
Algorithms for Efficient Communication in
Wireless Sensor Networks

Distributed Node Coloring and its Application in the SINR Model

zur Erlangung des akademischen Grades eines

Doktor der Naturwissenschaften

von der Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Fabian Fuchs

aus Sinsheim

Tag der mündlichen Prüfung: 19. November 2015

Erster Gutachter: Prof. Dr. Dorothea Wagner
Zweiter Gutachter: Prof. Magnús M. Halldórsson, PhD

Fabian Fuchs: Algorithms for Efficient Communication in Wireless Sensor Networks -
Distributed Node Coloring and its Application in the SINR Model, © 27. Jan. 2016

To my wife Mela
and our daughter Magdalene

The LORD has remembered us;
he will bless us.

— Psalm 115:12

A C K N O W L E D G M E N T S

During my PhD, many people supported me in different ways. I would like to take
this opportunity to say thank them.

First, I would like to thank Prof. Dr. Dorothea Wagner for providing me with the
opportunity of pursuing a PhD and inviting me to join her research group. Thank
you for your leadership, your trust and the freedom to choose my own direction of
research!

Thank you Magnús, for taking the time to read and evaluate this thesis along
with traveling to Karlsruhe for my defence. Thank you also for your previous visit
and the invitation to a great Dagstuhl seminar.

Many thanks also to Roman, who was my office mate during almost the entire
PhD. I am grateful for many fruitful discussions, collaborations, and for proofread-
ing almost all of my publications; to Markus Völker for introducing me to the topic
of sensor networks and many valuable tips right at the start of my PhD; to Andreas
for proofreading large parts of this thesis (all errors are mine!), answering any ques-
tion, and the (almost) never-ending supply of sweets; to our “saboteurs” Franzi and
Benjamin; to Thomas B. for advice regarding emacs and ipe; to Moritz for organiz-
ing a ton of leisure activities (including soccer, which I recently joined too rarely);
to Ignaz for sharing your experience and knowledge; to Ben and Michael for your
server and Dokuwiki support; to Tamara for welcoming me in your office when I
started; to Julian for your help regarding the MSR-tax; to Tanja for travel tips to
Iceland; to Thomas P. for making simple words so much fun; to Andrea for our trip
to Israel; to Tobias for your beautiful and precise handcraft for PhD hat; to Marcel
and Valentin for pleasant chats; to Lilian and Simone for all the “small things” that
are so essential; to the members of the Escorial Committee for your solidarity and
the fun we had. And simply all of you for being great colleagues!

To my parents Ulrich und Beate: Thank you for raising me the way you did, for
your love, and your support in any situation. This means more to me than words
can tell. Thanks are also to my siblings Sebastian and Anna-Lena; thank you for
being best friends during childhood and beyond.

Finally, to my beloved wife Mela: I am deeply grateful for your enduring sup-
port, your patience (especially during the final phase of this thesis) and your love.
Magdalene, thank you for being around.

Thank you!

v

D E U T S C H E Z U S A M M E N FA S S U N G

Drahtlose Sensornetzwerke bestehen meist aus einer Vielzahl miniaturisierter Com-
puter, sogenannten Netzwerkknoten. Diese können zusätzlich zur Batterie und ei-
ner drahtlosen Kommunikationseinheit mit verschiedenen Sensoren ausgerüstet
sein. Die in dieser Arbeit betrachteten Algorithmen berechnen Strukturen und Zu-
stände, welche den Aufbau einer effizienten Kommunikationsstruktur innerhalb ei-
nes Sensornetzwerkes ermöglichen. Alle in dieser Arbeit vorgestellten Algorithmen
arbeiten verteilt, wodurch die Netzwerke ohne zentralen Koordinationscomputer
und die entsprechende Kommunikation zu und von diesem Computer auskom-
men. Ich betrachte grundlegende Probleme, welche direkt nach dem Ausbringen
und Starten des Netzwerkes auftreten, zum Beispiel den initialen Austausch von
Nachrichten mit den jeweiligen Nachbarn. Um den sich hieraus ergebenden Anfor-
derungen gerecht zu werden, verwende ich das Signal-zu-Interferenz-und-Rausch-
Verhältnis (Signal-to-Interference-and-Noise-Ratio, SINR), welches die Störung der
Signale realistisch modelliert. Das SINR-Modell wird schon seit Jahrzehnten, z.B.
im elektrotechnischen Bereich, verwendet, wohingegen es im algorithmischen Be-
reich erst seit ca. 10 Jahren Verwendung findet. Im geometrischen SINR-Modell
wird, anhand der Sendeleistung, und der Dämpfung der Signalstärke über die
Sendedistanz die Störung einer Übertragung auf gleichzeitig stattfindende Übertra-
gungen modelliert. Im Gegensatz zu zuvor betrachteten algorithmischen Modellen,
werden in SINR-Modell nicht nur lokale Auswirkungen einer Übertragung berück-
sichtigt, sondern die Auswirkungen von Störungen (durch gleichzeitige Übertra-
gung im Netzwerk) werden global, d.h. auf das komplette Netzwerk bezogen, be-
trachtet, siehe Abbildung 1 (rechts). Die Analyse von Algorithmen im SINR-Modell
ist sehr aufwendig, daher ist sie nur für grundlegende Algorithmen gerechtfertigt.
Die Analyse komplexer Algorithmen ist oft nur in abstrakteren Modellen möglich.

Karte: Peter Joseph Lenne & Gerhard Koeber, 1833

Abbildung 1: Links: Beispiel eines großflächig verteilten Sensornetzwerkes mit den Nach-
barschaftsbeziehungen und dem Kommunikationsgraphen, die sich aus dem SINR-Modell
ergeben (mitte-links). Rechts: Im SINR-Modell akkumulieren sich Störungen (im Bild rot),
womit Übertragungen globalen Einfluss haben. Wenn z.B. alle Knoten der oberen Hälfte
senden, kann auch in der unteren Hälfte keine Übertragung stattfinden (rechts-außen).

vii

Hierzu betrachte ich das etablierte message-passing Modell CONGEST , bei wel-
chem ohne Berücksichtigung von Interferenzen rundenbasiert Nachrichten mit den
Nachbarn ausgetauscht werden.

Im ersten Teil meiner Arbeit werden zwei sehr grundlegende Probleme betrach-
tet und im SINR-Modell analysiert. Beim ersten Problem handelt es sich um Lo-
cal Broadcasting, hierbei soll es jedem Knoten ermöglicht werden eine Nachricht
mit seinen Nachbarn auszutauschen. Ich erweitere bestehende Algorithmen sowie
deren Analyse, sodass diese auch in Netzwerken mit nicht-einheitlicher Sendeleis-
tung eingesetzt werden können. Im Anschluss betrachte ich das Problem der Kno-
tenfärbung, bei dem eine Zuweisung von Knoten zu je einer Farbe (oder Zahl)
gefunden werden soll, sodass sich die Farben von je zwei Nachbarn unterscheiden.

Im zweiten Teil wende ich mich weniger komplexen message-passing Model-
len zu, welche durch Abstraktion einiger Aspekte der drahtlosen Kommunikati-
on, die Analyse wesentlich umfangreicherer Algorithmen erlauben. Um die Algo-
rithmen weiterhin im realistischeren SINR-Modell ausführen zu können, gebe ich
zunächst eine Methode an, mittels derer beliebige Algorithmen, die für message-
passing-Modelle entworfen wurden, im SINR-Modell ausgeführt werden können.
Anschließend betrachte ich eine komplexere Methode zur Steigerung der Kommu-
nikationseffizienz im CONGEST -Modell.

initiale kommunikation Eines der fundamentalsten Problemen in Draht-
losnetzwerken ist die effiziente Kommunikation. Beschränken wir die Kommu-
nikation darauf, dass jeder Knoten im Netzwerk eine Nachricht zu allen seinen
Nachbarn senden soll, nennt sich dieses Problem im SINR-Modell das Local Broad-
casting Problem. Da zur Lösung dieses Problems wenig Vorwissen und keine Vor-
berechnung im Netzwerk benötigt wird, ist Local Broadcasting zur initialen Kom-
munikation in einem Ad-Hoc- oder Sensornetzwerk direkt nach Inbetriebnahme
gut geeignet. Für den Fall einer einheitlichen Sendeleistung an allen Knoten im
Netzwerk existieren mehrere Algorithmen, die dieses Problem lösen. Gerade im
Hinblick auf die Erweiterung existierender Netzwerke zu dichten und heteroge-
nen Netzwerken (z.B. Internet of Things) oder Energieeinsparungen durch eine
Reduktion der Sendeenergie ist die Annahme einheitlicher Sendeleistungen nicht
mehr für alle Einsatzgebiete ausreichend. In der Arbeit erweitere ich bestehende
Local Broadcasting Algorithmen sowie deren Analyse, sodass die Ausführbarkeit
der Algorithmen in Drahtlosnetzwerken mit heterogenen Sendeleistungen möglich
ist.

knotenfärbung Färbung von Knoten ist ein klassisches Problem, bei dem je-
der Knoten im Netzwerk eine von möglichst wenigen Farben wählen soll, sodass
keine zwei benachbarte Knoten die selbe Farbe gewählt haben. Eine Knotenfär-
bung kann zum Beispiel zur Steigerung der Kommunikationseffizienz nach Inbe-
triebnahme eines drahtlosen Ad-Hoc-Netzwerkes verwendet werden, was ich im
zweiten Teil näher betrachten werde. Da es zentralisiert schon NP-schwer ist eine
Färbung mit der minimalen Anzahl an Farben zu berechnen, gilt für verteilte Kno-

viii

tenfärbungsalgorithmen eine Färbung mit d+ 1 Farben als ultimatives Ziel, da eine
solche Färbung in einem Netzwerk mit maximalem Knotengrad d immer existiert.

In diesem Teil generalisiere ich, basierend auf der zuvor vorgestellten Methode
zur initialen Kommunikation, zunächst einen Knotenfärbungsalgorithmus, sodass
dieser in Netzen mit heterogenen Sendeleistungen genutzt werden kann. Im An-
schluss betrachte ich wieder den Fall einheitlicher Sendeleistungen, und schlage
zwei randomisierte Färbungsalgorithmen vor. Der erste Algorithmus nutzt unsi-
chere Kommunikation, und damit einen schnelleren, wenn auch teilweise fehlerbe-
hafteten Nachrichtenaustausch zwischen den Knoten, um eine korrekte Färbung
innerhalb kurzer Zeit zu berechnen. Der zweite Algorithmus nutzt die berechne-
te Färbung um die sichere Kommunikation ausgewählter Knoten zu beschleuni-
gen, und verringert dadurch die Zahl der genutzten Farben auf das gesteckte Ziel
von d + 1 Farben. Beide Algorithmen erreichen eine Laufzeit, die asymptotisch ei-
ner einzigen Kommunikationsrunde entspricht, was als untere Schranke gesehen
werden kann und bestehende Algorithmen entweder in der Anzahl Farben, der
asymptotischen Laufzeit, oder beidem unterbietet. Um auch die praktische Rele-
vanz meiner Algorithmen nachzuweisen, zeige ich mittels einer experimentellen
Evaluation in einem Simulator, dass die von mir vorgeschlagenen Algorithmen ei-
ne bessere Laufzeit erreichen als bestehende Algorithmen.

effiziente kommunikation auf höherem level Da es relativ technisch
und aufwendig ist, Algorithmen im SINR-Modell zu analysieren, wird im zwei-
ten Teil ein Verfahren beschrieben, welches eine effiziente Ausführung von Algo-
rithmen, die für message-passing Modelle entwickelt wurden, ermöglicht. Damit
ermögliche ich die Analyse weiterer Algorithmen in einfacheren, weniger detail-
lierten Modellen, während gleichzeitig die effiziente Ausführbarkeit im SINR-Mo-
dell erhalten bleibt. Dazu stelle ich einen Algorithmus zur Berechnung eines Zeit-
schlitzverfahrens (Time-Division-Multiple-Access, TDMA) im SINR vor. Mittels ei-
nes solchen Zeitschlitzverfahrens kann in einem sogenannten TDMA-Schedule je-
dem Knoten ein Zeitschlitz zugewiesen werden, in dem dieser seine Nachricht
überträgt. Als Grundlage des Algorithmus verwende ich eine bestehende Knoten-
färbung, sowie zusätzlich die Position des Knotens. Aufbauend auf der Knoten-
färbung wird nun eine zweite, überregionale Knotenfärbung anhand eines geome-
trischen Gitters berechnet, siehe Abbildung 2. Die Kombination aus lokaler und
überregionaler Knotenfärbung ermöglicht die Berechnung des TDMA-Schedules,
mittels dem die Knoten Local Broadcasting in asymptotisch optimaler Zeit absol-
vieren können.

Abschließend stelle ich einen Algorithmus vor, der die globale Kommunikation,
also die Verteilung von Nachrichten im Netzwerk effizient gestalten kann. Es han-
delt sich um die Verbesserung eines bestehenden Algorithmus welche in dünnen
und/oder großen Netzwerken Laufzeitvorteile bringt. In einem mehrfach zusam-
menhängenden Netzwerk berechnet der Algorithmus eine Menge von Connected
Dominating Sets (CDS, verbundene dominierende Menge), von denen jede einzel-
ne Menge in einem Schritt das komplette Netzwerk erreichen kann. Insgesamt hat

ix

Abbildung 2: Links: Eine valide Knotenfärbung, bei der keine zwei Nachbarn die selbe
Farbe haben. Rechts wird basierend auf der Knotenfärbung und einem geometrischen Git-
ter ein TDMA Schedule errechnet, der Kommunikation im SINR-Modell in asymptotisch
optimaler Zeit ermöglicht. Es dürfen hier z.B. alle gelben Knoten in einem weißen Feld
gleichzeitig senden. Dies wird im zweiten Teil der Arbeit verwendet um Algorithmen ab-
strakterer Modelle im SINR-Modell zu simulieren.

also jeder Knoten im Netzwerk einen Nachbarn in jedem CDS, wodurch diese für
den Nachrichtentransport verwendet werden können. Die Berechnung geschieht in
einem mehrschichtigen Ansatz, wobei in jeder Schicht versucht wird, die Menge
an nicht-verbundenen Teilstücken der (zukünftigen) CDS zu verringern. Meine Ver-
besserung besteht darin, die Auswahl der zu wählenden Pfade über ein Matching
in einem konstruierten virtuellen Graphen zu bestimmen.

x

C O N T E N T S

deutsche zusammenfassung vii
1 introduction 1

2 preliminaries 7

2.1 Graph Theory . 7

2.2 Models for Distributed Computing and Wireless Communication . 8

2.2.1 LOCAL and CONGEST . 9

2.2.2 Protocol Model . 9

2.2.3 SINR Model . 9

2.2.4 Related Work in the SINR Model 11

2.3 Experiments with Sinalgo . 12

2.3.1 Experimental Setup and Transmission Probabilities 15

i algorithms for the sinr model 19

3 arbitrary transmission powers in the sinr model 21

3.1 Introduction . 21

3.2 Preliminaries . 24

3.3 Bounding the Interference . 26

3.4 Local Broadcasting . 28

3.4.1 Arbitrary but Fixed Transmission Powers 28

3.4.2 Variable Transmission Powers 30

3.4.3 On the Γζ Factor . 31

3.4.4 Experimental Evaluation . 32

3.4.5 Discussion . 33

3.5 Distributed Node Coloring and MIS 33

3.5.1 Directed Communication Graphs 34

3.5.2 The Coloring Algorithm . 35

3.5.3 MW-Coloring for Arbitrary Transmission Powers 38

3.5.4 Analysis . 39

3.5.5 Transmissions are Successful 40

3.5.6 Runtime of the Algorithm . 40

3.5.7 Correctness of the Algorithm 44

3.5.8 Asynchronous Node Wake-up 45

3.5.9 Maximal Independent Set . 46

3.6 Conclusion . 47

4 distributed (∆ + 1)-coloring in the sinr model 49

4.1 Introduction . 49

4.2 Model and Preliminaries . 52

4.2.1 Extending Local Broadcasting: 53

4.3 Simple (4∆)-Coloring . 54

xi

contents

4.3.1 Analysis of Rand4DColoring 55

4.3.2 Asynchronous Simple Coloring 58

4.4 Synchronous Color Reduction . 58

4.5 Asynchronous Color Reduction . 60

4.5.1 Notation for ColorReduction and MIS 62

4.5.2 Analysis . 64

4.5.3 Discussion . 66

4.6 Conclusion . 67

5 experimental evaluation of distributed node coloring al-
gorithms 69

5.1 Introduction . 69

5.2 Considered Algorithms . 72

5.2.1 Rand4DColoring . 72

5.2.2 ColorReduction . 73

5.2.3 MWColoring . 74

5.2.4 YuColoring . 75

5.3 Experiments . 79

5.3.1 Rand4DColoring . 80

5.3.2 ColorReduction . 83

5.3.3 MWColoring . 85

5.3.4 YuColoring . 86

5.3.5 Correcting Variants . 86

5.3.6 Performance Comparison of Coloring Algorithms 88

5.3.7 Coloring in Dynamic Networks 92

5.3.8 Highly Asynchronous Wake-up 94

5.4 Conclusion . 96

ii towards congest algorithms 99

6 simulating congest algorithms in the sinr model 101

6.1 Introduction . 101

6.2 Models and Preliminaries . 105

6.3 Deterministic Local Broadcasting Schedule 106

6.4 Simulating CONGEST Algorithms in SINR 110

6.4.1 Lower Bound for Edge-CONGEST Algorithms 111

6.4.2 On the Size of Messages . 112

6.5 Conclusion . 113

7 improved distributed construction of fcds packings 115

7.1 Introduction . 115

7.2 Preliminaries . 118

7.3 Distributed FCDS Computation . 120

7.4 Finding Connector Paths . 122

7.4.1 Helper Graph Hi . 123

7.4.2 Distributed Construction of Hi 124

7.4.3 Matching Internal Vertices 125

xii

contents

7.4.4 From Long Connector Paths to Connected Components . . 128

7.5 Conclusion . 129

iii conclusion 131

8 conclusion 133

a appendix 135

a.1 Sinalgo - Patch for SINR Model . 135

a.2 Distributed Node Coloring: Extending Local Broadcasting 137

a.3 Experiments: Other Distributions . 139

a.4 FCDS-Algorithm: Network and Components 147

bibliography 149

curriculum vitae 163

list of publications 165

xiii

1
I N T R O D U C T I O N

Wireless networks are ubiquitous. At home, in the office, in-between, and even
in nature, we are constantly connected using wireless or mobile networks. This
constant connectivity allows us to access all kinds of information from virtually
everywhere and connect with friends, family and colleagues even at remote places.
Regardless of the immense progress made for wireless networks in the last decades,
we are already on the verge of yet another technology: Large-scale wireless ad hoc
and sensor networks. In contrast to most current wireless systems, which are or- “We envision that, in

future, wireless
sensor networks will
be an integral part of
our lives, more so
than the present-day
personal computers.”
([1], 2002)

ganized according to the client-server model1, wireless sensor networks consist of
countless small sensor devices that cooperate to achieve connectivity and build a re-
liable network without any infrastructure. The sensor nodes have a limited battery
capacity, which requires them to conserve energy whenever possible. Thus, com-
munication is limited to relatively small transmission ranges requiring the nodes to
communicate using multi-hop transmissions, i.e. messages are transmitted only to
close-by nodes, which relay the message until the message reaches its destination.
Such multi-hop transmissions and the self-organizing structure of the network are
the main structural characteristics of wireless sensor networks.

Figure 1.1: Example of a wireless sensor
network in a disaster situation. The net-
work provides sensed information (e.g.
audio, movement) and multi-hop com-
munication to aid helpers.

A notable application for this technol-
ogy are sensor nodes that can used in
disaster relief, e.g. [22, 53]. In the fu-
ture such nodes could be deployed using
a plane flying over a disaster area. Al-
though the infrastructure may be destroyed
the self-coordinating nature of wireless sen-
sor networks establishes multi-hop com-
munication, which allows to monitor and
inspect the disasters impact, aggregates
sensed information, and support first re-
sponders on the scene by providing com-
munication as well as the aggregated sen-
sor data. We depict an example situation
in Figure 1.1. Another example of how such networks can be used is the track-
ing and observation of animals, as depicted in Figure 1.2 for white storks trav-

1 In the client-server model a designated central server (e.g. wireless access point, cellphone transmitter
towers) communicates with several potentially mobile clients.

1

introduction

eling from southern Germany to Spain and Africa. Such networks may in-
clude many smaller sensors with limited transmission power and only few more
powerful nodes that aggregate the data and transmit it to a base station [77].

Figure 1.2: Tracks of white storks
from Germany obtained us-
ing wireless sensors (https:
//www.movebank.org/panel_

embedded_movebank_webapp2).

Currently, large scale deployment of wireless
sensor networks is delayed due to “closed or
proprietary systems [that] are connectivity is-
lands with limited communication to the ex-
ternal world” [99]. Future wireless networks,
however, may benefit from being integrated into
the “Internet of Things” (IoT) concept, enabling
interoperability between different sensor net-
works [99]. Alcaraz et al. expect that “the po-
tential of the wireless sensor networks (WSN)
paradigm will be fully unleashed once it is [..]
becoming part of the Internet of Things” [2].
Several other applications can be found in sur-
veys on wireless sensor networks [1, 116, 132].

In this thesis we consider wireless sen-
sor networks directly after their deployment
and propose algorithms that either enable
initial communication among the nodes in
the network or solve problems and compute
structures that aid the nodes in establish-
ing more efficient communication. We an-
alyze our algorithms in the realistic Signal-

to-Interference-and-Noise-Ratio (SINR) model of interference and mathe-
matically prove their correctness and runtime bounds. The geometric
SINR model models interference based on the signal transmissions of all
nodes in the network and the attenuation of the signals with distance.

Figure 1.3: Left: Two nodes suc-
cessfully transmit to their neighbors.
Right: Interference from the upper
part prohibits a single transmission
in the lower part.

The SINR model is widely used in the elec-
tric engineering community for decades, and
has been adopted by the algorithmic commu-
nity in recent years, starting with the seminal
work of Gupta and Kumar [60]. In contrast to
earlier algorithmic models for wireless commu-
nication such as the protocol model, the SINR
model incorporates the global nature of inter-
ference instead of considering it a merely local
problem, as illustrated in Figure 1.3. Based on
the SINR model we derive neighborhood rela-
tions to model the wireless network as a graph
and tackle the problems of establishing initial or efficient communication algorith-

2 Using the dataset “Life Track White Stork SWGermany 2014-2015”, with kind approval of the Max-
Planck-Institute of Ornithology, Radolfzell, Germany.

2

https://www.movebank.org/panel_embedded_movebank_webapp
https://www.movebank.org/panel_embedded_movebank_webapp
https://www.movebank.org/panel_embedded_movebank_webapp

introduction

mically. The algorithms considered in this thesis do not require a central authority
or centralized computation, but are executed distributively on each node in the
network. The relatively high effort of designing algorithms in the SINR model
and especially proving their correctness is justified for network tasks that establish
initial or efficient basic communication among the nodes in the network. How-
ever, for higher level-task and more complex algorithms one wishes for a more
abstract model of communication. Therefore we additionally consider the well-
known message-passing model (vertex-) CONGEST , in which interference is not
considered and communication is realized in synchronized rounds. This more ab-
stract model allows that one message of limited size can be exchanged between
two neighboring nodes in each round.

overview and contribution

In this thesis we consider distributed algorithms that enable efficient communica-
tion in wireless ad hoc and sensor networks. For most part of the thesis we use the
SINR model of interference to analyze the algorithms. We divide the thesis in two
parts. In the first part we consider algorithms that establish initial communication
in the network and solve the basic problem of distributively computing a valid
node coloring. In the second part we work towards allowing more complex and
abstract algorithms to be efficiently executed in wireless sensor networks. We use
a node coloring as computed in the first part to compute an asymptotically opti-
mal local broadcast schedule, which allows to efficiently execute CONGEST algo-
rithms in the SINR model. Additionally, we present a CONGEST algorithm that
computes an efficient broadcast backbone in networks of high vertex-connectivity.
In the following we describe each chapter of this thesis in more detail.

Chapter 2: Preliminaries

We describe basic concepts of graph theory and models of wireless communication
that are used throughout the thesis. Also, we give an overview on related work in
the SINR model and introduce the simulation environment used to experimentally
evaluate our algorithms of Chapters 3 and 4. Let us pre-empt that n denotes the
number of nodes in the network and ∆ the maximum degree in the communication
graph, as this is already used in this overview.

Part I: Algorithms for the SINR Model

Chapter 3: Arbitrary Transmission Powers in the SINR Model

Most algorithmic work in the SINR model considers the case of uniform trans-
mission power. In this chapter we allow the nodes to use arbitrary transmission
powers, which may be required in heterogenous wireless sensor networks. We
show theoretical bounds on the probabilistic interference of the network based on
local guarantees on the sum of transmission probabilities from within each neigh-

3

introduction

borhood. This allows us to generalize multiple local broadcasting algorithms to
this more general case. These algorithms can be used to communicate and thereby
learn about neighboring nodes as depicted in Figure 1.4. We additionally apply
our bounds on the interference by generalizing a known distributed node coloring
algorithm to this setting, in which unidirectional communication makes the color
selection more complicated.

Karte: Peter Joseph Lenne & Gerhard Koeber, 1833

Figure 1.4: Nodes in a wireless network (left) can use local broadcasting to learn their
neighborhood relations (center) as considered in Chapter 3. Using initial com-
munication, we consider the distributed computation of node colorings (right)
in Chapters 3 and 4.

This chapter is based on joint work with Dorothea Wagner. Preliminary results
have been published in [46].

Chapter 4: Distributed (∆ + 1)-Coloring in the SINR Model

Node coloring is one of the most popular graph problems, as it has many applica-
tions both in the centralized and the distributed setting, e.g. [61, 101, 131]. In our
setting, the most popular application of node coloring is the scheduling the trans-
missions of nodes (as considered in Chapter 6). We propose two algorithms that
are both based on simple and well-known algorithms from the message-passing
models. The effort we undertake in this chapter is mostly making these algorithms
efficient in the SINR model. Our first algorithm, Rand4DColoring, is based on
phases and each node selects a new color at the end of a phase whenever it detected
a conflict in the phase. Apart from our second algorithm, this simple algorithms
already achieves the best coloring (i.e., the lowest number of colors) if restricted
to algorithms of the same runtime in the SINR model. However, our main con-
tribution in this chapter is the second algorithm, ColorReduction, which uses a
O(∆)-coloring to compute a (∆ + 1)-coloring. As it is NP-hard to color a graph
with the minimum number of colors even in a centralized way [85], a (∆ + 1)-
coloring (which is always possible) is considered the ultimate goal in distributed
computing. Both algorithms achieve a runtime of O(∆ log n) time slots, which is
optimal unless faster local broadcasting can be achieved.

This chapter is based on joint work with Roman Prutkin. Preliminary results
have been published in [40, 44].

4

introduction

Chapter 5: Experimental Evaluation of Distributed Node Coloring Algorithms

In this chapter we experimentally evaluate the distributed node coloring algorithms
proposed in the previous chapter using a network simulator. We compare them
against other coloring algorithms proposed for the SINR model using a set of dif-
ferent deployment strategies. Additionally we consider heuristic improvements to
the algorithms that achieve a significantly faster execution of the algorithms. We
observe that Rand4DColoring is very fast, requiring even less time than required
to successfully complete one local broadcast. Regarding our (∆ + 1)-coloring algo-
rithm ColorReduction, we found that its practical performance does not rely on
a valid node coloring as input but random colors are sufficient. Additionally, it is a
lot faster than competing (∆ + 1)-coloring algorithms (apart from a heuristic based
on our own Rand4DColoring algorithm). The considered heuristic improvements
reduce the runtime, while preserving the relative ordering among the algorithms.

Part II: Towards CONGEST Algorithms

Chapter 6: Simulating CONGEST Algorithms in the SINR Model

Figure 1.5: A valid node coloring combining
it with position information can be used to
compute a valid local broadcasting schedule.

The previous part was concerned with
establishing initial communication and
distributively computing a node col-
oring. In this chapter we propose
a method to compute a local broad-
casting schedule of optimal length,
which enables the efficient execution of
higher-level algorithms in the network.
We use a distributed node coloring al-
gorithm as e.g. computed in Chapter 4

and combine it with a method called di-
lution to make the schedule implied by
the coloring feasible in the SINR model.
We use position information and com-
pute the schedule in time O(∆ log n)
time slots. We additionally show that the runtime of the execution of higher-level
algorithms is essentially optimal.

This chapter is based on joint work with Dorothea Wagner. Preliminary results
have been published in [47].

Chapter 7: Improved Distributed Construction of FCDS packings.

In this chapter we improve an algorithm that operates in the CONGEST model
and computes a broadcasting backbone in networks of high vertex-connectivity.
Intuitively, the higher the vertex-connectivity, the more routes exist between any
two nodes in the network. This can be utilized by computing multiple so-called
fractional connected dominating sets (FCDSs), which can be seen as a network

5

introduction

backbones. We improve the runtime of the algorithm for large and sparse networks
by explicitly computing which paths should be selected to connect existing (but
not yet connected) dominating sets. To achieve this we construct a helper graph
on which a maximal matching algorithm selects a sufficient number of connecting
paths.

This chapter is based on joint work with Matthias Wolf.

Part III: Conclusion

Chapter 8: Conclusion

In the last chapter of this thesis we conclude with a brief summary of our main
contributions and give an outlook on interesting research directions.

6

2
P R E L I M I N A R I E S

In this chapter we introduce basic concepts and notations used throughout the
thesis. We start with graph theory, followed by models for distributed and wire-
less communication. Additionally we give an overview on related work in the
SINR model and introduce the simulation framework used in our experimental
evaluation. In the remainder of this thesis we assume some familiarity with ba-
sic mathematical concepts. A more thorough introduction to graph theory and,
e.g. the big-O-notation can be found in the books “Graph Theory” by Diestel [31]
and “Introduction to Algorithms” by Cormen, Leiserson, Rivest and Stein [26]. For
more background on probability theory we refer to “Basic Probability Theory” by
Ash [5].

2.1 graph theory

Modeling real-world problems using graphs has a rich history, starting with Euler,
who modeled the famous Eulerian problem using a graph. A directed graph G = directed graph

(V, E) consists of sets V and E ⊆ V ×V. An element v ∈ V is called vertex or node,
and (u, v) ∈ E is called edge or link and directed from u to v. For an undirected undirected graph

graph G = (V, E) we require that for each (u, v) ∈ E the edge (v, u) is also in E.
Modeling a network using a graph is very natural as each computer or sensor node
in the network can be represented by a node in the graph. For wired networks, the
network cable between computer A to computer B is modeled as an edge between
the corresponding nodes in the graph, while for wireless networks two nodes in the
graph are connected if the corresponding nodes in the network can communicate
(based on the communication model). This notation is very helpful, as it allows
to consider and solve problems based on the abstract graph and thus independent
from the actual network. We denote n := |V| as the number of nodes in the
network. Two nodes u, v ∈ V are adjacent if there is an edge (u, v) ∈ E. If u is adjacent

adjacent to v, we additionally call v a neighbor of u. We denote Nv as the set of neighbor

neighbors of v, N+
v = Nv ∪ {v}, and say that ∆ := |Nv| is the degree of v. degree

A path of length k from u to w in G is a sequence (u = v1, . . . , vk = w) of dis- path
tinct nodes v1, . . . , vk such that (vi, vi+1) ∈ E for any i ∈ {1, . . . , k − 1}. For two
nodes u, v ∈ V the hop-distance describes the number of edges that must be tra- hop-distance

versed from u to reach v. Thus, the graph-theoretic distance between two adjacent
nodes is 1 hop or simply 1. The diameter D of a graph (or network)is the maxi- diameter

7

preliminaries

mal hop-distance of any two nodes in the graph. A cycle is a sequence (v1, . . . , vk)cycle

of nodes v1, . . . , vk such that (vi, vi+1) ∈ E and v1 = vk. In a simple cycle the
nodes v1, . . . , vk−1 are distinct.

A set C ⊆ V is connected if for each pair u, v ∈ C there is a path from u to v.
Two nodes u, v ∈ V are independent if they are not adjacent, and a set I ⊆ Vindependent

is independent if all nodes in the set are pairwise independent. If the set is a
maximal set in G we call it maximal independent set (MIS). A set D ⊆ V is dominatingMIS

dominating if for each node u ∈ V it holds that either u ∈ D or a neighbor of u is in D. We
denote a connected dominating set by CDS. Note that a MIS is dominating but
not necessarily connected. A set M ⊆ E is a matching in G if no two edges in Mmatching

contain the same vertex. A matching is maximal if for each edge e ∈ V\E it holds
that M ∪ {e} is not a matching anymore. A maximum matching for G is one with
maximum cardinality among all matchings for G.

A coloring is an assignment of integers (so-called colors) to nodes of a graph. Acoloring

color cv of v is valid or proper, if no neighbor of v has the same color as v. The nodevalid

coloring problem is the classical problem of assigning each node a valid color. Note
that in a valid coloring the nodes of one color form an independent set. We denote
the set of integers {0, . . . , d} by [d] and say that a coloring is a d-coloring if uses only
colors from [d]. Let us now introduce graph-theoretic problems that are related to
wireless networks but mostly independent of the considered interference model.

In the local broadcasting problem, each node in the graph must transmit one (iden-local broadcasting

tical) message to its neighbors in the network. A time division multiple access
(TDMA) schedule, is an assignment of nodes to time slots. A TDMA schedule isTDMA

feasible in the interference model if each node successfully transmits to its neigh-
bors once during the schedule. A node coloring corresponds to a TDMA schedule 1

by assigning each color to a different time slot, however, even a valid node coloring
does usually not correspond to a feasible schedule (depending on the interference
model). A related problem is to compute a local broadcasting schedule, which en-
sures that each node in the network is successful at local broadcasting at least once
during the schedule. Broadcasting can be seen as the global equivalent to local
broadcasting. In the often considered single source broadcast problem the messagebroadcast

of only one source node must be distributed to each node in the network.

