a domain of secrets S.

Commit phase:
1. Await an input (commit, s) with s ∈ S from the sender. Store s, send (committed)

to the adversary and ignore any further commit-messages.

2. Await a message (notify) from the adversary. Then send (committed) to the
receiver.

Unveil phase:
3. Await an input (unveil, ŝ) with ŝ ∈ S from the sender. Then, store ŝ and send

(opened) to the adversary.

4. Await a message (output) from the adversary. Then, if ŝ = s, send (opened, ŝ) to
the receiver; otherwise, send a special reject message ⊥.

Figure 2.1: Ideal functionality for commitments.

2.7.2.2 Ideal Functionality for Zero-Knowledge

LetRL denote the witness relation for anNP-language L, i.e. a statement x lies in
L if there exists a witness w such that (x,w) ∈ RL. The ideal functionality for zero-
knowledge in Figure 2.2 basically checks if the prover knows a correct witness. This
implies soundness, and since the functionality only outputs one bit to the receiver,
it is also zero-knowledge. To prove UC-security for a ZK protocol, this means that
the simulator has to extract the witness.

Functionality FZK

Implicitly parametrized with an NP-language L and a corresponding NP problem in-
stance x.

1. Await an input (witness, w) from the sender. Store w and send (sent) to the
adversary.

2. Await a message (verify) from the adversary. If (x,w) ∈ RL, send (accept) to
the verifier; else send (reject).

Figure 2.2: Ideal functionality for zero-knowledge proofs.

2.7.2.3 Ideal Functionality for Multiple Oblivious Transfer

For oblivious transfer, the ideal functionality in Figure 2.3 has to model two
properties. On the one hand, the receiver privacy has to hold, i.e. the sender must
not learn the choice bit of the receiver. This is ensured by our definition. On the
other hand, the receiver should only learn one of the sender’s inputs. This is also
captured by our definition, because after the first input of the choice bit, a second
input leads to an abort. Our definition captures the more complex case where the

20 2. Preliminaries

sender directly inputs two vectors of inputs, and the receiver inputs a vector of choice
bits.

Functionality FOT

Implicitly parametrized by a sender input domain S and the number n of single OTs to
be implemented. The variable state is initialized with wait.

Creation phase:
1. Await an input

(
create, (s(1)

0 , s
(1)
1), . . . , (s(n)

0 , s
(n)
1)

)
with (s(i)

0 , s
(i)
1) ∈ S × S from

the sender and store (s(1)
0 , s

(1)
1), . . . , (s(n)

0 , s
(n)
1). Set state = sent, store s0 and s1

and send (created) to the adversary.

2. Await a message (delivery) from the adversary. Check if state = sent and abort
if otherwise. Set state = ready and send (ready) to the receiver.

Choice phase:
3. Await an input (choice, c) with c = (c1, . . . , cn) ∈ {0, 1}n from the receiver and

store c. If state = ready, set state = done and send (chosen) to the adversary,
otherwise abort.

4. Await an input (deliver) from the adversary. Send (output, sc) to the receiver.

Figure 2.3: Ideal functionality for multiple oblivious transfer.

In comparison to our definition of a weak one-time memory (cf. Section 4.2.3.2),
the adversarial sender might change his inputs before the choice bits are fixed.

3. Stateful Tamper-Proof
Hardware

This chapter provides a survey of results from the literature and the current state
of the art concerning UC-secure protocols based on stateful tamper-proof hardware.
It is meant to serve as an introduction to the topic of tamper-proof hardware in the
UC-framework and does not contain an original contribution by the author.
Stateful tamper-proof hardware in the sense that we are interested in was first

proposed by Katz [Kat07]. In this seminal work, he provides a formalization of a
tamper-proof hardware token in the UC-framework and then shows that UC-secure
two-party computation is possible using the hardware tokens as a setup assumption.
The hardware token formalization introduced in [Kat07], as shown in Figure 3.1,
is modeled as a wrapper functionality that can store a Turing machine. Thus, the
sender of a token can create a program M and store it inside the token. The receiver
can query the wrapper functionality with an input upon which the wrapper evaluates
the stored program on the input and returns the output to the receiver. The stored
program is allowed to keep a state by storing state information and reading it upon
invocation.
Obviously, F stateful

wrap models the two major properties that are required from tam-
per-proof hardware: on the one hand, the token sender can only store a program
in the token and has no further means to communicate with the token. Thus the
isolation assumption holds. On the other hand, the token program is hidden from
the receiver, who only has black-box access to the functionality. This guarantees
(perfect) tamper-proofness. The wrapper functionality in Figure 3.1 differs slightly
from the original definition of [Kat07] in the sense that we only consider the two-
party case and do not consider tokens sent in two directions. Additionally, here and
throughout the rest of this work, we omit all session and party identifiers to allow
for a more concise presentation.
[Kat07] showed how to construct UC-secure commitments by exchanging 2 tokens

bidirectionally. Based on UC-secure commitments, general UC-secure computation
is feasible, e.g. via Canetti et al. [CLOS02]. This spawned a series of works where
a wide variety of cryptographic protocols were realized based on untrusted stateful
tamper-proof hardware, both with computational security (cf. Table 3.2) and statis-
tical security (cf. Table 3.3). With stateful tamper-proof hardware tokens at their

21

22 3. Stateful Tamper-Proof Hardware

Functionality F stateful
wrap

Implicitly parametrized by a security parameter κ.

Creation:
1. Await an input (create,M, t) from the token issuer, where M is a deterministic

Turing machine and t ∈ N. Store (M, t) and send (created) to the adversary.
Ignore all further create-messages.

2. Await a message (delivery) from the adversary. Then, send (ready) to the token
receiver.

Execution:
3. Await an input (run, w) from the receiver. If no create-message has been sent,

return a special symbol ⊥. Otherwise run M on w from its most recent state.
When M halts without generating output or t steps have passed, send ⊥ to the
receiver; otherwise store the current state of M and send the output of M to the
receiver.

Figure 3.1: The wrapper functionality by which we model stateful tamper-proof
hardware. The runtime bound t is merely needed to prevent malicious
token senders from providing a perpetually running program code M; it
will be omitted throughout the rest of the chapter.

interactive non-interactive
[Kat07] [DNW09] [JKSS10] [FPS+11] [GKR08]

Functionality Com. Com. SFE Set Intersection OTP1

Tokens 2 (bidir.) 2 (bidir.) 1 1 Θ(κ)
Rounds Θ(1) Θ(1) Θ(κ) Θ(1) Θ(κ)

Assumption DDH Dense PK RO SPRP2 OTM & OWF
Security UC UC stand-alone stand-alone stand-alone

Table 3.2: Overview of computationally secure (non-)interactive two-party protocols
from untrusted stateful hardware.

disposal that contain a one-time memory (OTM), Goldwasser et al. [GKR08] show
that even non-interactive secure computation is possible. Damgård et al. [DNW09]
present a protocol that UC-realizes a commitment, but they do not require specific
number-theoretic assumptions. They actually consider a somewhat different hard-
ware model, where the token is not completely isolated (cf. Chapter 4). There is
also a protocol by Järvinen et al. [JKSS10] that directly uses untrusted tamper-
proof hardware to improve the efficiency of secure function evaluation (SFE) proto-
cols. Another functionality that has many applications in practice is set intersection,
which was realized via untrusted tamper-proof hardware by Fischlin et al. [FPS+11],
as an improvement over Hazay and Lindell [HL08], who require trusted tokens.
As it turns out, stateful tamper-proof hardware also allows for statistically UC-

secure protocols, which are impossible in the plain model even with stand-alone
security. Moran and Segev [MS08] created a UC-secure commitment, where only one

1One-time programs.
2Strong pseudorandom permutation (e.g. AES is believed to be a SPRP).

23

interactive non-interactive
[MS08] [GIS+10] [DKMQ11] [GIS+10] [DKMQ11]

Functionality Com. OTM OTM OTM OTM
Tokens 2 (bidir.) Θ(κ) 1 Θ(κ) 2
Rounds Θ(1) Θ(1) Θ(1) Θ(1) Θ(1)
Security UC UC UC UC UC

Table 3.3: Overview of statistically secure (non-)interactive two-party protocols from
stateful hardware.

party has to be able to create and send tokens. This setting is sometimes referred
to as “David and Goliath” because of the obvious asymmetry concerning the ability
to creating a token. Compared to previous UC-secure protocols, even those that use
computational assumptions, this is an improvement. The result of [MS08] was later
improved by Goyal et al. [GIS+10], who showed how to realize OTM from several
hardware tokens. Döttling et al. [DKMQ11] further improved the result such that
only one token has to be sent to realize OTM, or two tokens if the interactive setup
phase of the protocol is executed with a second token. They also show that this is
optimal with respect to the number of tokens.
We want to shortly discuss the techniques that are used to obtain efficient UC-

secure protocols based on stateful tamper-proof hardware. These techniques can
also be partially applied for other hardware models, but independently of that,
they are helpful for understanding some of the restrictions that apply to the other
models. In the UC-framework, the simulator simulates the wrapper functionality
for the corrupted party. This means that the simulator obtains the token code from
a corrupted sender. This is the lever that the simulator can use to extract the
senders input, because in contrast to an honest receiver, he can rewind the token
functionality and execute it with different inputs. Against a corrupted receiver, the
simulation of the wrapper functionality allows the simulator to observe all queries
that the malicious receiver sends to the token. If necessary, the simulator can even
adaptively change the behavior of the simulated token.
One scenario that we do not consider in this thesis is token wrapping. This de-

scribes the ability of a party to take a token that it received and embed it into a new
token. On the one hand, token wrapping poses a thread to the security of protocols,
as an adversary can encapsulate an intercepted token and obtain the queries of a
receiver via the embedding token. It also renders the above mentioned proof tech-
nique useless, since the adversary does not know the code of the token it intercepts
and thus the simulator will also not learn it. On the other hand, token wrapping
allows protocols that are otherwise impossible to achieve with certain hardware to-
kens [GIMS10]. However, we believe that this scenario is not very realistic, as a
wrapping attack can be prevented e.g. by physically fingerprinting a token. Hon-
est token wrapping seems to require capabilities of the parties that we deem to be
unrealistic.
Towards the goal of realizing (non-)interactive two-party computation, we can

thus summarize that in the setting of computational security as well as in the set-
ting of statistical security, both interactive and non-interactive general two-party
computation is possible. We thus add the results to Table 3.4 to allow a comparison
between all models that we discuss in this work. Please note that the optimal re-
sults concerning statistical security also imply optimal results in the computational

24 3. Stateful Tamper-Proof Hardware

setting.

computational 2PC statistical 2PC
Model interactive non-interactive interactive non-interactive
stateful 3(1 token) 3(2 tokens) 3(1 token) 3(2 tokens)
stateful

(inc. com.) 3 3 3 3

stateful
(outg. com.) 3 3 7(3) 7

resettable 3 3 7(3) 7

bounded-
resettable 3 3 3 (3)

reusable
resettable 3 3 7(3) 7

Table 3.4: Feasibility of interactive and non-interactive two-party computation from
stateful tamper-proof hardware.

4. Partially Isolated Stateful
Tamper-Proof Hardware

In this chapter, we consider a weakened model of stateful tamper-proof hardware
where a channel between the token and the token sender exists. All prior works
on tamper-proof hardware have in common that the tokens are assumed to be com-
pletely isolated from their creator. In light of recent events, this assumption becomes
questionable at the least, apart from the fact that maliciously created tokens could
contain internal clocks, which can be exploited in conjunction with the activation
time to send information into the device (or to make the abort behavior dependent
on the activation time, which is not modeled in the UC-framework). This problem
was already identified by Döttling et al. [DKMQ12], but left as an open problem.
We stress that the problem of a communication channel between the token and its

sender lies skew to the well researched problems of leakage resilience [MR04, DP08,
ADW09] and side-channel attacks on tamper-proof hardware, e.g. as considered
in [CKM11, BCG+11, PSW14] on the theoretical side and in e.g. [KJJ99, GMO01,
SA03, Koc96] on the practical side, where a malicious token receiver tries to extract
some of the contents of the token. In that scenario, the tamper-resilience assumption
is weakened. In contrast, we consider a weakened isolation assumption. Damgård et
al. [DNW08, DNW09] study a related scenario where the parties are only partially
physically isolated, such that a low bandwidth covert channel remains. This model
can be seen as a weaker variant of the two-prover proof systems [BOGKW88], and
they show that based on computational assumptions, even partial physical sepa-
ration allows UC-secure multi-party computation. The problem of communicating
tokens was also identified by Rührmair and van Dijk [RvD13] in the context of phys-
ically uncloneable functions (PUFs), but they do not provide a protocol solution to
this problem. Instead, they propose to use physical means to prevent the token from
communicating with the sender.
Our contribution. In the following, we investigate the feasibility of (non-

)interactive two-party computation in the scenario where an unrestricted channel
between the token and its creator is considered. Of course, we have to introduce
an additional restriction, because allowing unrestricted communication in both di-
rections between the token and its creator obviously renders the token useless as a
setup assumption. In essence, the model would collapse down to the stand-alone

25

26 4. Partially Isolated Stateful Tamper-Proof Hardware

setting, and from [CF01] we know that UC-secure computation is impossible in this
case. Thus, there remain two different scenarios with unidirectional communica-
tion that can be considered to weaken the isolation assumption: either the tokens’
creator can send messages to the tokens, or the tokens can send messages to their
creator. While we deem the first case to be more realistic, we consider both cases.
We emphasize that these one-way channels are available only for malicious parties
and thus cannot be used by the honest parties during the protocol execution. The
techniques that we use for our protocols are completely different from the ones used
by Damgård et al. [DNW09], mainly due to our focus on statistical security and
one-way communication.
We provide a broad characterization from a feasibility standpoint for both mali-

cious incoming and outgoing communication between the tokens and their creator,
with particular focus on one-time memory by Goldwasser et al. [GKR08]. OTM
allows non-interactive two-party computation and is thus a very strong primitive.
For our solutions, only one party has to be able to create hardware tokens. Let us
briefly describe our main observations.

Communication from sender to token: In this scenario, the sender can com-
pletely change the behavior of the token at any point during the protocol run.
Nevertheless, he can only adaptively change the token behavior depending on
the information he learns. Thus, if we minimize or even remove any interac-
tion between the sender and the receiver, the additional power of the sender
boils down to changing the abort behavior of the token (independently of the
actual protocol run). We present protocols for OT and OTM that make use
of the fact that the sender does not learn enough information to maliciously
influence the protocol run. Additionally, we give lower bounds for the number
of tokens that are necessary to realize OTM in this setting, which confirms the
optimality of our results with respect to the number of tokens used.

Communication from token to sender: This scenario is more restrictive than
communication from the sender to the token, because the main idea of using
hardware tokens in protocols is that the token cannot relay the queries from
the receiver to the sender. This constraint is reflected by our results: it is
impossible to realize statistically secure OT and OTM in such a setting. Nev-
ertheless, we show how to realize a statistically UC-secure commitment in this
setting and also give a construction of a computationally UC-secure (weak)
OTM from a single token.

A preliminary version of these results was published in Dowsley et al. [DMQN15].
Structure of this chapter. The chapter is split into two parts. In Section 4.1,

we consider the case of communication from the token sender to the token, while
in Section 4.2, communication from the token to the token sender is examined. In
both cases, we first formally define the model, study limitations and then present
protocols for OTM. For each model, we also describe how our results relate to (non-
)interactive two-party computation.

4.1 Communication from Token Issuer to Token
Incoming communication into tamper-proof hardware is a very strong security

risk, and most protocols in the literature would completely loose their security guar-

4.1. Communication from Token Issuer to Token 27

antees if such communication were possible. This is mainly due to the fact that
the model of tamper-proof hardware was specifically created to have an additional
isolated party that can be used for interaction.
In real applications, however, there are many ways to send information into the

hardware, e.g. using clocks, a powerful radio signal or modified data packages. While
it is possible to prevent some forms of communication, e.g. by using a Faraday cage,
in most real life scenarios, it seems infeasible to prevent all forms of communica-
tion. We consider it even difficult to guarantee a bound for the maximal amount of
information that is transferred, and thus do not require any for our solutions.
Our results give a detailed characterization concerning the feasibility of OT(M)

with and without computational assumptions in this scenario:
• Impossibility of statistically secure OTM from a single stateful hardware token.

• Statistically secure OTM from two stateful hardware tokens.

• Statistically secure OT from a single stateful hardware token.

• Computationally secure OTM from a single stateful hardware token.
Statistically secure OT and OTM can be obtained by adapting the existing pro-

tocol of Döttling et al. [DKMQ11] to the scenario of incoming communication. The
computationally secure OTM protocol basically consists of a statistically UC-secure
commitment scheme, which is then used to create a common reference string (CRS).
Existing CRS-based UC-secure protocols, e.g. the commitment scheme from [CF01]
and the OT of [PVW08], can be combined to realize an OTM from a single stateful
token.
This section is structured as follows. In Section 4.1.1, we define an enhanced

wrapper functionality that models incoming communication into the token. We
then show our impossibility result in Section 4.1.2, which affirms the optimality of
the main feasibility results concerning OTM that are presented in Section 4.1.3. A
summarizing conclusion is given in Section 4.1.4.

4.1.1 Model
We modify the stateful token functionality F stateful

wrap such that it additionally allows
the token issuer to send messages to the token (and thereby potentially modify the
functionality). The functionality F s-inc

wrap as shown in Figure 4.1 has an additional
interface for a corrupted sender, which takes as input a message and executes the
stored token program on this message. Note that we do not put a restriction on the
length of the message that the sender can send (apart from being polynomial-size,
otherwise the stored program cannot evaluate it).
While at first sight, our formalization might seem to put restrictions on the allowed

modifications of the token program, the generality of this approach is guaranteed by
e.g. having the sender input a universal Turing machine, and each update will then
include a completely new program that is saved as the state.

4.1.2 Limitations
The first major restriction in the setting of incoming communication is that the

token issuer can always switch off the token at any point in time. Thus, each func-
tionality that can be realized in this model must necessarily be adapted to emulate

28 4. Partially Isolated Stateful Tamper-Proof Hardware

Functionality F s-inc
wrap

Implicitly parametrized by a security parameter κ.

Creation:
1. Await an input (create,M, t) from the token issuer, where M is a deterministic

Turing machine and t ∈ N. Store (M, t) and send (created) to the adversary.
Ignore all further create-messages.

2. Await a message (delivery) from the adversary. Then, send (ready) to the token
receiver.

Execution:
3. Await an input (run, w) from the receiver. If no create-message has been sent,

return a special symbol ⊥. Otherwise run M on w from its most recent state.
When M halts without generating output or t steps have passed, send ⊥ to the
receiver; otherwise store the current state of M and send the output of M to the
receiver.

Update (adversarial sender only):
4. Upon receiving a message (update, v) from a corrupted sender, run M on v for at

most t steps. Save the current state of M.

Figure 4.1: The wrapper functionality by which we model stateful tamper-proof
hardware that allows communication from the token issuer to the to-
ken. The runtime bound t is merely needed to prevent malicious token
senders from providing a perpetually running program code M; it will be
omitted throughout the rest of the section.

this behavior. From a feasibility standpoint, however, this does not necessarily rule
out any functionality; the realized functionality is just a bit weaker than without
the switch.
As we will see, there is nonetheless a non-trivial impossibility for the feasibility

of OTM from a single stateful token, if the sender is allowed to send messages to
the token. Intuitively, the reason for this is that the definition of OTM requires the
sender inputs to be fixed at a certain point, and from that moment on, the receiver
can decide when to query the OTM with his input. Through the communication
channel, however, the sender can always change his inputs, even at a time when the
inputs are supposed to be fixed.

Lemma 4.1. There is no protocol ΠOTM using a single token that UC-realizes FOTM
in the F s-inc

wrap-hybrid model with statistical security.

Proof. For the sake of contradiction assume that a correct and statistically secure
OTM protocol ΠOTM from a single stateful token exists. Assume further that the
parties’ inputs are chosen as s0, s1 ← {0, 1}κ and c ← {0, 1} uniformly at random.
Further note that Döttling et al. [DKMQ11] show that OTM from a single stateful
token requires interaction between the sender and the receiver.

4.1. Communication from Token Issuer to Token 29

Assume that the sender’s privacy of the OTM protocol holds, i.e.

I(viewR; s1−c) ≤ negl(κ)⇔ H∞(s1−c)−H∞(s1−c |viewR) ≤ negl(κ)
⇔ H∞(s1−c |viewR) ≥ κ− negl(κ),

where viewR is receiver’s view of the protocol execution and negl(κ) is a function
that is negligible in the security parameter.
By definition of the OTM functionality, the receiver can choose his input c at

any point in time after he receives the token and the sender should not learn when
the receiver inputs his choice bit into the OTM functionality. The receiver can
choose his input c at a point in the future after receiving the token, when all initial
communication between the parties is already finished, and then he interacts with
the token to receive sc.
Note that at the moment right before the receiver makes his choice c, the entropy

of the inputs is still 1 from the point of view of all parties. Therefore, due to the
sender’s privacy, it holds that

H∞(s0 |viewR
′) ≥ κ− negl(κ)

and
H∞(s1 |viewR

′) ≥ κ− negl(κ),

where viewR
′ is the receiver’s view of the protocol execution until this point. Here,

a malicious sender can use the channel into the token. He can forward his complete
view to the token, which has to exist due to the impossibility of OTM from a single
token without interaction as shown by [DKMQ11]. The token then gets to know all
protocol interactions so far and due to the correctness of the OTM protocol (i.e., it
works for any pair of inputs in {0, 1}κ), it is able, for almost any s′c ∈ {0, 1}κ, to find
a strategy to follow for the rest of the protocol that makes the receiver accept s′c.
Hence the values s0 and s1 are not fixed up to the point where the receiver inputs
c. In the OTM functionality, however, the values s0 and s1 are fixed once the token
is sent to the receiver, and thus we get a contradiction.

In the case of a completely non-interactive protocol where the sender just issues
two or more tokens to the receiver, the impossibility obviously no longer holds. This
is the starting point for our studies in the following section.

4.1.3 Protocols
In this section, we present our results concerning the feasibility of OTM and OT

in the scenario where the token issuer can relay messages to the token. As shown
in Section 4.1.2, we cannot hope to achieve unconditionally secure non-interactive
two-party computation from a single token, and also the sender can arbitrarily
change the abort behavior. This definition of Fw-a

OTM in Figure 4.2 takes this into
account.
The sender sends his two inputs s0 and s1 into the functionality, and the adversary

is allowed to schedule the confirmation message (ready) to the receiver. After re-
ceiving the confirmation message, the OTM is considered delivered and the receiver
can input his choice-bit c at any time. A malicious sender can use the overwrite
interface to later change his inputs, but only up to the point when the OTM is

30 4. Partially Isolated Stateful Tamper-Proof Hardware

Functionality Fw-a
OTM

Implicitly parametrized by a security parameter κ. The variable state is initialized with
wait, the flag abort is set to 0. All messages apart from (switch_on) are ignored if
abort = 1.

Delivery phase:
1. Await an input (create, s0, s1) from the sender. Check if state = wait and s0, s1 ∈
{0, 1}κ, else abort. Set state = sent, store s0 and s1 and send (created) to the
adversary.

2. Await a message (delivery) from the adversary. Check if state = sent and abort
if otherwise. Set state = ready and send (ready) to the receiver.

Choice phase:
3. Await an input (choice, c) from the receiver. If state = ready, set state = done

and send (output, sc) to the receiver.

Overwrite (adversarial sender only):
4. Upon receiving a message (overwrite, s′0, s

′
1) from the adversary, verify that

state = sent and s′0, s′1 ∈ {0, 1}κ, otherwise abort. Set s0 = s′0 and s1 = s′1.

5. Upon receiving a message (switch_on) from the adversary, set abort = 0.

6. Upon receiving a message (switch_off) from the adversary, set abort = 1.

Figure 4.2: Ideal functionality for One-Time Memory with abort.

delivered, i.e. the state is set to ready. Independently of this, a malicious sender can
always switch the functionality on or off.
Our starting point in Section 4.1.3.1 is using two tokens to obtain unconditionally

secure OTM as defined above. In Section 4.1.3.2 we move on to sketch how to obtain
unconditionally secure OT from a single token using the first result, and finally we
present a computationally secure OTM protocol in Section 4.1.3.3 using only a single
hardware token, thus giving a full characterization of the feasibility of OTM in the
F s-inc

wrap-hybrid model.

4.1.3.1 Unconditionally Secure OTM from Two Tokens

We claim that the non-interactive version of an OTM protocol by Döttling et
al. [DKMQ11] remains secure even in the case where the tokens can receive informa-
tion from the token issuer. For completeness, the protocol is shown in Figure 4.3.
The token sender programs two stateful tokens and sends them to the receiver, who
then interacts with them to perform an OTM.
In more detail, one token serves as a commitment to the functionality (and thus

the inputs) of the other token. It outputs the one-time-pad encrypted parameters
ã, B̃ of an affine function, which is stored on the second token. Additionally, it
outputs the encrypted inputs of the sender s̃0, s̃1. Using his own input, the receiver
can obtain a decryption key for one of these values from the second token and verify
its correctness with the encrypted token functionality.

4.1. Communication from Token Issuer to Token 31

The OTM is considered delivered after the receiver obtains the encrypted param-
eters and the encrypted inputs. From that point on, the receiver can query the
second token to obtain the output sc whenever he wishes.

Protocol Πw-a
sOTM

Let Trnd and Tinp be two F s-inc
wrap instances.

Setup phase:
1. Sender: Let s0, s1 ∈ {0, 1}

κ be the sender’s inputs. Sample a matrix B ← F2κ×2κ
2

and a vector a ← F2κ
2 uniformly at random. Program two token functionalities

Trnd and Tinp as follows.
• Trnd: Set ready = 1.

– Upon receiving a message (choice, z) from the receiver, check if ready =
1 and abort otherwise. Set ready = 0, compute the matrix V = azT +B
and send V to the receiver.

• Tinp: Set state = ready.
– Upon receiving a message (matrix_choice, C) from the receiver, check

if state = ready and C ∈ Fκ×2κ
2 , if not abort. Compute a matrix G ∈

Fκ×2κ
2 that is complementary to Ca. Set ã = Ca, B̃ = CB and state =

committed. Send (committed, G, ã, B̃) to the receiver.
– Upon receiving a message (vector_choice, h) from the receiver, check

if state = committed and h ∈ F2κ
2 \ {0}, otherwise abort. Compute

s̃0 = s0 + GBh and s̃1 = s1 + GBh + Ga, set state = done and send
(output, s̃0, s̃1) to the receiver.

Send (create,Trnd) to Tinp and (create,Tinp) to Tinp.

Delivery phase:
2. Receiver: Let c be the receiver’s input.

• Choose a random matrix C ← Fκ×2κ
2 and send (matrix_choice, C) to Tinp.

Let (committed, G, ã, B̃) be the answer from Tinp.

• Choose a random vector h← F2κ
2 \{0} and send (vector_choice, h) to Tinp.

Let (output, s̃0, s̃1) be the output.

Choice phase:
3. Receiver:

• Choose z ← F2κ
2 uniformly at random subject to zTh = c and send (choice, z)

to Trnd. Let (output, V) be the result.
• Check if CV = ãzT + B̃. If yes, output sc = s̃c +GV h, otherwise abort.

aG is determined by κ vectors of length 2κ that are linearly independent and G spans a subspace
of the kernel of C.

Figure 4.3: Statistically UC-secure protocol realizing Fw-a
OTM in the F s-inc

wrap-hybrid
model [DKMQ11].

The fact that the protocol securely realizes Fw-a
OTM follows from a straightforward

modification of the original security proof by Döttling et al. [DKMQ11, Theorem 8.2],

32 4. Partially Isolated Stateful Tamper-Proof Hardware

who considered the same protocol but with isolated tokens, and proved that it
realizes FOTM (without aborts) in the F stateful

wrap -hybrid model.

Theorem 4.1. The protocol Πw-a
sOTM in Figure 4.3 statistically UC-realizes Fw-a

OTM
(cf. Figure 4.2) in the F s-inc

wrap-hybrid model.

Proof sketch. The correctness as well as the security against a corrupted receiver
follow directly from the proof of security in [DKMQ11].
In the case of the security against a corrupted sender, note that the OTM is

considered delivered at the point when the receiver has obtained (G, ã, B̃, s̃0, s̃1)
from Tinp. From that point on, Tinp does not participate in the protocol anymore,
and there is no way for the sender or Trnd to learn the values C and h. Thus, when
the receiver queries Trnd, the sender cannot cheat by sending any information to
the token that might allow to unveil the committed values differently. Thus, the
only difference to the original proof from [DKMQ11] is that the sender can change
the abort behavior of the tokens. In order to allow the simulator to simulate this
behavior correctly, it can just internally run the token program with its current state
on random inputs and observe if it aborts. Based on this, the simulator can adapt
the abort behavior of Fw-a

OTM by switching the functionality on or off.

Remark. The protocol Πw-a
sOTM realizes only a single OTM, but it can be modified

straightforwardly using the same techniques as in [DKMQ11] to allow an (a priori)
bounded number of sequential OTMs.

4.1.3.2 Unconditionally Secure OT from a Single Token

As shown in Lemma 4.1, it is not possible to obtain OTM from a single token in
the F s-inc

wrap-hybrid model. Still, a protocol for oblivious transfer is not ruled out, and
we will briefly sketch how the protocol from Section 4.1.3.1 can be adapted to give
an OT protocol using only a single token.
First, note that the original protocol for OT from [DKMQ11] using a single token,

on which the solution in Section 4.1.3.1 is based, is not secure in the F s-inc
wrap-hybrid

model. In their scenario, they only require the token Trnd from the protocol Πw-a
sOTM,

and the functionality of Tinp is carried out as an interactive protocol between the
sender and the receiver. In our scenario, if the sender sends the matrix C to the
token using the communication channel, the token can suddenly break the binding
property of the commitment and thus adaptively change the output of the protocol.
To obtain an OT protocol in the F s-inc

wrap-hybrid model, we simply propose to use
the token Tinp during the protocol and perform the functionality of the token Trnd
in an interactive protocol. Obviously, this does not result in an OTM, since the
sender learns when the receiver obtains his output, but it is still an OT. While
this approach requires the OT inputs to be fixed in advance of the protocol, this
can be overcome by using standard techniques, i.e. using random inputs for the OT
and derandomizing them afterwards [Bea95]. The security proof follows the same
argumentation as the proof of Theorem 4.1.

4.1.3.3 Computationally Secure OTM from a Single Token

To complete the picture of the feasibility of OTM in the F s-inc
wrap-hybrid model, we

now show how to realize Fw-a
OTM from a single token with computational security.

4.1. Communication from Token Issuer to Token 33

Our protocol Πw-a
cOTM in Figure 4.4 on a high level realizes a statistically secure

commitment using a hardware token, which is then used to compute a common
reference string (CRS) between the token sender and the token receiver. The CRS
is then used with another UC-secure commitment and a UC-secure OT to realize
the Fw-a

OTM functionality.

Protocol Πw-a
cOTM

Let SIG be an EUF-CMA-secure signature scheme and COM a UC-secure commitment
scheme in the CRS-hybrid model. Further let OT be a UC-secure OT protocol in the
CRS-hybrid model and T be an instance of F s-inc

wrap.

Setup phase:
1. Sender: Generate a key pair (vk, sgk) ← SIG.KeyGen(κ) and choose x ← Fκ2 uni-

formly at random. Further choose vj,0 ← Fκ2 uniformly at random for j ∈ {1, . . . , κ}
and set vj,1 = x⊕ vj,0. Create a token program T that behaves as follows.
• Upon receiving a message (challenge, k) from the receiver, check if state =

ready and k ∈ {0, 1}, else abort. Set j = j + 1; if j = κ, set state =
m_committed. Send (commit, vkj) to the receiver.

• Upon receiving a message (commit,CRS, σ) from the receiver, check if state =
m_committed and SIG.Verify(vk,CRS, σ) = 1, otherwise abort. Set state =
i_committed. Compute (ci, di) ← COM.Commit(CRS, si) for i ∈ {0, 1} and
send (committed, (c0, c1)) to the receiver.

• Upon receiving a message (output) from the receiver, check if state =
i_committed, else abort. Execute the sender program of OT with input
(s0‖d0, s1‖d1) and CRS and forward the messages between the receiver and
the sender program.

Send (create,T) to T .

Delivery phase:
2. Receiver: Choose κ random bits kj ← {0, 1}, send (challenge, kj) to T for each

j ∈ {1, . . . , κ} and obtain vj,kj . Choose y ← Fκ2 uniformly at random and send it
to the sender.

3. Sender: Set CRS = x ⊕ y, compute σ ← SIG.Sign(sgk,CRS) and send
({vj,0, vj,1}

κ
j=1, σ, x) to the receiver.

4. Receiver: Check if x = vj,0 ⊕ vj,1 for all j ∈ {1, . . . , κ} and abort if that is not the
case. Set CRS = x ⊕ y. Send (commit,CRS, σ) to T and let (committed, (c0, c1))
be the answer.

Choice phase:
5. Receiver: Let c be the receiver’s input. Send (output) to T and execute the receiver

program of OT with input c and CRS and forward the messages between T and
the program. Let sc‖dc be the output. Check if COM.Open(CRS, sc, cc, dc) = 1,
and output sc if the check is passed.

Figure 4.4: Computationally UC-secure protocol realizing Fw-a
OTM in the F s-inc

wrap-hybrid
model.

34 4. Partially Isolated Stateful Tamper-Proof Hardware

In more detail, the sender programs a token that is initialized with κ pairs of shares
(vj,0, vj,1), such that vj,0⊕ vj,1 = x with x being the sender’s input for the CRS. The
token is sent to the receiver, who can query the token for one share of each pair.
After that is done, the receiver sends his input y to the sender, who then computes
the CRS as CRS = x⊕ y and additionally provides a signature σ on the CRS, such
that the CRS can be verified by the token later. He sends ({v̂j,0, v̂j,1}κj=1, σ, x) to
the receiver, who can verify that his shares coincide with the shares that the sender
sent to him. For the simulation to go through, it is crucial that the simulator is able
to extract the input of the adversarial party before giving his input, otherwise he
cannot cheat in the rest of the protocol.
From that moment on the CRS is established, and the token is given CRS together

with σ. Using this CRS, the token uses a UC-secure commitment COM to commit
to the sender-inputs s0, s1 and sends the commitments to the receiver. At this point,
the OTM is considered delivered to the receiver.
During the choice phase, the token and the receiver engage in a UC-secure OT

protocol (again using the CRS), where the token uses as input the sender’s input
si and the corresponding unveil information di of the commitment ci. Thus, the
receiver obtains a value sc‖dc, which allows him to verify that the commitment
actually contains the correct value.

Theorem 4.2. The protocol Πw-a
cOTM in Figure 4.4 computationally UC-realizes Fw-a

OTM
(cf. Figure 4.2) in the F s-inc

wrap-hybrid model, given that CRS-based UC-secure OT
exists.

The proof of Theorem 4.2 is divided into two parts. Lemma 4.2 shows security
against a corrupted sender, and Lemma 4.3 shows security against a corrupted re-
ceiver. The correctness of the protocol can be verified trivially, and CRS-based
UC-secure OT was e.g. proposed by Peikert et al. [PVW08].

Lemma 4.2. The protocol Πw-a
cOTM in Figure 4.4 computationally UC-realizes Fw-a

OTM
(cf. Figure 4.2) in the F s-inc

wrap-hybrid model against a corrupted sender, given that
COM and OT are UC-secure against a corrupted sender.

Proof. The simulator has to influence the creation of the CRS by obtaining x before
it has to send y. Once that is accomplished, it can set the CRS such that it can
extract the UC-commitments that are sent by the token. Thus, the simulator learns
both inputs of the sender and can provide them to the ideal functionality. Let AS
be the dummy adversary. We have to show that RealAS

Πw-a
cOTM

(Z) ≈
c

IdealSS
Fw-a

OTM
(Z) for

any PPT-environment Z. To that end, consider the simulator SS in Figure 4.5.
Indistinguishability of the simulation and a real protocol run follows by a simple

hybrid argument.

Experiment 0: This is the real model.

Experiment 1: Identical to Experiment 0, except that S1 queries T∗ to obtain all
v∗j,k, computes x̂ and aborts if x̂ 6= x∗.

Experiment 2: Identical to Experiment 1, except that S2 chooses y as CRS ⊕ x
and uses the sender-simulators SCOM

S and SOT
S for COM and OT to obtain ŝb

and ŝ′b for b ∈ {0, 1}. It aborts if ŝ′b 6= ŝb for b ∈ {0, 1}. This is the ideal model.

4.1. Communication from Token Issuer to Token 35

Simulator SS

• Simulate T for AS and obtain T∗.

• (Setup) Simulated straightforwardly according to Πw-a
cOTM.

• (Delivery) Proceed as follows:
– In Step 2, execute the token program T∗ with both messages (challenge, 0)

and (challenge, 1) for each j ∈ {1, . . . , κ} by resetting the token to the ap-
propriate state after each execution and obtain v∗j,0, v

∗
j,0 for each j. Compute

the j messages x∗j = v∗j,0⊕v
∗
j,1 and set x̂ as the value x∗ that occurs the most.

Set ŷ = CRS⊕ x̂, with CRS being a CRS that allows simulation of COM and
OT, and send ŷ to AS.

– Upon receiving a message
(
{v∗j,0, v

∗
j,1}

κ
j=1, σ

∗, x∗
)
in Step 3, check if x̂ = x∗

and v∗j,0⊕ v
∗
j,1 = x∗ ∀j, otherwise abort. Input (commit,CRS, σ∗) into T∗ and

obtain c∗0, c
∗
1. Start the sender-simulator SCOM

S to obtain the values ŝ0 and ŝ1
from c∗0 and c∗1, respectively. Start the sender-simulator for SOT

S and obtain
ŝ′0 and ŝ′1, abort if ŝi 6= ŝ′i. Send (create, ŝ0, ŝ1) to Fw-a

OTM.

• (Choice) Simulated straightforwardly according to Πw-a
cOTM.

• (Update) After each message m∗ from AS to T , run T∗ on m∗ and simulate a
choice phase with T∗ to determine the abort behavior. Send (switch_on) or
(switch_off) to Fw-a

OTM accordingly.

Figure 4.5: Simulator against a corrupted sender in the protocol Πw-a
cOTM.

Experiment 0 and Experiment 1 are indistinguishable since the simulator will
extract the correct x̂ with overwhelming probability. First note that if any of the
values v∗j,k 6= v̂j,k or v∗j,0 ⊕ v∗j,1 6= x, then the receiver always aborts. Also, if the
majority of the v̂j,k = v∗j,k, then the extraction of x̂ is correct. Thus the only
remaining case is where for at least half of j ∈ {1, . . . , κ} it holds that vj,0 = v̂j,0
or vj,1 = v̂j,1, but not both. However, the probability that the opening check is
passed is 1

2 , so the probability of opening
⌈
κ
2

⌉
shares incorrectly without the receiver

noticing is negligible in κ.
Experiments 1 and 2 are indistinguishable due to the UC-security of COM and

OT. The sender-simulator extracts the inputs of the sender with overwhelming
probability, so the simulator will not abort. A distinguishing environment Z can
directly be used to break the UC-security of at least one of COM and OT.

Lemma 4.3. The protocol Πw-a
cOTM in Figure 4.4 computationally UC-realizes Fw-a

OTM
(cf. Figure 4.2) in the F s-inc

wrap-hybrid model against a corrupted receiver, given that
COM and OT are UC-secure against a corrupted receiver and SIG is EUF-CMA-
secure.

Proof. Let AR be the dummy adversary. We have to show that RealAR
Πw-a

cOTM
(Z) ≈

c

IdealSR
Fw-a

OTM
(Z) for any PPT-environment Z.

Consider the simulator SR in Figure 4.6. In a first step, the simulator simulates
T for AR and learns all queries. The simulator answers these queries with random
values v̂j,kj . Then, the adversary sends his input to the simulator, who adapts all

36 4. Partially Isolated Stateful Tamper-Proof Hardware

shares v̂j,1−kj to fit the CRS that SR needs for the simulation of the UC-secure
protocols OT and COM.
Once that is accomplished, the simulator commits to random inputs ŝ0, ŝ1 and

then obtains the choice bit c∗ of AR using the CRS in the protocol OT. He inputs
the choice-bit into Fw-a

OTM to obtain the real result and then again uses the CRS to
equivocate the commitment corresponding to the choice bit to the real output.

Simulator SR

• Simulate T for AR.

• (Setup) Simulated straightforwardly according to Πw-a
cOTM, without creating a token

program T.

• (Delivery)
– In Step 2, answer the κ challenges kj with v̂j,kj ← Fκ2 uniformly at random.

Let y∗ be the message from AR. Choose x̂ = CRS ⊕ y∗ and set v̂j,1−kj =
v̂j,kj ⊕ x̂.

– Simulate Step 3 according to Πw-a
cOTM, i.e. compute σ̂ ← SIG.Sign(sgk,CRS)

and return ({v̂j,0, v̂j,1}
κ
j=1, σ̂, x̂).

– Upon receiving a message (commit,CRS∗, σ∗) in Step 4, check if σ̂ = σ∗ and
SIG.Verify(vk,CRS∗, σ∗) = 1, otherwise abort. Proceed with the simulation
as in Πw-a

cOTM for two random inputs ŝ0 and ŝ1.

• (Choice) Upon receiving a message (output) from AR in Step 5, start the receiver-
simulator SOT

R for OT and halt the simulation once AR’s choice bit c∗ is obtained.
Input c∗ into Fw-a

OTM and obtain the output sc∗ . Start the receiver-simulator SCOM
R

of COM to compute the equivocation d̂c∗ of ĉc∗ to sc∗ and provide the receiver-
simulator SOT

R of OT with the input ŝc∗‖d̂c∗ . Resume the simulation of SOT
R .

Figure 4.6: Simulator against a corrupted receiver in the protocol Πw-a
cOTM.

Experiment 0: This is the real model.

Experiment 1: Identical to Experiment 0, except that S1 sets x̂ = CRS ⊕ y∗ and
answers the queries for (v̂j,0, v̂j,1) accordingly.

Experiment 2: Identical to Experiment 1, except that S2 aborts if σ∗ 6= σ̂ and
SIG.Verify(vk,CRS∗, σ∗) = 1.

Experiment 3: Identical to Experiment 2, except that S3 starts the receiver-simu-
lator SOT

R to learn the choice bit.

Experiment 4: Identical to Experiment 3, except that S4 commits to uniformly
random values ŝ0, ŝ1, starts the receiver-simulator SCOM

R and equivocates the
commitment ĉ∗c to the value s∗c obtained from Fw-a

OTM.

From Z’s view, Experiment 0 and Experiment 1 are identically distributed, since
Z learns only one of the shares vj,k for each j and the shares are chosen uniformly
at random. Experiments 1 and 2 are computationally indistinguishable given that
SIG is EUF-CMA-secure, since S2 only aborts if the receiver sends a valid signature

4.2. Communication from Token to Token Issuer 37

to the token that S2 did not create. Experiment 2 and Experiment 3 are compu-
tationally indistinguishable by the UC-security of OT, i.e. a distinguishing Z can
directly be used to break the UC-security of OT. The same argumentation holds for
Experiment 3 and Experiment 4 and the UC-security of COM.

Remark. Please note that the CRS can be used for several instances. Thus, this pro-
tocol can straightforwardly be enhanced to allow (using a PRF even an unbounded
number of) sequential OTMs.

4.1.4 Relation to Two-Party Computation
Given our results, it seems very likely that all (completely) non-interactive proto-

cols in the tamper-proof hardware model should in fact be secure even if the sender
is allowed to send messages to the token. This is mainly due to the fact that the
token does not need any additional information other than in the normal setting,
while the sender will not receive any (possibly compromising) information that could
be forwarded to the token. Nonetheless, we deem it to be interesting that even with
interaction, some functionalities can be realized with tamper-proof hardware in this
model. To summarize, we obtain the following results:

Statistically secure two-party computation: Our UC-secure OT protocol ba-
sed on a single token from Section 4.1.3.2 can be combined with general feasi-
bility results, e.g. [Kil88, IPS08], to obtain UC-secure two-party computation.

Statistically secure non-interactive two-party computation: Our adaption
of the protocol of [DKMQ11] in Section 4.1.3.1 UC-realizes an OTM, which
basically represents a non-interactive variant of OT. As above, this yields the
claimed result. The impossibility from Section 4.1.2 shows that our solution
is optimal with respect to the number of tokens used.

Computationally secure (non-interactive) two-party computation: In Sec-
tion 4.1.3.3 we presented a protocol that realizes a computationally UC-secure
OTM. Döttling et al. [DKMQ11] show that an OTM from a single token needs
an interactive initialization phase. Thus, identically to the case of statistical
security, to obtain a completely non-interactive solution, two tokens are neces-
sary (e.g. by storing the sender functionality in the second token). Thus, our
result for non-interactive UC-secure two-party computation is optimal with
respect to the number of tokens used and of course directly implies computa-
tionally UC-secure two-party computation.

Our results are optimal with respect to the number of tokens used. In this section,
we thus showed the results highlighted in Table 4.7.

4.2 Communication from Token to Token Issuer
Outgoing communication from a tamper-proof hardware token might seem to be

a bit more unrealistic than incoming communication, because it can usually be
assumed that the token is very limited in its ability to communicate messages to
its creator. On the one hand, a token has only access to a weak power source and
thus cannot send messages with high signal strength. On the other hand, it seems

38 4. Partially Isolated Stateful Tamper-Proof Hardware

computational 2PC statistical 2PC
Model interactive non-interactive interactive non-interactive
stateful 3 3 3 3

stateful
(inc. com.) 3(1 Token) 3(2 Tokens) 3(1 Token) 3(2 Tokens)

stateful
(outg. com.) 3 3 7(3) 7

resettable 3 3 7(3) 7

bounded-
resettable 3 3 3 (3)

reusable
resettable 3 3 7(3) 7

Table 4.7: Feasibility of interactive and non-interactive two-party computation from
stateful tamper-proof hardware with communication from the sender to
the token.

easier to shield the token itself such that any existing channels can be blocked.
Nevertheless, communication cannot be ruled out in general and, as we will show,
induces an ever greater security risk than incoming communication from a sender.
Our results show the following concering the feasibility of OTM:

• Impossibility of statistically secure OT and OTM.

• Statistically secure commitment from a single stateful token.

• Computationally secure OTM from a single stateful token.

The impossibility intuitively follows from the fact that for statistically secure OT
and OTM, the model with outgoing communication essentially collapses to the plain
model, because the sender obtains the complete view of the token. A statistically se-
cure commitment is still possible, because the protocol can be designed such that the
sender only learns critical information after he has opened the commitment. With
computational assumptions, using the same techniques as in the case of incoming
communication, a (weak) OTM can still be realized.
Similarly to Section 4.1, this section starts with a detailed description of the model

in Section 4.2.1. We then show the limitations concering the feasibility of OTM
in Section 4.2.2 and present our positive results in Section 4.2.3. In Section 4.2.4 we
present our results in the context of two-party computation.

4.2.1 Model
In the scenario of outgoing communication from the token to the sender, we allow a

malicious sender to construct a token that can send arbitrary messages to the sender.
To model this in the UC-framework, we enhance the standard stateful wrapper
functionality such that it provides an interface to the program M which allows M to
send messages to the sender. We call this functionality F s-out

wrap (cf. Figure 4.8).
Please note that this formalization is not completely in accordance with the prin-

ciples of the UC-framework, in the sense that the token program is supposed to send
two messages simultaneously. Normally, the sender would be invoked to process the

4.2. Communication from Token to Token Issuer 39

Functionality F s-out
wrap

Implicitly parametrized by a security parameter κ.

Creation:
1. Await an input (create,M, t) from the token issuer, where M is a deterministic

Turing program and t ∈ N. Store (M, t) and send (created) to the adversary.
Ignore all further create-messages.

