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1. Introduction

In this paper, we study the theoretical properties of semiparametric estimators when estimation

of the nonparametric component requires the use of generated covariates. Such “three-step” esti-

mators are for example frequently used to estimate nonlinear models with endogenous covariates

when identification is achieved using control variable techniques. Here we consider a general class

of semiparametric optimization estimators with a criterion function that depends on a conditional

expectation function that has been estimated nonparametrically using generated covariates. The

nonparametric component may be profiled and thus depend on unknown finite-dimensional param-

eters. Generated covariates may originate from an either parametric, semiparametric or nonpara-

metric first step, and we allow the function that generates them to also serve some other purpose

within the model.

Deriving asymptotic properties of estimators in this class is a non-standard problem due to

the presence of generated covariates. The contribution of this paper is to give conditions on the

primitives of the model under which these semiparametric “three-step” estimators are root-n con-

sistent and asymptotically normal, to derive a general formula for the asymptotic variance, and

to show how to establish validity of the bootstrap. As an illustration, we apply our methods to

estimation of average treatment effects under unconfoundedness via regression on the propensity

score (Rosenbaum and Rubin, 1983); and our paper is the first to give explicit conditions for root-n

consistency and asymptotic normality of the respective estimator.

Semiparametric estimation problems involving both finite- and infinite-dimensional parameters

are central to econometrics, and are studied extensively under general conditions by e.g. Newey

(1994), Andrews (1994), Chen and Shen (1998), Ai and Chen (2003, 2007), Chen, Linton, and

Van Keilegom (2003), Chen and Pouzo (2009), or Ichimura and Lee (2010). None of these papers

explicitly considers the case of generated covariates in the nonparametric component, but one

can easily see that the “high-level” conditions they employ are typically sufficiently abstract to

encompass the generation step. What needs to be adapted substantially, however, are the methods

used to verify some of these abstract conditions in the context of a specific model. Compared

to a standard analysis of a setting without generated covariates, the main difficulties occur when

2



establishing a uniform rate of consistency for the nonparametric component (e.g. Newey, 1994,

Assumption 5.1(ii); or Chen, Linton, and Van Keilegom, 2003, Condition (2.4)), and an asymptotic

normality result for a linearized version of the objective function (e.g. Newey, 1994, Assumption

5.3 and Lemma 1; or Chen, Linton, and Van Keilegom, 2003, Condition (2.6)).

The main technical contribution of our paper is to provide two new stochastic expansions to ver-

ify such conditions. It thus establishes a connection between the extensive literature on estimation

and inference in semiparametric models and the one on applications with generated covariates. Our

expansions characterize the influence of generated covariates in the model’s nonparametric com-

ponent. We then show how to use this result to verify the above-mentioned uniform consistency

and asymptotic normality conditions. Alternatively, our expansion could also be directly applied

to a linearized version of the estimator. The expansions, which are proven using techniques from

empirical process theory (e.g. Van der Vaart and Wellner, 1996; van de Geer, 2009), are related to

results in Mammen, Rothe, and Schienle (2012) for purely nonparametric regression problems with

generated covariates. The main difference is that in the present paper we derive sufficiently sharp

bounds on weighted integrals of the remainder term instead of controlling its supremum norm. This

requires substantially different mathematical methods. The new error bounds shrink at a consider-

ably faster rate than those obtained in Mammen, Rothe, and Schienle (2012), which is critical for

our development of a general theory of semiparametric estimation with generated covariates.

As a byproduct of the verification of the asymptotic normality condition mentioned above, we

also obtain an explicit formula for the asymptotic variance of semiparametric estimators contained

in the general class we consider. Compared to an infeasible procedure that uses the true values of

the covariates, the influence function of such an estimator generally contains two additional terms:

one that accounts for using generated covariates to estimate the nonparametric component, and

one that accounts for the direct influence of generated covariates in other parts of the model, e.g.

through determining the point of evaluation of the infinite-dimensional parameter. Additionally,

we obtain a characterization of cases under which these two adjustment terms exactly offset each

other, and thus do not affect first-order asymptotic theory. Our methods can also be used to verify

conditions under which a bootstrap procedure leads to asymptotically valid inference. The latter

aspect can be important in many applications where the asymptotic variance is difficult to estimate.
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Our paper is related to an extensive literature on models with generated covariates. To the

best of our knowledge, Newey (1984) and Murphy and Topel (1985) were among the first to study

the theoretical properties of such two-step estimators in a fully parametric setting. Pagan (1984)

and Oxley and McAleer (1993) provide extensive surveys. Nonparametric regression with (possibly

nonparametrically) generated covariates is studied by Mammen, Rothe, and Schienle (2012) under

general conditions. See their references for a list of examples, and Andrews (1995), Song (2008)

and Sperlich (2009) for related results. Examples of semiparametric applications with generated co-

variates include Olley and Pakes (1996), Heckman, Ichimura, and Todd (1998), Li and Wooldridge

(2002), Levinsohn and Petrin (2003), Blundell and Powell (2004), Linton, Sperlich, and Van Keile-

gom (2008), Rothe (2009), Escanciano, Jacho-Chávez, and Lewbel (2012) and Caetano, Rothe, and

Yildiz (2014), among many others. Song (2013) studies a class of semiparametric models with gen-

erated covariates that have a single-index structure, and shows that adaptive estimation is possible

in such models under weak conditions (see also Song (2012)). Hahn and Ridder (2013) study the

form of the influence function of semiparametric GMM-type estimators with generated covariates.

They start with the assumption that the estimator is
√
n-consistent and asymptotically linear

(without explicitly specifying it), and then use arguments adapted from Newey (1994) to argue

what the asymptotic variance of such a hypothetical estimator should be. In contrast, the focus of

this paper is on giving explicit conditions that ensure that a concrete estimator is root-n consistent

and asymptotic normal in the first place, and on showing how to establish validity of the bootstrap.

Both aspects are important for implementing an estimator in practice. Escanciano, Jacho-Chávez,

and Lewbel (2014) provide stochastic expansions for sample means of weighted residuals of semi-

parametric regressions with generated covariates, and certain uniform convergence results. Their

results are useful for deriving asymptotic properties of certain semiparametric regression-type esti-

mators, where the nonparametric component affects the final estimator solely through its value at

the generated covariates. They also require a particular “index” condition, which can imply strong

restrictions on the underlying economic model and affect the form of the asymptotic variance. No

such restriction is necessary for our results

The remainder of the paper is structured as follows: In Section 2, we describe the class of models

and estimators we consider, and outline how to establish their asymptotic properties. In Section 3,
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we present our main technical results: stochastic expansions that characterize the influence of gen-

erated covariates in the model’s nonparametric component. Section 4 shows how these expansions

can be used to verify classic conditions for
√
n-consistency and asymptotic normality of semipara-

metric estimators. In Section 5, we further study the asymptotic variance of our estimators, and

show how to establish validity of the bootstrap. In Section 6, we discuss an application that makes

use of our results. Finally, Section 7 concludes. All proofs and further details on the applications

are collected in the Appendix.

Throughout the paper, we use the notation that for any vector a ∈ Rd the values amin =

min1≤j≤d aj and amax = max1≤j≤d aj denote the smallest and largest of its elements, respectively,

a+ =
∑d

j=1 aj denotes the sum of its elements, a−k = (a1, . . . , ak−1, ak+1, . . . , ad) denotes the (d−1)-

dimensional subvector of a with the kth element removed, a! =
∏d
j=1 aj ! denotes the product of

the factorial of the elements of the vector (in case the latter are all non-negative integers), and

ab =
∏d
j=1 a

bj
j for any vector b ∈ Rd. Except where specifically indicated otherwise, we denote the

cumulative distribution function (CDF) and the density function of a generic random vector X by

FX and fX , respectively.

2. Model, Estimation Procedure

We consider a general class of semiparametric optimization estimators where the criterion function

depends on two types of infinite dimensional nuisance parameters: a conditional expectation func-

tion that has been estimated nonparametrically using generated covariates, and another estimated

function that is used to compute the generated covariates in a first step. We allow the criterion

function to depend on the latter estimated function directly to accommodate settings where it also

serves another purpose other than determining the shape of the conditional expectation function.

Our setup covers both parametrically and nonparametrically generated covariates, as well as in-

termediate cases. It also allows for non-smooth criterion functions and profiled estimation of the

nonparametric components.

2.1. Model. Let Z = (Y,X,W ) ∈ RdZ be a random vector defined on a complete probability

space. Let Θ ⊂ Rdθ denote a finite dimensional parameter space with generic element θ, and
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Ξ = M×R be an infinite dimensional parameter space with generic element ξ = (m, r). Denote

by θ0 ∈ Θ and ξ0(·, θ) = (m0(·, θ), r0(·)) ∈ Ξ the true values of the finite and infinite dimensional

parameter, respectively.1 We assume that there exists a nonrandom function q : supp(Z)×Θ×Ξ→

Rdq such that

Q(θ, ξ0(·, θ)) = E(q(Z, θ, ξ0(·, θ))) = 0 if and only if θ = θ0.

The parametric component of our semiparametric model is thus identified via a moment condition.

For simplicity, we also assume that for every ξ ∈ Ξ the objective function Q(θ, ξ(·, θ)) depends on the

nuisance parameter ξ through its levels at values over some compact set I∗T×I∗R only, which is useful

to later accommodate “fixed trimming” schemes into the estimation procedure. We also impose

certain restrictions on the nature of the infinite dimensional parameter ξ0(·, θ) = (m0(·, θ), r0(·)).

First, we assume that r0 can be identified from the distribution of a random subvector W of Z

alone. This allows for a consistent estimate of r0 to be computed without knowledge of either θ0 and

m0. Note that while in many applications r0 will be a conditional expectation function, our setup

does not require such a structure. Second, we assume that m0(·, θ) is a conditional expectation

function that depends on θ ∈ Θ and the true value r0 through the relationship

m0(·, θ) = E(Y |T (X, θ, r0) = ·) (2.1)

where T (X, θ, r) = t(X, r(Xr), θ) is a random vector of dimension dT , Xr is a random subvec-

tor of X that contains the covariates entering the function r, and t : RdX × Rdr × Θ → RdT is

a known function. The primary role of r0 is thus to generate (some of) the covariates used to

compute the function m0. By allowing the shape of m0 to depend on X and r0(Xr) through a

known transformation indexed by θ, our setup includes a broad class of index models that require

profiling of the nonparametric component. Note that we allow r0 to enter the objective function

Q(θ, ξ0(·, θ)) = Q(θ, (m0(·, θ), r0(·))) directly to accommodate settings where r0 also serves a pur-

pose other than determining the shape of m0. The fact that m0 is a functional of r0 is not imposed

at the level of the criterion function Q. That is, the expression Q(θ, (m0(·, θ), r(·))) is understood to

mean Q(θ, (m̄(·, r0, θ), r(·))) and not Q(θ, (m̄(·, r, θ), r(·))), where m̄(·, r, θ) = E(Y |T (X, θ, r) = ·).
1Note that the notation ξ0(·, θ) = (m0(·, θ), r0(·)) is understood to mean that ξ0(a, b, θ) = (m0(a, θ), r0(b)) for

every conformable (a, b).
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To make the notation more compact, we usually suppress the arguments of the infinite dimen-

sional nuisance parameters, writing (θ, ξ) = (θ,m, r) ≡ (θ,m(·, θ), r(·)), (θ, ξ0) = (θ,m0, r0) ≡

(θ,m0(·, θ), r0(·)), and (θ0, ξ0) = (θ0,m0, r0) ≡ (θ0,m0(·, θ0), r0(·)). We also write T (θ, r) ≡

T (X, θ, r), T (θ) ≡ T (θ, r0), T (r) ≡ T (θ0, r) and T ≡ T (θ0, r0). We also write ‖B‖ = (tr(B′AB))1/2

for any matrix B, where we suppress the dependence of the norm on the fixed symmetric positive

definite matrix A for notational convenience.