2.2 models for distributed computing and wireless communication

In this section we introduce models considered for distributed computing and wire-
less networks. Apart from the models directly used to describe our algorithms we
briefly mention related models. We use a top-down approach and start with the
most abstract models.

1 We often only refer to TDMA, however, the techniques usually transfer to related techniques such as
frequency division multiple access (FDMA) and code division multiple access (CDMA) [113].

8

2.2 models for distributed computing and wireless communication

2.2.1 LOCAL and CONGEST

In these standard message-passing models we assume a communication graph to
be given. The LOCAL model is used to study the locality of problems. Each node
in the network is allowed to transmit one message of unlimited size to each of its
neighbors. The computational power of the nodes is potentially unlimited, how-
ever, often simple computations are sufficient. The CONGEST model focuses on
the effects of congestion in distributed networks and restricts messages to a size
of O(log n). Hence, with one message only a constant number of node IDs in the
range [n] can be transmitted in this model. There are two variants of this model.
In the first variant, edge-CONGEST , the nodes may transmit a different message
to each neighbor in each round, while in the second variant, vertex-CONGEST , it
must be the same message. The edge-CONGEST model better fits the conditions
of a wired network, while vertex-CONGEST fits the specifics of wireless transmis-
sions. Thus, we use CONGEST to refer to the vertex-CONGEST model. For a
thorough introduction we refer to the book “Distributed Computing: A Locality-
Sensitive Approach” by Peleg [109].

2.2.2 Protocol Model

The term protocol model subsumes graph-based interference models that base the
decision whether a transmission is feasible or not on a transmission and a inter-
ference range [60]. The first graph-based model was introduced by Chlamtac and
Kutten [23] to study the broadcasting problem. In these models a transmission by a
node v can successfully be received by a node u in v’s transmission range iff u is not
in the transmission range of a simultaneously transmitting node. The transmission
range is usually based on the signal-to-noise-ratio and implies a communication
graph. A so-called conflict graph is determined by the interference range, which is
usually set to be at least the transmission range, however, it is an open problem to
determine how this range should be set optimally [121]. Both ranges are usually
uniform, which implies that the communication graph and the conflict graph are
both a unit disk graph [24]. Interference in these models is binary, as a node that
is in the interference range of a currently transmitting node cannot receive another
message, while the model assumes that there is no interference once the node is
not in the interference range of a transmitting node. These simplifications led to
widely use (e.g. [112, 129]), however, Shi et al. notes that if used “blindly” the
solutions obtained using this model “are likely to be infeasible in practice” [121].

2.2.3 SINR Model

In the Signal-to-Interference-and-Noise-Ratio (SINR) model, also denoted as the physi-
cal model due to its common use in electrical engineering, wireless communication
is modeled based on the signal transmission and a geometric decay of the signal
strength. It improves on the protocol model, which considers interference as a lo-

9

preliminaries

cal and binary property. It has been shown that protocols explicitly designed for
the SINR model can achieve a better performance than theoretically possible for
graph-based models in [105].

In the SINR model a transmission from a sender to a receiver is feasible if it canfeasible

be decoded by the receiver. It depends on the ratio between the desired signal
and the sum of interference from other nodes plus the background noise whether
a certain transmission is successful. Let each node v in the network use the same
transmission power P. Then a transmission from u to v is feasible if and only if

P
dist(u,v)α

∑w∈I
P

dist(w,v)α + N
≥ β,

where α ∈ [2, 6] is the attenuation coefficient, the constant β > 1 depends on
the hardware, N denotes the environmental noise, dist(u, v) the Euclidean dis-
tance between two nodes u and v, and I ⊆ V is the set of nodes transmitting
simultaneously to u. The size of messages is restricted to O(log n), as for exam-
ple in the CONGEST model. The broadcasting range rB of a node v defines thebroadcasting range

range around v up to which v’s messages should be received. Based on the SINR
constraint, the transmission range rT ≤ (P

β N)1/α is an upper bound for the broad-transmission range

casting range (with rB < rT to allow multiple simultaneous transmissions). Let
the broadcasting region Bv be the disk with range rB centered at v. We use the
broadcasting range to define the neighborhood relation, thus for a node v it holds
that Nv = {w ∈ V | dist(v, w) ≤ rB}.

To prove successful communication within the broadcasting range, we need the
concept of a proximity range rA > 2rB around a node v, as introduced in [55]. Let ∆A

vproximity range

be the number of nodes with distance less than rA to v, and ∆A := maxv∈V ∆v
A.

To establish communication using local broadcasting, sometimes ∆A is required,
however, as ∆A ∈ O(∆) knowing only ∆ introduces only a constant increase in
the runtime. We use the following mathematical fact in our analysis, which can be
found, for example, in the mathematical background section of [106].

Fact 2.1. For all n, t, such that n ≥ 1 and |t| ≤ n,

et
(

1− t2

n

)
≤
(

1 +
t
n

)n

≤ et.

In the synchronous setting, we assume that nodes start the algorithm at the same
time. In the more realistic asynchronous setting, arbitrary wake-up of nodes is al-
lowed, and we do not require synchronized time slots; precise clocks, however, are
assumed. With the so-called ALOHA trick [115], e.g. as used in [55], we use time
slots in our analysis, although the nodes do not have common time slots. We do
not require carrier sensing or free acknowledgements (ACKs) for our algorithms.no carrier sensing

no ACKs In the SINR model the medium access as well as other algorithms are often
randomized, thus they are successful with a certain probability. We require the al-
gorithms in this thesis to be correct with high probability (w.h.p.), i.e. with probabilityw.h.p.

at least 1− 1
nc , where n is the number of nodes, and c ≥ 1 a constant. With such

10

2.2 models for distributed computing and wireless communication

results, we can easily transfer local results to global results using a union bound.
Let an event Ev hold locally for each node in the network with probability 1− 1

n2

(i.e., w.h.p. with constant c = 2) and let ¬Ev be the complementary event of Ev. We
bound the probability of a failure at any node of the network by

Pr(∪v∈V¬Ev) ≤ ∑
v∈V

Pr(¬Ev) ≤ n · 1
n2 ≤

1
n1 ,

which implies that the intersection of the events has probability at least 1 − 1
n1 ,

implying that the event holds globally w.h.p., with a decreased constant c = 1.

2.2.4 Related Work in the SINR Model

In this section we give an overview on related work and related problems consid-
ered in the SINR model. This section does not replace related work stated in the
introduction of each chapter, but tries to give a broader perspective.

Gupta and Kumar initiated the study of the SINR model in the algorithmic com-
munity with their seminal work on how the throughput of a multi-hop network
scales under both the graph-based protocol model and the more realistic SINR
model [60]. They studied the throughput capacity in the average case, which be-
came known as scaling laws in large ad hoc or sensor wireless networks [107].
Studying worst case capacity in wireless ad hoc networks under the SINR was ini-
tiated by Moscibroda and Wattenhofer [73]. Since then, a lot of work in the SINR
model aimed at understanding fundamental properties of wireless communication
in these networks, such as connectivity [8, 68, 73] and capacity [32, 54, 58, 66, 67, 68,
87, 88]. For capacity one tries to select a maximal number of links that are simul-
taneously feasible in the SINR model. This is related to the so-called scheduling
problem, which is the problem of scheduling a given set of links using as few time
slots as possible. Using a constant approximation of capacity, a simple greedy algo-
rithm gives a O(log n) approximation of scheduling [87]. The scheduling problem
has been proven to be NP-complete [56, 86] and hence several approximation algo-
rithms were proposed [35, 62, 64, 69, 88, 126], among which [64, 88] are distributed
algorithms. We refer to Goussevskaia et al. [57] for a survey on approximation al-
gorithms (mostly for capacity and scheduling) in the SINR model, although some
recent results are not covered. Another interesting line of research is on so-called
SINR-diagrams [6, 7, 83], which can be seen as maps of the reception zones of
simultaneously transmitting nodes.

Most of the by now referenced works studied fundamental problems in a cen-
tralized matter, however, to operate on a wireless sensor networks algorithms must
be distributed. Hence we focus on distributed algorithms in the following. The re-
search on local broadcasting in the SINR model was initiated by Goussevskaia,
Moscibroda and Wattenhofer [55]. They gave an algorithm that achieves local
broadcast in O(∆ log n) time slots if the competition (or alternatively ∆) is known,
and O(∆ log3 n) if not. Several works considered this problem [16, 65, 133, 137].
The related problem of computing a local broadcasting schedule of length O(∆) is

11

preliminaries

considered by [16, 30, 78]. In this work we consider local broadcasting using arbi-
trary transmission powers in Chapter 3, and the computation of local broadcasting
schedules in Chapter 6. Thus, we defer detailed review of this line of research to
Section 3.1 and especially Section 6.1.

Distributed node coloring was first considered by Derbel and Talbi in the SINR
model [30], who transferred the MW-Coloring algorithm [104] to this model. Yu
et al. consider the problem in the case that the competition (or ∆) is not known
in [136]. We consider distributed node coloring algorithms in Chapters 3 and 4 and
refer to Section 4.1 for a detailed related work review.

The broadcasting problem is frequently studied in the SINR model [28, 63, 79,
80]. Currently the best results for randomized single source broadcasting (with-
out position information) are obtained by Jurdzinski et al. [80] with a runtime of
O(D log2 n) time slots, where D is the diameter of the network, and by Halldórs-
son, Holzer and Lynch [63] achieving ((D + log n) logα+1 Λ) time slots, where Λ
is the ratio between the maximal and minimal length of a communication link in
the network. Other studied variants are deterministic broadcasting [81] and multi-
message broadcasting [63, 134, 135].

Other related problems that are studied in the SINR model are data aggrega-
tion [19, 71, 94, 95], in which each node in the network has a message that must
be communicated to a specified sink node, maximal independent sets [30, 136] and
(connected) dominating sets [78, 117, 138]. Another recent line of research is on
using multiple input multiple output (MIMO) techniques that utilize multiple an-
tennas to increase wireless communication efficiency [75, 76]. Finally, Bodlaender
and Halldórsson recently proposed a generalization of the geometric SINR model
by using a decay space. In the generalization a metricity parameter (intuitively) in-
dicates how heavily the decay of a network deviates from the geometric decay [18].
Additionally they show that results obtained in the SINR model with general met-
rics can directly be transferred to decay spaces.

2.3 experiments with sinalgo

In this section we introduce the simulation framework and basic simulation settings
used in the experimental evaluations in Chapters 3 and 5

We conduct our experiments using the current version 0.75.3 of Sinalgo [33], an
open-source simulation framework for networks algorithms in Java. Sinalgo has
built-in support for a variety of communication and interference models, and is
implemented in a modular fashion, making it easy to add customized models or
algorithms. The main simulation framework offers both round-based and asyn-
chronous or event-based simulation. Apart from that connectivity, interference,
mobility, reliability, distribution, and message transmission models implement a
wide variety of settings. We shall briefly introduce the relevant parts of the simula-
tion framework in the following. In the round-based setting, in every time slot each
node is considered once. Thus, the node handles all successfully received messages
and performs one step. Both the message handling and the step depend on the im-

12

2.3 experiments with sinalgo

plementation of the network algorithm. In the event-based simulation, each action
of the algorithm must be invoked by a timer. Despite the absence of rounds or
slots, we denote the time required for one transmission as a time slot. Mobility is
not supported in this setting due to the high number of events and the correspond-
ing updates of all positions (required for example for connectivity and interference
computations). Let us now consider the models used in our experiments.

Connectivity: To determine the neighborhood relations we implemented a new
model, which calculates the broadcasting range directly based on the SINR param-
eters used in the simulation. Based on the broadcasting range, the neighbors of a
node v are determined as the nodes within this range of v.

Interference: Successful reception of the nodes transmission is determined by
the standard geometric SINR model in all our simulations. A flaw in the SINR-
module delivered with Sinalgo in version 0.75.3 drops some transmissions although
they are feasible in the SINR model. We show how to correct this in Appendix A.1.
For more details on the SINR model itself we refer to Section 2.2.3.

Distribution: We mostly deploy our nodes on a square area of 1000 m× 1000 m
using several distribution strategies. We use the built-in random and grid model,
which deploy the nodes uniformly at random and according to a regular two-
dimensional grid, respectively. Custom models we use are a perturbed grid, in
which each nodes grid position is uniformly at random drawn from a 1 m2 area
centered at the original grid position, and a cluster distribution which distributes
all nodes in a predefined number of clusters (we use 10 clusters). Additionally, we
use a combination of the cluster model with the other models, in which 50 % of
the nodes are distributed according to the cluster model and the remaining nodes
according to either the random, grid or perturbed grid model. Our distribution
models are illustrated in some example networks in Figure 2.1. To increase compa-
rability of our experiments we use a precomputed set of position files.

Message transmission: Messages are transmitted with a certain probability in
each time slot. We usually compute the transmission probability based on a trans-
mission constant, and a parameter depending on the density of the network, which
we call transmission parameter. We introduce the parameters used to determine
the transmission probability in the next section. Regarding the time required for
a message transmission we assume constant time message transmission. As all
messages are of size at most O(log n) in our algorithms, this fits the algorithms
requirements. To ensure that a message can be transmitted in one time slot, which
is of length 1, we use a transmission time of 0.999 time slots2. We do neither allow
simultaneous transmission and reception nor the simultaneous reception of several
packets.

Reliability: Throughout our simulations we use so-called reliable transmission,
which implies that transmitted messages are received unless they are discarded by
the interference model.

2 Despite the transmission time of less than 1, we set 1 as the duration of a time slot in the asynchronous
case as well.

13

preliminaries

(a) Random deployment (b) Two-dimensional grid

(c) Perturbed two-dimensional grid (d) Cluster deployment

(e) 50 % of nodes in cluster
deployment, 50 % as two-
dimensional grid

(f) 50 % of nodes in cluster
deployment, 50 % as per-
turbed grid

(g) 50 % of nodes in cluster
deployment, 50 % as ran-
dom deployment

Figure 2.1: Sample networks illustrating our deployment strategies.

14

2.3 experiments with sinalgo

Mobility: Sinalgo supports mobility based on either random waypoints, or ran-
dom directions. We use the latter model, as it consistently provides a balanced
distribution of the nodes on the area, while the random waypoint model would
lead to a high concentration of nodes in the center of the deployment area [10].

Our algorithms are implemented in subclasses of the node class, which plugs
into the described models and provides standard transmission and reception fea-
tures.

2.3.1 Experimental Setup and Transmission Probabilities

The parameters for the geometric SINR model of interference are set as follows.
We use a value of α = 4 for the attenuation coefficient, which is assumed to be
between 2 for a free field environment and 6 for buildings in practice [114]. We
use a threshold of β = 10 and an environmental noise value of 10−9, which are
both within the ranges often reported [123, 139]. We use a uniform transmission
power, which is set to P = 1 for all nodes, unless described otherwise in the specific
experiment. These parameters lead to a transmission range of 100 m, an additional
broadcasting range parameter of 2 leads to the broadcasting range of about 84 m,
cf. Section 2.2.3. We often use a deployment area of 1000 m× 1000 m with 1000
nodes. All experiments are conducted using 100 runs with differing random seeds,
where randomization is mainly used to decide whether a node transmits or not in
a round based on the transmission probability.

To determine the transmission probability the nodes usually know the maxi-
mum degree ∆ in the network. For initial communication in the SINR model,
as for example in the local broadcasting algorithm by Goussevskaia, Moscibroda
and Wattenhofer [55], a similar value ∆̄ is used. This value denotes the number
of nodes in the so-called proximity region of the node and is asymptotically the
same as ∆. We use a parameter txConst to compute the transmission probability txConst

as txConst

∆ or txConst

∆̄ . The runtime of local broadcasting using both ∆ and ∆̄ is de-
picted in Figure 2.2 for a range of transmission constants. For this experiment we
use 1000 nodes uniformly at random deployed on the standard deployment area
of 1000 m× 1000 m. As local broadcasting requires all nodes to transmit one mes-
sage to their respective neighbors, we measure the number of time slot until the
last node successfully transmitted its message to its neighbors as runtime of local
broadcasting. We show the results in Table 2.1, and additionally in Figure 2.2 using
standard boxplots. The boxes range from the first to the third quartile, while the boxplot

marker in the box represents the median. The whiskers extend to the largest and
smallest value within 1.5 times the inner-quartile range. Results not in this range
are shown as outlier, marked by a circle.

We observe that using both ∆̄ and ∆ results in similar runtimes with ∆ achieving
slightly faster results. The lowest runtime of 5014 and 4592 time slots are obtained
for txConst = 0.3 using ∆̄ and txConst = 0.15 using ∆, respectively. The higher
txConst is partially compensated by the higher ∆̄, resulting in similar transmission
probabilities. The best runtimes for example are achieved in both cases using an

15

preliminaries

0.05/0.1 0.1/0.2 0.15/0.3 0.2/0.4 0.25/0.5 0.3/0.6 0.35/0.7

Transmission constant txConst (left for max. degree/right for prox. range)

0

5000

10000

15000

20000

25000
N
u
m
b
er

of
ti
m
e
sl
ot
s

Max. degree

Prox. region

Random

Figure 2.2: Runtime of local broadcasting using ∆ (max. degree) and ∆̄ (number of nodes
in the proximity region) for several transmission constants. The best average
runtimes are achieved using a transmission constant of 0.15 for ∆ and 0.3 for ∆̄.
txConst divided either by ∆ or ∆̄ results in the transmission probability.

Table 2.1: Comparison of local broadcasting using ∆̄ and ∆ to determine the transmission
probability and duration.

Using ∆̄
txConst 0.1 0.2 0.3 0.4 0.5 0.6 0.7

runtime 9017 5846 5014 5113 6066 7036 8585

Using ∆
txConst 0.05 0.1 0.15 0.2 0.25 0.3 0.35

runtime 7580 5104 4592 5075 6197 8112 11 495

average transmission probability of 4.11× 10−3. Based on the experimental results,
the fact that ∆̄ ∈ O(∆) and the impossibility to distributively compute ∆̄ based
only on the network topology or the neighborhood relations, we use ∆ for our
experiments.

We repeat the experiment using ∆ for the remaining distributions and report the
best transmission constant txConst along with the maximum and average degree,
the resulting average runtime and the resulting duration value in Table 2.2. We
observe that the optimal value of txConst varies slightly depending on the deploy-
ment strategy, however, this is only marginal. The required changes in the trans-
mission probability for local broadcasting to operate in the different deployments
is mostly done automatically by incorporating the maximum degree ∆. Based on
the runtime we set the parameter duration, which denotes the number of time
slots accounted for local broadcasting for the deployment strategies.

16

2.3 experiments with sinalgo

Table 2.2: Parameters that achieve successful local broadcasting in the different distribu-
tions. R=Random, G=Grid, PG=PerturbedGrid, C=Cluster

Distribution R G PG C C&R C&G C&PG

txConst 0.15 0.15 0.10 0.30 0.25 0.20 0.20

Maximum
degree ∆

36.6 20.0 27.9 182.0 106.0 101.8 100.8

Average degree 20.6 18.6 20.9 93.8 39.4 38.7 39.9

Transmission
probability

4.11×
10−3

7.5×
10−3

3.59×
10−3

1.71×
10−3

1.46×
10−3

2.02×
10−3

2.55×
10−3

Avg. runtime of
a local broadcast

4592 3345 4845 12 903 8062 8183 8089

duration 4600 3400 4900 12 900 8100 8200 8100

17

Part I

A L G O R I T H M S F O R T H E S I N R M O D E L

3
A R B I T R A RY T R A N S M I S S I O N P O W E R S I N T H E S I N R M O D E L

In the light of energy conservation and the expansion of existing wireless networks,
wireless networks face the challenge of nodes with heterogeneous transmission
powers. For more realistic models of wireless communication, however, only few
algorithmic results are known. In this chapter we consider nodes with arbitrary,
possibly variable, transmission powers in the so-called physical or SINR model.

Our first result is a bound on the probabilistic interference from all simulta-
neously transmitting nodes on receivers. This result implies that current local
broadcasting algorithms can be generalized to the case of non-uniform transmis-
sion powers with minor changes. The algorithms run in O(∆Γζ log n) time slots if
the maximum degree ∆ is known, and O((∆ + log n)Γ2ζ log n) otherwise, where Γ
is the ratio between the maximum and the minimum transmission range and ζ

is the dimensionality of the metric space (e.g., ζ = 2 for the Euclidean plane, cf.
Section 3.2). The broad applicability of our result on bounding the interference is
further highlighted by generalizing a distributed node coloring algorithm to this
setting.

We generalize the so-called MW-coloring [104] algorithm to directed networks in
metric space and achieve O(Γζ∆) colors with a runtime of O((∆ + `Γ2ζ)∆Γζ log n)
time slots, where ` is what we call the length of the longest unidirectional path in
the network. Despite the increased complexity due to unidirectional communica-
tion links the algorithm is still operational in the asynchronous setting and can be
simplified to a maximal independent set (MIS) algorithm.

This chapter is based on joint work with Dorothea Wagner. Preliminary results
are published in [46] and as a full version online available [45].

3.1 introduction

One of the most fundamental problems in wireless ad hoc networks is to enable
efficient communication between neighboring nodes. This problem recently re-
ceived increasing attention among the distributed computing community, as more
refined models of wireless communication became established in algorithms re-
search. Among these models, the so-called physical or SINR (Signal-to-Interference-
and-Noise ratio, cf. Section 2.2.3) model is most prominent and promising due to
its common use in the engineering literature, e.g. [127]. So far, however, most
algorithmic work in the SINR model is restricted to the centralized setting or the

21

arbitrary transmission powers in the sinr model

case of uniform transmission powers. In the second case, local broadcasting [55,
65, 133, 137] provides initial communication by enabling each node to transmit one
message such that all intended receivers (i.e., neighbors) are able to decode the
message.

In this chapter we consider the problem of local broadcasting in the SINR model
under arbitrary transmission powers, i.e., each node has its individual, possibly
even variable, transmission power. We are the first to consider this setting from
an algorithmic perspective. While some distributed node coloring algorithms do
consider the transmission powers to be variable they either increase the transmis-
sion powers synchronously and thus effectively operate on an uniform power net-
work [30], or differ by a fixed factor of only 3 [136]. One of the few lines of research
that leverages non-uniform transmission powers is on link scheduling and capac-
ity maximization [68, 88]. There, however, each node is usually considered to be
either transmitter or receiver. If a node has multiple roles it might be forced to
adapt its transmission power frequently. On the other hand, the effects of heteroge-
neous transmission powers are considered in simulation-based studies for example
in [49, 111]. The case of unidirectional communication links, which are a result of
heterogeneous transmission powers, is also studied frequently [128, 140].

We assume the general setting of a metric space with bounded growth property
(cf. Section 3.2), which generalizes the Euclidean space, and the harsh environment
of a wireless ad hoc or sensor network just after deployment. In particular, we
consider multi-hop networks where the nodes do initially not have any information
about whether other nodes are awake, have already started the algorithm or in
which phase of the algorithm they are. The only knowledge they may have is
an upper bound on the maximum node degree and a rough bound on the total
number of nodes in the network. Note that our model does not assume a collision
detection mechanism.

Related Work

The study of local broadcasting, and interference in wireless communication in gen-
eral, has only emerged recently. Especially in classical distributed message passing
models such as LOCAL or CONGEST , the transmission of a message to neigh-
bors is guaranteed, see Section 2.2.1 or [109]. However, this is not the case for wire-
less networks. Hence interference in general and local broadcasting in particular
must be considered in the more realistic SINR model. Goussevskaia, Moscibroda
and Wattenhofer [55] were the first to present local broadcasting algorithms in the
SINR model. Their first algorithm assumes an upper bound ∆ on the number of
neighbors to be known by the nodes and solves local broadcasting with high prob-
ability in O(∆ log n) time. Their second algorithm does not assume this knowledge
and requires O(∆ log3 n) time slots using a slow-start technique to find the optimal
transmission probability. The second algorithm has subsequently been improved
by Yu et al. to run in O(∆ log2 n) [137], and again to O(∆ log n + log2 n) [133].
This bound has been matched by Halldórsson and Mitra in [65] using a more ro-
bust algorithm (see Section 3.4.1), along with an algorithm that uses free acknowl-

22

3.1 introduction

edgements to achieve a time complexity of O(∆ + log n). This result was recently
improved by Barenboim and Peleg to O(∆ + log n log log n) time slots [16].

Research on distributed node coloring, which is the problem of assigning colors
to nodes such that no two neighbors have the same colors (cf. Section 2.1), dates
back to the first days of distributed computing almost 30 years ago. Let us focus on
algorithms for the SINR model in the following, we provide more detailed related
work for distributed node coloring in Chapter 4. An algorithm that colors the
network with O(∆) colors in O(∆ log n) time was presented by Moscibroda and
Wattenhofer in [103]. However, they assume a graph-based interference model.
The algorithm has subsequently been improved in [104] and [120] and transferred
to the SINR model by Derbel and Talbi [30] with the same asymptotic bound on
the number of colors and runtime as the original algorithm. Yu et al. consider
the problem of coloring the network with only ∆ + 1 colors in [136] and present
algorithms that run in O(∆ log2 n) time slots and O(∆ log n + log2 n) if the nodes
transmission power can be tuned by a constant factor.

Contributions

In this work we are the first to consider arbitrary transmission powers in the SINR
model, and thus networks with unidirectional links, for the problems of local broad-
casting, distributed node coloring and maximal independent set (MIS). Our first
contribution, however, is of more general nature and provides an abstract method
for bounding the interference in these networks. We prove that transmissions are
feasible based on the sum of local transmission probabilities. This result is widely
applicable, as verifying that the sum of local transmission probabilities is bounded
as required is relatively simple.

Our second result transfers algorithms for local broadcasting presented in [55,
65] to the case of arbitrary transmission power assignment. We achieve local broad-
casting in O(∆Γζ log n) time slots if the maximum degree ∆ is known and O((∆ +

log n)Γ2ζ log n) otherwise, where Γ is the ratio between the largest and the small-
est transmission range. Note that these bounds match those for the uniform case
if the algorithms are run on such networks. Additionally we discuss the case of
variable transmission powers, which achieves similar bounds, but allows nodes to
change the transmission power in each time slot instead of fixing it for a complete
execution of local broadcasting.

Finally we give an algorithm for distributed node coloring in these harsh en-
vironments. The algorithm is based on an algorithm by Moscibroda and Wat-
tenhofer [104], which was adapted to the uniform SINR model by Derbel and
Talbi [30]. Fundamental changes to the algorithm itself are required due to the
increased complexity of the network structure, such as unidirectional communica-
tion links. We introduce a new network parameter ` that measures the length of
the longest simple unidirectional path in the partially directed network and prove
that our distributed node coloring algorithm colors the network with O(Γζ∆) col-
ors in O((∆+ `Γ2ζ)∆Γζ log n) time slots. By simplifying the algorithm we obtain an
algorithm that computes an MIS in O((∆ + `)∆Γζ log n) time slots. Note that our

23

arbitrary transmission powers in the sinr model

algorithms are fully operational under asynchronous node wake-up and match the
runtime of the algorithms designed for the uniform case apart from a factor of ∆,
as ` and Γ are 1 in this case.

Outline

In the following section we introduce the notation used in this chapter. We es-
tablish a bound on the probabilistic interference of nodes outside the proximity
region based on the sum of transmission probabilities from within each transmis-
sion region in Section 3.3. Afterwards, we apply this result to previous results on
local broadcasting and transfer current algorithms to the more general model in
Section 3.4. The applicability of our results is highlighted in Section 3.5, as we
consider the problem of distributed node coloring and generalize a well-known al-
gorithm from the case of uniform transmission powers. We conclude in Section 3.6
with some final remarks.

3.2 preliminaries

We consider a wireless network consisting of n nodes that are placed arbitrarily
in a metric space of dimension ζ with bounded growth property (see below) and
distance function dist(·, ·). We assume that all nodes in the network know their ID
and an upper bound ñ on n, with ñ polynomial in n. As the upper bound on n
influences our results only by a constant factor, we usually write n even though only
the upper bound ñ may be known by the nodes. Also, we assume that nodes know
lower and upper bounds on the transmission powers or the transmission ranges.
This assumption is realistic, as lower bounds for reasonable minimal transmission
ranges can be computed while upper bounds (for specified frequencies) are often
regulated by public authorities.

We shall briefly repeat some notation for the SINR model introduced in Sec-
tion 2.2.3 as we use heterogeneous transmission power and a general metric space
in this chapter. A transmission from node v to node w is successful iff the SINR con-

dition holds:
Pv

dist(v,w)α

∑u∈I
Pu

dist(u,w)α
+N
≥ β, where Pv (Pu) denotes the transmission power of

node v (u), α is the attenuation coefficient, β ≥ 1 is a hardware-defined constant, N
is the environmental noise and I is the set of nodes transmitting simultaneously
with v. Generalizing the definitions of Section 2.2.3 we define the transmission range
of a node v to be rT

v = (Pv
Nβ)

1/α. The global maximum transmission range in the
network is denoted by R̄, the minimum range by R and the ratio between R̄ and RR̄

R by Γ = R̄
R . Due to the SINR constraints, a node v cannot reach another node w

Γ which is located at the maximum transmission range of v, as soon v transmits
simultaneously with any other node in the network. As having only one simul-
taneous transmission in the network is not desired, we use a parameter δ > 1 to
determine the distance up to which the nodes messages should be received. We
call this distance the broadcasting range rB

v = (Pv
δNβ)

1/α = δ−1/αrT
v and the region

within this range from v the broadcasting region Bv. We denote the maximum

24

3.2 preliminaries

number of nodes within the broadcasting range rB
v of any v by ∆. As the maximum

number of nodes in a nodes transmission range is in O(∆), we sometimes denote
this value by ∆ as well for simplicity. Note that ∆ is known by the nodes only if ∆

stated with the corresponding algorithms. We define the proximity region around v
as the area closer than kR̄ to v for a constant k ≥ 3. Let R̄k(v) denote the set of
nodes in the proximity region around v. An illustration of the various ranges and
regions around node v is depicted in Figure 3.1.

We denote the transmission probability of a node v by pv. The probabilistic inter-
ference Ψu

I = ∑w∈I
pwPw

dist(w,v)α is the expected interference experienced at node u from
the nodes w ∈ I , which transmit with probability pv and transmission power Pv.
Also, recall that two nodes u, v are independent if neither u is in v’s broadcasting
range nor v in u’s.

1
δ1/α rT

v

rT
v

rB
v

2R̄
3R̄

4R̄
. . .

. . .

C1 C2

. . .

C0
Bv

v

proximity region
(for k = 3)

Figure 3.1: The different ranges and regions of v along with the rings around v.

Let us now consider the metric space with distance function dist(·, ·) and dimen- metric space

sion ζ. We denote the set of nodes in a ball of radius r around a node v by B(v, r) = ζ

{w | dist(v, w) ≤ r}. Let χ(r1, r2) be the number of nodes required to cover a ball of χ(·, ·)
radius r1 with balls of radius r2 ≤ r1. Then the bounded growth property holds if for
a constant c > 0 and an arbitrary radius r ≥ 0 it holds that B(v, c · r) can be covered
by O(cζ) balls of size B(v, r), i.e. χ(c · r, r) = O(cζ). Note that this property holds,
for example, for the Euclidean plane, where χ(c · r, r) ≤ 2π

3
√

3
· (c + 2)2 = O(c2)[55,

Fact 3.3]. This property ensures that the number of independent nodes around a
node v is bounded.

Lemma 3.1. The number of independent nodes in a ball of radius r1 around v is upper
bounded by χ(r1, R/2)

Proof. Let us consider an arbitrary node w with dist(v, w) ≤ r1. It holds that within
distance R there cannot be another independent node, as otherwise there must be a
communication link between these two nodes. Thus, for balls of radius R/2 around
each node in the ball of radius r1, these balls do not intersect. It follows that there
can be at most χ(r1, R/2) leader nodes in a maximal transmission range.

It holds that χ(R̄, R/2) = O(Γζ). In order to simplify our notation, we assume
the constant hidden in O(Γζ) to be 1. In particular, we say that χ(R̄, R) ≤ Γζ ,
χ(kR̄, R/2) ≤ Γζ and also that the number of independent nodes required to cover
the nodes in “rings” (B(v, (c + 1) · R̄)− B(v, c · R̄)) around v (cf. the definition of

25

arbitrary transmission powers in the sinr model

rings in Section 3.3) is upper bounded by cΓζ . Note that this simplification does
not affect our asymptotic bounds.

We do not require a global clock or synchronized time slots in our algorithm.
Decent local clocks are sufficient, while time slots are only required in the analysis.
Let us conclude this section by stating a mathematical facts used in the analysis.

Fact 3.2 ([82]). Given a set of probabilities p1, . . . , pn with ∀i : pi ∈ [0, 1
2], it holds that:(

1
4

)∑n
k=1 pk

≤
n

∏
k=1

(1− pk)

3.3 bounding the interference

In contrast to other models for interference in wireless networks, such as the pro-
tocol model, the SINR model captures the global aspect of interference and reflects
that even interference from far-away nodes can add up to a level that prevents the
reception of transmissions from relatively close nodes. To ensure that a given trans-
mission can be decoded by all nodes within the broadcasting range, one usually
proves that reception within a certain time interval is successful w.h.p. Such a proof
can be split in two parts.

1. The probability that a node transmits within a proximity region around a
sender is constant.

2. Let P
2high(v) be the event that the interference from all nodes outside of the

proximity region of v on nodes in the broadcasting region of v is too high.
Show that P

2high(v) has constant probability.

We shall follow this scheme by considering the transmission of an arbitrary node,
and prove that both conditions hold with constant probability in each time slot.
Hence a local broadcast is successful with high probability after a sufficient number
of time slots.