2. Await a message (delivery) from the adversary. Then, send (ready) to the token
receiver.

Execution:
3. Await an input (run, w) from the receiver. If no create-message has been sent,

return a special symbol ⊥. Otherwise run M on w. When M halts without gen-
erating output or t steps have passed, send ⊥ to the receiver; otherwise store the
current state of M and send the output of M to the receiver.

Transmission (adversarial sender only):
4. Whenever M makes an interface call (transmit,m), send (transmission,m) to

the sender.

Figure 4.8: The wrapper functionality by which we model stateful tamper-proof
hardware that allows communication from the token to the token is-
suer. The runtime bound t is merely needed to prevent malicious token
senders from providing a perpetually running program code M; it will be
omitted throughout the rest of the section.

input, and then indicate to the functionality that the computation can proceed.
First, and foremost, this does not model the intended scenario. But even worse,
it would introduce a feedback from the sender, resulting in a bidirectional channel
between the sender and the token (although restricted in bandwidth). With such
a bidirectional channel, known impossibility results, e.g. [CF01], directly rule out a
UC-secure realization of any functionality, even using computational assumptions.

We use the simplified version defined above for the rest of the section to keep
the protocol description more readable. Nevertheless, it is possible to formalize the
scenario correctly in the UC-framework, and we will sketch this in the following.
The token functionality is split into two parts: one program containing the actual
functionality, and another program that serves as a buffer. Whenever the function-
ality is supposed to communicate a message to the sender, it instead sends it to the
buffer machine, which stores the message and directly reactivates the normal ma-
chine. The sender can then query the buffer machine for all stored messages when
he is activated, and proceed normally. Using this formalization, the channel from
the sender to the token is removed, but the token can still channel messages to the
sender.

40 4. Partially Isolated Stateful Tamper-Proof Hardware

4.2.2 Limitations
The main limitation in the F s-out

wrap -hybrid model is that the token can always send
its complete view to the sender. Our next result shows that this makes protocols
like OT or OTM impossible without computational assumptions. This is mainly
due to the fact that in these protocols, it does not matter when the sender obtains
the complete view; he can break the security in any case. For other functionalities,
the order in which the sender and the token are interacting with each other can still
allow secure protocols.

Lemma 4.4. There is no protocol ΠOT using any number of tokens that UC-realizes
FOT in the F s-out

wrap -hybrid model with statistical security.

Proofsketch. The basic idea is that the malicious tokens send their complete view to
the sender after each interaction with the receiver. Thus, independently of whether
the sender or some token receive the last protocol message, the combined view of the
sender and the tokens is available to a malicious sender. This directly implies that
an OT protocol with statistical security is not possible, because the whole model
collapses to the two-party case in the stand-alone setting and known impossibilities
hold [CF01]. Either the complete transcript of the exchanged messages (which is
available to a malicious sender) uniquely determines the choice bit c of the receiver,
or a malicious receiver can obtain both input bits (s0, s1), and in both cases the
oblivious transfer security is broken.

Remark. We remark that the crucial point here is that for oblivious transfer, it does
not matter at which time the sender gets the complete view, i.e. it does not matter
whether some token or the sender receives the last message. As soon as he learns
the choice bit, the protocol is broken. This argumentation, however, does not rule
out statistically UC-secure commitments.

4.2.3 Protocols
From the impossibility in Section 4.2.2 we know that statistically secure OT and

OTM cannot be achieved. Commitments are not ruled out, and we will show an
unconditionally secure commitment from communicating tokens in Section 4.2.3.1.
Intuitively, the impossibility does not hold because in a commitment protocol based
on communicating tamper-proof hardware, if the token is only queried after the
sender has to send some committing information to the receiver, the sender cannot
later equivocate the commitment. The token is only used to verify the commitment
information.
Based on this commitment scheme, we show how to obtain a computationally

secure OTM protocol based on communicating tokens in Section 4.2.3.2. Since the
token can communicate any query of the receiver, we cannot prevent that the token
issuer learns when the receiver obtains the output of the OTM. Thus we do not
realize FOTM, but a variant that we call weak OTM.

4.2.3.1 Unconditionally Secure Commitment from a Single Token

We now present our construction for unconditionally secure commitments. The
main idea behind our construction in Figure 4.9 is similar to the commitment scheme
that is implicit in Section 4.1.3.3. The sender commits to a message s by creating

4.2. Communication from Token to Token Issuer 41

j pairs of shares (vj,0, vj,1) such that vj,0 ⊕ vj,1 = s. Then, he stores these shares in
a hardware token and locks it with a key. First, the receiver queries the sender for
one of the shares vj,b for each j. During the unveil phase, the sender sends the key
that unlocks the token to the receiver, so that he can verify that the answers from
the sender are consistent with the stored values. Since this introduces a channel into
the token, the key is of size κ, while the sender has to create 2κ pairs of shares for
each message. This ensures that the key cannot contain enough information for the
token to allow equivocation.

Protocol ΠCOM

Let SShare be a (κ, κ2 + 1) secret sharing scheme, e.g. [Sha79], and let T be an instance
of F s-out

wrap .

Commit phase:
1. Sender: Let s be the sender’s input. Choose an opening key k ← Fκ2 uniformly

at random. Generate κ shares (s1, . . . , sκ) ← SShare.Share(s, κ). For each share
si, choose 2κ random vectors v(i)

j,0 ← Fκ2 and set v(i)
j,1 = si ⊕ v

(i)
j,0. Create a token

program T with the following functionality.
• Upon receiving a message (challenge, I) from the receiver, check if I ⊂
{1, . . . , κ} and |I| ≤ κ

2 , otherwise abort. Set committed = 1 and output
(open, {v(i)

j,0, v
(i)
j,1}i∈I,j∈{1,...,2κ}).

• Upon receiving a message (open, k̄), check if committed = 1 and k̄ = k,
otherwise abort. Send (opened, {v(i)

j,0, v
(i)
j,1}i∈{1,...,κ},j∈{1,...,2κ}) to the receiver.

Send (create,T) to T .

2. Receiver: Upon receiving a message (ready) from T , select 2κ2 random bits ci,j
for i ∈ {1, . . . , κ} and j ∈ {1, . . . , 2κ} and send them to the sender.

3. Sender: Let ({ci,j}i∈{1,...,κ},j∈{1,...,2κ}) be the message from the receiver. Return
({v(i)

j,ci,j
}i∈{1,...,κ},j∈{1,...,2κ}) to the receiver.

4. Receiver: Pick a random subset I ⊂ {1, . . . , κ} of size κ
2 and send (challenge, I)

to T . Let (open, {v̄(i)
j,0, v̄

(i)
j,1}i∈I,j∈{1,...,2κ}) be the result. Check if v(i)

j,ci,j
= v̄

(i)
j,ci,j

for
i ∈ {1, . . . , κ} and j ∈ {1, . . . , 2κ}, if not abort.

Unveil phase:
5. Sender: Send all shares (s1, . . . , sκ) and the opening key k to the receiver.

6. Receiver: Send (open, k) to T and obtain {v(i)
j,0, v

(i)
j,1}i∈{1,...,κ},j∈{1,...,2κ}. Check if

si = v
(i)
j,0 ⊕ v

(i)
j,1 for all i and j and abort if that is not the case. Output s =

SShare.Reconstruct(s1, . . . , sκ), abort if this fails.

Figure 4.9: Statistically UC-secure protocol realizing FCOM in the F s-out
wrap -hybrid

model.

While this scheme is secure, it is not yet extractable. The UC simulator needs
to extract all shares from the token to reconstruct the committed value, but he
cannot learn the opening key in advance. In order to get extractability, instead of

42 4. Partially Isolated Stateful Tamper-Proof Hardware

committing to the message itself, we first use the (κ, κ2 + 1)-Shamir’s secret sharing
scheme [Sha79] to create κ shares (s1, . . . , sκ) of the message, then commit to each
share using the above scheme. The receiver has to ask the token during the commit
phase to open κ

2 shares, so that he can verify if the answers from the sender are
consistent with the messages from the token. Now, the simulator can rewind the
token during this step and query it for all κ shares, thus being able to reconstruct
the shared value.

Theorem 4.3. The protocol ΠCOM in Figure 4.9 statistically UC-realizes FCOM
(cf. Section 2.7.2.1) in the F s-out

wrap -hybrid model.

Proof. Corrupted sender. Consider the simulator in Figure 4.10. Let AS be
the dummy adversary. We have to show that RealAS

ΠCOM
(Z) ≈

s
IdealSS

FCOM
(Z) for any

PPT-environment Z.
The strategy of the simulator is very straightforward. He just needs to query the

token program T∗ that the sender provides with two valid sets I0 and I1 to obtain
κ
2 +1 shares of s so that he can reconstruct the input of the sender during the commit
phase.

Simulator SS

• Simulate T for AS and obtain T∗.

• (Commit) Proceed as follows:
– Simulate Step 2 straightforwardly according to ΠCOM.
– In Step 4, pick a set I0 and run T∗ with input (challenge, I0). Check

consistency according to ΠCOM and abort otherwise. Sample new sets
I1, I2, . . . 6= I0 and run T∗ until a check is passed. Let Ij denote the set
where the check is passed. Use the shares from the query I0 and the shares
from the query Ij to reconstruct the message ŝ. Send (commit, ŝ) to FCOM.

• (Unveil) Let k∗ be the key from AS from Step 5. Simulate Step 6 according to
ΠCOM and let s∗ be the output, but abort if s∗ 6= ŝ. Send (unveil, ŝ) to FCOM.

Figure 4.10: Simulator against a corrupted sender in the protocol ΠCOM.

First, we show that the sampling of two sets I0, Ij requires only an expected poly-
nomial number of iterations, i.e. the simulation is efficient. Note that the probability
that T∗ answers any of the queries I0, I1, . . . correctly is the same for each query since
they are chosen from the same distribution. Let p denote this probability. If p is not
negligible, then the expected number of iterations needed to find a second query Ij
that is answered correctly is clearly polynomial.
Now, observe that from AS’s view, the simulation is indistinguishable from a real

protocol run except for the possible abort during the unveil, where the extracted
value is compared to the real value. However, with the two sets I0, Ij, the unique
message ŝ can be fully recovered. Thus, either AS must have correctly guessed the
challenges to T∗ as well as the challenge to himself to create an unveil consistent
with the challenges. The probability for this is 2−κ · 2−2κ = 2−3κ, which is clearly
negligible in κ. Or T∗ has to guess the challenge that the receiver sends to AS,
but the probability for this is 2−2κ · 2κ = 2−κ, where the factor 2κ derives from the

4.2. Communication from Token to Token Issuer 43

key k∗ of length κ. Combined, this shows that the simulation is successful with
overwhelming probability.
Corrupted receiver. Consider the simulator in Figure 4.11. Let AR be the

dummy adversary. We have to show that RealAR
ΠCOM

(Z) ≈
s

IdealSR
FCOM

(Z) for any
PPT-environment Z.
The simulator uses random values instead of the real input for all shares. This

is possible because he learns AR’s challenge to the token and can then adaptively
change the shares that are stored in the simulated token. This allows the simulator
to equivocate the commitment to any value ŝ.

Simulator SR

• Simulate T for AR.

• (Commit) Upon receiving a message (committed) from FCOM, proceed as follows.

– In Step 1, draw 2κ2 values v̂(i)
j ← Fκ2 uniformly at random.

– Upon input ({c∗i,j}i∈{1,...,κ},j∈{1,...,2κ}) in Step 3, set v̂(i)
j,c
∗
i,j

= v̂
(i)
j and return

the values v̂(i)
j,c
∗
i,j

to AR.

– Upon input (challenge, I∗) in Step 4, draw κ2 values v̂(i)
j,1−c∗i,j

for i ∈ I

uniformly at random and send (open, {v̂(i)
j,c
∗
i,j
, v̂

(i)
j,1−c∗i,j

}i∈I,j∈{1,...,2κ}) to AR.

Store the resulting shares ŝ1, . . . , ŝκ2
(with ŝi = v̂

(i)
j,c
∗
i,j
⊕ v̂(i)

j,1−c∗i,j
).

• (Unveil) Upon receiving a message (opened, ŝ), proceed as follows.
– In Step 5, compute the remaining κ

2 shares ŝκ
2 +1, . . . , ŝκ such that

SShare.Reconstruct(ŝ1, . . . , ŝκ) = ŝ. Additionally, set the values v̂(i)
j,1−c∗i,j

such

that v̂(i)
j,c
∗
i,j
⊕ v̂(i)

j,1−c∗i,j
= ŝi for the remaining shares. Draw a random value

k̂ ← Fκ2 and send (ŝ1, . . . , ŝκ, k̂) to AR.
– Upon receiving a message (open, k∗) in Step 6, check if k̂ = k∗, if not abort.

Output {v̂(i)
j,0, v̂

(i)
j,1}i∈{1,...,κ},j∈{1,...,2κ}.

Figure 4.11: Simulator against a corrupted receiver in the protocol ΠCOM.

Indistinguishability of the simulation and the real protocol run follows from the
fact that the shares are identically distributed in both runs, and the simulator only
changes the token functionality adaptively, which AR notices only if he manages to
query a valid message (open, k∗) before having received k̂. The probability for this
event is negligible in κ.

4.2.3.2 Computationally Secure OTM from a Single Token

One limitation of OTM in the F s-out
wrap -hybrid model is that the sender will learn

the point in time when the receiver queries the OTM with his input. This cannot
be prevented, because the token is allowed to send messages to the sender. Thus the
resulting functionality that we realize is a weak OTM in the sense that the sender
cannot change his inputs (as he might with OT), but still learns when the receiver
inputs his choice bit (cf. Figure 4.12).

44 4. Partially Isolated Stateful Tamper-Proof Hardware

Functionality Fweak
OTM

Implicitly parametrized by a security parameter κ. The variable state is initialized with
wait.

Delivery phase:
1. Await an input (create, s0, s1) from the sender. Check if state = wait and s0, s1 ∈
{0, 1}κ, else abort. Set state = sent, store s0 and s1 and send (created) to the
adversary.

2. Await a message (delivery) from the adversary. Check if state = sent and abort
if otherwise. Set state = ready and send (ready) to the receiver.

Choice phase:
3. Await an input (choice, c) from the receiver. If state = ready, set state = done

and send (notify) to the adversary. Send (output, sc) to the receiver.

Figure 4.12: Ideal functionality for weak One-Time Memory.

Similar to the case of incoming communication, we show a protocol for OTM
where in a first step a CRS is computed via a fair coin toss. This CRS is then used
to execute a UC-secure OT protocol between the receiver and the token. Instead of
using a standard commitment for the CRS, we make use of our UC-secure commit-
ment scheme ΠCOM from Section 4.2.3.1 to fix the CRS. Due to the goal of using
only one token, we cannot use the commitment scheme completely black-box and
have to integrate the commitment protocol into the OTM protocol. To maintain a
good readability of the protocol, we include which step of the protocol ΠCOM is per-
formed without explicitly stating the details. The formal description of the protocol
is shown in Figure 4.13.

Theorem 4.4. The protocol Πweak
OTM in Figure 4.13 computationally UC-realizes Fweak

OTM
(cf. Figure 4.12) in the F s-out

wrap -hybrid model, given that CRS-based UC-secure OT
exists.

The proof of security follows the same argumentation as the security proof for the
computationally secure OTM protocol in the F s-inc

wrap-hybrid model in Section 4.1.3.3.

Proof. Corrupted sender. The simulator has to influence the creation of the
CRS by obtaining x before it has to send y. Once that is accomplished, it can
set the CRS such that it can extract the UC-commitments that are sent by the
token. Thus the simulator learns both inputs of the sender and can provide them
to the ideal functionality. Let AS be the dummy adversary. We have to show that
RealAS

Πweak
OTM

(Z) ≈
c

IdealSS
Fweak

OTM
(Z) for any PPT-environment Z. To that end, consider

the simulator SS in Figure 4.14.
Indistinguishability of the simulation and a real protocol run follows by a simple

hybrid argument.

Experiment 0: This is the real model.

Experiment 1: Identical to Experiment 0, except that S1 starts the sender-simula-
tor SΠCOM

S to obtain x̂ and aborts if x̂ 6= x∗.

4.2. Communication from Token to Token Issuer 45

Protocol Πweak
OTM

Let SIG be an EUF-CMA-secure signature scheme and COM a UC-secure commitment
scheme in the CRS-hybrid model. Further let OT be a UC-secure OT protocol in the
CRS-hybrid model and T be an instance of F s-out

wrap . Let ΠCOM be the commitment scheme
from Section 4.2.3.1.

Setup phase:
1. Sender: Let s0, s1 be the sender’s input. Perform Step 1 of ΠCOM and choose the

opening key k ← Fκ2 and x← Fκ2 uniformly at random. Use x as the commitment
value. Generate a key pair (sgk, vk) ← SIG.KeyGen(κ). Enhance token program
T′ created according to the commit phase of ΠCOM and add the following two
functions to obtain T.
• Upon receiving a message (commit,CRS, σ), check if state = opened and

SIG.Verify(vk,CRS, σ) = 1, otherwise abort. Set state = i_committed. Com-
pute (ci, di) ← COM.Commit(CRS, si) and send (committed, (c0, c1)) to the
receiver.

• Upon receiving a message (output), check if state = i_committed, else abort.
Execute the sender program of OT with input (s0‖d0, s1‖d1) using CRS and
forward the messages between the receiver and the sender program.

Send (create,T) to T .

2. Receiver: Perform Step 2 of ΠCOM.

3. Perform Step 3 of ΠCOM.

4. Receiver: Perform Step 4 of ΠCOM. Then, pick y ← Fκ2 uniformly at random and
send it to the sender.

Delivery phase:
5. Sender: Compute CRS = x ⊕ y and σ ← SIG.Sign(sgk,CRS). Send the unveil

information of ΠCOM and (k, σ) to the receiver.

6. Receiver: Perform Step 6 of ΠCOM. Set CRS = x⊕ y and send (commit,CRS, σ) to
T .

Choice phase:
7. Receiver: Let c be the receiver’s input. Send (output) to T and execute the receiver

program of OT with input c and CRS and forward the messages between T and
the program. Let sc‖dc be the output. Check if COM.Open(CRS, sc, cc, dc) = 1,
and output sc if the check is passed.

Figure 4.13: Statistically UC-secure protocol realizing Fweak
OTM in the F s-out

wrap -hybrid
model.

Experiment 2: Identical to Experiment 1, except that S2 chooses y as CRS ⊕ x
and uses the sender-simulators SCOM

S and S [OT
S for COM and OT to obtain ŝb

and ŝ′b for b ∈ {0, 1}. It aborts if ŝ′b 6= ŝb for b ∈ {0, 1}. This is the ideal model.

Experiment 0 and Experiment 1 are computationally indistinguishable since the
sender-simulator SΠCOM

S will extract the correct x̂ with overwhelming probability.

46 4. Partially Isolated Stateful Tamper-Proof Hardware

Simulator SS

• Simulate T for AS and obtain T∗.

• (Setup) Start the sender-simulator SΠCOM
S and extract the sender’s input x∗. Set

ŷ = CRS⊕ x∗.

• (Delivery) Simulated straightforwardly according to Πweak
OTM. After obtaining c∗0, c

∗
1

from T∗ in Step 6, use the sender-simulator SCOM
S to extract ŝ0 and ŝ1 from c∗0 and

c∗1, respectively. Send (create, ŝ0, ŝ1) to Fweak
OTM.

• (Choice) Simulated straightforwardly according to Πweak
OTM.

Figure 4.14: Simulator against a corrupted sender in the protocol Πweak
OTM.

Experiments 1 and 2 are indistinguishable due to the UC-security of COM and
OT. The sender-simulator SS extracts the inputs of the sender with overwhelming
probability, so the simulator will not abort. A distinguishing environment Z can
directly be used to break the UC-security of at least one of COM and OT.
Corrupted receiver. Let AR be the dummy-adversary. We have to show that

RealAR
Πweak

OTM
(Z) ≈

c
IdealSR

Fweak
OTM

(Z) for any PPT-environment Z.
Consider the simulator SR in Figure 4.15. In a first step, the simulator simulates
T for AR and learns all queries. He commits to a random value and obtains the
receiver’s input y. He then picks a CRS CRS that allows him to cheat in COM and
OT, sets x = CRS ⊕ y and uses the receiver-simulator of ΠCOM to equivocate the
commitment to the random value to y.
Once that is accomplished, the simulator commits to random inputs ŝ0, ŝ1 and

then obtains the choice bit c∗ of AR using the CRS in the protocol OT. He inputs
the choice bit into Fweak

OTM to obtain the real result and then again uses the CRS to
equivocate the commitments of COM corresponding to the choice bit to the real
output.

Simulator SR

• Simulate T for AR.

• (Setup) Simulated straightforwardly according to Πweak
OTM with a random commit-

ment value r. Obtain y∗ in Step 4. Choose x̂ = CRS⊕ y∗, where CRS is the CRS
needed to correctly simulate COM and OTM.

• (Delivery) In Step 5, compute σ̂ ← SIG.Sign(sgk,CRS) and use the receiver-
simulator SΠCOM

R to equivocate r to x̂. Execute the rest according to Πweak
OTM.

• (Choice) Upon receiving a message (output) from AR in Step 7, start the receiver-
simulator SOT

R for OT and halt the simulation once AR’s choice bit c∗ is obtained.
Input c∗ into Fweak

OTM and obtain the output sc∗ . Start the receiver-simulator SCOM
R

of COM to compute the equivocation d̂c∗ of ĉc∗ to sc∗ and provide SOT
R with the

input ŝc∗‖d̂c∗ . Resume the simulation of SOT
R .

Figure 4.15: Simulator against a corrupted receiver in the protocol Πweak
OTM.

Experiment 0: This is the real model.

4.2. Communication from Token to Token Issuer 47

Experiment 1: Identical to Experiment 0, except that S1 first commits to a ran-
dom value r, later sets x̂ = CRS ⊕ y∗ and provides the corresponding unveil
via the receiver-simulator SΠCOM

R .

Experiment 2: Identical to Experiment 1, except that S2 aborts if σ∗ 6= σ̂ and
SIG.Verify(vk,CRS∗, σ∗) = 1.

Experiment 3: Identical to Experiment 2, except that S3 starts the receiver-simu-
lator SOT

R to learn the choice-bit.

Experiment 4: Identical to Experiment 3, except that S4 commits to uniformly
random values ŝ0, ŝ1, starts the receiver-simulator SCOM

R and equivocates the
commitment ĉ∗c to the value s∗c obtained from Fweak

OTM.

From Z’s view, Experiment 0 and Experiment 1 are statistically indistinguish-
able, since the protocol ΠCOM is statistically UC-secure and a distinguishing Z
could directly be used to break the UC-security of ΠCOM. Experiments 1 and 2
are computationally indistinguishable given that SIG is EUF-CMA-secure since S2
only aborts if the receiver sends a valid signature to the token, although S2 did not
create the signature. Experiment 2 and Experiment 3 are computationally indistin-
guishable by the UC-security of OT, i.e. a distinguishing Z can directly be used to
break the UC-security of OT. The same argumentation holds for Experiment 3 and
Experiment 4 based on the UC-security of COM.

4.2.4 Relation to Two-Party Computation
In this section, we examined whether communication from the token to its sender

still allows for UC-secure computation. Summarizing, our results imply the follow-
ing.

Statistically secure (non-interactive) two-party computation: From the im-
possibility in Section 4.2.2, it is clear that general two-party computation with
statistical security is impossible. This impossibility also directly rules out
non-interactive solutions. Nonetheless, we showed in Section 4.2.3.1 that sta-
tistically UC-secure commitments can be obtained from a single token.

Computationally secure (non-interactive) two-party computation: In Sec-
tion 4.2.3.2, we presented a computationally UC-secure OTM protocol, based
on the above mentioned commitment scheme and a single hardware token.
Again, the impossibility of Döttling et al. [DKMQ11] for OTM from a single
token without interaction holds and thus storing the sender functionality in a
second token yields an optimal and completely non-interactive solution.

Combined, we thus showed the results that are highlighted in Table 4.16.

48 4. Partially Isolated Stateful Tamper-Proof Hardware

computational 2PC statistical 2PC
Model interactive non-interactive interactive non-interactive
stateful 3 3 3 3

stateful
(inc. com.) 3 3 3 3

stateful
(outg. com.) 3(1 Token) 3(2 Tokens)

7(3)
Commitment
(1 Token)

7

resettable 3 3 7(3) 7

bounded-
resettable 3 3 3 (3)

reusable
resettable 3 3 7(3) 7

Table 4.16: Feasibility of interactive and non-interactive two-party computation
from stateful tamper-proof hardware with communication from the to-
ken to its sender.

5. Resettable Tamper-Proof
Hardware

At its inception, tamper-proof hardware for UC-secure computation was modeled
as a wrapper that stores a Turing machine and maintains the state of the ma-
chine (cf. Chapter 3). This formalization, however, does not accurately model real
tamper-proof hardware that is in use today, like e.g. smartcards or flash drives. These
devices are usually dependent on an external power source that can be switched off
during the operation of the device. In particular, this means that the tokens cannot
reliably keep a state if the power source is maliciously manipulated. On closer inspec-
tion of UC-secure cryptographic protocols that make use of stateful tamper-proof
hardware, it is apparent that a single successful reset of the token, i.e. preventing
an update of the state during the computation, will completely break the security
of these schemes.
Consider a protocol for OT where the receiver of the token can query the token

exactly once with his choice bit to obtain the corresponding input (e.g. the protocol
of Döttling et al. [DKMQ11]). Suppose that the receiver manages to prevent the
token from storing the information that it has already been queried once. The
receiver can then flip his choice bit and query the token a second time, thus learning
both inputs and breaking the sender’s security.
In order to obtain secure protocols while factoring in this so-called resetting attack,

Chandran et al. [CGS08] introduce stateless tamper-proof hardware. It is modeled
exactly like the stateful wrapper functionality, but the stored Turing machine cannot
save its current state. For the rest of this chapter we will consider the equivalent
model of resettable tamper-proof hardware, where the Turing machine is allowed to
store its state, but a malicious receiver can reset that state. A discussion on this
matter is deferred to Section 5.1. We will now give an overview over existing results
based on resettable tokens.
Concerning statistical security, Goyal et al. [GIMS10] show that non-interactive

commitments and OT with statistical security are impossible based on resettable
hardware tokens alone. They provide a construction of an interactive commitment
based on a single resettable token, but with stand-alone security only. This work was
later improved by Damgård and Scafuro [DS13] who show how to obtain a UC-secure
variant of unconditional commitments. Their approach is to transform any straight-

49

50 5. Resettable Tamper-Proof Hardware

interactive non-interactive
[GIMS10] [DS13] [GIMS10] [GIMS10]

Functionality Commitment Commitment OT Commitments
Tokens 1 Θ(κ) (bidir.)

impossible impossibleRounds Θ(1) Θ(1)
Security stand-alone UC

Table 5.1: Overview of statistically secure (non-)interactive two-party protocols from
resettable hardware.

line extractable commitment into a UC-secure one by using a generic compiler, and
they also present a construction of a straight-line extractable commitment from a
single resettable hardware token. However, the transformation leads to polynomially
many resettable tokens for a UC-commitment (cf. Table 5.1). These results already
cover most interesting functionalities from a feasibility point of view and we thus do
not further investigate statistical security with “standard” resettable tokens.
Allowing computational assumptions, Chandran et al. [CGS08] achieve UC-secure

commitments (and thus general two-pary computation) in this model based on
enhanced trapdoor-permutations, but parties have to exchange tokens bidirection-
ally. Kolesnikov [Kol10] introduces an OT protocol based on resettable tokens that
achieves covert security [AL07], where only one token has to be sent. Goyal et
al. [GIS+10] show how to construct UC-secure OT from bidirectionally exchang-
ing polynomially many tokens while requiring collision-resistant hash-functions, or
only one-way functions at the cost of increasing the round complexity. They also
investigate non-interactive computation based on resettable hardware, and present
a general feasibility result by providing a construction based on a single stateless
token and one-way functions. The protocol is very inefficient because they use an
obfuscation scheme in conjunction with a stateful token, which requires Θ(κ) rounds
of interaction with the token. Very recently, a flaw in the OT protocol of Goyal et
al. [GIS+10] was found and fixed by Hazay et al. [HPV15]. Additionally, they pro-
vided a construction based on one-way functions that needs only two rounds and is
thus round-optimal. A further optimized OT construction from resettable hardware
was shown by Choi et al. [CKS+14] who showed that exchanging two tokens and
assuming the existence of verifiable random functions (VRFs) is sufficient for UC-
secure OT. All of the above described works use black-box techniques, but [CKS+14]
also show that using non-black-box techniques, it is sufficient to only send a single
token from sender to receiver to obtain UC-secure OT.
Our contribution. In this chapter, we improve upon the above mentioned pre-

vious results with regard to computational assumptions and the amount of tokens
needed. Regarding interactive two-party computation, we present a generic UC-
secure protocol compiler that transforms any protocol based on stateful tamper-
proof hardware into a protocol based on resettable tamper-proof hardware. This
yields very efficient constructions for UC-secure OT by applying our compiler to
existing protocols, e.g. to [DKMQ11]. A preliminary version of this result was
published in [DKMQN15]. We also investigate non-interactive UC-secure compu-
tation and present two protocols for UC-secure non-interactive computation. The
results presented here are a revised and improved version of the work by Döttling et
al. [DMMQN13], which independently of [CKS+14] shows that non-black-box tech-
niques are essential if one wants to obtain protocols where tokens are sent only in

51

interactive non-interactive
[CGS08] [GIS+10] [Kol10] [CKS+14] here [GIS+10] here

Functionality Com. OT OT OT OT Obfuscation CRS
Tokens 2 (bidir.) Θ(κ) (bidir.) 1 2 (bidir.) 1 1 2
Rounds Θ(κ) Θ(1) Θ(1) Θ(1) Θ(1) Θ(κ) Θ(1)

Assumption eTDP CRHF1 OWF VRF2 OWF OWF OWF
Security UC UC Covert UC UC stand-alone UC

Table 5.2: Overview of computationally secure (non-)interactive two-party protocols
from untrusted resettable hardware.

one direction. All our results in this chapter can be based on one-way functions and
inherently make use of non-black-box techniques. Table 5.2 gives an overview of our
results compared to the results in literature.
Our techniques. All of our constructions rely on non-black-box techniques,

which allows us to send tokens into one direction only. Let us briefly discuss how
UC-simulation usually works in the scenario of tamper-proof hardware, and how non-
black-box techniques can be used to reduce the number of tokens. If tokens are sent
by both parties, as e.g. in [CGS08, CKS+14], the simulator obtains the token code
and can learn the messages that are sent to the tokens from both parties and thereby
produce a correct simulation. If a token is sent only in one direction, the simulator
can no longer learn the inputs of the token issuer as described above. In the case
of stateful tokens, the simulator can simply rewind the token to obtain the input.
With resettable tokens, however, this strategy fails, because rewinding and resetting
are equivalent in the sense that a successful rewinding strategy for the simulator
directly implies a successful resetting strategy for the adversary. Here, non-black-
box techniques can be used to obtain UC-security. First, note that resettably-sound
zero-knowledge (rsZK) for non-trivial languages requires a non-black-box simula-
tor [BGGL01]. Non-black-box in this context means that the simulator for the proof
system requires access to the program of the verifier. In the context of UC-proofs,
the simulator usually simulates the setup, i.e. the wrapper functionality, and thus
learns the token code that the token issuer inputs into the wrapper. Therefore, the
UC-simulator has access to the code of the verifier and the non-black-box simulator
of the rsZK proof system can be used. One important aspect here is that the simu-
lation of the resettably-sound zero-knowledge proof is typically straight-line, which
means that the UC-simulator can use the rsZK-simulator directly.
Our approach is to have the token issuer program the token such that it outputs

a secret once the receiver proves some statement to the token via a resettably-
sound zero-knowledge proof. Resettable soundness is required for resettable tokens,
otherwise the receiver as the prover essentially has the power of the ZK simulator.
The UC-simulator obtains the token code and can therefore create a false proof for
the token via the non-black-box simulator. With this false proof, the token outputs
its secret and the simulator is able to produce a correct simulation.
In a little more detail, for our stateful to resettable token compiler, we add one

1A protocol based on OWF is also shown, but the round complexity increases to Θ(κ/ log(κ)).
Recently, it was shown by Hazay et al. [HPV15] that there is a subtle problem with this
approach, and they present a solution with 2 rounds based on OWF.

2Verifiable random functions (VRFs) are only known from specific number-theoretic assump-
tions [MRV99, Lys02, Jag15]. They also present a protocol with similar properties based on a
CRHF, but the number of OTs is bounded in this case.

52 5. Resettable Tamper-Proof Hardware

additional round of interaction between the sender and the receiver to the protocol
using a stateful token in which the sender obliviously authenticates the input of the
receiver for the token. The receiver then uses a rsZKAoK to prove that he knows
such an authentication on his input. In the simulation, the simulator can fake this
proof, because he has access to the token code, and then obtain the output of the
token without querying the sender.
A similar technique is also used for non-interactive secure computation. The token

is used as a commitment on a random value which will later be used to generate a
common reference string (CRS). The token will reveal the random value once the
receiver proves that he sent his random value to the sender (or the other token).
As before, the simulator can fake a proof, learn the random value of the token and
adjust his random value to influence the CRS.
Structure of this chapter. The remaining part of the chapter is structured

as follows. First, we formally define the model of resettable tamper-proof hardware
in Section 5.1. We then prove some limitations in Section 5.2 and additionally give
an overview over existing impossibility results in the area of resettable hardware
tokens. In Section 5.3, we investigate efficient two-party computation from resettable
hardware tokens and in Section 5.4, we cover the non-interactive case. Section 5.5
shows our results in context with previous works.

5.1 Model
We use a definition of resettable tamper-proof hardware very similar to the defi-

nition of stateless tamper-proof hardware by [CGS08, GIS+10]. For simplicity, we
state the functionality for the two-party case where only a token issuer and a token
receiver are present. The functionality allows the sender to wrap a program M in a
hardware token, and “send” this token to the receiver, who in turn can query it an
arbitrary (polynomial) number of times. While the program M can save its state,
we allow an adversarial receiver to delete this state and thereby reset the program
M to its initial state (cf. Figure 5.3).
In the sequel, unless stated otherwise, we will use the notation T for programs

(given as code, Turing machine etc.) and T for the instance of the wrapper-
functionality F resettable

wrap in which T runs. Compared to the definition of [CGS08,
GIS+10], our formalization has the advantage that during an honest execution, the
token can keep its state. While this might seem to be more powerful than stateless
hardware, both models are in fact equivalent:

• The receiver can reset the resettable token after each query, clearly yielding a
stateless token.

• The receiver can send the complete protocol transcript with each new query,
thereby giving the stateless token a state similar to the one that is stored in
the resettable token. Of course, the transcript has to be unforgeable in the
sense that the receiver cannot arbitrarily create a valid transcript.

Our definition thus reduces the complexity of the description of protocols because
we can omit the step of explicitly sending the transcript in each protocol step.
One additional aspect that we want to discuss here is whether it is possible to

guarantee that a reset of the token actually deletes its state. This is important be-
cause a state where only part of the information is lost, but e.g. not the randomness,

5.2. Limitations 53

Functionality F resettable
wrap

Implicitly parametrized by a security parameter κ.

Creation:
1. Await an input (create,M, t) from the token issuer, where M is a deterministic

Turing machine and t ∈ N. Store (M, t) and send (created) to the adversary.
Ignore all further create-messages.

2. Await a message (delivery) from the adversary. Then, send (ready) to the token
receiver.

Execution:
3. Await an input (run, w) from the receiver. If no create-message has been sent,

return a special symbol ⊥. Otherwise, run M on w from its most recent state.
When M halts without generating output or t steps have passed, send ⊥ to the
receiver; otherwise store the current state of M and send the output of M to the
receiver.

Reset (adversarial receiver only):
4. Upon receiving a message (reset) from a corrupted token receiver, reset M to its

initial state.

Figure 5.3: The wrapper functionality by which we model resettable tamper-proof
hardware. The runtime bound t is merely needed to prevent malicious
token senders from providing a perpetually running program code M; it
will be omitted throughout the rest of the chapter.

might allow an adversary to break the security of a scheme. To this end, one could
for instance keep a certain information in RAM only, and whenever this information
is missing, the token will erase its internal state completely.

5.2 Limitations
In this section, we will present general limitations of the model of resettable

tamper-proof hardware. Apart from two aforementioned results from the literature
which rule out statistically secure OT and non-interactive commitments, we also
present two restrictions that apply to computational security. First, if resettable
tokens are sent only in one direction, then non-black-box techniques are necessary
to obtain UC-security. Second, if a protocol based on resettable tokens is non-
interactive, at least two tokens have to be sent to UC-realize most functionalities.
Let us first consider the case of information-theoretical security, where Goyal et

al. [GIMS10] showed several impossibilities. The first concerns non-interactive com-
mitments based on resettable hardware tokens. The bound on the entropy ensures
an efficient token functionality.

Theorem ([GIMS10, Theorem 4.14](informal)). Let ΠCOM be a statistically secure
non-interactive commitment protocol in the resettable hardware token model. Then
either of the following holds:

54 5. Resettable Tamper-Proof Hardware

• Violation of binding: There exists a strategy for the commitment sender to
unveil the commitment to two different values with high probability.

• Violation of hiding: There exists an unbounded commitment receiver who can
guess the commitment with high probability.

[GIMS10] show that depending on the entropy enclosed in the token and the
number of queries to the token, the cheating probability can reach at least 4

5 . The
intuition behind this impossibility is that there exists an efficient learning algorithm
that either extracts all of the entropy out of the token(s), thus breaking the hiding
property, or this algorithm fails. If the algorithm fails, however, the sender can use
the remaining entropy of the token(s) to unveil the commitment arbitrarily.
Goyal et al. [GIMS10] also show that unconditionally secure OT is not possible

based on resettable hardware. The case of one-time memory (OTM) is directly
implied by the above impossibility (OTM can be seen as a non-interactive variant of
OT), but interaction might help. The authors show that interaction does not help by
extending the notion of accessible entropy [HRVW09] to the resettable token setting.
Let s0, s1 denote the sender’s input and c denote the choice bit of the receiver.

Theorem ([GIMS10, Theorem 5.3](informal)). Let ΠOT be a statistically secure
protocol for OT in the resettable hardware token model. Then either of the following
holds:

• Violation of sender-security: When the sender chooses s0, s1 uniformly at ran-
dom from {0, 1} and interacts with the receiver, a malicious receiver can learn
both s0 and s1 with high probability.

• Violation of receiver-security: When the receiver chooses c uniformly at ran-
dom from {0, 1} and interacts with the sender, a malicious sender can correctly
guess c with high probability.

All that the malicious parties have to do is querying the resettable hardware
more often than specified by the protocol to break the security; they can execute
the rest of the protocol honestly. [GIMS10] first show that for OT, inaccessible
entropy is necessary, and then they proceed to show that any OT protocol based
on resettable hardware does not have inaccessible entropy because with the same
(entropy) learning algorithm that was used before, (close to) all entropy can be
accessed.
Summarizing, based on resettable hardware, statistically secure protocols can only

be constructed for a limited class of functionalities, e.g. commitments [GIMS10,
DS13]. In particular, non-interactive secure computation is completely ruled out.
Furthermore, note that these impossibilities are not bound to UC-security but hold
for any formalization of resettable hardware.
As it turns out, there are severe restrictions for protocol constructions even for the

case of computational UC-security. We will first show that protocols where tokens
are sent only in one direction have to make use of non-black-box techniques. As an
example, we consider the ideal point function functionality, which models a simple
case in which the simulator has to extract an input from the token. The point
function functionality FPF is initialized by an input x̂ ∈ {0, 1}n from the sender.
The receiver can query FPF an arbitrary (polynomial) number of times with inputs
x, receiving output PFx̂(x), where PFx̂(x) = 1 if x = x̂ and PFx̂(x) = 0 otherwise.

5.2. Limitations 55

Thus this impossibility implies a general impossibility for all protocols where such
an extraction step is necessary.

Lemma 5.1. There is no protocol ΠPF using any number of resettable hardware
tokens T1, . . . , Tn issued from the sender to the receiver that computationally UC-
realizes FPF in the F resettable

wrap -hybrid model and whose security is proven using only
black-box techniques.

Intuitively, the impossibility follows from the fact that the only advantage that the
simulator has over a malicious token receiver is the fact that he learns the (possibly
obfuscated or unreadable) program that the sender stores inside the token. If the
UC-simulator is only allowed to rewind the program and is able to extract the input,
a resetting receiver will also be able to extract the input from the token because
rewinding and resetting are equivalent in this scenario. Thus the UC-simulator has
to use the program in a non-black-box way to achieve UC-security.

Proof. Assume for the sake of contradiction that there exists a protocol ΠPF UC-
realizing FPF and that there exists a black-box simulator SS against a corrupted
sender AS such that for all PPT-environments Z, RealAS

ΠPF
(Z) ≈

c
IdealSS

FPF
(Z). Such

a simulator must be able to extract a point x̂ from the malicious tokens T ∗1 , . . . , T ∗n
using only black-box techniques (i.e. rewinding).
We will now construct an environment Z∗ that distinguishes between RealAS

ΠPF
(Z∗)

and IdealSS
FPF

(Z∗) by constructing a malicious receiver AR that extracts the secret x̂
from the tokens T1, . . . , Tn.
AR is constructed such that he internally simulates SS and provides his interface

with T1, . . . , Tn to SS. AR then outputs to Z∗ whatever SS outputs. From the view
of SS, the simulation of AR is identically distributed to IdealSS

FPF
(Z∗). Thus, AR

outputs the secret point x̂ with overwhelming probability. On the other hand, any
simulator SR has only black-box access to the point function PFx̂ via FPF. Thus SR
succeeds to learn x̂ only with negligible probability.
Therefore, Z∗ can efficiently distinguish RealAR

ΠPF
(Z∗) and IdealSR

FPF
(Z∗) for any

PPT-simulator SR, contradicting the UC-security of ΠPF.

Independently of our result, a similar statement was shown for the restricted case
of oblivious transfer from a single resettable tamper-proof hardware token by Choi et
al. [CKS+14]. We state their theorem here for completeness; their proof follows the
same argumentation as our proof of Lemma 5.1, but tailored to the case of OT.

Theorem ([CKS+14, Theorem 2](informal)). There is no protocol ΠOT using one
resettable token that UC-realizes FOT in the F resettable

wrap -hybrid model and whose secu-
rity is proven using only black-box techniques.

Next, we state a lower bound for the number of resettable tokens that have to
be sent for non-interactive two-party computation. For a completely non-interactive
protocol, where the sender only sends tokens to the receiver, at least two tokens are
necessary. If only one token is used, it can adaptively change its behavior depending
on the inputs of the receiver. With two tokens, this is no longer possible: on the one
hand, the receiver can cross-check the answers from both tokens, and on the other
hand, none of the two tokens learns a complete protocol transcript.

Lemma 5.2. There is no protocol ΠPF using one resettable token that computation-
ally UC-realizes FPF in the F resettable

wrap -hybrid model with no further communication.

56 5. Resettable Tamper-Proof Hardware

On an intuitive level, if such a protocol existed, the simulator against a corrupted
receiver could be used by a malicious sender to program a malicious token that
adaptively changes its behavior depending on the receiver’s input. Thus, the envi-
ronment can distinguish between the real protocol and the simulation by cleverly
choosing the receiver’s input.

Proof. For the sake of contradiction, assume there exists a protocol ΠPF that UC-
implements FPF using a single (resettable) hardware token and no interaction (w.l.o.g.
we can assume that messages from the sender to the receiver are sent together
with the token). Let AR be the dummy adversary for the receiver. Since ΠPF
is UC-secure, there exists a simulator SR such that for any PPT-environment Z,
RealAR

ΠPF
(Z) ≈

c
IdealSR

FPF
(Z).

We will now show that for every sender-simulator SS, there exists a PPT-environ-
ment Z∗ such that the distributions RealAS

ΠPF
(Z∗) and IdealSS

FPF
(Z∗) are efficiently

distinguishable, contradicting the UC-security of ΠPF. This Z∗ creates a malicious
token program T∗ which behaves adaptively in the following sense. The token T∗
internally simulates the simulator SR together with a malicious functionality F∗,
providing its interface with the receiver to SR.
The malicious functionality F∗ behaves as follows. Once it receives an input x

for the first time, it checks whether x is equal to a secret random x̂0. If so, it will
behave like the point function PFx̂0 in this call and all successive calls. If not, it
will behave like a point function PFx̂1 (for a secret random x̂1) in this call and all
successive calls. Observe now that, from the view of the receiver, the protocol ΠPF
always implements a correct point function. However, a simulator SS must decide if
it inputs x̂0 or x̂1 into the ideal functionality FPF without knowing the first input x
of the receiver.
The environment Z∗ can now distinguish between real and ideal as follows. It

first flips an unbiased coin. If the outcome is 0, it provides x = x̂0 as input to the
receiver, otherwise it provides x = x̂1 to the receiver. If Z∗ is connected to the real
experiment, then the output of the receiver behaves according to the specification of
F∗. In the ideal experiment, however, the output of the receiver behaves either like
PFx̂0 or PFx̂1 (or completely different). Thus, with probability at least 1

2 , Z
∗ notices

a difference. This contradicts the UC-security of ΠPF.

These impossibilities justify that we do not consider statistically secure protocols
based on resettable hardware, and also show that our constructions in the following
sections are optimal with respect to the techniques used and the amount of tokens
sent.

5.3 Computationally Secure Two-Party Computa-
tion

We will now show how to achieve computationally secure two-party computation
using resettable tamper-proof hardware. Instead of building the required protocols
from scratch, we build a compiler that transforms any protocol based on a stateful
hardware token into a protocol that uses a resettable token. While our approach
has the drawback that we need to introduce additional interaction into the protocol,
the main benefit is that we can use existing and very efficient protocols based on

5.3. Computationally Secure Two-Party Computation 57

stateful hardware. Our compiler combined with existing results for stateful hardware
implies protocols based on resettable hardware that are more efficient than known
direct constructions in the resettable hardware model (cf. Section 5.3.4).
Let Πs be a protocol that UC-realizes a functionality F based on a stateful tamper-

proof hardware token. We need to make some assumptions on the structure of Πs.
W.l.o.g the protocol can be divided into the following phases.

1. Setup phase in which the token issuer sends a token program T to the ideal
functionality F stateful

wrap .

2. Communication phase between the sender and the receiver.

3. Invocation phase of the token by the receiver.

We will also assume that the input protocol Πs has dummy messages query and
ack, where an honest receiver sends the message query to the sender before querying
the token, and waits until the sender replies with ack before proceeding. We do not
require a corrupted receiver to send the query-message before querying the token;
therefore any protocol Πs can be converted into this form.
The main idea of our construction is as follows. We use the structure of the

underlying protocol and add an authentication step in which the token receiver first
has to have his token inputs authenticated by the token sender. It is important that
the sender remains oblivious of the receiver’s input. Then the receiver queries the
token with his input and the authentication information to obtain his result. Care
has to be taken not to introduce a channel from the token issuer to the token by the
authentication.
Our general approach can be seen as transferring the state (that the token has

to keep) to the token sender. However, we want to emphasize that there is no
direct communication between the token and its creator, and the only state that the
token issuer keeps is a counter for the number of messages. Imagine an OT protocol
where the token receiver first has to provide the token issuer with his input (in an
oblivious way), such that he can obtain an authentication on it. He then presents
the authenticated input to the token, which outputs the corresponding OT output.
For a second receiver input, the token issuer will deny the authentication and the
token cannot be queried on both receiver inputs. Our solution thus does not prevent
a malicious token receiver from carrying out reset attacks, but he cannot change his
input after the reset, thus the attack will not yield any new information for him.
Our extensions of the protocol Πs can be summarized as follows.