2.2. Estimation Procedure. Given an i.i.d. sample {Z1, . . . , Zn} from the distribution of Z, a

three-step semiparametric extremum estimator θ̂ of θ0 can be constructed as follows. In the first

step, we compute a (possibly nonparametric) consistent estimate r̂ of r0. We do not require a

specific procedure for this step, but will only impose certain “high-level” restrictions below that

cover a wide range of methods. These include nonparametric estimators based on either kernels or

sieves, and fully parametric procedures, as well as intermediate cases. Given an estimate of r0, we

then compute an estimate of m0(·, θ) for every θ ∈ Θ through a nonparametric regression of Y on

the generated covariates T̂ (θ) = t(X, r̂(Xr), θ) using p-th order local polynomial smoothing. Our

estimator is thus given by m̂(t, θ) = α̂, where

(α̂, β̂) = argmin
α,β

n∑
i=1

Yi − α− ∑
1≤u+≤p

βu(T̂i(θ)− t)u
2

Kh(T̂i(θ)− t) . (2.2)

Here Kh(v) =
∏dT
j=1K(vj/hj)/hj is a dT -dimensional product kernel built from the univariate

kernel function K, h = (h1, ..., hdT ) is a vector of bandwidths that tend to zero as the sample size n

tends to infinity, and
∑

1≤u+≤p denotes the summation over all vectors u = (u1, . . . , up) of positive

integers with 1 ≤ u+ ≤ p. For p = 1, we get the usual local linear estimator, but our setup also

allows for uneven orders p > 1 for the purpose of bias control.2 We focus on local polynomial

estimation for m0(·, θ) in this paper because the particular structure of the estimator facilitates

2Note that the definition of the estimator m̂(·, θ) in (2.2) implicitly requires the generated covariates to be contin-

uously distributed (see also Assumption 1(ii) below). This is not restrictive, however, as it would be straightforward

to modify the estimator m̂(·, θ) by the usual frequency method if some covariates are in fact discrete. Also note that

for the special case that the objective function Qn depends on m̂(·, θ) through its values at the T̂i(θ) only, one could

slightly simplify some technical arguments later by directly considering a “leave-one-out” version of m̂(·, θ). Since

our setup does not require such a structure, we proceed with the definition in (2.2).
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controlling the presence of generated covariates (see Mammen, Rothe, and Schienle, 2012), and

does not require a separate treatment of boundary regions. While it might be possible to conduct

a similar analysis for other nonparametric procedures, such as orthogonal series estimators, we

conjecture that this would require substantially more involved technical arguments. Finally, writing

(θ, ξ̂) = (θ, m̂(·, θ), r̂(·)), we define the estimator θ̂ of θ0 as any approximate solution to the problem

of minimizing a semiparametric GMM-type objective function:

‖Qn(θ̂, ξ̂)‖ = inf
θ∈Θ
‖Qn(θ, ξ̂)‖+ oP (1/

√
n), (2.3)

where Qn(θ, ξ̂) = (1/n)
∑n

i=1 q(Zi, θ, ξ̂). Our estimator is a semiparametric procedure involving

generated covariates, in the sense that a preliminary estimate r̂ of the nuisance parameter r0 is used

to compute the covariates entering the nonparametric regression procedure to estimate m0(·, θ).

For the later asymptotic analysis, it will be useful to also consider an infeasible estimation

procedure that uses the true value r0 instead of an estimate r̂. Such an estimator θ̃ of θ0 can be

obtained by first computing an estimate m̃(·, θ) of m0(·, θ) via nonparametric regression of Y on

T (θ) for every θ ∈ Θ. That is, it is given by m̃(t, θ) = α̃, where

(α̃, β̃) = argmin
α,β

n∑
i=1

Yi − α− ∑
1≤u+≤p

βu(Ti(θ)− t)u
2

Kh(Ti(θ)− t).

One then defines θ̃ as an approximate minimizer of an infeasible version of the objective function:

‖Qn(θ̃, ξ̃)‖ = inf
θ∈Θ
‖Qn(θ, ξ̃)‖+ oP (1/

√
n) (2.4)

where (θ, ξ̃) = (θ, m̃(·, θ), r0(·)). In order to distinguish the two procedures, we refer to θ̂ and m̂ in

the following as the real estimators of θ0 and m0, respectively, and to θ̃ and m̃ as the corresponding

oracle estimators.

2.3. General Approach for Asymptotic Analysis. We now describe our general strategy of

our asymptotic analysis (a formal result is given in Theorem 5 at the end of Section 4). Our approach

builds on an extensive literature that has given “high-level” sufficient conditions for
√
n-consistency

and asymptotic normality of semiparametric estimators. Examples include Newey (1994), Andrews

(1994), Chen and Shen (1998), Ai and Chen (2003), Chen, Linton, and Van Keilegom (2003), or
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Ichimura and Lee (2010). A closer inspection of these conditions reveals that many of them can

be verified irrespective of the presence of generated covariates, and thus through well-established

(although still potentially highly involved) arguments. On the other hand, some of these sufficient

conditions are strongly affected by the presence of generated covariates, and cannot be verified

by standard techniques. Our main technical contribution in this paper is to develop stochastic

expansions of nonparametric regression estimators for exactly this purpose.

We develop two types of results, which can be used to verify sufficient conditions for consistency

and asymptotic normality of semiparametric estimators, respectively. For establishing consistency,

the main problem that arises from the presence of generated covariates is to show that the non-

parametric first-stage estimates are uniformly consistent. Under certain sufficient conditions that

can be verified irrespective of the question whether generated covariates are present or not (see,

e.g., Newey (1994) or Chen, Linton, and Van Keilegom (2003); see also Appendix C), one can show

that θ̂
p→ θ0 if

‖ξ̂ − ξ0‖Ξ = oP (1), (2.5)

where ‖·‖Ξ denotes the pseudo-norm induced by the sup-norm on a class of continuous and bounded

functions, i.e. we have ‖ξ‖Ξ = supθ supx |m(x, θ)|+supxr |r(xr)|. In the following section, we provide

new tools to verify a condition like (2.5), and then illustrate their application in Section 4.

In comparison, establishing
√
n-consistency and asymptotic normality of θ̂ turns out to be

more involved in the presence of generated covariates, as it requires stronger conditions on the

nonparametric first stage. Under certain sufficient conditions that can be verified irrespective of

the question whether generated covariates are present or not (see, e.g., Newey (1994) or Chen,

Linton, and Van Keilegom (2003); see also Appendix C), the estimator θ̂ satisfies the following

representation:

√
n(θ̂ − θ0) = −(Qθ>0 AQθ0)−1Qθ>0 A

(
1√
n

n∑
i=1

q(Zi, θ0, ξ0) +
√
nQξ0[ξ̂ − ξ0]

)

+OP (
√
n‖ξ̂ − ξ0‖2Ξ) + oP (1).

Here Qθ0 = Qθ(θ0, ξ0) denotes the ordinary derivative of Q(θ, ξ) with respect to θ evaluated at

(θ0, ξ0), and for any ξ̄ such that ξ0 + τ ξ̄ ∈ Ξ for |τ | sufficiently small we put Qξ0[ξ̄] = Qξ(θ0, ξ0)[ξ̄] =
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limτ→0(Q(θ0, ξ0 + τ ξ̄) − Q(θ0, ξ0))/τ as the pathwise derivative of Q(θ0, ξ) at ξ0 in the direction

ξ̄.3 This representation implies that θ̂ is
√
n-consistent and asymptotically normal with asymptotic

variance Ω = (Qθ>0 AQθ0)−1Qθ>0 AV AQθ0(Qθ>0 AQθ0)−1 if

‖ξ̂ − ξ0‖Ξ = oP (n−1/4) (2.6)

and

1√
n

n∑
i=1

q(Zi, θ0, ξ0) +
√
nQξ0[ξ̂ − ξ0]

d−→ N(0, V ) (2.7)

for some positive definite variance matrix V . Verifying these two conditions is technically much

more challenging than verifying (2.5). The estimate of the nuisance functions ξ̂(·, θ) = (m̂(·, θ), r̂(·))

is required to be uniformly consistent with a particular rate, and a particular linear functional of

ξ̂− ξ0 needs to satisfy an asymptotic normality condition. In the following section, we provide new

tools for verifying both (2.6) and (2.7), and we illustrate their application in Section 4.

3. Stochastic Expansions of the Nonparametric Component

This section contains our main technical results. We consider a stochastic expansion of nonpara-

metrically estimated regression functions under very general conditions, deriving a bound on both

weighted averages and the supremum norm of the remainder term that is sufficiently sharp for our

purposes. These are the key tools for verifying conditions (2.7) and (2.5)–(2.6), respectively, in

applications.

3.1. Assumptions. We now state our assumptions on the data generating process and the

preliminary estimator r̂ of r0. We begin by defining the generalized regression residual ε(θ) =

Y −E(Y |T (θ)). This definition allows us to write the dependent variable Y as Y = m0(T (θ), θ)+ε(θ)

with E(ε(θ)|T (θ)) = 0.

3To make the notation clear, define m̄(·, r, θ) = E(Y |T (θ, r) = ·), and note that m0(·, θ) = m̄(·, r0, θ). Then

for any ξ = (m, r) the pathwise derivative Qξ0[ξ] is defined as Qξ0[ξ] = limτ→0(Q(θ0, m̄(·, r0, θ0) + τm(·), r0 + τr) −

Q(θ0, m̄(·, r0, θ0), r0))/τ , and not as Qξ0[ξ] = limτ→0(Q(θ0, m̄(·, r0 +τr, θ0)+τm(·), r0 +τr)−Q(θ0, m̄(·, r0, θ0), r0))/τ .

See also Linton, Sperlich, and Van Keilegom (2008).
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Assumption 1 (Regularity). We assume the following properties for the data distribution, the

bandwidth, and kernel function K.

(i) The sample observations {Z1, . . . , Zn} are an independent and identically distributed sample

from the distribution of Z.

(ii) The parameter space Θ is compact. For every θ ∈ Θ, the random vector T (θ) = t(X, r0(Xr), θ)

is continuously distributed with support IT,θ satisfying I∗T ⊂ int(IT,θ) with I∗T compact. The

corresponding density function fT (x, θ) has a continuous partial derivative with respect to x,

and infθ∈Θ,x∈I∗T fT (x, θ) > 0.

(iii) The function m0(u, θ) has continuous partial derivatives of order p+1 with respect to u for all

θ ∈ Θ.

(iv) There exist a constant C > 0 and some constant l > 0 small enough such that for every θ ∈ Θ

the residuals ε(θ) satisfy the inequality E(exp(l|ε(θ)|)|T (θ)) ≤ C.

(v) The function K is twice continuously differentiable and satisfies the following conditions:∫
K(u)du = 1,

∫
uK(u)du = 0, and K(u) = 0 for values of u not contained in some compact

interval, say [−1, 1].

(vi) The bandwidth h = (h1, . . . , hdT ) satisfies hj ∼ n−ηj for all j = 1, . . . , dT , and (1 − η+)/2 >

ηmax.

Most restrictions imposed in Assumption 1 are standard for nonparametric kernel-type estima-

tors of nuisance functions in semiparametric models. Part (i) is not necessary and could be relaxed

to allow for certain forms of temporal dependence, albeit at the cost of substantially more involved

theoretical arguments. Part (ii) states that the covariates T (θ) are continuously distributed, and

that the density is bounded away from zero over some compact set I∗T . The latter condition ensures

that m̂(·, θ) is a stable estimate over I∗T . If it is known that the estimator θ̂ is consistent, the

parameter set Θ can be replaced in the assumptions by a local neighborhood of the true parameter.

Then assumption (ii) is reasonable if the support IT,θ smoothly changes with θ. The differentiabil-

ity conditions in (iii) are used to control the magnitude of bias terms. Assuming subexponential
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tails of ε(θ) conditional on T (θ) in part (iv) is a regularity condition that is necessary to apply

certain results from empirical process theory in our proofs. Note that conditions (ii)–(iv) involve

the true function r0 only. Unlike Escanciano, Jacho-Chávez, and Lewbel (2014, Assumption 3), we

do not assume that e.g. the vector T (θ, r) or the conditional expectation E(Y |T (θ, r)) have partic-

ular distributional or smoothness properties for values of r ∈ R other than r0. Part (v) describes

a standard kernel function with compact support. Finally, the restrictions on the bandwidth in

(vi) imply that the smoothing bias of the nonparametric regression estimator will be dominated by

certain stochastic terms. As we will see from the next assumption, allowing the components of h

to tend to zero at different rates can be useful in applications with multiple generated covariates

that have different rates of convergence.

We remark that our setting can easily be extended to allow for random, data-dependent band-

widths. Allowing for a random bandwidth would only require to control the behavior of the mapping

(t, θ) 7→ m̂(t, θ) as a function of h uniformly over some grid of bandwidth values that expands at a

polynomial rate (Einmahl and Mason, 2005). To account for the presence of generated covariates,

we are going to control the mapping (t, θ) 7→ m̂(t, θ) as a function of r uniformly over a much bigger

space (see Assumption 3 below). Hence the extension to data-dependent bandwidths would cause

no particular technical difficulties.