In order to make the result general and applicable to many different settings,
we make only one very general assumption. In particular we assume the sum
of transmission probabilities from within a broadcasting region to be bounded by
a constant. This is very common and allows us to apply the analysis from this
section in the following Sections 3.4 and 3.5 to generalize algorithms designed
for the uniform transmission powers case to the more general case of arbitrary
transmission powers considered in this chapter1.

Definition 3.3. Assume a network of n nodes with at most ∆ nodes in each transmission
region. Let γ be the upper bound on the sum of transmission probabilities from within aγ

transmission range.

1 Note that we can directly apply the result presented in this section to many algorithmic results in the
SINR model. The algorithms themselves, however, often rely on bidirectional communication links
and thus cannot be translated to the more general case directly.

26

3.3 bounding the interference

In this section we assume the upper bound on the sum of transmission probabil-
ities from within each transmission region to be

γ :=
δ− 1

βΓζ ∑∞
i=1

1
iα−1

. (3.1)

This bound can be realized, for example by requiring all nodes to transmit with
probability γ/∆. Another option is the so-called slow-start technique, cf. Sec-
tion 3.4.1. The constant is carefully selected to help bound the interference from
all simultaneously transmitting nodes in the network in the proof of Theorem 3.6.
As γ ≤ 1 may not be true for a large δ, we use γ := 1

βΓζ ∑∞
i=1

1
iα−1

if otherwise γ > 1.

Let us now prove a bound on the probability that a close-by node transmits, which
is required for the main theorem of this section.

Lemma 3.4. Assume the sum of transmission probabilities from within a transmission
range is bounded by γ. For an arbitrary node v the probability that no node in the proximity
region of v transmits in a given time slot is at least 1/4.

Proof. The probability that no node of R̄k(v) transmits in a single time slot (apart
from possibly v) is at least

PR̄k(v)
none ≥ ∏

u∈R̄k(v)
(1− pu) ≥

(
1
4

)∑u∈R̄k(v)
pu

≥
(

1
4

)Γζ ·γ
≥
(

1
4

)
,

where the second inequality holds due to Fact 3.2, the third inequality since the
maximal number of independent nodes within distance kR̄ of v is upper bounded
by Γζ by considering the number of balls of radius R/2 required to cover a ball of
radius kR̄, and the bound γ on the sum of transmission probabilities from within
each transmission region. The last inequality holds since Γζ · γ ≤ 1

β ∑∞
i=1

1
iα−1

< 1.

Let us now consider nodes that are not in the proximity region of the transmitting
node. To bound the interference originating from these nodes, we use rings around
the transmitting node and bound the probabilistic interference from within each
ring. Note that although our definition of the proximity region and rings differ,
similar arguments are made, for example, in [55, 65].

Definition 3.5. For a node v, the ring Cv
i , i ≥ 0, is defined as the set of nodes with distance ring

Cv
iat least (i + 1) · R̄ and at most (i + 2) · R̄. For a ring Cv

i , the extended ring Cv
i+ is defined

as the set of nodes with distance at least i · R̄ and at most (i + 3) · R̄.

Note that for a ring Cv
i , the extended ring Cv

i+ is defined such that the nodes
in the transmission region of an arbitrary node w ∈ Cv

i are contained in Cv
i+. If

it is clear to which node v the rings refer, we write Ci and Ci+ for brevity. An
illustration of the concept of rings in our context is depicted in Figure 3.1.

Theorem 3.6. Let the sum of transmission probabilities from within each transmission re-
gion of the network be upper bounded by γ. Given a node v of the network, the probabilistic
interference Ψu

R̄k(v)
from nodes outside the proximity region of v on nodes u ∈ Bv is upper

bounded by (δ− 1)N.

27

arbitrary transmission powers in the sinr model

Proof. Let us first bound the interference from a single ring Ci on a node u ∈ Bv.
By a simple geometric argument and the simplification described in Section 3.2 it
holds that the maximal number of independent nodes in the extended ring Ci+ is at
most i · Γζ . By combining this number with the sum of transmission probabilities
from within each broadcasting region, we can bound the interference from the
nodes in Ci on u. As each node in the ring Ci has distance greater than i · R̄ from
u, it follows that the probabilistic interference Ψu

Ci
caused by nodes in Ci on u is at

most

Ψu
Ci
≤ ∑

w∈Ci+

pwPw

(iR̄)α
≤ i · ΓζγβN

iα
·
(

R̄
R̄

)α

≤ γβNΓζ

iα−1 .

Summing over all rings it follows

Ψu
R̄k(v)

≤
∞

∑
i=k−1

Ψu
Ci
≤ γβNΓζ

n

∑
i=1

1
iα−1 ≤ (δ− 1)N,

where the second inequality holds by inserting the bound on Ψu
Ci

and the fact
that there are at most n non-empty rings (empty rings with a lower i potentially
substitute for higher rings that contain a node). The last inequality follows from
the upper bound on γ, stated in Equation 3.1.

3.4 local broadcasting

In the previous section we have shown how to bound the probabilistic interference
from simultaneously transmitting nodes based on an upper bound on the sum of
transmission probabilities from within each broadcasting region. Such bounds are
known for many algorithms in the case of uniform transmission powers, and hence
we can plug our results into a large body of related work and transfer results with
minimal additional effort to the case of arbitrary but fixed transmission powers.
The results hold in any metric space with bounded growth property, although the
original analysis is often restricted to the Euclidean plane. In the following section
we briefly state our results regarding local broadcasting along with proof sketches
as required. In Section 3.4.2 we discuss our results regarding variable transmission
powers.

3.4.1 Arbitrary but Fixed Transmission Powers

The current results on local broadcasting with the knowledge of ∆ are based on
transmitting with a fixed probability in the order of 1/O(∆) for a sufficient number
of time slots inO(∆ log n), while results that do not assume the maximum degree ∆
to be known are usually based on a so-called slow-start mechanism. Let us first
consider the case in which each node knowns the maximum degree ∆.

28

3.4 local broadcasting

With knowledge of the maximum degree ∆

Using the result on local broadcasting by Goussevskaia, Moscibroda and Watten-
hofer [55], it is easy to show that local broadcasting can be realized in O(∆Γζ log n)
time slots by simply adapting the transmission probability to our requirements.

Theorem 3.7. Let the transmission probability of each node be p = γ/∆, and c > 1
an arbitrary constant. A node v that transmits with probability p for 8(c/p) log n =

O(∆Γζ log n) time slots successfully transmits to its neighbors w.h.p.

Proof. Since the transmission probability is chosen such that the sum of transmis-
sion probabilities from within each proximity range is at most γ, we can directly
apply Theorem 3.6. Using the theorem, combined with the standard Markov in-
equality, the probability that the interference from nodes outside of the proximity
region is too high (i.e., higher than (δ − 1)N) is less than 1/2. Lemma 3.4 states
that the probability that no node within the proximity range of a node transmits is
greater than 1

4 . Combining both probabilities with the transmission probability p
implies that the probability of a successful broadcast is at least p/8 in each time slot.
Thus, transmitting for 8(c/p) log n time slots results in a successful local broadcast
with probability at least 1− 1

nc .

Without knowledge of ∆

Let us now consider the case that the nodes are not given a bound on the maximum
degree ∆. In contrast to the previous algorithm for local broadcasting, the “optimal”
transmission probability is initially unknown.

In order to create local broadcasting algorithms for this model, a slow start mech-
anism can be used [55, 65, 133, 137]. Using such a mechanism each node starts with
a very low transmission probability in the order of 1/n and doubles the probability
until a certain number of transmissions are received, and the probability is reset
to a smaller value. With such a mechanism, local broadcasting in the (uniform-
powered) SINR model can be achieved in O(∆ log n + log2 n) [65, 133]. Although
different forms of the slow start mechanisms are used they reset the transmission
probabilities such that the sum of transmission probabilities in each transmission
region can be upper bounded by a constant.

Let us now consider the algorithm of Halldórsson and Mitra, described in [65].
We adapt the algorithm so that local broadcasting provably works with high prob-
ability in the more general model considered in this chapter. This is done by mod-
ifying the maximum transmission probability to be γ/(16Γζ) instead of 1/16 by
simply changing Line 7 of Algorithm 1 in [65] from py ← min{ 1

16 , 2py} to py ←
min{ γ

16Γζ , 2py}. This small change allows us to bound the sum of transmission
probabilities as required.

Lemma 3.8. Let N be a network with arbitrary transmission power assignment, asyn-
chronous node wake-up and let all nodes execute Algorithm 1 from [65] with maximal
transmission probability set to γ/16Γζ . Then the sum of transmission probabilities from
within each proximity region is upper bounded by γ/2.

29

arbitrary transmission powers in the sinr model

Proof. The corresponding result is proven in [65, Lemma 2]. The proof of Lemma 2

as stated holds only for the broadcasting range corresponding to R, and states
that the sum of transmission probabilities from such a broadcasting range is up-
per bounded by γ/2Γζ . However, Lemma 2 can be extended to the broadcasting
range of an arbitrary node v. For an arbitrary node v the sum of the transmission
probabilities in rT

v is at most

∑
w∈rT

v

pw ≤ Γζ γ

2Γζ
≤ γ

2
,

where the first inequality follows from Lemma 3.1, which bounds the number of
independent nodes in rB

v , and the upper bound on the sum of transmission proba-
bilities from within minimal broadcasting ranges (cf. [65, Lemma 2] with modified
maximal transmission probability).

By combining this result with Theorem 3.6, Lemma 3.4, and a similar argumen-
tation as in the case of known ∆, the transmission is successful at least once with
high probability. The correctness of the algorithm follows with the original argu-
mentation in [65]. Using the modified Algorithm 1 from [65], we get for the more
general case of arbitrary transmission power assignment.

Theorem 3.9. There exists an algorithm for which the following holds w.h.p.: Each node v
successfully performs a local broadcast within O((∆ + log n)Γ2ζ log n).

The results presented in this section generalize the corresponding results for the
uniform case to the case of arbitrary transmission powers. As Γ = 1 in the uni-
form case, the original bounds on the runtime are matched with our more general
analysis.

Remark: Note that the local broadcasting algorithm by Yu et al. [133] has the
same runtime guarantees as the algorithm by Halldórsson and Mitra [65], but was
proposed slightly earlier. However, their algorithm cannot be transferred to the
case of arbitrary transmission powers as it relies on bidirectional communication
to operate. Specifically, their algorithm computes an MIS, acquires information
about dominated nodes and then assigns transmission intervals to the dominated
nodes.

3.4.2 Variable Transmission Powers

To achieve a local broadcast with high probability, the transmission power of a node
is required to be fixed for at least one full round of the respective local broadcasting
algorithm. In this section, we consider a more general setting and allow the nodes
to change the transmission power for each time slot. As it is not initially clear
which nodes should be considered as intended receivers in such a setting, our
result states the achieved broadcasting range, based on the number of times certain
transmission power levels were exceeded within the considered time interval. Note
that we assume ∆ to be known to the nodes in this section. We shall now briefly
discuss the required notation.

30

3.4 local broadcasting

We consider the time slots in an interval [1, t]. For the case of multiple time
intervals, a transmission power of 0 can be added to fill the gaps between the
intervals. Let {0, R=̂P[0]

v , P[1]
v , . . . , P[k]

v } be the set of transmission powers used by v,
such that P[j]

v < P[j+1]
v for j = 0, 1, . . . , k− 1. We denote the number of time slots v

used a transmission power of at least P[j]
v by T[j]

v . Let r[j]v be the broadcasting range
corresponding to P[j]

v for the remainder of this section.

Theorem 3.10. Let all the nodes in the network transmit with probability at most p = γ/∆
and a variable transmission power in the range between R and R̄. Let v be an arbitrary
node that transmits with probability p and variable transmission powers during the inter-
val [1, t]. For j maximal such that T[j]

v > 8(c/p) log n, all nodes closer to v than r[j]v

received v’s message w.h.p. for an arbitrary constant c > 1.

Proof. Let us first note that the transmission power of 0 may be implemented by
setting the transmission probability for these time slots to 0 and ignoring them
towards T[j]

v . Thus R 6= 0 and we can apply the results of Section 3.3. We shall now
prove the theorem.

Let j be maximal such that T[j]
v > 8(c/p) log n. It holds that v transmits with

probability p and transmission power at least P[j]
v in at least 8(c/p) log n time slots.

Let us consider such a time slot i. As the sum of transmission probabilities from
within each proximity range is obviously bounded by γ, we can apply our method
to bound the interference. It holds due to Theorem 3.6 and Lemma 3.4 that a
message transmitted by v in time slot i is received by nodes closer to v than r[j]v

with probability at least 1/8. Combined with the transmission probability p and
considered over 8(c/p) log n time slots, this results in a success probability of at
least 1− 1

nc with an argumentation similar to that in the proof of Theorem 3.7.

This shows that local broadcasting can also be achieved using variable transmis-
sion powers.

3.4.3 On the Γζ Factor

We argue in this section that for the currently used analysis scheme for local broad-
casting algorithms a runtime of Ω(Γζ∆) is inevitable; however, we do not establish
a lower bound on the runtime of local broadcasting in networks with arbitrary
transmission powers (apart from the trivial Ω(∆) bound by [55]).

The dependence on Γ is due to the fact that the analysis of all current local broad-
casting algorithms [55, 65, 133, 137] is based on the property that with considerable
probability, a node v must be the only node transmitting from within some prox-
imity region of v. The number of nodes transmitting from the proximity region is
bounded by the maximal number of nodes in an independent set in the region and
the number of neighbors those independent nodes have.

We depict such a scenario for the Euclidean plane in Figure 3.2. Assume that
all nodes transmit with probability 1/∆ and let v transmit in time slot t. Then
the expected number of nodes that transmit in the proximity area in the worst

31

arbitrary transmission powers in the sinr model

case is ∆Γ2. Thus, the resulting sum of transmission probabilities from within
the considered broadcasting range is ∆Γ2 · /∆ = Γ2, which is more than current
techniques can handle. If we reduce the transmission probability to 1/(2Γ2∆),
the sum of transmission probabilities from within the broadcasting range is 1/2,
thus we can achieve constant probability for the event that no (other) node in the
proximity area transmits in a time slot at the cost of having the multiplicative factor
of Γ2 in the runtime.

3R̄

R̄v

rB
v

R̄/R

R̄/R
R

Figure 3.2: The square node v has maximum transmission range, while the remaining
nodes, depicted by solid disks with finer circles, have minimum transmission
range. It holds that all remaining nodes are independent in the Euclidean plane,
thus the independent set is of size Θ(Γ2).

3.4.4 Experimental Evaluation

In this section we evaluate the runtime of local broadcasting in simulations to study
the influence of non-uniform transmission power on the runtime of local broadcast-
ing. Before diving into the experiments, let us first recall the main parameters of
our simulation environment. We use the network simulator Sinalgo [33] as de-
scribed in Section 2.3. The used SINR parameters are α = 4, β = 10, N = 1−9

and a default transmission power of P = 1, which results in a broadcasting range
of 84 m. In our experiment we use a square area of 1000 m× 1000 m to deploy 1000
nodes according to pre-computed deployment schemes. We simulate each instance
for 100 runs and report average values.

To simulate non-uniform transmission powers, we select each nodes transmission
power uniformly at random from a fixed range around the default transmission
range. We consider increasing intervals around the default transmission range,
varying from the fixed range of 84 m to the range of [0 m, 168 m]. We denote this
increase in the available transmission ranges by deviation, and increase it in stepsdeviation

of 10 % in each direction. The maximum available range of [0 m, 168 m] corresponds
to 0 % and 200 % of the default value and has a deviation of 100 %, or simply 1. The
realized Γ value, which is the ratio between the maximal and minimal transmission
range in the network, along with the average and maximum degree and the average

32

3.5 distributed node coloring and mis

runtime of one round of local broadcasting and is shown in Figure 3.3 for random
and cluster deployment.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Deviation

0

100

200

300

400

500

R
el

at
iv

e
in

cr
ea

se
in

%
Local Broadcasting - Avg Degree

Local Broadcasting

Average Degree

Maximum Degree

Γ

(a) Random deployment of nodes

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Deviation

0

100

200

300

400

500

R
el

at
iv

e
in

cr
ea

se
in

%

Local Broadcasting

Average Degree

Maximum Degree

Γ

Local Broadcasting - Avg Degree

(b) Cluster deployment of nodes

Figure 3.3: The relative change of Γ, compared to the change in runtime, and the average
and maximum degree for an increasing deviation, i.e., an increasing range of
available transmission ranges. We illustrate the increase relative to the values
for deviation 0.

We observe that, despite the rapid increase in the Γ value, the increase in the
runtime does not, or at most marginally depend on that value. Despite the fact that
the cluster deployment somehow mimics the case which leads to the Γ factor in our
analysis (at least to some degree), we cannot conclude any correlation between the
Γ factor and the runtime even under this deployment scheme.

3.4.5 Discussion

In Section 3.4.1 we applied the bound on the probabilistic interference from out-
side the proximity region, which we established in Section 3.3, to generalize ex-
isting local broadcasting algorithms to the case of arbitrary transmission powers.
This provably allows nodes to achieve initial communication despite heterogenous
transmission powers in the SINR model. We proposed a model for variable trans-
mission powers in Section 3.4.2 that guarantees success, based on the number of
time slots transmitted with certain transmission powers. As the bound on the inter-
ference is based on geometric arguments, the variance in the transmission ranges
leads to a multiplicative factor of Γ in the runtime of local broadcasting. We argued
that current proof techniques require this factor, although our experiments show
that the runtime does at most marginally depend on the Γ factor.

3.5 distributed node coloring and mis

In this section we demonstrate the applicability of our results to a distributed node
coloring algorithm designed for the uniform SINR model with known ∆. We gen-
eralize the so-called MW-Coloring algorithm by Moscibroda an Wattenhofer [104],

33

arbitrary transmission powers in the sinr model

which has been transferred to the SINR model by Derbel and Talbi [30], to the case
of heterogenous transmission powers. We use techniques of the previous sections
to achieve feasible communication and additionally tackle challenges that arise
with the potentially directed communication graph of the heterogenous network.
Distributed node coloring is a fundamental problem in wireless networks, as a
node coloring can be used to compute a schedule of transmissions by assigning
each color to a different time slot. Thus, efficient transmissions based on a TDMA
schedule can be reduced to a node coloring. The algorithm we consider computes a
node coloring that ensures that two nodes with the same color cannot communicate
directly. This does not necessarily result in a transmission schedule that is feasible
in the SINR model already, however, one can use additional techniques like those
described in Chapter 6 to transform such a node coloring to a local broadcasting
schedule that is feasible in the SINR model.

Our main result in this section is a distributed O(Γ2ζ∆)-coloring algorithm with
a runtime of O((∆ + `Γ2ζ)∆Γζ log n) time slots, where ` is the length of the longest
directed path (we provide a definition in the following section). The algorithm is
fully operational in networks of arbitrary transmission powers.

3.5.1 Directed Communication Graphs

Let us first define some notation required for the coloring problem in directed
networks. For two nodes v, u ∈ V we say that there is a communication link from v
to u if u is in the broadcasting region of v. We say that there is a unidirectionalunidirectional

communication link from v to u if there is a communication link from v to u,
but not from u to v. If both communication links are available we say that it is
bidirectional. Recall that two nodes are independent if there is no communication linkbidirectional

between them, and a set is independent if every two nodes in the set are pairwise
independent. We call a node coloring valid if each color forms an independent set.

Before stating the algorithms, we shall characterize the communication graph
implied by arbitrary transmission powers in the SINR model. Obviously, it is still a
disk graph as the geometric SINR model forms disk-shaped broadcasting regions,
however, it is not a unit disk graph as it is in the uniform case. Additionally, there
are two main characteristics that are introduced by directed communication links
and are relevant for graph-based algorithms in this setting. First, unidirectional
communication links can form long directed paths. This is formalized in the fol-
lowing definition.

Definition 3.11. Given a network N and the induced communication graph G = (V, E).
Let G′ be the graph that remains after deleting all bidirectional edges from G. The longestlongest directed path

directed path in the network is defined as the longest path in G′. We denote the length of
the longest directed path in a network by `.

The second characteristic is that such directed paths cannot form a directed cir-
cuit in the network. This holds since in any circuit in the communication graph,
there must be at least one bidirectional communication link. Consider for example

34

3.5 distributed node coloring and mis

a directed path consisting of the nodes (v1, . . . , v`). It holds that the broadcasting
range decreases monotonically, i.e., rB

vi
≥ rB

vi+1
for i = 1, . . . , `− 1. If a node vi can

directly be reached from vj with i ≤ j, there must also be a communication link
from vj to vi as rB

vi
≥ rB

vj
.

3.5.2 The Coloring Algorithm

Let us now state our coloring algorithm. The core of our algorithm is based on
the coloring algorithm by Moscibroda and Wattenhofer designed for unstructured
radio networks in [104]. It has been adapted to the case of uniform transmission
powers in the SINR model by Derbel and Talbi in [30]. In this section we extend
the algorithm to work in the case of arbitrary transmission power assignments.
A state diagram of the algorithm can be found in Figure 3.4, and pseudocode of
the states of the algorithm can be found in Algorithms 3.1 - 3.6. Note that some
technical details regarding the asynchronous wake-up of nodes and its impact on
the algorithm are omitted here and in the state diagram for simplicity, but are
discussed in Section 3.5.8.

Let us now give an overview of the algorithm. The algorithm starts with a three-
way handshake protocol, which we call neighborhood learning. This allows each
node to learn which of its incoming edges are effectively bidirectional communi-
cation links. After this learning stage, we allow a node v to participate in the
(modified) coloring algorithm only if v is not dominated, i.e., if there is no other dominated

uncolored node w such that w reaches v but v does not reach w.

Neighbor-
hood
learning

wake-up Wait

dominated
Compete0

Request

Announce
color

Competei

Colored

lost competition
i = i + 1

lost
competition

≥ 1 leader
reachable

no leader
reachable

core-coloring algorithm

Figure 3.4: State diagram of our coloring algorithm. The core-coloring algorithm is mostly
based on the MW-Coloring algorithm [30, 104]. The state diagram is slightly
simplified and does not consider continuous neighborhood learning and fall-
backs due to awaking nodes (see Section 3.5.8).

We call the main coloring states of the algorithm (Compete, Request, Announce
and Colored), which are based on the MW-Coloring algorithm [30, 104], the core- core-coloring

algorithmcoloring algorithm in this section. Once v is not dominated, it starts executing the
core-coloring algorithm with a listening phase that is long enough to ensure that v
knows the current status of all other nodes that are awake and can reach v. After-
wards, if there is a leader w to which bidirectional communication is possible, v
enters the request state, and requests a color from w. After w answers the request
by assigning a color j, v tries to verify the assigned color j. If this is not success-
ful (i.e., v loses against another node that reaches v and also competes for j), v
increases j by 1 and retries. Once v is successful, it announces its success so that

35

arbitrary transmission powers in the sinr model

the nodes that hear v are informed about v’s status. Hence they know that v is
about to color itself with color j.

If v is not aware of a leader that can bidirectionally communicate with v, v com-
petes for the leader status itself. If this is not successful, v enters the request state
(and proceeds as above) as v must now be aware of a leader with bidirectional
communication link to v. Note that v does not lose the leader competition against
leader nodes that dominate v, as v cannot request a color from them. If v is suc-
cessful in becoming leader, it selects a free leader color and announces its choice
so that all nodes that can be reached by v are informed. After the announcement
phase, the node colors itself. It will now periodically transmit its color and serve
color requests as they arrive.

Our presentation of some parts of the algorithms is based on the presentation
in [30]. The pseudocode for the algorithm can be found in algorithms 3.1 - 3.6.

Algorithm 3.1: Distributed node coloring for node v in networks with non-
uniform transmission powers

11 [In(v), Out(v)]← Neighborhood learning()
22 Let the node store each received node & color in Ctaken throughout the

algorithm
33 Listen for κs time slots
44 while cv = −1 do // This is state Wait

5 if (In(v)\Out(v))\Ctaken = ∅ then // If v is not dominated

66 if In(v)∩Out(v)∩Ctaken 6= ∅ then // v can bidirectionally communicate to leader

77 Request(w) for a w ∈ In(v)∩Out(v)∩Ctaken // Transition to Algorithm 3.3

8 else
99 Compete0() // Transition to Algorithm 3.5

10 else
1111 wait for κs time slots

Algorithm 3.2: Neighborhood-Learning() for node v

1 The neighborhood learning algorithm is a simple three-way-handshake
protocol as introduced in [125]. A node v starts the neighborhood learning
algorithm and thus sends a learning request with its own ID with
probability ps for κs time slots. For each reply it receives (at most ∆), v itself
acknowledges the reception.

Let us briefly introduce the different messages transmitted by the algorithm.
There are three types of messages: Mi

A(v, cv) means that node v with current
counter value cv competes for color i. Mi

C(v) implies that node v is colored with
color i (and that nodes competing for this color should resign from competing for
it). Also, a variant of this message may be used to serve color requests: With the
message Mi

C(v, w, j), a leader v additionally assigns the color j (i.e., the block of

36

3.5 distributed node coloring and mis

Algorithm 3.3: Request(w) for node v

11 Transmit Mv
R(w) with probability ps for κs slots

22 Wait for ∆κl rounds to receive color assignment from w
33 if received color j from w then goto Competej()

Algorithm 3.4: Announcei() for node v

11 Transmit the Mi
C(v) announcement with pl(ps) for κl(κs) slots for leader /

non-leader nodes
22 Goto Algorithm 3.6: Coloredi()

Algorithm 3.5: Competei() for node v (based on the presentation in [30])

11 Pv ← ∅, κi ←

κl if i = 0

κs otherwise
, Next←

Request if i = 0

Competei+1 otherwise
2 for κs time slots do
33 for each w ∈ Pv do dv(w)← dv(w) + 1
44 if Mi

A(w, cw) received then Pv ← Pv ∪ {w}; dv(w)← cw

55 if Mi
C(w) received then goto Next; leader← w

66 cv ← Ξ(Pv) with Ξ(Pv) ≤ 0 such that Ξ(Pv) 6∈ {dv(w)− κi, . . . , dv(w) + κi} for
each w ∈ Pv

7 while true do
88 cv ← cv + 1
9 if cv > κs then

1010 Announcej() for j←

minimal 6∈ Ctaken if i = 0

i otherwise

1111 for each w ∈ Pv do dv(w)← dv(w) + 1
1212 transmit Mi

A(v, cv) with probability ps

1313 if Mi
C(w) received then goto Next; leader← w

14 if Mi
A(w, cw) received then

1515 Pv ← Pv ∪ {w}; dv(w)← cw

1616 if |cv − cw| ≤ ζi then cv ← Ξ(Pv)

colors from j to j + c2Γζ) to w. Finally the request message Mv
R(w) is transmitted

from v to a leader w to inform w that v selected w as its leader and requests to get
a block of colors assigned.

As leaders must handle up to ∆ color requests, we allow leaders to communi-
cate with a higher transmission probability. Before determining the transmission
probabilities, let us define two constants c1 and c2. We use them to describe the c1, c2

constant factor in the number of leader nodes in either R̄ and 2R̄, and set them
so that χ(R̄, R/2) = c1Γζ and χ(2R̄, R/2) = c2Γζ . Let the transmission proba-

37

arbitrary transmission powers in the sinr model

Algorithm 3.6: Coloredi() for node v

11 count← 0, current← −2, serveCount← 1, Q← ∅ // current gets dummy request

22 if i = 0 then i← [c1Γζ]\Ctaken // Select leader color from available pool

3 while coloring protocol runs do
4 if i > c1Γζ then // non-leader nodes

55 Transmit Mi
C(v) with probability ps

6 else // leader nodes

77 count← count+1
88 Transmit Mi

C(v) with probability ps

99 if Mw
R(v) received then Q.add(w)

10 if count > κl or current = −1 then // Serve the next request

1111 count← 0, serveCount← serveCount +1
1212 j← serveCount ·c2Γζ

1313 current← Q.first() (or -1 if Q empty)

14 if current 6= −1 then // Serve the current request

1515 Transmit Mi
C(v, current, j) for κl slots with prob. pl , where j is a free

color (block). Afterwards set current← −1.

bility used by non-leader nodes be ps = γ/(2∆) and the transmission probabil-
ity pl = γ/(2c1Γζ) reserved for special leader tasks (for example the announcement
of winning a leader competition, or answering color requests). As the number of
leaders in each broadcasting range is limited, successful message transmission can
still be achieved (cf. Corollary 3.15).

3.5.3 MW-Coloring for Arbitrary Transmission Powers

Before diving into the analysis, let us first consider why the MW-Coloring algo-
rithm does not work in the case of arbitrary transmission powers without our mod-
ifications and extensions. Let us consider the example network in Figure 3.5. The

v1 v2

v3

v4

v5v6
v7

v1 v2

v3

v4

v5v6
v7

v1
v2

v3

v4

v5
v6

v7

Figure 3.5: A network with heterogenous transmission powers. On the left the network
is shown along with the broadcasting ranges, in the center the corresponding
communication graph, and on the right the three levels of domination along
with a longest directed path (in bold) are depicted.

main issue is that communication can be unidirectional and hence one of the two

38

3.5 distributed node coloring and mis

neighbors dependent of the other. Let us consider some examples. During the
execution of the original algorithm v2 might become leader. However, then v3 and
v4 are stuck as they cannot request a color from v2. Otherwise, if v3 would become
leader, it cannot inform v2 and v5 about this, and thus they might become leader
as well and take the same color.

Such cases are circumvented by our algorithm as the core-coloring algorithm
(which essentially is the MW-Coloring algorithm with minor modifications) is only
executed on nodes of the network that are not dominated by an uncolored node.
Thus, at first the nodes v2, v5, v7 execute the algorithm, then v1, v3, v4, and finally v6.
This ensures that the coloring algorithm is always executed on a set of nodes such
that each pair has either a bidirectional or no communication link at all.

3.5.4 Analysis

Let us now begin with the analysis of the algorithm, which is split in two parts. In
the first part we show that the transmissions conducted in the algorithm are suc-
cessful with high probability. In the second part we show that the algorithm com-
putes a valid O(Γζ∆) coloring, and terminates after at most O((∆+ `Γ2ζ)∆Γζ log n)
time slots.

A significant difference in the analysis of our algorithm compared to the previ-
ous analysis is that leader nodes do not necessarily form an independent set, as
unidirectional communication links between leaders are allowed in the algorithm.
In order to argue about the number of leaders surrounding a node, we bound the
number of leaders in a transmission range in the following. This result is used
throughout our analysis. A simple modification of the statement bounds the num-
ber of neighboring nodes that compete for the same color (cf. Lemma 3.13).

Lemma 3.12. Let v be an arbitrary leader node. Then there are at most c1Γζ other leader
nodes in the transmission range of v.

Proof. Let us consider an arbitrary leader node v. Although leaders do not form
an independent set, it holds that there are no bidirectional communication links
between leaders. This holds since otherwise one of the two leaders must have been
aware of the other leader and would not have become leader but requested a color
from the other leader. Thus, it holds that for balls of radius R/2 around each leader
node in v’s neighborhood, these balls do not intersect. It follows that there can be
at most χ(R̄, R/2) = c1Γζ leader nodes in a maximal transmission range.

The bound on the number of leaders is tight up to constant factors. This can be
shown with a construction similar to the one in Figure 3.2. The following lemma is
required for the algorithms proof of correctness. As it can be proven with the same
argumentation as Lemma 3.12, we state it without separate proof.

Lemma 3.13. Let v be an arbitrary node. Then at a given time slot at most c2Γζ leader
nodes can be within a distance of 2R̄ of v.

Let us show that the transmissions in the algorithm are successful.

39

arbitrary transmission powers in the sinr model

3.5.5 Transmissions are Successful

In order to apply the bound on the interference shown in Section 3.3, we need to
bound the sum of transmission probabilities from within each transmission region.

Lemma 3.14. Let leader nodes transmit with probability pl and non-leader nodes with
probability ps, then the sum of transmission probabilities from within each transmission
region is upper bounded by γ.

Proof. Let us consider an arbitrary node v and the sum of the transmission proba-
bilities from within v’s transmission region

∑
w∈Bv

pw ≤ c1Γζ pl + ∆ps ≤ γ

This holds as at most c1Γζ leader nodes from each transmission region may trans-
mit with probability pl due to Lemma 3.12, while at most ∆ other nodes in v’s
neighborhood transmit with probability at most ps.

The next corollary follows from the lemma with the argumentation for Theo-
rem 3.7. It shows that the limited number of leader nodes are able to communicate
to their neighbors in κl = 8c/pl log n = 16cc1Γζγ−1 log n time slots, while non-
leader nodes require κs = 8c/ps log n = 16c∆γ−1 log n time slots. Overall it implies
that all transmissions in the algorithm are successful w.h.p.

Corollary 3.15. A message that is transmitted with probability pl (ps) for κl = O(Γ2ζ log n)
(κs = O(∆Γζ log n)) time slots reaches its intended receivers w.h.p.

This shows that communication is successful with high probability even in this
more general case. The result enables us to transfer the MW-Coloring algorithm to
the case of arbitrary transmission powers, and highlights the applicability of our
method to bound the interference in networks of nodes with arbitrary transmission
powers. We show that the modified MW-Coloring algorithm finishes in O((∆ +

`Γ2ζ)∆Γζ log n) time slots in the next section, while the bound of O(Γζ∆) on the
number of colors and the correctness is established in Section 3.5.7.

3.5.6 Runtime of the Algorithm

In this section we consider the runtime of the distributed node coloring algorithm.
As the algorithm is state-based, we prove a runtime bound for each state of the
algorithm (see an overview in Table 3.1). The theorem follows from a consideration
about the maximum number of times each state can be visited by a node.

Theorem 3.16. After executing Algorithm 3.1 for O((∆ + `Γ2ζ)∆Γζ log n) time slots all
nodes are colored.