Addition to Phase 1: We enhance the functionality T by a verification step which
ensures that only authenticated messages are accepted.

Addition to Phase 2: We do not alter the communication of sender and receiver
in the protocol Πs, but we need to introduce one additional round of interaction
to authenticate the input of the receiver.

Addition to Phase 3: The token invocation requires an additional input (and,
depending on the compiler, additional interaction) compared to Πs.

In the following, we present two compilers. The first compiler as presented in Sec-
tion 5.3.1 makes use of non-black-box techniques, which by Lemma 5.1 cannot be

58 5. Resettable Tamper-Proof Hardware

avoided without making further assumptions. Additionally, we present a compiler
in Section 5.3.2 that uses only a few UC seed OTs to authenticate the input, and
removes the need for the rather inefficient resettably-sound zero-knowledge part of
the first compiler. In Section 5.3.3, we present some optimizations of our compil-
ers to increase the efficiency when several inputs have to be given to the resettable
token, and in Section 5.3.4 we discuss the implications of using existing protocols
based on stateful hardware with our compilers.

5.3.1 Compiler from Non-Black-Box Techniques
Our compiler CZK (cf. Figure 5.4) makes use of resettably-sound zero-knowledge

arguments, for which non-black-box simulation is required. As we already shown
in Lemma 5.1, an approach based on non-black-box techniques is necessary in any
case. The compiler transforms a protocol Πs in the F stateful

wrap -hybrid model into a
protocol Πr in the F resettable

wrap -hybrid model. It alters the underlying stateful proto-
col Πs as follows. Before the execution of Πs, a signature key pair (vk, sgk) for an
EUF-CMA-secure signature scheme SIG and a key k for a statistically binding com-
mitment scheme COM (cf. Definition 2.8) are created by the sender and sent to the
receiver. Then the setup of Πs is carried out. When the token code of the underlying
protocol is sent to the wrapper functionality F stateful

wrap , the sender chooses a seed s for
a pseudorandom function and constructs a new token that checks via a resettably-
sound zero-knowledge proof if the receiver knows a signature on a commitment to
his input.
During the token invocation of the original protocol, we enhance the communica-

tion of the token and the receiver as follows. Instead of just sending an input inp
to the token, the receiver first commits to its input inp and sends the commitment
to the sender. The sender then computes a signature σ on the commitment c and
sends the signature to the receiver. Now the receiver checks if the signature is valid
and queries the token with his input. Additionally, the receiver starts a resettably-
sound zero-knowledge argument of knowledge to prove to the token that he knows
a signature on a commitment to the input. The token starts the verifier program of
the resettably-sound zero-knowledge argument of knowledge and returns the output
out of the underlying functionality on input inp if the verifier accepts.
We stress that it is essential that the token cannot learn the commitment c, other-

wise both token and sender have correlated information which cannot be simulated,
as token and sender might abort upon seeing a commitment with certain properties
(e.g. first 10 bits are zero).

Theorem 5.1. The compiled protocol Πr ← CZK(Πs) with CZK as shown in Fig-
ure 5.4 UC-realizes F in the F resettable

wrap -hybrid model, given that Πs UC-realizes F in
the F stateful

wrap -hybrid model and one-way functions exist.

We split the proof of Theorem 5.1 in two parts and prove security against a
malicious sender in Lemma 5.3 and against a malicious receiver in Lemma 5.4. The
proof strategy is to construct an adversaryA′ against Πs in the F stateful

wrap -hybrid model
from an adversaryA on the compiled protocol Πr in the F resettable

wrap -hybrid model, such
that A cannot distinguish with which ideal functionality he is interacting. By the
UC-security of the protocol Πs, the protocol is robust against such an adversary,
which implies that the compiled protocol is UC-secure as well.

5.3. Computationally Secure Two-Party Computation 59

Compiler CZK

Let F be a two-party UC-functionality. Let COM denote a 2-message statistically bind-
ing commitment scheme and SIG an EUF-CMA-secure signature scheme. Let (P,V)
be a rsZKAoK for the NP-language L = {(vk, k, inp) | ∃σ, c, d : SIG.Verify(vk, c, σ) =
1 ∧ COM.Open(k, c, d, inp) = 1}. Further let PRF be a pseudorandom function and
F resettable

wrap be a resettable hardware token.

Input:
A protocol Πs UC-realizing F in the F stateful

wrap -hybrid model.

Output:
A protocol Πr UC-realizing F in the F resettable

wrap -hybrid model.

Setup phase:
(before execution of Πs)

1. Sender: Generate a key pair (sgk, vk) ← SIG.KeyGen(κ) and choose a key k ←
{0, 1}κ for COM uniformly at random. Send (vk, k) to the receiver.

2. Receiver: Upon receiving a message (vk, k) from the sender, store vk and k.

Rewriting the token code:
3. Sender: Once the sender of Πs is supposed to input a token code T into F stateful

wrap ,
do the following.
• Sample a seed s← {0, 1}κ for the pseudorandom function PRF.
• Program a token code T′ which upon receiving a message (input, inp) from

the receiver sets up a verifier V with input (vk, k, inp), random-tape PRF(inp)
and runs V. It forwards the messages sent by V to the receiver and vice versa.
If V rejects, T′ aborts. If V accepts, T′ starts the execution of T with input
inp and forwards T’s output to the receiver.

• Send (create,T′) to F resettable
wrap .

Token invocation phase:
4. Receiver: Let inp be the receiver’s input for the token. Compute (c, d) ←

COM.Commit(k, inp) and send (query, c) to the sender.

5. Sender: Upon receiving a message (query, c) from the receiver, compute σ ←
SIG.Sign(sgk, c). Send (ack, σ) to the receiver.

6. Receiver: Upon receiving a message (ack, σ) from the sender, check if
SIG.Verify(vk, c, σ) = 1, if not abort. Otherwise send (input, inp) to the token.
Setup a prover P with input (vk, inp, σ, c, d) and run P. Forward the messages sent
by P to the token and vice versa. Continue the receiver’s computation from Πs
once the token outputs out.

Figure 5.4: Compiler from non-black-box techniques.

Please note that all required building blocks of our construction (i.e. statistically
binding commitments, resettably-sound zero-knowledge arguments of knowledge,

60 5. Resettable Tamper-Proof Hardware

EUF-CMA signatures and pseudorandom functions) can be constructed from one-
way functions (cf. the corresponding paragraphs in Chapter 2).

Lemma 5.3. The compiled protocol Πr ← CZK(Πs) with CZK as shown in Figure 5.4
UC-realizes F in the F resettable

wrap -hybrid model against a corrupted sender, given that
Πs UC-realizes F in the F stateful

wrap -hybrid model, COM is computationally hiding and
(P,V) is computationally zero-knowledge.

Proof. We want to show that for every PPT-environmentZ, RealAS
Πr

(Z) and IdealSS
F (Z)

are computationally indistinguishable. Since Πs is UC-secure, there exists a simu-
lator SS such that RealA

′
S

Πs
(Z) ≈

c
IdealSS

F (Z). It remains to show that there exists

an adversary-simulator A′S, such that RealAS
Πr

(Z) and RealA
′
S

Πs
(Z) are computationally

indistinguishable. Figure 5.5 shows an adversary-simulator A′S that uses AS.

Adversary-Simulator A′S

• Simulate F resettable
wrap for AS and obtain T∗.

• (Setup) Once AS sends a message (setup, vk, k) in Step 1, store vk and k.

• (Rewriting the token code) In Step 3, construct from T∗ a token-code T† with the
following functionality.

– Upon receiving a message (input, inp) from the receiver, run T∗ with input
(input, inp) up to the point when T∗ expects the proof. Halt the computation
of T∗ and construct a corrupted verifier V∗ from T∗. Run the non-black-box
simulator Sim of (P,V) with input (V∗, vk, inp) and obtain a new state for T∗.
Proceed with the simulation of T∗ from this point and let out be the result.
Send out to the receiver.

Send (create,T†) to F stateful
wrap .

• (Token invocation) Upon receiving a message query from the receiver in Step 5,
compute (ĉ, d̂)← COM.Commit(k, 0). Send (query, ĉ) to AS. Let (ack, σ∗) be the
output of AS. Check if it holds SIG.Verify(vk, ĉ, σ∗) = 1, if not abort. Otherwise
send ack to the receiver.

Figure 5.5: Adversary-simulator for a corrupted sender in the compiler CZK .

Let Z be any PPT-environment. We will prove indistinguishability of RealAS
Πr

(Z)
and RealA

′
S

Πs
(Z) by a series of hybrid experiments.

Experiment 0: Simulator S0 simulates RealAS
Πr
.

Experiment 1: Identical to Experiment 0, except that during invocation of the
token, S1 does not setup and run a prover P with input (vk, inp, σ∗, ĉ, d̂), but
instead runs the non-black-box simulator Sim on the verifier V∗ (as described
in Figure 5.5) and uses the output as a new state for T∗.

Experiment 2: Identical to Experiment 1, except that the commitment ĉ is com-
puted by (ĉ, d̂)← COM.Commit(k, 0) instead of (c, d)← COM.Commit(k, inp).
From the view of Z, this is identical to RealA

′
S

Πs
.

5.3. Computationally Secure Two-Party Computation 61

Indistinguishability of Experiment 0 and Experiment 1 follows directly from the
computational zero-knowledge property of the argument system (P,V). If the com-
mitment scheme COM is computationally hiding, Experiment 1 and Experiment 2
are computationally indistinguishable from the view of Z as well. This can be es-
tablished by a simple reduction, where a Z distinguishing the two experiments can
be used to to break the hiding-property of COM.

In the following, we prove the second part of Theorem 5.1, namely the security
against a corrupted receiver. This is the more demanding case since we have to show
that the receiver will not manage to send two distinct inputs into the token that are
evaluated.

Lemma 5.4. The compiled protocol Πr ← CZK(Πs) with CZK as shown in Figure 5.4
UC-realizes F in the F resettable

wrap -hybrid model against a corrupted receiver, given that
Πs UC-realizes F in the F stateful

wrap -hybrid model, COM is statistically binding, PRF is
a pseudorandom function, SIG is EUF-CMA-secure and (P,V) is an argument of
knowledge.

Proof. We want to show that for every PPT-environmentZ, RealAR
Πr

(Z) and IdealSR
F (Z)

are computationally indistinguishable. Again, since Πs is UC-secure, there exists a
simulator SR such that RealA

′
R

Πs
(Z) ≈

c
IdealSR

F (Z). It remains to show that there exists

an adversary-simulator A′R such that RealAR
Πr

(Z) and RealA
′
R

Πs
(Z) are computationally

indistinguishable. Figure 5.6 shows an adversary-simulator A′R that uses AR.

Adversary-Simulator A′R

• Simulate F resettable
wrap for AR.

• (Setup) In Step 1, generate a key pair (sgk, vk) ← SIG.KeyGen(κ) and choose
k ← {0, 1}κ uniformly at random. Send (vk, k) to AR. Additionally, setup a
random oracle H.

• (Rewriting the token code) Simulated straightforwardly according to CZK .

• (Token invocation)
– Upon receiving a message (query, c∗) from AR in Step 5, compute σ̂ ←

SIG.Sign(sgk, c). Send a message (query) to the sender and let (ack) be
the answer. Send (ack, σ̂) to AR.

– Upon receiving a message (input, inp) from AR in Step 6, setup a verifier
program V with input (vk, inp) and random tape H(inp), and run V. Forward
the messages between V and AR and abort if V rejects. If V accepts even
though a tuple (inp′, out′) has been stored with inp′ 6= inp, abort. Further, if
inp′ = inp, output out′. If no tuple was stored, send inp to F stateful

wrap to obtain
out and store the tuple (inp, out). Send out to AR.

Figure 5.6: Adversary-simulator for a corrupted receiver in the compiler CZK .

Consider the following series of hybrid experiments.

Experiment 0: Simulator S0 simulates RealAR
Πr

.

62 5. Resettable Tamper-Proof Hardware

Experiment 1: Identical to Experiment 0, except that the simulator S1 replaces
the pseudorandom-function PRF by a random oracle H.

Experiment 2: Identical to Experiment 1, except for the following. S2 checks—
after V accepts—if a tuple (inp′, out′) has already been stored. If so and inp′ 6=
inp, it aborts. Moreover, if no such tuple exists, it will store (inp, out), where
out is the output of the token. From the view of Z, this is identical to RealA

′
R

Πs
.

Computational indistinguishability of Experiment 0 and Experiment 1 follows
straightforwardly by the pseudorandomness property of the pseudorandom function
PRF. Showing the computational indistinguishability of Experiment 1 and Experi-
ment 2 is more involved.
We claim that Experiment 1 and Experiment 2 are computationally indistinguish-

able, provided that the argument system (P,V) fulfills the computational resettable
soundness property, the commitment scheme COM is statistically binding and the
signature scheme SIG is EUF-CMA secure.
Clearly, if S2 does not abort after V accepts, the view of Z is identical in Experi-

ment 1 and Experiment 2. We will thus show that V aborts at most with negligible
probability, establishing indistinguishability of Experiment 1 and Experiment 2.
Since the commitment scheme COM is statistically binding, the event that there

exist two distinct unveils (c, d1, inp1) and (c, d2, inp2) with COM.Open(k, c, d1, inp1) =
1 and COM.Open(k, c, d2, inp2) = 1 has only negligible probability (over the choice
of k). We can thus assume that each commitment c has a unique unveil (c, d, inp).
Assume now that the probability that S2 aborts after V accepts is non-negligible.

We distinguish two cases:

1. The probability ε that AR successfully proves a false statement in one of the
invocations of (P,V) is non-negligible.

2. The probability ε that AR successfully proves a false statement in one of the
invocations of (P,V) is negligible.

In the first case, we can use a distinguishing Z to construct a corrupted prover
P∗ that breaks the soundness property of the argument system (P,V). P∗ simulates
S1 faithfully until the argument system (P,V) is started. Then, P∗ announces the
statement (vk, inp)∗ and forwards all messages sent by AR to his own verifier V
and vice versa. Clearly, from AR’s (and thus Z’s) view, S1 and P∗’s simulation are
identically distributed. Thus, the chance of P∗ successfully proving a false statement
is at least ε, contradicting the soundness property of (P,V).
In the second case, we will argue that AR must be able to successfully forge a

signature σ∗ for a message c∗, contradicting the EUF-CMA security of SIG. We will
therefor use AR to construct an adversary B that breaks the EUF-CMA property of
SIG with non-negligible probability, leading to the desired contradiction. Let Ext be
an extractor for the argument of knowledge (P,V). B simulates S2 faithfully except
for the following. Instead of generating (sgk, vk) itself, it will use vk as provided
by the EUF-CMA experiment. B uses AR and Z to construct a malicious prover
P∗ which simply consists of continuing the computation of AR and Z until the
argument system terminates. B now runs the extractor Ext on P∗ and obtains a
witness (σ∗, c∗, d∗) for a statement (vk, inp∗). If SIG.Verify(vk, c∗, σ∗) = 1, then B
outputs the forge (c∗, σ∗) to the EUF-CMA experiment. Otherwise, it outputs ⊥.

5.3. Computationally Secure Two-Party Computation 63

Clearly, from the view of Z, both S2 and B’s simulation are identically distributed.
Since we assume that S2 aborts with non-negligible probability and P∗ proves a true
statement (except with negligible probability) the extractor Ext returns a witness
(σ∗, c∗, d∗) with non-negligible probability. As we conditioned on the event that S2
aborts and the commitment c∗ has a unique unveil, (c∗, σ∗) must be a valid forge
with non-negligible probability. This, however, contradicts the EUF-CMA security
of SIG, which concludes the proof.

Remark. The above compiler can easily be extended to allow for multiple messages.
In each step of the token invocation the token receiver has to query the sender on
a commitment and provide a proof to the token that this commitment was signed
by the sender. To allow multiple messages, a counter is added for each message
such that the receiver cannot query the token “out-of-sync”. If the token is reset, its
counter will not match the counter of the sender and thus the token will abort.

5.3.2 Compiler from Seed-OTs
In some cases non-black-box techniques are not desired, i.e. for efficiency purposes.

We present a second compiler COT in Figure 5.7 that is based on a small number of
UC-secure seed-OTs. While at first sight this might seem to be a strong assumption,
consider the following. Apart from being a common assumption in areas such as
secure MPC [Yao82, GMW87, IPS08], a number of UC-secure OT protocols from
resettable tamper-proof hardware have been proposed [GIS+10, CKS+14]. Thus,
in the context of tamper-proof hardware, the assumption of seed-OTs is not far-
fetched at all. Our compiler makes no additional assumptions, meaning the security
of the resulting protocol solely relies on the input protocol and the realization of
the OTs. For a detailed discussion concerning the implications and restrictions,
see Section 5.3.4.
Similarly to the compiler from the previous section, the compiler COT adds a step

to the underlying protocol Πs that authenticates the token input. This time, the
authentication is done using UC-secure OTs. Before the execution of Πs, the token
sender creates two random bit strings (si0, si1) for every bit i of the message inp
that the receiver will input into the token. During the setup, the receiver obtains
one of these random strings, namely siinp(i), for each of his input bits. Thus, the
receiver is committed to his input, while the sender does not learn anything about
it. Additionally, the input is authenticated, because intuitively, the receiver cannot
obtain a label si1−inp(i) not pertaining to his input.
The token functionality is extended by storing all values

(
(s1

0, s
1
1), . . . , (s`0, s`1)

)
that the sender created. When the token is invoked on input

(
inp, (s1

j1 , . . . , s
`
j`

)
)
, the

tokens checks that the authentication values are consistent with the input values of
the OTs. If that is the case, the token will evaluate the underlying token functionality
on inp and forward the output out.

Theorem 5.2. The compiled protocol Πr ← COT (Πs) with COT as shown in Fig-
ure 5.7 statistically UC-realizes F in the F resettable

wrap /FMOT-hybrid model, given that
Πs UC-realizes F in the F stateful

wrap -hybrid model.

Proof. Corrupted sender. We want to show that Z, RealAS
Πr

(Z) and IdealSS
F (Z)

are statistically indistinguishable for every environment. Since Πs is UC-secure,

64 5. Resettable Tamper-Proof Hardware

Compiler COT

Let F be a two-party UC-functionality. Let ` = |m| be the input length of the token
receiver’s messagem to the token in the protocol Πs. Further let F

resettable
wrap be a resettable

hardware wrapper functionality and FMOT an OT functionality for at least ` sessions.

Input:
A protocol Πs UC-realizing F in the F stateful

wrap -hybrid model.

Output:
A protocol Πr UC-realizing F in the F resettable

wrap -hybrid model.

Setup phase:
(before execution of Πs)

1. Sender: Create 2` random strings S = ((s1
0, s

1
1), . . . , (s`0, s

`
1)), sij ← {0, 1}κ and

input them into the ` FMOT-functionalities.

2. Receiver: Input ciinp(i) for i ∈ {1, . . . , `} into the corresponding FMOT and obtain
(s1
j1
, . . . , s`j`), ji ∈ {0, 1}.

Rewriting the token-code:
3. Sender: Once the sender of Πs is supposed to input a token code T into F stateful

wrap ,
do the following.
• Construct a token-code T′ which, upon receiving a message

(input, inp, (s1
j1
, . . . , s`j`)), j ∈ {0, 1} from the receiver, checks if sij ∈ S

for all i ∈ {1, . . . , `}. If this is the case, it continues the execution of T with
input inp and forwards whatever T outputs.

• Send (create,T′) to F resettable
wrap .

Token invocation:
4. Receiver: Send a message query to the sender.

5. Sender: Reply with a message ack.

6. Receiver: Send the message (input, inp, (s1
j1
, . . . , s`j`)) to the token and continue

the computation of the receiver from Πs once the token outputs out.

Figure 5.7: Compiler from seed-OTs.

there exists a simulator SS such that RealA
′
S

Πs
(Z) ≈

s
IdealSS

F (Z). It remains to show

that there exists an adversary-simulator A′S such that RealAS
Πr

(Z) and RealA
′
S

Πs
(Z) are

indistinguishable. Figure 5.8 shows an adversary-simulator A′S that uses AS.

The distributions RealAS
Πr

(Z) and RealA
′
S

Πs
(Z) are identically distributed once A′S ob-

tains all labels that are input into FMOT because a normal protocol run is simulated
with these labels.
Corrupted receiver. We want to show that for every environment Z, RealAR

Πr
(Z)

and IdealSR
F (Z) are statistically indistinguishable. Again, since Πs is UC-secure,

5.3. Computationally Secure Two-Party Computation 65

Adversary-Simulator A′S

• Simulate F resettable
wrap and FMOT for AS and obtain T∗ and all inputs

((s1
0, s

1
1), . . . , (s`0, s

`
1)).

• (Setup) Simulated straightforwardly according to COT .

• (Rewriting the token code) In Step 3, proceed as follows.
– Construct from T∗ a token-code T† with the following functionality. Upon re-

ceiving a message (input, inp) from the receiver, select (s1
inp(1), . . . , s

`
inp(`)) ac-

cording to the input and run T∗ on the input
(
input, inp, (s1

inp(1), . . . , s
`
inp(`))

)
.

Let out be the result. Send out to the receiver.
– Send (create,T†) to F stateful

wrap .

• (Token invocation) Simulated straightforwardly according to COT .

Figure 5.8: Adversary-simulator for a corrupted sender in the compiler COT .

there exists a simulator SR such that RealA
′
R

Πs
(Z) ≈

s
IdealSR

F (Z). It remains to show

that there exists an adversary-simulator A′R such that RealAR
Πr

(Z) and RealA
′
R

Πs
(Z) are

indistinguishable. Figure 5.9 shows an adversary-simulator A′R that uses AR.

Adversary-Simulator A′R

• Simulate F resettable
wrap and FMOT for AR and obtain the choice bits ĉi, i ∈ {1, . . . , `}.

• (Setup) In Step 2, derive the input înp by concatenating the ` choice-bits.

• (Rewriting the token code) Simulated straightforwardly according to COT .

• (Token invocation)
– Upon receiving a message (query) from AR in Step 5, send (query) to the

sender and let (ack) be the answer. Send (ack) to AR.
– Upon receiving a message (input, inp∗) from AR in Step 6, check if înp = inp∗

and sij ∈ S ∀ i, if not abort. Send inp to F stateful
wrap and return the result out to

AR.

Figure 5.9: Adversary-simulator for a corrupted receiver in the compiler COT .

The only difference between RealAR
Πr

(Z) and RealA
′
R

Πs
(Z) is the abort of A′R in case

înp 6= inp∗. For this event to happen, AR has to guess a string sij ∈ S of length κ for
any i ∈ {1, . . . , `}, j ∈ {0, 1}. The probability for this event is obviously negligible
in the security parameter κ.

5.3.3 Optimizations
Recall that the compiler CZK can be straightforwardly extended to allow for mul-

tiple messages between token and receiver. However, this would lead to an inefficient
zero-knowledge proof for each message. While most protocols in the literature query
the token only a small constant number of times, it is still desirable to minimize the

66 5. Resettable Tamper-Proof Hardware

number of proofs. Also, to change the compiler COT such that it allows for more
than a single authenticated input requires increasing the fixed amount of UC-secure
OTs that we have at our disposal, which is expensive in most scenarios.
We will address these shortcomings for the case of non-adaptive queries. By non-

adaptive queries, we mean queries that can be fixed in advance, i.e. the queries do not
depend on other queries to the token. First, please note that Agrawal et al. [AAG+14]
showed that non-adaptive queries cannot exist for every protocol in the stateful
token model, so we cannot hope to solve the problem of several expensive rsZK
proofs completely. Nevertheless, a very simple strategy to optimize the efficiency of
non-adaptive queries is to just concatenate all i messages into a single message and
have the sender authenticate this message. However, this needs a lot of OTs and
also the amount of data that has to be sent to the sender is very large, whereby the
proof becomes more inefficient.
A more refined solution to the problem is the following. Instead of using the

normal token input as the message that shall be authenticated by the sender, the
receiver computes a Merkle tree [Mer88] with all non-adaptive messages in the leaves.
Then, the sender authenticates the root of the Merkle tree and the receiver only has
to use the compiler for the root message. From there on, for each of the initial
non-adaptive messages, he sends the path through the tree and the corresponding
message to the token which can verify that the path is consistent with the root.
This improvement leads to a single message of small size during the authentication

step of CZK and COT , respectively. Now we have introduced a new drawback into our
solution: the Merkle tree relies on collision resistant hash functions. Considering our
initial goal to achieve a compiler using only one-way functions, we replace the Merkle
tree with the recent construction of sig-com trees [CPS13] (cf. Definition 2.16). The
sig-com trees can be seen as an interactive variant of Merkle trees, but require only
one-way functions due to the interaction.
We will briefly sketch how sig-com trees can be applied to our scenario. In addition

to the normal setup, the token sender creates a key pair (vk, sgk)← SIG.KeyGen(κ)
and extends the token functionality as follows. Upon receiving (sign, x) the token
returns SIG.Sign(sgk, x), basically implementing a signature oracle. Further, upon
receiving (check, path, root), the token checks that path constitutes a valid path
given the root root of a sig-com tree. The verification key vk is given to the token
receiver. The rest of the compiler is carried out as described in the previous sections.
During the protocol run, instead of directly sending the non-adaptive messages to
the sender, the receiver first uses the resettable token to create a signature tree
and verifies each obtained signature using vk. Since all inputs are committed to in
advance of the oracle calls, the token does not learn the inputs. Then the rest of
the protocol proceeds normally: The sender authenticates the root of the sig-com
tree, and the receiver has to present a path through the sig-com tree for each of the
non-adaptive messages.
Simulation of this enhancement against a corrupted sender is quite simple. Since

the commitments on the receiver inputs are never opened (but only used in zero-
knowledge arguments of knowledge), the simulator can still just pick all-zero inputs,
then use the token to create a corresponding sig-com tree, and proceed as before.
Our indistinguishability proofs for the original compilers just carry over; otherwise
the commitments on the receiver inputs would not be hiding. If the receiver is
corrupted, the binding property of the commitments on his inputs and the collision
resistance of the sig-com tree guarantee that the token can still be queried only

5.3. Computationally Secure Two-Party Computation 67

with messages that were authenticated by the sender. It follows again that our
indistinguishability proofs for the original compilers just carry over.

5.3.4 Implications

In this section, we will briefly discuss the implications of applying our compiler
to existing protocols. The main benefit of our approach is that it allows to design
efficient protocols based on stateful hardware tokens and then compile them to the
resettable setting. This is typically easier than directly constructing protocols based
on resettable hardware.
We want to focus on UC-secure OT protocols. Previous constructions based on re-

settable tokens were either dependent on the fact that several hardware tokens had
to be exchanged [GIS+10, CKS+14] or relied on stronger computational assump-
tions like enhanced trapdoor permutations, e.g. by using [CGS08] in conjunction
with [CLOS02] to obtain OT. All of these constructions rely on black-box tech-
niques, and thus Lemma 5.1 directly implies that these limitations are inherent.
Forestalling the results from Section 5.4, it is possible to use our non-interactive

two-party computation protocol based on a single hardware token, which makes use
of non-black-box techniques. While this solution requires only a single hardware
token, it cannot be based on one-way functions. The reason is that—even though
our construction relies only on one-way functions—realizing a UC-secure OT in
the CRS-hybrid model, e.g. [PVW08], requires stronger assumptions than one-way
functions.
In the context of stateful tamper-proof hardware, however, very efficient and even

statistically secure constructions of OT are known. Of particular interest for us is
the protocol of Döttling et al. [DKMQ11, DKMQ12] that provides statistically UC-
secure OT from a single hardware token. If we plug their protocol into our compiler
CZK , we obtain the most efficient OT protocol based on resettable hardware to date.
In particular, it allows us to use the optimization presented in Section 5.3.3 for non-
adaptive queries if we settle for a random OT in a first step. Standard techniques can
then be used to derandomize the OTs [Bea95]. Thus our result implies secure two-
party computation from a single resettable hardware token based solely on one-way
functions.
Applying the compiler COT to OT protocols clearly does not yield strong im-

provements, because we already need OT for the compiler itself. Also, statisti-
cally secure OT from resettable hardware is impossible [GIMS10]. Considering the
goal of using resettable hardware, the UC-secure seed-OTs are thus either only
computationally secure and realized by a resettable hardware token, or based on
an additional assumption. While this technique would also imply an OT exten-
sion, i.e. deriving many OTs from a few OTs, current OT extension protocols,
e.g. [IPS08, HIKN08, NNOB12], are far more efficient than applying COT to OT
protocols. Instead, in conjunction with a statistically secure OT from a different
physical assumption (e.g. our OT-protocol based on bounded-resettable hardware
from Section 6.3.3), COT allows a very efficient transformation of statistically secure
protocols to the F resettable

wrap -hybrid model.

68 5. Resettable Tamper-Proof Hardware

5.4 Computationally Secure Non-Interactive Two-
Party Computation

In this section, we present protocols that realize computationally secure non-
interactive two-party computation based on resettable hardware. This is obviously
not implied by the result in Section 5.3 because our compiler introduces additional
interaction between the token sender and the token receiver. Before we outline our
solutions, let us first clarify the meaning of non-interactive two-party computation
in the setting that we consider.
The general setting for our solutions is a protocol between two parties, the to-

ken sender and the token receiver. The token sender will program a token with
some functionality and send it to the receiver, possibly with an additional message.
The token receiver will then perform a two-party computation with the token, but
without any further interaction with the token issuer.
Compared to interactive solutions, by using a non-interactive and resettable so-

lution, one cannot hope to realize all two-party funtionalities. Instead, it is only
possible to realize resettable functionalities, i.e. functionalities that remain secure
even if the function is reset. This directly rules out functionalities like deterministic
OT, since a malicious receiver of the resettable OT could just query the functionality
on input b = 0 to obtain s0, then reset the functionality, and input b = 1 to obtain
s1. As the protocol is non-interactive and the token itself cannot keep a state, such
an attack cannot be prevented. Random oblivious transfer, on the other hand, is
still possible. Intuitively, the inputs of the resettable party can be derived from a
commitment on the input of the non-resettable party (e.g. via a PRF), thus each
input will yield a different instance of the OT protocol, unless the non-resettable
party can break the binding property of the commitment and present two unveils
for a single commitment.
Thus, as a first step, we define resettable functionalities in Section 5.4.1 and

show how they can be UC-realized in the CRS-hybrid model. Given this result, we
present two protocols that enhance a resettable hardware token such that it has ac-
cess to a UC-CRS. The first protocol, presented in Section 5.4.2, has an interactive
setup phase between the token issuer and the token receiver during which a CRS
is generated. It requires the sender to issue only one resettable token. Given our
impossibility result from Section 5.2, an interactive setup combined with a single
token is the best one can hope for. Then, in Section 5.4.3, we present a completely
non-interactive protocol, i.e. the token issuer programs two tokens and sends them
to the receiver, without additional interaction. The receiver negotiates a reset-
table CRS with the tokens, which is optimal again with respect to the impossibilty
from Section 5.2.

5.4.1 Resettable Functionalities in the UC-Framework
In this section, we will introduce resettable UC-functionalities and the ideal func-

tionalities for resettable hardware tokens. We first provide the definition of resettable
two-party UC-functionalities. Let M be a Turing machine. The resettable function-
ality F res

2PC specified by M is defined in Figure 5.10. For the sake of readability, we
omit session and message identifiers.
As already discussed by Goyal and Sahai [GS09], resettable functionalities do not

5.4. Computationally Secure Non-Interactive Two-Party Computation 69

Functionality F res
2PC

Implicitly parametrized by a security parameter κ and a Turing machine M.

1. Upon receiving a message (sender, x1) from the sender, store x1, write x1 on M’s
input tape and run M until it halts. Store the state of M. Accept no further inputs
by the sender.

2. Upon receiving (receiver, x2) from the receiver, write x2 on M’s input tape and
run M starting from the most recent state until it halts. Store the state of M. Read
the message y from M’s output tape and send y to the receiver.

3. Reset (Adversarial receiver only) Upon receiving reset from the receiver, reset the
Turing machine M to its initial state.

Figure 5.10: Ideal functionality for resettable two-party computation.

cover all important cryptographic functionalities. One obvious counterexample is
OT where the sender security breaks down if the functionality is reset. Nevertheless,
a large class of cryptographic functionalities can be realized. This includes e.g.
signatures where the key remains hidden, but also scenarios like database privacy as
considered by Dwork [Dwo06], where the curator algorithm hides the actual database
entries.
Goyal and Sahai [GS09] present a compiler that allows to securely compute any

resettable functionality between a resettable and a non-resettable party. Their ap-
proach is to rebuild the general MPC protocol of Goldreich et al. [GMW87] and
replace all zero-knowledge proofs by resettable and resettably-sound zero-knowledge
proofs. Additionally, the resettable party has to generate its random coins via a
pseudorandom function applied to the protocol transcript, similar to [CGGM00].
This leads to a deterministic protocol for each new input.
In spirit of the work of Canetti et al. [CLOS02] who show that based on a CRS,

every functionality can be UC-realized, we replace some of the building blocks in
the compiler of [GS09] by UC-secure variants that are realizable from a CRS. This
allows us to remove an expensive precomputation phase from the protocol because
our extraction of the inputs can be directly done via UC-commitments. [GS09], on
the other hand, need a PRS simulator [PRS02] because they have to extract the
inputs in a concurrent setting.
In more detail, the UC-secure resettability compiler proceeds as follows. In a

first step, the non-resettable party (i.e. the token receiver) uses a non-interactive
straightline-extractable commitment in the CRS-hybrid model to commit to his
input xR and random coins rR. The resettable party (i.e. the token) applies a pseu-
dorandom function to the message to obtain additional random coins r′R and sends
them to the receiver, who sets r′′R = r′R ⊕ rR. Then the token does the same with its
input xS and random coins rS, except that the receiver has to provide a (resettably-
sound) proof that it deterministically derived the random coins r′S from r′′R. This is
necessary to keep the receiver from choosing new random coins for the resettable
party while using the same input.
Now, both parties have a fixed random tape and commitments to the inputs and

random tape of the other party. The rest of the protocol proceeds as in [GS09],
i.e. the secure computation phase of e.g. [GMW87] is carried out. Instead of using

70 5. Resettable Tamper-Proof Hardware

normal zero-knowledge proofs to ensure that the parties behave according to the
protocol, the token uses a straight-line-simulateable resettable zero-knowledge proof
to prove its statements, while the receiver uses resettably-sound zero-knowledge
proofs.

Protocol Πres
2PC

Let T be a Fhybrid1
wrap or Fhybrid2

wrap instance, thus COM has access to a UC-CRS.

Setup phase:
1. Sender: Let x1 be the sender’s input. Sample a seed s ∈ {0, 1}κ for the pseudoran-

dom function PRF and program a token program T with the following functionality.
• Upon receiving a message (commit, cR) from the receiver, compute

(r′2, r1, rver) ← PRF(cR) and (cT, dT) ← COM.Commit(x1, r1). Send (r′2, cT)
to the receiver.

• Upon receiving a message (rand, r′1), start the verifier program Vrs for the
language L1 with input (r′1, r

′
2, cR). If Vrs accepts, set r′′1 = r′1⊕ r1, otherwise

abort.
• Upon receiving a message (comp) from the receiver, send the next mes-

sage mj
1 according to Π, start the prover program P for L3 with input

(x1, r1, r
′
1, cT, dT,m

j
1, T

j). Additionally, start the verifier program Vrs for L2
with input (r′2, cR,mV). If Vrs aborts, abort.

• Upon receiving a message (comp,mj
2) from the receiver, start the verifier

program Vrs for L3 with input (r′2, cR,m
j
2, T

j). Abort if Vrs aborts, otherwise
accept and set j = j + 1.

Commitment phase:
2. Receiver: Let x2 be the receiver’s input.

a) Draw r2 ← {0, 1}κ uniformly at random and compute (cR, dR) ←
COM.Commit(x2, r2). Send cR to T .

b) Let (r′2, cT) be the answer from T . Set r′′2 = r2⊕ r
′
2, derive r

′
1 ← r′′2 and send

(rand, r′1) to T . Start the prover program Prs for the language L1 with input
(x1, r1, r

′
1, r
′
2, cR, dR).

Computation phase:
Let mj

1 ← Π(Tj , x1, r
′′
1) be the next message as per Π with Tj being the list of messages

(m1
1,m

1
2, . . . ,m

j−1
1 ,mj−1

2) that have already been exchanged.

3. Receiver: Send (comp) to T and let mj
1 be the next message from T .

a) Start the verifier program V for L3 with input (r′1, cT,m
j
1, T

j). For ev-
ery verifier message mV, start the prover program Prs for L2 with input
(x2, r2, r

′
2, cR, dR,mV). If V aborts, abort.

b) Compute mj
2 ← Π(T j2 , x2, r

′′
2) and send (comp,mj

2) to T . Start the prover
program Prs for the language L3 with input (x2, r2, r

′
2, cR, dR,m

j
2, T

j).

Figure 5.11: Computationally UC-secure protocol realizing F res
2PC in the

Fhybrid1
wrap /Fhybrid2

wrap -hybrid models.

5.4. Computationally Secure Non-Interactive Two-Party Computation 71

A formal description of the protocol is given in Figure 5.11. Fhybrid1
wrap and Fhybrid2

wrap
are our hybrid token functionalities that provide the token program with access
to a UC-CRS. Let COM be a UC-secure commitment scheme in the CRS-model
and PRF be a pseudorandom function with output length `. Further, let (Prs,Vrs)
be resettably-sound zero-knowledge arguments of knowledge and (P,V) be a zero-
knowledge proof system. Let Π be a passively secure implementation of the reset-
table functionality F . Define the languages as follows:

L1 = {(r′1, r′2, c) | ∃x, r, d s.t. COM.Open(c, d, (x, r)) = 1 ∧ r′1 = r2 ⊕ r′2}
L2 = {(r′, c,mV) | ∃x, r, d s.t. COM.Open(c, d, (x, r)) = 1 ∧mV ← V(r ⊕ r′)}
L3 = {(r′, c,m, T) | ∃x, r, d s.t. COM.Open(c, d, (x, r)) = 1 ∧m← Π(T, x, r ⊕ r′)}

The proof of security is a straightforward modification of the proof of [GS09] and
thus omitted. The technically most important aspect is the fact that a standard zero-
knowledge proof in combination with a resettably-sound zero-knowledge argument
of knowledge showing the correctness of the verifier messages results in a straight-
line simulatable resettable zero-knowledge proof (in contrast to existing solutions
like [CGGM00]). Thus, the simulator can extract the commitments of the other
party, and instead of equivocating them, it just fakes the proofs.
In the following sections we will present two constructions that realize Fhybrid1

wrap
and Fhybrid2

wrap , i.e. the token has access to a UC-secure CRS.

5.4.2 Solution Using One Token with Interaction
Our first solution is based on a single untrusted hardware token, but needs an

interactive setup. Since Lemma 5.2 states that interaction is needed, if we are to
use only one token, an interactive setup phase and a non-interactive online phase is
the best one can hope for.
As explained in Section 5.4.1, it is sufficient to obtain a CRS between the token

and the token receiver to implement F res
2PC. In Figure 5.12, we define an interme-

diate wrapper functionality that provides such a CRS. It is defined analogously to
the resettable hardware wrapper functionality (cf. Section 5.1), with the additional
property that it samples a uniformly random string and provides both parties with
the CRS.
Please note that by sending the common reference string CRS to the token issuer,

we model an artifact that arises in our protocol. For the realization of the resettable
functionality, it suffices that the token itself and its receiver have access to the CRS.
However, this also models that the protocol has to be interactive, as otherwise the
CRS would have to be resettable (cf. Section 5.4.3).
Before we proceed with the formal description of the protocol (cf. Figure 5.13),

we will outline the main ideas behind the construction. On an intuitive level, in
an interactive setup phase we perform a Blum coin-toss [Blu81] between the token
receiver and the token. In the following execution phase, the receiver can just query
the token without any interaction with the token issuer.
One can imagine the token as being a commitment containing the sender’s input

y for the coin toss, but it is locked with a password, so that the receiver cannot
access the token unless he learns the password. The password is the preimage a to
a value b under a one-way function OWF. The receiver has to provide his input x

72 5. Resettable Tamper-Proof Hardware

Functionality Fhybrid1
wrap

Implicitly parametrized by a security parameter κ. Choose the common reference string
CRS uniformly at random of length `.

Creation:
1. Await an input (create,T, t) from the token issuer, where T is a deterministic

Turing machine and t ∈ N. Store (T, t) and give T read access to CRS. Send
(created) to the adversary.

2. Await a message (delivery) from the adversary. Then, send (ready) to the token
receiver.

Execution:
3. Await an input (run, w) from the receiver. If no create-message has been sent,

return a special symbol ⊥. Otherwise, run T on w from its most recent state.
When T halts without generating output or t steps have passed, send ⊥ to the
receiver; otherwise store the current state of T and send the output of T to the
receiver.

4. Upon receiving a message (crs) from the receiver, send (crs,CRS) to both the
token issuer and receiver.

Reset (adversarial receiver only):
5. Upon receiving a message (reset) from a corrupted token receiver, reset T to its

initial state.

Figure 5.12: The wrapper functionality by which we model a resettable tamper-proof
hardware token that provides a CRS to both token issuer and token
receiver. The runtime bound t is merely needed to prevent malicious
token senders from providing a perpetually running program code M;
it will be omitted throughout the rest of the section.

to the sender, who will then compute a signature σ on the resulting CRS x⊕ y and
send the signature to the receiver together with the preimage a and his input y.
Care has to be taken that the token does not obtain the value a because this

would induce a channel between the token issuer and the token after the issuer has
already seen the receiver’s input. Thus the token receiver performs a (resettably-
sound) proof that he is in possession of the password a. This eliminates the possible
channel. If the receiver succeeds in convincing the token, the token will reveal y′.
The receiver just has to check if y = y′, and if that is the case, he is convinced that
the token issuer was actually committed to his input. The receiver can compute the
CRS and provide the token with the signature and the CRS. A formal description
of the protocol follows.

Theorem 5.3. The protocol Πhybrid1
wrap in Figure 5.13 computationally UC-realizes

Fhybrid1
wrap (cf. Figure 5.12) in the F resettable

wrap -hybrid model, given that one-way functions
exist.

To give a clearer presentation of the proof, we prove Theorem 5.3 in two steps.
Security against a corrupted sender is shown in Lemma 5.5, while security against

5.4. Computationally Secure Non-Interactive Two-Party Computation 73

Protocol Πhybrid1
wrap

Let κ be a security-parameter. Let T be a F resettable
wrap instance, further let OWF be a one-

way function and (P,V) be a resettably-sound zero-knowledge argument of knowledge
for the language L = {b | ∃ a ∈ {0, 1}κ s.t. b ← OWF(a)}. Further let SIG be an EUF-
CMA-secure signature scheme.
Let ` = poly(κ) be the desired length of the CRS.

Setup phase:
1. Sender: Let a program M be the sender’s input. Choose a ← {0, 1}κ uniformly

at random and set b ← OWF(a). Choose a y ← {0, 1}` uniformly at random
and generate a key pair (vk, sgk) ← SIG.KeyGen(κ). Program a resettable token
program T with the following functionality:
• Upon receiving a message (unveil) from the receiver, run the verifier program

V with input b. Forward the messages between the receiver and V. If V rejects,
output ⊥; otherwise send y to the receiver.

• Upon receiving a message (verify,CRS, σ), check if SIG.Verify(vk,CRS, σ) =
1, if not abort.

• Upon receiving input (run, w) from the receiver, run M on input w starting
from its most recent state, output whatever M outputs, store the new state
of M and wait for the next message (run, w).

Send (create,T) to T and send (vk, b) to the receiver.

2. Receiver: Wait for the message (ready) from T . Choose x← {0, 1}` uniformly at
random and send x to the sender.

3. Sender: Set CRS = x ⊕ y, compute σ = SIG.Sign(sgk,CRS) and send (y, a, σ) to
the receiver. Output CRS.

4. Receiver: Check if OWF(a) = b, if not abort. Send (unveil) to the token and run
the prover program P with input b and witness a. Forward the messages between
P and T . Let y′ be the output of T . If y 6= y′, abort; otherwise set CRS = x ⊕ y
and send (verify,CRS, σ) to T . Output CRS.

Execution Phase:
5. Receiver: Let w be the receiver’s input. Send (run, w) to T and output whatever
T outputs.

Figure 5.13: Computationally UC-secure protocol realizing Fhybrid1
wrap in the F resettable

wrap -
hybrid model.

a corrupted receiver is shown in Lemma 5.6. Together with the observation that
all building blocks that we use can be realized from one-way functions, the claim
follows.

Lemma 5.5. The protocol Πhybrid1
wrap in Figure 5.13 computationally UC-realizes Fhybrid1

wrap
(cf. Figure 5.12) in the F resettable

wrap -hybrid model against a corrupted sender, given that
(P,V) is computationally zero-knowledge.

Proof. We will prove computational UC security for the case of a corrupted sender.
Let AS be the dummy-adversary for a corrupted sender and let Sim be the non-

74 5. Resettable Tamper-Proof Hardware

black-box simulator for the argument system (P,V) that takes as input a statement
b and the code V∗ of a malicious verifier. The simulator SS is given in Figure 5.14.
We have to show that for all PPT environments Z, RealAS

Πhybrid1
wrap

(Z) ≈
c

IdealSS
Fhybrid1

wrap
(Z).

Simulator SS

• Simulate T for AS and obtain T∗.

• (Setup) Upon receiving a message (vk, b∗) from AS in Step 1, proceed as follows.
– Use the token code T∗ to construct a malicious verifier V∗ for (P,V). V∗

basically simulates the zero-knowledge step of T∗ and outputs the state of T∗
after the zero-knowledge step is over.

– Start the non-black-box simulator Sim with input (V∗, b∗) to obtain a new
token state for T∗ and proceed with the protocol simulation as specified in
Πhybrid1

wrap until T∗ outputs y∗.

– Send a message (crs) to Fhybrid1
wrap and let (crs,CRS) be the answer. Set

x̂ = CRS⊕ y∗ and send x̂ to AS as the message in Step 2.
– Upon receiving a message (y′∗, a∗, σ∗) from Step 3, check if y∗ = y′∗ and

OWF(a∗) = b∗, otherwise abort. Otherwise perform Step 4 by sending
(CRS, σ∗) to T∗.

– Send (create,T∗) to Fhybrid1
wrap .

• (Execution) Simulated straightforwardly according to Πhybrid1
wrap .

Figure 5.14: Simulator for a corrupted sender in the protocol Πhybrid1
wrap .

The simulator follows the following strategy. It obtains the possibly malicious
token program from AS and uses this code to construct a malicious verifier for the
argument system (P,V). Once this is done, SS applies the non-black-box simulator
for the argument system to the verifier program and generates a fake proof that it
knows a preimage of b under OWF. The transcript of the simulation is integrated
into the token program such that it will continue to output the sender’s input y.
Then the simulator can choose his input depending on the CRS from Fhybrid1

wrap and
proceed with the protocol as specified in Πhybrid1

wrap .
We will now show indistinguishability of the following experiments.

Experiment 0: This is the real model.

Experiment 1: Identical to Experiment 0, except that when the receiver sends an
unveil-message to T∗, S1 runs the non-black-box simulator Sim on the verifier
V∗ (as described in Figure 5.14) instead of letting the prover P interact with
T∗. S1 then uses the output of Sim as the most recent state s to continue the
computation of T∗.

Experiment 2: Identical to Experiment 1, except that S2 runs the unveil-phase
of T∗ before interacting with AS, thereby obtaining y∗. Set x̂ = CRS ⊕ y∗,
where CRS is a uniformly random common reference string. This is the ideal
model.