Assumption 2 (Accuracy). We assume the following properties of the estimator r̂:

(i) sups |r̂j(s)− r0,j(s)| = OP (n−δ
∗
j ) for some δ∗j > 0 and all j = 1, . . . , dr, and

(ii) supθ,x |Tj(x, θ, r̂)− Tj(x, θ, r0)| = oP (n−δj ) for some δj > ηj and all j = 1, . . . , dT ,

where in both cases the subscript j denotes the j-th component of the respective object.

Assumption 2 imposes restrictions on the accuracy of the first-step estimator r̂. Clearly, part

(i) is a necessary condition for equation (2.5) to hold, and part (i) with δ∗j > 1/4 is necessary for

condition (2.6). Part (ii) ensures that the difference between the respective components of T̂ (θ)

and T (θ) tend to zero in probability at a rate at least as fast as the corresponding bandwidth in

the second stage of the estimation procedure, uniformly in θ. Such conditions can be verified for a
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wide range of nonparametric estimators (e.g. Masry (1996), Newey (1997)), and they trivially hold

for regular parametric estimators.

Assumption 3 (Complexity). For every j = 1, . . . , dT , there exist a sequence of sets of functions

Tn,j that satisfies the following properties:

(i) Pr((x, θ) 7→ Tj(x, θ, r̂) ∈ Tn,j)→ 1 as n→∞.

(ii) For some function rn satisfying supθ,x |Tj(x, θ, rn) − Tj(x, θ, r0)| = o(n−δj ) there exists a

constant CT > 0 such that the set T ∗n,j = Tn,j ∩ {Tj(·, r) : supθ,x |Tj(x, θ, r) − Tj(x, θ, rn)| ≤

n−δj and r ∈ R} can be covered by at most CT exp(λ−αjnχj ) balls with ‖ · ‖∞-radius λ for all

λ ≤ n−δj , where 0 < αj ≤ 2, χj ∈ R and ‖ · ‖∞ denotes the supremum norm.

Assumption 3 restricts the complexity of the function space in which the mapping (x, θ) 7→

T (x, θ, r̂) takes its values by imposing constraints on the cardinality of the covering sets. Since

we have that T (x, θ, r) = t(x, r(xr), θ) for some known function t which, by Assumption 1(iii), is

continuously differentiable with respect to its second component, the condition imposes implicit

restrictions on the complexity of the first-stage estimator r̂. Indeed, if the function t has a partial

derivative with respect to its second argument that is bounded and bounded away from zero, we

could equivalently state a restriction similar to Assumption 3 on the set R∗n = {r ∈ R : Tj(·, r) ∈

T ∗n,j for all j = 1, . . . , dT }.

Restrictions on covering numbers are a common requirement in the literature on empirical

processes, that is typically fulfilled under suitable smoothness assumptions. Suppose for example

thatR∗n is the set of smooth functions defined on the convex set IR ⊂ RdXr , whose partial derivatives

up to order k exist and are uniformly bounded by some multiple of nχ
∗
j for some χ∗j ≥ 0, that

‖∂lTj(x, r(xr), θ)/∂xr − ∂lTj(x, r(xr), θ∗)/∂xr‖ ≤ Cl‖θ − θ∗‖ for every θ, θ∗, every value of x and

r, and every l ∈ {0, . . . , k}, and that t has a absolutely bounded partial derivative with respect to

its second argument. Then the set Tn,j = {(x, θ) 7→ Tj(x, θ, r) : r ∈ R∗n} satisfies Assumption 3(ii)

with αj = dXr/k and χj = χ∗jαj (Van der Vaart and Wellner, 1996, Theorem 2.7.1). The same

entropy bound applies if R∗n consists of the sum of one fixed function and a smooth function from

a respective smoothness class. This extension is useful if one chooses the fixed function as equal to

13



the sum of r0 and the bias of r̂, and thus does not require the bias term to be a smooth function.

For further discussion of entropy bounds and additional references we refer to van de Geer (2009).

For kernel-based estimators of r0, one can then verify Assumption 3(i) by explicitly calculating

the derivatives. Consider e.g. the one-dimensional Nadaraya-Watson estimator r̂n,j with bandwidth

of order n−1/5 over some compact subset of the interior of the covariate’s support where its density

is bounded away from zero. Choose rn,j equal to r0,j plus asymptotic bias term. Then one can

check that the second derivative of r̂n,j − rn,j is absolutely bounded by OP (
√

log n) = oP (nχ
∗
j )

for all χ∗j > 0 over some compact set in the interior of the support of the respective conditioning

variables. For sieve and orthogonal series estimators, Assumption 3(i) immediately holds when the

set Tn,j is chosen as the image of the sieve set or a subset of the linear span of an increasing number

of basis functions, respectively, under the functional T (x, θ, ·). That is, if r̂(·) = Pk(n)(·)>γ̂ for some

γ̂ ∈ Rk(n) and Pk(n)(·) = (p1(·), . . . , pk(n)(·))> with a {pj}∞j=1 a complete basis for the space R, then

Assumption 3(i) holds if we define Tn,j = {(x, θ) 7→ T (x, θ, Pk(·)>γ) : γ ∈ Rk(n)}. Note that in

settings where r0 is estimated by parametric or semiparametric methods verifying Assumption 3 is

generally much more simple, and substantially smaller values can be established for the constants

αj and χj .

To state our final assumption, we define the “index bias” ρ(X, θ) = E(Y |X)−E(Y |T (θ)), which

is the difference between the conditional expectations of Y given the underlying dX -dimensional

covariate vector X and the dT -dimensional “index” T (θ), respectively.

Assumption 4 (Continuity). The elements of R∗n = {r ∈ R : Tj(·, r) ∈ T ∗n,j for all j = 1, . . . , dT }

satisfy the following properties for n large enough:

(i) For all r ∈ R∗n and θ ∈ Θ, the function τB(t, θ, r) = E(ρ(X, θ)|T (r) = t) is p + 1 times

differentiable with respect to its first argument, and the derivatives are uniformly bounded in

absolute value over r, θ and t.

(ii) For a constant C∗B > 0, all θ ∈ Θ and all r1, r2 ∈ R∗n it holds that

|τB(T (r1), θ, r1)− τB(T (r2), θ, r2)| ≤ C∗B‖T (r1)− T (r2)‖ a.s.
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(iii) For a constant CB > 0, all θ ∈ Θ, all r1, r2 ∈ R∗n and all t ∈ I∗T it holds that

∣∣E [(T (θ, r1)− t)uh−uKh(T (θ, r1)− t)
]

− E
[
(T (θ, r2)− t)uh−uKh(T (θ, r2)− t)

]∣∣ ≤ CBn−δmin
for 0 ≤ u+ ≤ p.

Assumption 4(i)–(ii) are technical conditions which ensure that a conditional expectation of

the “index bias” ρ(X, θ) satisfies certain smoothness restrictions. Under the additional assumption

that the mapping r 7→ T (r) is smooth, one important implication of these conditions and our

previous assumptions is that the functional r 7→ E(Y |T (X, θ, r) = ·) is uniformly continuous in a

neighborhood of r0. To see this, drop the dependence on θ for a moment, put ε∗ = ε− ρ(X), and

write

E(Y |T (X, r)) = E(m0(T (r0))−m0(T (r))|T (r)) + E(m0(T (r))|T (r)) + E(ε∗|T (r)) + E(ρ(X)|T (r))

= E(m0(T (r0))−m0(T (r))|T (r)) +m0(T (r)) + E(ρ(X)|T (r)).

Continuity of this expression with respect to r then follows from our assumptions on smoothness

of the mappings t 7→ m0(t) and r 7→ E(ρ(X)|T (r)). Note that our assumptions do not require the

functional r 7→ E(Y |T (X, θ, r) = ·) to be pathwise differentiable.

It is difficult to give more “low-level” conditions for Assumption 4(i)–(ii) in general, but there

are certain settings where ρ(X, θ) = 0 and thus these conditions trivially hold . Examples of such

settings include many instrumental variable models. In general, however, it is undesirable to impose

that ρ(X, θ) = 0, and we do not require such a condition for our analysis. See our Section 6.1 below

for an application where this flexibility is important.

Assumption 4(iii) is a further smoothness condition. If the random vector T (θ, r) is continuously

distributed for every r, conditions (ii) and (iii) hold if one has appropriate bounds for ‖f1 − f2‖∞

for r1, r2 ∈ R∗n where for j = 1, 2 the term fj denotes the density function of either T (θ, rj) or of

(ρ(X, θ), T (θ, rj)), and the density function T (θ, rj) is bounded away from zero uniformly over θ

on its support.
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3.2. Main Results. Under the assumptions described in the previous subsection, we can

now derive a stochastic approximation of the nonparametric estimator m̂. To state the result, we

require some further notation. For any s ∈ {0, 1, . . . , p} let ns =
(
s+dT−1
dT−1

)
be the number of distinct

dT -tuples u with u+ = s. Arrange these dT -tuples as a sequence in a lexicographical order with the

highest priority given to the last position, so that (0, . . . , 0, s) is the first element in the sequence

and (s, 0, . . . , 0) the last element. Let τs denote this 1-to-1 mapping, i.e. τs(1) = (0, . . . , 0, s), . . . ,

τs(ns) = (s, 0, . . . , 0). For each s ∈ {0, 1, . . . , p} we also define a ns×1 vector wi,s(t, θ, r) with its kth

element given by ((Ti(θ, r) − t)/h)τs(k), and write wi(t, θ, r) = (1, wi,1(t, θ, r)>, . . . , wi,p(t, θ, r)
>)>.

Next, defineNh(t, θ, r) = E(wi(t, θ, r)wi(t, θ, r)
>Kh(Ti(θ, r)−t)) and letmpol(a, t, θ) be the following

polynomial approximation of m0(a, θ) in a neighborhood of t:

mpol(a, t, θ) =
∑

0≤u+≤p

1

u!

∂um0(t, θ)

∂tu11 . . . ∂t
udT
dT

(a− t)u.

Finally, let m′pol(a, t, θ) denote the vector of partial derivatives of mpol(a, t, θ) with respect to the

components of its first argument, write e1 = (1, 0, . . . , 0)> for the first unit vector in RN , where

N =
∑p

s=0 ns, put K ′h(v) = (K′h,1(v), . . . ,K′h,dT (v))> with elements

K′h,j(v) = (K′(vj/hj)/h2
j )
∏
j∗ 6=j
K(vj∗/hj∗)/hj∗ ,

and K′ derivative of K, and recall that ρ(X, θ) = E(Y |X)−E(Y |T (θ)). With this notation, we can

then define the approximating function m̂∆ by

m̂∆(t, θ) = m̃(t, θ) + ϕAn (t, θ, r̂) + ϕBn (t, θ, r̂), (3.1)

where

ϕAn (t, θ, r) = e>1 Nh(t, θ)−1E
(
wi(t, θ, r)Kh(Ti(θ)− t)m′pol(Ti(r), t, θ)(Ti(θ, r)− Ti(θ))

)
,

ϕBn (t, θ, r) = e>1 Nh(t, θ)−1E
(
wi(t, θ, r)K

′
h(Ti(θ)− t)>(Ti(θ, r)− Ti(θ))ρ(Xi, θ)

)
for any r ∈ R∗n.

The function m̂∆ consists of two components: the term m̃(·, θ) is the oracle estimator of m0(·, θ)

introduced above, whereas ϕAn (t, θ, r̂)+ϕBn (t, θ, r̂) is an adjustment term that captures the additional

uncertainty due to the presence of generated covariates. Note that the generated covariates enter
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the expansion only through smoothed versions of the estimation error T (θ, r̂) − T (θ, r0). Since

this additional smoothing typically improves the rate of convergence of the stochastic part of the

first-step estimator (although it does not improve the order of the bias component), we generally

expect the adjustment term to have a faster rate of convergence. Hence the dimensionality of the

generation step should play a less pronounced role in this context. Our main result concerns the

accuracy of using m̂∆ as an approximation of m̂.

Theorem 1. Suppose that Assumption 1, 2(ii), 3 and 4 hold. Then uniformly for θ ∈ Θ, we have∫
(m̂(t, θ)− m̂∆(t, θ))ω(t)dt = oP (n−κ

∗
) (3.2)

for any weight function ω : RdT → R whose partial derivatives of order one are uniformly absolutely

bounded, and that satisfies ω(x) = 0 for all x /∈ I∗T , and κ∗ < min{κ∗1, . . . , κ∗4} with

κ∗1 =
1

2
+ (1− αmax

2
)δmin −

(αη + χ)max
2

, κ∗2 = (p+ 1)ηmin + (δ − η)min,

κ∗3 = (2− αmax
2

)δmin +
1

2
(1− η+)− (αη + χ)max

2
, κ∗4 = 2δmin.