Proof. We show in Lemma 3.17 that the initial neighborhood learning protocol re-
quires (2∆ + 1)κs time slots. The Wait state takes the longest if it is dominated for a

40

3.5 distributed node coloring and mis

maximum number of time slots. Let us therefore consider the length of the longest
directed path. According to Definition 3.11, it is bounded by `. As nodes that
are not dominated execute the core coloring algorithm, they are colored and have
communicated their final color to their neighbors after one execution of the core
coloring algorithm according to Lemma 3.24. Thus, those nodes cannot dominate
other nodes anymore (as only uncolored nodes dominate), and hence the length of
the longest directed path must decrease by one.

As v might have to wait until all other nodes in the longest directed path selected
a final color before executing the core-coloring algorithm, it may take at most `

times the runtime of the core coloring algorithm until v is not dominated anymore.
Once v is not dominated it starts executing the core coloring algorithm. The run-
time of the core coloring algorithm is O(Γ2ζκs) time slots according to Lemma 3.18

(see Table 3.1 for an overview). Thus, the worst case runtime for a node to select a
final color is at most O((∆ + `Γ2ζ)κs) = O((∆ + `Γ2ζ)∆Γζ log n) time slots.

Table 3.1: Runtime of the algorithm. CC stands for parts of the core coloring algorithm

State Runtime Proof

Neighborhood learning (2∆ + 1)κs) Lemma 3.17

CC (overall) O(Γ2ζκs) Lemma 3.18

CC: Compete0 3κs + ∆κl Lemma 3.19

CC: Competei (c2Γζ + 3)κs Lemma 3.20

CC: Max. Competei’s O(Γ2ζ)κs Lemma 3.21

CC: Request κs + ∆κl Lemma 3.22

CC: Announce κl or κs -

In the following we prove the results stated in Table 3.1. In the next lemma the
runtime of the initial neighborhood learning protocol is bounded.

Lemma 3.17. Let a node v execute Algorithm 3.2. After the execution, both v and its
neighbors wi know about their communication link and whether the link is bidirectional.
The algorithm finishes within (2∆ + 1)κs time slots.

Proof. As node v transmits a neighborhood learning request (in κs time slots) to
all nodes wi in its transmission region, the nodes wi answer within ∆κs slots af-
ter receiving the request (each wi may serve at most ∆ − 1 other requests in the
meantime). If the transmission of wi reaches v, v receives the message and com-
pletes the three-way-handshake by acknowledging the reception of the message
to wi, again within at most ∆κs slots. Summing over the time slots required results
in (2∆ + 1)κs.

After finishing the neighborhood learning, each node listens to other nodes trans-
mitting their final color for κs time slots (we shall call these phases the initialization
phase). After learning these final colors, each node is required to wait until it is no

41

arbitrary transmission powers in the sinr model

longer dominated. Afterwards the core coloring algorithm is executed. As the core-
coloring algorithm is based on the MW-algorithm adapted to the SINR model in
[30], our proofs are in parts based on of their analysis despite the different setting.
We clearly mark these parts or directly refer to the original analysis.

In contrast to their algorithm, where the set of leaders forms an independent set,
the set of leaders in our algorithm is not independent (cf. Lemma 3.12). This is one
of the major differences and requires various adaptations in the algorithm and the
analysis. We shall first state the overall result in the next lemma and then analyze
each state separately in the remainder of this section.

Lemma 3.18. The worst case runtime of the core coloring algorithm is O(Γ2ζκs) time slots

Proof. Let v be an arbitrary node. There are several ways for v to reach the an-
nounce color state. We shall argue that the scenario “(a) and (b)”, which is depicted
in Figure 3.6, is indeed the worst case:

(a) there is no leader reachable

(b) v does not win the Compete0 state

Neighbor-
hood
learning

wake-up Wait

` times
Compete0

Request

Announce
color

Competei

Colored

Γζ times

lost
competition

≥ 1 leader
reachable

no leader
reachable

core-coloring algorithm
(a)

(b)

Figure 3.6: Worst case execution of the coloring algorithm.

For case (b) is is clear from the runtimes reported in Table 3.1 that the execution of
the algorithm is faster if the Announce state is reached by winning the Compete0

state. Case (a), however, does only lead to an increased runtime if case (b) occurs.
As both (a) and (b) can happen in an execution, this leads to a worst case runtime,
as depicted in Figure 3.6 (if a maximal number of time slots spend at the various
Competei states). The overall runtime follows by summation over the runtimes
reported in Table 3.1.

After proving the overall runtime based on the results in Table 3.1, we provide
the remaining proofs for the results reported in the table in the following. The next
three lemmas deal with the compete states, while the last lemma in this section
considers the request state. The argumentation for the following lemmas is similar
to the argumentation in [30] with minor changes to adapt to the number of leaders
in a transmission range, the number of nodes competing for the same color and
the time slots required for successful message transmission. Thus we shall only
highlight the changes in the proofs and refer to [30] for complete proofs.

Lemma 3.19. Let v be a node entering the Compete0 state. At most 3κs + ∆κl slots after
entering Compete0, v leaves the Compete0 state.

42

3.5 distributed node coloring and mis

Proof (based on Lemma 6 in [30]). There are two cases. Either v wins the competition
and becomes leader, or loses and enters the request state afterwards. In both cases
the initial listen phase takes κs slots. However, as soon as v successfully transmits
once (which is after at most another κs slots according to Corollary 3.15), it cannot
be reset anymore according to [30, Proof of Lemma 6]. Hence either cv reaches κs

and v becomes leader, or a neighbor of v reaches κs first and forces v to transition
to the request state. The counter cv of v may at worst be reset to ∆κl , thus the
overall runtime of state Compete0 is 3κs + ∆κl . Note that the referenced Lemma 6

holds since we restricted the nodes competing for a color (or the local leadership)
to nodes with bidirectional communication links.

Lemma 3.20. Let v be a node entering the Competei state. At most (c2Γζ + 3)κs slots after
entering Competei, v leaves the state.

Proof. The lemma follows from an argumentation similar to that of Lemma 3.19.
Note, however, that the counter of each node may at worst be reset to c2Γζκs. This
is due to two facts: First, at most c2Γζ neighbors of v have the same block of colors
assigned (see Lemma 3.13). Thus at most c2Γζ nodes compete with v for color i.
Second, the nodes transmit probability ps instead of pl if they succeed in competing
for color i, which leads to successful transmission in κs instead of κl time slots.

If a non-leader node v got color i assigned by its leader and fails to verify it, v tries
to verify i + 1, then i + 2 and so on. Thus non-leader nodes may be in more than
one consecutive compete states. We will now bound the number of consecutive
compete states a node may be forced to visit before being able to verify a color.

Lemma 3.21. A node may be in at most c2Γζ consecutive compete states. It leaves the last
compete state at most (c2Γζ) · (c2Γζ + 3)κs = O(Γ2ζ)κs slots after entering the first.

Proof. Let us consider a node v that got color j 6= 0 assigned by its leader. The
node tries to verify j and consecutive colors, until it wins a competition and enters
the announce state. Only neighbors that have the same block of colors assigned
can force v to move on to the next color by selecting the color v competes for as a
final color themselves. By Lemma 3.13, the number of such neighbors is bounded
from above by c2Γζ . Hence after at most c2Γζ compete states all nodes that may
compete with v for the same color selected their final color, and thus, v succeeds in
the following competition. Note that this bound does also take nodes into account
that selected a final color prior to v’s execution of the core-coloring algorithm. The
lemma follows since the compete states are consecutive as once a compete state is
left for the announce state, the node does not return to a compete state2.

After bounding the runtime of the compete states, let us consider the request
state.

Lemma 3.22. A node v that enters the request state leaves the request state at most κs +∆κl

time slots afterwards.

2 This may not hold for the asynchronous case, as a nodes color may be reset by a dominating neighbor
that takes the same color, see Section 3.5.8.

43

arbitrary transmission powers in the sinr model

Proof. The node v first sends its request in κs slots, and subsequently will be served
by its leader. As the leader can have at most ∆ requests, v will be served at most ∆κl

slots after the leader received the request.

3.5.7 Correctness of the Algorithm

In order to prove the correctness of the algorithm it remains to show that the
algorithm indeed computes a valid node coloring with at most O(Γζ∆) colors.

Theorem 3.23. The coloring algorithm (Algorithm 3.1) computes a coloring with O(Γζ∆)
colors such that each color forms an independent set.

We show the theorem in two steps. We shall first argue that the core-coloring al-
gorithm operates on a undirected communication graph, and thus the correctness
of the coloring computed by the core-coloring algorithm follows from [30, Theo-
rem 2] in Lemma 3.24. Afterwards we bound the number of colors used by the
algorithm in the proof of the theorem.

Lemma 3.24. Let v execute the core coloring algorithm. Then afterwards v has selected a
valid color and communicated its color to its neighbors.

Proof. Due to the state Wait in Algorithm 3.1, nodes that are dominated are not
allowed to execute the core-coloring algorithm. Thus, each node that executes the
core-coloring algorithm either has a valid color or has no uncolored neighbor that
dominates it (or both). This holds since nodes that selected a final color do not
dominate other nodes (cf. Section 3.5.1).

As dominated nodes do not start executing the core-coloring algorithm, it holds
that the core coloring algorithm operates on a set of nodes that form an undirected
communication graph. Thus the independence of each color follows from [30, The-
orems 1 and 2].

We are now ready to prove Theorem 3.23.

Proof of Theorem 3.23. Let us consider two nodes u and v that are colored with the
same color i. Let us first assume there is a bidirectional communication link be-
tween u and v. If u and v executed the core-coloring algorithm at the same time,
the contradiction follows from Lemma 3.24. If on the other hand u and v did not
compete in the core-coloring algorithm at the same time, let v be the node colored
earlier. Due to the bidirectional communication, v was able to communicate to u
that it is colored with i and thus prevented u from verifying i, which contradicts
the assumption that both are colored with i. If there is a directed link between u
and v, we assume w.l.o.g. that it is directed from u to v. As only unblocked nodes
participate in the core coloring algorithm, u selected and communicated its color i
before v, which prevents v from selecting i3. This contradicts the assumption, and
hence the node coloring is valid.

3 This may happen due to asynchronous wakeup, see Section 3.5.8 for this case.

44

3.5 distributed node coloring and mis

Let us now bound the number of colors. As c1Γζ is an upper bound on the
number of leader nodes that can be in the transmission range of a leader node (cf.
Lemma 3.12), at most c1Γζ − 1 leader colors can be blocked when a leader node
selects its color. Hence, c1Γζ leader colors are sufficient. The number of non-leader
color blocks is bound by the number of requests a leader has to serve in the worst
case, which is obviously ∆. Due to Lemma 3.21 it holds that for each request at
most c2Γζ consecutive colors are required. According to Algorithm 3.6, c2Γζ is
the first non-leader color that is assigned. Overall at most c2Γζ(∆ + 1) non-leader
colors are used by the algorithm.

3.5.8 Asynchronous Node Wake-up

The MW-Coloring algorithm, which is the core of our coloring algorithm, can deal
with the asynchronous wake-up of nodes. Let us briefly discuss how to adapt the
extensions presented in this section to handle the asynchronous wake-up of nodes.
We use the same notion of asynchronous communication as Goussevskaia et al. [55].
Thus, we divide the time in time slots for our analysis, although time slots are not
required in practice. Compared to the synchronous model, we double the time re-
served for each time slot to account for potentially overlapping transmissions (this
is sometimes known as the Aloha trick, cf. Section Section 2.2.4). The asymptotic
complexity is not affected by this trick as the runtime increases only by a factor of
two.

The neighborhood learning protocol enables the nodes to know about the direc-
tionality of the communication links they are involved in. In order to allow some
nodes to start the algorithm after other nodes finished the neighborhood learning
protocol, we reserve every second time slot throughout the execution of the algo-
rithm to answer possible requests of the neighborhood learning protocol4. As with
the Aloha trick this does not affect the asymptotic complexity. An illustration of
how the time slots for the neighborhood learning protocol are interweaved with
the regular coloring time slots is depicted in Figure 3.7. Transmissions are received
regardless of the phase in which they arrived, unless the node transmits itself or the
message cannot be decoded due to the SINR constraints. Essentially, we double the
available time to ensure the capacity to handle the messages of both interweaving
phases and transmit the responses within the time bounds.

We assume in our analysis that two nodes that simultaneously execute the core-
coloring algorithm do not have a unidirectional link. However, such a unidirec-
tional link might be introduced due to an awaking node. To prevent this, we re-
quire newly awaken nodes to wait for the time of one execution of the core-coloring
algorithm before entering the main loop of Algorithm 3.1 to allow potentially dom-
inated nodes to finish their current execution of the core-coloring algorithm. A
node v with a unidirectional communication link to w may select the same color
as w if v woke up after w already selected its color. To prevent a violation of the
validity of the coloring, w resigns from color i if v announces to take color i. To

4 This corresponds to the time required for two transmissions to account for overlapping again.

45

arbitrary transmission powers in the sinr model

start
Neighborhood
Learning request

v1

v2

v3

u

Reply to request after (potentially)
serving other requests

Complete 3-way
handshake

Neighborhood learn-
ing phase (continuous)

Coloring phase

Coloring phase:
Initial Neighborhood
Learning

Figure 3.7: Illustration of the alternating time slots for the asynchronous implementation
of the algorithm. Node u starts after its neighbors v1 to v3 and executes the
neighborhood learning protocol (see Algorithm 3.2). Note that we simplified
the illustration as we did not depict the probability based nature of message
transmission over a period of several of these short and interweaving phases.

achieve the bound on the number of colors, leader nodes store the block of colors
they assigned to nodes and reuse the colors accordingly. Note that if a node v
is already colored it is not required to stop running the core coloring algorithm.
However, if a node that has an unidirectional communication link to v selects the
same color as v, v must resign from its color.

Thus, if a node v that is colored with color i receives an announcement from
node w that w will take color i, v finishes serving its requests and then resigns
from the color and enters the main loop of Algorithm 3.1. Serving the current
requests takes at most ∆κl time slots, which is approximately the same as becoming
leader. As at most another c1Γζ nodes can become leaders within each broadcasting
range (cf. Lemma 3.12) before the old leaders resign after serving the requests,
this can increase the transmission probabilities originating from leaders in each
broadcasting range by a factor of at most two. This can be handled by decreasing
the transmission probability for leader tasks appropriately.

Note that the runtime of the algorithm holds only for “stable” parts of the net-
work in the case of asynchronous wake-up. As nodes that wake up may force other
nodes to resign, we cannot guarantee a runtime based only on the wake-up time
of the node itself. However, the runtime in Theorem 3.16 holds for v after the last
node that can reach v or v’s neighbors directly or through a directed path has wo-
ken up. This holds as v can only be forced to stop the algorithm or resign from
its color by a node that reaches v directly or through a directed path, and v may
expect a delay (for example in the request state) only if a neighbor of v is forced to
resign. Hence, all time bounds are trivially valid once the last node in the network
is awake.

3.5.9 Maximal Independent Set

An algorithm for solving MIS can be deduced by simplifying the coloring algo-
rithm. As nodes can either be in the MIS or not, we do only require two colors.

46

3.6 conclusion

Let 0 be the color that indicates that a node is in the MIS and 1 that it is not. As all
nodes in the MIS are independent, we do not require the request state, and nodes
in the MIS do not need to serve requests. Also, once a node v receives a M0

C(w)

message, v can instantly transition to the Colored1 algorithm. A factor of Γζ is
saved since the Request and Competei states are not required anymore. This im-
plies that after O((∆ + Γζ`)∆Γζ log n) time slots, each node selected a color and
thus either is in the MIS or not.

3.6 conclusion

In this chapter we have proven a bound on the interference in networks with ar-
bitrary transmission powers assignments in wireless ad hoc networks. We believe
that this generic result will be of use in many algorithms designed for such net-
works. We have shown that local broadcasting can be transferred to the general
case of arbitrary transmission powers with minor efforts due to this result. Local
broadcasting can be achieved in O(∆Γζ log n) time slots if ∆ is known, and O((∆ +

log n)Γ2ζ log n) time slots otherwise. We additionally considered the case that al-
lows each node to change its transmission power variably in each time slot and
studied the dependence on Γ theoretically and experimentally. To highlight the ap-
plicability of our results on communication in networks with arbitrary transmission
powers, we presented a distributed node coloring algorithm that is fully adapted
to the characteristics of directed communication networks such as unidirectional
communication links. Our algorithm computes a O(Γζ∆)-coloring in networks
with heterogeneous transmission power in O((∆ + `Γ2ζ)∆Γζ log n) time slots. We
conclude with two open problems. Can the dependence on Γ be reduced as sug-
gested by our experiments? Is there a fast distributed node coloring algorithm in
this setting that does not require the nodes to learn neighborhood first?

47

4
D I S T R I B U T E D (∆ + 1) - C O L O R I N G I N T H E S I N R M O D E L

In wireless ad hoc networks, distributed node coloring is a fundamental problem
closely related to establishing efficient communication through TDMA schedules.
For networks with maximum degree ∆ , a (∆ + 1)-coloring is the ultimate goal in
the distributed setting as this is always possible. In this chapter we propose a
very simple (4 ∆)-coloring along with a color reduction technique to achieve ∆ + 1
colors. All algorithms have a runtime of O (∆ logn) time slots. This improves on
previous algorithms for the SINR model either in terms of the number of required
colors or the runtime, and matches the runtime of local broadcasting in the SINR
model (which can be seen as an asymptotical lower bound).

This chapter is based on joint work with Roman Prutkin. Preliminary results are
published in [40, 44] and online available as [43].

4.1 introduction

One of the most fundamental problems in wireless ad hoc or sensor networks is ef-
ficient communication. Indeed, most distributed algorithms designed for the phys-
ical or SINR model consider algorithms to establish initial communication right
after the network begins to operate. However, those initial methods of communica-
tion are not very efficient, as there are either frequent collisions and reception fail-
ures due to interference, or time is wasted in order to provably avoid such collisions
and failures. If local broadcasting [55, 65, 133] is used, a multiplicative O (∆ logn)
factor is required to execute message-passing algorithms in the SINR model (as be-
fore, we use a broadcasting range to define neighborhood, cf. Section 2.2.3). Thus,
wireless networks often use a more refined transmission schedule as part of the
Medium Access Control (MAC) layer. One of the most popular solutions to the
medium access problem are TDMA (time division multiple access, cf. Section 2.1)
schedules, which provide efficient communication by assigning nodes to time slots.
The main problem in establishing a TDMA1 schedule can be reduced to node col-
oring [113]. Given a node coloring, we can establish a transmission schedule by
simply associating each color with one time slot. The node coloring considered in
this chapter ensures that two nodes capable of communicating directly with each
other do not select the same color. A TDMA schedule based on such a coloring

1 This also holds for related techniques such as Frequency-Division-Multiple-Access (FDMA) and
Code-Division-Multiple-Access (CDMA) [113].

49

distributed (∆ + 1)-coloring in the sinr model

is usually not yet feasible in the SINR model, however, a feasible TDMA schedule
can be computed based on our coloring, for example as shown in Chapter 6.

The problem of distributed node coloring dates back to the early days of dis-
tributed computing in the mid-1980s. In contrast to the centralized setting, a (∆ +

1)-coloring is considered to be the ultimate goal in distributed node coloring as
it is already NP-complete to compute the chromatic number (i.e., the minimum
number of colors required to color the graph) in the centralized setting [52]. There
is a rich line of research in the distributed setting, however, most of the work has
been done for message-passing models like the LOCAL model. Such models are
designed for wired networks and do not fit the specifics of wireless networks.

In this chapter, we use two simple and well-known algorithms (covered for exam-
ple in [13]) designed for message-passing models, and show that we can efficiently
execute the algorithms in the SINR model. This cannot be achieved by a simple
simulation of each round of the message passing algorithm by one execution of
local broadcasting as this results in a runtime of O(∆ log2 n) time slots. Instead, we
modify both the communication in the SINR model and the algorithms to perfectly
fit together. The synergy effect of our careful adjustments is that the coloring al-
gorithm runs in O(∆ log n) time slots, which is asymptotically exactly the runtime
of one local broadcast [55]. This matches the runtime of current O(∆)-coloring
algorithms [30], and improves on current (∆ + 1)-coloring algorithms for the SINR
model which require O(∆ log n + log2 n) or O(∆ log2 n) time slots (in a different
setting) [136]. In the LOCAL model a lower bound of 1

2 log∗ n exists [96]. Thus,
in contrast to the algorithm proposed in this chapter, at least Ω(log∗ n) rounds
of local broadcasting are required to execute distributed node coloring algorithms
designed for the LOCAL model in the SINR model (unless more efficient commu-
nication becomes available).

The communication between nodes in our algorithm is assumed to be as estab-
lished just after deployment of the sensor network and based on the local broad-
casting algorithm proposed by Goussevskaia et al. [55]. Thus, we do not require
any pre-computed structure, the only knowledge the nodes require is an upper
bound on the maximum number of nodes in the proximity area (or alternatively
the maximal degree ∆), an upper bound on the number of nodes in the network, as
well as some model-related hardware constants in order to enable initial commu-
nication. All our results hold with high probability (w.h.p.). As union bounding
a w.h.p. event only decreases the constant c in the probability 1− 1/nc, which can
be cancelled by increasing a constant factor in the runtime, we refrain from stating
exact w.h.p. bounds in our analysis to simplify notation. Such requirements and
assumptions are common in the SINR model. We refer to Section 2.2.3 for more
details. We state related work and our contributions in the following.

Related Work

Research on distributed node coloring was started by Linial in [97]. Among other
results he shows a lower bound of Ω(log∗ n) to compute a 3-coloring of an n-cycle.
Since then a large body of works considered this distributed coloring problem in

50

4.1 introduction

the message-passing models, e.g. [9, 12, 14, 15, 25, 90, 92, 108]. Thus, we high-
light only the most efficient algorithms for (∆ + 1)-colorings here and refer to a
recent monograph by Barenboim and Elkin [13] for a more thorough overview. The
fastest deterministic algorithm for general graphs is due to Awerbuch et al. [9] and

Panconesi and Srinivasan [108] and runs in 2O(
√

log n). For moderate values of ∆,
Barenboim [12] recently improved the runtime to O(∆3/4 log ∆ + log∗ n), from pre-
viously O(∆) + 1

2 log∗ n [14]. The algorithm on which our first algorithm is based
was the most efficient (∆ + 1)-coloring algorithm in the randomized setting until
recently [13, Chapter 10]. The algorithm can be seen as a simple variant of Luby’s
maximal independent set algorithm [98]. Variants of this algorithm were consid-
ered experimentally in [38, 110]. An algorithm of a similar flavor was introduced
in by Kothapalli et al. [90]. Using an orientation of the edges they showed that
their algorithm computes a (∆ + 1)-coloring in O(

√
log n) rounds, while transmit-

ting only one bit per node in each round. In recent years the randomized coloring
problem received considerable attention which culminated in the currently best

randomized algorithm running in O(log ∆ + 2O(
√

log log n)) due to Barenboim et
al. [15]. For growth bounded graphs, which generalize unit disk graphs, a deter-
ministic distributed algorithm due to Schneider and Wattenhofer [119] computes a
valid (∆ + 1)-coloring in O(log∗ n) rounds. Note that all of these results operate in
message-passing models such as CONGEST and do not consider interference.

In wireless networks, the SINR model received increasing attention first in the
electrical engineering community, and was picked up by the algorithms community
due to a seminal work by Gupta and Kumar [60]. For a general review of related
works in the SINR model we refer to Section 2.2.4 and focus on distributed coloring
algorithms in the following. A coloring algorithm due to Moscibroda and Watten-
hofer [104] has been adapted to the SINR model by Derbel and Talbi [30], and
extended to support arbitrary transmission powers and directed communication
in the previous chapter. This algorithm computes an O(∆)-coloring in O(∆ log n)
time slots in the uniform power setting we consider in this chapter. The algo-
rithm first computes a set of leaders using a maximal independent set algorithm.
Then leader nodes assign colors to non-leaders, which again compete for their final
color with a restricted number of neighboring nodes that may have received the
same assignment. Yu et al. [136] propose two (∆ + 1)-coloring algorithms that do
not require the knowledge of the maximum node degree ∆. Their first algorithm
runs in O(∆ log n + log2 n) time slots and assumes that nodes are able to increase
their transmission power for the computation. This prevents conflicts between non-
leader nodes by allowing the set of leaders to directly communicate to other lead-
ers outside the transmission region and thus coordinating the assignment process.
Their second algorithm does not require to tune the transmission power and runs
in O(∆ log2 n) time slots. In a less strict setting, Halldórsson, Wang and Yu [70]
recently proposed a coloring algorithm in the SINR model that makes use of mul-
tiple channels to achieve a speedup for the aggregation and the coloring problem.
Using k channels they compute a O(∆)-coloring in O(∆/k + log n log log n) time

51

distributed (∆ + 1)-coloring in the sinr model

slots. They use synchronous execution and require the nodes to measure the SINR
or reception power.

Contribution

Our first contribution is Rand4DColoring, a very simple and well-known algo-
rithm, which we adapt to the SINR model. In this algorithm each node selects a
new color whenever there is a conflict with a neighboring node. We show that af-
ter O(∆ log n) time slots there are no conflicts with high probability. This matches
the runtime of known O(∆)-coloring algorithms and improves the hidden constant
while also being significantly simpler.

As part of the analysis of Rand4DColoring we introduce a new method, which
has the potential of improving the runtime of other randomized algorithms in
the SINR model by a log n factor. This is achieved by carefully balancing the un-
certainty of the communication in the SINR model with the uncertainty usually
present in randomized algorithms.

Our third contribution is an asynchronous color reduction scheme. Given a d-
coloring with d > ∆, we compute a (∆ + 1)-coloring in O(d log n) time slots.
Combined with existing results, for example by Derbel and Talbi [30], our algo-
rithm computes a (∆ + 1)-coloring in overall O(∆ log n) time slots. Thus, the
algorithm achieves the declared goal of ∆ + 1 colors, while the runtime of state-
of-the-art O(∆)-coloring algorithms is matched. Other (∆ + 1)-coloring algorithms
in the SINR model require at least O(∆ log n + log2 n) time slots (under incompara-
ble assumptions). Also, in the synchronous setting, the color reduction algorithm
simplifies to an almost trivial color reduction scheme yielding the same results
restricted to the synchronous setting.

Outline

In the next section we state the model along with required definitions and intro-
duce different communication techniques in the SINR model. In Section 4.3 we
describe and analyze the simple (4∆)-coloring algorithm. The synchronous variant
of our color reduction scheme is presented in Section 4.4, before we propose the
asynchronous color reduction in Section 4.5. We conclude this chapter with closing
remarks in Section 4.6.

4.2 model and preliminaries

Recall that we denote the set of neighbors of v by Nv := {w ∈ V\{v} | dist(v, w) ≤
rB} and N+

v := Nv ∪ {v} in Chapter 2. We generalize this notation to neighbors
of neighbors, denote N+

v by N1
v , and recursively define the k-neighborhood of v ask-neighborhood

Nk
v := ∪w∈Nk−1

v
N1

w.
Note that since rB < rT, a node v may successfully receive transmissions from

nodes that are not its neighbors in the communication graph, although successful
transmission from those nodes cannot be guaranteed. This may lead to messages

52

4.2 model and preliminaries

received by more than ∆ “neighbors”. To ensure that ∆ + 1 colors are sufficient, we
assume that messages from outside the broadcasting range are discarded by con-
sidering the signal strength of a received message (usually provided by wireless
receivers as the Received-Signal-Strength-Indication (RSSI) value [11]). Thus, the
maximum degree is defined as for the (∆ + 1)-coloring in [136]. In a more prac-
tical setting, one could also define the communication graph based on the actual
communication between two nodes.

In the following we introduce the notation required for the analysis of Algo-
rithm 4.1, which consists of several phases and is described in the next section. We
say that two neighbors v, w have a conflict if cv = cw and denote the temporary conflict

color of v in phase t by ct
v. The set of neighbors that are in a conflict with v in

phase t is Xt(v) := {w ∈ Nv | ct
v = ct

w}. We call the set Xt(v) the conflict set of v conflict set Xt(v)

in phase t. Let us now define some events. The event that v is in a conflict in
phase t is E t

confl(v) := ∃w ∈ Xt(v). Note that it does not matter whether v knows E t
confl(v)

of the conflict or not. The event that a transmission from v to all neighbors Nv

of v in phase t is successful is E t
succ(v). The same transmission is not successful or E t

succ(v)

fails if at least one neighbor was unable to receive the message. The correspond-
ing event is E t

fail(v). We replace E by P to denote the probability of an event, E t
fail(v)

e.g. Pt
succ(v) for E t

succ(v). Note that although the events E t
succ(v), and E t

fail(v) may
Pt

confl(v)

Pt
succ(v)

Pt
fail(v)

not be independent of events happening at other nodes, our bounds on the cor-
responding probabilities Pt

succ(v) and Pt
fail(v) are independent from the node v

and possible events at other nodes. Also, our bounds Pt
succ(v) and Pt

fail(v) on
these events include the event that v reaches some but not all of its neighbors,
as Pt

fail(v) ≤ 1 − Pt
succ(v) ≤ 1/12 and 11/12 ≤ Pt

succ(v) ≤ 1 (see Lemma 4.1).
If p ≥ c for probability p and a constant c, we say that p is at least constant, or
simply constant. The nodes use two different transmission probabilities in order to
adapt to the requirements of the corresponding algorithms. Probability p1 := 1

2∆A p1,p2

is used in Algorithm 4.1, while Algorithm 4.3 uses p1 and p2 := 1
180 . Let c be

an arbitrary constant with c > 1. Throughout this chapter, we use the following
definitions: κ` := cλ ln n/p` for ` = 1, 2, κ0 := λ ln 12/p1, and λ a constant (for κ0,κ1,κ2

more details, we refer to Appendix A.2). It holds that κ0 ∈ O(∆), κ1 ∈ O(∆ log n),
and κ2 ∈ O(log n).

4.2.1 Extending Local Broadcasting:

We show that local broadcasting with constant success probability in time inversely
proportional to the transmission probability can be achieved. This extends known
results regarding local broadcasting, which guarantee local broadcasting with high
probability for a fixed number of time slots. Although we are the first to use local
broadcasting with constant success probability, the proof of the following lemma is
mainly based on standard techniques. Thus, we defer it to Appendix A.2.

Lemma 4.1. Let v be a node transmitting with probability p1. Then v successfully trans-
mits to its neighbors with probability ≥ 11/12 within κ0 time slots. Transmissions with
probability p` for κ` time slots are successful w.h.p. for ` ∈ {1, 2}.

53

distributed (∆ + 1)-coloring in the sinr model

. . .

O(∆) time slots for each phase, O(log n) phases

RAND4DCOLORING

draw new color if conflict in current phase

phase
#O(log n)phase 3phase 2phase 1

Figure 4.1: Illustration of Algorithm 4.1, which selects a random color at the end of a phase
if a conflict is detected. The algorithm computes a (4∆)-coloring in O(∆ log n)
time slots

4.3 simple (4∆)-coloring

The algorithm we propose is at its heart a very simple and well-known random-
ized coloring algorithm. The underlying approach dates back to an algorithm to
compute maximal independent sets by Luby [98], and is covered for example in [13,
Chapter 10].

Algorithm 4.1: Rand4DColoring for node v

1 Fv ← [4∆], c−1
v ← Fv .rand()

2 for t ← 0; t ≤ 6(c + 3) ln n ; t ← t + 1 do // each one phase

3 if c t−1
v 6 ∈ Fv then c t

v ← Fv .rand() // if conflict, new color

4 else c t
v ← c t−1

v // otherwise, keep it

5 Fv ← [4∆]

6 Transmit c t
v with probability p1 for κ0 time slots

7 foreach received color c t
w from neighbor w ∈ Nv do Fv ← Fv\{c t

w}

The algorithm Rand4DColoring (Algorithm 4.1 and Figure 4.1), is a simple,
distributed and phase-based coloring algorithm. In each phase the node checks
whether it knows of a conflict with one of its neighbors. If so, it randomly draws
a new color from the set Fv of colors not taken in the previous phase. Finally,
the phase is concluded by transmitting the current color. This computes a valid
coloring with 4∆ colors in O(log n) phases, while each phase takes O(∆) time
slots. However, in contrast to previous algorithms of this kind, we do not as-
sume that successful communication is guaranteed by lower layers. Instead we
allow the uncertainty in the randomized algorithm to be combined with the un-
certainty in the communication in the SINR model, which is jointly handled in
the analysis. Thereby we reduce the number of time slots required for each phase
from O(∆ log n) to O(∆), making this simple approach competitive in the SINR
model. Thus, Algorithm 4.1 solves the node coloring problem using 4∆ colors
in O(∆ log n) time slots, which matches the runtime of local broadcasting in the
SINR model and improves the state-of-the-art O(∆)-coloring in [30]. Let us now
state the main results of this section.

Theorem 4.2. Let all nodes start executing Algorithm 4.1 simultaneously. AfterO(∆ log n)
time slots, all nodes have a valid color cv ≤ 4∆ w.h.p.

54

4.3 simple (4∆)-coloring

For the asynchronous setting, the bound on the runtime holds for node v only
after all nodes in v’s O(log n)-neighborhood are awake

Theorem 4.3. Let a node v execute Algorithm 4.1 in the asynchronous setting. Then v has
a valid color cv ≤ 4∆ w.h.p., at most O(∆ log n) time slots after all nodes in its O(log n)-
neighborhood started executing the algorithm.

In the following section we prove the result for the synchronous setting. In
Section 4.3.2 we extending it to the asynchronous setting.

4.3.1 Analysis of Rand4DColoring

Despite the fact that the underlying coloring algorithm is well-known, our analysis
is new and quite involved. The main reason for this is the uncertainty in whether
a message is successfully delivered in one phase of Algorithm 4.1. In contrast to
guaranteed message delivery, based for example on local broadcasting, message
delivery with constant probability can be achieved a logarithmic factor faster, see
Lemma 4.1. However, this reduction in runtime comes at a cost: While in the
guaranteed message delivery setting, a node v can finalize its color once a phase
without a conflict at v happened, this is not possible in our setting. We cannot guar-
antee the validity of the colors even if a node did not receive a message implying
a conflict in one phase, as message transmission is successful only with constant
probability. Nevertheless, we show that after O(log n) phases of transmitting the
selected color and resolving eventual conflicts, the coloring is valid in the entire
network w.h.p.