5.4. Computationally Secure Non-Interactive Two-Party Computation 75

The indistinguishability of Experiment 0 and Experiment 1 follows from the com-
putational zero-knowledge property of the argument system (P,V) (cf. Lemma 5.5.1).
Experiments 1 and 2 are identically distributed as the interactions of the receiver
with T and AS are independent of one another in both experiments and thus ex-
changeable.
Lemma 5.5.1. From Z’s view, Experiment 0 and Experiment 1 are computationally
indistinguishable, provided that the argument system (P,V) is computational zero-
knowledge.

Proof. Fix a PPT-environment Z. Assume for the sake of contradiction that Z
distinguishes Experiment 0 and Experiment 1 with non-negligible advantage ε. We
will construct a malicious verifier V∗ and a distinguisher D from Z, such that D
distinguishes the random variables 〈P(a),V∗〉(b) and Sim(b,V∗) with advantage ε for
some a and b.
Fix the random tape of Z such that Z with these fixed coins distinguishes Exper-

iment 0 and Experiment 1 with non-negligible advantage ε. By a simple averaging
argument, such coins must exist. Let (a, b) with OWF(a) = b be the fixed tuple
that corresponds with this Z. The malicious verifier V∗ is constructed as in the
description of the simulator.
The distinguisher D is constructed as follows. It behaves like S1, but does not

compute the new state for T∗by itself, instead it uses the challenge of the distin-
guishing experiment as the state. Clearly, if D’s input is distributed as 〈P(a),V∗〉(b),
then Z’s view is distributed identical to Experiment 0. If, on the other hand, D’s
input is distributed according to Sim(b,V∗), then Z’s view is distributed identical to
Experiment 1. Thus D and V∗ contradict the zero-knowledge property of (P,V). �

This concludes the proof of Lemma 5.5.

We move on to show UC-security against a corrupted receiver.

Lemma 5.6. The protocol Πhybrid1
wrap in Figure 5.13 computationally UC-realizes Fhybrid1

wrap
(cf. Figure 5.12) in the F resettable

wrap -hybrid model against a corrupted receiver, given
that OWF is a one-way function, SIG is an EUF-CMA-secure signature scheme and
(P,V) is an argument of knowledge.

Proof. We have to show that RealAR
Πhybrid1

wrap
(Z) ≈

c
IdealSR

Fhybrid1
wrap

(Z) for all PPT environ-
ments Z. Let AR be the dummy adversary for a corrupted receiver. Let Ext be the
knowledge-extractor for the argument of knowledge-system (P,V). The simulator
SR against a corrupted receiver is depicted in Figure 5.15.
The simulator behaves very similar to an honest sender, but by simulating the

hybrid functionality, he is able to adapt the token output ŷ of the simulated reset-
table token after he received the input x∗ of a corrupted receiver. Thus he can set
the value ŷ = CRS⊕ x∗ to match the output of the ideal functionality Fhybrid1

wrap .
We show the indistinguishability of a real protocol execution and the output of

the simulator in a series of hybrid experiments.

Experiment 0: This is the real model.

Experiment 1: Identical to Experiment 0, except that S1 outputs ⊥ if AR sends
an unveil-query to T for which the verifier program V accepts although AR
has not sent his input x∗.

76 5. Resettable Tamper-Proof Hardware

Simulator SR

• Simulate T for AR. Let Q denote the set of token inputs that AR inputs into the
token.

• (Setup) Simulate Step 1 straightforwardly according to Πhybrid1
wrap with b̂← OWF(â).

Let x∗ be the answer from AR in Step 2. For Step 3, send (crs) to Fhybrid1
wrap and

let (crs,CRS) be the answer. Set ŷ = CRS⊕ x∗, compute σ̂ ← SIG.Sign(sgk,CRS)
and output (ŷ, â, σ̂) to AR.

• (Token) Simulate the token in Step 4 as follows.
– If AR sends a unveil-message to T although he did not send an x∗ before-

hand, output ⊥ regardless if V accepts or not; otherwise output ŷ.
– If AR sends a message (verify,CRS∗, σ∗) to T and has not yet sent an x∗ or

SIG.Verify(vk,CRS∗, σ∗) = 0, output ⊥.

• (Execution) If AR sends a tuple (run, w) to T in Step 5, but he has not yet sent
a tuple (CRS∗, σ∗) to T with SIG.Verify(vk,CRS∗, σ∗) = 1, output ⊥. Otherwise
forward (run, w) to Fhybrid1

wrap and output whatever Fhybrid1
wrap outputs.

• (Reset) Whenever AR sends a message (reset) to T , send (reset) to Fhybrid1
wrap and

reset the state of T .

Figure 5.15: Simulator for a corrupted receiver in the protocol Πhybrid1
wrap .

Experiment 2: Identical to Experiment 1, except that S2 sets ŷ = CRS⊕x∗, where
CRS is a uniformly chosen common reference string.

Experiment 3: Identical to Experiment 2, except that S3 aborts if AR sends a a tu-
ple (verify,CRS∗, σ∗) to T , for which it holds that SIG.Verify(vk,CRS∗, σ∗) = 1
and CRS∗ has not been signed by S3. This is the ideal model.

Experiment 0 and Experiment 1 are computationally indistinguishable given that
the one-way function OWF is strongly one-way and (P,V) is an argument of knowl-
edge (cf. Lemma 5.6.1). Experiment 1 and Experiment 2 are identically distributed
as both x∗ and CRS are uniformly and independently distributed. The indistin-
guishability of Experiment 2 and Experiment 3 follows directly from the EUF-CMA-
security of SIG.
Lemma 5.6.1. From Z’s view, Experiment 0 and Experiment 1 are computationally
indistinguishable, given that OWF is a one-way function and the argument system
(P,V) is an argument of knowledge.

Proof. Experiment 0 and Experiment 1 are identically distributed conditioned on
the event that AR does not convince V that it possesses an a such that OWF(a) = b
before sending his own coins x∗ to the sender. Thus, a Z distinguishing between
Experiment 0 and Experiment 1 must succeed in making AR convince T of this
before receiving such a value a from the sender.
Assume that Z causes this event with non-negligible probability ε. We will con-

struct an adversary B from Z that inverts the one-way function OWF with non-
negligible probability. Let m = poly(κ) be an upper bound on the number of
unveil-messages that AR sends to T . Let b′ be the image on which B is supposed to

5.4. Computationally Secure Non-Interactive Two-Party Computation 77

invert OWF. B first chooses an index i ∈ {1, . . . ,m} uniformly at random. It then
simulates the real protocol to Z, except that it sets b = b′ instead of generating b
by b← OWF(a). The simulation proceeds until the i-th call of AR to T .
If the computation of Z continued after this point, the subsequent messages passed

by AR would correspond to the messages of a malicious prover P∗ for the argument
system (P,V). Thus, B can construct P∗ from the state of the halted Z as follows:
P∗ basically continues the simulation of Z at its current state and forwards messages
between AR and an external verifier V. B can now take the code of P∗ and run the
extractor Ext(b,P∗). Let â be the output of Ext. B outputs a and terminates.
First, notice that from Z’s view, this simulation is identically distributed to a real

protocol run. Thus, the event that AR convinces T that it possesses a preimage a
of b′ happens with probability at least ε. With probability at least 1

m
, the index i

chosen by B matches the index of the proof where this event happens. Therefore,
Pr[〈P∗,V〉 = 1] ≥ ε

m
.

Since (P,V) is an argument of knowledge, given a successful proof the extractor
will extract a witness for the statement, i.e. a preimage a∗ of b′, with overwhelming
probability. In more detail, it holds that Pr[Ext(b′,P∗) ∈ wL(b)] > Pr[〈P∗,V〉 =
1]− ν ≥ ε

m
− ν for some negligible extraction error ν. Thus, with probability ε

m
− ν,

which is non-negligible, B outputs a preimage a∗ of b′ under the one-way function
OWF, thus breaking the one-wayness property of OWF. �

This concludes the proof of Lemma 5.6.

5.4.3 Solution Using Two Resettable Tokens Without Inter-
action

The solution presented in the previous section needs an interactive setup phase.
This is directly implied by Lemma 5.2 since we used only one F resettable

wrap -instance. We
now show that it is possible to achieve non-interactive two-party computation for
resettable functionalities using only two F resettable

wrap -instances. This is optimal with
respect to the number of tokens used and also with respect to the techniques we use,
i.e. non-black-box simulation.
Before we discuss the protocol, we present an additional intermediate wrapper

functionality Fhybrid2
wrap (cf. Figure 5.16) similar to the one from Section 5.4.2, but

with the additional property that the CRS is resettable by the token receiver. This
cannot be prevented if we do not allow interaction because both tokens are resettable
and thus each CRS that is created between the tokens and the receiver must also
be resettable. The functionality in Figure 5.16 thus samples a new CRS after each
reset using a random oracle.
This hybrid wrapper functionality can straightforwardly be used to implement
F res

2PC as described in Section 5.4.1. We move on to show our realization of Fhybrid2
wrap

in the F resettable
wrap -hybrid model. The idea behind the protocol is similar to the in-

teractive solution from Section 5.4.2, but with some important changes. If we were
to use the protocol based on a single token and just store the sender functionality
in another token, the receiver could learn the password a and then reset the tokens
and choose his input adaptively. Thus, we now require the receiver to first compute
a commitment c to his input x. He then provides x and a resettably-sound proof to
the first token which ensures that c is a proper commitment, and obtains a signature

78 5. Resettable Tamper-Proof Hardware

Functionality Fhybrid2
wrap

Implicitly parametrized by a security parameter κ. Let H be a random oracle that maps
to strings of length `.

Creation:
1. Await an input (create,T, t) from the token issuer, where T is a deterministic

Turing machine and t ∈ N. Set the common reference string CRS = H(1). Store
(T, t) and give T read-access to CRS. Send (created,CRS) to the adversary.

2. Await a message (delivery) from the adversary. Then, send (ready,CRS) to the
token receiver.

Execution:
3. Await an input (run, w) from the receiver. If no create-message has been sent,

return a special symbol ⊥. Otherwise, run T on w from its most recent state.
When T halts without generating output or t steps have passed, send ⊥ to the
receiver; otherwise store the current state of T and send the output of T to the
receiver.

Reset (adversarial receiver only):
4. Upon receiving a message (reset, j) from a corrupted token receiver, set the com-

mon reference string to CRS = H(j), send (crs,CRS) to the corrupted receiver
and reset T to its initial state.

Figure 5.16: The wrapper functionality by which we model a resettable tamper-
proof hardware token that provides a CRS to the token and the token
receiver. The runtime bound t is merely needed to prevent malicious
token senders from providing a perpetually running program code M;
it will be omitted throughout the rest of the section.

σ on his commitment together with a value y that is derived from the commitment
using a PRF.
The signature σ and the commitment c are used to unlock the second token via

another resettably-sound proof. The proof states that the receiver knows a signature
on the commitment. If the second token accepts the proof, it will compute the value
y′ again by applying a PRF. The receiver compares both values and if they match,
he knows that the tokens behave consistently. The formal description of the protocol
is given in Figure 5.17.
We will now show the following theorem.

Theorem 5.4. The protocol Πhybrid2
wrap in Figure 5.17 computationally UC-realizes

Fhybrid2
wrap (cf. Figure 5.16) in the F resettable

wrap -hybrid model, given that one-way functions
exist.

The proof is split into a security proof against a corrupted sender (cf. Lemma 5.7)
and a proof against a corrupted receiver (cf. Lemma 5.8). All primitives that we use
in the protocol can be realized from one-way functions, thus the claim follows.

Lemma 5.7. The protocol Πhybrid2
wrap in Figure 5.17 computationally UC-realizes Fhybrid2

wrap
(cf. Figure 5.16) in the F resettable

wrap -hybrid model against a corrupted sender, given

5.4. Computationally Secure Non-Interactive Two-Party Computation 79

Protocol Πhybrid2
wrap

Let PRF be a pseudorandom function with output length `, COM be a 2-message
statistically binding commitment scheme and SIG be an EUF-CMA-secure signature
scheme with deterministic signing algorithm. Let (P1,V1) be a resettably-sound ar-
gument of knowledge for the language L1 = {(x, c) | ∃ d s.t. COM.Open(c, d, x) = 1}
and (P2,V2) be a resettably-sound argument of knowledge for the language L2 =
{(vk, c) | ∃σ s.t. SIG.Verify(vk, c, σ) = 1}. Let T1 and T2 be two instances of F resettable

wrap .

Setup phase:
1. Sender: Let a program M be the sender’s input. Sample a seed s← {0, 1}κ for the

pseudorandom function PRF, a key k for COM and generate a key pair (sgk, vk)←
SIG.KeyGen(κ). Program two token functionalities T1 and T2 as follows.
• T1: Choose a random tape of appropriate length and set a flag ready = 0.

– Upon receiving a message (commit, x, c) from the receiver, run the verifier
program V1 with input (x, c). Forward the messages between V1 and the
receiver and output ⊥ if V1 rejects. Otherwise, compute y ← PRF(c)
and σ ← SIG.Sign(sgk, c). Set the flag ready = 1, set CRS = x ⊕ y and
output (y, σ).

– Upon receiving input (run, w) from the receiver, check if ready = 1. If
not, abort; otherwise run M on input w starting from its most recent
state, output whatever M outputs and store the new state of M.

• T2: Choose a random tape of appropriate length.
– Upon receiving a message (verify, c) from the receiver, run the verifier

program V2 with input (vk, c). Forward the messages between V2 and
the receiver and output ⊥ if V2 rejects. Otherwise, compute y ← PRF(c)
and output y.

Send (create,T1) to T1 and (create,T2) to T2. Additionally, send (vk, k) to the
receiver.

2. Receiver:
• Choose x ← {0, 1}` uniformly at random and compute (c, d) ←

COM.Commit(k, x).
• Send (commit, x, c) to T1. Run the prover program P1 with input (x, c, d) and

forward the messages between P1 and T1.
• Let (y, σ) be the answer from T1. Check if SIG.Verify(vk, σ, c) = 1, otherwise

abort. Send (verify, c) to T2 and run the prover P2 with input (vk, c, σ).
• Let y′ be the output of T2. Check if y = y′, if not abort. Otherwise, set

CRS = x⊕ y.

Execution phase:
3. Receiver: Let w be the receiver’s input. Send (run, w) to T1 and output whatever
T1 outputs.

Figure 5.17: Computationally UC-secure protocol realizing Fhybrid2
wrap in the F resettable

wrap -
hybrid model.

80 5. Resettable Tamper-Proof Hardware

that COM is computationally hiding and (P1,V1) and (P2,V2) are computational
zero-knowledge.

Proof. We will prove computational UC-security against a corrupted sender. Let
therefor AS be the dummy-adversary and Z be a PPT-environment. We first state
the sender simulator SS in Figure 5.18. Let Sim1 and Sim2 be the non-black-box
simulators for the argument systems. We will show that for all PPT environments
Z, RealAS

Πhybrid2
wrap

(Z) ≈
c

IdealSS
Fhybrid2

wrap
(Z).

The simulator uses the tokens in reverse order compared to a real protocol exe-
cution. He uses the code of the second token from the sender to get the input y of
the sender by faking a proof for the argument system (P2,V2). Once he knows the
input, he constructs from the code of the first token a new token that just adjusts
the CRS as specified by the ideal functionality and then allows the receiver to run
the actual token functionality on arbitrary inputs.

Simulator SS

• Simulate T1 and T2 for AS and obtain T∗1 and T∗2.

• (Setup) Upon receiving (vk, k) from AS in Step 1, proceed as follows.
– Compute (ĉ, d̂) ← COM.Commit(k, 0) and use the code T∗2 to construct a

verifier program V∗2 that runs the zero-knowledge step of T∗2 when it is given
input ĉ. The output of V∗2 is the state of T2 after the zero-knowledge step.

– Start the non-black-box simulator Sim2 with input (V∗2, vk, ĉ) to obtain a new
token state for T∗2 and continue the execution of T∗2 with this state until it
outputs y∗.

– Program a token TS that executes Step 2 with the receiver.
∗ Read the common reference string CRS provided by Fhybrid2

wrap and set
x̂ = CRS⊕ y∗.

∗ Use the code T∗1 to construct a verifier program V∗1 that runs the zero-
knowledge step of T∗1 when it is given input (x̂, ĉ). The output of V∗2 is
the state of T2 after the zero-knowledge step.

∗ Start the non-black-box simulator Sim2 with input (V∗2, x̂, ĉ) to obtain a
new token state for T∗2 and continue the execution of T∗2 with this state
until it outputs (y′∗, σ∗). Abort if y′∗ = y∗.

∗ Upon receiving a message (run, w) from the receiver, run T∗1 from its
most recent state with input (run, w).

– Send (create,TS) to Fhybrid2
wrap .

• (Execution) Simulated straightforwardly according to Πhybrid2
wrap .

Figure 5.18: Simulator for a corrupted sender in the protocol Πhybrid2
wrap .

Consider the following series of hybrid experiments.

Experiment 0: This is the real model.

Experiment 1: Identical to Experiment 0, except that S1 does the following. In-
stead of running P2 with input (vk, c, σ∗), it runs Sim2 with input (V∗2, vk, c)
(where V∗2 is as described in Figure 5.18).

5.4. Computationally Secure Non-Interactive Two-Party Computation 81

Experiment 2: Identical to Experiment 1, except that S2 does the following. In-
stead of running P1 with input (x, c, d), it runs Sim1 with input (V∗1, x, c) (where
V∗1 is as described in Figure 5.18).

Experiment 3: Identical to Experiment 2, except that the commitment c is com-
puted as (ĉ, d̂)← COM.Commit(k, 0) instead of (c, d)← COM.Commit(k, x).

Experiment 4: Identical to Experiment 3, except that S4 first interacts with T2
and then with T1. Moreover, it sets x̂ = CRS ⊕ y∗ instead of choosing x
uniformly at random. This is the ideal model.

Experiment 0 and Experiment 1 are indistinguishable, given that the argument
system (P1,V1) is zero-knowledge. By the same argumentation, Experiments 1 and 2
are indistinguishable given that (P2,V2) is zero-knowledge. Both indistinguishability
proofs are almost identical to the proof of Lemma 5.5.1 and thus omitted. The indis-
tinguishability of Experiment 2 and Experiment 3 follows straightforwardly from the
hiding property of the commitment scheme COM. Experiment 3 and Experiment 4
are identically distributed as in both experiments y∗ is independently and uniformly
distributed.

Lemma 5.8. The protocol Πhybrid2
wrap in Figure 5.17 computationally UC-realizes Fhybrid2

wrap
(cf. Figure 5.16) in the F resettable

wrap -hybrid model against a corrupted receiver, given
that SIG is EUF-CMA-secure, PRF is a pseudorandom function, COM is statistically
binding and (P1,V1) and (P2,V2) satisfy the argument of knowledge property.

Proof. We will prove computational UC-security against a corrupted receiver R. We
therefore first provide the simulator SR in Figure 5.19.
We will prove computational UC-security against a corrupted receiver, i.e. we will

show that for all PPT environments Z, RealAR
Πhybrid2

wrap
(Z) ≈

c
IdealSR

Fhybrid2
wrap

(Z) where AR

is the dummy-adversary. We therefore first provide the simulator SR in Figure 5.19.
The simulation strategy is straightforward. The simulator learns the queries to

both tokens and can adapt their outputs to the CRS that is provided by the ideal
functionality. To show indistinguishability of a real protocol run and a simulated
protocol run, consider the following series of hybrid experiments.

Experiment 0: This is the real model.

Experiment 1: Identical to Experiment 0, except that S1 computes ŷ not as ŷ ←
PRF(c) but as follows. If a tuple (x′∗, ŷ′, c′∗, j′) has been stored with c′∗ = c∗,
set ŷ = ŷ′. Otherwise, choose CRS uniformly at random and set ŷ = x∗⊕CRS.
In addition, store the tuple (x∗, ŷ, c∗).

Experiment 2: Identical to Experiment 1, except that S2 simulates T1 such that
it outputs ⊥ if V1 accepts, even though a tuple (x′∗, ŷ′, c′∗, j′) has been stored
with x′∗ 6= x∗ and c′∗ = c∗.

Experiment 3: Identical to Experiment 2, except that S3 simulates T2 so that it
outputs ⊥ if V2 accepts, even though no tuple (x′∗, ŷ′, c′∗, j′) with c′∗ = c∗ has
been stored. This is the ideal experiment.

We first show in Lemma 5.8.1 that Experiments 0 and 1 are indistinguishable
given that PRF is a pseudorandom function.

82 5. Resettable Tamper-Proof Hardware

Simulator SR

• Simulate T1 and T2 for AR and define a counter j = 1.

• (Setup) Simulate Step 1 straightforwardly according to Πhybrid2
wrap , send the resulting

verification key vk to AR and store sgk.

• (Token) Simulate the tokens in Step 2 as follows.
– If AR sends a message (commit, x∗, c∗) to T1, continue the simulation of T1

until the verifier program V1 produces a result. If it rejects, abort; otherwise
do the following. If V1 accepts, even though a tuple (x′∗, ŷ′, c′∗, j′) has already
been stored with x′∗ 6= x∗ and c′∗ = c∗, output ⊥. Else, compute σ̂ ←
SIG.Sign(sgk, c∗), output (ŷ, σ̂) and send (reset, j′) to Fhybrid2

wrap . If no tuple
has been stored at all, increment j by 1 and send (reset, j) to Fhybrid2

wrap to
obtain (crs,CRS). Set ŷ = CRS ⊕ x∗, compute σ̂ ← SIG.Sign(sgk, c∗) and
store (x∗, ŷ, c∗, j).

– If AR sends a message (verify, c∗) to T2, continue the simulation of T2 until
the verifier program V2 produces a result. If V2 rejects, abort; otherwise if
V2 accepts for c′∗ and no tuple (x′∗, ŷ′, c′∗, j′) with c′∗ = c∗ has been stored,
output ⊥. Otherwise output ŷ′.

– If AR sends a message (reset) to T2, reset T2.

• (Execution) If AR sends a message (run, w) in Step 3, but no tuple (x∗, ŷ, c∗, j)
has been stored, abort. Otherwise, send (run, w) to Fhybrid2

wrap and output whatever
Fhybrid2

wrap outputs.

Figure 5.19: Simulator for a corrupted receiver in the protocol Πhybrid2
wrap .

Lemma 5.8.1. Given that PRF is a pseudorandom function, Experiment 0 and
Experiment 1 are computationally indistinguishable from Z’s view.

Proof. Fix a PPT-environment Z that distinguishes between Experiment 0 and
Experiment 1 with non-negligible advantage ε. We will construct a distinguisher D
that distinguishes between a pseudorandom function PRF and a random oracle with
advantage ε. D has oracle access to a function F which is either a random function
or a pseudorandom function. D simulates to Z the protocol as specified, except that
whenever the pseudorandom function PRF is evaluated, D makes an oracle call to
F.
First assume that F is a pseudorandom function with uniformly chosen seed

s ← {0, 1}κ. Then Z’s view is distributed identically to Experiment 0. If, on
the other hand, F is a random function, then Z’s view is identically distributed
to Experiment 1. Therefore, the distinguishing-advantage of D is exactly ε, which
contradicts the pseudorandomness property of PRF. �

The indistinguishability of Experiment 1 and Experiment 2 follows from the statis-
tical binding property of the commitment scheme COM. The event that T1 outputs
⊥ even though V1 accepts happens only when AR manages to convince T1 that c∗ is
a commitment to two different values x∗ and x′∗. Since COM is statistically bind-
ing, this happens only with negligible probability, and AR would thus break the
soundness of the argument system (P1,V1).

5.4. Computationally Secure Non-Interactive Two-Party Computation 83

Lemma 5.8.2. Given that (P1,V1) suffices the computational soundness property
and COM is a statistically binding commitment, Experiment 1 and Experiment 2 are
computationally indistinguishable from Z’s view.

Proof. Fix a PPT-environment Z that distinguishes between Experiment 1 and
Experiment 2 with non-negligible advantage ε. First note that Experiment 1 and
Experiment 2 are identically distributed if the event that T1 outputs ⊥, even though
V1 accepts, does not happen. Therefore, assume that AR succeeds in making T1
output ⊥ even though V1 accepts. Assume further that AR makes at most m =
poly(κ) calls to the token T1. We will construct a malicious prover P∗ that breaks the
soundness property of the argument system (P1,V1) with non-negligible probability.
We use a variant of the soundness experiment where the malicious prover announces
a false statement and then convinces the verifier that this statement is true. A
simple averaging argument yields that this soundness notion immediately implies
the regular soundness notion.

P∗ first chooses an index i ∈ {1, . . . ,m} uniformly at random. P∗ then simulates
the interaction of Z and S2 until AR makes the i’th call to T1. P∗ now announces the
statement (x∗, c∗) sent by AR to his own soundness experiment and then redirects
the prover-messages sent to T1 to the verifier V it interacts with. P∗ terminates after
this argument.
Due to the statistical binding property of COM, c∗ contains a unique value x∗

except with negligible probability ν. This means that if AR manages to convince T1
in Experiment 2 that both (x∗, c∗) ∈ L1 and (x′∗, c∗) ∈ L1 for x∗ 6= x′∗, at least one
of the statements must be false with overwhelming probability.
We claim that P∗ convinces V of a false statement with probability at least ε

m
−ν.

First note that the probability that such a false statement occurs in Experiment 2
is at least ε as Z’s distinguishing advantage for Experiment 1 and Experiment 2 is
at least ε and Z cannot (statistically) distinguish those two experiments if no false
statement occurs. As there are at mostm different statements proven in the protocol
run, the probability that the index i coincides with the index of a false statement is
at least 1

m
. Combined, P∗ proves a false statement with probability at least ε

m
− ν,

which is non-negligible. This contradicts the soundness property of the argument
system (P1,V1). �

Experiment 2 and Experiment 3 are indistinguishable given that SIG is an EUF-
CMA-secure signature scheme. If T2 outputs ⊥ even though the verifier V2 accepts,
then AR has convinced V2 that it possesses a signature on a commitment c∗ for which
it never received a signature σ from T1. The proof of knowledge property of (P2,V2)
enables us to extract such a forged signature, contradicting the EUF-CMA-security
of SIG.

Lemma 5.8.3. Given that (P2,V2) suffices the proof of knowledge property and SIG
is EUF-CMA-secure, Experiment 2 and Experiment 3 are computationally indistin-
guishable from Z’s view.

Proof. From Z’s view, Experiment 2 and Experiment 3 are identically distributed
conditioned on the event that AR does not convince T2 that it possesses a valid
signature σ for a commitment c∗ before receiving such a σ from T1.
Thus, a Z distinguishing between Experiment 2 and Experiment 3 must convince
T2 of this before receiving σ on c∗ from T1. Assume that Z causes this event with

84 5. Resettable Tamper-Proof Hardware

non-negligible probability ε. We will construct an adversary B that breaks the EUF-
CMA-security of the signature scheme SIG with non-negligible probability. Assume
that AR makes at most m = poly(κ) calls to the token T2.
Let vk be B’s input from the EUF-CMA-experiment. B first chooses an index

i ∈ {1, . . . ,m} uniformly at random. Let S ′3 be a simulator the behaves exactly like
S3 except for two modifications. First, S ′3 uses the vk provided by the EUF-CMA-
experiment instead of generating a key pair (vk, sgk) by itself. Second, when S3 signs
a message c∗ by computing σ ← SIG.Sign(sgk, c∗), S ′3 replaces this by a call to the
signing oracle that is provided by the EUF-CMA experiment. B obtains a signature
σ for c∗ and simulates the interaction between Z and S ′3 until AR makes the i’th call
to T2. Let c∗ be the message sent by AR. B now halts the computation of Z. If the
computation of Z would continue after this point, the subsequent messages passed
by AR correspond to the messages of a malicious prover P∗ for the argument system
(P2,V2). Thus, B can construct a malicious prover P∗ from the state of the halted
Z which basically continues the simulation of Z at its current state and forwards
messages between AR and an external verifier V2.
B can now take the code of P∗ and run the extractor Ext2(c∗,P∗). Let σ̂ be the

output of Ext. B outputs σ̂ to the EUF-CMA-experiment and terminates.
First notice that from Z’s view, this simulation is identically distributed to Exper-

iment 2. Thus, the event that AR succeeds in convincing T2 that it possesses a valid
signature for a commitment c∗ happens with probability at least ε. With probability
at least 1

m
, the index i chosen by B matches the index of the proof where this event

happens. Therefore, Pr[〈P∗,V〉 = 1] ≥ ε
m
. Due to the proof of knowledge property of

the argument system (P2,V2), Pr[Ext(c∗,P∗) ∈ wL2(c∗)] > Pr[〈P∗,V〉 = 1]−ν ≥ ε
m
−ν

for some negligible ν. Thus, with probability ε
m
−ν which is non-negligible, B outputs

a valid signature σ on a commitment c∗ for which it has not queried its signature
oracle, thus breaking the EUF-CMA-security of the signature scheme SIG. �

This concludes the proof of Lemma 5.8.

5.4.4 Implications

One important and very powerful application of non-interactive two-party com-
putation from resettable hardware that we want to mention here is virtual black-box
(VBB) obfuscation. The concept of virtual black-box obfuscation was introduced
by Barak et al. [BGI+01, BGI+12] and states that an adversary with direct access
to a program cannot compute any predicate about the program that he could not
have computed having just oracle access to the program. This means in particular
that the VBB-obfuscated code of a program leaks no additional information other
than the input/output behavior of the program. As it turns out, this definition of
obfuscation is very strong, and Barak et al. [BGI+01, BGI+12] show that this notion
of obfuscation is not achievable for all programs in the plain model.
In the model of tamper-proof hardware, however, this notion can be achieved triv-

ially: just store the program inside a tamper-proof hardware token and send it to the
receiver. Of course, this solution is very inefficient, requires a trusted token sender
and a possibly stateful token. Thus, the challenge is to obtain a scheme where the
token is untrusted, resettable and only has to perfom a small amount of work com-
pared to the user of the obfuscated program. Solutions in the resettable tamper-proof

5.5. Relation to Two-Party Computation 85

hardware model have been proposed by Goyal et al. [GIS+10] and, independently of
our solution but with similar techniques, by Bitansky et al. [BCG+11].
We propose the following solution. Based on the resettable two-party computation

from the previous sections, we implement a conditional decryption functionality for
a fully homomorphic encryption (FHE) scheme. This conditional decryption func-
tionality outputs the decryption of a value under the secret key of the FHE scheme if
the encrypted input satisfies some predefined condition. In our case, this condition
is a proof that the encrypted query was created by evaluating the obfuscated (i.e.
encrypted) program with an input. Now, the sender uses the FHE scheme to encrypt
a circuit representation of the program which can be homomorphically evaluated.
Thus, most of the work is delegated to the receiver of the token, and the token only
has to verify a proof and decrypt a value. In contrast to the solution presented by
Goyal et al. [GIS+10], our protocol does not require the receiver to query the token
for each gate of an obfuscated circuit. However, we need stronger computational
assumptions.
A detailed description of our obfuscation scheme including a UC security proof is

available via ePrint [DMMQN11], but this is not the focus of this thesis and hence
we omit it here.

5.5 Relation to Two-Party Computation
In this chapter, we investigated the cryptographic strength of resettable tamper-

proof hardware in this chapter. Our main focus was on reducing the computational
assumptions and the number of tokens compared to previous results. To that end,
we managed to find lower bounds for the number of tokens necessary and proved that
non-black-box techniques are necessary to reach these lower bounds. Our protocols
achieve these lower bounds and require only one-way functions. They are hence op-
timal both with respect to the number of tokens and the computational assumptions
we made. Regarding the feasibility of (non-interactive) two-party computation, our
results imply the following.

Computationally secure two-party computation: UC-secure two-party com-
putation can be obtained e.g. by applying our compiler CZK from Section 5.3.1
to the statistically UC-secure protocol of Döttling et al. [DKMQ11] for obliv-
ious transfer. This results in a computationally UC-secure OT protocol based
on resettable hardware. By applying general feasibility results, e.g. [Kil88,
IPS08], this implies UC-secure two-party computation. This is an improve-
ment over Chandran et al. [CGS08] who need enhanced trapdoor permutations
and 2 tokens, and also an improvement over [GIS+10, HPV15] who base OT
on one-way functions and polynomially many tokens, even more so since they
require that only one party must be able to produce tokens.

Computationally secure non-interactive two-party computation: Our con-
structions Πhybrid1

wrap and Πhybrid2
wrap shown in Sections 5.4.2 and 5.4.3 provide a CRS

which can be used in conjunction with results for resettably-secure [GS09]
and UC-secure [CLOS02] two-party computation to achieve UC-secure non-
interactive two-party computation from resettable hardware tokens. This is
an improvement over [GIS+10] who only achieved stand-alone security.

86 5. Resettable Tamper-Proof Hardware

computational 2PC statistical 2PC
Model interactive non-interactive interactive non-interactive
stateful 3 3 3 3

stateful
(inc. com.) 3 3 3 3

stateful
(outg. com.) 3 3 7(3) 7

resettable 3(1 Token) 3(2 Tokens)
7(3)

Commitment
[DS13]

7

bounded-
resettable 3 3 3 (3)

reusable
resettable 3 3 7(3) 7

Table 5.20: Feasibility of interactive and non-interactive two-party computation
from resettable tamper-proof hardware.

Due to the strong impossibilities concerning statistically secure two-party compu-
tation from resettable tokens (cf. Section 5.2) and already existing constructions for
the remaining functionalities, statistically secure protocols are not further investi-
gated in this chapter. Table 5.20 thus summarizes the state of the art.

6. Bounded-Resettable
Tamper-Proof Hardware

From the results discussed in Chapter 5, we know that statistically secure two-party
computation from resettable hardware is impossible for most interesting functional-
ities [GIMS10] (with the exception of commitments [GIMS10, DS13]). This stems
from the fact that either the tokens completely hide their secret information, or leak
all of the information. A malicious sender can thus cheat in the protocol, or the
receiver can break the security. To circumvent this problem, it would be necessary
to stop the information leakage at some point. If we stick to the previously de-
fined model of resettable hardware, this is not possible. With each reset, the token
receiver learns more information.
Our approach is to specify an upper bound on the number of resets that the

token receiver can perform. We thus define a new notion of resettable tamper-proof
hardware tokens that we call bounded-resettable hardware tokens, which can only be
reset an a priori fixed number of times. One can imagine numerous scenarios where
such a bound is naturally given.

Security for limited time. It is often the case that the security of a protocol is
only needed for some limited amount of time (which is usually the case for
commitments) and it therefore suffices to estimate an upper bound on the
number of resets during the lifetime of the commitment.

Lifespan of hardware token. Physical hardware has a limited lifespan, e.g. typ-
ical smartcards have to be replaced after 5 years of use.1 Thus security does
not have to hold after that time.

Self-destructing hardware tokens. A token that self-destructs or makes its in-
ternal program inaccessible (i.e. an inherently stateful token) might be inter-
rupted or delayed by an adversary, meaning the adversary might be able to

1See e.g. http://www.datacard.com/knowledge-center/white-papers for a comprehensive
overview of current smartcard technologies and lifetimes. The paper on “Durability of Smart
Cards for Government eID” specifically mentions lifespans between 3 and 10 years, depending
on the used material.

87

http://www.datacard.com/knowledge-center/white-papers

88 6. Bounded-Resettable Tamper-Proof Hardware

query the token with several additional inputs before the token is actually
useless. Thus a limited number of resets might be possible.

Finding a bound for all of the above mentioned scenarios seems particularly feasible
because it can be derived from the response time of the hardware token and some
reasonable safety margin. Interestingly, the bound only influences the token program
while no additional assumption for the resettable token has to be made. Thus, in
practice, standardized smart cards can be used as bounded-resettable hardware with
no difference to the resettable token model.
Similar to the model of resettable hardware, where Goyal et al. [GIMS10] observe

some interesting connections to the PCP model [FGL+91, AS92] and the interactive
PCP model [KR08], our model maintains the same connections for bounded-query
PCPs [DFK+93, KPT97]. In the PCP model, the prover sends the PCP to a PCP
oracle that gives the verifier black-box access to the proof, which is very similar to
storing the proof inside a tamper-proof token. The PCP cannot keep a state (it is
usually defined to be a bit string), i.e. some type of resettable hardware provides an
accurate representation. Depending on whether a considered protocol contains direct
interaction between the token issuer and the token receiver or not, we are either in
the PCP or in the IPCP model, respectively. The difference between the model
we consider in the following and the (interactive) PCP model is that maliciously
issued tokens/oracles can be stateful. This seems reasonable since it is hard to
verify that a malicious token is stateless and executes a predefined functionality.
We show that this weakened version of the PCP model still allows non-interactive
zero-knowledge with O(1) rounds of oracle queries and even general (interactive)
secure computation. Moreover, our construction for zero-knowledge matches the
result on ZK-PCPs by Kilian et al. [KPT97] in query/communication complexity,
even with malicious stateful PCP oracles. The protocol of Kilian et al. [KPT97] can
be made robust against malicious stateful oracles as well, but at the cost of issuing
polynomially many oracles and having the verifier query each oracle only once. It
is not clear, however, if their construction can be adapted to use only a constant
number of oracles.
Our contribution. Our results in the new model cover most basic primitives.

We construct two types of commitment schemes, one where the sender uses the
token to commit himself at the receiver, and another commitment scheme where the
sender sends a token to the receiver, who in turn uses the token to commit himself
at the sender. Based on these commitment schemes we construct an OT protocol,
where only one party must be able to create and program hardware tokens. We also
present a zero-knowledge protocol that is bounded-resettable zero knowledge, i.e.
the prover is resettable. This protocol can be made completely non-interactive.
All of our constructions have a constant number of rounds and require only a

constant number of tokens. Our results thus demonstrate the first positive results
regarding the feasibility of general statistically UC-secure two-party computation
with any type of resettable hardware.
Our techniques. The main technical difficulty that we face is that we have

to make the token functionality verifiable by the token receiver while at the same
time allowing extraction by the simulator. At the heart of our constructions is
what we call an oracle validation scheme that provides exactly the above mentioned
features. This is a generalization of techniques that were previously employed in
other protocols, e.g. in [DKMQ11].

6.1. Model 89

Intuitively, the oracle validation scheme that we propose is based on polynomials
of sufficiently large degree q, such that the receiver cannot learn the polynomial
completely (via resets). The simulator on the other hand is not bound by this
restriction, because he has the token code at his disposal, and can thus learn the
stored polynomial by asking q + 1 queries and interpolating the polynomial. Care
has to be taken to prevent the sender from storing an arbitrary maliciously created
polynomial in the token which might not be extractable, e.g. because it is not a
degree q polynomial.
Structure of this chapter. A preliminary version of this chapter is due to Döt-

tling et al. [DKMN15]. The remaining part of the chapter is structured as follows.
First, we formally define the UC-functionality for bounded-resettable hardware to-
kens in Section 6.1. We then introduce the concept of an oracle validation scheme
in Section 6.2, which is then used in Section 6.3 to construct commitments and
eventually OT. In Section 6.4 we also show that non-interactive zero-knowledge is
possible in the bounded-resettable hardware model. A short summary of our results
is given in Section 6.5.

6.1 Model
To formally argue about the security of our protocols, we define and discuss the

ideal functionality for bounded-resettable tamper-proof hardware in Figure 6.1. It
is a slightly modified version of the F resettable

wrap -functionality described in Section 5.1.
The token sender provides a (w.l.o.g. deterministic) Turing machine and the receiver
can then run it once on an input word of his choice, staying oblivious of any internal
secrets. A malicious receiver can reset the token and query it repeatedly, until some
bound q is reached and the functionality does not respond any more. The query
bound q models an estimation for how often an adversary can reset a token that is
meant to shut down for good after the first query. All our protocols rely on q being
polynomially bounded in the security parameter. A smaller bound q implies better
efficiency.
We stress that tokens are not actually required to contain a state that counts the

number of queries. Our definition of Fb-rs
wrap is just the most general way to model

any kind of token for which an upper bound of resets can be derived. Intuitively,
we just adapt the token program to the bound, while assuming a normal resettable
hardware token.
Further note that our definition can be canonically extended to tokens that can

be queried more than once by honest users as well. However, our approach has
the advantage of being trivially secure against tokens that maliciously change their
functionality depending on the input history.
Our model is weaker than the stateful-token model in the sense that no previously

known protocol with stateful tokens can tolerate even a single reset. The security
of all known protocols would completely break down. Therefore, none of the known
positive results for stateful tokens do carry over to our model (unless q = 1). In turn,
bounded-resettable protocols can be trivially implemented from unresettable stateful
tokens. So, our results are strictly stronger than the corresponding results for stateful
tokens. On the other hand, bounded-resettable tokens are strictly more powerful
than arbitrarily resettable (i.e., standard stateless) tokens, since our constructions
of non-interactive statistically secure commitments and statistically secure OT are

90 6. Bounded-Resettable Tamper-Proof Hardware

Functionality Fb-rs
wrap

Implicitly parametrized by a query bound q. The variable resets_left is initialized by
resets_left = q − 1.

Creation:
1. Await an input (create,M, t) from the token issuer, where M is a deterministic

Turing machine and t ∈ N. Store (M, t) and send (created) to the adversary.
Ignore all further create-messages.

2. Await a message (delivery) from the adversary. Then, send (ready) to the token
receiver.

Execution:
3. Await an input (run, w) from the receiver. Run M on input w. When M halts

without generating output or t steps have passed, send a special symbol ⊥ to the
receiver; otherwise send the output of M.

Reset (adversarial receiver only):
4. Upon receiving a message (reset) from a corrupted token receiver, verify that

resets_left > 0. If so, decrease resets_left by 1 and go back to Step 3; otherwise
ignore that message.

Figure 6.1: The wrapper functionality by which we model bounded-resettable
tamper-proof hardware. The runtime bound t is merely needed to pre-
vent malicious token senders from providing a perpetually running pro-
gram code M; it will be omitted throughout the rest of the chapter.

known to be impossible with the fully resettable hardware tokens [GIMS10].
Bounded-resettable hardware combined with computationally secure primitives

obviously yields no qualitative improvement, since with computational assumptions,
general interactive and non-interactive UC-secure computation is already possible
(cf. Sections 5.3 and 5.4).

6.2 Tools
In this section we introduce our main technical tool, which we call oracle validation

schemes (OVS), that enforce honest oracle programming. This is usually necessary
in the scenario where a (possibly malicious) sender can arbitrarily program an oracle
and send it to the receiver. The honest receiver needs to be sure that the functionality
stored in the oracle behaves as specified by the protocol.
We thus require the oracle functionality to be drawn from some predefined dis-

tribution of functionalities, and that the receiver will abort if the sender programs
the oracle with a functionality outside of the allowed distribution. If the receiver
needs only one query to the oracle to validate the functionality, we call the scheme a
query-once oracle validation scheme (qo-OVS). All properties of an OVS hold with
respect to unbounded parties.
We will later use an OVS in both of our commitment constructions based on

6.2. Tools 91

bounded-resettable tamper-proof hardware. Nonetheless, the notion of an oracle
validation scheme is more general and can also be applied to other types of oracles.
One can for instance consider the verification step in the OT protocol of Döttling et
al. [DKMQ11] as an (ad-hoc) oracle validation scheme, albeit for a stateful hardware
token. We thus believe that this tool finds application in other contexts as well and
might therefore be of independent interest.
First, we formally define query-once oracle validation schemes in Section 6.2.1, and

then present an instantiation of a qo-OVS for a q-bounded oracle in Section 6.2.2
that we later use with bounded-resettable hardware.

6.2.1 Query-Once Oracle Validation Scheme
We first have to define the security properties which we require from an oracle

validation scheme. Apart from correctness, we want privacy, i.e. the oracle O must
not leak any information about f apart from f(x). Additionally, we need an efficient
extractor with rewindable access to the oracle that extracts the oracle function f
with overwhelming probability.

Definition 6.1. We denote by O(O) an oracle O that executes a program O. A
query-once oracle validation scheme qo-OVS consists of three algorithms Create,
Validate and QueryO such that

• Create(κ) is a PPT algorithm that takes as input a security parameter κ, cre-
ates an (efficiently evaluable) function f , programs an oracle functionality O
that implements f and outputs (O, f).

• Validate(c, f) is a PPT algorithm that takes as input a challenge c and a func-
tion f and outputs a function f̃ .

• QueryO(O)(x, f̃ , c) is a deterministic algorithm with oracle access to O that
takes as input a random value x and the validation values c and f̃ . It outputs
f(x) or ⊥.

and the following properties hold:

• Correctness: If an oracle is created correctly, then the validation will always
succeed, i.e. ∀f, c, x : Pr[QueryCreate(κ)(x,Validate(c, f), c) = f(x)] = 1.

• Privacy: Let X denote the set of inputs that are sent to O. Privacy holds if
an adversary A has only negligible probability to guess the image of the oracle
for any value not in X, i.e. ∀A, f̃ , c : Pr[(x∗, f(x∗)) ← AO(f̃ , c) ∧ x∗ /∈ X] <
negl(κ).

• Extractability: There exists an extractor ExtOVS that extracts from any (pos-
sibly corrupted) oracle program O∗ and any validation values (c, f̃ ∗) with some
overwhelming probability ρ′ a valid function f such that for uniformly random
input x the outputs of Queryf (x, f̃ ∗, c) and QueryO(O∗)(x, f̃ ∗, c) are identical.
The expected runtime of ExtOVS on input (O∗, f̃ ∗, c) has to be asymptotically
bounded by (κ · |O∗|)O(1) · ρ−1, where |O∗| is the size of the oracle program and
ρ is the probability that QueryO(O∗)(x, f̃ ∗, c) outputs a value f(x) 6= ⊥ for a
uniformly random x.

92 6. Bounded-Resettable Tamper-Proof Hardware

The general methodology of application of an oracle validation scheme is as follows.
A sender party uses Create(κ) to generate an oracle. After this step, a receiver
can draw a uniformly random challenge c and request a validation f̃ of the oracle
functionality from the sender. We stress that this is allowed only once, i.e. the sender
has to make sure that after the first request, all future requests are denied. These
steps can be done in a setup phase. When the inputs are fixed, the receiver inputs
x into the oracle and can validate that the oracle behaves as specified by the sender
via the validation with f̃ .
Remark. The definition can canonically be extended to allow any number k of queries
to validate the functionality by exchanging x for x = (x1, . . . , xk) and adapting the
privacy requirement accordingly. This yields a general oracle validation scheme.

6.2.2 Oracle Validation Scheme for a q-Bounded Oracle
We now present a (query-once) oracle validation scheme based on any q-bounded

oracle functionality, i.e. an oracle that admits only q queries. When using this
protocol with bounded-resettable hardware, we only have to replace the oracle O by
the wrapper functionality for the hardware token.
This section is divided into three parts. In Section 6.2.2.1 we present our protocol,

we then move on to prove its security in Sections 6.2.2.2 and 6.2.2.3.

6.2.2.1 Protocol Πq-bound
OVS

The basic idea behind the protocol is to have the oracle implement a truly random
polynomial p of degree q, such that the receiver, using only q queries, cannot learn p.
While this directly yields privacy, the extraction of p turns out to be quite involved.

Oracle Validation Scheme Πq-bound
OVS

Let Oq be a q-bounded UC-hybrid functionality such that the simulator receives O.

• Create(`, q, n)
Sample two polynomials p, p′ ← Fn2` [X] of degree at most q uniformly at ran-
dom. Create a program O such that on input x it outputs (p(x), p′(x)). Output
(O, (p, p′)).

• Validate(λ, (p, p′))
Compute p̃ = p · λ+ p′ and output p̃.

• QueryOq(O)(x, p̃, λ)
Send x ∈ Fn2` to Oq(O) and obtain (y, y′). Verify that deg(p̃) ≤ q and y · λ+ y′ =
p̃(x). If that check passes, output y, otherwise output ⊥.

Figure 6.2: Construction of a query-once validation scheme for a q-bounded oracle.