The theorem provides a bound on weighted averages of the approximation error m̂(t, θ) −

m̂∆(t, θ). We focus on such weighted averages of the approximation error because they are helpful

when it comes to verifying conditions of the type (2.7). In particular, they can be shown to vanish

faster than n−1/2 under reasonable conditions on the primitives of the model. On the other hand,

bounds on the supremum norm of the approximation error, as studied in Mammen, Rothe, and

Schienle (2012), typically vanish at a rate slower than n−1/2, and are thus not useful to establish

the “asymptotic normality” condition. They can however, with some adaptation, be employed to

verify the conditions (2.5) and (2.6), as explained below. For this purpose, we state the following

theorem, which is a variation of an earlier result in Mammen, Rothe, and Schienle (2012) that gives

a uniform rate of consistency of the estimator m̂(t, θ). See also Escanciano, Jacho-Chávez, and

Lewbel (2014, Appendix B) for a related result.

Theorem 2 (Uniform Consistency). Suppose Assumption 1, 2(ii), 3 and 4(i)–(ii) hold. Then

sup
t∈I∗T ,θ∈Θ

|m̂(t, θ)−m0(t, θ)| = OP

(
n−(p+1)ηmin +

√
log(n)n−(1−η+) + n−δmin + n−κ

)
,
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where κ < min{κ1, ..., κ3} with

κ1 =
1

2
(1− η+) + (δ − η)min −

1

2
(δα+ χ)max, κ2 = (p+ 1)ηmin + (δ − η)min,

κ3 = δmin + (δ − η)min.

Note that the first two terms in the error bound on the right hand side follow from a standard

uniform consistency result of the oracle estimator m̃ (Masry, 1996), whereas the remaining two

terms are due to the presence of generated covariates. We remark that the rates given in Theorem 2

could be improved under additional restrictions on the form of the estimator r̂, such as those given

in Assumption 5 below. See the remark at the end of the proof of Theorem 2 in Appendix A for

details.

4. Application to Semiparametric Estimation

In this section, we show how to use the technical results of the previous section to establish
√
n-

consistency and asymptotic normality of the semiparametric estimator θ̂ defined in (2.3). In par-

ticular, we show how to verify the uniform consistency conditions given in (2.5) and (2.6), and

the asymptotic normality condition in (2.7). We begin with the former two uniform consistency

conditions, as they are conceptually simpler to establish. Recall that our aim is to show that

‖ξ̂ − ξ0‖Ξ := sup
t∈I∗T ,θ∈Θ

|m̂(t, θ)−m0(t, θ)|+ sup
s∈I∗R
|r̂(s)− r0(s)| = oP (an), (4.1)

with either an = 1 (as in (2.5)) or an = n−1/4 (as in (2.6)). While a bound on the second supremum

term in the above equation is standard, a bound on the first one follows from our Theorem 2.

Theorem 3. (i) Suppose that Assumption 1–3 and Assumption 4(i)–(ii) hold, and that η+ <

min(1, 1 + 2(δ− η)min− (δα+χ)max). Then condition (2.5) holds. (ii) Suppose that the conditions

of part (i) hold with δ∗j , δj > 1/4 for all j, that ηmin > 1/(4(p+ 1)), and that η+ < min(1/2, 1/2 +

2(δ − η)min − (δα+ χ)max). Then condition (2.6) holds.

We remark that part (i) of the theorem could also be shown if one would weaken Assumption 2

and allow for 0 < δj < ηj , j = 1, . . . , dT , if one in turn ensures that −(δ − η)min < min(δmin, (p +

1)ηmin). The various conditions of the theorem involve a tradeoff between the complexity of the first
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and second estimation step for the nonparametric component. They can be shown to be satisfied

when r0 is “sufficiently regular” (i.e. the αj and χj are small) and m0(·, θ) is “sufficiently smooth”

(i.e. p is large and thus the ηj can be chosen small). Exact conditions are difficult to give in general,

but are easy to check for a specific application, where specific values for the αj and χj are available.

See the discussion after Assumption 3 above for an example.

To verify the asymptotic normality condition (2.7), we make use of the stochastic expansion

derived in Theorem 1. Recall that our aim is to show that

1√
n

n∑
i=1

q(Zi, θ0, ξ0) +
√
nQξ0[ξ̂ − ξ0]

d→ N(0, V )

for some positive definite variance matrix V . Given a specific estimator r̂ of r0, the term m̂∆(t, θ)

defined in (3.1) can usually be calculated more explicitly, and then be used to verify this condition,

and to obtain a general formula for the variance matrix V . To illustrate this idea in a general setting,

suppose that the estimator used to generate the covariates satisfies the following asymptotically

linear representation, which is similar to conditions used e.g. in Rothe (2009) or Ichimura and

Lee (2010). The assumption can be shown to be satisfied for a wide range of nonparametric,

semiparametric, and fully parametric estimation procedures (we also discuss two representative

examples below).4

Assumption 5 (Linear Representation). The estimator r̂ of r0 satisfies

r̂(s)− r0(s) =
1

n

n∑
i=1

ϕr̂ni(s) +Rrn(s) (4.2)

with ϕr̂ni(s) = Hn(Si, s)ν(Wi) for some Si, a random subvector of Wi, and sups∈I∗R |R
r
n(s)| =

oP (n−1/2). The term ν(Wi) satisfies E(ν(Wi)|Si) = 0 and E(ν(Wi)ν(Wi)
>) < ∞, and Hn is a

weighting function satisfying E(‖Hn(Si, Sj)‖2) = o(n) for i 6= j.

To see how this additional structure can be utilized for our purposes, recall that it follows from

elementary rules for pathwise derivatives that

Qξ0[ξ̂ − ξ0] = Qm(θ0, ξ0)[m̂−m0] +Qr(θ0, ξ0)[r̂ − r0],

4Note that Assumption 5 is typically not satisfied for estimators that are not asymptotically Gaussian, such as the

Maximum Score estimator of a single-index binary choice model, or other estimators that follow so-called cube-root

asymptotics. See Song (2013) for a further discussion of this point.
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where for any (θ, r) the functional Qm(θ, ξ)[m̄] is the pathwise derivative of Q(θ, (m, r)) at m in

the direction m̄, and similarly for Qr. As noted in Section 2, the notation is such that computing

Qr does not involve computing the pathwise derivative of the functional r 7→ E(Y |T (θ, r) = ·).

In most applications, the structure of the criterion function Q(θ, ξ) = E(q(Z, θ,m, r)) is such that

(with some abuse of notation) we have q(Z, θ0,m0, r0) = q(Z, θ,m0(Zm), r0(Zr)). That is, the

term q(Z, θ,m, r) only depends on the functions m and r through their value when evaluated at

some random vectors Zm and Zr. Here Zm and Zr could be subvectors of the data Z, or known

transformations thereof that might even involve m, r and θ (for example, we could have Zr = Xr

and Zm = T (X, r(Xr), θ)). All econometric applications we consider in Section 6 below exhibit this

structure. Its most important implication is that the pathwise derivatives of the criterion function

are of the form

Qm(θ0, ξ0)[m̂−m0] =

∫
λm(z)(m̂(z)−m0(z))dFZm(z), (4.3)

Qr(θ0, ξ0)[r̂ − r0] =

∫
λr(z)(r̂(z)− r0(z))dFZr(z). (4.4)

with

λm(zm) = E(∂q(Z, θ,m0, r0)/∂m0(Zm, θ0)|Zm = zm)

λr(zr) = E(∂q(Z, θ,m0, r0)/∂r0(Zr)|Zr = zr).

Note that a representation like (4.3)–(4.4) with square integrable functions λm and λr also follows

from the Riesz representation theorem under more general conditions (e.g. Newey, 1994).

If λm and λr are sufficiently smooth, one can use Assumption 5 together with our main stochastic

expansion to show that there exist fixed functions ψj with E(ψj(Z)) = 0 and E(ψj(Z)ψj(Z)>) <∞

for j = 1, 2, 3 such that ∫
λm(z)m̃(z, θ0)dFZm(z) =

1

n

n∑
i=1

ψ1(Zi) + oP (n−1/2)

∫
λm(z)

(
ϕAn (z, θ0, r̂) + ϕBn (z, θ0, r̂)

)
dFZm(z) =

1

n

n∑
i=1

ψ2(Zi) + oP (n−1/2),

∫
λr(z)

1

n

n∑
i=1

ϕr̂ni(z)dFZr(z) =
1

n

n∑
i=1

ψ3(Zi) + oP (n−1/2).
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Moreover, the properties of the remainder term Rmn (t) = m̂(t, θ0)− m̂∆(t, θ0) established in Theo-

rem 1 ensure, under suitable regularity conditions, that∫
λm(z)Rmn (z)dFZm(z) = oP (n−1/2).

If we now put ψ0(Zi) = q(Zi, θ0, ξ0) and ψ(z) =
∑3

j=0 ψj(z), the above statements imply that

1√
n

n∑
i=1

q(Zi, θ0, ξ0) +
√
nQξ0[ξ̂ − ξ0] =

1√
n

n∑
i=1

ψ(Zi) + oP (1)

Together with the Central Limit Theorem, the previous equation then implies that condition (2.7)

holds with V = E(ψ(Z)ψ(Z)>). The following theorem formalizes this argument, and provides

a general formula to compute the variance matrix V (we study the question how to explicitly

compute V in the following section). To state the result, define G(t) = λm(t)fZm(t)/fT (t) and let

G′(t) = ∂G(t)/∂t put T (r)(x) = ∂t(x, θ0, r0(xr))/∂r0(xr) and λ∗m(xr) = E(T (r)(X)(ρ(X)G′(T ) +

m′0(T )G(T ))|Xr = xr).

Theorem 4. Suppose Assumption 1– 5 hold with p+ 1 > dT ,

(αη + χ)max
2

< min{(1− αmax
2

)δmin, (2−
αmax

2
)δmin +

1

2
(1− η+)}, (4.5)

the criterion function satisfies (4.3)– (4.4) with λm(·) and λr(·) being (p + 1)-times continuously

differentiable, (2p+ 2)−1 < ηj < (2dT )−1 for j = 1, . . . , dT , and let

ψ0(Zi) = q(Zi, θ0, ξ0)

ψ1(Zi) = εiλm(Ti)fZm(Ti)/fT (Ti)

ψ2(Zi) = −ν(Wi) lim
n→∞

E(λ∗m(Xr)Hn(Si, Xr)|Si)

ψ3(Zi) = ν(Wi) lim
n→∞

E(λr(Zr)Hn(Si, Zr)|Si),

Then condition (2.7) holds with V = E(ψ(Z)ψ(Z)>), where ψ(z) =
∑3

j=0 ψj(z).

Restriction (4.5) involves a tradeoff between the complexity of the first and second estimation

step for the nonparametric component that is analogous to the one discussed after the statement

of Theorem 3.
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With the results of this section, and a result from Chen, Linton, and Van Keilegom (2003), we

are now ready to state the following theorem, which formally states the asymptotic properties of

our semiparametric two-step estimator with generated covariates.

Theorem 5. (i) Suppose that the conditions of Theorem 3(i) and Assumption C.1 in Appendix C

hold. Then θ̂
p→ θ0. (b) Suppose that the conditions of Theorems 3(ii) and 4 and Assumption C.2 in

Appendix C hold. Then
√
n(θ̂ − θ0)

d→ N(0,Ω), where Ω = (Qθ>0 AQθ0)−1Qθ>0 AV AQθ0(Qθ>0 AQθ0)−1.

5. The Asymptotic Variance and the Bootstrap

In this section, we first provide some intuition for the form of the asymptotic variance of the

estimator θ̂, and illustrate how to evaluate the general formulas in Theorem 4 and 5 for several

settings. We then discuss conditions under which valid inference on θ0 can be conducted via the

bootstrap.