In order to prove correctness of Algorithm 4.1 (Rand4DColoring) we shall first
bound the probability of a conflict propagating from one phase of the algorithm
to the next. This is the foundation for the result that our algorithm computes a
valid (4∆)-coloring in O(∆ log n) time slots w.h.p. for both the synchronous and
the asynchronous setting. Assuming that a node v has a conflict in phase t, there
are only two cases that may lead to a conflict at v in phase t + 1:

1. Node v had a conflict in phase t that did not get resolved (either due to being
unaware of the conflict or since the new color implies a conflict as well).

2. A neighbor of v had a conflict in phase t and introduced the conflict by ran-
domly selecting v’s color.

We shall show that the probability for both cases is at most constant (see Lemma 4.4).
Thus, after O(log n) phases it holds with high probability that a valid color has
been found. Note that we focus on the synchronous setting in this section; how-
ever, the main results can be extended to the asynchronous case, cf. Section 4.3.2.

Lemma 4.4. Let v be an arbitrary node and Pt
confl(v) the probability of a conflict at v in

phase t. Then the probability of a conflict at v in phase t + 1 is at most

Pt+1
confl(v) ≤

5
6
·max

w∈Nv
Pt

confl(w).

55

distributed (∆ + 1)-coloring in the sinr model

Proof. We shall prove the lemma by considering the two cases that may lead to a
conflict at node v in phase t + 1. The first case is that v has a conflict with at least
one of its neighbors. Depending on which transmissions are successful there are 3
subcases. Note that → denotes E t

succ(v), while ← denotes ∃w ∈ Xt(v) : E t
succ(w)—

with negations accordingly2.

(a) 6→, 6←: It is not guaranteed that any of the conflict partners know of the conflict,
as the transmissions from v and the nodes in the conflict set Xt(v) 6= ∅ failed at
least partially. There is at least one neighbor u ∈ Xt(v) that failed to transmit
its color successfully to v, which happens with probability Pt

fail(u). Combined
with v’s failure to transmit its color successfully, case 1(a) happens with probability
at most Pt

confl(v)(P
t
fail(v)Pr(6←)) ≤ Pt

confl(v)P
t
fail(v)P

t
fail(u) ≤ Pt

confl(v)(1/12)2. If
any conflict partner knows of the conflict, the conflict would be resolved with a
certain probability (as in the following cases). However, as this is not guaranteed,
we account for the worst case: the conflict is not resolved and propagates to the
next phase. Note that since this case happens only with a small probability, it holds
that the total probability of case (a) and conflict at v in phase t + 1 is small.

(b)→, 6←: All nodes in Xt(v) failed to transmit successfully, but v transmitted suc-
cessfully to all neighbors. Thus, all nodes in Xt(v) know of the conflict, while v
might be unaware of it. This case happens with probability at most Pt

confl(v) ·
(Pt

succ(v) · Pr(6←)). The probability that a node w ∈ Xt(v) selects v’s color in
phase t + 1 is at most ∑w∈Xt(v) 1/|Fw| (even if v knows of a conflict and itself selects
a new color). This results in an overall probability of at most

Pt
confl(v) · (Pt

succ(v) · Pr(6←)) · ∑
w∈Xt(v)

1
|Fw|

≤ Pt
confl(v)

(
∏

w∈Xt(v)
Pt

fail(w)

)
· ∑

w∈Xt(v)

1
|Fw|

x:=|Xt(v)|
≤ Pt

confl(v)
(
Pt

fail
)x · x

3∆
≤ 1

3∆
Pt

confl · x
(

1
12

)x

≤ 1
24

Pt
confl

where the first inequality holds since the event 6← is equivalent to ∀w ∈ Xt(v) :
E t

fail(w) and Pt
succ(v) ≤ 1. The second inequality holds since |Fw| ≥ 3∆ and by

setting x = |Xt(v)|. The last inequality holds since x(1/12)x ≤ 1/12 for all x ∈
{1, . . . , ∆}, and ∆ ≥ 1.

(c)←: It holds that v knows of the conflict. Whether v’s neighbors know of it or not
is not guaranteed. This case happens with probability at most Pt

confl(v) · (Pr(←)).
The probability that at least one neighbor of v has or selects the same color as v is
at most ∑w∈Nv

1
|Fv| ≤ |Nv| 1

3∆ ≤ 1
3 .

2 A partial success of transmission is often sufficient to trigger dealing with a conflict. We do not
consider this in our notation, however, as we evaluate Pt

succ(v) to be at most 1 for all v and since
Pr(transmission from v to u fails) ≤ Pt

fail(v) ≤ 1/12, our analysis covers this case.

56

4.3 simple (4∆)-coloring

Using Pr(←) ≤ 1, this results in a probability for a conflict at v in phase t + 1 of
at most Pt

confl(v) · (1/144 + 1/24 + 1/3 · Pr(←)) <
(1

2

)
·Pt

confl(v).
In the second case, there was no conflict at v in phase t, but a neighbor w of v

selected v’s color due to a conflict at w, which happens with probability at most

∑
w∈Nv

Pr(ct+1
v = ct+1

w)︸ ︷︷ ︸
v’s neighbor w selects v’s color

∑
u∈Nw

Pr(ct
u = ct

w)︸ ︷︷ ︸
u ∈ N(w) told w

about their conflict

≤ ∑
w∈Nv

Pr(ct+1
v = ct+1

w)Pt
confl(w)

≤ ∑
w∈Nv

1
|Fw|

Pt
confl(w) ≤

(
1
3

)
max
w∈Nv

Pt
confl(w)

The last inequality holds since ∑w∈Nv
1
|Fw| ≤ ∑w∈Nv

1
3∆ ≤ 1

3 . Combining all events
that could lead to a conflict at v in phase t + 1 it holds that the probability of the
union of the events is at most

Pt+1
confl(v) ≤

(
1
2

)
Pt

confl(v) +
(

1
3

)
max
w∈Nv

Pt
confl(w) ≤ 5

6
· max

w∈N+
v

Pt
confl(w),

which concludes the proof.

Note that the second case could be avoided if message delivery in each phase
would be guaranteed, as a node v that does not have a conflict in phase t, would
simply finalize its current color and communicate this. Thus, v could not be forced
into a conflict anymore. We shall now show that a set of nodes executing Algo-
rithm 4.1 computes a valid coloring, and hence prove Theorem 4.2.

Proof of Theorem 4.2. Let us consider the probability of a conflict at an arbitrary
node v ∈ V in phase t = 6(c + 3) ln n. It holds that

Pt
confl(v) ≤

(
5
6

)
max
w∈Nv

Pt−1
confl(w) ≤

(
5
6

)
max
w∈V

Pt−1
confl(w)

≤
(

5
6

)t

max
w∈V

P0
confl(w) ≤

(
1− 1

6

)6(c+3) ln n

≤ 1
nc+3 ,

where the first inequality is due to Lemma 4.4. The third inequality holds since all
nodes are in the same phase due to the synchronous start of the algorithm. Note
that the upper bound on the probability that a conflict propagates holds for all
nodes. The fourth inequality holds as P0

confl(v) ≤ 1 for all nodes v. The last in-
equality holds due to a well-known mathematical fact (cf. Fact 2.1 in Section 2.2.3).
Thus, the probability for a conflict at an arbitrary node v is small. A union bound
over all nodes in the network implies that the coloring is valid w.h.p. The runtime
of Algorithm 4.1 is O(∆ log n), as it consists of 6(c + 3) ln n = O(log n) phases, and
each phase takes κ0 = O(∆) time slots according to Lemma 4.1.

57

distributed (∆ + 1)-coloring in the sinr model

4.3.2 Asynchronous Simple Coloring

Let us now consider the asynchronous setting. Recall that we call all nodes that can
reach v within O(log n) rounds the O(log n)-neighborhood of v. We say that this
neighborhood is stable if those nodes are all awake. If the O(log n)-neighborhoodstable

of a node v is stable, Lemma 4.4 holds as well, with only small changes to the proof
(mostly caused by overlapping phases, we refer to [42] for the modified version of
the proof). Thus, once all nodes in v’s O(log n)-neighborhood are awake, we can
bound the probability using said lemma, and prove Theorem 4.3, which we restate
below, similar to the proof of Theorem 4.2.

Theorem 4.3. Let a node v execute Algorithm 4.1 in the asynchronous setting. Then v has
a valid color cv ≤ 4∆ w.h.p., at most O(∆ log n) time slots after all nodes in its O(log n)-
neighborhood started executing the algorithm.

Proof. In each phase the algorithm transmits its current color and receives the colors
of its neighbors with constant probability. Based on the probabilities for a success-
ful transmission and the probability to select a color used by a neighbor after a
conflict is detected, it holds that if the neighbors started before v (or at least before
the analysis at v begins), we can prove that the probability decreases with each
round. In order to decrease the probability with each round also for v’s neighbors,
and their neighbors, and so on, we require all nodes in a O(log n)-neighborhood
of v to start before v, or postpone the analysis of v to a time t in which the nodes
in the (log n)-neighborhood started.

We consider j := logk n phases (relative to v) such that all nodes in the logk n-
neighborhood of v execute the algorithm and set k := 6/5. After the first phase
we apply Lemma 4.4 to the nodes in N j−1

v . This implies that these nodes have
a conflict with probability at most 1/k. Then we apply the lemma to N j−2

v , and
so on, decreasing the set of nodes intuitively by one neighborhood in each phase.
After j = logk n rounds Lemma 4.4 is only applied to v, with the result that the
conflict probability of v is at most 1

klogk n = 1/n.

If afterwards nodes outside of the O(log n)-neighborhood of v wake-up this does
not influence v. As the conflict probability decreases with each phase, and at
least Ω(log n) phases are required until a new conflict could reach v, the proba-
bility of a conflict at v is at most 1/n.

4.4 synchronous color reduction

In this section we show that SyncColorReduction (Algorithm 4.2 and Figure 4.2)
transforms a valid d-coloring into a valid (∆ + 1)-coloring with high probability in
time O(d log n). Let us now describe the algorithm.

Assume the nodes have agreed on a valid coloring with d colors. The algorithm
improves an existing coloring by reducing the number of colors to ∆ + 1. The
general scheme is that the nodes in the networks gradually replace their color by
a color from [∆]. In each epoch, the nodes of exactly one color select a new color

58

4.4 synchronous color reduction

. . .

O(log n) slots in each epoch, at most O(∆) epochs

SYNCCOLORREDUCTION

epoch
i− 1
wait

for node v with
color i ∈ O(∆)

epoch i
select Color
& transmit

epoch 1
wait

epoch 2
wait

epoch 3
wait

Figure 4.2: Illustration of Algorithm 4.2, the simple synchronous variant of our color reduc-
tion algorithm. Given a color i ∈ O(∆) the node selects and communicates its
final color in epoch i. Due to the synchronous start and the valid initial coloring
there are no conflicts.

Algorithm 4.2: SyncColorReduction for node v

1 Fv ← [∆]
2 foreach color ci = i ∈ [4∆] do
3 if ct

v 6= i then // wait

4 listen for κ2 time slots
5 foreach received color cw from neighbor w ∈ Nv do Fv ← Fv\{cw}
6 else // otherwise, select and transmit final color

7 cv ← Fv.random()
8 Transmit cv with probability p2 for κ2 time slots

from [∆] and broadcast their selection to their neighbors. As each color forms
an independent set, those nodes are free to select a color that is not yet taken in
their neighborhood and communicate the selected color to the neighbors without
introducing a conflict. In order to make the algorithm efficient in the SINR model,
we utilize the given coloring to improve the communication efficiency by building
a tentative schedule for the transmissions of each node. As nodes of exactly one
color attempt to transmit in each epoch, the nodes of this color can successfully
transmit their (new) color selection to neighboring nodes with high probability in
only O(log n) time slots instead of O(∆ log n). As each node that selects a final
color from [∆] knows of its neighbors colors, it can select and communicate its
color without introducing a conflict. Overall this algorithm requires d epochs to
reduce a d-coloring to a (∆ + 1)-coloring. As each epoch requires O(log n) time
slots this results in O(d log n) time slots.

We shall only sketch the proof in the following, as the general color reduction
scheme is already known for the LOCAL model (cf. for example [13]). In the
proof we assume the coloring computed by Rand4DColoring to be given, other
colorings can be used equivalently.

Lemma 4.5. Given a network such that each node has a valid color cv ∈ [4∆] with
probability at least 1 − 1

nc+3 . Then a synchronous execution of Algorithm 4.2 computes
a valid (∆ + 1)-coloring at v with probability at least 1

nc+1 .

Proof. Given a node v with valid color with probability 1 − 1
nc+3 . As the color

reduction scheme is a deterministic algorithm (apart from the communication),

59

distributed (∆ + 1)-coloring in the sinr model

only two possibilities for an invalid color at v after the execution exist. The first is
that v’s color was not valid, and v selected the same color as one of its neighbors.
This may happen as two neighbors with the same color selected their final color
in the same epoch of Algorithm 4.2. By applying a union bound, this happens
with probability at most ∆

nc+3 . The second possibility is that v did not receive the
color of one of its neighbors, or one of v’s neighbors did not receive v’s color. It
follows from Lemma 4.1 that communication in Algorithm 4.2 is successful with
probability 1 − 1

nc+3 . Thus, applying a union bound, it follows that the overall
probability for an invalid color at v is at most 2∆+1

nc+3 ≤ 1
nc+1 .

We observe that a combination of Algorithms 4.1 and 4.2 results in a very simple
synchronized (∆ + 1)-coloring algorithm with a total runtime of O(∆ log n) time
slots.

Corollary 4.6. Executing Algorithm 4.2 after Algorithm 4.1 in a synchronous setting
yields a (∆ + 1)-coloring after O(∆ log n) time slots.

4.5 asynchronous color reduction

In the following section we assume a valid node coloring with d ∈ Θ(∆) colors to
be given and reduce the number of colors to ∆ + 1 in O(d log n) time slots. The
algorithm we present in this section circumvents the synchronization problem, es-
sentially, by using two levels of MIS executions. Our algorithm, which we denote
by ColorReduction, is illustrated in Figure 4.3, the corresponding pseudocode
can be found as Algorithms 4.3 to 4.6. We reference the MIS (Algorithm 4.5) ex-
ecuted with parameter ` = 1 by first level MIS, and MIS(` = 2) by second levelfirst level MIS

second level MIS MIS.

One MIS execution with
all nodes: O(∆ log n) O(1) MIS executions, each O(log n)

wait for active interval

leader

non-leader
. . .request

answering O(∆) schedule requests,
O(log n) slots each

active interval

O(∆ log n) O(∆ log n)

Coloring,
O(log n)

Coloring,
O(log n)

Figure 4.3: Runtime of ColorReduction. Overall O(∆ log n), given a O(∆) coloring.

Let us now describe the algorithm in more detail. The algorithm starts by ex-
ecuting the first level MIS algorithm that determines a set of independent nodes,
which we call leaders. Each leader node transitions to Algorithm 4.4, selects and
transmits the color 0 it selected and initializes its periodic leader schedule. This
schedule assigns each color an active interval of length O(log n) time slots to allowactive interval

the nodes of this color to select their final color from [∆].
Each node vi that is not in the first level MIS selects a leader from its broadcasting

range and requests the relative time until it is vi’s turn to be active. Upon receipt
of its active interval, the node waits until the interval starts and then executes a
second level MIS algorithm (which does not interfere with the first level MIS) a
constant number of times. In this second level MIS the algorithm benefits from

60

4.5 asynchronous color reduction

fewer active nodes, and hence more efficient communication to allow each node
to achieve successful transmission of a message to all neighbors in O(log n) time
slots. Moreover, we can speed up the MIS algorithm by the same factor of ∆ to
execute it in O(log n) time slots, as only a constant number of nodes compete to
be in each second level MIS. For each node that wins the second level MIS, there is
no other node of the second level MIS in its broadcasting range. Thus, the winning
node can select a valid color from Fv, where Fv is the set of colors not selected by
neighbors, and transmit its choice to its neighbors without a conflict. If a node does
not succeed to be in the second level MIS, it simply executes MIS(2) again. As each
node succeeds in one of the MISs within its active interval (cf. Lemma 4.11), each
node selects one of the ∆ + 1 colors.

Algorithm 4.3: ColorReduction for node v

1 Fv ← [∆]\{0}
2 foreach received colw do continuously

Fv ← Fv\{colw}
4 MIS(1)

Algorithm 4.4: Colored(`) for node v

1 if ` = 1 then // Level 1 leader

2 colv ← 0, Q← ∅, c′v ← 0
3 announce M1

C(v, colv) with prob. p2 for κ2 slots
4 Define method τ(col, cv) ≡ col · µ− cv mod ∆µ neg., max., with
|τ(col, cv)| > κ2

5 while protocol is executed do // serve requests

6 c′v ← c′v + 1
7 transmit M1

C(v, colv) with probability p1

8 foreach received request from neighbor w: MR(w, v, coltmp
w) do

9 Q.push((w, coltmp
w))

10 if Q not empty then
11 (w, coltmp

w)← Q.pop(), t← τ(coltmp
w , c′v)

12 for O(log n) slots do
13 transmit M1

C(v, w, t) with probability p2 // increment c′v, t

else // Level 2 / Non-leader node

15 colv ← Fv.rand() // valid

16 announce M2
C(c, colv) with prob. p2 for κ2 slots

17 while protocol is executed do // keep color valid

18 transmit colv with prob. p1

61

distributed (∆ + 1)-coloring in the sinr model

Algorithm 4.5: MIS(`) for node v, based on MW-coloring [30, 120]

1 Pv ← ∅, Next←

Level2 if ` = 1

MIS(2) otherwise
2 for κ` time slots do // Listen first

3 foreach w ∈ Pv do dv(w)← dv(w) + 1
4 if M`

A(w, cw) received then Pv ← Pv ∪ {w}; dv(w)← cw

5 if M`
C(w) received then Next(w)

6 cv ← Ξ(Pv) // maximal, non-positive, not conflicting with competing counters in Pv

7 while true do // then compete for MIS

8 cv ← cv + 1
9 if cv > κ` then Colored(`) // success

10 foreach w ∈ Pv do dv(w)← dv(w) + 1
11 if M`

C(w) received then Next(w)
12 transmit M`

A(v, cv) with probability p`
13 if M`

A(w, cw) received then // received competing counter

14 Pv ← Pv ∪ {w}; dv(w)← cw

15 if |cv − cw| ≤ κ` then cv ← Ξ(Pv)

4.5.1 Notation for ColorReduction and MIS

Let us now describe the notation used in the algorithm. We denote the set of avail-
able colors by Fv. Note that throughout the algorithm, each node deletes the final
colors it receives from Fv. The MIS algorithm (Algorithm 4.5) aims at allowing
exactly one node in each neighborhood to succeed to Colored (Algorithm 4.4),
select a color, and announce its success to its competitors. There are minor dif-
ferences depending on the two levels ` = 1 and ` = 2, however, the algorithm
remains the same. We describe the MIS algorithm below. In Algorithm 4.4, v is a
leader, colv denotes the final color from [∆], and Q is a queue used to store nodes w

Algorithm 4.6: Level2(w) for node v with leader w

1 while true do
2 if M1

C(w, v, t) received then
3 while t < 0 do // wait for interval

4 t← t + 1 // one time slot each

5 while t < µ do // active interval, µ = 2k2κ2

6 // increase t by one in each time slot during MIS(2)

7 MIS(2)

else // transmit request

9 transmit MR(v, w, coltmp
v) with probability p1

62

4.5 asynchronous color reduction

along with their initial color coltmp
w that requested an active interval from v. The

remaining time is based on v’s periodic schedule, which is defined by its counter
value c′v and w’s color. We set k := 90, which corresponds to the maximum number k

of active nodes in a broadcasting range, see Lemma 4.9. The function τ(colw, cv)

intuitively sets t to the start of the next interval corresponding to w’s color in v’s
schedule, so that the starting time of w can be communicated by v w.h.p. before w’s
active interval starts. During the transmission interval, t is decreased appropriately.
The length of each active interval is µ := 2k2κ2 ∈ O(log n), and thus length of the active interval µ

schedule is ∆µ ∈ O(∆ log n). schedule length ∆µ

Let us now consider the messages used throughout the algorithm. To transmit
the current counter value cv to the neighbors, a message M`

A(v, cv) is used. This
message contains the level `, the transmitting node v and its counter value cv. The
message M`

C indicates that a node succeeded in the MIS of level `. This message has
two uses in the algorithm. If it is used to transmit the success in the MIS, it contains
the node and the color it selected. If it is used (by a first level leader v) to answer
requests for the activity interval, it contains v, the requesting node w and the time
remaining until w’s active interval begins. The request message MR(v, w, coltmp

v) is
transmitted by a node v in Algorithm 4.6, if v failed to win the first level MIS algo-
rithm. It contains the node v, a leader w in v’s neighborhood and v’s color coltmp

v

from the initial O(∆)-coloring.

Adapting the MIS Algorithm

Algorithm 4.5 is a adaptation of the MIS algorithm used in the coloring algorithm
in [30, 120]. Apart from constant changes, the lemma follows directly from Theo-
rems 1 and 2 in [30] if ` = 1, and from Lemma 4.1 along with setting ∆ to a constant
in the proofs of both referenced theorems if ` = 2.

Lemma 4.7. Algorithm 4.5 computes an MIS among participating nodes within δ`κ2 ∈

O(δ` log n) time slots, where δ` =

∆ if ` = 1

k if ` = 2
w.h.p.

We briefly describe the MIS (Algorithm 4.5) for general `. The algorithm is
based on the interplay of counters within a node’s neighborhood. Each node v
has a counter cv. We denote the set of neighbors competing in the MIS by Pv.
For each node w in this set, the counter value is stored (and increased by one in
each time slot) as dv(w). The MIS algorithm begins with a listen phase of κ` time
slots, which ensures that each node participating in the MIS received the counter
values of other active neighbors. As nodes joining later execute the listen phase,
they know the status of their neighborhood before competing to be in the MIS.
Before competing, the counter cv of v is set to Ξ(Pv). This sets cv to the maximum
value such that cv ≤ 0 and cv 6∈ {dv(w) − κ`, . . . , dv(w) + κ`} for each w ∈ Pv.
Intuitively, cv is set to a maximal non-positive value that is not within an interval
of κ` of a competing nodes counter value. This ensures that if v reaches the counter
threshold, there is sufficient time to inform the competitors w ∈ Pv of v’s success,

63

distributed (∆ + 1)-coloring in the sinr model

or the other way around if one of v’s competitors succeeds. The main idea required
to prove Lemma 4.7 is that once a node transmits successfully to all its neighbors
its counter is not reset anymore. As the counters are reset to at most (δ` − 1) · κ`,
the runtime bound follows. Note that each node keeps the counter values dv(w) of
neighbors w up-to-date by automatically incrementing them in each time slot.

4.5.2 Analysis

Let us first state the main result of this section.

Theorem 4.8. Given a valid node coloring with d ≥ ∆ colors, Algorithm 4.3 computes a
valid (∆ + 1)-coloring in O(d log n).

As the algorithm is essentially a simple color reduction scheme, each node se-
lects a valid color if the communication can be realized as claimed. To prove this
we show that in the second level indeed only a constant number of nodes are active
in each broadcasting range (cf. Figure 4.4). We use this to achieve message trans-
mission from active nodes to all their neighbors in O(log n) time slots, and show
that the second level MIS can be executed in O(log n) time slots. Finally, we prove
that each non-leader node v succeeds in a second level MIS, and thus colors itself
with a color from [∆], within the active interval v received by its leader.

We use the next lemma to prove our bounds on the communication in Lemma 4.1.
It allows us to increase the transmission probability in the second level MIS by
a factor of ∆ compared to classical local broadcasting, leading to a decrease in
the time required for successful message transmission by the same factor of ∆
to O(log n).

Lemma 4.9. In the second level, at most k = 90 nodes are active in each broadcasting
region.

Proof. The lemma follows from a geometric argument regarding the number of first
level MIS nodes within a certain distance of each node. Let us consider an arbitrary
node v. Nodes in the broadcasting range of v must select their leader from the set
of (first level) MIS nodes within the radius of two broadcasting ranges from v.
Geometrically at most 18 independent nodes can be in a disk of radius 2rB, thus
each node from the broadcasting range of v selects one of these 18 nodes as leader.
Each leader may be selected as leader by at most 5 nodes of each color, since these
nodes must be pairwise independent. Thus, overall the nodes in v’s broadcasting
range may follow up to 18 schedules, and for each schedule at most 5 nodes are
active at the same time, which implies the upper bound of 90 active nodes in the
broadcasting range of v. The proof is illustrated in Figure 4.4.

Based on this result we can bound the runtime of our algorithm, starting with
Algorithm 4.6.

Lemma 4.10. Let v execute Algorithm 4.6 with leader w. Then a) v transmits the request
message successfully within κ1 time slots w.h.p.; b) v receives its active interval after at

64

4.5 asynchronous color reduction

vv

Figure 4.4: Left: Node v with its broadcasting region in a network with valid coloring;
Nodes in the first level MIS are squares. Right: Nodes in v’s broadcasting range
are connected to their selected leader by a dashed line. Nodes currently active
in the second level are surrounded by a square. At most k = 90 nodes are active
in each broadcasting region.

most another κ1 time slots w.h.p.; and c) the wait-time t until v’s active interval starts is at
most ∆µ ∈ O(∆ log n).

Proof. Part a) is implied directly by Lemma 4.1. Regarding Part b), it holds that v’s
leader node w must answer at most ∆ requests. For each request w transmits the
node’s answer for κ2 time slots. Thus v receives its active interval at most κ1 +

∆κ2 time slots after it started transmitting its request. Part c) holds by definition
of τ(·, ·), as the length of the schedule is ∆µ.

We shall now argue that each non-leader node succeeds to win a second level
MIS in its active interval.

Lemma 4.11. Given a node v executing Algorithm 4.6. Once t = 0, v wins a second level
MIS set within µ = 2k2κ2 ∈ O(log n) time slots.

Proof. The active interval of v is from ts = 0 to te = 2k2κ2. According to Lemma 4.9,
at most k nodes are active in v’s broadcasting range at any time (including v). Due
to the possible overlap of the active intervals, at most 2k − 2 neighbors of v may
be active during the interval {ts, . . . , te}. With each second level MIS execution of
length at most kκ` time slots at least one neighbor is admitted to be in an indepen-
dent set. This node selects a valid color, transmits this color to its neighbors and
does not participate in following MIS executions. Thus, after at most 2k − 2 MIS
executions v either succeeded in a previous MIS execution, or all active neighbors
of v succeeded and thus v must succeed in the next second level MIS execution.
Finally, as (2k− 1) · kκ` ≤ 2k2κ` the lemma holds.

As a final step we show that the final color selected by each node is valid w.h.p.

Lemma 4.12. Given a node v entering Algorithm 4.4. It holds that a) while v transmits
its final color no neighbor of v succeeds in a second level MIS w.h.p.; and b) the color v
selects is not selected by one of v’s neighbors w.h.p.

65

distributed (∆ + 1)-coloring in the sinr model

Proof. Part a) holds since all neighbors of v that participated in the MIS after v suc-
ceeded in a second level MIS know the counter value of v w.h.p. (due to the offset
between the counters ensured by Ξ() and Line 14 in Algorithm 4.5). Hence they
do not enter the MIS before v finished transmitting its final color. As the nodes are
not synchronized, a node w may have just entered the active interval. In this case,
however, the listening phase of κ2 time slots prevents w from succeeding before
it knows the status of all active neighbors. Thus, while v transmits its color, no
neighbors of v select their final color (except for first level leaders taking color 0,
which does not conflict with the second level coloring). For Part b) observe that
the algorithm removes each final color it receives from the set of available colors ac-
cording to Algorithm 4.3. Due to Part a) it holds that the colors of all neighbors of v
that selected a final color before v were able to transmit the color to v successfully.
Thus v selected a color which was not selected by one of its neighbors.

We are now able to prove the main theorem. Note that runtime bounds hold
for each node once the node starts executing the algorithm. This allows fully asyn-
chronous wake-up of nodes.

Proof of Theorem 4.8. It follows from Lemma 4.12 and the fact that each node suc-
ceeds in an MIS (and hence enters Algorithm 4.4 and selects a final color), that the
final color of each node is valid w.h.p. and a union bound over all nodes implies
that overall the coloring is valid w.h.p. Only ∆ + 1 final colors are used due to the
initialization of the set Fv.

The runtime of the first level MIS isO(∆ log n) time slots according to Lemma 4.7.
Algorithm 4.6 requires another O(∆ log n) slots until starting the active interval,
which is of length O(log n), overall resulting in O(∆ log n) time slots.

This directly implies the following corollary. As the asynchronous runtime
bound of Rand4DColoring holds only after the last node (in the nodes neighbor-
hood woke up), we use the MWColoring algorithm that computes a valid O(∆)-
coloring in O(∆ log n) time slots for the corollary.

Corollary 4.13. Let each node in the asynchronous network execute the MW-coloring
algorithm [30], followed by Algorithm 4.3. Then O(∆ log n) time slots after a node started
executing the algorithms it selected a valid color from [∆].

4.5.3 Discussion

Before concluding the chapter, we briefly discuss some of the assumptions or re-
quirements of the algorithms.

Local Synchronization

We do not require synchronization, however, if synchronization is available we
can use very simple algorithms to compute a (∆ + 1)-coloring (as described in
Sections 4.3 and 4.4. A wireless network can be synchronized either by using

66

4.6 conclusion

network-wide broadcasts, or by applying synchronization methods such as, for
example, Timing-sync Protocol for Sensor Networks (TPSN) [50]. Assuming a node
with a valid clock within few hops of each node, the network can be synchronized
within a few rounds of local broadcasting. Then, the simple synchronous coloring
algorithms presented in Sections 4.3 and 4.4 can be used to compute a (∆ + 1)-
coloring. For a survey on on synchronization methods for sensor networks we
refer to [122].

Concurrent Execution of Algorithms

In this chapter, we consider the algorithms isolated from other algorithms that may
be executed simultaneously by other nodes (which just woke up, for example).
The additional interference introduced by a constant number c0 of different algo-
rithms that are executed simultaneously in the network can be handled simply by
reducing the transmission probabilities used in the algorithms by c0. This does not
change the asymptotic complexity of the algorithms, as long as the number c0 of
concurrently executed algorithms is constant.

Without knowledge of ∆

We assume an upper bound on the maximum degree in the network to be known
by the nodes. Regarding initial communication, there are algorithms that do not
require this assumption. However, if this upper bound on the local density is
not known, one must begin with a very low transmission probability and use a
so-called slow-start technique to find the correct transmission probability. Cur-
rent slow-start techniques for local broadcasting require O(∆ log n + log2 n) time
slots [65, 133]. Unfortunately, we cannot adapt the slow-start technique to achieve
successful message transmission with constant probability as shown for the case
with knowledge of ∆ in Section 4.2.1. For the algorithm by Halldórsson and Mi-
tra [65], for example, reducing the runtime by a log n factor by allowing success
with only constant probability (instead of w.h.p.) fails as we cannot guarantee that
the so-called fallback occurs with high probability, which is required to keep the
sum of local transmission probabilities low.

4.6 conclusion

In this chapter we considered algorithms for distributed node coloring in the
SINR model. We proposed two algorithms, which are both inspired by very sim-
ple algorithms well-known for decades in the message-passing models LOCAL
and CONGEST . Our first algorithm, Rand4DColoring, computes a valid (4∆)-
coloring inO(∆ log n) time slots. The algorithm is very simple, and achieves its run-
time bound (in the case of asynchronous wake-up) once its O(log n)-neighborhood
is awake.

Our second algorithm, ColorReduction, computes a valid (∆ + 1)-coloring
in O(∆ log n) time slots and assumes a O(∆)-coloring to be given. The algorithm

67

distributed (∆ + 1)-coloring in the sinr model

uses the initial coloring to coordinate the color selection, and is fully resistant to
asynchronous wake-up of nodes. Combined with Rand4DColoring or the MW-
Coloring algorithm this results in a (∆ + 1)-coloring algorithm in O(∆ log n) time
slots. As the best local broadcasting algorithms in this setting require O(∆ log n)
time slots, this is best-possible unless faster local broadcast algorithms are found.

We conclude with open problems. It would be interesting to find an algorithm
that achieves message transmission with constant probability without the knowl-
edge of ∆ that improves the runtime bound of O(∆ log n + log2 n). Such an algo-
rithm could generalize the algorithms presented in this chapter to operate without
prior knowledge of ∆. And if not, can we find fast distributed node coloring algo-
rithms without the knowledge of ∆ (without increasing the transmission power)?

68

5
E X P E R I M E N TA L E VA L U AT I O N O F D I S T R I B U T E D N O D E
C O L O R I N G A L G O R I T H M S

In this chapter we evaluate the distributed node coloring algorithms proposed in
the previous chapter using the network simulator Sinalgo [33]. We compare the
described coloring algorithms to the MW-Coloring algorithm introduced by Mosci-
broda and Wattenhofer [104] and transferred to the SINR model by Derbel and
Talbi [30], and a variant of the coloring algorithm of Yu et al. [136]. We addition-
ally consider several practical improvements to the algorithms and evaluate their
performance in both static and dynamic scenarios.