Consider the protocol given in Figure 6.2. The Create-algorithm draws two ran-
dom n-tuples of polynomials p, p′ of a specified degree q and creates a functionality
O that simply evaluates the polynomials on arbitrary inputs. If the oracle allows
less than q + 1 queries, then the party querying the oracle cannot learn the polyno-
mials and each answer of the oracle looks completely random. This guarantees the
privacy property of the oracle validation scheme. During the Validate-phase, a linear

6.2. Tools 93

combination p̃ of the two polynomials is computed, but due to the privacy of the
scheme, this does not help to learn the two polynomials separately. Once the oracle
is queried with a Query-call, any deviating behavior of the oracle from p̃ will be
caught with overwhelming probability. This is guaranteed by the uniformly random
input x, because a polynomial different from the one stored in the oracle will with
overwhelming probability evaluate to a value differing from the oracle answer.
Our oracle validation scheme takes an additional parameter n during the oracle

creation which specifies the dimension of the field. This will later allow for multiple
commitments from a single oracle and has no influence on the security of the scheme.

6.2.2.2 Security Proof for Πq-bound
OVS

Next, we show that the oracle validation scheme Πq-bound
OVS is indeed extractable—

efficiency, correctness, and privacy are straightforward to see. The extractor con-
struction is the main ingredient for our upcoming UC proofs, since our extractor is
straight-line when given access to the oracle code.

Theorem 6.1. The protocol Πq-bound
OVS in Figure 6.2 describes an oracle validation

scheme as per Definition 6.1. In particular, there exists an extractor ExtOVS, such
that on input (O∗, p̃∗, λ) with O∗ and p̃∗ possibly corrupted, it holds:

• Provided arbitrarily rewindable access to O∗ and given (p̃∗, λ) with honestly
chosen and uniformly random λ ∈ F2`, ExtOVS computes a polynomial p̄ ∈
Fn2` [X] of degree at most q.

• If the value x is uniformly random, then with some overwhelming probability
1− ρ′ (taken over the randomness of λ, x, and ExtOVS’s random tape), Queryp̄
either rejects or outputs p(x). In particular, we have a failure probability ρ′ ≤
|2`|−Ω(1).

• For all possible values (p̃, λ), the expected number of queries from ExtOVS to
O∗ is (q + 1) · ρ−1, where ρ is the probability of QueryOq(O

∗) outputting a value
p(x) 6= ⊥ conditioned on (p̃, λ) and averaged over all inputs x ∈ Fn2`. The rest
of ExtOVS’s calculations have an overall time complexity which is polynomial
in (`, q, n).

Proof. We have to prove the three properties described in Definition 6.1.

Correctness. Validation yields a polynomial p̃ = p · λ+ p′. Evaluating O(O) on x
results in (p(x), p′(x)). Thus the check p̃(x) = p(x) · λ+ p′(x) will always hold
and QueryO(O) will output p(x) with probability 1.

Privacy. Privacy follows from the fact that for each query xi, only the values
(p(xi), p′(xi)) are returned by the oracle. Since p, p′ ∈ Fn2` [X] are uniformly
random polynomials of degree q, all of the tuples (p(xi), p′(xi)) are distributed
uniformly at random from an adversarial point of view up to the point where
q + 1 such tuples are obtained. But by assumption our oracle is q-bounded so
that it is impossible to obtain more than q tuples. Also, the polynomial p̃ does
not yield any information about p and p′, if only one validation query (i.e. one
challenge λ) is answered. Combined, this ensures that an adversarial receiver
A outputs (x∗, f(x∗)) for some value x∗ that was not sent to the oracle at most
with probability 2−`, which is negligible.

94 6. Bounded-Resettable Tamper-Proof Hardware

Extractability. Consider the extraction algorithm ExtOVS given in Figure 6.3. The
extractor runs a simple trial-and-error approach. It samples uniformly random
values xi and evaluates the oracle on these values to obtain values yi until it has
a list of q+ 1 tuples that pass the validation check. Using these tuples (xi, yi),
ExtOVS interpolates a polynomial p̄ and outputs it. This is the approximation
of the oracle functionality.

Extractor ExtOVS

Upon input (O∗, p̃∗, λ), start the following algorithm.

1. Sample a uniformly random value xi ← Fn2` and run O∗ on xi to obtain (yi, y
′
i).

2. Check if λ · yi + y′i = p̃∗(xi), if not go to Step 1. Store xi in X. If |X| ≥ q + 1, go
to Step 3, otherwise go to Step 1.

3. Compute the minimal-degree interpolation polynomial p̄ ∈ Fn2` [X] with p̄(xi) = yi
for all xi ∈ X.

Output p̄.

Figure 6.3: The extraction algorithm for the oracle validation scheme Πq-bound
OVS .

First, we have to estimate the expected number of queries from ExtOVS to O∗.
The sampling of each xi is a stochastic process with geometric distribution of
the number of oracle queries: Given that ρ is the probability that QueryOq(O

∗)

returns y 6= ⊥ conditioned on (λ, p̃∗), the expected number of queries for
sampling one xi is

∑∞
j=1 j · (1 − ρ)j−1 · ρ = ρ−1. The sampling of x1, . . . , xq+1

hence requires (q + 1) · ρ−1 queries to O∗ on average.
Next, we turn to the question of how well the extracted polynomial p̄ approx-
imates the functionality of the oracle functionality O∗. We have to show that
the minimal interpolation polynomial p̄ based on the q + 1 values in X repre-
sents the output of O∗ on all inputs, i.e. the function stored in O∗ is of degree
q with overwhelming probability for a random challenge λ.
We do so by proving the following statement: for each (p̃∗, λ), O∗ implements
a polynomial of degree at most q with some overwhelming probability 1− ρ′.
To maintain the readability of this proof and a modular presentation, we defer
the proof of the above mentioned statement to Lemma 6.2.
Combining Lemma 6.2 with the q + 1 extracted tuples (xi, yi), we have that
ExtOVS extracts the oracle functionality with overwhelming probability. This
concludes our proof.

6.2.2.3 ExtOVS Approximates O∗ with Overwhelming Probability

We will now prove that the extractor as given in Figure 6.3 only requires q + 1
values to correctly interpolate the oracle functionality. Before we start, we need to
introduce some notation.

Interpolation polynomials. Let F be a finite field and let n ∈ N. Given any
mapping f : F → Fn and any non-empty set M ⊆ F, let p̂(f)

M ∈ Fn[X] denote

6.2. Tools 95

the unique polynomial of degree at most |M | − 1, such that p̂(f)
M (x) = f(x) for

all x ∈M .

Generalization of the degree operator. Let F be a finite field and let n ∈ N.
For each polynomial p := (p1, . . . , pn) ∈ Fn[X] we define its degree as deg(p) :=
maxni=1(deg(pi)). Further, given any mapping f : F → Fn and any non-empty
set M ⊆ F, let degM(f) := deg(p̂(f)

M). For convenience we set deg∅(f) := −∞
and degM(f, f ′) := max

(
degM(f), degM(f ′)

)
.

Bipartite graphs and neighborhoods. We denote a bipartite graphG as a triple
(V, U,E), where V and U are the vertex sets of the two parts ofG and E ⊆ V×U
is the set of edges of G. The neighborhood of any vertex v ∈ V ∪ U in G is
denoted as NG(v), or N (v) for short, and its degree as degG(v) :=

∣∣∣NG(v)
∣∣∣.

Note that NG(v) ⊆ U for all v ∈ V and NG(u) ⊆ V for all u ∈ U .

Lemma 6.2. Let a mapping s∗ : F → Fn[X], λ 7→ p̃λ and a mapping O∗ : F →
Fn×Fn, x 7→

(
o(x), o′(x)

)
be given. Then it holds for uniformly random λ ∈ F and

p̃∗ ∈ Fn with deg p̃∗ ≤ q that Pr[deg(O∗) > q] ≤ ρ′, where ρ′ is negligible in |F|.

Proof. Our main idea is to define a relation between challenges λ and oracle queries
x, such that x is related to λ if the validation succeeds. We then show that for
each λ, the set of related values implies a polynomial of degree q. Let s∗ denote the
deterministic worst-case strategy of an adversary trying to prevent the extraction
given a challenge λ. s∗ maps each possible challenge λ ∈ F to a polynomial p̃∗λ ∈
Fn[X] with deg(p̃∗λ) ≤ q. Thus, for each combination of λ and x the output of O∗ is
fixed.
We represent the relation between λ and x as a bipartite graph, where a left-

hand vertex λ is adjacent to a right-hand vertex x if O∗ outputs (y, y′) such that
y ·λ+ y′ = p̃∗(x). We want to show that after removing only a few “bad” edges, the
graph decomposes into complete bipartite subgraphs, where the oracle functionality
O∗ behaves like a degree-q polynomial for all inputs x that pass the consistency
check.
More formally, we will show that for a bipartite graph G = (V, U,E) with V

containing all λ and U containing all x, there exists a subset of edges Ebad ⊂ E ⊆
V × U such that

1. uniformly random λ and x are adjacent via e ∈ Ebad only with negligible
probability, namely |Ebad|/|F|2 ≤ |F|−Ω(1), and

2. after removal of Ebad fromG, O∗ implements on each neighborhood of a possible
challenge λ a polynomial function of degree at most q.

Since the graphG′ = (V, U,E\Ebad) differs from G only in the negligible amount of
removed edges, we know that the oracle O∗ behaves on all but a negligible fraction of
inputs like a degree-q polynomial, which ExtOVS can extract by making q+1 queries.
The proof is very technical and we modularize it by stating several separate lem-

mata, which we combine to obtain our claim. One of the key insights that we use
is that for two distinct challenges λ1 and λ2, O∗ implements a polynomial of degree
at most q for all inputs x that are accepted for both λ1 and λ2.

96 6. Bounded-Resettable Tamper-Proof Hardware

Lemma 6.2.1. Let any finite field F, a dimension n ∈ N and two mappings o, o′ :
F → Fn be given. Further, let some family of polynomials {p̃λ}λ∈F ⊆ Fn[X] be given,
let q := maxλ∈F(deg(p̃λ)) and for each λ ∈ F let Mλ := {x ∈ F |λ · o(x) + o′(x) =
p̃λ(x)}. Then it holds for all distinct λ1, λ2 ∈ F that degMλ1

∩Mλ2
(o, o′) ≤ q.

Proof. We first show that the following claim holds.
Claim 1. For each M ⊆ F there exists at most one λ ∈ F with degM(λ · o + o′) <
degM(o, o′).
Note that for arbitrary mappings f, g : F → Fn and any coefficients α, β ∈ F,
p̂(αf+βg)
M = α · p̂(f)

M + β · p̂(g)
M and hence degM(αf + βg) ≤ max

(
degM(f), degM(g)

)
.

Thus, if degM(λ1 ·o+o′) < degM(o) and degM(λ2 ·o+o′) < degM(o) for some distinct
λ1, λ2 ∈ F, we had the following contradiction:

degM((λ1 − λ2) · o) = degM((λ1 · o+ o′)− (λ2 · o+ o′)) < degM(o)

Analogously, if degM(λ1 · o + o′) < degM(o′) and degM(λ2 · o + o′) < degM(o′) for
some distinct λ1, λ2 ∈ F, we had the following contradiction:

degM((λ1 − λ2) · o′) = degM(λ1 · (λ2 · o+ o′)− λ2 · (λ1 · o+ o′)) < degM(o′)

Thus, Claim 1 must be true and we will use it to prove our lemma. Let two arbitrary
but distinct λ1, λ2 ∈ F be given. Note that by definition of Mλ1 ,

degMλ1
∩Mλ2

(λ1 · o+ o′) = degMλ1
∩Mλ2

(p̃λ1) ≤ q,

because for all x ∈Mλ1 ∩Mλ2 , both λ1 · o+ o′ and p̃λ1 behave identically. The same
argument yields degMλ1

∩Mλ2
(λ2 · o+ o′) = degMλ1

∩Mλ2
(p̃λ2) ≤ q by definition of Mλ2 .

Thus, if degMλ1
∩Mλ2

(o, o′) > q, we had that degMλ1
∩Mλ2

(λ1·o+o′) < degMλ1
∩Mλ2

(o, o′)
and also degMλ1

∩Mλ2
(λ2 · o+ o′) < degMλ1

∩Mλ2
(o, o′), which would contradict Claim 1.

�

Considering our graph G′ as described above, Lemma 6.2.1 will be useful if G′ does
not contain any vertices x that have only one connection with a vertice λ. Then,
for every challenge λ1 with NG′(λ1) 6= ∅, there exists a distinct second challenge
λ2 with NG′(λ1) = NG′(λ2). Lemma 6.2.1 then implies that degN

G
′ (λ1)(o, o′) =

degN
G
′ (λ1)∩N

G
′ (λ2)(o, o′) ≤ q.

Towards proving the existence of G′, and thus a subset of edges Ebad as described
above, we first need to find upper bounds, so that we can estimate the amount
of edges that we have to remove. We start with a bound for intersection of the
neighborhoods of challenges λ1, . . . , λ4.
Lemma 6.2.2. Let any finite field F, a dimension n ∈ N and two mappings o, o′ :
F → Fn be given. Further, let some family of polynomials {p̃λ}λ∈F ⊆ Fn[X] be
given, let q := maxλ∈F(deg(p̃λ)) and for each λ ∈ F let Mλ := {x ∈ F |λ · o(x) +
o′(x) = p̃λ(x)}. Then for all λ1, λ2, λ3, λ4 ∈ F with λ1 6= λ2 and λ3 6= λ4 and
Mλ1∩Mλ2 6= Mλ3∩Mλ4 we have that q ≥ |Mλ1∩Mλ2∩Mλ3∩Mλ4 |.

Proof. Let any λ1, λ2, λ3, λ4 ∈ F with λ1 6= λ2 and λ3 6= λ4 be given. Moreover,
assume that q < |Mλ1∩Mλ2∩Mλ3∩Mλ4|. We have to show thatMλ1∩Mλ2 = Mλ3∩Mλ4 .
Since any two polynomials p, p′ ∈ Fn[X] are identical if they coincide on more

than max
(
deg(p), deg(p′)

)
nodes, we observe:

6.2. Tools 97

1. For all M,M ′ ⊆ F with |M ∩M ′| > max
(
degM(o, o′), degM ′(o, o

′)
)
it holds

that p̂(o)
M = p̂(o)

M
′ and p̂(o′)

M = p̂(o′)
M
′ .

2. For all λ ∈ F and M ⊆ Mλ with degM(o, o′) ≤ q < |M | we have that p̃λ =
p̂(o)
M + λ · p̂(o′)

M .

Now, as degMλ1
∩Mλ2

(o, o′) ≤ q and degMλ3
∩Mλ4

(o, o′) ≤ q by Lemma 6.2.1, it follows

by our Observation 1 that p̂(o)
Mλ1
∩Mλ2

= p̂(o)
Mλ3
∩Mλ4

and p̂(o′)
Mλ1
∩Mλ2

= p̂(o′)
Mλ3
∩Mλ4

. Let p :=

p̂(o)
Mλ1
∩Mλ2

and p′ := p̂(o′)
Mλ1
∩Mλ2

. Note that deg(p) ≤ q and deg(p′) ≤ q by Lemma 6.2.1.
In conclusion, we get by our Observation 2 that p̃λi = p + λi · p′ for i = 1, . . . , 4.

However, as p(x) = o(x) and p′(x) = o′(x) for all x ∈ (Mλ1∩Mλ2) ∪ (Mλ3∩Mλ4) by
construction, it follows that Mλi

⊇ (Mλ1∩Mλ2) ∪ (Mλ3∩Mλ4) for i = 1, . . . , 4, and
hence Mλ1∩Mλ2 = Mλ3∩Mλ4 . �

Additionally, we also need a bound on the number of almost disjoint subsets of
vertices to estimate the number of edges that we will remove later.
Lemma 6.2.3. Let F be some finite universe and let ε, δ ∈ R, such that |F |δ ≤
|F |ε/4. Further, let m ∈ N>0 and N1, . . . , Nm ⊆ F , such that |Ni| ≥ |F |1−δ and
|Ni ∩Nj| ≤ |F |1−ε−δ for all distinct i, j. Then m < |F |ε/2.

Proof. W.l.o.g. it suffices to show that m 6=
⌈
|F |ε/2

⌉
. We call x ∈ F a shared

element, if x ∈ Ni ∩Nj for some distinct indices i, j. Note that each Ni contains at
most (m−1) · |F |1−ε−δ shared elements, since by assumption |Ni∩Nj| ≤ |F |1−ε−δ for
all j 6= i. Hence, each Ni must contain at least |F |1−δ− (m−1) · |F |1−ε−δ non-shared
elements. In other words, if m =

⌈
|F |ε/2

⌉
, we can estimate:

|F | ≥ m·
(
|F |1−δ−(m−1)·|F |1−ε−δ

)
> |F |ε

2 ·
(
|F |1−δ− |F |

ε

2 ·|F |
1−ε−δ

)
= |F |1+ε−δ

4

However, since |F |ε−δ ≥ 4 by assumption, this is a contradiction and thus concludes
our proof. �

Using the bounds of Lemma 6.2.2 and Lemma 6.2.3, we can now prove the ex-
istence of edges Ebad with the described properties. In particular, we show that
the number of edges in Ebad can be bounded by |V | · |U |1−δ + |U |1+ε for ε, δ with
16 · |U |2δ ≤ |U |ε ≤

√
|U |/q. Using a large enough field F, we can choose 2δ < ε < 1

2 .

Lemma 6.2.4. Let a finite bipartite graph G := (V, U,E) and some constant q ∈ R
be given, such that q ≥

∣∣∣NG(v)∩NG(v̄)∩NG(v′)∩NG(v̄′)
∣∣∣ for all vertices v, v̄, v′, v̄′ ∈

V with v 6= v̄ and v′ 6= v̄′ and NG(v)∩NG(v̄) 6= NG(v′)∩NG(v̄′). Then, for any ε, δ ∈
R with 16 · |U |2δ ≤ |U |ε ≤

√
|U |/q, there exists a subset of edges Ebad ⊆ E such that

|Ebad| < |V | · |U |1−δ + |U |1+ε and each connected component of G′ := (V, U,E\Ebad)
is either a single vertex or a complete bipartite graph.

Proof. W.l.o.g. we can choose ε such that 16 · |U |2δ = |U |ε, and q such that |U |ε =√
|U |/q. We define the auxiliary constants ε′ and δ′ as follows: Let ε′ := δ+ log|U | 4,

i.e. |U |δ = |U |ε
′
/4, and let δ′ := ε′+ δ. Note that |U |δ

′
= 4 · |U |2δ = |U |ε/4 and hence

q = |U |1−2ε = |U |1−ε−δ
′
/4 by construction. Now, by the following three steps, we

98 6. Bounded-Resettable Tamper-Proof Hardware

transform our graph G into G′ by removing edges—w.l.o.g. we even remove vertices
together with all their adjacent edges.

Step 1: We first remove all v ∈ V with |NG(v)| ≤ |U |1−δ, thus deleting at most
|V | · |U |1−δ edges.

Step 2: Next, we remove all vertices v ∈ V with maxv′∈V \{v} |NG(v) ∩ NG(v′)| ≤
|U |1−ε

′−δ, thus deleting less than |U |1+ε′/2 edges according to Lemma 6.2.3.
Note that |U |1+ε′/2 < |U |1+ε/2, since even |U |ε

′+δ = |U |ε/4 by construction.

Step 3: Finally, we find a mapping σ : V → P(U), where P(U) denotes the power
set of U , such that σ assigns to each vertex v ∈ V a maximum possible set
of neighbors N ⊆ NG(v) that can be written as N = NG(v) ∩ NG(v̄) with
v̄ 6= v. Note that |σ(v)| > |U |1−δ

′
for all v ∈ V due to the vertex removal

in Step 2. Further note that by construction NG(v) ∩ NG(v′) = σ(v) for all
distinct v, v′ ∈ V with σ(v) = σ(v′). Hence, by Lemma 6.2.2 it must hold that∣∣∣σ(v) ∩ σ(v′)

∣∣∣ ≤ q for all v, v′ ∈ V with σ(v) 6= σ(v′). Since q = |U |1−ε−δ
′
/4 by

construction, it follows by Lemma 6.2.3 that the image space of σ consists of
less than |U |ε/2 different vertex sets N ⊆ U .
Now we are going to remove all edges (v, u), where u /∈ σ(v). This obviously
transforms G into a disjoint composition of complete bipartite graphs (plus
some unconnected vertices). So, it is only left to show that there exist no
more than |U |1+ε/2 such edges.
Consider any N ∈ σ(V). As already mentioned above, we have that NG(v) ∩
NG(v′) = σ(v) for all distinct vertices v, v′ ∈ V with σ(v) = σ(v′), or in
other words, NG(v) ∩ NG(v′) = N for all distinct v, v′ ∈ σ−1(N). Hence, no
u ∈ U\N can be adjacent to distinct vertices v, v′ ∈ σ−1(N). I.e., there cannot
exist more than |U \N | edges (v, u) ∈ E with σ(v) = N and u /∈ N . Thus, in
this final step we are removing at most ∑N∈σ(V) |U\N | edges. We can estimate
this by |U |1+ε/2 however, since we have already shown above that the image
space of σ consists only of less than |U |ε/2 different vertex sets N ⊆ U .

We remove at most |V | · |U |1−δ edges in Step 1 and less than |U |1+ε/2 edges in
each of Step 2 and Step 3, which sums up to less than |V | · |U |1−δ + |U |1+ε removed
edges as claimed. �

It now remains to remove all the vertices x with degG′(x) = 1, thus removing at
most an additional |U | edges from Ebad. We thus have |Ebad| < |F|2δ + |F|1+ε + |F|.
Now we show that degN

G
′ (λ)(O∗) ≤ q for all λ ∈ V . Let λ1 ∈ V be arbitrary but

fixed. W.l.o.g., NG′(λ1) 6= ∅. Since there are no vertices x ∈ U with degG′(x) = 1
any more, we find some λ2 ∈ V \{λ1} with NG′(λ1) ∩ NG′(λ2) 6= ∅. Since each
connected component of G′ still is either a single vertex or a complete bipartite
graph, it even holds that NG′(λ1) = NG′(λ2) and by Lemma 6.2.1 it follows that
degN

G
′ (λ1)(O∗) = degN

G
′ (λ2)(O∗) = degN

G
′ (λ1)∩N

G
′ (λ2)(O∗) ≤ q.

Given Ebad as described above, we finally need to argue that the following event
has probability |F|−Ω(1):

• O∗ outputs (y, y′) such that y · λ+ y′ = p̃∗(x) and

6.3. Statistically Secure Two-Party Computation 99

• one of the oracle queries x1, . . . , xq+1 is adjacent via e ∈ Ebad to the challenge
λ given by (p̃∗, λ), or xi = xj for some i 6= j.

Since |Ebad|/|F2`|
2 ≤ |F2` |

−Ω(1), we already have with probability 1 − |F2` |
−Ω(1)

(taken over the randomness of λ) that the given challenge λ is only adjacent to an
|F2` |

−Ω(1)-fraction of all inputs x ∈ F2` or λ is adjacent to |F2` |
Ω(1) edges of which

only an |F2`|
−Ω(1)-fraction is contained in Ebad. This implies that ρ′ ≤ |F2` |

−Ω(1).
This concludes the proof of Lemma 6.2.

6.3 Statistically Secure Two-Party Computation
In the following, we use the oracle validation scheme from the previous section to

construct commitments in the bounded-resettable hardware model. First, in Sec-
tion 6.3.1 we construct a commitment where the sender of the token uses the token
to commit to a value. For this, the oracle functionality from the OVS is enhanced
to hide the commitment information. We move on to present a commitment from
the token receiver to the token sender in Section 6.3.2, which is—again—based on
the OVS from the previous section. This will allow us later to construct protocols
where tokens have to be sent in one direction only. Based on these two commitment
schemes we present a protocol for oblivious transfer in Section 6.3.3, thus providing
all the building blocks necessary for two-party computation.

6.3.1 Commitments from Token Sender to Token Receiver
In this section, we present a protocol that realizes (non-interactive) commitments

in the Fb-rs
wrap-hybrid model. With regard to the future applications of this protocol, we

do not UC-realize FCOM (cf. Section 2.7.2.1), but an enhanced functionality shown
in Figure 6.4. The commitment functionality F s-o

COM allows a sender to commit to
several values simultaneously, and unveil some subset of the commitments at once
during the unveil phase.
The basic idea how the token issuer can commit himself to some secret s is quite

simple. He stores a random degree-q polynomial p on the token and sends the
token together with r := s + p(0) to the receiver. The token lets the receiver
evaluate p on arbitrary challenges x, except for x = 0. To unveil s, the sender
sends a description of p. The scheme is perfectly hiding, because even a corrupted
receiver can query the token on at most q inputs, receiving only randomness that
is statistically independent of p(0). The scheme is statistically binding, because for
any two distinct unveil messages p, p′ and a uniformly random token input x it holds
with overwhelming probability (namely at least 1− q

|F|−1 , where F is the finite field
in which all computations take place) that p(x) 6= p′(x) and thus at least one unveil
message will be inconsistent with the receiver’s view.
Unfortunately, the scheme as stated above is not UC-secure against a corrupted

sender. The reason for this is that the sender simulator must be able to extract
the secret s from the token program and the commit message r. If the token is
issued honestly and thus implements a degree-q polynomial p, the simulator can
evaluate the token code on q + 1 different inputs, then reconstruct p, and compute
s = r − p(0). However, a maliciously issued token can implement an arbitrarily
complicated function, which behaves like a degree-q polynomial only on a vanishing

100 6. Bounded-Resettable Tamper-Proof Hardware

Functionality F s-o
COM

Implicitly parametrized by a domain of secrets S and the number n of commitments to
be implemented.

Commit phase:
1. Await an input (commit, s) with s = (s1, . . . , sn) ∈ Sn from the sender. Store s,

send (committed) to the adversary and ignore any further commit-messages.

2. Await a message (notify) from the adversary. Then send (committed) to the
receiver.

Unveil phase:
3. Await an input (unveil, I, ŝ) with I ⊆ {1, . . . , n} and ŝ = (ŝi)i∈I ∈ S

|I| from the
sender. Then, store (I, ŝ) and send (opened) to the adversary.

4. Await a message (output) from the adversary. Then, if ŝ = (si)i∈I , send
(opened, I, ŝ) to the receiver; otherwise, send a special reject message ⊥.

Figure 6.4: Ideal functionality for multiple commitments with selective opening.

but still non-negligible fraction of inputs. It is at the very least unclear if one
can extract the correct polynomial from such a token efficiently. Therefore, we
employ our query-once oracle validation scheme from Section 6.2.2 to make the token
extractable. In a first step, the sender uses the OVS to create a token program and
then enhances the functionality such that queries for x = 0 are not answered. Then
the protocol proceeds as described above, except that the receiver makes a validation
request and cross-checks this with the answer from the token. Since the OVS allows
for an n-dimensional input space, we can create n commitments at once. A formal
specification of the protocol is given in Figure 6.5.

Theorem 6.2. The protocol Πs-o
COM in Figure 6.5 statistically UC-realizes F s-o

COM (cf.
Figure 6.4) in the Fb-rs

wrap-hybrid model, given that OVS is an oracle validation scheme
as per Definition 6.1.

Proof. Corrupted sender. The simulator has to extract the commitments of the
corrupted sender in the commit phase. For this, the simulator simply runs the
straight-line extractor ExtOVS of OVS with the token code and obtains a polynomial
p̂. The extracted polynomial allows the simulator to reconstruct the committed
secret s from the sender’s commit message r as s = r− p̂(0). Note that ExtOVS may
have exponential runtime if the acceptance probability is small, but only needs to
be run in this case if by the end of the commit phase it is not already clear that the
receiver will reject anyway. Therefore, the simulator must first check that y 6= ⊥
and then run ExtOVS only if the check is passed. The description of the simulator is
given in Figure 6.6, where AS is the dummy adversary.
The output of SS is statistically indistinguishable from a real protocol run because

the extractor ExtOVS has a runtime complexity of
(
`·|T∗|

)O(1)
·ρ−1 (cf. Definition 6.1),

where ρ is just the probability that the check in the commit phase is passed. Thus,
ExtOVS has an expected simulation complexity of

(
` · |T∗|

)O(1)
and will therefore with

overwhelming probability extract the polynomial p̂ and thus AS’s input ŝ.

6.3. Statistically Secure Two-Party Computation 101

Protocol Πs-o
COM

Implicitly parametrized by a token query bound q, a commitment number n, and a
commitment length `. Let OVS be the oracle validation scheme from Section 6.2.2.1 and
T be an instance of Fb-rs

wrap. The security parameter is `. For any vector v = (v1, . . . , vn)
and I ⊆ {1, . . . , n} let vI := (vi)i∈I .

Setup phase:
1. Sender: Execute OVS.Create(`, n, q) and obtain (T′, (p, p′)). Construct a token

program T that behaves like T′, except that it returns ⊥ if a query x = 0 is sent.
Send (create,T) to T .

2. Receiver: Pick λ← F2` uniformly at random and send it to the sender.

3. Sender: Compute OVS.Validate(λ, (p, p′)) and let p̃ be the result. Send p̃ to the
receiver.

Commit phase:
4. Sender: Let s := (s1, . . . , sn) ∈ Fn2` be the sender’s input. Send r := s + p(0) to

the receiver.

5. Receiver: Call OVS.QueryT (x, p̃, λ) for a uniformly random x ← Fn2` and let y be
the result.

Unveil phase:
6. Sender: Let I ⊆ {1, . . . , n} indicate the commitments to be opened. Send (I, pI)

to the receiver.

7. Receiver: If pI(x) = yI 6= ⊥, output ŝI := rI − pI(0); else reject.

Figure 6.5: Statistically UC-secure commitment scheme in the Fb-rs
wrap-hybrid model

where the sender is the token issuer.

Simulator SS

• Simulate T for AS and let T∗ denote the token functionality that AS inputs into
the token.

• (Setup) Simulate the setup phase straightforwardly according to Πs-o
COM. Draw a

uniformly random λ and obtain a check polynomial p̃∗.

• (Commit) Upon receiving a value r from AS, execute QueryT∗ on a random input
x and let y be the result. If y 6= ⊥, start the extractor ExtOVS of OVS with input
(T∗, p̃∗, λ) and obtain (p̂, p̂′). Compute ŝ = r− p̂(0) and send (commit, ŝ) to F s-o

COM.

• (Unveil) Upon receiving a message (I, p∗I) from AS, check if p∗I = p̂I , if not abort.
Send (unveil, I, ŝI) to F s-o

COM.

Figure 6.6: Simulator for a corrupted sender in the protocol Πs-o
COM.

Corrupted receiver. The simulator against a corrupted receiver has to equivo-
cate the commitment he made in the commitment phase. Since the simulator sim-

102 6. Bounded-Resettable Tamper-Proof Hardware

ulates the hybrid functionality, i.e. the token, to the receiver, he learns all queries
that the receiver makes and can interpolate a polynomial p̂ with the intended input
at the y-intersect. As the receiver can make at most q queries, the polynomial will
have degree at most q. The simulator is described in more detail in Figure 6.7, with
AR being the dummy adversary.

Simulator SR

• Simulate T for AR. Let Q denote the set of token queries that AR inputs into the
token.

• (Setup) Simulate the setup phase straightforwardly according to Πs-o
COM with two

random polynomials p, p′. Answer all queries x to T with
(
p(x), p′(x)

)
.

• (Commit) Upon receiving a message (committed) from F s-o
COM, send a uniformly

random r ← Fn2` to AR.

• (Unveil) Upon receiving a message (opened, I, ŝI) from F s-o
COM, compute two poly-

nomials p̂, p̂′ ∈ Fn2` [X] such that:

–
(
p̂(xi), p̂

′(xi)
)

=
(
p(xi), p

′(xi)
)
for all x ∈ Q

– λ · p̂+ p̂′ = p̃, deg(p̂, p̂′) ≤ q, and
– p̂I(0) = rI − ŝI

For any future query x to T answer with
(
p̂(x), p̂′(x)

)
. Send (I, p̂I) to AR.

Figure 6.7: Simulator for a corrupted receiver in the protocol Πs-o
COM.

The output of SR is statistically indistinguishable from a real protocol run due to
the privacy of OVS, which guarantees that AR will not be able to learn any value p(x)
without querying the oracle, i.e. SR. Thus AR will not notice that the polynomial
in the unveil phase has changed.

Remark. The commitment scheme Πs-o
COM is statistically binding, even if λ is fixed and

known to the sender. This yields a statistically secure non-interactive commitment
scheme in the bounded-resettable hardware model, which was proven impossible in
the stateless-token model [GIMS10].

6.3.2 Commitments from Token Receiver to Token Sender
For a commitment from the token receiver to the token sender we need a slightly

more sophisticated approach. As in our previous commitment scheme, we use the
oracle validation scheme from Section 6.2.2 such that the token implements a random
degree-q polynomial p. The token receiver can then commit to some secret s by
executing the Query algorithm on a random x, thus learning p(x), and announcing
a commit message consisting of

• a fraction of bits of p(x), say the first quarter of its bit-string representation,

• a 2-universal hash function h, and

• m := s+ h(x).

6.3. Statistically Secure Two-Party Computation 103

To unveil s, he just needs to announce the used token input x. We briefly sketch
now why this scheme is hiding and binding. The latter follows directly from the
privacy of the OVS: The token acts just like a perfectly random function. Thus, a
corrupted commitment sender may only with negligible probability find two distinct
unveil messages x, x′ such that p(x) and p(x′) agree on the first quarter of their
bit-string representation. This establishes the binding property. The token issuer,
however, learns only several bits of information about x during the commit phase, so
that from his view x has still linear entropy afterwards. Since h is a 2-universal hash
function, this means that he cannot predict h(x) and thus the commitment is hiding.
To obtain extractability of the commitment, we use the extractor of the OVS, as
otherwise we have no UC-security against a corrupted commitment receiver. The
formal protocol description is given in Figure 6.8.

Protocol Πrev
COM

Let OVS be the oracle validation scheme from Section 6.2.2.1 and T be an instance of
Fb-rs

wrap. Implicitly parametrized by a token query bound q and a commitment length `.
The security parameter is `. Let σ : F24` → F4

2` , x 7→
(
σ1(x), . . . , σ4(x)

)
be the canonical

F2`-vector space isomorphism. For any vector v = (v1, . . . , vn) and I ⊆ {1, . . . , n} let
vI := (vi)i∈I .

Setup phase:
1. Receiver: Execute OVS.Create(4`, n, q) and obtain (T, (p, p′)). Send (create,T) to
T .

2. Sender: Pick λ← F24` uniformly at random and send it to the receiver.

3. Receiver: Compute OVS.Validate(λ, (p, p′)) and let p̃ be the result. Send p̃ to the
sender.

Commit phase:
4. Sender: Let s = (s1, . . . , sn) ∈ Fn2` be the sender’s input. Call OVS.QueryT (x, p̃, λ)

for a uniformly random x ← Fn24` and let y denote the response. If y 6= ⊥, pick n
uniformly random hi ← F4

2` , compute mi := si + 〈hi |σ(xi)〉 and ỹi := σ1(yi) and
send (m,h, ỹ) to the receiver; otherwise abort.

Unveil phase:
5. Sender: Let I ⊆ {1, . . . , n} indicate the commitments to be opened. Send (I, xI)

to the receiver.

6. Receiver: Verify that ỹI = σ1(pI(xI)). If so, output ŝI := mI − 〈hI |σ(xI)〉;
otherwise reject.

Figure 6.8: Statistically UC-secure commitment scheme in the Fb-rs
wrap-hybrid model

where the receiver is the token issuer.

Theorem 6.3. The protocol Πrev
COM in Figure 6.8 statistically UC-realizes F s-o

COM
(cf. Figure 6.4) in the Fb-rs

wrap-hybrid model, given that OVS is an oracle validation
scheme as per Definition 6.1.

104 6. Bounded-Resettable Tamper-Proof Hardware

We split the proof into several parts. First we show the security of the proto-
col against a corrupted commitment sender in Lemma 6.3 and then move on to
prove security against a corrupted commitment receiver in Lemmas 6.4, 6.5 and 6.6.
Combined, this proves Theorem 6.3.

Lemma 6.3. The protocol Πrev
COM in Figure 6.8 statistically UC-realizes F s-o

COM (cf.
Figure 6.4) in the Fb-rs

wrap-hybrid model against a corrupted commitment sender, given
that OVS is an oracle validation scheme as per Definition 6.1.

Proof. We just have to exploit that the simulator sees all token inputs. With over-
whelming probability the commitment sender’s announcement of ỹ in the commit
phase either corresponds to a unique input x already sent to the token or he is
caught cheating in the unveil phase. In the former case, the simulator can find x
just by scanning through the token’s input history and then compute the correct
inputs. A formal description of the simulator follows (cf. Figure 6.9), with AS being
the dummy adversary.

Simulator SS

• Simulate T for AS. Let Q denote the set of all token queries that AS inputs into
the token.

• (Setup) Simulate the setup phase straightforwardly according to Πrev
COM with uni-

formly random polynomials p, p′ ← Fn2` [X].

• (Commit) Upon receiving a message (m∗, h∗, ỹ∗) from AS, check for all x ∈ Q if ỹ =
σ1(p(x)). If no x is found, draw r ← Fn2` uniformly at random and send (commit, r)
to F s-o

COM. Otherwise, compute ŝi = mi−〈hi |σ(xi)〉 for all i ∈ {1, . . . , n} and send
(commit, ŝ) to F s-o

COM.

• (Unveil) Upon receiving a message x∗ from AS, check if ỹ∗ = σ1(p(x∗)). If no,
abort, otherwise send (unveil, I, ŝI) to F s-o

COM.

Figure 6.9: Simulator for a corrupted commitment sender in the protocol Πrev
COM.

If the unveil phase fails, the simulator will not have to present an opening to his
commitments. Thus the simulation is indistinguishable from a real protocol run as
long as the simulator finds a corresponding x to the value ỹ for an accepting unveil
phase. The probability that the simulator fails while the unveil phase succeeds is
negligible due to the privacy of OVS, which guarantees that it is infeasible to learn
a value p(x) without querying the oracle with x.

Proving UC-security against a corrupted commitment receiver, i.e. providing a
simulator that equivocates commitments, is more challenging. Note that even after
extracting a polynomial p that approximates the token functionality, it is still non-
trivial to find a token input x̂ such that the first quarter of bits of p(x̂) matches the
given commit message (m,h, ỹ) while m−h(x) = ŝ for a new secret ŝ. This problem
can be expressed as a polynomial equation system. Here the efficient algorithm of
[CS09] for sampling random solutions comes into play. In addition, the simulator
has to make sure that the sampled solution x̂ is actually possible in the real model:
He has to (re)sample x̂ until p(x̂) corresponds with the token functionality and the
Query-call in Step 4 of the commit phase of Πrev

COM returns ỹ 6= ⊥. The resampling

6.3. Statistically Secure Two-Party Computation 105

of x̂ imposes some extra difficulty for the runtime estimation. In a first step, we
show that our scheme is statistically hiding. This is useful for the UC proof and
has further application later on in our construction of a resettable zero-knowledge
protocol (cf. Section 6.4.1).

Lemma 6.4. The protocol Πrev
COM is statistically hiding, even if λ is fixed.

Proof. Let λ and p̃∗ be arbitrary but fixed. Further let y ← OVS.QueryT∗(x, p̃∗, λ),
where y = (t∗(x), t′∗(x)) ∈ (Fn24` × Fn24`) ∪ ⊥ and (t∗, t′∗) describes the (possibly)
malicious token functionality T∗. Moreover, let Z := Fn2` ∪ {⊥} and for each z ∈ Z
let Mz denote the set of all token inputs x that lead to a commit message (m,h, ỹ)
with ỹ = z. I.e., Mz = {x ∈ Fn24` | y 6= ⊥ ∧ σ1(t∗(x)) = z} for z ∈ Fn2` and
M⊥ = {x ∈ Fn24` | y = ⊥}.
For each element xi in uniformly random x ← Fn24` and corresponding ỹi in ỹ

(meaning that ỹ = σ1(t∗(x)) if y 6= ⊥ and else ỹ = ⊥) it holds:

maxe:Z→F
24` Pr[x = e(ỹ)] = E(|Mỹ|−1) =

∑
z∈Z

Pr[x ∈Mz] · |Mz|−1 =
∑

z∈Z
1
|F

24` |

= 2−3` + 2−4`

Hence, for uniformly random u ∈ F2` we can conclude by the Leftover hash lemma
(Lemma 2.26):

∆
(
(〈h |σ(x)〉, h, ỹ) , (u, h, ỹ)

)
≤ 1

2

√
maxe:Z→F

24` Pr[x = e(ỹ)] · |F2` | =
1
2

√
2−2` + 2−3`

< 2−`

It directly follows that the statistical distance between a commitment on any secret
s and a commitment on uniform randomness is also upper bounded by 2−` for each
component, thus Πrev

COM remains statistically hiding.

Lemma 6.5. The protocol Πrev
COM in Figure 6.8 statistically UC-realizes F s-o

COM
(cf. Figure 6.4) in the Fb-rs

wrap-hybrid model against a corrupted receiver, given that
OVS is an oracle validation scheme as per Definition 6.1.

Proof. Consider the simulator in Figure 6.10 with the dummy adversary AR.
As a first step, we show that the preconditions of [CS09, Theorem 1.1] are met.

For completeness, we restate their main theorem.

Theorem ([CS09, Theorem 1.1]). Let k > 0 be a constant integer, n > k and d > 0
be integers, let p` be a sufficiently large prime power and ε > 0 be an arbitrarily
small constant. Suppose that f1, . . . , fk ∈ F

p
` [x1, . . . , xn] are polynomials, each of

total degree at most d, and let

V = V (f1, . . . , fk) = {ξ ∈ Fn
p
` | f1(ξ) = . . . = fk(ξ) = 0}

be the variety defined by f1, . . . , fk. There exists a randomized algorithm that, given
the description of f1, . . . , fk as a list of their nonzero monomials, outputs a random
point v ∈ Fn

p
` such that the distribution of v is 6

p
`(1−ε) -close to the uniform distri-

bution on V . The worst-case runtime complexity of this algorithm is polynomial in
n, d, ` log(p) and the description of f1, . . . , fk.

106 6. Bounded-Resettable Tamper-Proof Hardware

Simulator SR

• Simulate T for AR. Let T∗ denote the token functionality that AR inputs into the
token.

• (Setup) Simulate the setup phase straightforwardly according to Πrev
COM. Draw a

uniformly random λ and obtain a check polynomial p̃∗.

• (Commit) Upon receiving a message (committed) from F s-o
COM, simulate the commit

phase of Πrev
COM with a random input s and let (m,h, ỹ) be the message to AR.

• (Unveil) Upon receiving a message (opened, I, ŝI) from F s-o
COM, if the simulated

commitment sender has already aborted, do nothing. Otherwise, compute a new
unveil message x̂I using the following equivocation program for each x̂i ∈ x̂I .

1. Start the extractor ExtOVS of OVS with input (T∗, p̃∗, λ). If ExtOVS queries
T∗ more than 2` times, abort; otherwise let p̂ denote ExtOVS’s output.

2. Compute the unique polynomial p̂1 ∈ F2` [X1, . . . , X4] such that deg(p̂1) ≤
deg(p̂) and σ1 ◦ p̂ = p̂1 ◦ σ, where “◦” denotes the function composition
operator. Then pick a uniformly random solution x̂ ∈ F24` of the following
polynomial equation system, using the efficient algorithm of [CS09]:

p̂1(σ(x̂)) = ỹ

〈h |σ(x̂)〉 = m− ŝ

Resample x̂ until p̂(x̂) = OVS.QueryT∗(x̂, p̃∗, λ) 6= ⊥. Give up, if more than
2
√
` iterations are required.

3. Output x̂
Send (I, x̂I) to AR.

Figure 6.10: Simulator for a corrupted commitment receiver in the protocol Πrev
COM.

Concretely, in our case the field is F2` and n = 4, as elements of F24` are interpreted
as 4-dimensional vectors over F2` . The variety V is given by the polynomials (in
x = (x1, . . . , x4))

p̂1(x)− ỹ = 0
〈h |x〉 −m+ ŝ = 0

where p̂1(x) − ỹ ∈ F2` [x1, . . . , x4] is a polynomial of degree q and 〈h |x〉 −m + ŝ ∈
F2` [x1, . . . , x4] is trivially a polynomial of degree 1. Thus the parameters are k = 2,
n = 4, p = 2, and d = q. We can set ε = 1

2 and the above theorem yields an efficient
algorithm that samples 6

2`/2 -close to uniform from V .
Given the simulator, we now have to show that the simulation is indistinguish-

able from a real protocol execution, and in particular, the expected runtime of the
simulator is polynomial. We show this via a series of hybrid experiments.

Experiment 0: This is the real model.

Experiment 1: Identical to Experiment 0, except that the commitment sender
commits to pure randomness in the commit phase and runs in the unveil phase

6.3. Statistically Secure Two-Party Computation 107

a complete search over all token inputs to equivocate the commitment to his
real input (which requires to reset the token exponentially many times).

Experiment 2: Identical to Experiment 1, except that the complete search in the
equivocation step is only over token inputs x on which the token functionality
x 7→

(
t∗(x), t′∗(x)

)
coincides with the mapping x 7→

(ˆp(x), t′∗(x)
)
, where p̂

denotes the polynomial computed by ExtOVS from the token program and the
transcript of the setup phase.

Experiment 3: The ideal model, conditioned on the event that the simulator does
give up.

Experiment 4: This is the ideal model.

Experiment 0 and Experiment 1 are indistinguishable, because the commitment
is statistically hiding (cf. Lemma 6.4). Indistinguishability between Experiment 1
and Experiment 2 follows from the negligibility of ExtOVS’s failure probability ρ′

(cf. Definition 6.1). Experiment 2 and Experiment 3 are indistinguishable by con-
struction of the simulator—here we need the above observation that by [CS09] one
finds solutions for a polynomial equation system that are statistically close to ran-
dom solutions. Experiment 3 and Experiment 4 are indistinguishable, given that
the simulator has expected polynomial runtime complexity and thus gives up only
with negligible probability.
We will prove this next. The expected polynomial runtime of SR depends on two

factors, for which we will show polynomial runtime step by step.

1. The runtime of the extractor ExtOVS of OVS.

2. The number of resamplings of x̂ by SR.

Concerning Step 1, given that OVS is an oracle validation scheme, we have that
the runtime of ExtOVS has to be polynomially bounded in

(
` · |T∗|

)O(1)
· ρ−1, where

ρ is the probability that OVS.QueryT∗ outputs y 6= ⊥. Since we already know that
y 6= ⊥, we thus have an expected runtime of

(
` · |T∗|

)O(1)
.

For Step 2, we first estimate the expected number of resamplings of one x̂i ∈
x̂I . In the following let y ← OVS.QueryT∗(x̂i, p̃∗, λ), where y = (t∗(x̂i), t′∗(x̂i)) ∈
(F24` ×F24`)∪⊥ and (t∗, t′∗) describes the malicious token functionality T∗. Further
let M denote the set of token inputs that pass the consistency check and let N
denote the subset of token inputs for which the extracted polynomial p̂ is correct,
i.e. M = {x ∈ F24` | y 6= ⊥} and N = {x ∈ M | y1 = p̂(x)}. We have to show that a
randomly sampled x̂i lies in N with overwhelming probability.
Let ρ′ be the failure probability from Definition 6.1. Since ρ′ ≤ 2−Ω(`), we find

some ε ∈ R>0 with ρ′ ≤ 2−ε`, assuming a sufficiently large security parameter `. Note
that ρ′ = E

(
|M \N | · |F24` |−1

)
just by construction. We distinguish the following

three cases.