5.1. The Asymptotic Variance. The argument in the previous subsection conveys some im-

portant intuition for the form of the asymptotic variance of θ̂. Recall that under the conditions of

Theorem 1 this variance is given by

Ω = (Qθ>0 AQθ0)−1Qθ>0 AV AQθ0(Qθ>0 AQθ0)−1

with V = E(ψ(Z)ψ(Z)>) and ψ(z) =
∑3

j=0 ψj(z) as described in Theorem 4. In contrast, the

asymptotic variance of the oracle estimator θ̃ can be shown to be

Ω̃ = (Qθ>0 AQθ0)−1Qθ>0 AṼ AQθ0(Qθ>0 AQθ0)−1

with Ṽ = E((ψ0(Z)+ψ1(Z))(ψ0(Z)+ψ1(Z))>), by simply setting r̂ = r0. The presence of generated

covariates thus affects the asymptotic variance only through the additional summands ψ2(Z) and

ψ3(Z) used to calculate V , as the weight matrix A is chosen by the econometrician and Qθ0 is simply

a population quantity. In particular, the term ψ2(Z) captures the additional uncertainty due to

using generated covariates when estimating the function m0, whereas the term ψ3(Z) accounts for

directly using the generated covariates in other parts of the model, e.g. as a point of evaluation of an

estimated function. A simple condition for the presence of generated covariates to be asymptotically
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negligible, i.e. that Ω = Ω̃, is then of course that ψ2(Z) = −ψ3(Z) with probability one. See Hahn

and Ridder (2013) for a similar result based on different arguments.

An important practical issue is how to explicitly calculate V in the context of a concrete

semiparametric model. It seems difficult to construct an estimator of V based on the formula in

Theorem 4 alone due to its high level of generality. However, in the context of a specific model

a more explicit formula can usually be derived, and then used to construct a consistent sample

analogue estimator of V (and thus of Ω). This requires explicit expressions for the various terms

introduced in Assumption 5. We now give two examples for which this assumption is satisfied: the

case where r0 is a conditional expectation function estimated by nonparametric regression, and the

case where r0(xr) = r̄(xr, ϑ0) is a function known up to a finite dimensional parameter ϑ0, for which

there exists a regular asymptotically linear estimator. These are arguably the most important cases

from an applied point of view. We refer to Kong, Linton, and Xia (2010) for general results on

kernel-based M-estimators.

Example 1 (Nonparametric Regression). Suppose that W is partitioned as W = (D,S), and

we have that D = r0(S) + ζ with E(ζ|S) = 0. Consider a kernel-based nonparametric regression

estimator r̂ of r0, such as the Nadaraya-Watson or a local polynomial estimator. Then one can show

that Assumption 5 holds under suitable smoothness conditions and choice of I∗R with ν(Wi) = ζi

and Hn(Si, s) = fS,n(s)−1Lg(Si − s), where L is a kernel function and g is a bandwidth that tends

to zero at an appropriate rate, and some fS,n(s)→ fS(s) as n→∞. We then find that

ψ2(Zi) = −ζiλ∗m(Si)
fXr(Si)

fS(Si)
and ψ3(Zi) = ζiλr(Si)

fZr(Si)

fS(Si)
.

The form of ψ0(·) and ψ1(·) remains unchanged.

Example 2 (Nonlinear Parametric Estimation). Assume that r0(s) = r̄(s, ϑ0) is a parametrically

specified function (not necessarily a conditional expectation) known up to the finite dimensional

parameter ϑ0. Suppose there exists an estimator ϑ̂ of ϑ0 that satisfies

ϑ̂− ϑ0 =
1

n

n∑
i=1

ϕϑ̂(Wi) + oP (n−1/2),

where E(ϕϑ̂(W )) = 0, E(ϕϑ̂(W )ϕϑ̂(W )>) < ∞, that r̄(xr, ϑ) is continuously differentiable in its

second argument with derivative r̄′(xr, ϑ) = ∂r̄(xr, ϑ)/∂ϑ. Then Assumption 5 is satisfied with
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ν(Wi) = ϕϑ̂(Wi) and Hn(Si, s) = r̄′(s, ϑ0), and thus

ψ2(Zi) = −ν(Wi)E(T (r)(X)r̄′(Xr, ϑ0)(ρ(X)G′(T ) +m′0(T )G(T )))

ψ3(Zi) = ν(Wi)E(λr(Zr)r̄
′(Zr, ϑ0)),

with G(t) = λm(t)fZm(t)/fT (t) and G′(t) = ∂G(t)/∂t. An important special case of this setting is

the one where W is partitioned as W = (D,S), we have that D = r̄(S, ϑ0) + ζ with E(ζ|S) = 0

and E(ζ2|S) < ∞, and ϑ̂ is the nonlinear least squares estimator of ϑ0. In such a setting, we

would have that ν(Wi) = E(r̄′(S, ϑ0)r̄′(S, ϑ0)>)−1r̄′(Si, ϑ0)(Di− r0(Si)), under the usual regularity

conditions.

Using results like those in Example 1–2, one can then derive the asymptotic variance Ω of a wide

range of semiparametric estimators by calculating the functions λm, λ∗m, and λr. The following two

examples give an explicit formula for Ω in particular classes of semiparametric estimators. These

examples illustrate two important issues. First, they give some insight under which conditions

the presence of generated covariates can be asymptotically negligible. Second, they show that the

“index bias” ρ(X) = E(Y |X) − E(Y |T ) appears explicitly in the asymptotic variance of a large

class of estimators, and thus assuming that ρ(X) = 0 as in Escanciano, Jacho-Chávez, and Lewbel

(2014) can be restrictive.

Example 3 (Linear Estimator). Consider a setup where T (X, θ, r) = (X1, r(Xr)) and the parame-

ter of interest is θ0 = E(s(m0(T ))) for some known function s, and thus the criterion function is of

the form Qn(θ,m, r) = n−1
∑n

i=1 s(m((X1i, r(Xri)))) − θ. This setting is also considered in Hahn

and Ridder (2013, Theorem 3). Suppose that r0 is a nonparametric regression function satisfying

D = r0(Xr) + ζ with E(ζ|Xr) = 0. Applying Theorem 4 as in Example 1 above, we find that the

asymptotic variance of the estimator θ̂ is given by

Ω = E((Ψ1 + Ψ2)(Ψ1 + Ψ2)>)

where, writing T = (X1, r0(Xr)),

Ψ1 = s(m0(T ))− θ + s′(m0(T ))ε,

Ψ2 = −ζE(s′′(m0(T ))m
(2)
0 (T )(Y − E(Y |T ))|Xr)
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with m
(2)
0 (t) the partial derivative of m0(t) with respect to the second component of t. In this simple

setting, it is easy to give intuitive conditions under which the presence of generated covariates is

asymptotically negligible. Note that the term Ψ2 = ψ2(Z) + ψ3(Z) accounts for the estimation

error from using an estimate of r0 instead of the actual function. This term is easily seen to be

equal to zero if either s(·) is a linear function or if the index restriction E(Y |X) = E(Y |T ) holds.

Example 4 (Semiparametric Regression). Consider a setup where the objective function is of the

form Qn(θ,m, r) = n−1
∑n

i=1(Yi − m(T (Xi, θ, r), θ))s(Xi) for some known function s. This type

of objective function occurs in many semiparametric regression problems, such as the estimation

of single- or multi-index models with generated covariates by semiparametric maximum likelihood

or semiparametric least squares (e.g. Rothe, 2009). Suppose again that the function r0 is a non-

parametric regression function that satisfies D = r0(Xr) + ζ with E(ζ|Xr) = 0 and E(ζ2|Xr) <∞.

Applying Theorem 4 as in Example 1, we find that the asymptotic variance of the estimator θ̂ is

equal to

Ω = (Qθ0)−1E((Ψ1 + Ψ2 + Ψ3)(Ψ1 + Ψ2 + Ψ3)>)(Qθ0)−1,

where, writing u(t) = E(s(X)|T = t) and u′(t) = ∂u(t)/∂t,

Ψ1 = ε(s(X)− E(s(X)|T ))

Ψ2 = −ζE((s(X)− E(s(X)|T ))m′0(T )T (r)(X)|Xr)

Ψ3 = ζE(u′(T )T (r)(X)(E(Y |X)− E(Y |T ))|Xr).

The terms Ψ2 and Ψ3 account for the estimation error from using an estimate of r0 instead of the

actual function. In this setting there are generally no simple conditions under which the presence

of generated covariates is asymptotically negligible. Still, the form of the asymptotic variance

simplifies considerably if the index restriction E(Y |X) = E(Y |T ) holds, as Ψ3 = 0 in this case.

5.2. Validity of the Bootstrap. In practice, inference based on combining an asymptotic

normality result with an estimate of the asymptotic variance can be very complicated. Both

V and Ω could be difficult to estimate since they depend on the nonparametrically estimated
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components of the model in a potentially nontrivial fashion. In such cases, resampling tech-

niques like the ordinary nonparametric bootstrap can be used for tasks like obtaining confidence

regions for the parameters of interest or critical values for certain hypothesis tests. Using re-

sults from Chen, Linton, and Van Keilegom (2003), our techniques can be used to establish

the validity of such an approach. Consider for example a setting where the sample and pop-

ulation objective function are of the form Qn(θ, ξ) = n−1
∑n

i=1 q(Zi, θ,m(Zm,i, θ), r(Zr,i)) and

Q(θ, ξ) = E(q(Z, θ,m(Zm, θ), r(Zr))), respectively. Let {Z∗1 , . . . , Z∗n} be drawn with replacement

from the original sample {Z1, . . . , Zn}, let ξ̂∗ be the same estimator as ξ̂ but based on the boot-

strap data, and put Q∗n(θ, ξ) = n−1
∑n

i=1 q(Z
∗
i , θ,m(Z∗m,i, θ), r(Z

∗
r,i)). Next, define the bootstrap

estimator θ̂∗ as any sequence that minimizes a GMM-type criterion function based on a recentered

moment condition:

‖Q∗n(θ̂∗, ξ̂∗)−Qn(θ̂, ξ̂)‖ = inf
θ∈Θ
‖Q∗n(θ, ξ̂∗)−Qn(θ̂, ξ̂)‖+ oP ∗(1/

√
n).

Sufficient conditions for the asymptotic validity of this bootstrap procedures were studied by Chen,

Linton, and Van Keilegom (2003). These conditions are mostly minor strengthenings of those in

Appendix C, that can be verified irrespective of the presence of generated covariates. However,

there are also two conditions that are affected by the presence of generated covariates, which are

the following variants of (2.6) and (2.7), respectively:

‖ξ̂∗ − ξ̂‖Ξ = oP ∗(n
−1/4) (5.1)

and

1√
n

n∑
i=1

(
q(Z∗i , θ̂, ξ̂)− q(Zi, θ̂, ξ̂)

)
+
√
nQξ0[ξ̂∗ − ξ0]

d→ N(0, V ) (5.2)

under the probability measure P ∗ implied by bootstrap sampling. By adapting the discussion after

Theorem B in Chen, Linton, and Van Keilegom (2003) in an obvious fashion, and applying a result

from Giné and Zinn (1990), these two conditions can be verified in the same way we establish (2.6)

and (2.7) above, and are thus immediate for a wide range of applications. We thus obtain the

following result.
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Theorem 6. (a) Suppose that (5.1)–(5.2) and Assumption C.3 in Appendix C hold. Then
√
n(θ̂∗−

θ̂) converges in distribution to N(0,Ω) under the probability measure P ∗ implied by bootstrap sam-

pling. (b) Under the conditions of Theorem 3(ii) and 4, the conditions (5.1) and (5.2) are fulfilled.

6. Application to Treatment Effect Estimation

Semiparametric estimation problems with generated covariates occur in various fields of economet-

rics. In this subsection, we discuss one of these applications in greater detail, namely the estimation

of average treatment effects under unconfoundedness via regression on the propensity score. To

save space, we only sketch the construction of the estimator, and refer to Appendix B for details

and regularity conditions. We also restrict attention to deriving asymptotic normality results, as

showing consistency of the respective estimators only requires arguments that are very similar to

those that would be used in the absence of generated covariates.

6.1. Model. Consider the potential outcomes framework, which is commonly used in the ex-

tensive literature on program evaluation (Imbens, 2004): Let Y1 and Y0 be the potential outcomes

with and without program participation, respectively, D ∈ {0, 1} an indicator of program partici-

pation, Y = Y1D + Y0(1 −D) be the observed outcome, X a vector of exogenous covariates, and

let Π(x) = Pr(D = 1|X = x) be the propensity score. A typical object of interest in this context

is the average treatment effect (ATE), defined as

θ0 = E(Y1 − Y0).