Our experiments show that Rand4DColoring is very fast, computing a valid (4∆)-
coloring in less than one third of the time slots required for local broadcasting. Re-
garding other O(∆)-coloring algorithms our algorithm is at least 4 to 5 times faster.
Additionally, the algorithm is robust even in networks with mobile nodes and an
additional listening phase at the start of the algorithm makes Rand4DColoring

robust against the late wake-up of large parts of the network.
Regarding our (∆ + 1)-coloring algorithm ColorReduction we observe that it

is significantly slower than Rand4DColoring, however, still faster than the con-
sidered variant of the Yu et al. coloring algorithm, which is the only other (∆ + 1)-
coloring algorithm for the SINR model. Further improvement can be made with an
error-correcting variant that increases the runtime by allowing some uncertainty in
the communication and afterwards correcting the introduced conflicts.

The results of this chapter are published as [41].

5.1 introduction

Compared to other models of interference often used in distributed computing,
the SINR model of interference is a very realistic model of wireless communication.
However, to analytically prove guarantees on the runtime and show an algorithms
correctness becomes relatively complex. Thus, over the past years techniques were
developed to tackle the complexity of the model. This, however, led to the introduc-
tion of many constant factors in different parts of the algorithms. In this chapter
we study the two distributed node coloring algorithms we presented in Chapter 4

and two existing coloring algorithms in a more practical setting. We use the net-
work simulator Sinalgo [33] to execute the algorithms in a variety of deployment
scenarios in the static and the dynamic setting.

69

experimental evaluation of distributed node coloring algorithms

Let us briefly consider the algorithms we evaluate in this chapter. The first
algorithm, which we denote by MWColoring in this chapter, was proposed by
Moscibroda and Wattenhofer in [104] for the protocol model and transferred to the
SINR model by Derbel and Talbi [30]. MWColoring computes an O(∆)-coloring
in O(∆ log n) time slots by first selecting leader nodes, which coordinate the color
selection of other nodes so that only few nodes in each neighborhood compete for
the same color. We implement and evaluate a variant of the distributed (∆ + 1)-
coloring algorithm proposed by Yu et al. [136]. Their algorithm computes leaders,
which then increase their transmission power to block nodes that could hinder
the leaders (original) neighbors from selecting a valid color. We use a variant of
their original algorithm, as their algorithm operates in a slightly different setting,
however, the ideas are applicable in our setting as well. We denote the variant by
YuColoring and introduce it in Section 5.2.4. Finally, we consider two algorithms
proposed in Chapter 4. Rand4DColoring is a very simple randomized coloring
algorithm that computes a (4∆)-coloring by simply selecting a new random color
whenever a conflict is detected. Our second algorithm, ColorReduction, uses an
existing coloring to coordinate the color selection process to compute a (∆ + 1)-
coloring. The nodes executing the algorithm first select a set of leaders, which
compute a medium access schedule based on the existing colors. Due to this sched-
ule only few nodes are active at a time, which enables the active nodes to quickly
win the competition for their final colors. All considered algorithms require at
most O(∆ log n) time slots. For more details, we refer to Section 5.2.

Related Work

Although distributed node colorings are widely applicable and their study was ini-
tiated more than 25 years ago, only few experimental evaluations are concerned
with distributed node coloring algorithms. To the best of our knowledge the first
experimental evaluation on distributed node coloring algorithms is due to Finoc-
chi, Panconesi, and Silvestri [38]. They study very simple node coloring algorithms,
which are similar to our Rand4DColoring coloring algorithm. However, their al-
gorithms and the evaluation are based on the simpler message-passing models,
which do not consider interference. They observed that such simple algorithms are
very fast, and proposed some practical improvements to the coloring algorithms.
In particular, they found that allowing each node to participate in the conflict res-
olution in each round yields a faster runtime than participating with some prob-
ability. In an earlier experimental study Marathe, Panconesi and Risinger [100]
considered simple edge colorings of the same randomized trial-and-error flavor as
the later considered vertex coloring algorithms. They found that such algorithms
performed “extremely good” in their experiments. Pindiproli and Kothapalli [110]
extend the study on distributed node coloring algorithms by Finocchi, Panconesi
and Silvestri by considering the same randomized algorithms and compare it to a
similar algorithm that requires only O(

√
log n) rounds of transmitting a single bit

by exploiting a given orientation of the edges. They study oriented cycles, com-

70

5.1 introduction

plete and random graphs and find that exploiting a given orientation reduces the
runtime in most cases.

A study on distributed node coloring algorithms was compiled under my guid-
ance by Schlegel [118]. It considers Rand4DColoring, MWColoring, and YuCol-
oring in the synchronous setting and can be seen as tentative to this chapter.

Contribution

First, we confirm that the very simple Rand4DColoring coloring algorithm is in-
deed very fast, achieving a runtime an order of magnitude faster than its direct
competitor, the MW-coloring algorithm. Interestingly, the algorithm computes a
valid (4∆)-coloring in less time slots than required for one round of local broad-
casting.

Second we show that our ColorReduction algorithm is significantly faster than
YuColoring, our variant of the (∆ + 1)-coloring algorithm by Yu et al.

Third, we propose heuristic improvements for ColorReduction, MWColoring,
and YuColoring. These heuristic improvements are inspired by Rand4DColoring

and allow the nodes to decrease the number of time slots accounted for the trans-
mission of a message. This may lead to conflicts, which the algorithms try to
resolve afterwards. We refer to these heuristics as correcting variants and show
that they considerably improve the runtime while keeping the number of conflicts
in the network close to zero.

Fourth, we study the performance of the algorithms in a network with mobile
nodes and in a network in which a large fraction of the nodes start the algo-
rithm after the remaining network has computed a valid coloring. We observe
that our correcting variants of MWColoring and YuColoring, and especially
Rand4DColoring are robust against mobility of nodes. Regarding the late wake-
up of some nodes, we combine a listening phase added to the start of the algo-
rithm with a strategy to select a new color that respects colors currently taken by
neighbors. Our experiments show that this is sufficient to make Rand4DColoring

robust against asynchronous wake-up of nodes.
Finally, a minor theoretical contribution of this chapter is the variant of YuCol-

oring we transfer to our setting of known maximum node degree ∆. The dis-
tributed (∆ + 1)-coloring algorithm achieves a runtime of O(∆ log n) time slots (in
this simpler setting).

Outline

The remainder of this chapter is structured as follows. In the next section we de-
scribe and introduce the algorithms we consider in our experiments. In Section 5.3
we describe the simulator and the setting of our experiments before evaluating the
algorithms. We conclude this chapter in Section 5.4.

71

experimental evaluation of distributed node coloring algorithms

5.2 considered algorithms

We consider the algorithms proposed and described in Chapter 4, along with the
competing algorithms MWColoring and YuColoring, and some heuristic im-
provements to the various algorithms. Recall that the color of a node is valid if
no neighbor selected the same color. Also, we sometimes call a node that selected
the same color as one of its neighbors to have a conflict with this neighbor, cf. Sec-
tion 2.1 and Section 4.2. To execute the algorithms we experimentally determine
the parameters for the algorithms. Most parameters are required in the process
of enabling successful communication. As those parameters are the same as for
local broadcasting, which we considered already in Section 2.3.1, we reuse the re-
sults obtained there (cf. Section 5.3 and Table 5.2). To compute the transmission
probability used by the nodes we divide a parameter txConst by the maximum
degree ∆. Other parameters are the duration, which is set to the number of time
slots required for reliable communication in the network, and factor, which de-
scribes the multiplicative factor between regular and fast local broadcasting. We
show the relation of the parameters in calculating the values used for the simula-
tion in Table 5.1 Note that we use factor slightly different for Rand4DColoring,

Table 5.1: Transmission probabilities and durations based on the simulation parameters

Simulation parameter Value

Local broadcast

transmission probability txConst

∆

transmission duration duration

Fast local broadcast

transmission probability
txConst

∆ × ∆×factor

= txConst×factor

transmission duration duration

∆×factor

as this algorithm does not rely on fast local broadcast transmissions. Let us now
describe the algorithms.

5.2.1 Rand4DColoring

We introduced and analyzed the phase-based algorithm Rand4DColoring in Sec-
tion 4.3. Let us briefly recall the algorithm. During each phase, the node may
receive the colors of some of its neighbors. If, at the end of the phase, a conflict
between its current color and the color received by a neighbor is detected, the node
selects a new color at random. The duration of a phase is set to O(∆) in our anal-
ysis, however, to determine the optimal phase length experimentally we use the
parameter factor (as Rand4DColoring makes no explicit use of fast local broad-

72

5.2 considered algorithms

casting this parameter is otherwise unused for Rand4DColoring). We illustrate
the execution of the algorithm in Figure 5.1 on the grid deployment to increase
the readability. We use the parameters as described in Section 5.3 and refer to Sec-
tion 2.3 for a more detailed visualization of a network using the grid deployment.

(a) After deployment (b) Resolving conflicts (c) All colors are valid

Figure 5.1: Illustration of an execution of Rand4DColoring. Black nodes have a valid
color, red nodes are in conflict with one of their neighbors. We observe that
even directly after deployment not too many conflicts exist (left). Furthermore,
they get gradually eliminated (center) until all nodes have a valid color (right)

Apart from Rand4DColoring we consider some variants of the algorithm. The
first variant aims at respecting colors already selected in the neighborhood of a
node. This is done by storing the latest color received by each neighbor and select-
ing a new random color so that the stored colors of the neighbors are not selected.
Note that the neighbor colors may not reflect the current color of the neighbors.
We add a waiting period before starting the color selection phases of the algorithm
to receive the neighbors’ colors. Thereby, a node waking-up in a validly colored
network does not introduce a conflict to any of the nodes that already selected a
valid color. We denote this variant by Rand4DRespectColoring and expect it to
be robust against the late wake-up of nodes.

We do also consider a variant that finalizes the selected color after it did not
receive a color conflict for at least duration time slots. This enables each node of
the algorithm itself to decide when the coloring algorithm is completed. We call
this variant Rand4DFinalColoring.

In another variant we consider the number of available colors as a parameter c.
Thereby we can reduce or increase the number of colors used by the algorithm
arbitrarily, even despite the fact that the theoretical analysis holds only for c > 4∆
colors. We refer to the variant with c = ∆ + 1 as Rand1DColoring.

5.2.2 ColorReduction

Our color reduction algorithm ColorReduction is described in Section 4.5 for
the asynchronous case, which we consider here. The algorithm first computes a
(first level) MIS to determine independent leaders. Then all non-leaders request an

73

experimental evaluation of distributed node coloring algorithms

active interval from the leaders, during which the non-leader nodes then repeatedly
execute the faster (second level) MIS algorithm. Once a non-leader node v is in
the independent set, it selects a color from the set of free colors Fv, transmits the
color to all its neighbors and resigns from the independent set. The initial color
is used to get a slot in one of the leaders schedules. These schedules achieve that
few nodes compete in the second level MIS, which allows making these MISs very
fast. We experimentally determine the parameter factor to speed up, for example,
the second level MIS executions in Section 5.3.2. We visualize an execution of
ColorReduction in a network with 1000 nodes deployed according to the grid
deployment strategy in Figure 5.2.

(a) After leader election (b) Second level starts (c) Most nodes finished

Figure 5.2: The flow of ColorReduction. On the left most leaders (black) are computed.
Green nodes are dominated and blue nodes still execute the first level MIS.
In the center many dominated nodes received their active interval (magenta
nodes), some cyan nodes compete in the second level MIS for a color. Very few
gray nodes have already finalized their color by winning a second level MIS. On
the right, most nodes selected their final color (gray), while others wait for their
active interval or actively compete for selecting a final color.

We consider two variants of ColorReduction in the following. The first variant
does not use a valid color but each node simply selects a random number from
the set of available colors. We denote this variant by CRRandColor. Another vari-
ant aims at improving the runtime by combining ColorReduction with ideas for
Rand4DColoring. Namely, we decrease the time accounted for successful trans-
mission of messages, and resolve the introduced conflicts afterwards. Resolving a
conflict can be done by resetting a non-leader node to the state in which the node
waits for its active interval and compute a new valid active interval based on its
previous active interval and the schedule length. For leader nodes we use the sim-
pler strategy of reseting to a random color from Fv, to prevent issues that arise once
leaders may resign from their duties. We denote this heuristic as CRRCorrecting,
and shall only use it as an extension to CRRandColor.

5.2.3 MWColoring

We implement the MW-Coloring algorithm as described by Derbel and Talbi [30]
for the SINR model and denote it by MWColoring. As in the other algorithms

74

5.2 considered algorithms

we experimentally determine the parameter factor to ensure a good tradeoff be-
tween running time and average number of conflicts in the network. We replaced
probabilities, constants and timers accordingly. The algorithm proceeds as follows:
First the nodes compete to be in an MIS. The nodes in the MIS become leaders and
select color 0, while the remaining nodes request a continuous interval of colors
from a selected leader. Once this color interval is received, the node competes in
another MIS against at most constantly many neighbors for a color. If the MIS is
won, it selects the color, otherwise it moves on to the next color in its color interval
and competes again. A notable difference between ColorReduction and MW-
Coloring is that the number of time slots required for the color-competing MIS
in MWColoring is significantly higher than the second level MIS in ColorReduc-
tion, however, a lot less of these slower MISs are executed. We illustrate the flow
of the algorithm MWColoring in Figure 5.3.

(a) After leader election (b) Compete for color (c) Nodes finalize color

Figure 5.3: One execution of MWColoring. On the left almost all leaders (black) are com-
puted. Green nodes are dominated and request a color block, while blue nodes
still compete in the MIS to become leaders. In the center many nodes received
their color blocks to compete for a color (cyan) and some nodes already selected
their final color (gray). On the right all leaders are computed and more nodes
selected their final color.

Similarly to our color reduction algorithm, the MW-Coloring algorithm does
not account for faults as the correctness holds with high probability. Again, to
potentially increase the performance of the algorithm we consider a heuristic that
corrects occurring errors once they are detected. To correct the errors, a non-leader
node that detected a conflict is reset to compete for the first color block it received.
Leader nodes that detect a conflict select a new random color from [∆]. We refer to
this variant as MWCorrecting.

5.2.4 YuColoring

The coloring algorithm by Yu et. al [136] computes a (∆+ 1)-coloring inO(∆ log n+

log2 n) time slots. The main idea behind achieving the optimal number of ∆+ 1 col-
ors in their algorithm is to increase the transmission power in order to coordinate
the color selection process within several hops. Therefore, the nodes in the network

75

experimental evaluation of distributed node coloring algorithms

have two transmission powers, which results in two transmission ranges, r1 and r2,
where r1 is essentially equivalent to the regular broadcasting range defined in Sec-
tion 2.2.3. As r2 = 3r1, nodes with the increased transmission power can reach all
nodes within three regular broadcasting ranges.

The algorithm itself works as follows: First, the nodes compute an MIS with
respect to r2. All nodes in the MIS transmit a so-called DoNotTransmit-message to
all nodes within r2. Thereby the nodes within the range r2 enter a blocked state S,
which they only leave once they receive a StartTransmit-message or a StartColoring-
message. The nodes in the MIS transmit a StartColoring-message, however, only
to the nodes within the smaller range r1. These nodes start with the color selection
process by transmitting an AskColor-message to their MIS node. The MIS node
coordinates the requests and allows one after the other to select the smallest color
not taken by a neighbor. The colors can be selected without a conflict, as all close-
by nodes are either coordinated by the MIS node or are in the blocked state S.
Naturally, once a color is selected by a node, the node informs all its neighbors
about its color selection. We show the status of nodes during the execution of the
algorithm in Figure 5.4.

(a) First leaders (b) Second MIS starts (c) Many nodes colored

Figure 5.4: In the illustration of YuColoring the MIS is regarding a larger range. Thus, on
the left only few leaders (black) dominate green nodes that request permission
to select a color. Some nodes already selected their final color (gray). Most
nodes are blocked (yellow), while some blue nodes still compete to enter the
MIS. In the center, the first MIS nodes start to resign as leaders, allowing for-
merly blocked node to compete in the MIS again (blue nodes). On the right,
only few nodes remain to be colored, some wait to receive the permission by
their leader, most others are currently blocked.

In the setting Yu et. al designed the algorithm for, the nodes are not given
a linear estimate of the maximum degree ∆. Thus, for the algorithm to ensure
successful communication, a more complicated slow-start mechanism is used for
each transmission. In order to circumvent this for our experiments, we adapt the
algorithm to the case of known ∆ in this section. This results in a (∆ + 1)-coloring
algorithm with runtime O(∆ log n) time slots. Compared to ColorReduction,
this variant runs under the same assumptions but additionally requires the nodes
to increase their transmission power. We shall call the variant described in the
following YuColoring.

76

5.2 considered algorithms

Theorem 5.1. YuColoring computes a (∆ + 1)-coloring in O(∆ log n) time slots if all
nodes know the maximum degree ∆.

Algorithm 5.1: YuColoring for node v

Continuously:
2 if Received DoNotTransmitu then Fv ← Fv ∪ {u} and transit to state← blocked
3 if Received Coloru(c) from node u then Cv ← Cv ∪ {c}
4 switch state do
5 case start
6 wait for O(∆ log n) time slots
7 transit to state← MIS

8 case blocked
9 if Received StartColoringu then transit to state← C1

10 case MIS
11 We use MIS(` = 1) from ColorReduction (Algorithm 4.5).

Successful nodes transit to state← leader
12 case leader
13 Transmit DoNotTransmitv with range r2 and prob. phigh for O(log n) slots
14 select color 0
15 Transmit StartColoringv with range r1 and

prob. phigh for O(log n) time slots
16 if Q not empty then
17 u← Q.pop()
18 Transmit Grantu with range r1 and prob. phigh for O(log n) time slots

else
20 Transmit StartColoringv with range r1 and

prob. phigh for O(log n) slots

21 case C1
22 Transmit AskColorv with range r1 and

prob. plow for O(∆ log n) time slots
23 if Received Grantu then transit to state← C2

24 case C2
25 select smallest color c not in Cv

26 Transmit Colorv(c) with range r1 and prob. phigh for O(log n) time slots

The correctness essentially follows from the correctness of the original algorithm.
For the argument to be more concise, we elaborate on the main points in the fol-
lowing and give a pseudocode of YuColoring in Algorithm 5.1.

The coloring is valid: Let us consider a node v and assume its coloring is not
valid due to a conflict with its neighbor u. If v has color 0, it is a leader node
and the conflicting node u must have been one of the nodes v dominated. Thus,

77

experimental evaluation of distributed node coloring algorithms

with high probability, u received the DoNotTransmit and the StartColoring, after-
wards transmitted AskColoring itself and received a Grant message - leading to
the selection of another color c 6= 0. If v’s color is not 0, it selected its color during
such a color selection process itself. As both v and u successfully transmit their
color after selection with high probability and neighbors respect this selection, it
must be the case that v and u selected the color simultaneously. Since the leader
nodes wait long enough between transmitting the Grant message to the two nodes,
this can only happen if v and u listen to two different leaders. This, however, is
not possible as all nodes within at least two broadcasting ranges of v received the
DoNotTransmit message of v’s leader with high probability.

All nodes get colored: Essentially this holds as each node v is either in the MIS
(with respect to r2) at some point or one of its neighbors is in the MIS and allows v
to select a color.

The runtime of the algorithm is O(∆ log n) time slots: Let us consider the maxi-
mum time until a node v or one of its neighbors is in the MIS. Remember that the
MIS is computed with respect to the range r2, while the neighborhood relation we
consider for the coloring is relative to r1. As each r1-neighborhood of a MIS node
is colored after O(∆ log n), this is also the asymptotic time that passes between the
MIS node transmits DoNotTransmit and StartTransmit. As at most 36 nodes can
be independent regarding the range r1 in the r2-range of a node v, after at most 36
rounds of the MIS (and potentially the following blocked/coloring state) all nodes
in the r2-range of v must have either been in the MIS or are neighbors of an MIS-
node. Thus, either v or one of its neighbors wins the MIS competition and starts
the coloring routine afterwards. Overall, this results in a runtime of O(∆ log n)
time slots.

Regarding our experiments, we experimentally determine the parameter factor

to achieve the best runtime for this algorithm. The maximum node degree, which
is used to calculate the transmission probability, is determined with respect to the
regular transmission range r1.

The algorithm heavily relies on the blocking of nearby nodes to prevent neigh-
boring nodes to select an invalid color as neighbors are not allowed to select colors
simultaneously. Note, however, that it cannot be guaranteed in our simulation (or
in practice) that transmissions are successfully received. Thus, the blocking of other
nodes can be error-prone. If a node receives the DoNotTransmit message but fails
to receive the StartTransmit message, it will not leave the blocked state. For the
algorithm to finish properly, we consider such nodes as finished with color 0. This
and other problems that come with potentially unreliable message transmission
may lead to color conflicts. To reduce the number of color conflicts, we addition-
ally consider a variant YuCorrecting. If a color conflict is detected after a final
color was selected, the node revokes its color and restarts the algorithm by compet-
ing in the MIS.

78

5.3 experiments

Table 5.2: Parameters that achieve successful local broadcasting in the different distribu-
tions. R=Random, G=Grid, PG=PerturbedGrid, C=Cluster

Distribution R G PG C C&R C&G C&PG

txConst 0.15 0.15 0.10 0.30 0.25 0.20 0.20

duration 4600 3400 4900 12 900 8100 8200 8100

5.3 experiments

We conduct several experiments to evaluate the performance of the different algo-
rithms. We measure the time required to compute a valid coloring and the number
of nodes that were not able to select a valid color. As described in Section 2.3 we
use one time slot as the time required for one transmission. To measure the runtime
of our algorithms, we deploy the nodes simultaneously in the area and start the
algorithms asynchronously after a waiting period that is chosen uniformly at ran-
dom between 0 and 10 time slots (using real numbers) for each node. The runtime
measurement starts with the deployment of the nodes and ends once all algorithms
are in a finished state or all nodes in the network have selected a valid color. Note
that the time slots of the nodes are not synchronized and may overlap partially. To
measure the number of nodes with a valid and an invalid color, each node notifies
the simulator whenever it selects a new color, which is then checked for validity
with colors selected by the neighbors. This is done within the simulation frame-
work, thus we do neither use messages nor tell the nodes about the result of this
color inspection.

To implement the message transmission in the algorithms, we use local broad-
casting, and therefore set the transmission constant txConst and the broadcast
duration duration as determined in Section 2.3.1. Although Rand4DColoring

does not use local broadcasting we use the same txConst, to increase comparabil-
ity of the algorithms. We restate the main parameters in Table 5.2

Let us now briefly remind us of the setting and the parameters used in the
simulation, for more details we refer to Section 2.3. We use the network simu-
lator Sinalgo [33] to (usually) simulate 1000 nodes that are deployed on an area
of 1000 m× 1000 m according to some deployment strategy. We use Random, Grid,
PerturbedGrid (PGrid), and Cluster deployment, as well as mixed variants thereof
such as Cluster&Random, Cluster&Grid, and Cluster&PGrid, in which 50 % of
the nodes are deployed according to each of the combined deployment schemes.
For each experiments we use 100 runs on the same pre-computed deployments.
To model interference we use the standard geometric SINR model, which consid-
ers the interference of all concurrent transmissions in the network when deciding
whether a certain transmission can successfully be received or not. By the SINR
constraints we get a maximum transmission range of 100 m (cf. Section 2.2.3). As
common in the SINR model, we set the broadcasting range, which defines the
neighborhood relation, as a fraction of the transmission range to 84 m.

79

experimental evaluation of distributed node coloring algorithms

In the following sections, we determine optimal parameters for the algorithms
and compare the algorithms. In the next section we determine the parameter fac-
tor for Rand4DColoring and evaluate the algorithm and its variants in the de-
scribed setting. Afterwards, we determine optimal parameters for ColorReduc-
tion, MWColoring, and YuColoring in Sections 5.3.2 to 5.3.4, before considering
heuristic improvements to these algorithms in Section 5.3.5. We compare the best
results obtained for each variant in Section 5.3.6. Afterwards we study the perfor-
mance of the algorithms if mobility of nodes is allowed in Section 5.3.7 and if large
parts of the network wake up after the remaining part finished the algorithm in
Section 5.3.8.

5.3.1 Rand4DColoring

In contrast to the other coloring algorithms that we evaluate, Rand4DColoring

does not rely on any structure that has to be built or maintained. Instead, it is
a simple phase-based algorithm that selects a new random color at the end of
each phase if a conflict is detected during the phase. In the theoretical analysis,
the length of each phase is set to O(∆) to show that the probability for a conflict
decreases in each phase. Instead of setting the length of a phase to the maximum
degree, we use the parameters duration and factor to experimentally determine
the optimal phase-length. Therefore, we set the duration according to the runtime
of one local broadcast as observed in Section 2.3.1 and use duration × factor as
the length of each phase. Recall that the nodes do not finalize their color while
executing this algorithm. Thus, we measure the number of nodes with a valid
color and stop the simulation once all nodes have a valid color. Let us study the
parameter factor using the random deployment in our first experiment. We use
values ranging from 0.001 to 1, corresponding to phase-lengths between 5 and 4600
time slots. Our results are depicted in Figure 5.5.

0.
00

1

0.
00

2

0.
00

5

0.
01

0.
02

0.
05 0.

1

0.
2

0.
5

1.
0

factor

0

10000

20000

30000

40000

50000

60000

N
um

be
r

of
R

ou
nd

s

logs/async-c4AsyncRandCDeltaNode1000x-Random-ifactor-0.001to1.0sinrg-4.0-10.0-1e-09-2.0-n-1000-p-0.15-r100-rand665/async-async-c4AsyncRandCDeltaNode1000x-Random-ifactor-0.001to1.0sinrg-4.0-10.0-1e-09-2.0-n-1000-p-0.15-r100-i1.0-rand665ifactor1.0-rounds-n1000-p0.15

(a) Runtime

0.
00

1

0.
00

2

0.
00

5

0.
01

0.
02

0.
05 0.

1

0.
2

0.
5

1.
0

factor

0

100

200

300

400

N
um

be
r

of
co

lo
r

re
dr

aw
s

logs/async-c4AsyncRandCDeltaNode1000x-Random-ifactor-0.001to1.0sinrg-4.0-10.0-1e-09-2.0-n-1000-p-0.15-r100-rand665/async-async-c4AsyncRandCDeltaNode1000x-Random-ifactor-0.001to1.0sinrg-4.0-10.0-1e-09-2.0-n-1000-p-0.15-r100-i1.0-rand665ifactor1.0-redraws-n1000-p0.15

(b) Total number of color redraws

Figure 5.5: Determining the parameter factor for RandCDeltaColoring, which influ-
ences the length of each phase. Both the runtime (left) and the number of color
redraws (right) increase with increasing factor.

80

5.3 experiments

We observe that both the runtime and the number of color redraws increases with
the phase-length. Especially for the runtime this was expected, as our theoretical
analysis guarantees the runtime of O(∆ log n) time slots only for a phase-length
ofO(∆), while factor = 1 sets the phase-length to one round of local broadcasting,
which is asymptotically in O(∆ log n). However, there is also a less formal intuition
justifying the decreasing runtime for the decreasing phase-length. Once a node has
detected a conflict (by receiving a message from a neighbor), it is not beneficial if
the node must wait for the end of the phase before changing its color. Assume the
node waits until the phase ends. It may happen that the node transmits its color to
its neighbors, which may become aware of a conflict. If this happens, the respective
neighbors also reset their color at the end of their phase, although this conflict
would be resolved without the neighbors intervention with significant probability
at the end of the phase. On the other hand, dealing with the conflict directly does
not introduce any penalty, as it is already determined that the detecting node resets
its color. Hence, the shorter the phases are, the lower the runtime of the coloring
algorithm.

Regarding the number of color redraws, we can observe something interesting.
The longer the phases are, the more redraws are required, cf. Figure 5.5b. This
corresponds to the fact that the longer the phases are, the higher the probability
that all conflicts are detected by the nodes. If a conflict is only detected by one
of the conflicting nodes, the probability that it is resolved is already significant.
Therefore, using phases of minimal length intuitively reduces the number of color
redraws by a factor of two compared to phases of length duration. As each color
redraw leads to some possibility of selecting the color of a neighbor we observe a
factor of even slightly more than two in the total number of color redraws for long
phases. Note that even longer phases do not lead to a further increase, as almost
all conflicts are detected after phase-lengths that correspond to factor = 1.

Let us now compare the different variants of Rand4DColoring we described
in Section 5.2.1. We use factor = 0.001 as determined in the previous experi-
ment. The result of this comparison is given as Table 5.3 and visualized in Fig-
ure 5.6a for the random distribution. We defer the results for the remaining
deployments to Table A.1 in Appendix A.3. We can clearly see that the basic

Table 5.3: Comparison of average runtime and average number of conflicts of our
Rand4DColoring variants

runtime conflicts

Rand4DColoring 1256 0.00

Rand4DRespectColoring 5668 0.00

Rand4DFinalColoring 5865 0.00

Rand1DColoring 4174 0.00

Rand4DColoring algorithm is the fastest with a runtime of only 1256 time slots.
This was expected as the variants either improve the resulting coloring or make the

81

experimental evaluation of distributed node coloring algorithms

RAND4DFINALCOLORING

RAND1DCOLORING

0

2000

4000

6000

8000

10000

12000

N
um

be
r

of
fin

is
he

d
N

od
es

Random

RAND4DCOLORING
RAND4DRESPECTCOLORING

(a) Runtime comparison

0 2000 4000 6000 8000 10000 12000
Time Slots

0

200

400

600

800

1000

N
um

be
r

of
fin

is
he

d
N

od
es

RAND4DCOLORING

RAND4DRESPECTCOLORING

RAND4DFINALCOLORING

RAND1DCOLORING

Random

(b) Number of finished nodes over time

Figure 5.6: Comparison of our RandColoring variants regarding runtime (left) and
progress (right).

algorithm more robust regarding a specific setting. To explain the runtime of the
variants Rand4DRespectColoring and Rand4DFinalColoring, let us consider
Figure 5.6b, in which the average progress of the variants is illustrated by showing
the average number of finished nodes. For these algorithms the number of finished
nodes corresponds to the number of nodes with a valid color, as these variants do
never finalize their color. Only for Rand4DFinalColoring the value corresponds
to the number of nodes that finalized their color.

We observe in Figure 5.6b that while Rand4DColoring and Rand1DColoring

are able to make fast progress after the algorithms started, the two remaining vari-
ants do not resolve a conflict or finalize a color for a little more than 4000 time
slots before finishing within the next 1000-2000 time slots. This behavior is due to
two reasons. For Rand4DRespectColoring, which is expected to be more robust
in the case of heterogenous wake-up patterns, this is caused by a listening period,
during which the colors of neighbors are received and stored. Afterwards, this
variant selects its color so it does not coincide with the latest received color from
any of the neighbors. For Rand4DFinalColoring it is due to a waiting period
before finalizing the current color. This waiting period of a node is reset with each
conflict it detects and allows the node to decide when a selected color can be final-
ized. In both algorithms the waiting or listening period is set to exactly duration

time slots. Finally, Rand1DColoring decreases the number of used colors to ∆+ 1,
resulting in a runtime of 4174 time slots. Note that reducing the number of colors
to ∆ + 1 results in a higher variance in the runtime, as the probability to select a
color of one of the neighbors increases.

In the following three sections, we consider the basic variants of the remaining
algorithms, before considering the corresponding heuristic improvements in Sec-
tion 5.3.5, and finally comparing the results of the algorithms in Section 5.3.6.

82

5.3 experiments

5.3.2 ColorReduction

Let us now consider the algorithm ColorReduction, which assumes a given
O(∆)-coloring to compute a coloring with ∆ + 1 colors. To achieve its runtime
of O(∆ log n) it uses two levels of MIS that achieve a coordinated color selection.
The nodes in the first level MIS are the leaders, which independently decide on
a schedule and coordinate the activity of the dominated nodes according to this
schedule. The dominated nodes select a neighboring leader to request an active
interval based on its initial color, during which they compete in the second level
MIS for the authorization to select a final color. For more details on the algorithm
we refer to Section 4.5. We set the length of an active interval to duration × fac-
tor, which is exactly the time required for a fast local broadcast. The length of the
schedule is based on the maximum degree in the network and the length of each
active interval and set to ∆ · (duration × factor). Each leader sets the start of
the schedule independently and selects the active interval of the dominated nodes
based only on their initial color and schedule.

In the following we determine the parameter factor. For this and the remain-
ing algorithms, factor specifies the factor between local broadcasting with all
nodes and fast local broadcasting with a small subset of the nodes. For fast
local broadcasting the transmission probability is increased by a multiplicative
factor of ∆×factor, while the number of time slots accounted for it is divided
by ∆×factor, cf. Table 5.1. As the optimal value of factor may depend on the
size of the sets, how often this mode of transmission is used, and possibly other fac-
tors, we determine this parameter for each of the algorithms separately. The results
for ColorReduction using 1000 nodes and the random deployment scheme are
given in Table 5.4 and illustrated in Figure 5.7. The values for the other deployment
strategies can be found as Table A.2 in Appendix A.3.

Table 5.4: Average number of conflicts and average runtime for ColorReduction using
different parameters factor.

factor 0.05 0.1 0.2 0.3 0.4 0.6 0.8

ColorReduction

conflicts 0.00 0.04 0.10 0.00 0.12 0.51 2.47

runtime 339 013 171 099 87 924 59 995 46 266 32224 25 384

We observe that the number of conflicts increases slowly with the parameter
factor. For factor = 0.6 the average number of conflicts is only 3.1. On the other
hand, the number of time slots decreases significantly for an increasing factor, as
the fast local broadcasting becomes faster. For factor = 0.6 the number of nodes
without valid color is only 0.51 on average while achieving a competitive runtime.
Thus, we use this value in the following. This leads to an average runtime of 32 224
time slots, with 0.51 conflicts in the computed (∆ + 1)-coloring for 1000 nodes on
average.

83

experimental evaluation of distributed node coloring algorithms

0.05 0.1 0.2 0.3 0.4 0.6 0.8
FACTOR

0

50000

100000

150000

200000

250000

300000

350000

400000

N
um

be
r

of
ti

m
e

sl
ot

s
Runtime COLORREDUCTION

Number of conflicts

0

2

4

6

8

10

N
um

be
r

of
co

nfl
ic

ts

Random

Figure 5.7: Runtime and number of conflicts of ColorReduction for different values of
the parameter factor.