1. It holds that |M | ≤ 2(4−ε/4)`, i.e. the simulator finds no value x̂i which passes
the validation. However, conditioned on any choice of λ the probability of a
non-aborted commit phase is |M | · |F24` |−1, which is negligible in this case.
Thus, the probability that SR aborts beforehand is overwhelming probability

108 6. Bounded-Resettable Tamper-Proof Hardware

and even if the iteration bound of 2
√
` is always reached, this case contributes

only 2
√
`−ε`/4 to the expected number of resamplings of x̂i, which is negligible.

2. It holds that |M \N | ≥ 2(4−3ε/4)`, i.e. the simulator cannot find a value x̂i
for which the extracted polynomial matches the token functionality. Since
E
(
|M\N |

)
= ρ′ · |F24` | ≤ 2(4−ε)`, this may be the case at most with probability

2−ε`/4. Thus, even if the iteration bound of 2
√
` is always reached, this case

also contributes only 2
√
`−ε`/4 to the average number of resamplings of x̂i.

3. It holds that |M | > 2(4−ε/4)` and |M \N | < 2(4−3ε/4)`. We may consider the
simulated commitment sender’s token input xi as uniformly random over M ,
because x /∈M leads to an abort in the commit phase anyway. Each sampling
of x̂i is uniformly random (up to a negligible statistical distance δ) over the set
(σ1◦ p̂)−1((σ1◦t∗)(x))∩{x̂i ∈ F24` | 〈hi |σ(x̂i)〉 = mi− ŝi}. The distance δ stems
from the fact that we only know how to sample almost uniformly from large
varieties. As discussed above, we have δ ≤ 6

2`/2 . Note that mi and hence also
mi − ŝi is uniformly random and independent of (λ, xi, hi). If we instantiate
the technical Lemma 6.6 with g := σ1 ◦ p̂ and f := σ1 ◦ t∗, it follows that each
sampling of x̂i has the following success probability:

Pr[x̂i ∈ N] > |N |
|F24` |

− |M \N |
|M |

−
|F2` |√
|M |
− δ

= |M |
|F24` |

− |M \N |
|F24` |

− |M \N |
|M |

−
|F2` |√
|M |
− δ

Since we assumed |M | > 2(4−ε/4)` and |M \ N | < 2(4−3ε/4)`, we can estimate
(w.l.o.g. for ε < 1):

|M \N |
|F24` |

< 2−3ε`/4 <
2−ε`/2 · |M |
|F24` |

|M \N |
|M |

< 2−ε`/2 < 2−ε`/4 · |M |
|F24`|

|F2` |√
|M |

< 2(ε/8−1)` <
2(3ε/8−1)` · |M |
|F24` |

<
2−5`/8 · |M |
|F24` |

δ ≤ 6 · 2−`/2 < 6 · 2(ε/4−1/2)` · |M |
|F24`|

<
6 · 2−`/4 · |M |
|F24` |

Thus, the success probability for each sampling of x̂i is lower bounded by:

(1− 2−ε`/2 − 2−ε`/4 − 2−5`/8 − 6 · 2−`/4) · |M |
|F24` |

In other words, for large enough ` the success probability is arbitrarily close
to |M | · |F24`|−1. However, this is also exactly the success probability for the
consistency check in the protocol’s commit phase. Let ρ̃ := |M | · |F24` |−1 and

6.3. Statistically Secure Two-Party Computation 109

ϑ := 1 − 2−ε`/2 − 2−ε`/4 − 2−5`/8 − 6 · 2−`/4. Hence we can upper bound the
expected number of sampling steps for x̂i by the following term:

ρ̃ ·
(∑∞

j=1 j · (1− ϑ · ρ̃)i−1 · ϑ · ρ̃
)

= ρ̃ · 1
ϑ · ρ̃

= 1
ϑ

Note that by assumption |M | > 2(4−ε/4)` and therefore ρ̃ 6= 0.

To summarize, we have shown that the expected number of sampling steps for x̂i is
upper bounded by 1 + o(1). Since n = poly(`), this can be done for all x̂i to obtain
x̂I in polynomial time. We can thus conclude that SR has expected polynomial
runtime.

The following lemma provides a bound for the probability that a randomly sam-
pled x̂, which passes the consistency check, evaluates to the same value when given
to the oracle and when evaluated by the extracted polynomial. In this lemma, x
denotes a random variable.

Lemma 6.6. Let any finite sets U,M,N,Z with ∅ 6= N ⊆M ⊆ U and two mappings
f, g : U → Z be given with f(x) = g(x) for all x ∈ N . Further, let H be a family
of 2-universal hash functions h : U → Z. Finally, let x r← M , h r← H, m r← Z,
z := f(x), and x̂ r← g−1(z) ∩ h−1(m) with the convention that x̂ = ⊥ /∈ U in case
of g−1(z) ∩ h−1(m) = ∅. Then, Pr[x̂ ∈ N] > |N |

|U | −
|M\N |
|M | −

|Z|√
|M |

.

Proof. We define the following auxiliary random variables:

z′ := g(x) x̂′ r← g−1(z′) ∩ h−1(m) with x̂′ := ⊥, if g−1(z′) ∩ h−1(m) = ∅
m′ := h(x) x̂′′ r← g−1(z′) ∩ h−1(m′)

Note that ∆(z, z′) ≤ ∆
(
(z,x), (z′,x)

)
= Pr[f(x) 6= g(x)] ≤ Pr[x /∈ N] and therefore

also ∆
(
(m,h, z), (m,h, z′)

)
≤ Pr[x /∈ N], as h and m are just additional indepen-

dent randomness. Thus we have:

Pr[x̂ ∈ N] ≥ Pr[x̂′ ∈ N]− Pr[x /∈ N] = Pr[x̂′ ∈ N]− |M\N ||M |

Now, for any mapping e : Z →M we can estimate Pr[x = e(z′)] as follows:

Pr[x = e(z′)] =
∑
z∈Z

Pr[z′ = z]︸ ︷︷ ︸
≤ |M∩g

−1(z)|
|M|

·Pr[x = e(z) |x ∈ g−1(z)]︸ ︷︷ ︸
≤ |1|
|M∩g−1(z)|

≤ |Z|
|M |

Hence, using the leftover hash lemma (cf. Lemma 2.26) it holds that:

∆
(
(m,h, z′), (m′,h, z′)

)
≤ 1

2

√
maxe:Z→M Pr[x̂ = e(z)] · |Z| ≤ 1

2

√
|Z|
|M | · |Z| <

|Z|√
|M |

This yields:

Pr[x̂′ ∈ N] > Pr[x̂′′ ∈ N]− |Z|√
|M |

and therefore

Pr[x̂ ∈ N] > Pr[x̂′′ ∈ N]− |M\N ||M | −
|Z|√
|M |

110 6. Bounded-Resettable Tamper-Proof Hardware

So, we finally need to estimate Pr[x̂′′ ∈ N]. Note that x̂′′ r← g−1(g(x)) ∩ h−1(h(x))
by construction, i.e., x̂′′ is a uniformly random preimage of

(
g(x),h(x)

)
under the

mapping x 7→
(
g(x),h(x)

)
. In a first step we will estimate the probability, that x′′

lies in M .
First note that for any β,A,B ∈ R with B > β > 0 the function α 7→ α

2

β
+ (A−α)2

B−β
has a global minimum at α = βA

B
. Thus, given any finite sequences (αz)z∈Z ⊂ R

and (βz)z∈Z ⊂ R>0, it follows by induction on |Z| that ∑z∈Z
α

2
z

βz
≥ ∑

z∈Z
αzA
B

= A
2

B
,

where A := ∑
z∈Z αz and B := ∑

z∈Z βz.
Now for each z ∈ Z, let Uz := g−1(z) ∩ h−1(z) and Mz := Uz ∩M . Let Z ′ :=

g(U) ∩ h(U). By our considerations above we have:

∑
x∈M

|Mg(x)∩h(x)|
|Ug(x)∩h(x)|

=
∑
z∈Z′

∑
x∈Mz

|Mz|
|Uz|

=
∑
z∈Z′

|Mz|2

|Uz|
≥ |M |

2

|U |

Hence the following holds:

Pr[x̂ ∈M] =
∑
x∈M

Pr[x = x]︸ ︷︷ ︸
=|M |−1

· Pr[x̂ ∈M |x = x]︸ ︷︷ ︸
=|Mg(x)∩h(x)|·|Ug(x)∩h(x)|

−1

≥ |M |
|U |

Conditioned on the event that x̂′′ ∈ M , we can consider x̂′′ just as a resampled
version of x, which is uniformly distributed. Thus, Pr[x̂′′ ∈ N | x̂′′ ∈ M] = |N |

|M | and
therefore Pr[x̂′′ ∈ N] = Pr[x̂′′ ∈ M] · Pr[x̂′′ ∈ N | x̂′′ ∈ M] ≥ |N |

|U | . Combined, we get
Pr[x̂ ∈ N] > |N |

|U | −
|M\N |
|M | −

|Z|√
|M |

as claimed.

6.3.3 Multiple OT from a Constant Number of Tokens
We present an OT protocol in Section 6.3.3.1 that is an adapted version of a

protocol by Goyal et al. [GIMS10] for a single OT based on stateless tamper-proof
hardware. While their protocol needs token encapsulation, we can enhance the
protocol such that this is no longer necessary. The structure of the protocol is as
follows. In a first step, the receiver of the OT has to create a commitment on his
choice bit c and send it to the sender. This is done using a commitment based on a
hardware token. The sender creates a token T with the following functionality. The
protocol transcript of the commitment phase and all random coins of the sender are
stored in the token. When it receives the unveil message for the commitment, it
checks the correctness and provides the OT output sc if the check succeeds. Then
the sender sends T to the receiver, who can unveil his choice bit and obtain the
corresponding output.
Our protocol has the drawback that, when used for multiple parallel OTs at once,

the token can abort depending on all choice bits. Thus, in Section 6.3.3.2 we show
how to obtain a protocol that allows multiple parallel OTs without the combined
abort flaw.

6.3.3.1 Multiple OT with Combined Abort

In the original protocol of [GIMS10] the unveil phase of the commitment required
the commitment receiver (i.e. the OT sender in this case) to query a token, such
that T must encapsulate the token of the commitment of the OT receiver. Our

6.3. Statistically Secure Two-Party Computation 111

commitment scheme Πrev
COM (cf. Section 6.3.2), however, does not need any interac-

tion with a token by the commitment receiver. Thus we can circumvent the token
encapsulation and obtain an OT protocol in the Fb-rs

wrap-hybrid model. If we want
to implement several OT instances in parallel, we encounter the following problem:
Each of the OT outputs can depend on all choice bits. To counter this, we have
the sender commit to his inputs in advance. This still leaves a small flaw in the
construction: The token can abort depending on all choice bits. We thus only real-
ize a weaker ideal OT functionality, where a corrupted sender can specify an abort
predicate depending on the choice bits of the receiver (cf. Figure 6.11). A similar
level of security was achieved by [IKO+11] in the context of non-interactive secure
computation.

Functionality Fc-ab
MOT

Implicitly parametrized by a sender input domain S and the number n of single OTs to
be implemented.

• Upon input
(
create, (s(1)

0 , s
(1)
1), . . . , (s(n)

0 , s
(n)
1)

)
with (s(i)

0 , s
(i)
1) ∈ S × S from the

sender, verify that the sender is uncorrupted; otherwise ignore that input. Next,
store (s(0)

0 , s
(0)
1), . . . , (s(n)

0 , s
(n)
1), send (sent) to the adversary, and henceforth ignore

any further input from the sender.

• Upon input
(
mal_create, (s(1)

0 , s
(1)
1), . . . , (s(n)

0 , s
(n)
1), Q

)
with (s(i)

0 , s
(i)
1) ∈ S×S and

a predicate Q : {0, 1}n → {accept, reject} from the sender, verify that the sender
is corrupted; otherwise ignore that input. Next, store (s(0)

0 , s
(0)
1), . . . , (s(n)

0 , s
(n)
1) and

Q, send (sent) to the adversary, and henceforth ignore any further input from the
sender.

• Upon input (choice, c) with c = (c1, . . . , cn) ∈ {0, 1}n from the receiver, store c,
send (chosen) to the adversary, and henceforth ignore any further input from the
receiver.

• Upon receiving a message (output) from the adversary, check that there are stored
inputs (s(1)

0 , s
(1)
1), . . . , (s(n)

0 , s
(n)
1) from the sender and c from the receiver; else ignore

this message. If the sender is corrupted, compute Q(c) and abort if Q(c) = reject.
Next, send (s(1)

c1
, . . . , s(n)

cn
) to the receiver and ignore any further (output)-messages

from the adversary.

• Upon receiving a message (notify) from the adversary, check that there are stored
inputs (s(1)

0 , s
(1)
1), . . . , (s(n)

0 , s
(n)
1) from the sender and c from the receiver; else ignore

this message. Next, send an empty output to the sender and ignore any further
(notify)-messages from the adversary.

Figure 6.11: Ideal functionality for multiple oblivious transfer with a combined abort
property.

Our final protocol proceeds as follows. In a first step, the sender commits to
his inputs (s(1)

0 , s
(1)
1), . . . , (s(n)

0 , s
(n)
1) using the commitment protocol Πs-o

COM from Sec-
tion 6.3.1 and samples a random key for an information-theoretic MAC (cf. Sec-
tion 2.4.1). This MAC allows us to make the token T and thus all inputs independent
of the actual commitment message from Πrev

COM by having the sender authenticate

112 6. Bounded-Resettable Tamper-Proof Hardware

the message for the token. The sender then programs T such that it unveils the
corresponding commitments on s(1)

c1 , . . . , s
(n)
cn

if it receives an authenticated unveil
message for the choice bits c1, . . . , cn. Now the receiver commits to his choice bits
and obtains a MAC σ on the transcript τ of the commitment phase from the sender.
The receiver then sends the unveil information together with τ and σ to T to ob-
tain the corresponding OT inputs. The formal description of the protocol is given
in Figure 6.12

Protocol Πc-ab
MOT

Implicitly parametrized by the number n of single OTs to be implemented. Based upon
our commitment schemes Πs-o

COM and Πrev
COM and a statistically secure message authenti-

cation scheme MAC. Let T be an instance of Fb-rs
wrap.

1. Sender: Let (s(1)
0 , s

(1)
1), . . . , (s(n)

0 , s
(n)
1) be the sender’s n OT-inputs. Sample a key

k for the message authentication scheme MAC. Commit to the 2n values s(i)
0 , s

(i)
1

via Πs-o
COM and prepare a hardware token T with the following functionality:

• On input (c, w, τ, σ), verify that c ∈ {0, 1}n, σ ← MACk(τ), and w is a
correct Πrev

COM-unveil of c with commit phase transcript τ . If so, return the
Πs-o

COM-unveil messages for s(1)
c1
, . . . , s(n)

cn
.

Send (create,T) to T .

2. Receiver: Let c = (c1, . . . , cn) be the receiver’s choice bits. Commit to c via Πrev
COM.

3. Sender: Take the message transcript τ of Step 2, compute σ = MACk(τ), and send
σ to the receiver.

4. Receiver: Let w be the Πrev
COM-unveil message for c. Input (c, w, τ, σ) into T ; let

(r1, . . . , rn) denote the response. Verify that r1, . . . , rn are correct unveil messages
for the corresponding Πs-o

COM-commitments from Step 1 indexed by c. If so, output
the unveiled values; otherwise abort.

Figure 6.12: Reduction of multiple OT with combined abort in the Fb-rs
wrap-hybrid

model to the commitment protocols Πs-o
COM and Πrev

COM.

Theorem 6.4. The protocol Πc-ab
MOT in Figure 6.12 statistically UC-realizes F c-ab

MOT
(cf. Figure 6.11) in the Fb-rs

wrap-hybrid model, given that MAC is a statistically secure
MAC and Πs-o

COM and Πrev
COM are statistically UC-secure.

Proof. Corrupted Sender. We first consider UC-security against a corrupted OT
sender. The simulator is depicted in Figure 6.13. The simulator first extracts the
inputs of the malicious sender and then computes a predicate Q based on the token
functionality T∗. This predicate is based on one protocol run between the simulator
and the sender based on random choice bits and therefore does not behave like the
token for all receiver inputs. To make it reusable, the simulator programs Q such
that it uses the receiver simulator of Πrev

COM to equivocate the one protocol run to
any vector of choice bits from the receiver. He then inputs the sender inputs with
the predicate into the ideal functionality.
We show by a series of hybrid experiments that the simulator produces an output

indistinguishable from a real protocol run.

6.3. Statistically Secure Two-Party Computation 113

Simulator SS

• Simulate T for the AS and obtain T∗ in Step 1 of Πc-ab
MOT. Use the sender-simulator

SΠs-o
COM

S of Πs-o
COM to extract the OT inputs (ŝ(1)

0 , ŝ
(1)
1), . . . , (ŝ(n)

0 , ŝ
(n)
1) of AS.

• To simulate Step 2, choose c = (c1, . . . , cn) uniformly at random and proceed as
described in the protocol.

• In Step 4, construct an abort predicate Q from T∗, σ and τ , where σ was obtained
in Step 2 and τ in Step 3, which behaves as follows.

1. Upon input c̄ ∈ {0, 1}n, use the receiver-simulator SΠrev
COM

R for Πrev
COM to obtain

an unveil message w̄ that equivocates τ to c̄.
2. Run T∗ on input (c̄, w̄, τ, σ); let (r1, . . . , rn) denote the response.
3. Simulate the check in Step 4 of Πc-ab

MOT, i.e. verify that r1, . . . , rn are correct
unveil messages for the corresponding Πs-o

COM commitments indexed by c̄. If
so, accept; otherwise reject.

Send (mal_create, (ŝ(1)
0 , ŝ

(1)
1), . . . , (ŝ(n)

0 , ŝ
(n)
1), Q) to Fc-ab

MOT.

Figure 6.13: Simulator for a corrupted OT sender in the protocol Πc-ab
MOT.

Experiment 0: This is the real model.

Experiment 1: Identical to Experiment 0, except that S1 commits to uniformly
random inputs and uses the receiver-simulator SΠrev

COM
R of Πrev

COM to equivocate
his commitment to the token.

Experiment 2: Identical to Experiment 1, except that S2 uses the sender-simulator
SΠs-o

COM
S of Πs-o

COM and constructs a predicate Q as described in Figure 6.13. This
is the ideal model.

Experiment 0 and Experiment 1 are indistinguishable since the protocol Πrev
COM is

UC-secure. This guarantees that the equivocation step succeeds with overwhelming
probability. Experiments 1 and 2 are indistinguishable due to the UC-security of
Πs-o

COM. In particular, the predicate Q performs exactly the check that the receiver
performs in Experiment 1, except that the extracted values are used for the check.
UC-security ensures that the extraction will succeed with overwhelming probability,
thus this check is passed with the same probability (up to a negligible factor) as in
Experiment 1.
Corrupted Receiver. Next, we show security against a corrupted receiver AR.

The simulator against a corrupted receiver is shown in Figure 6.14. The main idea
is that the simulator will commit to random OT inputs, extract the choice bits of
the receiver, and then retrieve the real outputs from the ideal functionality. From
there, the simulator uses the receiver simulator of Πs-o

COM to equivocate his inputs
according to the real outputs.
We now show the indistinguishability of a simulated protocol run from a real

protocol run in a series of hybrid experiments.
Experiment 0: This is the real model.

Experiment 1: Identical to Experiment 0, except that S1 aborts, if τ ∗ 6= τ̂ and σ∗
is a correct MAC on τ ∗.

114 6. Bounded-Resettable Tamper-Proof Hardware

Simulator SR

• Simulate T for AR. Let Q denote the set of token queries that AR inputs into the
token.

• Choose (s(1)
0 , s

(1)
1), . . . , (s(n)

0 , s
(n)
1) uniformly at random, and commit to them via

Πs-o
COM. Simulate the rest according to Step 1 of the protocol.

• Use the sender-simulator SΠrev
COM

S for Πrev
COM in Step 2 to extract the committed

choice bits ĉ = ĉ1, . . . , ĉn and send (choice, ĉ) to Fc-ab
MOT.

• Simulate Step 3 according to the protocol with τ̂ being the message transcript of
Step 2.

• Send (output) to Fc-ab
MOT and let ŝ(1)

c1
, . . . , ŝ(n)

cn
be the answer. Use the receiver-

simulator SΠs-o
COM

R of Πs-o
COM to produce unveil messages r′1, . . . , r

′
n that equivocate

the commitments to the correct values. Let (c∗, w∗, τ∗, σ∗) be the input of AR into
the token. Abort if c∗ 6= ĉ and the unveil message w∗ unveils correctly to c∗. If
that check if passed, abort if τ∗ 6= τ and σ∗ is a correct MAC on τ∗. Otherwise,
output r′1, . . . , r

′
n for the corresponding commitments indexed by ĉ.

Figure 6.14: Simulator for a corrupted OT receiver in the protocol Πc-ab
MOT.

Experiment 2: Identical to Experiment 1, except that S2 aborts, if c∗ 6= ĉ, al-
though w∗ is a correct unveil for the Πrev

COM commitment.

Experiment 3: Identical to Experiment 2, except that S3 equivokes the commit-
ments at the positions specified by ĉ to the output of F c-ab

MOT. This is the ideal
model.

Indistinguishability between Experiment 0 and Experiment 1 follows directly from
the unforgeability of MAC, i.e. the event that S2 aborts happens only with negligible
probability. Experiment 1 and Experiment 2 are indistinguishable since Πrev

COM is
UC-secure and thus the extraction will succeed with overwhelming probability. Ex-
periment 2 and Experiment 3 are indistinguishable due to the UC-security of Πs-o

COM,
i.e. the equivocation will succeed with overwhelming probability.

Remark. It is possible to use only two tokens in the protocol Πc-ab
MOT instead of three

by combining the token T with the token of Πrev
COM. Note that the token T already

receives a complete message transcript of the messages of Πrev
COM. Thus the secu-

rity of the protocol remains intact even if a malicious token can keep a complex
state. Although the token has to be queried twice now, the token functionality can
straighforwardly be adapted to allow this, as pointed out in Section 6.1.
Remark. Note that the above protocol combined with the impossibility of OT in the
stateless token model [GIMS10] directly implies an impossibility result for commit-
ments in the stateless token model, where the unveil phase consists only of a single
message from the sender to the receiver and local computations (without accessing
any tokens) by the receiver. Otherwise, the commitments in our OT construction
could be replaced by these commitments, yielding an OT protocol in the stateless
token model without encapsulation. This contradicts the impossibility result proven
in [GIMS10].

6.3. Statistically Secure Two-Party Computation 115

6.3.3.2 How to Get Rid of the Combined-Abort Flaw

We now sketch how to obtain an ideal oblivious transfer as specified in Sec-
tion 2.7.2.3 from F c-ab

MOT. Although this problem seems to be related to OT combin-
ers [HKN+05, MPW07], i.e. the extraction of an OT from several possibly corrupted
OTs, OT combiners cannot be applied in our case. An OT combiner uses a set of
independent OTs from which some may be corrupted, while our protocol gives us
uncorrupted OTs, but it leaks a joint predicate over all receiver inputs.
Using a classical OT combiner based on 2-universal hashing in our scenario allows

the following attack. Standard OT combiners are built such that the receiver’s ideal
OT choice bits are basically 2-universal hash values of the flawed choice bits, which
are uniformly random, and similarly for the outputs. Applying this construction to
our scenario, the sender can just pick two input pairs

(
s̃

(i)
0 , s̃

(i)
1

)
and

(
s̃

(j)
0 , s̃

(j)
1

)
, flip

the bits of s̃(i)
1 and s̃(j)

1 , and otherwise execute the protocol honestly. He then specifies
a predicate Q such that the ideal functionality aborts upon input c̃ = (c̃1, . . . , c̃n)
if and only if c̃i = c̃j = 1. With non-negligible probability, the 2-universal hash
functions are chosen such that

• the receiver’s i-th flawed OT input-output tuple (c̃i, r̃i) influences the calcula-
tion of an ideal OT input-output tuple (ck, rk), but not (cl, rl), where l is an
index such that

• the receiver’s j-th flawed OT input-output tuple (c̃j, r̃j) influences (cl, rl), but
not (ck, rk).

If the 2-universal hash functions are chosen like that, if c̃i = 1 (ck, rk) is affected by
the bit-flip of s̃(i)

1 , and similarly (cl, rl) is affected by the bit-flip of s̃(j)
1 if c̃j = 1. The

definition of the predicateQ now ensures that—although both events are statistically
independent—it will never happen that both values (ck, rk) and (cl, rl) are affected
by the attack. We now have a correlation between the joint distribution of the
receiver’s inputs and outputs of the ideal OT and the event that the flawed OT
aborts. This is not simulatable with an ideal OT.
Thus, to prevent this kind of attack, we need an OT extractor as defined by

Ishai et al. [IKOS09] that extracts independent OTs from correlated instances. But
we cannot simply apply the solution of [IKOS09], because their OT extractor only
achieves semi-honest security for the unconditional setting with a maliciously cho-
sen leakage function, albeit with a constant rate, i.e. they only need O(n) bits of
communication to achieve n OTs. Our scenario focuses on malicious parties that
try to cheat in the extraction protocol. We make no restriction on the rate, i.e. we
implement n ideal OT instances from nO(1) F c-ab

MOT instances.
Our solution relies on the MPC-in-the-head paradigm [IKOS07, IPS08] and is thus

conceptually similar to the OT combiner of [HIKN08]. While it might be possible to
prove the protocol of [HIKN08] secure based on F c-ab

MOT, we will just use a combination
of existing works from the literature to obtain our extractor. In particular, we use:

1. Our implementation of F c-ab
MOT.

2. A statistically UC-secure 2PC protocol in the OT-hybrid model, e.g. [IPS08].

3. A statistically UC-secure OT protocol for multiple OTs, based on untrusted
tamper-proof hardware, e.g. [DKMQ11].

116 6. Bounded-Resettable Tamper-Proof Hardware

First note that it is possible to precompute OT with random inputs and later use
a simple interactive and information-theoretic protocol to adjust the precomputed
values to the real inputs [Bea95]. Also, a precomputed OT can be reversed [WW06],
i.e. the OT receiver of a random OT can be transformed into an OT sender and
vice versa. We will use the protocol of [IPS08] to implement the token functionality
of [DKMQ11] based on F c-ab

MOT. [IPS08] allows to use precomputation, so that we
have to use F c-ab

MOT only once in the setup with random inputs. The parties just
execute the protocol of [DKMQ11], where each token query is replaced by the 2PC
of the emulated token. The security of the described construction follows from the
fact the specification of an abort predicate Q for F c-ab

MOT directly implies a maliciously
programmed token that aborts depending on the inputs. The UC-security of the
construction of [DKMQ11], however, guarantees robustness against such a token
functionality. Thus we obtain UC-secure OT from F c-ab

MOT.

6.4 Statistically Secure Non-Interactive Two-Party
Computation

For the case of non-interactive two-party computation, we cannot give a general
positive result, but only a partial solution. On the one hand, the commitment that
is given in Section 6.3.1 can be made non-interactive (as remarked), but this comes
at the cost of losing UC-security. It seems unlikely that the protocol can be made
UC-secure with the techniques that we use. Nevertheless, in the following we show
a statistically UC-secure non-interactive zero-knowledge argument of knowledge,
which might indicate that some interesting functionalities can still be realized non-
interactively.

6.4.1 Bounded-Resettable Zero-Knowledge Proofs of Knowl-
edge

We construct a bounded-resettable zero-knowledge proof system for the NP-
complete problem 3-COLOR. The goal of the prover is to convince the verifier that
he knows a 3-coloring of a given graph G = (V,E), i.e. he knows a map ϕ : V →
{1, 2, 3}, without revealing it to the verifier. For this, the prover commits himself on
a coloring of the vertices and the verifier can query the prover with an edge of the
graph. The prover has to open the commitments to the vertices that are adjacent to
the challenge. If the colors for both vertices are different, the verifier accepts. While
the sketched protocol only has soundness 1

|E| , i.e. a malicious prover can convince
the verifier of a false statement with probability 1 − 1

|E| , repetition of the protocol
leads to soundness arbitrary close to 1.
The main problem imposed by a resettable prover is that a malicious verifier could

try to run the same protocol several times, each time with different challenges, and
hence step by step learn the prover’s witness. This is essentially the same strategy
that is usually applied to construct an extractor for a proof of knowledge. The
standard technique to deal with a resetting verifier is to have the verifier commit to
his challenge in advance and let the color permutations that are chosen by the prover
depend on the commitment of the verifier in a pseudorandom way. Our construction
follows this approach.

6.4. Statistically Secure Non-Interactive Two-Party Computation 117

We modify the constant-round zero-knowledge protocol of [GK96a] for 3-COLOR
such that the prover becomes resettable and only two tokens have to be sent to the
verifier. In the protocol of [GK96a], the verifier first commits to his challenge (the
edges determining the vertices that are to be revealed), then the prover commits to
permutations of the colored vertices. The verifier then reveals the challenge and the
prover opens the specified commitments.
For our construction, we replace the computational commitments in [GK96a] with

the statistical commitments from Sections 6.3.1 and 6.3.2. Therefore the prover has
to send 2 tokens to the verifier. At a first glance this will render the protocol insecure
if the token issuer is resettable, since our commitment schemes have an interactive
setup phase, and if the token receiver can query the sender with two distinct values
λ1, λ2 with λ1 6= λ2, he can directly derive the token functionality. However, if we
fix λ in Πrev

COM, the resulting commitment scheme Π̃rev
COM remains statistically hiding

(cf. Lemma 6.4).
As mentioned above, to achieve resettable security we have to make the prover’s

behavior dependent on the commitment of the verifier. Since we aim for information-
theoretic security, instead of using a pseudorandom function, we use a random poly-
nomial f of sufficient degree. Thus we also have to change the token generation for
Πs-o

COM such that the input domain is X × C, where X is the message domain, and
C is the set of all possible commitments of Π̃rev

COM . Upon input a message (x, c), the
token generation phase of Πs-o

COM is executed with randomness f(c), and the resulting
token program is then executed with input x. The formal description of the protocol
is given in Figure 6.15.
Theorem 6.5. The protocol Πb-r

SZK in Figure 6.15 statistically UC-realizes FZK (cf.
Section 2.7.2.2) in the Fb-rs

wrap-hybrid model, given that Πs-o
COM and Πrev

COM are statisti-
cally UC-secure.
Proof. Corrupted Prover. To prove security against a corrupted prover, the sim-
ulator has to extract the witness of the prover. This is done by having the simulator
execute the real protocol with the prover. If the prover manages to convince the
simulator of the validity of a statement, the simulator will use the sender simulator
of Πs-o

COM to extract all commitments and thus a witness. A formal description of the
simulator is depicted in Figure 6.16. Let AP denote the dummy adversary.
The only possibility to distinguish between the real model and the ideal model

is the abort of the simulator if no correct coloring was extracted. By the UC-
security of Πs-o

COM, however, the sender simulator SS will extract the correct values
of the commitment with overwhelming probability. Thus, it remains to show that
the verifier in the real protocol will not accept a false proof except with negligible
probability. In a single proof, the verifier will detect a cheating prover only with
probability 1

|E| , i.e. the winning probability of a prover is 1 − 1
|E| . For t = n · |E|

repetitions, we get:

Pr[〈P∗,V〉(x) = 1 ∧ x /∈ L] =
(
1− 1

|E|

)t
=
(
1− 1

|E|

)n·|E|
= exp

(
n · |E| · log

(
1− 1

|E|

))
≤ exp

(
n · |E| ·

(
− 1
|E|

))
= exp(−n)

We can conclude that the real model and the ideal model are indistinguishable except
with negligible probability.
Corrupted Verifier. We construct a simulator against a corrupted verifier as

follows (cf. Figure 6.17). In Step 1 of Πb-r
SZK, we exploit that Π̃rev

COM is still UC-
secure against a corrupted commitment sender and thus the challenge Ē can be

118 6. Bounded-Resettable Tamper-Proof Hardware

Protocol Πb-r
SZK

Implicitly parametrized by a simple 3-colorable graph G = (V,E) and a query bound
q in the sense that a malicious verifier can reset the prover at most q − 1 times. Let
n := |V |, t := n · |E|, V := {1, . . . , n} and let T V

com and T P
com be two instances of Fb-rs

wrap.

Auxiliary input for prover:
A 3-coloring of G, denoted ϕ : V → {1, 2, 3}.

Setup phase:
Prover: Select a random degree-q polynomial f ← F2l [X], where l is the number of
random bits needed for token generation in Πs-o

COM for n · t commitments. Further, select
a random degree-q polynomial g ← F2k [X], where k is the number of random bits needed
to generate t random permutations over {1, 2, 3}. W.l.o.g., l and k are larger than the
commit message length in Π̃rev

COM . Create two tokens TV
com and TP

com with the following
functionalities:

• TV
com: Implement the token functionality of Π̃rev

COM .

• TP
com: Upon input (x, cV

com), simulate the token generation procedure of Πs-o
COM with

randomness f(cV
com‖0 . . . 0), evaluate the generated token program on input x, and

output the result.

Send (create,TV
com) to T V

com and (create,TP
com) to T P

com.

Proof phase:
1. Verifier: Uniformly and independently select a random value λP

com according to
the setup phase of Πs-o

COM and a t-tuple of edges Ē = ({u1, v1}, . . . , {ut, vt}) as a
challenge for the zero-knowledge proof. Use Π̃rev

COM to commit to (Ē, λP
com) and

send the corresponding commit message cV
com to the prover.

2. Prover: Compute r = f(cV
com‖0 . . . 0) and r′ = g(cV

com‖0 . . . 0). Use r′ to select t
random permutations π1, . . . , πt over {1, 2, 3} and set φi(v) = πi(ϕ(v)) for each
v ∈ V and i ∈ {1, . . . , t}. Use r to simulate the token generation of Πs-o

COM and
compute the corresponding Πs-o

COM-commit message cP
com to commit to φi(v) for all

v ∈ V and i ∈ {1, . . . , t}. Send cP
com to the verifier.

3. Verifier: Send cV
com and the corresponding Π̃rev

COM -unveil message to the prover,
thus unveiling (Ē, λP

com).

4. Prover: If the unveil was not correct, abort. Else, compute r = f(cV
com‖0 . . . 0) and

simulate the token generation of Πs-o
COM as in Step 2. Compute the response p̃P

com
for λP

com according to the setup phase of Πs-o
COM. Let wP

com be the Πs-o
COM-unveil

message for the commitments indexed by Ē. Send (p̃P
com, w

P
com) to the verifier.

5. Verifier: Check the unveiled commitments according to the unveil phase of Πs-o
COM.

Also verify for each edge {ui, vi} ∈ Ē that φi(ui) 6= φi(vi). If all checks are passed,
accept the proof; if not, reject.

Figure 6.15: Statistically UC-secure bounded-resettable statistical zero-knowledge
proof of knowledge in the Fb-rs

wrap-hybrid model.

6.4. Statistically Secure Non-Interactive Two-Party Computation 119

Simulator SP

• Simulate T V
com and T P

com for AP and obtain TV
com
∗
and TP

com
∗
.

• (Setup) Simulate the setup straightforwardly according to Πb-r
SZK.

• (Proof) Simulate the verifier honestly in the protocol Πb-r
SZK, i.e. use a uniformly ran-

dom challenge as an input. If the verifier would accept, start the sender-simulator
SΠs-o

COM
S of Πs-o

COM with input TP
com
∗
and the message transcript from Step 2 to ex-

tract the commitments and obtain t colorings ϕ∗1, . . . , ϕ
∗
t . If none of the colorings

ϕ∗1, . . . , ϕ
∗
t is valid, abort. Otherwise select one valid coloring ϕ̂ = ϕ∗i and send

(witness, ϕ̂) to FZK. Simulate the rest according to protocol.

Figure 6.16: Simulator for a corrupted prover in the protocol Πb-r
SZK.

extracted. Then, in Step 2, the simulated prover can commit to different colorings
for each challenged vertex pair {ui, vi} ∈ Ē and to arbitrary colorings otherwise.
The remaining protocol is just simulated straightforwardly. Let AV be the dummy
adversary.

Simulator SV

• Simulate T V
com and T P

com for AV. Let Q = (QV
com, Q

P
com) denote the set of token

queries that AV inputs into the tokens.

• (Setup) Simulate the setup phase straightforwardly according to Πb-r
SZK.

• (Proof) Upon receiving a message (accept) from FZK, start the sender-simulator
SΠ̃revCOM

S of Π̃rev
COM with the inputs from QV

com and obtain a message Ê. Create
a pseudo-coloring ϕ̂ for V . For each {ui, vi} ∈ Ē, assign the vertices ui and uj

different colors ϕ̂(ui) 6= ϕ̂(uj). For all other vertices v ∈ V set ϕ̂(v) $← {1, 2, 3}.
Proceed as in the real protocol using the coloring ϕ̂, but abort if Ê 6= Ē although
the unveil of Π̃rev

COM succeeds.

Figure 6.17: Simulator for a corrupted verifier in the protocol Πb-r
SZK.

Consider the following hybrid experiments.

Experiment 0: This is the real model.

Experiment 1: Identical to Experiment 0, except that S1 extracts the challenges
and aborts if the extracted challenge does not match the real challenge.

Experiment 2: Identical to Experiment 1, except that S2 computes the pseudo-
coloring ϕ̂ and uses it for the rest of the protocol. This is the ideal model.

Indistinguishability of Experiment 0 and Experiment 1 follows from the UC-
security of Π̃rev

COM , which guarantees that the extraction will succeed with overwhelm-
ing probability. Experiment 1 and Experiment 2 are indistinguishable because Πs-o

COM
is statistically hiding.

It remains to show that the proof system is actually bounded-resettable zero-
knowledge.

120 6. Bounded-Resettable Tamper-Proof Hardware

Corollary 6.7. The protocol Πb-r
SZK is bounded-resettable zero-knowledge.

Proof. The resettable security of the prover follows from two facts. First, the prover’s
randomness (r, r′) depends deterministically on his first message cV

com, but remains
completely unpredictable for the verifier because he is not allowed to make more
than q queries. Second, by the binding property of Π̃rev

COM , a corrupted verifier
cannot cheat in Step 3 of Πb-r

SZK other than switch to another instance of the zero-
knowledge protocol with an unrelated prover randomness (r, r′).

Remark. Our construction Πb-r
SZK can directly be used to obtain a non-interactive

zero-knowledge proof of knowledge scheme in the bounded-resettable hardware model
by storing the prover functionality in an additional token (or two other tokens, if
each token should be queried only once).

6.5 Relation to Two-Party Computation
In light of the impossibility results for standard resettable hardware [GIMS10], a

weaker model of resettable hardware is necessary to obtain positive results for general
two-party computation with resettable hardware. The model that we proposed
makes a natural physical assumption and allows efficient constructions of many
cryptographic primitives such as commitments, OT and ZK proof systems. In the
larger context, our results imply the following.

Statistically secure two-party computation: In the previous sections, we pre-
sented statistically UC-secure constructions for all the building blocks neces-
sary (in particular OT) to perform general UC-secure two-party computation
from existing general solutions [Kil88, IPS08]. Our result is the first construc-
tion of general statistically secure two-party computation in any resettable
hardware token model.

Statistically secure non-interactive two-party computation: While we don’t
show a general feasibility result for statistically UC-secure non-interactive
two-party computation, both the commitment scheme Πs-o

COM and the zero-
knowledge proof system Πb-r

SZK can be made non-interactive. Thus we showed
a partial positive answer for the feasibility of non-interactive two-party func-
tionalities.

Our results are somewhat surprising, since they show that by simply fixing an
upper bound on the number of resets for resettable hardware one obtains the same
cryptographic strength as completely stateful tokens. While the bound imposes a
severe constraint in theory, for practical applications in the real world such a bound
occurs naturally. We want to stress again that the bound is part of the token
program, i.e. there is no state that the token has to keep, and standard stateless
tokens (e.g. smartcards) can be used to realize our functionalities.
Our results are summarized in Table 6.18. Computational results are already

implied by resettable tokens.

6.5. Relation to Two-Party Computation 121

computational 2PC statistical 2PC
Model interactive non-interactive interactive non-interactive
stateful 3 3 3 3

stateful
(inc. com.) 3 3 3 3

stateful
(outg. com.) 3 3 7(3) 7

resettable 3 3 7(3) 7

bounded-res. 3 3 3(2 Tokens) (3) Commit-
ment,ZK

reusable
resettable 3 3 7(3) 7

Table 6.18: Feasibility of interactive and non-interactive two-party computation
from bounded-resettable tamper-proof hardware.

7. Reusable Resettable
Tamper-Proof Hardware

All protocols based on tamper-proof hardware that we discussed in the previous
chapters require a specific token functionality for each protocol (e.g. the token stores
a polynomial or it stores an input for a CRS and returns it when receiving a ZK
proof), i.e. the token can at best be used for several instances of the same protocol.
This has several negative implications if one wants to use tokens in real applications.
Most notably, it might be necessary to keep a lot of different tokens. Additionally,
the tokens cannot be mass-produced, making it seem unlikely that the functionality
is implemented in hardware. For currently available smart cards, however, the pro-
tocols are too complex to be realized efficiently enough via software to be applicable
in practice.
In this chapter, we focus on hardware tokens that can be used for different pro-

tocols while providing a predefined functionality. Reusable tamper-proof hardware
was first considered by Hofheinz et al. [HMQU05], who introduce catalysts as a con-
cept similar to generalized UC (GUC) setups [CDPW07]. They show that using a
trusted signature card as a UC setup, which behaves as a catalyst, the card can be
reused for multiple protocols (unlike a normal UC setup). Later, [CGS08] mention
that in their security proof for UC-secure commitments from resettable hardware
tokens, the simulator does not need to learn the token code, because he only needs
black-box access to the functionality. This turns out to be the main property that is
required to allow reusing the setup. Upon inspection of existing protocols, especially
in the context of resettable hardware, many protocols actually use the tokens in a
black-box manner in the proof [CGS08, GIS+10, DS13, CKS+14]. Nevertheless, all
of these protocols require specific functionalities for their tokens.
Generally, physically uncloneable functions (PUFs) also provide a fixed function-

ality, which has (assumed) statistical security. One could thus imagine using PUFs
to realize reusable tokens. However, in the context of transferable setups (i.e. setups
that do not disclose whether they have been passed on, like PUFs), Boureanu et
al. [BOV15] show that neither OT nor key exchange can be realized, and PUFs fall
into the category of transferable setups. Tamper-proof hardware as defined in this
thesis on the other hand is not a transferable setup, so their impossibilities do not
apply to us.

123

124 7. Reusable Resettable Tamper-Proof Hardware

One goal of this chapter is to find a meaningful functionality that allows a wide
range of cryptographic protocols. In the literature, several works discuss bit-OT
tokens as a very simple and cheap functionality [IPS08, GIS+10, AAG+14]. We
propose to use a signature functionality as a general token functionality, because we
want to minimize the number of tokens that has to be sent and we also believe that
the efficiency of protocols based on bit-OT can at least be matched by signature
cards that are actually available today. Due to the fact that we consider untrusted
hardware tokens (i.e. a malicious protocol party can arbitrarily program malicious
tokens), we require a unique signature scheme that is stored on the token.
Finding a correct formalization for reusable (resettable) tamper-proof hardware

turns out to be very challenging. This is mainly due to the fact that depending on
the formalization, the cryptographic strength of the model changes significantly. Let
us elaborate on this. If a setup, i.e. in our case a resettable hardware token, is used
for several protocols, standard UC simulation techniques do not work in general.
Usually, it is assumed that the simulator simulates the token wrapper to the parties.
This allows the simulator to obtain the token code and also to observe all queries
that are made to the token. If we want to reuse the token, the simulator cannot
simulate (and thereby manipulate) the token wrapper functionality, because for two
different protocols the simulator will have to manipulate the token functionality in
different ways, and an environment could distinguish this from a real execution.
Instead, we have to find a way to simulate while having only black-box access to the
token wrapper. The generalized UC (GUC) framework of Canetti et al. [CDPW07]
considers exactly this scenario. In GUC, the main problem with the simulation is
that the environment has direct access to the setup as well, while the simulator
can only observe the messages that the corrupted party sends to the setup. In a
related setting, Canetti et al. [CJS14] consider a global random oracle and solve the
problem by giving the simulator access to all “illegitimate” queries that are made
to the setup, so that all queries concerning a protocol (identified by an process-id
PID), even from other protocols, can be observed.
Alternatively, one could use the technique of [HMQU05], where the setup is seized

by a party at the beginning of the protocol and released at the end of it. During
that time, no other party has access to the setup. Thus this model is skew to
GUC, because the environment does not have access to the setup at all times. To
keep the environment from using messages from other protocols, at the beginning of
each protocol a nonce is chosen by the other party which has to be included in the
communication.
Just from the above description, it becomes obvious that the latter formalization

inherently requires some form of interaction between the parties. If the nonce is
not chosen during the protocol runtime by the other party, messages from other
protocol executions can be used during the current protocol run. Then the simulator
is no longer able to observe all queries and the simulation will fail. If we use the
technique described in [CJS14], it seems plausible that non-interactive two-party
computation is possible (as in their case with a global random oracle), while the
technique of [HMQU05] can only allow interactive two-party computation.
Our contribution. We provide the first reusable setup that is untrusted, com-

pared to trusted and incorruptible setups like a global random oracle [CJS14], aug-
mented CRS or key-registration with knowledge [CDPW07].
Towards this, we present two models of reusable and resettable tamper-proof

hardware, one inspired by [HMQU05] but with the focus of real untrusted signa-

7.1. Limitations 125

ture cards, which makes the model somewhat restrictive. Nevertheless, we show a
UC-secure protocol for commitments, which implies general UC-secure two-party
computation from reusable resettable tokens. The second model follows the more
GUC-like approach of [CJS14], but makes some restrictions on the types of signature
cards that can be used. In turn, this allows more powerful protocols, and we show
that reusable signature cards allow for UC-secure non-interactive computation. We
basically obtain the same result as [CJS14], but instead of using a global random
oracle, our protocols can actually be instantiated with real signature cards.
In all our protocols, tokens have to be sent in both directions. Intuitively, this

is necessary because we cannot use non-black-box techniques, and thus Lemma 5.1
applies.
Our techniques. Our aim is to design very efficient protocols. Thus we have

to avoid expensive tools like generic zero-knowledge proofs. Typically, these proofs
are necessary to avoid a direct channel from the token to the token sender via
subliminal channels in the signatures. We adapt an approach that was proposed by
Choi et al. [CKS+14], who use unique signatures. This allows us to directly send
the messages to the sender without having to worry about subliminal channels.
In the restrictive model, a possible precomputation step of the party before send-

ing the value to the token leads to problems with the extraction. Unlike the models
of [HMQU05, CJS14] we have to find a way to extract the input of the party al-
though it is not directly sent to the hardware token. Our approach is to use the
precomputed value in combination with a pseudorandom generator to allow com-
mitments to messages of arbitrary length. Additionally, we have to use randomness
extraction to prevent a malicious token from tunneling information to its sender by
aborting depending on the inputs.
In the less restrictive model, we construct non-interactive straight-line extractable

commitments and non-interactive straight-line witness extractable arguments. For
our construction of non-interactive straight-line witness extractable arguments, we
adapt the Fiat-Shamir transformation [FS87] to the setting of signature tokens.
Thus we are no longer dependent on the random oracle heuristic.
Structure of this chapter. The chapter is structured as follows. In Section 7.1,

we formalize some restrictions and bounds that hold with respect to reusable tokens.
In Section 7.2, we define a model of reusable resettable tamper-proof hardware that
is compatible with real signature cards and present UC-secure commitments in this
model. Then, we show in Section 7.3 that a less strict model allows even non-
interactive secure computation with reusable tamper-proof hardware.

7.1 Limitations
Jumping ahead, the impossibilities stated here hold for both specifications of

reusable tamper-proof hardware that we present in the following. In particular, UC
and UC-like frameworks usually impose the restriction that the simulator only has
black-box access to the reusable setup. Thus, compared to the standard definition
of resettable tamper-proof hardware, the model of resettable reusable tamper-proof
hardware has some limitations concerning non-interactive two-party computation.
The degree of non-interactivity that can be achieved with resettable hardware, i.e.
just sending tokens (and possibly an additional message) to the receiver, is impossible
to obtain in the model of resettable reusable hardware.