Since selection into the program may be nonrandom, this object cannot be obtained by simply

comparing the average outcomes of treated and untreated individuals. However, when selection into

the treatment is unconfounded, biases due to nonrandom selection into the program can be removed

by conditioning on the propensity score (Rosenbaum and Rubin, 1983). That is, the condition that

Y1, Y0⊥D|X implies that Y1, Y0⊥D|Π(X). Moreover, writing νd(π) = E(Y |D = d,Π(X) = π), we

have that νd(π) = E(Yd|Π(X) = π), and thus by the law of iterated expectations, the ATE is

identified through the relationship

θ0 = E(ν1(Π(X))− ν0(Π(X))). (6.1)
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A similar argument can be made for other measures of program effectiveness (e.g. Heckman,

Ichimura, and Todd, 1998). Estimating the ATE by a sample analogue of (6.1) requires nonparamet-

ric estimation of the functions ν1(π) and ν0(π). Since the propensity score is generally unknown and

has to be estimated in a first stage, this fits into our framework with Z ≡ (Y,X, (D,X)), r0(Xr) ≡

Π(X), t(X, r0(Xr), θ) ≡ (D,Π(X)), m0(z1) ≡ νd(p) and q(z, θ,m0, r0) ≡ ν1(Π(x))− ν0(Π(x))− θ.

6.2. Estimator and Asymptotic Properties. Using the path-derivative approach of Newey

(1994), Hahn and Ridder (2013) derived the form of the influence function of a hypothetical es-

timator in this problem that is assumed to satisfy an asymptotic linearity condition. Here we

complement their result by giving explicit conditions for root-n consistency and asymptotic nor-

mality of a concrete estimator, which were thus far not known (Imbens, 2004). In particular, we

consider the following sample version of (6.1) as a natural estimate of the ATE:

θ̂ =
1

n

n∑
i=1

(ν̂1(Π̂(Xi))− ν̂0(Π̂(Xi))),

where Π̂(x) is the q-th order local polynomial estimator of Π(x), and ν̂d(π) is the local linear

estimator of νd(π), computed using the first-stage estimates of the propensity score (alternatively,

we could consider a parametric estimator for the propensity score, such as Probit). Here the binary

covariate D is accommodated via the usual frequency method, i.e. the estimate ν̂d is computed

by local linear regression of Yi on Π̂(Xi) using the nd =
∑n

i=1 I{Di = d} observations with D = d

only. The following proposition gives the asymptotic properties of the estimator.

Proposition 1. Suppose that the regularity conditions given in Appendix B hold. Then we have

that θ̂
p→ θ0 and

√
n(θ̂ − θ0)

d→ N(0,E(Ψ(Y,D,X)2), where

Ψ(Y,D,X) = µ1(X)− µ0(X) +
D(Y − µ1(X))

Π(X)
− (1−D)(Y − µ0(X))

1−Π(X)
− θ0

is the influence function, and µd(x) = E(Y |D = d,X = x) for d = 0, 1.

Under the conditions of the proposition the asymptotic variance of θ̂ equals the semiparametric

efficiency bound for estimating θ0, which was obtained by Hahn (1998). The estimator obtained

via regression on the estimated propensity score thus has the same first-order limit properties as
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other popular efficient estimators of the ATE under unconfoundedness, such as the propensity score

reweighting estimator of Hirano, Imbens, and Ridder (2003) or the estimator in Hahn (1998). Note

that the flexibility of our Assumption 4 plays an important role for deriving this result. If we were

to assume that the “index bias” is equal to zero in this application, we would in fact impose the

restriction that νd(x) = µd(x), and thus restrict the distribution of potential outcomes.

7. Conclusions

In this paper, we have derived new tools for the analysis of semiparametric methods that require

the use of generated covariates to estimate the nonparametric component. Our main technical

results are two new stochastic expansions that characterize the influence of the generation step on

the estimator of the nonparametric part. We show how these expansions can be used to verify

classical conditions for the
√
n-consistency and asymptotic normality of semiparametric two-step

estimators. Our results should be useful for researchers that wish to establish such results for the

estimation procedures in their concrete applications.

A. Proofs of Main Results

A.1. Proof of Theorem 1. To simplify notation, we give a detailed proof only for the special case

dT = 1, i.e. T = T (X, θ, r) is a univariate random variable, but we will shortly comment how rates change

for dT > 1. The proof for higher-dimensional T is conceptually similar. The following notation is used

throughout our proofs (some of it is simply a restatement of notation that we introduced before for the

special case dT = 1). The unit vector (1, 0, . . . , 0)> in RN , where N =
∑p
s=0 ns, is denoted by e1. We write

wi(t, θ, r) = (1, (Ti(r, θ)− t)/h, ..., (Ti(r, θ)− t)p/hp)>,

Mh(t, θ, r) =
1

n

n∑
i=1

wi(t, r, θ)wi(t, r, θ)
>Kh(Ti(r, θ)− t),

m∗0(t, θ) = (m0(t, θ), hm′0(t, θ)/2, ..., hpmp
0(t, θ)/p!)>.

We also set wi(t, θ) = wi(t, θ, r0) and ŵi(t, θ) = wi(t, θ, r̂), and define Mh(t, θ) and M̂h(t, θ) analogously.

Finally, we put Nh(t, θ) = E(Mh(t, θ)). Using ε∗(θ) = ε(θ)− ρ(X, θ), we can write

Yi = m0(Ti(θ), θ) + ε∗i (θ) + ρ(Xi, θ) .
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Note that E(ε∗(θ)|X) = 0 for any θ ∈ Θ. With this representation of the dependent variable, we define the

following decompositions of both the real and the oracle estimator:

m̂(t, θ) = m̂A(t, θ) + m̂B(t, θ) + m̂C(t, θ) + m̂D(t, θ) + m̂E(t, θ)

m̃(t, θ) = m̃A(t, θ) + m̃B(t, θ) + m̃C(t, θ) + m̃D(t, θ) + m̃E(t, θ),

with respective components m̂j(t, θ) = e>1 βj(θ, r̂) and m̃j(t, θ) = e>1 βj(θ, r0) defined for j ∈ {A,B,C,D,E}

as follows:

βA(t, θ, r) = argmin
β

n∑
i=1

(ε∗i (θ)− β>wi(t, θ, r))2Kh(Ti(θ, r)− t),

βB(t, θ, r) = argmin
β

n∑
i=1

(m0(Ti(θ, r0), θ)−m∗0(t, θ)>wi(t, θ, r0)− β>wi(t, θ, r))2Kh(Ti(θ, r)− t),

βC(t, θ, r) = argmin
β

n∑
i=1

(m∗0(t, θ)>wi(t, θ, r0)−m∗0(t, θ)>wi(t, θ, r)− β>wi(t, θ, r))2Kh(Ti(θ, r)− t),

βD(t, θ, r) = argmin
β

n∑
i=1

(m∗0(t, θ)>wi(t, θ, r)− β>wi(t, θ, r))2Kh(Ti(θ, r)− t),

βE(t, θ, r) = argmin
β

n∑
i=1

(ρ(Xi, θ)− β>wi(t, θ, r))2Kh(Ti(θ, r)− t).

We also denote the component-wise differences between the real and the oracle estimator by

Rj,n(t, θ) = m̂j(t, θ)− m̃j(t, θ) for j ∈ {A,B,C,D,E}. (A.1)

Finally, recall the definition that m̂∆(t, θ) = m̃(t, θ) + ϕAn (t, θ, r̂) + ϕBn (t, θ, r̂) given in (3.1). The statement

of the theorem follows if for any θ ∈ Θ the term Rn(t, θ) = m̂(t, θ)− m̂∆(t, θ) satisfies∫
Rn(t, θ)ω(t) dt = oP (n−κ

∗
) .

This is what we show in the following. To simplify the notation, we fix θ = θ0 for the rest of the proof

and we omit θ as an argument of functions. The proof can be easily extended to show that the results hold

uniformly over θ ∈ Θ. To see this note that we show at several places that expansions hold uniformly over

function classes. This can be easily extended to uniformity over the function class and θ ∈ Θ.

We will show that ∫
RA,n(t)ω(t) dt = OP (n−κ

∗
1 ), (A.2)∫

RB,n(t)ω(t) dt = OP (n−κ
∗
2 ), (A.3)∫

RC,n(t)ω(t) dt =

∫
ϕAn (t, r̂)ω(t) dt+OP (n−κ

∗
3 + n−κ

∗
4 ), (A.4)∫

RE,n(t)ω(t) dt =

∫
ϕBn (t, r̂)ω(t) dt+OP (n−κ

∗
1 + n−κ

∗
2 ). (A.5)
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where the terms Rj,n are defined in (A.1) above. This directly implies the statement of the theorem since∫
(m̂(t)− m̃(t))ω(t) dt =

∑
j∈{A,...,E}

∫
Rj,n(t)ω(t) dt, (A.6)

and RD,n(t) ≡ 0 by construction.

We start with the proof of (A.2). In the following, let c > 0 be some generic constant which can take differ-

ent values at each appearance. Furthermore Vn is a generic sequence of stochastically bounded random vari-

ables, again with different meaning at different appearances. Write Φi(t, r) = e>1 Mh(t, r)−1wi(t, r)Kh(Ti(r)−

t) and Φi(r) =
∫

Φi(t, r)ω(t) dt. Furthermore let Lh(Ti(r) − t) = Kh(Ti(r) − t)wi(t, r) be a vector-valued

kernel type function. Then it holds that

RA,n(t) =
1

n

n∑
i=1

(Φi(t, r0)− Φi(t, r̂)) ε
∗
i .

Using elementary arguments, one can show that

Mh(Ti(r1), r1)−Mh(Ti(r2), r2) = Vnn
η|Ti(r1)− Ti(r2)|

for r1, r2 ∈ R∗n and 1 ≤ i ≤ n. With the help of this bound, we find that, for r1, r2 ∈ R∗n and 1 ≤ i ≤ n,

|Φi(r1)− Φi(r2)|

≤
∣∣∣∣∫ [e>1 Mh(t, r1)−1Lh(Ti(r1)− t)− e>1 Mh(t, r2)−1Lh(Ti(r2)− t)

]
ω(t)dt

∣∣∣∣
=

∣∣∣∣∫ [e>1 Mh(Ti(r1)− hu, r1)−1ω(Ti(r1)− hu)

− e>1 Mh(Ti(r2)− hu, r2)−1ω(Ti(r2)− hu)
]
L(u)du

∣∣ ,
≤ Vnnη|Ti(r1)− Ti(r2)|.

For the case dT > 1, one gets by similar arguments that

|Φi(r1)− Φi(r2)| ≤ Vn max
1≤j≤dT

nηj |Ti,j(r1)− Ti,j(r2)|. (A.7)

This last bound can be used to calculate a rough bound on the entropy Hn(λ) of the class of functions Xi 7→

Φi(r). Here, exp(Hn(λ)) denotes the number of balls with radius λ that are necessary to cover the functions

Xi 7→ Φi(r). Using Assumption 3, the class of functions Tj(·, r) can be covered by c exp((λV −1
n n−ηj )−αjnχj )

balls of radius λV −1
n n−ηj . Thus we find that the entropy Hn(λ) ≤ c

∑dT
j=1 λ

−αjV
αj
n nηjαj+χj

≤ cmax1≤j≤dT λ
−αjnηjαj+χj for some constant c > 0. This implies∫ Cn

0

H1/2
n (λ)dλ ≤ Vnn−(1−αmax/2)δmin+(ηα+χ)max/2
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for Cn = n−δmin .

We now apply Theorem 8.13 in van de Geer (2009) with Z̄θ = n−1
∑n
i=1 Zi,θ, Zi,θ = Φi(r)ε

∗
i , θ = r,

R = Cn = n−δmin , and a is the entropy bound above. Conditional on observations X1, ..., Xn, we obtain an

exponential bound for Z̄θ uniformly in R∗n since 1
n

∑n
i=1 E[exp(`∗|ε∗i |)|Ti] ≤ C∗ with probability tending to

one, for some constants C∗, `∗ > 0 due to Assumption 1 (iv). With standard arguments this yields

sup
r1,r2∈R∗

n

1

n

n∑
i=1

(Φi(r1)− Φi(r2))ε∗i = OP

(
n−(1/2)−(1−αmax/2)δmin+(ηα+χ)max/2

)
. (A.8)

Equation (A.8) then implies the desired result (A.2) because r̂n ∈ R∗n with probability tending to one and

thus

P

(∣∣∣∣∫ RA,n(t)ω(t)dt

∣∣∣∣ ≤
∣∣∣∣∣ sup
r1,r2∈R∗

n

1

n

n∑
i=1

(Φi(r1)− Φi(r2))ε∗i

∣∣∣∣∣
)
→ 1 as n→∞.