Let us now consider our first variant CRRandColor, which in contrast to its ba-
sic algorithm ColorReduction simply draws a random number from the a set of
colors. For the basic algorithm on the other hand the number must correspond to a
valid node coloring. To compare the algorithms we consider various sets of colors.
Note that the valid color is pre-computed at no cost for the algorithm for ColorRe-
duction, while in CRRandColor each node draws a random color, regardless of
whether neighbors select the same color or not. We measure the average runtime
and number of conflicts for the sets {0, 1 . . . , c · ∆}, with c = 1, . . . , 41. We depict
the results in Figure 5.8 and Table 5.5 for the random deployment. The results for
the remaining deployments are similar and deferred to Table A.3 in Appendix A.3.

0

1

2

3

4

5

6

7

A
ve

ra
ge

nu
m

be
r

of
co

nfl
ic

ts

Random

COLORREDUCTION

CRRANDCOLOR

∆ + 1 2∆ 3∆ 4∆
Number of available colors

(a) Number of conflicts

∆ + 1 2∆ 3∆ 4∆
Number of available colors

0

10000

20000

30000

40000

50000

60000

N
um

be
r

of
ti

m
e

sl
ot

s

COLORREDUCTION

CRRANDCOLOR

Random

(b) Runtime

Figure 5.8: Comparing ColorReduction with its variant CRRandColor. CRRandColor

does not use a valid coloring but simply random number from the specified set,
but performs almost as good as ColorReduction.

The results indicate that ColorReduction does not require a valid coloring to
perform well in practice. We see a significant increase in the number of conflicts

1 For c > 1 we write c∆ instead of c(∆ + 1) for brevity.

84

5.3 experiments

Table 5.5: Comparing ColorReduction and CRRandColor for a varying number of col-
ors in the used coloring.

Number of colors ∆ + 1 2∆ 3∆ 4∆

ColorReduction

conflicts 3.29 0.86 0.55 0.61

runtime 18 638 24 824 32 197 39 737

CRRandColor

conflicts 6.52 0.93 0.65 0.63

runtime 19 766 24758 32 287 39 696

Table 5.6: Average number of conflicts and average runtime for MWColoring using differ-
ent parameters factor.

factor 0.05 0.1 0.2 0.3 0.4 0.6

MWColoring

conflicts 0.1 0.1 0.4 1.0 1.5 2.7

runtime 81 195 44 700 27982 23 995 22 807 21 870

for CRRandColor only for colorings of cardinality ∆ + 1, however, assuming a
valid ∆ + 1 coloring to be given renders executing the algorithm unnecessary. For
colorings of size larger than 2∆ the difference in the number of conflicts and the
runtime of the algorithms is negligible. Also, we observe that the smaller the color
set the faster the algorithm. As computing a valid coloring additionally requires
some effort, we focus on the variant CRRandColor with a random (2∆)-coloring
in the following. We consider the correcting variants of CRRandColor, MWCol-
oring, and YuColoring combined in Section 5.3.5, thus we first determine the
parameters of MWColoring and YuColoring in the next sections.

5.3.3 MWColoring

The MWColoring algorithm was first proposed for the protocol model before
being adapted to the SINR model. Nevertheless it was the first distributed node
coloring algorithm proven to be feasible in the SINR model. It computes an O(∆)
coloring in O(∆ log n) time slots.

To achieve an optimal runtime for the algorithm, we experimentally determine
the parameter factor in the following. This parameter is used, in addition to
txConst and duration to enable the nodes to successfully transmit messages to
their neighbors. The average number of conflicts and the average runtime of MW-
Coloring in the random deployment setting is given in Table 5.6, results for the
other deployments are deferred to Table A.4. We notice that the increase in the
number of conflicts introduced with the increase of factor is moderate. Even with

85

experimental evaluation of distributed node coloring algorithms

Table 5.7: Average number of conflicts and average runtime for YuColoring using different
parameters factor.

factor 0.05 0.1 0.2 0.3 0.4 0.6

YuColoring

conflicts 0.6 0.7 1.4 2.9 6.4 22.4

runtime 286 167 160 088 99946 82 707 72 660 67 131

factor = 0.6 only about 3 of the 1000 nodes do not have a valid color on average.
The average number of time slots required for the algorithm to finish decreases by
almost a factor of three from factor = 0.05 to factor = 0.2, while introducing
an average number of conflicts of only 0.4. Thus, we use factor = 0.2 for this
algorithm, resulting in a runtime of 27 982 time slots to compute an O(∆) coloring
with 0.4 conflicts on average.

5.3.4 YuColoring

Let us now consider the YuColoring algorithm. As for MWColoring, we deter-
mine the optimal parameter factor of the algorithm. Therefore we test parameter
values between 0.05 and 0.6 using the random deployment. The results are shown
in Table 5.7 and for the remaining deployments in Table A.5. As for ColorReduc-
tion and MWColoring, the runtime decreases with an increasing factor, while
the number of conflicts increases. Therefore, we again set factor = 0.2, as after-
wards the decrease in runtime becomes slower while the increase in the number
of conflicts seems to accelerate. With this choice the algorithm achieves a runtime
of 99 946 time slots with an average of 1.4 conflicts in a network of 1000 nodes
deployed uniformly at random.

5.3.5 Correcting Variants

After determining optimal parameters for all algorithms we now consider heuristic
improvements to CRRandColor, MWColoring, and YuColoring, namely CR-
RCorrecting, MWCorrecting, and YuCorrecting. In these heuristics, we aim
at making the algorithms both faster and more robust towards failures in the com-
munication. Therefore, instead of ignoring detected color conflicts as it is mostly
done in the basic algorithms, we actively deal with them and try to resolve the
conflicts. All nodes use selected leaders to coordinate the color selection process
of the remaining nodes. Therefore, if a color conflict is detected for a non-leader
node, we simply reset the node to a state of the algorithm in which it can select a
valid node again. For CRRCorrecting we reset a node that detected a conflict to
wait for its active interval, while computing its next valid active interval based on
its previous active interval and the schedule length. For MWCorrecting we go
back to the first non-leader MIS, and for YuColoring we reset to the start of the
algorithm as the original leaders may not be serving as leaders anymore. To reset

86

5.3 experiments

a leader node is more involved, as there may be non-leader nodes depending on it.
Thus, we combine the algorithms with ideas of Rand4DColoring and allow the
leader node to simply select a new color. As the colors of neighbors are recorded
in ColorReduction, we try to select a color that is not on the record for CRRCor-
recting. In MWCorrecting we select a random color from the set [∆], as those
colors are not used for non-leaders. We do the same for YuCorrecting, although
the colors are also used by non-leaders in this algorithm.

It is obvious that, although the number of conflicts may be reduced, the run-
time of the algorithm increases for these variants. However, as the algorithms are
able to detect and resolve conflicts, we reduce the time accounted for a successful
transmission to decrease the runtime while introducing some (hopefully tempo-
rary) conflicts. We do this by reducing the parameter duration to a fraction of
the value determined using local broadcasting (cf. Table 5.2). We report the results
for the random deployment in Table 5.8 and Figure 5.9. We denote the fraction of
duration used in the experiment as duration’. Recall that duration = 4600 for
the random deployment strategy.

143 287 575 1150 2300
DURATION’

0

5000

10000

15000

20000

25000

30000

35000

N
um

be
r

of
ti

m
e

sl
ot

s

CRRCORRECTING

MWCORRECTING

YUCORRECTING

Random

Figure 5.9: Runtime of the correcting variants CRRCorrecting, MWCorrecting, and Yu-
Correcting. We omit duration’ = duration = 4600 and limit the number of
time slots to 35 000 for better readability.

For the standard case of unchanged duration we observe that the average num-
ber of conflicts decreases from 0.93, 0.4 and 1.4 (cf. Tables 5.5 to 5.7) to 0.00 for CR-
RCorrecting, MWCorrecting and YuCorrecting, while the runtime increases
as expected. However, using a smaller parameter duration’ the correcting variants
are able to compute a coloring with less conflicts in time less than the respective
basic algorithms. For CRRandColor the correcting variant achieves to compute
a coloring without conflicts even for very small values of duration’. The best
runtime is obtained using duration’ = 575, for which the algorithm computes
a (∆ + 1)-coloring in 6489 time slots. Similarly, MWCorrecting achieves to O(∆)-
color the network even for the smallest considered duration’ values essentially
without a conflict. The (very) small number of average conflicts we observed is
probably due to conflicts that were not yet detected. As CRRCorrecting prevents

87

experimental evaluation of distributed node coloring algorithms

Table 5.8: Average runtime and conflicts by the correcting variants. We used varying frac-
tions of the duration parameter (denoted by duration’) and the random de-
ployment.

Fraction of duration 1/32 1/16 1/8 1/4 1/2 1

Resulting duration’ 143 287 575 1150 2300 4600

CRRCorrecting

conflicts 0.00 0.00 0.00 0.00 0.00 0.00

runtime 8965 6984 6489 8883 14 348 25 218

MWCorrecting

conflicts 0.13 0.23 0.10 0.02 0.02 0.00

runtime 11 065 7688 6834 9105 15 762 31 027

YuCorrecting

conflicts 4.62 1.23 0.28 0.09 0.00 0.00

runtime 4370 9807 16 652 29 635 58 189 116 646

creating new conflicts by storing the neighbors current colors, such conflicts occur
more frequently in MWCorrecting. The best runtime of MWCorrecting is also
achieved for duration’ = 575, resulting in 6834 time slots. YuCorrecting, on the
other hand, does not achieve a coloring without conflict for the smaller duration’
values. This is due to the blocking of nodes implemented by the leaders that trans-
mit DoNotTransmit messages. For very small duration’ values, some nodes are
not able to receive the StartTransmit message and remain blocked for the execution
of the algorithm. The best runtime is achieved for duration’ = 287 with only 4370
time slots, however, leading to an average number of conflicts of 4.62. Thus we
select duration’ = 287, resulting in an (∆ + 1)-coloring algorithm with an average
number of 1.23 conflicts after 9807 time slots (which is still an order of magnitude
faster than the basic algorithm).

5.3.6 Performance Comparison of Coloring Algorithms

Before comparing the runtime of all algorithms, we briefly study the progress of the
algorithms CRRandColor, MWColoring, and YuColoring and their correcting
variants. The average progress (i.e., the average number of finished nodes over
time) of all algorithms is illustrated in Figure 5.10. Note that the average progress of
Rand4DColoring and its variants is already discussed in Section 5.3.1. The first,
sudden increase that can be observed for all algorithms is exactly after duration

(or duration’) time slots. This is when the first nodes enter the MIS, become
leader and select their color. As the MIS is computed regarding a three times
larger broadcasting range in YuColoring, a lot less nodes enter the MIS in this
algorithm. Some time after the MIS computation, the nodes around the leaders
select their colors. While this allows both CRRandColor and MWColoring to
gradually color all nodes in the network, several plateaus can be observed for
YuColoring. This is due to the fact that in YuColoring not all nodes are able
to select a color after the first MIS execution, as the MIS is computed regarding

88

5.3 experiments

0 20000 40000 60000 80000 100000
Time Slots

0

200

400

600

800

1000
N

um
be

r
of

fin
is

he
d

N
od

es

CRRANDCOLOR

MWCORRECTING

YUCORRECTING

Random

(a) Progress of basic algorithms

0 1000 2000 3000 4000 5000 6000 7000 8000
Time Slots

0

200

400

600

800

1000

N
um

be
r

of
fin

is
he

d
N

od
es

CRRCORRECTING

MWCORRECTING

YUCORRECTING

0 4000 8000
0

5

10

Conflicts

Random

(b) Progress of correcting variants

Figure 5.10: Progress of the algorithms ColorReduction, MWColoring, YuColoring

(left) and their correcting variants (right). For the correcting variants we addi-
tionally depict the average number of conflicts.

a larger broadcasting range than the neighborhood around the leaders which is
allowed to select a color. Thus, we see at least two more MIS executions leaving
their traces in this progress around time slots 20 000 and 40 000 for YuColoring

in Figure 5.10a. Although this happens also in YuCorrecting, we cannot clearly
observe the moment it happens in the average progress depicted in Figure 5.10.

For CRRandColor and MWColoring, the leaders dominate the whole network,
resulting in each node requesting an active interval or a color interval from its re-
spective leader. Let us compare the progress of CRRandColor and MWColoring.
Recall that leaders in CRRandColor coordinate the time interval in which dom-
inated nodes compete to select a final color, while in MWColoring the leaders
coordinate which colors the dominated nodes compete for. This fundamental dif-
ference allows CRRandColor to use fast local broadcasting for the second level
MIS (which can be seen as a competition for being allowed to select a valid color).
The coordination of active nodes based on the nodes’ initial color leads to an al-
most perfectly linear increase of the number of finished nodes over time. In MW-
Coloring, the nodes compete in fewer but slower MIS-executions for the colors,
with leads to the rapid increase once the threshold is reached (in Figure 5.10a at
around 9000 time slots). Note that the rapid increase once the threshold is met is
due to the requirement of achieving a valid node coloring with very few conflicts,
however, it also hints that faster progress is possible, as shown by our correcting
variants.

Regarding our correcting variants, we observe that the progress of CRRCorrect-
ing and MWCorrecting is very similar. One reason for this is that both use the
same duration’ value of 575 time slots. The second reason is that by reducing the
time accounted for local broadcasting, all the slack is removed from the algorithms.
As both algorithms elect leaders, which then allow a dominated node to either be
active or compete for certain colors (depending on the algorithm), the remaining
progress essentially shows this similarity.

89

experimental evaluation of distributed node coloring algorithms

Inside Figure 5.10b we additionally show the number of conflicts occurring in
the respective algorithms over time. We observe that in general, the number of si-
multaneous conflicts is relatively low with well below 15 conflicts at each time. For
CRRCorrecting there is a peak at or around the leader election phase, indicating
that too many nodes entered the MIS. A smaller peak is also visible for MWCol-
oring, however, here more nodes fail to select a valid color in the following color
competition. For YuCorrecting, the number of conflicting nodes is relatively sta-
ble at around 8 simultaneous conflicts. Although the number of conflicts decreases,
not all can be corrected, as some conflicts are due to blocked nodes2.

To compare the performance of the algorithms on the different deployment strate-
gies, we show the runtime and the number of conflicts of the algorithms on the
different deployments in Table 5.9. For the random deployment, the values are the
best values from Tables 5.3 and 5.5 to 5.8. For the remaining distributions, we select
the values from the corresponding Tables A.1 and A.3 to A.7, which we deferred
to Appendix A.3.

Considering the conflicts, we aimed at selecting the parameters so that the num-
ber of conflicts is low. Only for YuColoring and YuCorrecting we allowed a
slightly higher number of average conflicts to reduce the runtime, if possible. Apart
from this, the number of conflicts is comparable for the algorithms, thus, we focus
on the runtime in the following. The results of the algorithms are very consis-
tent throughout the different deployments. This indicates that the communication
parameters are sufficiently well chosen to allow the algorithms to deliver their per-
formance without being constrained by, for example, congestion problems.

We do not depict the basic variant ColorReduction in Table 5.9 as the perfor-
mance is essentially the same as CRRandColor (cf. Table A.3 in Appendix A.3).
We consider CRRandColor, as this variant uses random colors from a set of 2∆
colors instead of a valid coloring. Hence, precomputing a valid coloring is not
required. As CRRandColor and CRRCorrecting compute (∆ + 1)-colorings, Yu-
Coloring and YuCorrecting are its main competitors. A valid coloring of the
same size is also computed by our variant Rand1DColoring that heuristically re-
duces the number of available colors in Rand4DColoring to (∆ + 1), however,
we discuss this variant later. CRRandColor computes a (∆ + 1)-coloring using
between 20 367 and 67 881 time slots. The correcting variant CRRCorrecting re-
duces the runtime to values between 6489 and 17 802 time slots. This is at par
with MWColoring and MWCorrecting, and significantly less than YuColoring

and YuCorrecting. The basic algorithm YuColoring requires between 99 946
and 164 839 time slots, while YuCorrecting reduces the runtime to values be-
tween 8654 and 20 849 time slots.

Our other algorithm, Rand4DColoring, computes a (4∆)-coloring, hence MW-
Coloring and its variant MWCorrecting are its main competitors. Depending
on the deployment strategy, Rand4DColoring achieves a runtime between 974
and 3321 time slots. This is by far superior to the runtime achieved by both MW-

2 Recall that we set the leader to a quit-state and select color 0 once the leader of a blocked node resigns
from its leader functionality (cf. Section 5.2.4).

90

5.3 experiments

Table 5.9: Comparison of the average runtime and number of conflicts for all consid-
ered algorithms in all considered deployment strategies. R=Random, G=Grid,
PG=PerturbedGrid, C=Cluster

Distribution R G PG C C&R C&G C&PG

Rand4DColoring

conflicts 0.00 0.00 0.00 0.00 0.00 0.00 0.00

runtime 1256 974 1372 3321 2316 2186 2016

Rand1DColoring

conflicts 0.00 0.00 0.00 0.00 0.00 0.00 0.00

runtime 4174 3358 4548 11 822 8153 8211 6627

CRRandColor

conflicts 0.93 0.82 0.10 1.05 1.83 1.03 3.23

runtime 24 758 20 367 27 817 67 881 42 034 42 692 42 385

CRRCorrecting

conflicts 0.00 0.00 0.00 0.00 0.00 0.00 0.02

runtime 6489 7017 7017 17 802 11 884 11 333 10 896

MWColoring

conflicts 0.42 0.26 0.28 0.56 0.44 0.34 1.06

runtime 27 982 25 456 32 812 73 670 46 363 47 041 46 142

MWCorrecting

conflicts 0.10 0.21 0.12 0.45 0.44 0.36 0.42

runtime 6834 5741 7567 23 531 12 780 13 535 13 353

YuColoring

conflicts 1.39 2.01 1.12 0.9 0.88 0.94 1.30

runtime 99 946 113 105 129 054 164 839 122 267 141 003 126 488

YuCorrecting

conflicts 1.23 1.77 2.15 0.74 0.81 1.23 0.64

runtime 9807 8654 11 479 20 849 15 060 15 835 14 620

Coloring and MWCorrecting. MWCorrecting requires between 5741 and 23 531
time slots, which is between 4 and 5 times the runtime of Rand4DColoring. MW-
Coloring achieves a runtime between 25 456 and 73 670 time slots. Note that
Rand4DColoring does not finalize the colors, however, even using a duration

for finalizing the color, the variant Rand4DFinalColoring which finalizes col-
ors, achieves a runtime between 4354 and 16 110 time slots (cf. Table 5.3 in Ap-
pendix A.3).

91

experimental evaluation of distributed node coloring algorithms

Reducing the number of available colors in Rand4DColoring to only (∆ + 1)
colors yields a (∆ + 1)-coloring heuristic, which we denote by Rand1DColoring.
The heuristic selects a random color from [∆] by resolving conflicts once detected
and requires only between 3358 and 11 822 time slots. Thus it achieves the lowest
runtimes of all considered (∆ + 1)-coloring algorithms. As mentioned, however,
Rand4DColoring and its variants do not finalize their colors. Hence, if finaliza-
tion of the colors is required CRRCorrecting achieves the best results for (∆ + 1)-
coloring algorithms.

We conclude from our comparison that the best performance for O(∆)-colorings
is achieved by Rand4DColoring and for (∆ + 1)-colorings by Rand1DColoring

and CRRCorrecting, depending on the exact setting.

5.3.7 Coloring in Dynamic Networks

After studying the performance of the algorithms regarding runtime and number
of conflicts, let us now consider more elaborate scenarios, which require the nodes
to react on changes in the network. We consider two scenarios, in the first one we
allow the nodes to move, which forces the algorithms to maintain the validity of
the coloring in a dynamically changing network. Obviously the algorithms cannot
maintain the coloring valid at each node, as the neighborhood changes in an un-
foreseen manner. Thus, we study how large the fraction of nodes is that maintains
a valid color despite the dynamic changes. In the second scenario, considered in
the next section, we shall allow a fraction of the nodes to wake up after the re-
maining part of the network has already selected a color. Thereby we evaluate how
well the algorithms can cope with highly asynchronous wake-up schemes. We re-
strict ourselves to the random deployment for these experiments and do not use
pre-computed position files for the wake-up scenario in the next section.

For the dynamic setting we consider only 250 nodes on a deployment area
of 500 m× 500 m, which results in a similar density as in the previously consid-
ered settings. We reduce the number of nodes, as mobility increases the time
required for the simulation significantly. Due to the high complexity of updating
the relevant positions for each single event the used simulation framework Sinalgo
additionally requires the synchronous mode, in which time slots of the different
nodes are perfectly synchronized. Thus, it is sufficient to update the positions once
per time slot. The nodes are deployed uniformly at random and move according to
the RandomDirection model, cf. Section 2.3. The nodes alternate between moving
and waiting time, both times are drawn randomly and follow a Gaussian distri-
bution with mean value of 100 time slots and a variance of 50. The speed of a
node is also drawn at random according to a Gaussian distribution with a mean
between 0 and 1 meter per time slot and a variance of 2. For simplicity we refer to
the mean values as the node speed. We show the number of finished nodes over time
for Rand4DColoring, CRRCorrecting, MWCorrecting, and YuCorrecting for
node speed values of 0, 0.1, 0.5, and 1 in Figure 5.11.

92

5.3 experiments

0 10000 20000 30000 40000 50000
Time Slots

0

50

100

150

200

250
N

um
be

r
of

fin
is

he
d

N
od

es

CRRCORRECTING

MWCORRECTING

YUCORRECTING

RAND4DCOLORING

Random

(a) No mobility

0 10000 20000 30000 40000 50000
Time Slots

0

50

100

150

200

250

N
um

be
r

of
fin

is
he

d
N

od
es

Random

CRRCORRECTING

MWCORRECTING

YUCORRECTING

RAND4DCOLORING

(b) Node speed 0.1

0 10000 20000 30000 40000 50000
Time Slots

0

50

100

150

200

250

N
um

be
r

of
fin

is
he

d
N

od
es

Random

CRRCORRECTING

MWCORRECTING

YUCORRECTING

RAND4DCOLORING

(c) Node speed 0.5

0 10000 20000 30000 40000 50000
Time Slots

0

50

100

150

200

250

N
um

be
r

of
fin

is
he

d
N

od
es

Random

CRRCORRECTING

MWCORRECTING

YUCORRECTING

RAND4DCOLORING

(d) Node speed 1.0

Figure 5.11: The progress of the coloring for the different algorithms. We depict the average
number of finished nodes over time for different nodes speed values drawn
according to a Gaussian distribution with mean values between 0 and 1.

Some algorithms can clearly cope with mobility better than others. Our algo-
rithm Rand4DColoring, MWCorrecting, and YuCorrecting maintain a higher
fraction of validly colored nodes than CRRCorrecting.

There are three main reasons for the poor performance of CRRCorrecting. First,
nodes that selected a leader to request an active interval from this leader keep the
selected leader throughout the simulation. Due to mobility such a final selection
is not helpful as the node may be separated from the leader it selected before re-
ceiving the active interval. Second, the algorithm uses only ∆ + 1 colors, thus the
the probability of a conflict is higher than in Rand4DColoring and MWColoring.
The third and major reason is that between detecting the conflict and selecting a
new color a relatively long time passes, compared to the other algorithms. Nodes
that detected a conflict compute the next valid active interval based on the previous
active interval and the schedule length, and reset to waiting for this next active in-
terval. Due to mobility, however, this does not guarantee that few nodes are active
in each interval. Instead it mainly leads to many nodes waiting to compete for a
color, while the nodes directly start to compete for a color in the other algorithms.
Thus, while the schedule helps coordinating the color selection scheme in the static
setting, this is not the case for the dynamic setting.

93

experimental evaluation of distributed node coloring algorithms

The second (∆+ 1)-coloring algorithm, YuCorrecting
3, maintains a significantly

higher fraction of valid colors. Non-leader nodes may get blocked and separated
from the blocking node, which could also lead to a low performance. However,
the algorithm prevents such a case. Even if a node is blocked by one leader it
may receive the StartColoring message by another leader and continue to request
a color by this other leader. Another source of error in the dynamic setting is, as in
CRRCorrecting, the request state, in which the nodes depend on the one leader
they selected. However, less nodes are affected, as the nodes are allowed to leave
the request state if they get blocked by another node. Finally, the algorithm may
benefit from the smaller deployment area more than the other algorithms due to its
increased transmission range, however, we expect this to be not significant. Overall,
the algorithm achieves a solid performance in the mobile setting.

MWColoring performs even a little better than YuColoring, which is probably
mainly due to the increased number of colors and thereby the lower probability for
a conflict. As before, some nodes may get stuck in the request state, as dominated
nodes select one leader and keep trying to contact this leader, however, resetting the
nodes to their first color competition state leads to significantly less time required
to re-color the nodes than in CRRCorrecting.

The best performance in the mobile setting is achieved by Rand4DColoring,
which maintains a very high fraction of validly colored nodes throughout the ex-
ecution. If a node moves closer to another node with the same color and thereby
a conflict is introduced, one of the nodes simply selects a new color. Thus, a very
high percentage of validly colored nodes is maintained. Even for a node speed
of 1.0 less than 4 % of the nodes have an invalid color. This performance can be
achieved as no structure needs to be build or maintained and detected conflicts are
treated immediately by selecting a new random color.

We conclude from this experiment that it is quite complex for node coloring al-
gorithms to maintain a valid coloring. Especially, the more complex the algorithms
and the structures required to build the coloring, the worse they performed in the
dynamic setting. This is due to the overhead required for building the structures,
as well as the potential faults at different states of the algorithms. Our simple
Rand4DColoring coloring algorithm performed best and maintained a valid col-
oring at almost all nodes even for relatively high node speeds.

5.3.8 Highly Asynchronous Wake-up

In this section we examine the robustness of the algorithm with respect to some
nodes in the network waking-up later than large parts of the network. We consider
how many of the 500 already colored nodes are disturbed by another 100 to 500
nodes waking up in the network and executing the algorithm. We use the random
deployment on an area of 1000 m× 1000 m as in most parts of this chapter. We con-

3 In this setting we do not select color 0 for blocked nodes, as nodes may leave the blocked state. As
this does not happen without mobility, there is a small fraction of nodes not finishing the algorithm
in Figure 5.11a

94

5.3 experiments

sider the algorithms Rand4DColoring, Rand4DRespectColoring and the cor-
recting variants CRRCorrecting and MWCorrecting and measure the number
of already colored nodes that detect a conflict. We do not consider YuCorrecting,
as YuColoring does explicitly not support the setting of nodes waking up in late
stages of the algorithm (which also resulted in worse results in preliminary exper-
iments). The results of the experiment are shown in Figure 5.12 and Table 5.10.
Note that the basic algorithms ColorReduction and MWColoring are expected
to produce no or a lot less disturbance as they support late wake-up of nodes and
the reliable communication ensures that the nodes are aware of colors selected by
neighbors. However, we consider the performance of the variants we optimized
towards achieving a high performance regarding the runtime and the number of
conflicts, thus, already colored nodes may be disturbed as we do not have reliable
local broadcasting.

100 200 300 400 500
Number of Nodes waking up

0

20

40

60

80

100

120

140

N
um

be
r

of
di

st
ur

be
d

N
od

es

RAND4DCOLORING

RAND4DRESPECTCOLORING

CRRCORRECTING

MWCORRECTING

Random

Figure 5.12: After 500 nodes finished and agreed on a valid coloring a varying number of
additional nodes wake up (x-axis). We count the number of previously finished
nodes that are disturbed, i.e. they detected a conflict after the additional nodes
woke up.

Table 5.10: The average number of disturbed nodes for a varying number of nodes waking
up after the 500 pre-deployed nodes selected a valid color.

Number of nodes
waking up late

100 200 300 400 500

Rand4DColoring 11.24 18.05 24.97 28.51 32.39

Rand4DRespectColoring 0.14 0.72 1.12 1.54 2.34

CRRCorrecting 43.79 69.84 85.89 98.05 107.54

MWCorrecting 50.12 59.89 64.55 67.93 70.15

95

experimental evaluation of distributed node coloring algorithms

For Rand4DColoring the results indicate that even if additional 500 nodes wake
up, only 32 already colored nodes detect a conflict. If we reduce the number of
nodes starting that late, the number of disturbed nodes decreases further to 10.9,
which corresponds to about 2 % of the pre-colored nodes. Thus, although theoreti-
cal considerations in Section 4.3 indicate that late wake-up of few nodes may intro-
duce many conflicts we do not observe this here. The Rand4DRespectColoring

variant of the algorithm, which additionally requires the nodes to listen for du-
ration time slots before transmitting color messages, achieves essentially optimal
results with only 0.2 to 2.3 disturbed nodes on average. The remaining correct-
ing variants perform a lot worse, with roughly between 40 and 180 disturbed
nodes. However, adding an additional listening phase and preventing the nodes
from selecting colors taken by neighbors should significantly decrease the num-
ber of disturbed nodes, similar to how Rand4DRespectColoring improved upon
Rand4DColoring.

5.4 conclusion

In this chapter we experimentally evaluated several distributed node coloring algo-
rithms designed for the SINR model. Apart from the algorithms Rand4DColoring

and ColorReduction, which we proposed in Chapter 4, we considered their com-
petitors MWColoring and YuColoring, and variants of all algorithms. We used
the network simulator Sinalgo [33] to study the runtime and the number of conflicts
in the computed colorings on several deployment scenarios.

We conclude that our simple (4∆)-coloring algorithm Rand4DColoring is very
fast, as it requires significantly less time slots to compute a valid coloring than
MWColoring or its variant MWCorrecting. The coloring algorithm is even
able to validly color the network in less time slots than required to finish one
round of local broadcasting. Rand4DColoring can be made robust against highly
asynchronous wake-up by adding a listening phase (we considered this variant as
Rand4DRespectColoring). Additionally Rand4DColoring achieves the highest
fraction of valid colors among the considered algorithms if nodes are mobile.

Regarding ColorReduction we observe that the algorithm is significantly faster
than our variant4 of YuColoring while also introducing slightly less conflicts. Ad-
ditionally, we studied a variant CRRandColor of ColorReduction, which re-
placed the valid color by a random color without resulting in a significant differ-
ence in the algorithms performance. The fastest (∆ + 1)-coloring algorithm in our
experiments was Rand1DColoring, a variant of Rand4DColoring. Although
Rand1DColoring does not finalize its color, which gives a slight advantage, this
is surprising and hints the effectiveness of this simple family of algorithms.

The correcting variants are a combination of the ideas in Rand4DColoring and
the remaining coloring algorithms, as the communication becomes unreliable and
occurring conflicts are corrected. The variants decrease both the runtime and the

4 Originally, the coloring algorithm by Yu et al. [136] assumes a different setting, however, its ideas
can be transferred to our setting, cf. Section 5.2.4.

96

5.4 conclusion

number of conflicts significantly, however, without reaching the performance of
Rand4DColoring or Rand1DColoring.

Overall the best performance forO(∆)-colorings is achieved by Rand4DColoring

and for (∆ + 1)-colorings by Rand1DColoring and CRRCorrecting, depending
on the setting.

We conclude this chapter with open problems. Can the correcting heuristics
CRRCorrecting, MWCorrecting, and YuCorrecting be improved to achieve a
better performance in the dynamic setting? Additionally, to the best of our knowl-
edge this is the first work considering the experimental evaluation of distributed
node coloring algorithms in the setting of wireless communication. It is interesting
to see how the algorithms perform in a real-world sensor network.

97

Part II

T O WA R D S C O N G E S T A L G O R I T H M S

6
S I M U L AT I N G C O N G E S T A L G O R I T H M S I N T H E S I N R M O D E L

In this chapter we consider the distributed construction of a deterministic local
broadcasting schedule in the SINR model of interference. During the execution of
such a schedule each node should be able to transmit one message to its neigh-
bors successfully. This allows the execution of higher-level algorithms in the SINR
model for wireless networks. Our schedule can be computed in only O(∆ log n)
time slots and we prove that the length of the constructed schedule is asymptoti-
cally optimal, i.e. of length O(∆). Considering the simulation of CONGEST algo-
rithms in the SINR model, our deterministic schedule achieves a runtime ofO(τ∆+

∆ log n) time slots, where τ is the original runtime in the (vertex-)CONGEST
model. As a lower bound of Ω(∆) time slots per round exists, this is optimal
apart from the logarithmic factor. For the edge-CONGEST model we show a
lower bound of Ω(∆2) per round, which we essentially match with a simulation of
edge-CONGEST algorithms with runtime τ in O(τ∆2 + ∆ log n) time slots.

This chapter is based on joint work with Dorothea Wagner. Preliminary results
are published in [47].

6.1 introduction

Local broadcasting is one of the most fundamental task in wireless ad hoc and
sensor networks after deployment. In contrast to global broadcasting, where one
message must be spread over the whole network, in the problem of local broadcast-
ing each node must transmit one message only to all direct neighbors. In wireless
networks usually only a fraction of all nodes can transmit simultaneously due to
the signal interference of multiple transmissions. Hence, local broadcasts must
be coordinated in order to avoid too high interference. Since interference is mod-
eled relatively realistic in the SINR model (Signal-to-Interference-and-Noise-Ratio
model, cf. Section 2.2.3), finding a local broadcasting schedule is non-trivial in this
model. For many other models, such as the message-passing based CONGEST
or LOCAL models, the problem of computing a local broadcasting schedule does
not occur as interference-free communication is assumed (cf. Section 2.2.1) and
message reception is guaranteed regardless of other transmissions.

As wireless technology is becoming more and more ubiquitous, distributed com-
puting in a wireless context—along with the SINR model—received increasing at-
tention in recent research. Local broadcasting is a fundamental problem in the

101

simulating congest algorithms in the sinr model

SINR model that can be used as a building block to solve higher-level problems.
Hence it is quite well studied and can be solved in O(∆ log n) time slots [55] if ∆ is
known (other results are discussed in Section 6.1). Due to the vast amount of algo-
rithms designed for message-passing models, one particularly interesting applica-
tion of local broadcasting is to simulate algorithms designed for message-passing
models in the SINR model.