126 7. Reusable Resettable Tamper-Proof Hardware

Corollary 7.1. There exists no protocol ΠPF using any number of reusable and re-
settable hardware tokens T1, . . . , Tn issued from the sender to the receiver that com-
putationally UC-realizes the ideal point function FPF.

Proof. This follows directly from the observation that the simulator for protocols
based on reusable hardware is only allowed to have black-box access to the token,
i.e. the simulator does not have access to the code of the token(s). Applying the
same argumentation as in Lemma 5.1 and [CKS+14] yields the claim.

The best we can hope for is thus a protocol for non-interactive two-party computa-
tion where the parties exchange two messages (including hardware tokens) to obtain
a (somewhat) non-interactive protocol. Indeed, in the following sections we will
present a protocol that achieves exactly this result based on reusable and resettable
hardware tokens. Maybe even more interesting, even stateful reusable hardware
tokens will not yield any advantage compared to resettable tokens.

Corollary 7.2. There exists no protocol ΠOT using any number of reusable and
stateful hardware tokens T1, . . . , Tn issued from the sender to the receiver that statis-
tically UC-realizes FOT.

Proof. First note, as above, that the simulator of a protocol against a token sender
will not get the token code because he only has black-box access to the token. Thus
the simulator cannot use rewinding during the simulation, and falls back to the
input/output behavior of the token, i.e. Corollary 7.1 applies. Further, due to the
impossibility of statistically secure OT based on stateless hardware [GIMS10], the
claim follows.

7.2 Real Signature Cards
A common way to obtain digital signatures in practice is the use of dedicated

hardware tokens where the secret key is stored on tamper-proof hardware and is
never exposed to a potentially compromised host system. Smart cards, which are
common examples of such tokens, are standardized with regard to their physical
properties, interface and command format in ISO/IEC 7816. RSA-based signature
and encryption schemes are defined in PKCS#1 [JK03]. Client applications usually
do not interface directly with the smart card on raw data. More commonly, they use
the PKCS#11 interface [Lab04] which is then implemented by a library that has a
driver for a specific token (e.g. OpenSC1)
Commonly used algorithms for message signing make use of one-way functions

that are based on assumed intractable problems such as the Discrete Logarithm
Problem or the RSA problem. For reasons of efficiency and security, the signature is
usually not computed directly on the message. Most algorithms have the following
structure:

1. Compute a hash value h(m) on the message m, where h is a cryptographic
hash function. This is done for two reasons: first, it allows the signing of
messages of arbitrary length. Second, it prevents an attacker from perform-
ing homomorphic operations on the message which could possibly render the
signature scheme insecure.

1https://github.com/OpenSC/OpenSC/wiki

https://github.com/OpenSC/OpenSC/wiki

7.2. Real Signature Cards 127

2. (Optional) Apply a padding pad to h(m). This can either be done to store
some information such as the algorithm used for message hashing (such as with
the ASN.1 padding used in RSASSA-PKCS1-v1_5) or for improved security
as with RSASSA-PSS. Care has to be taken not to introduce a subliminal
channel into the signature.

3. Perform the actual cryptographic operation on the last step’s result.

The preprocessing, i.e. hashing and padding, does not require the signing key.
To increase performance, these steps are sometimes (in part) performed on the
host before sending the result to the signature token. For the RSASSA-PKCS1-
v1_5 signature scheme, PKCS#1 does not mandate where each step is performed.
In contrast, RSASSA-PSS was specifically designed to allow computation of the
message’s hash on the host. As a consequence, signature tokens may support a
variety of operation modes with different input data:

1. The whole message m is supplied to the token.

2. Hashing algorithms based on the Merkle-Damgård construction [Dam90, Mer79]
allow for the the message to be processed block-wise. Thus all hashing steps
but the last one are performed by the host, and the result is processed with
the last block on the token.

3. The (optionally padded) hash is supplied to the token.

The supported operation modes depend on the token and are in some cases nego-
tiable. While some signature cards support all aforementioned modes, others only
supports Mode 2. If the client application does not interface with the token directly
but e.g. uses a PKCS#11 library, mode selection is done by the library’s token driver
according to the token’s capabilities and the requested signature scheme. In partic-
ular, it cannot be ruled out that some tokens can be forced to operate in a specified
mode.
Our strict definition of reusable tamper-proof hardware in Section 7.2.1 thus makes

no assumption on the underlying token and allows all three modes. We show in Sec-
tion 7.2.2 that this still allows UC-secure commitments.

7.2.1 Model
Our definition of reusable resettable tamper-proof hardware is defined analogously

to normal resettable tamper-proof hardware (cf. Chapter 5), but we add a mechanism
that allows a protocol party to seize the signature card. This approach is inspired
by the work of Hofheinz et al. [HMQU05]. As long as the card is seized, no other
(sub-)protocol can use the signature card. An adversarial sender can still store a
malicious functionality in the wrapper, and an adversarial receiver is allowed to reset
the program. The formal description of the wrapper F ru-strict

wrap is given in Figure 7.1.
We assume that the token receiver can verify that it obtained the correct token,

e.g. by requesting some token identifier from the sender.
We want to use a functionality that is applicable to different scenarios, otherwise

a reusable hardware token is meaningless. Due to its current availability, we focus
on signature cards. In our protocols, we assume that each party has access to a
hardware token containing a signature functionality. Since it is our goal to make

128 7. Reusable Resettable Tamper-Proof Hardware

Functionality F ru-strict
wrap

Implicitly parametrized by a security parameter κ.

Creation:
1. Await an input (create,M, t) from the token issuer, where M is a deterministic

Turing machine and t ∈ N. Store (M, t) and send (created) to the adversary.
Ignore all further create-messages.

2. Await a message (delivery) from the adversary. Then, send (ready) to the token
receiver.

Execution:
3. Await an input (run, w, sid) from the receiver. If no create-message has been sent,

return a special symbol ⊥. Otherwise, if seized = sid, run M on w from its most
recent state. When M halts without generating output or t steps have passed, send
⊥ to the receiver; otherwise store the current state of M and send the output of M
to the receiver.

4. Await an input (seize, sid) from the receiver. If seized = ⊥, set seized = sid.

5. Await an input (release) from the receiver. Set seized = ⊥.

Reset (adversarial receiver only):
6. Upon receiving a message (reset) from a corrupted token receiver, reset M to its

initial state.

Figure 7.1: The wrapper functionality by which we model reusable resettable
tamper-proof hardware. The runtime bound t is merely needed to pre-
vent malicious token senders from providing a perpetually running pro-
gram code M; it will be omitted throughout the rest of the chapter.

realistic assumptions about existing signature cards, we will define the signature
scheme that the token is supposed to contain in a very general way. Thus, a large
class of currently available signature cards and the corresponding standards fall into
this definition. Basically, we make an explicit distinction between the preprocessing
that is done on the host, and the actual signing process that is performed on the
token.

Definition 7.3. (Digital signatures with preprocessing) A signature scheme SIG with
preprocessing consists of five PPT algorithms KeyGen, PreSg, Sign, Vfy and Verify.

• KeyGen(κ) takes as input the security parameter κ and generates a key pair
consisting of a verification key vk and a signature key sgk.

• PreSg(vk,m) takes as input the verification key vk, the message m and outputs
a preprocessed message p.

• Sign(sgk, p) takes as input a signing key sgk and a possibly preprocessed message
p of fixed length. It outputs a signature σ on the message p.

7.2. Real Signature Cards 129

• Verify(vk,m, σ) takes as input a verification key vk, a message m and a pre-
sumed signature σ on this message. It computes p ← PreSg(vk,m) and then
checks if Vfy(vk, p, σ) = 1. It outputs 1 if the check is passed and 0 otherwise.

• Vfy(vk, p, σ) takes as input a verification key vk, a preprocessed message p and
a presumed signature σ on this message. It outputs 1 if the signature is correct
and 0 otherwise.

We assume that the scheme is correct, i.e. it must hold for all messages m that

∀κ ∈ N ∀(vk, sgk)← KeyGen(κ) : Vfy(vk,m, Sign(sgk,PreSg(m))) = 1.

Existential unforgeability can be defined analogously to the definition for normal
signature schemes. However, the EUF-CMA property has to hold for KeyGen, Sign
and Vfy. The PreSg-algorithm is typically realized as a hash-function.

7.2.2 Protocols
In this section, we present the building blocks that are necessary for UC-secure

two-party computation. First, we present a straight-line extractable commitment
in Section 7.2.2.1. We then use this commitment in an adaption of a UC-secure
commitment by Canetti et al. [CJS14], as shown in Section 7.2.2.2.

7.2.2.1 Straight-line Extractable Commitment

We need a straight-line extractable commitment scheme in the F ru-strict
wrap -hybrid

model to achieve two-party computation. We enhance a protocol of Hofheinz et
al. [HMQU05] which assumes trusted signature cards as a setup such that it is
secure even with maliciously created signature cards. Towards this goal, we adapt a
technique from Choi et al. [CKS+14] using unique signatures to our scenario. This
is necessary because with untrusted tokens, it is difficult to verify the functionality
that is stored on the token. A unique signature scheme allows this verification very
efficiently. Additionally, it prevents the token from channeling information to the
receiver of the signatures via subliminal channels.
Our protocol proceeds as follows. As a global setup, we assume that the com-

mitment receiver created a token containing a digital signature functionality, i.e.
basically serving as a signature oracle. In a first step, the commitment receiver
sends a nonce N to the sender such that the sender cannot use messages from other
protocols involving the hardware token. The sender then randomly draws two val-
ues x, r. Each value is concatenated with the nonce, preprocessed if the value is too
large for the signature token, and sent to the token, which returns signatures on these
values. The sender then commits to x using r as the randomness. This will allow
the extractor to verify if he correctly extracted the commitment. The sender also
commits to both signatures and x, r and N in a separate extractable commitment.
To commit to the actual input s, the sender uses x as input for a pseudorandom
generator and generates a pseudorandom one-time-pad of length |s|. Care has to
be taken because a maliciously programmed signature card might leak some infor-
mation about x and r to the receiver. Thus, the sender applies a 2-universal hash
function to the values before using them and sends all commitments and the blinded
message to the receiver. To unveil, the sender has to send its inputs and random
coins to the receiver, who can then validate the correctness of the commitments. A

130 7. Reusable Resettable Tamper-Proof Hardware

formal description of the protocol is shown in Figure 7.2. We abuse the notation
in that we define (c, p) ← COM.Commit(x) to denote that the commitment c was
created with randomness p.

Protocol Πse
COM

Let T be an instance of F ru-strict
wrap and PRG be a pseudorandom generator. Further let

COM be a computationally hiding and extractable commitment scheme. Let SIG be a
unique signature scheme according to Definition 2.14.

Global setup phase:
• Receiver: Compute (vk, sgk)← SIG.KeyGen(κ). Program a stateless token T with

the following functionality.
– Upon receiving a message (vk), return vk.
– Upon receiving a message (sign,m), compute σm ← SIG.Sign(sgk,m) and

output σm.
Send (create,T) to T .

• Sender: Query T with (vk) to obtain the verification key vk and check if it is a
valid verification key for SIG.

Commit phase:
1. Receiver: Choose a nonce N ← {0, 1}κ uniformly at random and send it to the

sender.

2. Sender: Let s be the sender’s input.
• Draw x, r ← {0, 1}3κ uniformly at random and choose a 2-universal hash

function f from the family of 2-universal hash functions {fh : {0, 1}3κ →
{0, 1}κ}h←H.

• Send (seize) to T . Compute px ← SIG.PreSg(vk, (x,N)), pr ←
SIG.PreSg(vk, (r,N)) and send (sign, px) and (sign, pr) to T to obtain σx
and σr.

• Compute cs ← PRG(f(px))⊕s, (cx, f(pr))← COM.Commit(x) and (cσ, dσ)←
COM.Commit

(
(σx, σr, x, r,N)

)
.

• Send (cs, cx, cσ, f) to the receiver. Release T by sending (release).

Unveil phase:
3. Sender: Send (s, x, r, σx, σr, dσ) to the receiver.

4. Receiver: Check if SIG.Verify(σx, (x,N)) = SIG.Verify(σr, (r,N)) = 1. Additionally,
check if COM.Open(cx, x, f(pr)) = 1, COM.Open(cσ, (σx, σr, x, r,N), dσ) = 1 and
cs ← PRGf(px)⊕ s. If not, abort; otherwise accept.

Figure 7.2: Computationally secure straight-line extractable commitment scheme in
the F ru-strict

wrap -hybrid model.

Theorem 7.1. The protocol Πse
COM in Figure 7.2 is a straight-line extractable com-

mitment scheme as per Definition 2.10 in the F ru-strict
wrap -hybrid model, given that ver-

ifiable random functions exist.

7.2. Real Signature Cards 131

We split the proof into two lemmata, showing the computational hiding property
of Πse

COM in Lemma 7.4 and the straight-line extraction in Lemma 7.5.

Lemma 7.4. The protocol Πse
COM in Figure 7.2 is computationally hiding, given

that COM is an extractable computationally hiding commitment scheme, f is a 2-
universal hash function, PRG is a pseudorandom generator and SIG is an EUF-
CMA-secure unique signature scheme.

Proof. Let us consider a modified commit phase of the protocol Πse
COM: instead of

committing to the values s, x, r,N, σx, σr, the sender S inputs random values in the
commitments and replaces the pseudorandom string which is used as a one-time-
pad with a completely random string. Thus no information about the actual input
remains. In the following, we will show that from the receiver’s point of view,
the real protocol and the modified protocol as described above are computationally
indistinguishable. This implies that the commit phase of the protocol Πse

COM is
hiding. Consider the following series of hybrid experiments.

Experiment 0: The real protocol Πse
COM.

Experiment 1: Identical to Experiment 0, except that instead of computing PRG
on f(x) and (cx, f(r))← COM.Commit(x), draw two values a and b uniformly
at random and compute PRG(a) and (cx, b)← COM.Commit(x).

Experiment 2: Identical to Experiment 1, except that instead of using PRG(a)
to obtain a one-time pad for s, S draws a value v uniformly at random and
computes v ⊕ s.

Experiment 3: Identical to Experiment 2, except that instead of using COM to
commit to (σx, σr, x, r,N), S commits to a random string of the same length.

Experiment 4: Identical to Experiment 3, except that instead of using COM to
commit to x with randomness b, S commits to a random string of the same
length. This is the ideal protocol.

Experiments 0 and 1 are statistically close, given that f is a 2-universal hash func-
tion and SIG is unique. A malicious receiver AR provides a maliciously programmed
token T ∗ which might help distinguish the two experiments. In particular, the token
might hold a state and it could try to communicate with AR via two communication
channels:

1. T ∗ can try to hide messages in the signatures.

2. T ∗ can abort depending on the input of S.

The first case is prevented by using a unique signature scheme. The sender S asks
T ∗ for a verification key vk∗ and can verify that this key has the correct form for
the assumed signature scheme. Then the unique signature property of the signature
scheme states that each message has a unique signature. Furthermore, there exist
no other verification keys such that a message has two different signatures. It was
shown in [BVS06] that unique signatures imply subliminal free signatures. Summa-
rized, given an adversary AR that can hide messages in the signatures, we can use
this adversary to construct another adversary that can break the unique signature
property of the signature scheme.

132 7. Reusable Resettable Tamper-Proof Hardware

The second case is a bit more involved. The main idea is to show that applying
a 2-universal hash function to x and r generates uniformly distributed values, even
if R has some information about x and r. Since x and r are still drawn uniformly
at random from {0, 1}3κ, T ∗ can only abort depending on a logarithmic part of the
input. Otherwise, the probability for the event that T ∗ aborts becomes negligible
in κ. Let X be the random variable describing inputs into the signature token and
let Y describe the random variable representing the leakage. Y thus has at most 2
possible values. Thus, Lemma 2.23 gives a lower bound for the average min-entropy
of X under Y , namely

H̃∞(X|Y) ≥ H∞(X)−H∞(Y) = 3k − 1.

In the protocol, we apply f ∈ {fh : {0, 1}3κ → {0, 1}κ}h←H to X. Note that f
is chosen after R∗ sent the token. This means that we can apply the Generalized
Leftover Hash Lemma (cf. Lemma 2.25):

∆((fH(X), H, Y); (Uk, H, Y)) ≤ 1
2

√
2H̃∞(X|Y)2κ ≤ 1

2

√
2−(3κ−1)+κ ≤ 2−κ

We conclude that from AR’s view, f(x) and f(r) are distributed uniformly over
{0, 1}κ and thus Experiment 0 and Experiment 1 are statistically indistinguishable.
We will only sketch the rest of the proof.
Computational indistinguishability of Experiments 1 and 2 follows directly from

the pseudorandomness of PRG, i.e. given a receiver R∗ that distinguishes both exper-
iments, we can use this receiver to construct an adversary that distinguishes random
from pseudorandom values. Experiment 2 and Experiment 3 are computationally
indistinguishable given that COM is computationally hiding. From a distinguishing
receiver R∗ we can directly construct an adversary that breaks the hiding property
of the commitment scheme. And by the exact same argumentation, Experiments 3
and 4 are computationally indistinguishable.

We now show the straight-line extractability of Πse
COM.

Lemma 7.5. The protocol Πse
COM in Figure 7.2 is straight-line extractable, given

that COM is an extractable computationally hiding commitment scheme and SIG is
an EUF-CMA-secure unique signature scheme.

Proof. Consider the extraction algorithm in Figure 7.3. It searches the inputs of AS
into the hybrid functionality F ru-strict

wrap for the combination of input and randomness
for the commitment that is to be extracted.
Let Q denote the set of inputs that AS sent to F ru-strict

wrap . Extraction will fail only
in the event that values (x∗, r∗) are unveiled that have never been sent to T , i.e.
x∗, r∗ /∈ Q. We have to show that ExtCOM extracts c∗ with overwhelming probability,
i.e. if the receiver accepts the commitment, an abort in Step 1 happens only with
negligible probability.
Assume for the sake of contradiction that AS causes this event with non-negligible

probability ε. We will use AS to construct an adversary B that breaks the EUF-
CMA security of the signature scheme SIG with non-negligible probability. Let vk
be the verification key that B receives from the EUF-CMA experiment. B simulates

7.2. Real Signature Cards 133

Extractor ExtCOM

Upon input c∗ =
(
(c∗s, c

∗
x, c
∗
σ, f

∗), Q
)
, where Q is the set of all queries that AS sent to

F ru-strict
wrap , start the following algorithm.

1. Test for all αi, αj ∈ Q if COM.Open(c∗x, αi, f
∗(αj)) = 1. Otherwise, abort.

2. Let (x̂, r̂) = (αi, αj) be the values obtained in the previous step. Output ŝ ←
PRG(f∗(x̂))⊕ c∗s.

Figure 7.3: The extraction algorithm for the straight-line extractable commitment
protocol Πse

COM.

F ru-strict
wrap for AS by returning vk upon receiving a query (vk); further let Q be the

set of queries that AS sends to F ru-strict
wrap . For each query (sign,m), B forwards the

message to the signature oracle of the EUF-CMA game and returns the resulting
signature σ to AS.
B now simulates the interaction between AS and R up to the point when AS sends

the message cσ. The next messages between AS and R represent the interaction be-
tween an honest receiver and a malicious commitment sender A′S for the extractable
commitment scheme COM. Thus, B constructs a malicious A′S from the state of AS,
which interacts with an external commitment receiver.
Due to the extractability of COM, there exists an extractor Ext that on input

(cσ,A′S) outputs a message (σ̂x, σ̂r, x̂, r̂, N̂) except with negligible probability ν. B
runs Ext, outputs (σ̂x, (x̂, N̂)) to the EUF-CMA experiment and terminates.
From AS’s view, the above simulation is distributed identically to the real pro-

tocol conditioned on the event that the unveil of the commitment cσ succeeds. By
assumption, AS succeeds in committing to a signature with non-negligible probabil-
ity ε in this case. It follows that the extractor Ext of COM will output a message
(σ̂x, σ̂r, x̂, r̂, N̂) with non-negligible probability ε − ν. Thus B will output a valid
signature σ̂x for a value (x̂, N̂) with non-negligible probability. However, it did not
query the signature oracle on this value, which implies breaking the EUF-CMA
security of the signature scheme SIG.
Thus, the extractor will correctly output the value s with overwhelming probabil-

ity.

7.2.2.2 Obtaining UC-Secure Commitments

In order to achieve computationally secure two-party computation, we want to
transform the straight-line extractable commitment from Section 7.2.2.1 into a UC-
secure commitment. A UC-secure commitment can be used to create a UC-secure
CRS via a coin-toss (cf. Section 5.4). General feasibility results, e.g. [CLOS02], then
imply two-party computation from a UC-CRS.
One possibility to obtain a UC-secure commitment from our straight-line ex-

tractable commitment is to use the compiler of Damgård and Scafuro [DS13], which
transforms any straight-line extractable commitment into a UC-secure commitment.
The compiler provides an information-theoretic transformation, but this comes at
the cost of requiring O(κ) straight-line extractable commitments to commit to one
bit only. If we use signature cards, this translates to a lot of calls to the signature
cards and makes the protocol rather inefficient.

134 7. Reusable Resettable Tamper-Proof Hardware

Instead, we adapt the UC commitment protocol of [CJS14] to our model. The key
insight in their protocol is that trapdoor extraction is sufficient to realize a UC-secure
commitment. They propose to use a trapdoor commitment in conjunction with
straight-line extractable commitments via a global random oracle to realize a UC-
secure commitment. If we want to replace their commitments with our construction,
there is a subtle problem that we want to discuss here. In their compiler, the
commitment sender first commits to his input via the trapdoor commitment scheme.
Then, he queries the random oracle with his input (which is more or less equivalent to
a straight-line extractable commitment) and the unveil information for the trapdoor
commitment. In the security proof against a corrupted sender, the simulator has to
extract the trapdoor commitment. Thus, in their case, the simulator just searches
all queries to the random oracle for the correct unveil information. In our very strict
model, if we replace the oracle call with our straight-line extractable commitments,
this approach fails. At first sight, it seems possible to just use the extractor for the
straight-line extractable commitment to learn the value. However, it is crucial for
the proof of security against a corrupted receiver that the commitment value is never
published. Further, while we can still see all queries that are made to the hardware
token, the simulator does not (necessarily) learn the complete input, but rather a
precomputed value for the signature. Therefore, a little more work is necessary in
order to realize a UC-secure commitment in our model.
In essence, we can use our straight-line extractable commitment in a non-black-

box way, although we have to enhance it by extractable trapdoor commitments2.
The protocol proceeds as follows: First, the receiver chooses a trapdoor for the
trapdoor commitment TCOMext and commits to it via a straight-line extractable
commitment. This ensures that the simulator against a corrupted receiver can ex-
tract the trapdoor and then equivocate the commitments of TCOMext. The sender
then commits with TCOMext to his input (in a similar fashion as in our straight-line
extractable commitment) and uses the token to sign the unveil information. Against
a corrupted sender, the simulator can thus extract the unveil information and thus
extract the commitment. The commitment is sent the receiver, which concludes
the commit phase. To unveil, the sender first commits to the unveil information of
TCOMext such that he cannot change his commitment when the receiver unveils the
trapdoor in the next step. From there, the commitments are checked for validity
and if everything checks out, the commitment is accepted. The formal description
of our protocol is given in Figure 7.4.

Theorem 7.2. The protocol ΠCOM in Figure 7.4 computationally UC-realizes FCOM
(cf. Section 2.7.2.1) in the F ru-strict

wrap -hybrid model, given that TCOMext is an ex-
tractable trapdoor commitment, SECOM is a straight-line extractable commitment
and SIG is an EUF-CMA secure unique signature scheme.

Proof. Corrupted sender. Consider the simulator in Figure 7.5. It is basically a
wrapper around the extraction algorithm for our straight-line extractable commit-
ment. Against a corrupted sender, we only have to extract the input of the sender
and input it into the ideal functionality.
The only possibility for an environment Z to distinguish RealΠCOM

AS
and IdealFCOM

SS
is the case of an abort by the simulator. However, we can apply Lemma 7.5 with two

2Note, that any commitment scheme can be made extractable (with rewinding) via an interactive
protocol (cf. Section 2.3).

7.2. Real Signature Cards 135

Protocol ΠCOM

Let TCOMext be an extractable trapdoor commitment scheme and let SECOM be the
straight-line extractable commitment from Section 7.2.2.1.

Global Setup phase:
• Sender and receiver: Compute (vk, sgk) ← SIG.KeyGen(κ). Program a stateless

token TS and TR, respectively, with the following functionality.
– Upon receiving a message (vk), return vk.
– Upon receiving a message (sign,m), compute σm ← SIG.Sign(sgk,m) and

output σm.
Send (create,TS) to TS and (create,TR) to TR, respectively.

• Sender and receiver: Query TS and TR, respectively, with (vk) to obtain the veri-
fication key vk and check if it is a valid verification key for SIG.

Commit phase:
1. Receiver: Compute (pk, sk)← TCOMext.KeyGen(κ) and draw a nonceN ← {0, 1}κ.

Further compute (csk, dsk) ← SECOM.Commit(sk) and send (pk, csk, N) to the
sender.

2. Sender: Let s be the sender’s input.
• Draw x, r ← {0, 1}3κ uniformly at random and choose a 2-universal hash

function f from the family of 2-universal hash functions {fh : {0, 1}3κ →
{0, 1}κ}h←H.

• Send (seize) to T . Compute px ← SIG.PreSg(vk, (x,N)) and send (sign, px)
to TS to obtain σx. Then, compute pr ← SIG.PreSg(vk, (r,N)) and send
(sign, pr) to TS to obtain σr.

• Compute cs = f(px)⊕ s, (cx, f(pr))← TCOMext.Commit(px) and (cσ, dσ)←
TCOMext.Commit

(
(σx, σr, px, pr, N)

)
.

• Send (cs, cx, cσ, f) to the receiver. Release T by sending (release).

Unveil phase:
3. Sender: Compute (cd, dd)← SECOM.Commit(f(pr), dσ) and send cd to the receiver.

4. Receiver: Send (sk, dsk) to the sender.

5. Sender: Check if TCOMext.TVer(pk, sk) = 1 and SECOM.Open(csk, dsk, sk) = 1.
Send (s, px, pr, σx, σr, dσ) to the receiver.

6. Receiver: Check if SIG.Vfy(σs, ps) = SIG.Vfy(σr, pr) = 1. Additionally, check if
TCOMext.Open(cs, s, f(pr)) = 1, TCOMext.Open(cσ, (σs, σr, px, pr, N), dσ) = 1 and
cs ⊕ px = s. If not, abort; otherwise accept.

Figure 7.4: Computationally UC-secure protocol realizing FCOM in the F ru-strict
wrap -

hybrid model.

small modifications: first, we use an extractable trapdoor commitment instead of an
extractable commitment, and second we do not use the PRG in our construction,
hence this proof step can be omitted. It follows that the extraction is successful

136 7. Reusable Resettable Tamper-Proof Hardware

Simulator SS

• Upon receiving a message (sign,m) from AS, relay this message to TS and store
m in a list Q. Forward the reply from TS to AS.

• Upon receiving a message (vk), relay this message to TS and forward the reply to
AS.

• (Commit) Simulate Step 1 of ΠCOM and let (c∗s, c
∗
σ, f

∗) be the answer from AS.
Test for all αi, αj ∈ Q if TCOMext.Open(c∗x, αi, f

∗(αj)) = 1, otherwise abort. Let
(x̂, r̂) = (αi, αj) be the values obtained in the previous step. Compute ŝ = c∗s ⊕ x̂
and send (commit, ŝ) to FCOM.

• (Unveil) Simulate the behavior of an honest receiver and obtain s∗. If s∗ = ŝ, send
(unveil) to FCOM, otherwise abort.

Figure 7.5: Simulator against a corrupted sender in the protocol ΠCOM

with overwhelming probability and the simulation is thus indistinguishable from a
real protocol run.
Corrupted receiver. The case of a corrupted receiver is more complicated. The

simulator proceeds as follows. In the commit phase, he just commits to the all zero
string and sends the rest of the messages according to the protocol. To equivocate
the commitment, the simulator first extracts the trapdoor ŝk from the commitment
that the receiver sent in the commit phase. He computes the image t under the
2-universal hash-function f that equivocates cs to the value ŝ obtained from the
ideal functionality. Then, he samples a preimage p̂x of t, and uses the trapdoor ŝk
to equivocate the commitment cx to p̂x. Let p̂r be the new unveil information. The
simulator sends both p̂x and p̂r to the token TR to obtain σx and σr. Now, the second
commitment cσ has to be equivocated to the new signatures and inputs. From there,
the simulator just executes a normal protocol run with the newly generated values.
Let AR be the dummy adversary. The formal description of the simulator is given

in Figure 7.6.

Experiment 0: This is the real model.

Experiment 1: Identical to Experiment 0, except that S1 aborts if the extraction
of ŝk from c∗sk fails, although SECOM.Open(c∗sk, d∗sk, sk∗).

Experiment 2: Identical to Experiment 1, except that S2 uses a uniformly random
value tx instead of applying f to px, and computes the preimage p̂x of tx under
the 2-universal hash function f .

Experiment 3: Identical to Experiment 2, except that S3 computes (cσ, dσ) ←
TCOMext.Commit(0) in the commit phase. In the unveil phase, he sends
(sign, p̂x), (sign, p̂r) to TR. As an unveil information, he computes d̂σ ←
TCOMext.Equiv(ŝk, cσ, (σ̂x, σ̂r, p̂x, p̂r, N)).

Experiment 4: Identical to Experiment 3, except that S4 computes (cx, dx) ←
TCOMext.Commit(0) in the commit phase and then computes the unveil infor-
mation p̂r ← TCOMext.Equiv(ŝk, cx, p̂x). This is the ideal model.

7.2. Real Signature Cards 137

Simulator SR

• Upon receiving a message (sign,m) from AR, relay this message to TR and store
m in a list Q. Forward the reply from TR to AR.

• Upon receiving a message (vk), relay this message to TR and forward the reply to
AR.

• (Commit) Upon receiving a message (committed) from FCOM and a message
(pk, csk, N), simulate Step 2 of ΠCOM with input s = 0.

• (Unveil) Upon receiving a message (opened, ŝ), proceed as follows:
– Start the straight-line extractor ExtCOM from SECOM to extract the commit-

ment c∗sk to obtain ŝk and check if TCOMext.TVer(pk∗, ŝk) = 1, if not abort.
– Compute t = ĉs ⊕ ŝ and choose a preimage p̂x ∈ {x | f(x) = t} of this value

under f .
– Compute p̂r ← TCOMext.Equiv(ŝk, ĉx, p̂x), send (sign, p̂x) and (sign, p̂r) to
TR and obtain σ̂x and σ̂r, respectively.

– Compute d̂σ ← TCOMext.Equiv(ŝk, ĉσ, (σ̂x, σ̂r, p̂x, p̂r, N)).
– Execute the unveil phase according to ΠCOM: Commit to d̂σ and
f(p̂r) in Step 3, and abort if sk∗ 6= ŝk in Step 5. Otherwise, send
(ŝ, p̂x, p̂r, σ̂x, σ̂r, d̂σ, N) to AR.

Figure 7.6: Simulator against a corrupted receiver in the protocol ΠCOM

Experiment 0 and Experiment 1 are computationally indistinguishable given that
SECOM is a straight-line extractable commitment. A distinguishing environment
can directly be transformed into an adversary that breaks the straight-line extrac-
tion property. Experiments 1 and 2 are statistically indistinguishable, given that f is
a 2-universal hash function (the same argumentation as in Lemma 7.4 applies). Ad-
ditionally, it is obvious that a preimage is efficiently sampleable. Experiment 2 and
Experiment 3 are computationally indistinguishable, given that TCOMext is a trap-
door commitment scheme. A distinguishing environment Z can straightforwardly
be used to break the equivocation property of the commitment scheme. The same
argumentation holds for Experiment 3 and Experiment 4.

Remark. The commitment length of our protocol is bounded by the length of the
input into the token. Thus, for longer messages, the protocol has to be applied
piecewise for each part of the message.

Our protocol is less efficient than the one by Hofheinz et al. [HMQU05] for long
messages because their definition of a signature card does not accurately model real
signature cards. In particular, a real signature token only learns a limited amount of
information with each signature, making it impossible to commit to large messages
as efficiently as in their protocol. Moreover, since they only assume trusted hardware
tokens (and we consider untrusted ones) it is necessary to extract good randomness
from the values that are sent to the signature card, meaning that a malicious card
cannot compromise the security of the protocol via aborts. This leads to a further
loss in efficiency. It is interesting to note that there is a trade-off between the asymp-
totically less efficient protocol of applying [DS13] to our straight-line extractable

138 7. Reusable Resettable Tamper-Proof Hardware

commitment Πse
COM and our direct construction of a UC-secure commitment ΠCOM.

If the commitment message is relatively short compared to the security parameter,
then ΠCOM is much more efficient than the compiled version of Πse

COM. However,
if the message length of the commitment by far exceeds the length of the security
parameter (i.e. if ` is the commitment length and ` > O(κ2)), [DS13] becomes more
efficient.
Remark. If we instantiate the above protocol in the F ru

wrap-hybrid model (cf. Sec-
tion 7.3.1), the practical efficiency is even superior to the protocol of [HMQU05]
because we do not use zero-knowledge proofs, which require an rather inefficient
NP reduction.

7.3 Ideal Signature Cards
The model considered in the previous section allows a broad class of signature

algorithms that can be placed on the token. This comes with the drawback that a
lot of functions cannot be realized securely. In particular, non-interactive protocols
are directly ruled out by the model. In this section, we want to explore what is
theoretically feasible with reusable hardware tokens, at the cost of limiting the types
of signatures that are suitable for our scenario. In particular, we require that the
complete message that is to be signed is given to the signature card. Nevertheless,
there are currently available signature cards that can be used for the protocols that
are presented in this section, e.g. FinID3.

7.3.1 Model
In contrast to F ru-strict

wrap , we now adapt the simulation trapdoor of Canetti et
al. [CJS14] from a global random oracle to the scenario of reusable tamper-proof
hardware. To overcome the problem that the simulator cannot read queries to the
setup functionality outside of the current protocol, the authors require parties that
query the setup to include the current session id SID of the protocol. If a malicious
party queries the setup in another protocol, using the SID of the first protocol, the
setup will store this query in a list and give the simulator access to this list (via
the ideal functionality with which the simulator communicates). This mechanism
ensures that the simulator only learns illegitimate queries, since honest parties will
always use the correct SID.
We thus enhance the standard resettable wrapper functionality F resettable

wrap by the
query list, and parse inputs as a concatenation of actual input and the session id
(cf. Figure 7.7).
Compared to our previous reusable token specification F ru-strict

wrap , it is no longer
necessary to use a nonce to bind the messages to one specific protocol instance.
Thus, the inherent interaction of the F ru-strict

wrap -hybrid model is removed in the F ru
wrap-

hybrid model. This will allow a much broader class of functionalities to be realized.
For our purposes, however, we have to assume that the token learns the complete
input, in contrast to the previous model (cf. Section 7.2.1). This is similar to the
model assumed in [HMQU05], but in contrast to their work, we focus on untrusted
tokens.

3https://eevertti.vrk.fi/Default.aspx?id=377

https://eevertti.vrk.fi/Default.aspx?id=377

7.3. Ideal Signature Cards 139

Functionality F ru
wrap

Implicitly parametrized by a security parameter κ and a list F̄ of ideal functionality
programs.

Creation:
1. Await an input (create,M, t) from the token issuer, where M is a deterministic

Turing machine and t ∈ N. Store (M, t) and send (created) to the adversary.
Ignore all further create-messages.

2. Await a message (delivery) from the adversary. Then, send (ready) to the token
receiver.

Execution:
3. Await an input (run, w) from the receiver with party id PID and session id SID.

Parse w as (w′, sid). If no create-message has been sent, return a special symbol
⊥. Otherwise, run M on w from its most recent state and add (sid, w′,M(w′)) to
the list of illegitimate queries Qsid if SID 6= sid . When M halts without generating
output or t steps have passed, send ⊥ to the receiver; otherwise store the current
state of M and send the output of M to the receiver.

Reset (adversarial receiver only):
4. Upon receiving a message (reset) from a corrupted token receiver, reset M to its

initial state.

5. Upon receiving a message (list) from an ideal functionality in the list F̄ with SID
sid, return Qsid.

Figure 7.7: The wrapper functionality by which we model reusable resettable
tamper-proof hardware. The runtime bound t is merely needed to pre-
vent malicious token senders from providing a perpetually running pro-
gram code M; it will be omitted throughout the rest of the chapter.

Let us briefly state why we believe that this model is still useful. On the one hand,
there are signature cards that support that the user inputs the complete message
without any preprocessing. On the other hand, the messages that we input are
typically rather short (linear in the security parameter), implying that the efficiency
of the token is not reduced by much. Even to the contrary, this allows us to construct
more round- and communication-efficient protocols, such that the overall efficiency
increases.

7.3.2 Protocols
In this section, we show how to realize UC-secure non-interactive computation

and the required tools. First, we construct a non-interactive straight-line extractable
commitment scheme in Section 7.3.2.1, which is a simple adaptation of the straight-
line extractable commitment from Section 7.2.2.1 to the weaker model F ru

wrap. We
use this non-interactive commitment to create a non-interactive straight-line witness-
extractable argument in Section 7.3.2.2. Then we sketch how our non-interactive
straight-line witness-extractable argument can be used to obtain a one-sided simu-

140 7. Reusable Resettable Tamper-Proof Hardware

latable OT protocol (cf. Section 7.3.2.3) which is the essential building block nec-
essary to realize UC-secure non-interactive computation in the F ru

wrap-hybrid model
in Section 7.3.2.4.

7.3.2.1 Non-Interactive Straight-Line Extractable Commitment

Since the ideal token functionality takes care of messages from other protocols
that might maliciously be used in this protocol, it is no longer necessary to send
a nonce from the receiver to the sender during the commitment. Additionally, the
simulator now learns the actual inputs into the signature functionality, which enables
us to extract messages directly without having to work with preprocessed values.
We slightly modify the commitment from Section 7.2.2.1 to fit into the F ru

wrap-hybrid
model.

Lemma 7.6. The protocol Πni-se
COM in Figure 7.8 is a straight-line extractable com-

mitment scheme as per Definition 2.10 in the F ru
wrap-hybrid model, given that COM

is an extractable computationally hiding commitment scheme and SIG is an EUF-
CMA-secure unique signature scheme.

Proof. We show that Πni-se
COM satisfies Definition 2.9. The security proof essentially

follows the proof of Theorem 7.1 with some minor modifications. The proof for the
hiding property can be adopted completely, except that the PRG is not necessary
in the protocol and therefore the hybrid step can be omitted.
The extraction step is technically the same, but the analysis is even simpler than

in the proof of Theorem 7.1. Consider the extraction algorithm in Figure 7.9. It
searches the inputs into the hybrid functionality F ru

wrap for the combination of input
and randomness for the commitment that is to be extracted. The only difference to
the extractor of Πse

COM is that the input is directly extracted from the queries to the
token.
The rest of the proof is identical to the extractability proof of Theorem 7.1.

7.3.2.2 Non-Interactive Straight-line Witness-Extractable Arguments

Our protocol is based on the construction of Pass [Pas03] who presented a protocol
for a non-interactive straight-line witness-extractable proof in the random oracle
model. Let Π = (α, β, γ) be a Σ-protocol, i.e. a three message zero-knowledge proof
system. We also assume that Π has special soundness, i.e. from answers γ1, γ2 to two
distinct challenges β1, β2, it is possible to reconstruct the witness that the prover
used.
The main idea of his construction is as follows. Instead of performing a Σ-protocol

interactively, a Fiat-Shamir transformation [FS87] is used to make the protocol non-
interactive. The prover computes the first message α of the Σ-protocol, selects
two possible challenges β1 and β2, computes the resulting answers γ1 and γ2 based
on the witness w according to the Σ-protocol for both challenges and computes
commitments ci to the challenge/response pairs. Instead of having the verifier choose
one challenge, in [FS87], a hash-function is applied to the commitment to determine
which challenge is to be used. The prover then sends (α, c) and the unveil information
of the ci to the verifier. The verifier only has to check if the unveil is correct under
the hash function and if the resulting Σ-protocol transcript (α, βi, γi) is correct. The
resulting protocol only has soundness 1

2 and thus has to be executed several times in

7.3. Ideal Signature Cards 141

Protocol Πni-se
COM

Let T be an instance of F ru
wrap. Further let COM be a computationally hiding and

extractable commitment scheme. Let SIG be a unique signature scheme according to
Definition 2.14.

Global setup phase:
• Receiver: Compute (vk, sgk)← SIG.KeyGen(κ). Program a stateless token T with

the following functionality.
– Upon receiving a message (vk), return vk.
– Upon receiving a message (sign,m), compute σm ← SIG.Sign(sgk,m) and

output σm.
Send (create,T) to T .

• Sender: Query T with (vk) to obtain the verification key vk and check if it is a
valid verification key for SIG.

Commit phase:
1. Sender: Let s be the sender’s input.

• Draw r ← {0, 1}3κ uniformly at random and choose a 2-universal hash
function f from the family of 2-universal hash functions {fh : {0, 1}3κ →
{0, 1}κ}h←H.

• Send (sign, s) and (sign, r) to T and obtain σs and σr.
• Compute both (cσ, dσ) ← COM.Commit(σs, σr, s, r) and (cs, f(r)) ←

COM.Commit(s).
• Send (cs, cσ, f) to the receiver.

Unveil phase:
2. Sender: Send (s, r, σs, σr, dσ) to the receiver.

3. Receiver: Check if SIG.Verify(σs, s) = SIG.Verify(σr, r) = 1. Additionally, check if
COM.Open(cs, f(r), s) = 1 and COM.Open(cσ, dσ, (σs, σr, s, r)) = 1. If not, abort;
otherweise accept.

Figure 7.8: Computationally secure non-interactive straight-line extractable com-
mitment scheme in the F ru

wrap-hybrid model.

Extractor ExtCOM

Upon input
(
(c∗s, c

∗
σ, f

∗), Q
)
, where Q is the set of all query/answer pairs that AS sent to

and received from F ru
wrap, start the following algorithm.

1. Test for all αi, αj ∈ Q if COM.Open(c∗s, αi, f
∗(αj)) = 1. Otherwise, abort.

2. Let (ŝ, r̂) = (αi, αj) be the values obtained in the previous step. Output ŝ.

Figure 7.9: The extraction algorithm for the non-interactive straight-line extractable
commitment protocol Πni-se

COM.

142 7. Reusable Resettable Tamper-Proof Hardware

parallel. [Pas03] replaces the hash function by a random oracle and thus obtains a
proof system. If the commitment is straight-line extractable, so is the proof system.
We replace the random oracle by the token functionality defined in Section 7.3.1.

While we can only achieve computational security against a malicious prover, this al-
lows us to use the straight-line extractable commitment scheme from Section 7.3.2.1
to obtain an straight-line witness-extractable argument. A formal description of the
protocol is given in Figure 7.10.

Protocol ΠNIWI

Let (α, β, γ) denote the three messages of a Σ-protocol Π for a language L. Further let
SECOM be an instance of Πni-se

COM from Section 7.3.2.1.

Global setup phase:
• Verifier: Compute (vk, sgk) ← SIG.KeyGen(κ). Program a stateless token T with

the following functionality.
– Upon receiving a message (vk), return vk.
– Upon receiving a message (sign,m), compute σm ← SIG.Sign(sgk,m) and

output σm.
Send (create,T) to T .

• Sender: Query T with (vk) to obtain the verification key vk and check if it is a
valid verification key for SIG.

Proof phase:
1. Prover: Let a statement x and a witness w be the prover’s input, such that (x,w) ∈
RL. Let l = poly(κ) be the length of the signature.

• Compute l first messages α = (α(1), . . . , α(l)) of the Σ-protocol. Pick
2l random challenges (β(1)

0 , β
(1)
1), . . . , (β(l)

0 , β
(l)
1) for the Σ-protocol with

β
(i)
0 6= β

(i)
1 ∀i ∈ {1, . . . , l}. Compute the corresponding answers

(γ(1)
0 , γ

(1)
1), . . . , (γ(l)

0 , γ
(l)
1) for the Σ-protocol from w.

• Commit to the challenge/response pairs (β(i)
b , γ

(i)
b) via (c(i)

b , d
(i)
b) ←

SECOM.Commit(β(i)
b , γ

(i)
b) for all i ∈ {1, . . . , l} and b ∈ {0, 1}. Let c =(

(c(1)
0 , c

(1)
1), . . . , (c(l)

0 , c
(l)
1)
)
.

• Send (sign, (α, c)) to T and let σ denote the result.

Send π = (α, c, σ, (d(1)
σ1
, . . . , d(l)

σl
) to the verifier where σi signifies the i-th bit of σ.

2. Verifier: First, check if SIG.Verify(vk, σ, (a, c)) = 1. If that is not the case, abort;
otherwise check for all i that (α(i), β(i)

σi
, γ(i)
σi

) is an accepting transcript for x ∈ L and
SECOM.Open(c(i)

σi
, d(i)
σi
, (β(i)

σi
, γ(i)
σi

)) = 1. If that check is passed, accept; otherwise
abort.

Figure 7.10: Computationally secure non-interactive straight-line witness-
extractable argument in the F ru

wrap-hybdrid model.

Theorem 7.3. The protocol ΠNIWI in Figure 7.10 is a straight-line witness-extractable
argument as per Definition 2.20 in the F ru

wrap-hybrid model, given that SECOM is a

7.3. Ideal Signature Cards 143

straight-line extractable commitment scheme and SIG is an EUF-CMA secure unique
signature scheme.

Proof. Let Π be a public-coin special-sound honest-verifier zero-knowledge (SHVZK)
protocol.

Completeness: Completeness of ΠNIWI follows directly from the completeness of
the Σ-protocol Π.

Witness-Indistinguishability: Cramer et al. [CDS94, Pas03] show that a SHVZK
protocol directly implies a public-coin witness-indistinguishable protocol. Since
witness-indistinguishable protocols are closed under parallel composition as
shown be Feige et al. [FS90], ΠNIWI is witness-indistinguishable.

Extractablility: Let ExtCOM be the straight-line extractor of SECOM. We will
construct a straight-line extractor for ΠNIWI (cf. Figure 7.11).

Extractor ExtNIWI

Let ExtCOM be the extraction algorithm for SECOM. Upon input
(
π∗ =

(α∗, c∗, σ∗, (d∗(1)
σ1

, . . . , d∗(l)σl
)), Q

)
, where Q is the set of queries to F ru

wrap, start the following
algorithm.

1. Run the verifier algorithm on π∗, if it aborts, abort. Run ExtCOM with input
(
c∗, Q

)
to extract all commitments and obtain (β̂(i)

b , γ̂
(i)
b) ∀i ∈ {1, . . . , l}.

2. Select the first correct witness ŵ derived from (γ̂(i)
0 , γ̂

(i)
1) and output ŵ.

Figure 7.11: The extraction algorithm for the non-interactive straight-line witness-
extractable argument ΠNIWI.