For the proof of (A.3), note that for some non-negative integers a, b and constants C1, C2 > 0 it holds that∣∣m0(Ti(r))−m∗0(t)>wi(t, r)
∣∣ ≤ C1n

−(p+1)ηmin and∣∣∣∣∣ 1n
n∑
i=1

Kh(Ti(r1)− t)wai,k(t, r1)wbi,l(t, r1)−Kh(Ti(r2)− t)wai,k(t, r2)wbi,l(t, r2)

∣∣∣∣∣ ≤ C2n
−(δ−η)min

for components l, k and all t ∈ I∗T and r, r1, r2 ∈ R∗n. These two statements directly imply (A.3).

For the proof of (A.4), note that uniformly over 1 ≤ i ≤ n, t ∈ I∗T and r ∈ R∗n it holds that

m∗0(t)>wi(t, r0)−m∗0(t)>wi(t, r) = m′pol(Ti(r), t)(Ti(r)− Ti(r0)) +OP (n−2δmin).

Substituting this expression into RC,n, we find that∫
RC,n(t)ω(t)dt =

1

n

n∑
i=1

Φ∗i (r̂)(Ti(r̂)− Ti(r0)) +OP (n−2δmin),

where

Φ∗i (r) =

∫
e>1 Mh(t, r)−1Lh(Ti(r)− t)m′pol(Ti(r), t)ω(t)dt.

Furthermore, we have that∫
ϕAn (t, r̂)ω(t)dt =

1

n

n∑
i=1

Φ∗i (r0)(Ti(r̂)− Ti(r0)) + oP (n−1/2).

Thus, for (A.4) we have to show that

1

n

n∑
i=1

(Φ∗i (r̂)− Φ∗i (r0))(Ti(r̂)− Ti(r0)) = OP (n−κ
∗
3 + n−κ

∗
4 ). (A.9)

Since |Ti(r) − Ti(r0)| = OP (n−δmin) uniformly over r ∈ R∗n and 1 ≤ i ≤ n, for (A.9) one only has to prove

that

|Φ∗i (r)− Φ∗i (r0)| = OP (nδmin−κ∗
3 + nδmin−κ∗

4 )
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uniformly for r ∈ R∗n and 1 ≤ i ≤ n. To see why the last claim holds, note that we can write:

Φ∗i (r)− Φ∗i (r0) =

∫
e>1 [Mh(t, r)−1Lh(Ti(r)− t)m′pol(Ti(r), t)

−Mh(t, r0)−1Lh(Ti(r0)− t)m′pol(Ti(r0), t)]ω(t)dt

=

∫
e>1 [Mh(Ti(r)− hu, r)−1ω(Ti(r)− hu)m′pol(Ti(r), Ti(r)− hu)

−Mh(Ti(r0)− hu, r0)−1ω(Ti(r0)− hu)m′pol(Ti(r0), Ti(r0)− hu)]L(u)du.

First, it is easy to see that

max
1≤i≤n

sup
r∈R∗

n

sup
t∈I∗T
|ω(Ti(r)− t)− ω(Ti(r0)− t)| = OP (n−δmin) and

max
1≤i≤n

sup
r∈R∗

n

sup
t∈I∗T
|m′pol(Ti(r), Ti(r)− t)−m′pol(Ti(r0), Ti(r0)− t)| = OP (n−δmin)

due to the smoothness of the functions involved. It thus remains to consider the elements of the matrix

Mh(Ti(r)− t, r)−Mh(Ti(r0)− t, r0). Any such element is of the form

1

n

n∑
i=1

[
(Ti(r)− t)uh−uKh(Ti(r)− t)

]
−
[
(Ti(r0)− t)uh−uKh(Ti(r0)− t)

]
for some 0 ≤ u+ ≤ p. We thus show that

1

n

n∑
i=1

[
(Ti(r)− t)uh−uKh(Ti(r)− t)

]
−
[
(Ti(r0)− t)uh−uKh(Ti(r0)− t)

]
= OP (nδmin−κ∗

3 + nδmin−κ∗
4 ). (A.10)

uniformly over r ∈ R∗n. Because of Assumption 4(iii), we have that

E
[
(Ti(r)− t)uh−uKh(Ti(r)− t)

]
− E

[
(Ti(r0)− t)uh−uKh(Ti(r0)− t)

]
= OP (n−δmin)

uniformly over r ∈ R∗n. Thus, for a proof of (A.10) it suffices to establish that

1

n

n∑
i=1

[
(Ti(r)− t)uh−uKh(Ti(r)− t)

]
− E

[
(Ti(r)− t)uh−uKh(Ti(r)− t)

]
−
[
(Ti(r0)− t)uh−uKh(Ti(r0)− t)

]
− E

[
(Ti(r0)− t)uh−uKh(Ti(r0)− t)

]
= OP (nδmin−κ∗

3 + nδmin−κ∗
4 ).

The last claim follows from the same type of arguments used in the treatment of RA,n(t). Taken together,

the above derivation shows that∫
RC,n(t)ω(t) dt =

∫
ϕAn (t, r̂)ω(t) dt+ oP (n−κ

∗
3 + n−κ

∗
4 ),
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as claimed. It remains to show (A.5). Note that∫
RE,n(t)ω(t) dt =

1

n

n∑
i=1

[Φi(r̂)− Φi(r0)]ρ(Xi).

Using the same reasoning as in the treatment of RA,n(t), and Assumption 4(i)–(ii), we find that

1

n

n∑
i=1

Φi(r)(ρ(Xi)− E[ρ(Xi)|Ti(r)])− Φi(r0)(ρ(Xi)− E[ρ(Xi)|Ti(r0)]) = OP (n−κ
∗
1 )

uniformly for r ∈ R∗n. Note that E[ρ(Xi)|Ti(r0)] = 0. We now use that

1

n

n∑
i=1

Φi(r)E[ρ(Xi)|Ti(r)] =
1

n

n∑
i=1

∫
e>1 Mh(t, r)−1Lh(Ti(r)− t)E[ρ(Xi)|Ti(r)]ω(t)dt

=

∫
ϕBn (t)ω(t)dt+OP (n−κ

∗
2 )

uniformly over r ∈ R∗n, and thus (A.5) holds. This concludes the proof of Theorem 1.

A.2. Proof of Theorem 2. First, standard results in e.g. Masry (1996), imply that the oracle estimator

m̃ satisfies

sup
t∈I∗T ,θ∈Θ

|m̃(t, θ)−m0(t, θ)| = OP

(
n−(p+1)ηmin +

√
log(n)n−(1−η+)

)
.

under the conditions of the theorem. Second, one can show that

sup
t∈I∗T ,θ∈Θ

|m̂(t, θ)− m̂∆(t, θ)| = oP (n−κ). (A.11)

The statement (A.11) is an extension of Theorem 1 in Mammen, Rothe, and Schienle (2012), which gives

a stochastic expansion of a local linear estimator regression estimator with generated covariates, and the

special case that T (x, r, θ) = r(xr). Generalizing this result to higher order local polynomials and more

general forms of T is conceptually straightforward, and thus a proof is omitted. With (A.11), the statement

of the Theorem follows from a trivial bound on m̂∆(t, θ)− m̃(t, θ).

Remark 1. One could use the additional structure implied by Assumption 5 to prove a somewhat better

uniform rate of consistency under some minor additional regularity conditions. In particular, one can show

that

sup
t∈I∗T ,θ∈Θ

|m̂∆(t, θ)− m̃(t, θ)| = OP (n−δmin

√
n−(1−η+) log n+ n−2δmin), (A.12)

which is better than the rate of OP (n−δmin) obtained from a crude bound that appears in Theorem 2.
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A.3. Proof of Theorem 3 We only show part b) explicitly. Calculations for part a) are conceptually

the same. By assumption, we have that ||r̂(s) − r0(s)||∞ = oP (n−1/4). Thus, it only remains to be shown

that

||m̂(t, θ)−m0(t, θ)||∞ = oP (n−1/4).

This is fulfilled if all three remaining terms in the error bound in Theorem 2 are of smaller order than

n−1/4. For the two terms corresponding to the rate of convergence of the oracle estimator m̃, this is directly

achieved for bandwidths larger than the stated lower bound, and such that η+ < 1/2. Such a bandwidth

exists under sufficient smoothness conditions. The restriction that κ1 > 1/4 imposes a binding restriction

on the complexity of the sets Tn,j . It can be satisfied if η+ < 1/2 + 2(δ − η)min − (δα+ χ)max.

A.4. Proof of Theorem 4. To prove this result, we first establish a linear stochastic expansion for

the oracle estimator m̃. Using arguments in Masry (1996), Kong, Linton, and Xia (2010) or Ichimura and

Lee (2010), one can show that

m̃(t, θ) =
1

n

n∑
i=1

ϕm̃ni(t, θ) +O(n−(p+1)ηmin) +OP (log(n)n−(1−η+)),

uniformly over t ∈ I∗T and θ ∈ Θ, where

ϕm̃ni(t, θ) = e>1 Nh(t)−1w(Ti(θ)− t)Kh(Ti(θ)− t)εi(θ).

with w(t) = (1, t, ..., tp)> and Nh(t, θ) = E(w((Ti(θ)− t)/h, θ)w((T (θ)− t)/h, θ)>Kh(T (θ)− t)). Next, note

that the conditions of the Theorem imply that that O(n−(p+1)ηmin) = o(n−1/2) and OP (log(n)n−(1−η+)) =

oP (n−1/2) and O(n−2δmin) = oP (n−1/2). Applying Theorem 1, we therefore find that Qξ0 can be decomposed

as follows:

Qξ0[ξ̂ − ξ0] = A1 +A2 +A3 +A4 + oP (n−1/2),

where

A1 =

∫
λm(zm)

1

n

n∑
i=1

ϕm̃ni(zm, θ0)fZm
(zm)dzm,

A2 =

∫
λm(zm)ϕAn (zm, θ0, r̂)fZm

(zm)dzm,

A3 =

∫
λm(zm)ϕBn (zm, θ0, r̂)fZm

(zm)dzm

A4 =

∫
λr(zr)ϕ

r̂
ni(zr, θ0, r̂)fZr

(zr)dzr,
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We deal with each of these four terms separately. First, applying standard arguments from kernel smoothing

theory, we find that

A1 =
1

n

n∑
i=1

εi

∫
e>1 Nh(zm)−1w(Ti − zm)Kh(Ti − zm)λm(zm)fZm

(zm)dzm

=
1

n

n∑
i=1

εi

∫
e>1 Nh(Ti − th)−1w(t)K(t)λm(Ti − th)fZm

(Ti − th)dt

=
1

n

n∑
i=1

εiλm(Ti)fZm
(Ti)/fT (Ti) +O(n−(p+1)ηmin)

=
1

n

n∑
i=1

ψ1(Zi) + oP (n−1/2)

For the second term, first note that it follows from standard bias calculations for kernel-type estimators that∫
λm(zm)ϕAn (zm, θ0, r)fZm(zm)dzm

= −E
(
T

(r)
i (X)(r(Xri)− r0(Xri))λm(Ti)m

′
0(Ti)

fZm
(Ti)

fT (Ti)

)
+OP (hp+1)

uniformly for fixed functions r ∈ R∗n. Substituting the expansion for r̂ − r0 from Assumption 5 we then

directly find that

A2 = − 1

n

n∑
i=1

ν(Wi) lim
n→∞

E
(
T (r)(X)λm(T )m′0(T )

fZm
(T )

fT (T )
Hn(Si, Xr)

∣∣∣∣Si)
+OP (n−(p+1)ηmin + n−2δmin) + oP (n−1/2)

=
1

n

n∑
i=1

ψA2 (Zi) + oP (n−1/2).

Concerning the term A3, we have that

A3 =

∫∫
λm(zm)

fT (zm)
K ′h(T (x)− zm)(T̂ (x)− T (x))ρ(x)fZm

(zm)fX(x) dxdzm

=

∫
1

h

∫
K ′(t)G(T (x) + th) dt(T̂ (x)− T (x))ρ(x)fX(x) dx

=

∫
G′(T (x))(T̂ (x)− T (x))ρ(x)fX(x) dx+O(hp+1)

=

∫
G′(T (x))T (r)(x)

(
1

n

n∑
i=1

Hn(Si, xr)ν(Wi)

)
ρ(x)fX(x) dx+OP (hp+1 + n−2δmin)

=
1

n

n∑
i=1

ν(Wi) lim
n→∞

E(G′(T )T (r)(X)Hn(Si, Xr)ρ(X)|Si) +OP (n−(p+1)ηmin + n−2δmin)

=
1

n

n∑
i=1

ψB2 (Zi) + oP (n−1/2)
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with G(t) = λm(t)fZm
(t)fT (t)−1 and G′(t) = ∂tG(t) using integration by parts to obtain the fourth equality.