It remains to show that if the verifier accepts, ExtNIWI outputs a correct witness
with overwhelming probability. First, note that ExtCOM extracts the inputs of
c∗ with overwhelming probability, and by the special soundness of Π, we know
that if both challenges in the commitment are extracted, ExtNIWI will obtain a
witness. Thus, the only possibility for ExtNIWI to fail with the extraction is if a
malicious PPT prover AP manages to convince the verifier with a witness w∗
such that (x,w∗) /∈ RL.
Each of the l instances of Π has soundness 1

2 , since a malicious AP can only
answer at most one challenge correctly, and otherwise a witness is obtained.
Thus, AP has to make sure that in all l instances, the correctly answered
challenge is selected. Assume for the sake of contradiction that AP manages
to convince the verifier with some non-negligible probability ε of a witness w∗
such that (x,w∗) /∈ RL. We will construct an adversary B from AP that breaks
the EUF-CMA property of SIG with probability ε.
Let B be the adversary for the EUF-CMA game. Let vk be the verification
key that B receives from the EUF-CMA game. B simulates F ru

wrap to AP by
returning vk upon receiving a query (vk); further let Q be the set of queries
that AP sends to F ru

wrap. For each query (sign,m), B forwards the message to
the signature oracle of the EUF-CMA game and returns the resulting signature
σ to AP.

144 7. Reusable Resettable Tamper-Proof Hardware

If B receives a signature query of the form (sign,m∗) with m∗ = (α∗, c∗),
start the extractor ExtCOM with input (c∗,) to extract the commitments c∗ us-
ing Q. Create a signature σ∗ by selecting σ∗i as the index of the correctly
evaluating challenge. The verifier will only accept if that is the case. If
SIG.Verify(vk, σ∗, (α∗, c∗)) = 1, send (m∗, σ∗) to the EUF-CMA game, other-
wise abort. We thus have that AP wins the EUF-CMA game with probability
ε, which contradicts the EUF-CMA security of SIG.

7.3.2.3 One-Sided Simulatable OT

To obtain our main result, we need to introduce a variant of OT called one-sided
simulatable OT. One-sided simulatable OT requires that only the security against
a corrupted receiver is simulation-based. The security against a corrupted sender is
indistinguishability-based.

Definition 7.7 ([CJS14]). Let FOT be the ideal functionality for oblivious transfer.
We say that a protocol Π securely realizes FOT with one-sided simulation in the
F ru

wrap-hybrid model if the following holds:

1. For every non-uniform PPT adversary AR controlling the receiver in the real
model, there exists a non-uniform PPT adversary S for the ideal model, such
that for any environment Z,

RealAR
Π (Z) ≈

c
IdealSFOT(Z)

2. For every non-uniform PPT adversary AS controlling the sender,

{viewR
Π,AS(z)(s0, s1, 0)}z∈{0,1}∗ ≈ {viewR

Π,AS(z)(s0, s1, 1)}z∈{0,1}∗

where viewR
Π,AS(z) denotes the view of the adversary AS after a real execution

of Π with the honest receiver R.

It is possible to instantiate the construction of one-sided simulateable OT from
[CJS14] with our straight-line witness-extractable argument ΠNIWI to obtain a one-
sided simulateable OT in the F ru

wrap-hybrid model. The argument system is used
as a black-box in their construction and no modification of the protocol or proof is
necessary. The construction of [CJS14] is based on the efficient cut-and-choose OT
protocol of Lindell and Pinkas [LP11] which provides a plain model instantiation
of the two-message CRS-based OT protocol of Peikert et al. [PVW08]. This is
achieved by replacing the CRS with an interactive protocol in which the receiver
generates the parameters and provides a proof of correctness. The main difference
between [LP11] and [CJS14] is the replacement of the zero-knowledge proof with
a non-interactive witness-indistinguishable proof because this step is only needed
for the simulation, i.e. the extraction, of the OT against a corrupted sender. The
protocol thus retains its standalone receiver privacy while it is still simulateable
against a corrupted receiver.

7.3.2.4 UC-secure NISC

In this section, we briefly describe how UC-secure non-interactive secure com-
putation (NISC) can be achieved in the F ru

wrap-hybrid model. Our solution is very

7.3. Ideal Signature Cards 145

similar to the one of Canetti et al. [CJS14], hence we start with a description of
their solution and highlight our changes. Due to the complexity of the protocol, we
will not give a formal description and proof of the protocol and refer the interested
reader to [CJS14].

Canetti et al. [CJS14] modify a UC-secure NISC protocol in the CRS-hybrid model
by Ashfar et al. [AMPR14] such that it can be used with a global random oracle.
In the following, we provide a very high-level description of their protocol. The
basic approach is to squash a cut-and-choose garbled circuit protocol down to two
messages, i.e. the sender provides many garbled circuits and the receiver can then
verify that the sender garbled the correct circuit by examining approximately half
of them. The rest of the circuits can be used to execute the actual computation.

In more detail, the receiver first specifies via OT (we call this instance the circuit-
OT) which circuits he wants to check. Additionally, he creates another OT (called
input-OT) to specify the labels he needs for his input. Here, [CJS14] use a two
message one-sided simulatable OT based on their global random oracle (as compared
to an OT in the CRS model like in [AMPR14]). Then, the sender starts to garble
t circuits. All randomness for the garbling of each circuit Ci as well as for the
respective input-OT is derived from a separate seed seedi. In the original protocol
of [AMPR14], this seed is chosen by the sender, while [CJS14] require the sender
to query the random oracle with a message qi to obtain a seed. The seed can be
extracted separately and a full-fledged OT protocol is no longer necessary. The
sender computes a set of commitments on his input, and then uses a key ki to
encrypt a message for each circuit that enables the receiver to check that the inputs
in each of the circuits is consistent with the previously sent commitment. If the
receiver were to learn both seedi and ki, he could reconstruct the input of the
sender and thus break the security of the protocol. Thus the sender inputs pairs
(ki, seedi) into the circuit-OT and that the receiver can either learn the inputs for
the corresponding circuit or check its correctness, but not both. In addition, he
inputs the input labels for the circuits into the input-OT. Once all this is done, he
sends all OT messages, the garbled circuits and the commitments to the receiver,
who can then check for correctness and evaluate the garbled circuit with his input.
There are a lot of important details that we omit here, our intention is to focus only
on the parts that are relevant for the changes we have to make to the protocol.

Our modifications to the above protocol are minor. First, we use our variant of
one-sided simulatable OT in the F ru

wrap-hybrid model. Then, since there is no global
random oracle available, we use a token programmed with a signature function to
sign the query seedi. However, the signature σi is not necessarily uniformly random,
hence we do not require the sender to use the signature as a seed (as is done with the
answer from the random oracle in [CJS14]). Instead, to ensure that the simulator can
extract the seed, we require the sender to input (ki, (seedi, σi)) into the circuit-OT.
The rest of the protocol is identical to [CJS14], and the proof has to be modified
only marginally: the simulator against a corrupted sender obtains the seed seedi
from F ru

wrap if the protocol succeeds. In the proof of [CJS14], in the hybrid game
H1, it is no longer necessary for a cheating sender to guess the answer of a random
oracle to the query qi, but instead he has to forge a signature on seedi.

146 7. Reusable Resettable Tamper-Proof Hardware

computational statistical
Model 2PC ni-2PC 2PC ni-2PC
stateful 3 3 3 3

stateful
(inc. com.) 3 3 3 3

stateful
(outg. com.) 3 3 7(3) 7

resettable 3 3 7(3) 7

bounded-
resettable 3 3 3 (3)

reusable
resettable

3(2 tokens in
F ru-strict

wrap)
3(2 tokens in
F ru

wrap)

7(3)
Commitments

[DS13]
7

Table 7.12: Feasibility of interactive and non-interactive two-party computation
from reusable resettable tamper-proof hardware.

7.4 Relation to Two-Party Computation
In this chapter, we showed that real untrusted signature cards can be used to

UC-realize very efficient protocols. Our results are achieved by adapting the proto-
cols of [CJS14] from a global random oracle to the scenario of reusable resettable
hardware. We basically achieved the same efficiency in our protocols as they do, but
our setup assumption is untrusted, in contrast to the incorruptible global random
oracle they used.

Computationally secure two-party computation: With our computationally
UC-secure commitment from Section 7.2.2.2, a UC-secure CRS can be con-
structed via a Blum coin toss [Blu81], which in turn allows to UC-realize any
two-party functionality [CLOS02]. This result is given in the strict model that
allows for any signature card in practice.

Computationally secure non-interactive two-party computation: It is im-
possible to achieve non-interactive UC-secure computation with reusable tam-
per-proof hardware in the sense that only one message is sent in one direction,
as we showed in Section 7.1. The notion of non-interactive secure computation
(NISC) can be achieved, and we sketch how this protocol can be UC-realized
with reusable resettable tokens in a less strict model that only allows certain
types of signature tokens.

We did not consider statistically secure protocols in this chapter. It seems difficult
to find a statistically secure functionality that is useful for many protocols, especially
considering that apart from UC-secure commitments, most interesting functionalities
are impossible to realize. Also, statistically secure protocols inherently allow only
an a priori bounded number of uses, so the applicability is limited. Table 7.12 thus
summarizes the state of the art.

8. Conclusion and Prospects

In this thesis, we investigated the cryptographic strength of tamper-proof hardware.
We defined and studied several models of tamper-proof hardware, with the goal of
investigating the feasibility of cryptographic primitives in these models. As Table 8.1
shows, we were able to give a full characterization of the cryptographic strength
of the different hardware models concerning UC-secure (non-)interactive two-party
computation.
We will shortly discuss our results and describe new research questions that arise

from them.

Partially Isolated Stateful Tamper-Proof Hardware

In Chapter 4, we defined two weaker models of stateful hardware where the iso-
lation assumption is suspended in one direction, i.e. either the sender can send
messages to the token, or vice versa. We provided a full characterization of these
models with respect to the feasibility of (non-)interactive two-party computation,
and showed that our constructions are optimal with respect to the number of tokens
that we need in the protocols.
A natural question is whether our results can also be obtained from one-way

computational 2PC statistical 2PC
Model interactive non-interactive interactive non-interactive
stateful 3 3 3 3

stateful
(inc. com.) 3 3 3 3

stateful
(outg. com.) 3 3 7(3) 7

resettable 3 3 7(3) 7

bounded-
resettable 3 3 3 (3)

reusable
resettable 3 3 7(3) 7

Table 8.1: Overview of our results.

147

148 8. Conclusion and Prospects

functions. A construction of OTM based on one-way functions would have to be
direct without using a CRS because all CRS-based UC-secure protocols for OT in the
literature require number-theoretic assumptions or enhanced trapdoor permutations.
Also, it might be interesting to investigate the scenario of partial isolation with

regard to resettable hardware tokens (cf. Chapter 5). We believe that non-interactive
protocols should remain secure in the case of incoming communication, thus our
result from Section 5.4 would directly yield non-interactive secure computation.
However, our solution does not solve the case of outgoing communication.

Resettable Tamper-Proof Hardware

In Chapter 5, we improved upon previous work in the area of resettable tokens and
provided optimal constructions for (non-)interactive two-party computation, both
with respect to the number of tokens and the computational assumptions used.
While our constructions only assume one-way functions, which is optimal, the

underlying two-party computation protocol requires OT. Currently, it seems as if
OT in the plain model is a necessary assumption to obtain non-interactive two-party
computation, mainly because OT is not a resettable functionality and thus cannot be
realized non-interactively based on resettable hardware alone. One possible approach
to resolve this question could be to find a construction for resettable two-party
computation based on random OT only, because random OT is still realizable in the
non-interactive setting with resettable hardware.

Bounded-Resettable Tamper-Proof Hardware

In the context of bounded-resettable tamper-proof hardware (cf. Chapter 6), we
showed the general feasibility of two-party computation. In addition, we provided
positive results for non-interactive protocols.
We use our commitments as building blocks for the more complex protocols, so

there might be the possibility to obtain more efficient protocols by creating a direct
construction of the corresponding functionalities. Efficiency improvements might
both be obtained for the complexity of the protocols and for the number of tokens
used. Likewise, it would be interesting to find lower bounds on the number of tokens
necessary for a given functionality, because this would either show the optimality of
our solutions or hint at more efficient constructions.
An interesting challenge is to find a solution for general non-interactive UC-secure

two-party computation. We believe that the question can be resolved in the affir-
mative. In principle, OTM can be achieved by storing two values on a bounded-
resettable token, which would imply non-interactive two-party computation. The
receiver has to query the token at least

⌈
q
2

⌉
times to obtain one value, and the

bounded number of resets prevents the receiver from learning both values. Obvi-
ously, this construction is very inefficient because even an honest user has to “reset”
the token very often, but it shows that non-interactive two-party computation can-
not be ruled out in general.

Reusable Resettable Tamper-Proof Hardware

In Chapter 7 we introduced untrusted and resettable signature cards as a reusable
setup assumption and showed that they even allow non-interactive two-party com-
putation. One interesting research direction is to further analyze reusable stateful

149

tokens, because our results in Section 7.1 seem to indicate that reusable stateful and
resettable tokens might be equal in their cryptographic strength.
A more technical question that arises by our work is whether it is possible to

achieve non-interactive secure computation even with the more realistic definition of
signatures with preprocessing on the host. In our current non-interactive protocols,
the proofs of security will no longer hold with this definition because the token
has to learn the complete view of the intermediate steps of the sender party of the
non-interactive protocol.

Bibliography

[AAG+14] Shashank Agrawal, Prabhanjan Ananth, Vipul Goyal, Manoj Prab-
hakaran, and Alon Rosen. Lower bounds in the hardware token model.
In Yehuda Lindell, editor, TCC 2014, volume 8349 of LNCS, pages
663–687. Springer, February 2014. (Cited on pages 66 and 124.)

[ADW09] Joël Alwen, Yevgeniy Dodis, and Daniel Wichs. Leakage-resilient
public-key cryptography in the bounded-retrieval model. In Shai
Halevi, editor, CRYPTO 2009, volume 5677 of LNCS, pages 36–54.
Springer, August 2009. (Cited on page 25.)

[AL07] Yonatan Aumann and Yehuda Lindell. Security against covert adver-
saries: Efficient protocols for realistic adversaries. In Salil P. Vadhan,
editor, TCC 2007, volume 4392 of LNCS, pages 137–156. Springer,
February 2007. (Cited on page 50.)

[AMPR14] Arash Afshar, Payman Mohassel, Benny Pinkas, and Ben Riva. Non-
interactive secure computation based on cut-and-choose. In Phong Q.
Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, vol-
ume 8441 of LNCS, pages 387–404. Springer, May 2014. (Cited on
page 145.)

[AS92] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs;
A new characterization of NP. In 33rd FOCS, pages 2–13. IEEE
Computer Society Press, October 1992. (Cited on page 88.)

[BCG+11] Nir Bitansky, Ran Canetti, Shafi Goldwasser, Shai Halevi, Yael Tau-
man Kalai, and Guy N. Rothblum. Program obfuscation with leaky
hardware. In Dong Hoon Lee and Xiaoyun Wang, editors, ASI-
ACRYPT 2011, volume 7073 of LNCS, pages 722–739. Springer, De-
cember 2011. (Cited on pages 25 and 85.)

[Bea95] Donald Beaver. Precomputing oblivious transfer. In Don Copper-
smith, editor, CRYPTO’95, volume 963 of LNCS, pages 97–109.
Springer, August 1995. (Cited on pages 32, 67, and 116.)

[BFSK11] Christina Brzuska, Marc Fischlin, Heike Schröder, and Stefan Katzen-
beisser. Physically uncloneable functions in the universal composition
framework. In Phillip Rogaway, editor, CRYPTO 2011, volume 6841
of LNCS, pages 51–70. Springer, August 2011. (Cited on page 3.)

[BGGL01] Boaz Barak, Oded Goldreich, Shafi Goldwasser, and Yehuda Lindell.
Resettably-sound zero-knowledge and its applications. In 42nd FOCS,

151

152 Bibliography

pages 116–125. IEEE Computer Society Press, October 2001. (Cited
on page 51.)

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich,
Amit Sahai, Salil P. Vadhan, and Ke Yang. On the (im)possibility of
obfuscating programs. In Joe Kilian, editor, CRYPTO 2001, volume
2139 of LNCS, pages 1–18. Springer, August 2001. (Cited on page 84.)

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich,
Amit Sahai, Salil Vadhan, and Ke Yang. On the (im)possibility of
obfuscating programs. J. ACM, 59(2):1–48, May 2012. (Cited on
page 84.)

[Blu81] Manuel Blum. Coin flipping by telephone. In Allen Gersho, editor,
CRYPTO’81, volume ECE Report 82-04, pages 11–15. U.C. Santa
Barbara, Dept. of Elec. and Computer Eng., 1981. (Cited on pages 71
and 146.)

[BOGKW88] Michael Ben-Or, Shafi Goldwasser, Joe Kilian, and Avi Wigderson.
Multi-prover interactive proofs: How to remove intractability assump-
tions. In 20th ACM STOC, pages 113–131. ACM Press, May 1988.
(Cited on page 25.)

[BOV15] Ioana Boureanu, Miyako Ohkubo, and Serge Vaudenay. The limits
of composable crypto with transferable setup devices. In Feng Bao,
Steven Miller, Jianying Zhou, and Gail-Joon Ahn, editors, ASIACCS
15, pages 381–392. ACM Press, April 2015. (Cited on page 123.)

[BP13] Nir Bitansky and Omer Paneth. On the impossibility of approxi-
mate obfuscation and applications to resettable cryptography. In Dan
Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th ACM
STOC, pages 241–250. ACM Press, June 2013. (Cited on page 15.)

[Bra94] Stefan Brands. Untraceable off-line cash in wallets with observers
(extended abstract). In Douglas R. Stinson, editor, CRYPTO’93, vol-
ume 773 of LNCS, pages 302–318. Springer, August 1994. (Cited on
page 2.)

[BVS06] Jens-Matthias Bohli, Maria Isabel Gonzalez Vasco, and Rainer Stein-
wandt. A subliminal-free variant of ECDSA. In Jan Camenisch, Chris-
tian S. Collberg, Neil F. Johnson, and Phil Sallee, editors, Information
Hiding IH 2006, volume 4437 of LNCS, pages 375–387. Springer, July
2006. (Cited on page 131.)

[Can01] Ran Canetti. Universally composable security: A new paradigm for
cryptographic protocols. In 42nd FOCS, pages 136–145. IEEE Com-
puter Society Press, October 2001. (Cited on pages 2, 17, and 18.)

[CDPW07] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Uni-
versally composable security with global setup. In Salil P. Vadhan, ed-
itor, TCC 2007, volume 4392 of LNCS, pages 61–85. Springer, Febru-
ary 2007. (Cited on pages 123 and 124.)

Bibliography 153

[CDS94] Ronald Cramer, Ivan Damgård, and Berry Schoenmakers. Proofs of
partial knowledge and simplified design of witness hiding protocols.
In Yvo Desmedt, editor, CRYPTO’94, volume 839 of LNCS, pages
174–187. Springer, August 1994. (Cited on page 143.)

[CF01] Ran Canetti and Marc Fischlin. Universally composable commit-
ments. In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS,
pages 19–40. Springer, August 2001. (Cited on pages 2, 26, 27, 39,
and 40.)

[CGGM00] Ran Canetti, Oded Goldreich, Shafi Goldwasser, and Silvio Micali.
Resettable zero-knowledge (extended abstract). In 32nd ACM STOC,
pages 235–244. ACM Press, May 2000. (Cited on pages 1, 69, and 71.)

[CGS08] Nishanth Chandran, Vipul Goyal, and Amit Sahai. New constructions
for UC secure computation using tamper-proof hardware. In Nigel P.
Smart, editor, EUROCRYPT 2008, volume 4965 of LNCS, pages 545–
562. Springer, April 2008. (Cited on pages 2, 49, 50, 51, 52, 67, 85,
and 123.)

[CJS14] Ran Canetti, Abhishek Jain, and Alessandra Scafuro. Practical UC
security with a global random oracle. In Gail-Joon Ahn, Moti Yung,
and Ninghui Li, editors, ACM CCS 14, pages 597–608. ACM Press,
November 2014. (Cited on pages 10, 124, 125, 129, 134, 138, 144, 145,
and 146.)

[CKM11] Seung Geol Choi, Aggelos Kiayias, and Tal Malkin. BiTR: Built-in
tamper resilience. In Dong Hoon Lee and Xiaoyun Wang, editors,
ASIACRYPT 2011, volume 7073 of LNCS, pages 740–758. Springer,
December 2011. (Cited on page 25.)

[CKS+14] Seung Geol Choi, Jonathan Katz, Dominique Schröder, Arkady
Yerukhimovich, and Hong-Sheng Zhou. (Efficient) universally com-
posable oblivious transfer using a minimal number of stateless tokens.
In Yehuda Lindell, editor, TCC 2014, volume 8349 of LNCS, pages
638–662. Springer, February 2014. (Cited on pages 50, 51, 55, 63, 67,
123, 125, 126, and 129.)

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Uni-
versally composable two-party and multi-party secure computation.
In 34th ACM STOC, pages 494–503. ACM Press, May 2002. (Cited
on pages 2, 21, 67, 69, 85, 133, and 146.)

[CP93] David Chaum and Torben P. Pedersen. Wallet databases with ob-
servers. In Ernest F. Brickell, editor, CRYPTO’92, volume 740 of
LNCS, pages 89–105. Springer, August 1993. (Cited on pages 1 and 2.)

[CP94] Ronald Cramer and Torben P. Pedersen. Improved privacy in wallets
with observers (extended abstract). In Tor Helleseth, editor, EURO-
CRYPT’93, volume 765 of LNCS, pages 329–343. Springer, May 1994.
(Cited on page 2.)

154 Bibliography

[CPS13] Kai-Min Chung, Rafael Pass, and Karn Seth. Non-black-box simu-
lation from one-way functions and applications to resettable security.
In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors,
45th ACM STOC, pages 231–240. ACM Press, June 2013. (Cited on
pages 13, 15, and 66.)

[CS09] Mahdi Cheraghchi and Amin Shokrollahi. Almost-uniform sampling
of points on high-dimensional algebraic varieties. In Susanne Albers
and Jean-Yves Marion, editors, Symposium on Theoretical Aspects of
Computer Science - Proceedings of STACS 2009, volume 3 of LIPIcs,
pages 277–288. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
Germany, 2009. (Cited on pages 104, 105, 106, and 107.)

[Dam90] Ivan Damgård. A design principle for hash functions. In Gilles
Brassard, editor, CRYPTO’89, volume 435 of LNCS, pages 416–427.
Springer, August 1990. (Cited on page 127.)

[DFK+93] Cynthia Dwork, Uriel Feige, Joe Kilian, Moni Naor, and Shmuel
Safra. Low communication 2-prover zero-knowledge proofs for NP. In
Ernest F. Brickell, editor, CRYPTO’92, volume 740 of LNCS, pages
215–227. Springer, August 1993. (Cited on page 88.)

[DFK+14] Dana Dachman-Soled, Nils Fleischhacker, Jonathan Katz, Anna
Lysyanskaya, and Dominique Schröder. Feasibility and infeasibility
of secure computation with malicious PUFs. In Juan A. Garay and
Rosario Gennaro, editors, CRYPTO 2014, Part II, volume 8617 of
LNCS, pages 405–420. Springer, August 2014. (Cited on page 3.)

[DKMN15] Nico Döttling, Daniel Kraschewski, Jörn Müller-Quade, and To-
bias Nilges. General statistically secure computation with bounded-
resettable hardware tokens. In Yevgeniy Dodis and Jesper Buus
Nielsen, editors, TCC 2015, Part I, volume 9014 of LNCS, pages 319–
344. Springer, March 2015. (Cited on pages 5 and 89.)

[DKMQ11] Nico Döttling, Daniel Kraschewski, and Jörn Müller-Quade. Uncon-
ditional and composable security using a single stateful tamper-proof
hardware token. In Yuval Ishai, editor, TCC 2011, volume 6597 of
LNCS, pages 164–181. Springer, March 2011. (Cited on pages 2, 23,
27, 28, 29, 30, 31, 32, 37, 47, 49, 50, 67, 85, 88, 91, 115, and 116.)

[DKMQ12] Nico Döttling, Daniel Kraschewski, and Jörn Müller-Quade. David
& Goliath oblivious affine function evaluation - asymptotically op-
timal building blocks for universally composable two-party compu-
tation from a single untrusted stateful tamper-proof hardware to-
ken. Cryptology ePrint Archive, Report 2012/135, 2012. http:
//eprint.iacr.org/2012/135. (Cited on pages 25 and 67.)

[DKMQN15] Nico Döttling, Daniel Kraschewski, Jörn Müller-Quade, and Tobias
Nilges. From stateful hardware to resettable hardware using symmet-
ric assumptions. In ProvSec 2015, LNCS. Springer, November 2015.
To appear. (Cited on pages 4 and 50.)

http://eprint.iacr.org/2012/135
http://eprint.iacr.org/2012/135

Bibliography 155

[DMMQN11] Nico Döttling, Thilo Mie, Jörn Müller-Quade, and Tobias Nilges. Bas-
ing obfuscation on simple tamper-proof hardware assumptions. Cryp-
tology ePrint Archive, Report 2011/675, 2011. http://eprint.iacr.
org/2011/675. (Cited on page 85.)

[DMMQN13] Nico Döttling, Thilo Mie, Jörn Müller-Quade, and Tobias Nilges. Im-
plementing resettable UC-functionalities with untrusted tamper-proof
hardware-tokens. In Amit Sahai, editor, TCC 2013, volume 7785
of LNCS, pages 642–661. Springer, March 2013. (Cited on pages 4
and 50.)

[DMQN15] Rafael Dowsley, Jörn Müller-Quade, and Tobias Nilges. Weakening
the isolation assumption of tamper-proof hardware tokens. In Anja
Lehmann and Stefan Wolf, editors, ICITS 15, volume 9063 of LNCS,
pages 197–213. Springer, May 2015. (Cited on pages 4 and 26.)

[DNW08] Ivan Damgård, Jesper Buus Nielsen, and Daniel Wichs. Isolated proofs
of knowledge and isolated zero knowledge. In Nigel P. Smart, editor,
EUROCRYPT 2008, volume 4965 of LNCS, pages 509–526. Springer,
April 2008. (Cited on page 25.)

[DNW09] Ivan Damgård, Jesper Buus Nielsen, and Daniel Wichs. Universally
composable multiparty computation with partially isolated parties.
In Omer Reingold, editor, TCC 2009, volume 5444 of LNCS, pages
315–331. Springer, March 2009. (Cited on pages 22, 25, and 26.)

[DORS08] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith.
Fuzzy extractors: How to generate strong keys from biometrics and
other noisy data. SIAM J. Comput., 38(1):97–139, 2008. (Cited on
pages 16 and 17.)

[DP08] Stefan Dziembowski and Krzysztof Pietrzak. Leakage-resilient cryp-
tography. In 49th FOCS, pages 293–302. IEEE Computer Society
Press, October 2008. (Cited on pages 2 and 25.)

[DPSZ12] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias.
Multiparty computation from somewhat homomorphic encryption. In
Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, vol-
ume 7417 of LNCS, pages 643–662. Springer, August 2012. (Cited on
page 3.)

[DS13] Ivan Damgård and Alessandra Scafuro. Unconditionally secure and
universally composable commitments from physical assumptions. In
Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013, Part
II, volume 8270 of LNCS, pages 100–119. Springer, December 2013.
(Cited on pages 49, 50, 54, 86, 87, 123, 133, 137, 138, and 146.)

[Dwo06] Cynthia Dwork. Differential privacy (invited paper). In Michele
Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo Wegener, editors,
ICALP 2006, Part II, volume 4052 of LNCS, pages 1–12. Springer,
July 2006. (Cited on page 69.)

http://eprint.iacr.org/2011/675
http://eprint.iacr.org/2011/675

156 Bibliography

[FGL+91] Uriel Feige, Shafi Goldwasser, László Lovász, Shmuel Safra, and Mario
Szegedy. Approximating clique is almost NP-complete (preliminary
version). In 32nd FOCS, pages 2–12. IEEE Computer Society Press,
October 1991. (Cited on page 88.)

[FJN+13] Tore Kasper Frederiksen, Thomas Pelle Jakobsen, Jesper Buus
Nielsen, Peter Sebastian Nordholt, and Claudio Orlandi. Mini-
LEGO: Efficient secure two-party computation from general assump-
tions. In Thomas Johansson and Phong Q. Nguyen, editors, EURO-
CRYPT 2013, volume 7881 of LNCS, pages 537–556. Springer, May
2013. (Cited on page 3.)

[FPS+11] Marc Fischlin, Benny Pinkas, Ahmad-Reza Sadeghi, Thomas Schnei-
der, and Ivan Visconti. Secure set intersection with untrusted hard-
ware tokens. In Aggelos Kiayias, editor, CT-RSA 2011, volume 6558
of LNCS, pages 1–16. Springer, February 2011. (Cited on page 22.)

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Andrew M. Odlyzko,
editor, CRYPTO’86, volume 263 of LNCS, pages 186–194. Springer,
August 1987. (Cited on pages 125 and 140.)

[FS90] Uriel Feige and Adi Shamir. Witness indistinguishable and witness
hiding protocols. In 22nd ACM STOC, pages 416–426. ACM Press,
May 1990. (Cited on page 143.)

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct
random functions. J. ACM, 33(4):792–807, August 1986. (Cited on
page 9.)

[GIMS10] Vipul Goyal, Yuval Ishai, Mohammad Mahmoody, and Amit Sahai.
Interactive locking, zero-knowledge pcps, and unconditional cryptog-
raphy. In Tal Rabin, editor, CRYPTO 2010, volume 6223 of LNCS,
pages 173–190. Springer, August 2010. (Cited on pages 23, 49, 50, 53,
54, 67, 87, 88, 90, 102, 110, 114, 120, and 126.)

[GIS+10] Vipul Goyal, Yuval Ishai, Amit Sahai, Ramarathnam Venkatesan, and
Akshay Wadia. Founding cryptography on tamper-proof hardware
tokens. In Daniele Micciancio, editor, TCC 2010, volume 5978 of
LNCS, pages 308–326. Springer, February 2010. (Cited on pages 2, 4,
23, 50, 51, 52, 63, 67, 85, 123, and 124.)

[GK96a] Oded Goldreich and Ariel Kahan. How to construct constant-round
zero-knowledge proof systems for NP. Journal of Cryptology, 9(3):167–
190, 1996. (Cited on page 117.)

[GK96b] Oded Goldreich and Hugo Krawczyk. On the composition of zero-
knowledge proof systems. SIAM J. Comput., 25(1):169–192, 1996.
(Cited on pages 2 and 17.)

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. One-
time programs. In David Wagner, editor, CRYPTO 2008, volume 5157

Bibliography 157

of LNCS, pages 39–56. Springer, August 2008. (Cited on pages 3, 22,
and 26.)

[GLM+04] Rosario Gennaro, Anna Lysyanskaya, Tal Malkin, Silvio Micali, and
Tal Rabin. Algorithmic tamper-proof (ATP) security: Theoretical
foundations for security against hardware tampering. In Moni Naor,
editor, TCC 2004, volume 2951 of LNCS, pages 258–277. Springer,
February 2004. (Cited on page 2.)

[GMO01] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electro-
magnetic analysis: Concrete results. In Çetin Kaya Koç, David Nac-
cache, and Christof Paar, editors, CHES 2001, volume 2162 of LNCS,
pages 251–261. Springer, May 2001. (Cited on pages 2 and 25.)

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any
mental game or A completeness theorem for protocols with honest
majority. In Alfred Aho, editor, 19th ACM STOC, pages 218–229.
ACM Press, May 1987. (Cited on pages 3, 63, and 69.)

[GO96] Oded Goldreich and Rafail Ostrovsky. Software protection and simu-
lation on oblivious rams. J. ACM, 43(3):431–473, May 1996. (Cited
on page 1.)

[Gol01] Oded Goldreich. The Foundations of Cryptography - Volume 1, Basic
Techniques. Cambridge University Press, 2001. (Cited on page 10.)

[GS09] Vipul Goyal and Amit Sahai. Resettably secure computation. In
Antoine Joux, editor, EUROCRYPT 2009, volume 5479 of LNCS,
pages 54–71. Springer, April 2009. (Cited on pages 68, 69, 71, and 85.)

[HIKN08] Danny Harnik, Yuval Ishai, Eyal Kushilevitz, and Jesper Buus
Nielsen. OT-combiners via secure computation. In Ran Canetti, edi-
tor, TCC 2008, volume 4948 of LNCS, pages 393–411. Springer, March
2008. (Cited on pages 67 and 115.)

[HILL99] Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael
Luby. A pseudorandom generator from any one-way function. SIAM
Journal on Computing, 28(4):1364–1396, 1999. (Cited on page 8.)

[HKN+05] Danny Harnik, Joe Kilian, Moni Naor, Omer Reingold, and Alon
Rosen. On robust combiners for oblivious transfer and other prim-
itives. In Ronald Cramer, editor, EUROCRYPT 2005, volume 3494
of LNCS, pages 96–113. Springer, May 2005. (Cited on page 115.)

[HL08] Carmit Hazay and Yehuda Lindell. Constructions of truly practical
secure protocols using standardsmartcards. In Peng Ning, Paul F.
Syverson, and Somesh Jha, editors, ACM CCS 08, pages 491–500.
ACM Press, October 2008. (Cited on pages 3 and 22.)

[HMQU05] Dennis Hofheinz, Jörn Müller-Quade, and Dominique Unruh. Univer-
sally composable zero-knowledge arguments and commitments from

158 Bibliography

signature cards. In Proceedings of the 5th Central European Confer-
ence on Cryptology MoraviaCrypt 2005, 2005. (Cited on pages 2, 123,
124, 125, 127, 129, 137, and 138.)

[HPV15] Carmit Hazay, Antigoni Polychroniadou, and Muthuramakrishnan
Venkitasubramaniam. Round-optimal token-based secure computa-
tion. Cryptology ePrint Archive, Report 2015/887, 2015. http:
//eprint.iacr.org/2015/887. (Cited on pages 50, 51, and 85.)

[HRVW09] Iftach Haitner, Omer Reingold, Salil P. Vadhan, and Hoeteck Wee.
Inaccessible entropy. In Michael Mitzenmacher, editor, 41st ACM
STOC, pages 611–620. ACM Press, May / June 2009. (Cited on
page 54.)

[IKO+11] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Manoj Prabhakaran,
and Amit Sahai. Efficient non-interactive secure computation. In
Kenneth G. Paterson, editor, EUROCRYPT 2011, volume 6632 of
LNCS, pages 406–425. Springer, May 2011. (Cited on page 111.)

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-
knowledge from secure multiparty computation. In David S. Johnson
and Uriel Feige, editors, 39th ACM STOC, pages 21–30. ACM Press,
June 2007. (Cited on page 115.)

[IKOS09] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Ex-
tracting correlations. In 50th FOCS, pages 261–270. IEEE Computer
Society Press, October 2009. (Cited on page 115.)

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryp-
tography on oblivious transfer - efficiently. In David Wagner, editor,
CRYPTO 2008, volume 5157 of LNCS, pages 572–591. Springer, Au-
gust 2008. (Cited on pages 37, 63, 67, 85, 115, 116, 120, and 124.)

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Se-
curing hardware against probing attacks. In Dan Boneh, editor,
CRYPTO 2003, volume 2729 of LNCS, pages 463–481. Springer, Au-
gust 2003. (Cited on page 2.)

[Jag15] Tibor Jager. Verifiable random functions from weaker assumptions. In
Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015, Part II,
volume 9015 of LNCS, pages 121–143. Springer, March 2015. (Cited
on page 51.)

[JK03] J. Jonsson and B. Kaliski. Public-Key Cryptography Standards
(PKCS) #1: RSA Cryptography Specifications Version 2.1. RFC
3447 (Informational), February 2003. (Cited on page 126.)

[JKSS10] Kimmo Järvinen, Vladimir Kolesnikov, Ahmad-Reza Sadeghi, and
Thomas Schneider. Embedded SFE: Offloading server and network
using hardware tokens. In Radu Sion, editor, FC 2010, volume 6052
of LNCS, pages 207–221. Springer, January 2010. (Cited on page 22.)

http://eprint.iacr.org/2015/887
http://eprint.iacr.org/2015/887

Bibliography 159

[Kat07] Jonathan Katz. Universally composable multi-party computation
using tamper-proof hardware. In Moni Naor, editor, EURO-
CRYPT 2007, volume 4515 of LNCS, pages 115–128. Springer, May
2007. (Cited on pages 2, 3, 21, and 22.)

[Kil88] Joe Kilian. Founding cryptography on oblivious transfer. In 20th ACM
STOC, pages 20–31. ACM Press, May 1988. (Cited on pages 37, 85,
and 120.)

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power
analysis. In Michael J. Wiener, editor, CRYPTO’99, volume 1666
of LNCS, pages 388–397. Springer, August 1999. (Cited on pages 2
and 25.)

[Koc96] Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems. In Neal Koblitz, editor, CRYPTO’96,
volume 1109 of LNCS, pages 104–113. Springer, August 1996. (Cited
on pages 2 and 25.)

[Kol10] Vladimir Kolesnikov. Truly efficient string oblivious transfer us-
ing resettable tamper-proof tokens. In Daniele Micciancio, editor,
TCC 2010, volume 5978 of LNCS, pages 327–342. Springer, February
2010. (Cited on pages 50 and 51.)

[KPT97] Joe Kilian, Erez Petrank, and Gábor Tardos. Probabilistically check-
able proofs with zero knowledge. In 29th ACM STOC, pages 496–505.
ACM Press, May 1997. (Cited on page 88.)

[KR08] Yael Tauman Kalai and Ran Raz. Interactive PCP. In Luca Aceto,
Ivan Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna
Ingólfsdóttir, and Igor Walukiewicz, editors, ICALP 2008, Part II,
volume 5126 of LNCS, pages 536–547. Springer, July 2008. (Cited on
page 88.)

[Lab04] RSA Laboratories. PKCS #11 v2.20: Cryptographic Token Interface
Standard, 2004. (Cited on page 126.)

[LP11] Yehuda Lindell and Benny Pinkas. Secure two-party computation via
cut-and-choose oblivious transfer. In Yuval Ishai, editor, TCC 2011,
volume 6597 of LNCS, pages 329–346. Springer, March 2011. (Cited
on page 144.)

[LPSY15] Yehuda Lindell, Benny Pinkas, Nigel P. Smart, and Avishay Yanai.
Efficient constant round multi-party computation combining BMR
and SPDZ. In Rosario Gennaro and Matthew J. B. Robshaw, edi-
tors, CRYPTO 2015, Part II, LNCS, pages 319–338. Springer, August
2015. (Cited on page 3.)

[LR14] Yehuda Lindell and Ben Riva. Cut-and-choose Yao-based secure com-
putation in the online/offline and batch settings. In Juan A. Garay
and Rosario Gennaro, editors, CRYPTO 2014, Part II, volume 8617
of LNCS, pages 476–494. Springer, August 2014. (Cited on page 3.)

160 Bibliography

[Lys02] Anna Lysyanskaya. Unique signatures and verifiable random functions
from the DH-DDH separation. In Moti Yung, editor, CRYPTO 2002,
volume 2442 of LNCS, pages 597–612. Springer, August 2002. (Cited
on pages 12 and 51.)

[Mer79] Ralph Charles Merkle. Secrecy, Authentication, and Public Key Sys-
tems. PhD thesis, Stanford University, Stanford, CA, USA, 1979.
(Cited on page 127.)

[Mer88] Ralph C. Merkle. A digital signature based on a conventional encryp-
tion function. In Carl Pomerance, editor, CRYPTO’87, volume 293
of LNCS, pages 369–378. Springer, August 1988. (Cited on page 66.)

[MOSV06] Daniele Micciancio, Shien Jin Ong, Amit Sahai, and Salil P. Vadhan.
Concurrent zero knowledge without complexity assumptions. In Shai
Halevi and Tal Rabin, editors, TCC 2006, volume 3876 of LNCS,
pages 1–20. Springer, March 2006. (Cited on page 10.)

[MPW07] Remo Meier, Bartosz Przydatek, and Jürg Wullschleger. Robuster
combiners for oblivious transfer. In Salil P. Vadhan, editor, TCC 2007,
volume 4392 of LNCS, pages 404–418. Springer, February 2007. (Cited
on page 115.)

[MR04] Silvio Micali and Leonid Reyzin. Physically observable cryptography
(extended abstract). In Moni Naor, editor, TCC 2004, volume 2951
of LNCS, pages 278–296. Springer, February 2004. (Cited on pages 2
and 25.)

[MRV99] Silvio Micali, Michael O. Rabin, and Salil P. Vadhan. Verifiable ran-
dom functions. In 40th FOCS, pages 120–130. IEEE Computer Society
Press, October 1999. (Cited on page 51.)

[MS08] Tal Moran and Gil Segev. David and Goliath commitments: UC
computation for asymmetric parties using tamper-proof hardware. In
Nigel P. Smart, editor, EUROCRYPT 2008, volume 4965 of LNCS,
pages 527–544. Springer, April 2008. (Cited on pages 2, 22, and 23.)

[Nao90] Moni Naor. Bit commitment using pseudo-randomness. In Gilles
Brassard, editor, CRYPTO’89, volume 435 of LNCS, pages 128–136.
Springer, August 1990. (Cited on pages 10 and 13.)

[NNOB12] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and
Sai Sheshank Burra. A new approach to practical active-secure two-
party computation. In Reihaneh Safavi-Naini and Ran Canetti, edi-
tors, CRYPTO 2012, volume 7417 of LNCS, pages 681–700. Springer,
August 2012. (Cited on page 67.)

[NY89] Moni Naor and Moti Yung. Universal one-way hash functions and
their cryptographic applications. In 21st ACM STOC, pages 33–43.
ACM Press, May 1989. (Cited on page 12.)

Bibliography 161

[OSVW13] Rafail Ostrovsky, Alessandra Scafuro, Ivan Visconti, and Akshay Wa-
dia. Universally composable secure computation with (malicious)
physically uncloneable functions. In Thomas Johansson and Phong Q.
Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS, pages
702–718. Springer, May 2013. (Cited on page 3.)

[Pap01] Ravikanth Srinivasa Pappu. Physical One-way Functions. PhD thesis,
Massachusetts Institute of Technology, Cambridge, MA, USA, 2001.
(Cited on page 1.)

[Pas03] Rafael Pass. On deniability in the common reference string and ran-
dom oracle model. In Dan Boneh, editor, CRYPTO 2003, volume 2729
of LNCS, pages 316–337. Springer, August 2003. (Cited on pages 140,
142, and 143.)

[Ped92] Torben P. Pedersen. Non-interactive and information-theoretic secure
verifiable secret sharing. In Joan Feigenbaum, editor, CRYPTO’91,
volume 576 of LNCS, pages 129–140. Springer, August 1992. (Cited
on page 11.)

[PRS02] Manoj Prabhakaran, Alon Rosen, and Amit Sahai. Concurrent zero
knowledge with logarithmic round-complexity. In 43rd FOCS, pages
366–375. IEEE Computer Society Press, November 2002. (Cited on
page 69.)

[PSW14] Manoj Prabhakaran, Amit Sahai, and Akshay Wadia. Secure com-
putation using leaky tokens. In Javier Esparza, Pierre Fraigniaud,
Thore Husfeldt, and Elias Koutsoupias, editors, ICALP 2014, Part I,
volume 8572 of LNCS, pages 907–918. Springer, July 2014. (Cited on
page 25.)

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A frame-
work for efficient and composable oblivious transfer. In David Wag-
ner, editor, CRYPTO 2008, volume 5157 of LNCS, pages 554–571.
Springer, August 2008. (Cited on pages 27, 34, 67, and 144.)

[PW09] Rafael Pass and Hoeteck Wee. Black-box constructions of two-
party protocols from one-way functions. In Omer Reingold, editor,
TCC 2009, volume 5444 of LNCS, pages 403–418. Springer, March
2009. (Cited on page 10.)

[Rom90] John Rompel. One-way functions are necessary and sufficient for se-
cure signatures. In 22nd ACM STOC, pages 387–394. ACM Press,
May 1990. (Cited on page 12.)

[RvD13] Ulrich Rührmair and Marten van Dijk. PUFs in security protocols:
Attack models and security evaluations. In 2013 IEEE Symposium on
Security and Privacy, pages 286–300. IEEE Computer Society Press,
May 2013. (Cited on page 25.)

[SA03] Sergei P. Skorobogatov and Ross J. Anderson. Optical fault induction
attacks. In Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar,

162 Bibliography

editors, CHES 2002, volume 2523 of LNCS, pages 2–12. Springer,
August 2003. (Cited on pages 2 and 25.)

[Sha79] Adi Shamir. How to share a secret. Communications of the Association
for Computing Machinery, 22(11):612–613, November 1979. (Cited on
pages 9, 41, and 42.)

[WC81] Mark N. Wegman and Larry Carter. New hash functions and their use
in authentication and set equality. Journal of Computer and System
Sciences, 22:265–279, 1981. (Cited on page 11.)

[WW06] Stefan Wolf and Jürg Wullschleger. Oblivious transfer is symmetric. In
Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS,
pages 222–232. Springer, May / June 2006. (Cited on page 116.)

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended
abstract). In 23rd FOCS, pages 160–164. IEEE Computer Society
Press, November 1982. (Cited on pages 3 and 63.)

	Abstract
	Zusammenfassung
	Contents
	1 Introduction
	1.1 Contribution of the Thesis
	1.2 Structure of the Thesis

	2 Preliminaries
	2.1 General Notations
	2.2 Basic Primitives
	2.2.1 One-Way Functions
	2.2.2 Pseudorandom Generators and Functions
	2.2.3 Secret Sharing Schemes

	2.3 Commitment Schemes
	2.4 Digital Signature Schemes and Message Authentication Codes
	2.4.1 Message Authentication Codes
	2.4.2 Digital Signatures

	2.5 Zero-Knowledge and Witness-Indistinguishable Proofs
	2.5.1 Zero-Knowledge
	2.5.2 Witness-Indistinguishability

	2.6 Information Theory and Randomness Extraction
	2.7 Security Model
	2.7.1 The Universal Composability Framework
	2.7.2 Common Ideal Functionalities

	3 Stateful Tamper-Proof Hardware
	4 Partially Isolated Stateful Tamper-Proof Hardware
	4.1 Communication from Token Issuer to Token
	4.1.1 Model
	4.1.2 Limitations
	4.1.3 Protocols
	4.1.4 Relation to Two-Party Computation

	4.2 Communication from Token to Token Issuer
	4.2.1 Model
	4.2.2 Limitations
	4.2.3 Protocols
	4.2.4 Relation to Two-Party Computation

	5 Resettable Tamper-Proof Hardware
	5.1 Model
	5.2 Limitations
	5.3 Computationally Secure Two-Party Computation
	5.3.1 Compiler from Non-Black-Box Techniques
	5.3.2 Compiler from Seed-OTs
	5.3.3 Optimizations
	5.3.4 Implications

	5.4 Computationally Secure Non-Interactive Two-Party Computation
	5.4.1 Resettable Functionalities in the UC-Framework
	5.4.2 Solution Using One Token with Interaction
	5.4.3 Solution Using Two Resettable Tokens Without Interaction
	5.4.4 Implications

	5.5 Relation to Two-Party Computation

	6 Bounded-Resettable Tamper-Proof Hardware
	6.1 Model
	6.2 Tools
	6.2.1 Query-Once Oracle Validation Scheme
	6.2.2 Oracle Validation Scheme for a q-Bounded Oracle

	6.3 Statistically Secure Two-Party Computation
	6.3.1 Commitments from Token Sender to Token Receiver
	6.3.2 Commitments from Token Receiver to Token Sender
	6.3.3 Multiple OT from a Constant Number of Tokens

	6.4 Statistically Secure Non-Interactive Two-Party Computation
	6.4.1 Bounded-Resettable Zero-Knowledge Proofs of Knowledge

	6.5 Relation to Two-Party Computation

	7 Reusable Resettable Tamper-Proof Hardware
	7.1 Limitations
	7.2 Real Signature Cards
	7.2.1 Model
	7.2.2 Protocols

	7.3 Ideal Signature Cards
	7.3.1 Model
	7.3.2 Protocols

	7.4 Relation to Two-Party Computation

	8 Conclusion and Prospects
	Bibliography