Finally, we have

A4 = ν(Wi) lim
n→∞

E(λr(Xr)Hn(Si, Xr)|Si) + oP (n−1/2)

=
1

n

n∑
i=1

ψ3(Zi) + oP (n−1/2)

using the same type of arguments as the ones applied above. The statement of the Theorem then follows

since ψ2 = ψA2 + ψB2 .

A.5. Proof of Theorem 5. The statement of the theorem follows from the results on consistency and

asymptotic normality of semiparametric two-step estimators in Chen, Linton, and Van Keilegom (2003).

A.6. Derivation of Example 1. Suppose that r0 is a q+1-times continuously differentiable regression

function estimated by qth order local polynomial regression using a bandwidth g and a kernel function L.

Assume that S is continuously distributed with compact support IS , and that the corresponding density fS

is q-times continuously differentiable, bounded, and bounded away from zero on IS . Then it follows under

some further standard regularity conditions (e.g. Kong, Linton, and Xia, 2010) that

r̂(s)− r0(s) =
1

n

n∑
i=1

e>1 N
S
g (s)−1w(Si − s)Lg(Si − s)ζi +OP (gq+1 + log(n)/(ngdS ))

uniformly over s ∈ IS , w(t) = (1, t, ..., tq)> as above and NS
g (s) = E(w((Si−s)/g)w((Si−s)/g)>Lg(Si−s)).

The remainder term in the last equation can be made as small as oP (n−1/2) by choosing an appropriate

bandwidth if q is sufficiently large. It follows that Assumption 5 is satisfied with ν(Wi) = ζi and Hn(Si, s) =

e>1 N
S
g (s)−1w(Si − s)Lg(Si − s). The condition that E(‖Hn(Si, Sj)‖2) = o(n) holds if ngdS →∞. To obtain

the explicit expressions for ψ2 and ψ3, we insert the above relation into the expression from Theorem 4 and

apply standard U-Statistics arguments (e.g. Powell, Stock, and Stoker, 1989).

A.7. Derivation of Example 2. It easy to see that Assumption 5 is satisfied with ν(Wi) = ϕϑ̂(Wi)

and Hn(Si, s) = r′(s, ϑ0) under the conditions given in the example. By substituting these expression into

the general formulas in Theorem 4, one directly obtains the specific expressions for ψ2 and ψ3 given in the

main text.

B. Details on Application to Treatment Effect Estimation

In this section, we give details on the construction of the estimator θ̂, and the regularity conditions under

which Proposition 1 is valid. The data consist of a sample {(Yi, Di, Xi), i = 1, . . . , n} from the distribution
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of (Y,D,X). The estimator of the propensity score Π(x) = E(D|X = x) is given by Π̂(x) = α̂, where

(α̂, β̂) = argmin
α,β

n∑
i=1

(Di − α−
∑

1≤u+≤q

β>u (Xi − x)u)2Lg(Xi − x)

and Lg(s) =
∏dX
j=1 L(sj/g)/g is a dX -dimensional product kernel built from the univariate kernel L, g is a

bandwidth, which for simplicity is assumed to be the same for all components, and
∑

1≤u+≤q denotes the

summation over all u = (u1, . . . , uq) with 1 ≤ u+ ≤ q. Next, for d ∈ {0, 1} the estimate of νd(π) = E(Y |D =

d,Π(X) = π) is given by the third-order local polynomial estimator: we set ν̂d(π) = α̂d, where

(α̂d, β̂d) = argmin
α,β

n∑
i=1

I{Di = d}(Yi − α−
∑

1≤v≤3

β>v (Π̂(Xi)− π)v)2Kh(Π̂(Xi)− π) ,

with Kh(u) = K(u/h)/h, K a one-dimensional kernel function and h a bandwidth that tends to zero as the

sample size n tends to infinity. The final estimator of θ0 is then given by

θ̂ =
1

n

n∑
i=1

(ν̂1(Π̂(Xi))− ν̂0(Π̂(Xi))).

To prove Proposition 1, we make the following assumptions.

Assumption 6. The sample observations {(Yi, Di, Xi), i = 1, . . . , n} are i.i.d.

Assumption 7. (i) The random vector X is continuously distributed with compact support IX . Its density

function fX is bounded and bounded away from zero on IX , and is also q+1-times continuously differentiable

for some uneven number q ≥ dX . (ii) The function Π(x) is bounded away from zero and one on IX , and is also

q + 1-times continuously differentiable. (iii) For any d ∈ {0, 1}, the random variable Π(X) is continuously

distributed conditional on D = d, with compact support IΠ. Its conditional density function fΠ|D(·, d) is

bounded and bounded away from zero on IΠ, and is also four times continuously differentiable. (iv) For any

d ∈ {0, 1}, the function νd(π) is four times continuously differentiable on IΠ.

Assumption 8. The residual ε = Y −E(Y |Π(X)) satisfies E[exp(l|ε|)|X] ≤ C almost surely for a constant

C > 0 and l > 0 small enough.

Assumption 9. (i) The function K is twice continuously differentiable and satisfies the following conditions:∫
K(u)du = 1,

∫
uK(u)du = 0,

∫
|u2K(u)|du < ∞, and K(u) = 0 for values of u not contained in some

compact interval, say [−1, 1]. (ii) The function L is k-times continuously differentiable for some natural

number k ≥ max{2, dX/2}, and satisfies the following conditions:
∫
L(u)du = 1,

∫
uL(u)du = 1, and

L(u) = 0 for values of u not contained in some compact interval, say [−1, 1].

Assumption 10. The bandwidths satisfy h ∼ n−η and g ∼ n−γ with γ = 1/(2q + 1) and 1/8 < η <

(q + 2)/(8q + 4).
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Proof of Proposition 1. The proof uses the same arguments as that of Theorem 4 and Example 1, and

thus the details are omitted. The only issue is to show that we can choose κ∗ > 1/2. To see this, note that

the conditions of the Proposition imply that Assumption 2 holds with δ = (q + 1)/(4q + 2) > 1/4, and that

Assumption 3 holds with α ≤ q/(q+1) and χ = 0. The restrictions on η then ensure that δ−η > (1/2)(δα+χ)

and (1− η)/2− η > (1/2)(δα+ χ). We then easily see that κ∗ > 1/2 can be chosen.

C. Additional Assumptions

In this section, we state Assumption C.1–C.3, which collect those conditions of Theorem 5 and Theorem 6 that

can be verified irrespective of the question whether the function m0 is estimated using generated covariates or

not. The assumptions are all minor variations of those given in Chen, Linton, and Van Keilegom (2003), and

could be replaced by similar conditions considered in other papers studying
√
n-consistency and asymptotic

normality of semiparametric “plug-in” estimators, such as Newey (1994).

Throughout the section, we use the following notation. For some small δ > 0, we define Θδ = {θ ∈ Θ :

‖θ−θ0‖ ≤ δ} and Ξδ = {ξ ∈ Ξ : ‖ξ−ξ0‖Ξ ≤ δ}. For any (θ, ξ) ∈ Θ×Ξ, we also denote the ordinary derivative

of Q(θ, ξ) with respect to θ by Qθ(θ, ξ). For any θ ∈ Θ, we say that Q(θ, ξ) is pathwise differentiable at

ξ ∈ Ξ in the direction ξ̄ if there exists a continuous linear functional Qξ(θ, ξ) : Θ × Ξ → Rl such that

Qξ(θ, ξ)[ξ̄] = limτ→0(Q(θ, ξ + τ ξ̄) − Q(θ, ξ))/τ . The functional Qξ(θ, ξ) is called the pathwise derivative of

Q(θ, ξ).

Assumption C.1. Suppose that:

(C1) For all δ > 0, there exists an ε > 0 such that inf‖θ−θ0‖>δ ‖Q(θ, ξ0)‖ ≥ ε.

(C2) Uniformly over θ ∈ Θ, Q(θ, ξ) is continuous in ξ at ξ = ξ0 with respect to the metric ‖ · ‖Ξ.

(C3) It holds that

sup
θ∈Θ,‖ξ−ξ0‖Ξ≤δn

‖Qn(θ, ξ)−Q(θ, ξ)−Qn(θ0, ξ0)‖
1 +
√
n(‖Qn(θ, ξ)‖+ ‖Q(θ, ξ)‖)

= oP (1)

for all positive sequences δn = o(1).

Assumption C.2. Suppose that:

(N1) θ0 ∈ int(Θ) satisfies Q(θ0, ξ0) = 0.

(N2) (i) the ordinary derivative Qθ(θ, ξ0) of Q(θ, ξ0) in θ exists for θ ∈ Θδ and is continuous at θ = θ0; (ii)

the matrix Qθ0 = Qθ(θ0, ξ0) is of full rank.
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(N3) For all θ ∈ Θδ the pathwise derivative Qξ(θ, ξ0)[ξ−ξ0] of Q(θ, ξ0) exists in all directions (ξ−ξ0) ∈ Ξ; and

for all (θ, ξ) ∈ Θδn×Ξδn with a positive sequence δn = o(1): (i) ‖Q(θ, ξ)−Q(θ, ξ0)−Qξ(θ, ξ0)[ξ−ξ0]‖ ≤

c‖ξ − ξ0‖2Ξ for a constant c ≥ 0; (ii) ‖Qξ(θ, ξ0)[ξ − ξ0] − Qξ0[ξ − ξ0]‖ ≤ o(1)δn, where Qξ0[ξ − ξ0] =

Qξ(θ0, ξ0)[ξ − ξ0].

(N4) ξ̂ ∈ Ξ with probability tending to one.

(N5) It holds that

sup
‖θ−θ0‖≤δn,‖ξ−ξ0‖Ξ≤δn

√
n‖Qn(θ, ξ)−Q(θ, ξ)‖

1 + ‖Qn(θ, ξ)‖+ ‖Q(θ, ξ)‖
= oP (1)

for any positive sequence δn = o(1).

Assumption C.3. Suppose that:

(B1) θ0 ∈ int(Θ) satisfies Q(θ0, ξ0) = 0, and θ̂
a.s.−→ θ0.

(B2) ‖Qn(θ̂, ξ̂)‖ = infθ∈Θ ‖Qn(θ, ξ̂)‖+ oa.s.(1/
√
n)

(B3) (i) ξ̂ ∈ Ξ almost surely, (ii) ξ̂∗ ∈ Ξ with P ∗ probability tending to one, and (iii) ‖ξ̂−ξ0‖Ξ = oa.s.(n
−1/4).

(B4) (i) For all ξ ∈ Ξδ, the ordinary derivative Qθ(θ, ξ) of Q(θ, ξ) in θ exists for θ ∈ Θδ and is continuous

at θ = θ0; (ii) the matrix Qθ0 = Qθ(θ0, ξ) is of full rank.

(B5) For all θ ∈ Θδ and ξ ∈ Ξδn with a positive sequence δn = o(1), the pathwise derivative Qξ(θ, ξ)[ξ̄ − ξ]

of Q(θ, ξ) exists in all directions (ξ̄ − ξ) ∈ Ξ; and for all (θ, ξ̄) ∈ Θδn × Ξδn : (i) ‖Q(θ, ξ̄) − Q(θ, ξ) −

Qξ(θ, ξ)[ξ̄ − ξ]‖ ≤ c‖ξ̄ − ξ‖2Ξ for a constant c ≥ 0; (ii) ‖Qξ(θ, ξ)[ξ̄ − ξ]−Qξ(θ0, ξ)[ξ̄ − ξ]‖ ≤ o(1)δn.

(B6) It holds that sup‖θ−θ0‖≤δn,‖ξ−ξ0‖Ξ≤δn ‖Qn(θ, ξ) −Q(θ, ξ) −Qn(θ0, ξ0)‖ = oa.s.(n
−1/2) for any positive

sequence δn = o(1).

(B7) It holds that sup‖θ−θ0‖≤δn,‖ξ−ξ0‖Ξ≤δn ‖Q
∗
n(θ, ξ) − Qn(θ, ξ) − (Q∗n(θ0, ξ0) − Qn(θ0, ξ0))‖ = oP∗(n−1/2)

for any positive sequence δn = o(1).
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