For complex algorithms it may be more effective to invest some time in a prepro-
cessing step in order to achieve faster local broadcasting. In fact, this can be bene-
ficial and Derbel and Talbi [30], Jurdzinski and Kowalski [78], and Barenboim and
Peleg [16] achieve—using different methods and assumptions—local broadcasting
in O(∆) time slots, which is optimal due to a trivial lower bound (cf. Section 6.4).
Derbel and Talbi use as increased transmission power to coordinate the schedule
and require O(∆ log n) time slots for their preprocessing. Jurdzinski and Kowal-
ski assume position information to be given and require O(∆ log3 n) slots, while
Barenboim and Peleg use so-called Steiner-nodes, which are additionally deployed
in the network, and assume free feedback of the nodes to compute the schedule
in O(log∗ n(∆ + log n log log n)) time slots. Inspired by the approaches of Derbel
and Talbi, and Jurdzinski and Kowalski we describe how to construct a determinis-
tic local broadcasting schedule with optimal length O(∆) and preprocessing time
of O(∆ log n) time slots. We use distributed node coloring to construct an infea-
sible local broadcasting schedule and combine it with the concept of dilution by
Jurdzinski and Kowalski, which enables us to achieve feasibility of the schedule
while increasing the length of the schedule by only a constant multiplicative factor.
We require the nodes to know an upper bound on the number of nodes n, the max-
imum node degree ∆ in the network, their own ID, and location information. We
do not require carrier sensing and restrict ourselves to uniform and non-adjustable
transmission powers.

Our algorithm differs from the previously mentioned algorithms in various ways.
In contrast to the distributed node coloring by Derbel and Talbi we do not require
the nodes to tune their transmission power. With regard to the backbone structure
constructed by Jurdzinski and Kowalski the method described in this chapter is
faster by a polylogarithmic factor. Compared to the approach of Barenboim and
Peleg we neither require feedback nor additional Steiner-nodes.

Related Work

Using local broadcasting to emulate a round-based message-passing environment
even complex distributed algorithms designed for the CONGEST model can be
made available in wireless sensor networks. Relieved from the complicated analy-
sis in the SINR model, such algorithms can tackle other complex problems, such
as for example all-pairs shortest paths [72], graph partition [29], or the backbone
construction algorithm in Chapter 7.

The simulation of message-passing algorithms in radio networks (in which a
message is successfully received if the receiver is silent and only one of its neigh-
bors is transmitting) has first been studied by Alon et al. in [4]. They propose a

102

6.1 introduction

separate simulation of each round of the message-passing algorithm. Among other
results they proved a bound of Θ(∆2) for the case that each node transmits a dif-
ferent message to each of its neighbors. The lower bound translates to the SINR
model with a slightly modified proof (see Section 6.4.1), while the upper bound
has not yet been reached (if we account for the preprocessing). Kuhn et al. [91]
proposed an abstract interface—an abstract MAC layer—that enables abstract mod-
els to be executed in more realistic models for wireless communication. However,
they describe an implementation of the abstract MAC layer by local broadcasting in
the radio network model, which does not account for global interference. Recently
such an abstract MAC layer for the SINR model has been proposed by Halldórs-
son, Holzer and Lynch [63]. They focus on global problems such as broadcast or
global consensus and provide two important and general bounds. The first is fack,
which bounds the time required to finish and acknowledge a broadcast. The sec-
ond is fapprog, which intuitively bounds the time required for a node to receive a
“current” message if at least one of its neighbors is transmitting. Compared to this
work, their work allows to solve global problems much faster, however, it does not
provide an efficient local broadcast schedule that would, for example, enable the
nodes to directly execute CONGEST algorithms.

Local broadcasting in the SINR model has first been studied by Goussevskaia
et al. in [55]. They considered local broadcasting with known and unknown com-
petition (which is the number of nodes within the proximity range around the
node) in asynchronous networks, and propose two randomized algorithms for
the SINR model with runtimes of O(∆ log n) and O(∆ log3 n) for known and un-
known competition, respectively. Yu et al. [137] improve the approximation ratio
for the unknown competition by a logarithmic factor to O(∆ log2 n) and propose
two algorithms for the synchronized model (with synchronous and asynchronous
wake-up) that make use of carrier sensing and thereby achieve local broadcast-
ing in O(∆ log n) time slots. In [133] Yu et al. improve the algorithm for asyn-
chronous time slots and unknown competition further to O(∆ log n + log2 n) and
provide a lower bound of Ω(∆ + log n) for randomized algorithms in this model.
Halldórsson and Mitra [65] provide an algorithm with the same running time
of O(∆ log n + log2 n) in the same model, that is slightly simpler and more ro-
bust towards node failure. They also provide an algorithm that achieves a running
time of O(∆ + log2 n) per round of local broadcasting with the assumption that
acknowledgments are received at no cost. Barenboim and Peleg recently improved
this result to O(∆ + log n log log n) [16].

The first result in the SINR model that achieves local broadcasting in O(∆) time
slots after a preprocessing stage ofO(∆ log n) slots is by Derbel and Talbi [30]. They
transfer a distributed node coloring algorithm proposed by Moscibroda and Wat-
tenhofer [104] to the SINR model and, by tuning the transmission power during the
coloring step, achieve a deterministic local broadcasting schedule of length O(∆)
that is feasible in the SINR model. Jurdzinski and Kowalski [78] assume the lo-
cation to be known to the nodes and achieve the optimal runtime of O(∆) for
local broadcasting without requiring the capability of nodes to tune their trans-

103

simulating congest algorithms in the sinr model

Table 6.1: Local broadcasting results for the SINR model. Ordered chronologically by ap-
pearance with separation in algorithms with and without preprocessing; (abbrevi-

ations: (a)sync: (a)synchronous model, cs: carrier sense, ACKs: free acknowledgements, tpt: trans-

mission power tuning, steiner: additional Steiner nodes, S: schedule length, P: preprocessing time.)

Publication Assumptions Runtime

Goussevskaia et al. [55] async, ∆ O(∆ log n)

Goussevskaia et al. [55] async O(∆ log3 n)

Yu et al. [137] async O(∆ log2 n)

Yu et al. [137] sync, cs O(∆ log n)

Yu et al. [133] async O(∆ log n + log2 n)

Halldórsson & Mitra [65] async, ACKs O(∆ + log2 n)

Barenboim & Peleg [16] async, ACKs O(∆ + log n log log n)

Derbel & Talbi [30] sync, ∆, tpt S: O(∆), P: O(∆ log n)

Jurdzinski & Kowalski [78] sync, ∆, location,
deterministic

S: O(∆), P: O(∆ log3 n)

Barenboim & Peleg [16] sync, ACKs, steiner
S: O(∆), P: O(log∗ n(∆ +

log n log log n))

This work sync, ∆, location S: O(∆), P: O(∆ log n)

mission power. Their algorithms is deterministic and the preprocessing stage re-
quires O(∆ log3 n) time slots. The authors introduce the concept of dilution (cf.
Section 6.2) and build a deterministic backbone structure that enables communi-
cation to the backbone in O(∆) and local broadcasts from within the backbone
in constant time. Using additional Steiner nodes Barenboim and Peleg construct
a local broadcasting schedule in O(log∗ n(∆ + log n log log n)) [16]. We give an
overview on results regarding local broadcasting in Table 6.1.

Contribution

Our main contribution is the construction of a local broadcasting schedule that
achieves local broadcasting in asymptotically optimal time O(∆) using a prepro-
cessing of only O(∆ log n) time slots. To achieve this we use a standard node
coloring as basis of the schedule, which is usually not feasible. To achieve feasibil-
ity in the SINR model we use the concept of dilution introduced by Jurdzinski and
Kowalski [78].

Our local broadcasting schedule enables us to simulate algorithms (with original
runtime τ) designed for the CONGEST and the edge-CONGEST model in the
SINR model. We achieve a runtime of O(τ∆ + ∆ log n) and O(τ∆2 + ∆ log n) time
slots in the SINR model, respectively.

104

6.2 models and preliminaries

Finally, we show that both results are optimal up to the logarithmic factor by
showing a lower bound of Ω(∆2) to simulate one round of edge-CONGEST . A
lower bound of Ω(∆) for a round of CONGEST is already known.

Outline

The remainder of this chapter is structured as follows. In the next section, we
describe required models and state some basic definitions. In Section 6.3, the
construction of the deterministic local broadcasting schedule is described and we
show its feasibility in the SINR model. Afterwards we consider the simulation
of CONGEST algorithms in the SINR model in Section 6.4 and prove our lower
bound. We conclude this chapter with some final remarks in Section 6.5.

6.2 models and preliminaries

Let us first recall the essential notation used for the geometric SINR model of
interference. In this model a transmission from a node v to a node u is successful,
or feasible, iff the SINR constraint holds. This constraint is based on the uniform
transmission power P, the Euclidean distance dist(·, ·), the set of simultaneous
transmissions I, the attenuation parameter α ∈ [2, 6], a hardware constant β ≥ 1

and the environmental noise N > 0, and evaluates to
P

dist(u,v)α

∑w∈I
P

dist(w,v)α +N
≥ β. The

broadcasting range is based on the constraint and denoted by rB. The nodes closer
to v than rB are its neighbors, the degree of v the number of its neighbors, and ∆
is the maximum degree of any node in the network. As we do not require more
specifics about the communication in the SINR model, we refer to Section 2.2.3,
where we introduce the SINR model more thoroughly.

For the simulation of higher-level algorithms in the SINR model we require syn-
chronous execution of the computed local broadcasting schedule. We do not re-
quire synchronous execution for the computation of the schedule. Many current
positioning systems, such as GPS, position information can be used for clock syn-
chronization [84]. For other synchronization options we refer to [122].

Simulating CONGEST Algorithms in the SINR Model

We introduced the CONGEST model of distributed computation in Section 2.2.1.
Recall that algorithms designed for this model use a messages of size at mostO(log n),
which enables the transmission of at most a constant number of node IDs in the
range [0, . . . , n]. The CONGEST model is sometimes also denoted as vertex-
CONGEST , since the congestion is realized at the vertices of the communication
graph. We refer to the corresponding model, in which congestion is realized at
the edges, as edge-CONGEST . For a simulation of algorithms designed for the
CONGEST model of distributed computation in the geometric SINR model we
require the following properties to hold:

105

simulating congest algorithms in the sinr model

• Locality: The neighbors of each node v must be reachable in our model, i.e.
within the nodes broadcasting range rB.

• Synchronization: Two neighbors are not allowed to be in different rounds of
the vertex-/edge-CONGEST algorithm.

For the simulation of each round of the vertex-CONGEST (edge-CONGEST)
algorithm to be successful we require that one (∆) transmission(s) per node must
be feasible in the SINR model of interference w.h.p. We assume the network to be
connected, hence synchronization in combination with connectivity already implies
that all nodes must be in the same round of the CONGEST algorithm.

Dilution and Backbone Structure

In accordance with [78] we call a partition of the 2-dimensional plane in boxes
of size γ × γ the pivotal grid Gγ, where γ = rT/

√
2. Note that the dimensionspivotal grid

of the box are such that all nodes within the same box are within each others
transmission radius. Formally each box includes its bottom and left side but does
not include its top and right side. We assume box C(i, j) to be the box with lowerbox C(i, j)

left coordinates (i, j) ∈ R2. A node with position (x, y) is in box C(i, j) iff b x
γc = i

and b y
γc = j.

A local broadcasting schedule can be seen as an assignment of 0/1-bit-strings tolocal broadcasting
schedule nodes indicating in which time slots the node is allowed to broadcast. In the

deterministic schedule constructed in this chapter, however, each node transmits
only once throughout an execution of the schedule. Hence we can simply store the
number of the time slot instead of a 0/1 bit-string1.

In order to combine geometric information with local broadcast schedules, we
use the concept of dilution as introduced in [78]. For a constant δ, which determinesdilution

the distance between two active transmissions and will be defined later, we assign
each node v local coordinates (lv

x , lv
y) = (b x

γc mod δ, b y
γc mod δ) = (i mod δ, j

mod δ). This ensures that nodes in the same box of Gγ share the same local coor-
dinates. Now, we can dilute a local broadcast schedule by a factor of δ2 by allowing
each node v with local coordinates (lv

x , lv
y) to send in time slot tδ2 + lv

xδ + lv
y iff v

was allowed to send in time slot t in the original schedule.

6.3 deterministic local broadcasting schedule

An often considered approach to establish efficient communication in a wireless
network is to compute a graph coloring and use this coloring to decide when and
for how long each node is allowed to transmit a message. This can be done by sim-
ply associating each color with a time slot, and thereby creating a TDMA schedule.
As a first step, let us consider the simpler protocol model, in which a transmission
is successful iff in the interference range (which usually is at least the transmission

1 A variant of such a schedule has already been used for the asynchronous color reduction algorithm
in Section 4.5. There each node received an interval of time slots in which to be active.

106

6.3 deterministic local broadcasting schedule

range) of the receiver only one node is transmitting at a given time. Even in this
simpler model a node coloring that ensures that two nodes are assigned different
colors if they are within each others transmission range is not sufficient to directly
build a feasible transmission schedule as depicted in Figure 6.1. However, if the
transmission range equals the interference range this can be overcome by using a
distance-2-coloring (i.e., a coloring which ensures unique colors within each trans-
mission region).

Due to the global nature of interference in the SINR model, finding some sort of
agreement about transmission schedules (i.e., medium access) is required for deter-
ministic local broadcasting schedules. In the case of coloring in the SINR model,
even a distance-2-coloring that achieves unique colors within each transmission
region is not sufficient as shown in Figure 6.1b.

v w u

(a) Unique colors within distance rT

u2

u1

15
16 rT

v
w

rT < distance ≤ 1.002 · rT

(b) Unique colors within each transmission
region (distance-2-coloring)

Figure 6.1: A coloring as depicted on the left does not yield a feasible local broadcasting
schedule in the protocol model as simultaneous transmissions from v and u to w
are not feasible. Although the coloring on the right corresponds to a feasible
local broadcasting schedule in the protocol model, it is not feasible in the SINR
model as the SINR constraint is violated. Note that w is not directly connected
to u1 and u2 but through the red/green node.

However, schedules can be made feasible if the node coloring ensures unique
colors in an area larger than the transmission region. Unfortunately coordinat-
ing such a coloring without communicating with nodes outside the transmission
region seems hard. In current solutions this is realized by tuning the nodes trans-
mission power to reach a larger transmission region, as done in [30], by adding
additional so-called Steiner-nodes, which achieve short communication paths to
other close-by nodes [16] or using position information [78]. Yet another option
would be to traverse through the network to coordinate the schedule, however, this
requires Ω(D) time slots, where D is the diameter of the network, cf. Section 2.1.
We use position information to compute a grid structure which helps in coordinat-
ing the local broadcasting schedule. In the following theorem we show that we can
distributively construct a feasible local broadcasting schedule based on the location
information and a given node coloring, even if the coloring does not ensure unique
colors within each transmission region (i.e. it is a standard distance-1-coloring).
Recall that such a coloring can be computed within O(∆ log n) time slots in the
SINR model, as presented in Chapter 4. If not noted otherwise we assume such a
coloring.

107

simulating congest algorithms in the sinr model

Theorem 6.1. Given a network of nodes in which each node knows its location, the color
assigned by a coloring using at most cmax = O(∆) colors, and cmax itself. Then we can
distributively compute a local broadcasting schedule that is feasible under the SINR model
of interference with length in O(∆).

In order to prove the theorem we first show that such a coloring is a local broad-
casting schedule in which at most one node sends in each box of the pivotal grid Gγ

(Lemma 6.2), and then prove that we can achieve a feasible schedule by applying
dilution to this schedule (Lemma 6.3).

Lemma 6.2. Given a network in which each node has a unique color within distance rT.
This coloring corresponds to a local broadcasting schedule in which at most one node per
box of the pivotal grid Gγ is transmitting in each slot.

Proof. As each node knows the number c of its color and a shared upper bound cmax

on the number of colors assigned to the nodes in the network we can assign each
color to one of cmax time slot. Consider a node v within box C(i, j) and color c.
Since the diameter of each box is exactly rT, the coloring ensures that there is no
other node within box C(i, j) that has color c.

We extend Proposition 1 of [78] in the following by explicitly giving a formula to
compute the constant δ (depending only on α), which enables us to prove feasibility
of a δ-diluted schedule in the SINR model of interference for α > 2. For α = 2 we do
also achieve feasibility, however in this case δ ∈ O(log n) is additionally dependent
on n. This leads to an increase in the schedule length of a multiplicative factor
of δ2 ∈ O(log2 n). We consider this case after proving Lemma 6.3.

Lemma 6.3. Let α > 2 and δ =

(
8P ∑∞

k=1
1

kα−1
N γα

)1/α

+ 3. Then a local broadcasting sched-

ule S in which at most one node in each box of the pivotal grid Gγ transmits in each time
slot can be made feasible in the SINR model of interference with a constant increase in the
schedule length.

Proof, partially based the proof of Proposition 1 in [78]. Let len(S) be the length of the
local broadcasting schedule S . In order to achieve a feasible schedule, we dilute
the schedule S by a constant δ2 and obtain a feasible schedule S ′ with len(S ′) =

O(len(S) · δ2) = O(len(S)). In this schedule S ′, a node v with local coordi-
nates (lv

x , lv
y) sends in time slot tδ2 + lv

xδ + lv
y if and only if the node would have

sent in time slot t of schedule S .
Let us begin by showing that δ is indeed a constant. Clearly, this holds for the

influence of the constants P, N, γ. The sum ∑∞
k=1

1
kα−1 , which is the generalized har-

monic number of order (α− 1), is in O(1) for any α > 2 [89]. Let us now consider
an arbitrary time slot of schedule S ′, a node v that transmits a message in this time
slot, and another node w that is within the broadcasting region of v. Let C(i, j)
be the box in which v is located, hence (lv

x , lv
y) = (i mod δ, j mod δ) are the lo-

cal coordinates of v. We claim that w can successfully receive the message sent
by v and hence—as we considered an arbitrary sender, receiver and time slot—this

108

6.3 deterministic local broadcasting schedule

schedule is feasible in the SINR model. To show this claim we bound the interfer-
ence received by w simultaneously transmitting nodes by first upper bounding the
number of simultaneously transmitting nodes within certain distances and then
computing an upper bound on the interference of all those nodes on w.

The application of δ-dilution ensures that the only nodes u that transmit simul-
taneously with v have local coordinates (lu

x , lu
y) = (i mod δ, j mod δ) = (lv

x , lv
y).

Note that local coordinates are shared by all nodes in the same box. Hence we call
boxes that have nodes with the same local coordinates as v, i.e. boxes that are also
allowed to send in the considered time slot, active. Due to the cyclicity of the mod- active

ulo operator, δ-dilution results in a grid of active boxes with distance ξ := (δ− 1)γ
between each two active boxes, as depicted in Figure 6.2. According to Lemma 6.2
at most one node in each active box transmits in each time slot.

i + δ . . . ξ . . .

i

i− δ

j− 2δ j j + δ

...
ξ
...

j− δ j + 2δ

. . . ξ . . .
...
ξ
...

...
ξ
...

...
ξ
...

...
ξ
...

...
ξ
...

...
ξ
...

...
ξ
...

...
ξ
...

...
ξ
...

. . . ξ ξ . . .

. . . ξ ξ . . .

. . . ξ ξ ξ ξ . . .

. . . ξ ξ . . .

Figure 6.2: Grid cells of Gγ that are active simultaneously to a transmission originating
from box C(i, j). Note that in order to increase readability ξ := (δ− 1)γ.

Let us now examine how many active boxes are at specified distances. We con-
sider the boxes in so-called rings, which actually are the border layer of active
boxes of a square centered at the box C(i, j). In the situation of Figure 6.2 all de-
picted nodes in columns j− δ , j and j + δ except for C(i, j) itself are in boxes of
ring level 1 from C(i, j). It can be observed that in each ring of level k ≥ 1, ex-
actly 8k active boxes can be accommodated. Also, each node in level k has distance
at least k((δ− 3)γ) from w (δ− 3 since w can be at most 2 boxes away from v).

Using this relation we can now upper bound the interference received by w from
all nodes sending simultaneously with v, which are at most 8k nodes from each
ring level k. Hence the interference at w is at most

∑
u∈V\{v},

u sending simultaneously with v

P
dist(u, w)α

≤
∞

∑
k=1

(8k)
P

(k(δ− 3)γ)α
(6.1)

≤
∞

∑
k=1

8Pk
kα(δ− 3)αγα

≤ 8P
(δ− 3)αγα

(
∞

∑
k=1

1
kα−1

)
≤ N (6.2)

109

simulating congest algorithms in the sinr model

where the first equation follows from applying the considerations about the ring
levels and the last equation follows by insertion of δ, which we already showed to
be constant. Evaluating the SINR at node w yields

SINRw =

P
dist(v,w)α

∑ u∈V\{v},
u sending simultaneously with v

P
dist(u,w)α + N

≥
P

(rB)α

2N
≥ β

where the first inequality follows from dist(v, w) ≤ rT and Equation 6.2 and the
last inequality follows from the definition of the broadcasting range rB = (P

2Nβ)
1/α.

This concludes the proof for α > 2.

We will now briefly consider the case of α = 2.

Corollary 6.4. Let α = 2 and δ =

(
8P ∑n

k=1
1

kα−1
N γα

)1/α

+ 3. Then a local broadcasting

schedule S in which at most one node in each box of the pivotal grid Gγ transmits in
each time slot can be made feasible in the SINR model of interference with a factor δ2 ∈
O(log2 n) increase in the schedule length.

Proof. Since at most n non-empty ring levels exist and the distance of the levels
increases it holds that

∑
non-empty
ring levels k

1
kα−1 ≤

n

∑
k=1

1
kα−1 (6.3)

and hence the resulting sum ∑n
k=1

1
k and Equation 6.1 in general can be evaluated

to O(log n) [89]. This implies δ ∈ O(log n) and finally len(S ′) = O(len(S) · δ2) =

O(len(S) · log2 n) as claimed in the corollary.

A pseudo code description of the procedure described above is given in Algo-
rithm 6.1. First an initial schedule is computed by distributed node coloring, then
this schedule is diluted in order to obtain a schedule that is feasible in the SINR
model. We can see that the algorithm itself is very simple. For a definition of the
parameters cf. Section 6.2 or Section 2.2.2. Note that regarding δ neither the ceiling
nor limiting the sum at n affects our theoretic results.

6.4 simulating CON GE S T algorithms in sinr

Using the deterministic local broadcasting schedule constructed in Section 6.3,
CON GE S T algorithms with a runtime in O (τ) can be simulated in O (τ ∆ +

∆ log n) for α > 2. This can be done by first computing the local broadcasting
schedule in O (∆ log n) and then simulating the algorithm using so-called single-
round-simulation as introduced by Alon et al. [4]. This requires one execution of
the local broadcasting schedule for each round of the message-passing algorithm.
There is a simple and well-known lower bound of Ω(∆) for one round of local
broadcasting. As only one transmission can be received in a time slot, ∆ nodes in
a broadcasting region require Ω(∆) time slots to transmit to one shared neighbor.

110

6.4 simulating CON GE S T algorithms in sinr

Algorithm 6.1: Distributed computation of a feasible local broadcasting sched-
ule at node v
Input: location information (xv, yv); SINR parameters α, N, β, P; network

parameters ∆, n
1 c, cmax ← color assigned by distributedNodeColoring(∆, n, α, N, β, P)

2 δ←
⌈(

8P ∑n
k=1

1
kα−1

N γα

)1/α
⌉
+ 3 // dilution constant

3 (lv
x , lv

y)← (b xv

γ c mod δ, b yv

γ c mod δ) // local coordinates

4 active_slot← δ2c + δlv
x + lv

y

5 while true do // Executing local broadcasting schedule

slot←slot+1
7 if slot - active_slot ≡ 0 (mod δ2 · cmax) then // cmax is max. color

8 Transmit next message

We restricted ourselves to the simulation of general (vertex-)CON GE S T algo-
rithms in most parts of our chapter. In this model a node can send one message of
size O (log n) to its neighbors in each round, cf. Section 6.2. However the methods
transfer to the simulation of algorithms designed for similar models, for example
if a different message is transmitted to each neighbor or if differently-sized mes-
sages are used. In particular for messages of arbitrary size s in a message-passing
algorithm, either the message size during simulation in the SINR model is set
to O(s + log n), or the messages are split to O (log n) sized messages, leading to
an increase in runtime of s/ log n if s ∈ Ω(log n). If, as in the edge-CON GE S T
model, a different message is sent to each neighbor the runtime of the simulation
increases to O (τ ∆2 + ∆ log n), as our local broadcasting schedule must be exe-
cuted ∆ times per round of the original edge-CON GE S T algorithm. We shall
show in the following that this is also tight up to logarithmic factor.

6.4.1 Lower Bound for Edge-CONGEST Algorithms

In this section we prove that simulating one round of an edge-CONGEST algo-
rithm in the SINR model requires Ω(∆2) time slots. Such a lower bound has already
been stated by Alon et al. in [4] for the radio network model. As it does not directly
transfer to the SINR model, we prove the lower bound in the following lemma.

Lemma 6.5. Executing one round of an edge-CONGEST algorithm at each node cannot
be simulated in less than Ω(∆2) time slots in the SINR model, where ∆ is the maximum
node degree of all nodes in the network.

Proof. Assume a graph in which all nodes are within one broadcasting radius rB

and let this graph consist of two clusters Sl , Sr of the same geometric diameter d = 1.
Let those clusters be at least η = 20 times their diameter apart from each other.
Such clusters are shown in Figure 6.3.

111

simulating congest algorithms in the sinr model

∆
2

∆
2

∆
2 × ∆

2 ∈ Ω(∆2)

...
Sl Sr

Figure 6.3: Two clusters of the same diameter within one broadcasting region. The distance
between the clusters is more than η times the diameter of the cluster.

To execute one round of the edge-CONGEST algorithm at each of the nodes,
each node in the network may transmit a message to each of its neighbors. Let us
only consider the transmission from the left cluster to the right cluster. Each node
in the left cluster must transmit one different message to each node in the right
cluster. This yields ∆

2 × ∆
2 ∈ Ω(∆2) inter-cluster-transmissions.

We will now show that no more than two inter-cluster transmissions (from the
left to the right cluster) can occur during one time slot in the SINR model. Let
v ∈ Sl be in the left cluster and w ∈ Sr be in the right cluster. Assume v transmits
to w in time slot t and assume two other nodes u, u′ transmit to some other nodes
in the same time slot. We show that w cannot successfully receive v’s message
due to a SINR of less than 1. Let u, u′ ∈ Sl transmit, then the SINR constraint (cf.
Section 6.2) evaluates to

P
dist(v,w)α

P
dist(u,w)α +

P
dist(u′,w)α + N

≤
P

(η)α

2 · P
(η+2)α

=

1
(η)α

2
(η+2)α

=
(η + 2)α

2ηα

α∈[2,6],η=20
< β,

where the first inequality holds as dist(v, w) ≥ η, dist(u, w) ≤ (η + 2d), and N > 0,
the strict inequality follows from the selection of α and η. Hence w cannot re-
ceive v’s message and at most two transmissions from the left to the right cluster
can happen in one time slot. This shows that 1

2 ·
(∆

2 × ∆
2

)
∈ Ω(∆2) time slots are

needed to simulate one round of a message-passing algorithm.

6.4.2 On the Size of Messages

Similar to the CONGEST model, the SINR model usually allows messages of
size O(log n). If larger messages are used, for example in algorithms for the
LOCAL model of computation, this can be achieved by splitting the messages.
In the local broadcasting schedule proposed by Derbel and Talbi (their algorithm is
based on distributed node coloring with tuned transmission radius), the message
size is described as O(s · log n), where s is the original message size. For the simu-
lation of CONGEST algorithms this results in messages of size O(log2 n) instead
of O(log n). However, we argue that messages of size O(log n) are possible in
their schedule as well, and hence this additional logarithmic factor is not necessary.
Their algorithm consists of two parts. In the first part a distributed node coloring is
computed. For this only the node ID and the number of the color must be transmit-
ted. Hence messages of size O(log n) are sufficient. In the second part the actual
simulation takes place. Therefore the original message of size s along with a node

112

6.5 conclusion

ID (in case the sender/receiver node must be identified) must be transmitted. This
requires messages of size O(s + log n). For CONGEST algorithms this results in
messages of size O(log n), since s ∈ O(log n). For the algorithm by Jurdzinski and
Kowalski and the algorithm recently proposed by Barenboim and Peleg a message
size of O(log n) is also sufficient.

Hence, for all these algorithms, using either tuned transmission powers, addi-
tional Steiner nodes or location information messages of size O(log n) are sufficient
to simulate a CONGEST algorithms in the SINR model.

6.5 conclusion

In this chapter we introduced a new algorithm to compute a deterministic local
broadcasting schedule of optimal length O(∆) that is feasible in the SINR model
of interference. The construction of the schedule requires O(∆ log n) time slots,
which is optimal up to the logarithmic factor.

Our local broadcasting schedule enables the simulation of algorithms designed
for the CONGEST model in the realistic SINR models of interference in wireless
networks. An algorithm with original runtime of τ rounds in the CONGEST
model can be simulated in in the SINR model, which is optimal apart from the
logarithmic factor. For simulating algorithms designed for the edge-CONGEST
model we require O(τ∆2 + ∆ log n) time slots, which we argue to be tight up to the
logarithmic factor as well.

Several open problems are immediate. Current techniques require to tune their
transmission power, add Steiner-nodes or have position information. Can we com-
pute an optimal local broadcasting schedule without additional knowledge? And if
not, which other forms of knowledge empower nodes to compute such a schedule?

113

7
I M P R O V E D D I S T R I B U T E D C O N S T R U C T I O N O F F C D S
PA C K I N G S

In this chapter we consider the problem of creating a backbone structure that
achieves high throughput in wireless networks in the CONGEST model. For
networks with node connectivity k, Fractional Connected Dominating Set (FCDS)
Packings can achieve a broadcast throughput of Θ(k/ log n) messages per round,
which is optimal for routing-based broadcasting. FCDS were recently proposed by
Censor-Hillel et al. [20, 21] and are a natural generalization of Connected Domi-
nating Sets (CDS), allowing each node to participate fractionally in multiple FCDS.
Thereby, Ω(k) co-existing transmission backbones are established, taking full ad-
vantage of the network connectivity. In this chapter we propose a modified dis-
tributed algorithm to compute FCDSs, which improves upon previous algorithms
for k∆ ∈ o(min{ n log n

k , D,
√

n log n log∗ n} log n),where ∆ is the maximum node de-
gree, D the diameter and n the number of nodes in the network. We achieve this
by explicitly computing connections between tentative dominating sets.

This chapter is based on joint work with Matthias Wolf. Preliminary results are
currently under submission [48] and in parts based on work done during Matthias
Wolfs bachelor thesis [130].

7.1 introduction

Wireless ad hoc and sensor networks are used to monitor the environment, indus-
try processes and even large parts of infrastructure. In order to cope with the
growing networks size and its demand for efficient communication throughout the
network, we need algorithms and protocols that utilize the capacity available in the
network optimally. One of the standard methods to manage high throughput in the
network is to compute a backbone structure. Recently, Censor-Hillel et al. [20, 21]
proposed an algorithm that allows to build a network topology based on Fractional
Connected Dominating Set (FCDS, see Section 7.2 for a definition), which can be
seen as a generalized Connected Dominating Set (CDS). Such fractional connected
dominating sets can be used to achieve a broadcast throughput of Θ(k/ log n) mes-
sages in networks with n nodes and vertex-connectivity k, which is optimal for
routing-based algorithms [20]. This improves on the standard method of using one
backbone by, intuitively, replacing it with as many fractional backbones as the net-

115

improved distributed construction of fcds packings

work can fit due to its connectivity. To give further intuition, we show an example
network that admits multiple FCDS (a so-called FCDS packing) in Figure 7.1.

In this chapter we propose a modified version of the distributed algorithm orig-
inally proposed in [21]. Our modified algorithm is expected to be beneficial for
future large-scale wireless sensor networks, as such networks are likely to consist
of a huge number of small wireless sensors deployed on a relatively large area. Ad-
ditionally, those sensors operate on small transmission ranges to conserve energy
while staying operational, which potentially results in networks with large diame-
ter. We present a distributed algorithm that computes a FCDS packing by explicitly
computing the connector paths between not-yet connected components of the re-
spective FCDS. Our algorithm runs in the message-passing model CONGEST and
has a round complexity of O(log2 n(min{ n log n

k , D +
√

n log n log∗ n}+ k∆)). This
improves the runtime of previously O(log3 n ·min{ n log n

k , D +
√

n log n log∗ n}) for
large and relatively sparse networks with moderate connectivity k, or more pre-
cisely if k∆ ∈ o(min{ n log n

k , D,
√

n log n log∗ n} log n). This is for example true if
the connectivity and the degree are less than

√
D. One example for a family of net-

works that benefit from our improvement is described in Section 7.2. Intuitively the
achieved complexity is beneficial for networks with large diameter and moderate
density, and generally for large but sparse networks.

Our algorithm is based on the virtual graph structure Censor-Hillel et al. [20, 21]
use to compute a FCDS packing. In their distributed implementation they do not
explicitly compute the connector paths between the components but rely only on
the existence of a sufficient number of paths, which requires additional coordina-
tion within tentatively established dominating sets (so-called components). In [21],
the approach of explicitly computing the paths is rendered as probably too expen-
sive. However, our algorithm improves the runtime while explicitly computing
possible connector paths between tentative components. Let us briefly introduce
the layered approach used in both their algorithm as well as ours. For each node in
the network we introduce a set of O(log n) virtual nodes, each virtual node shall
be assigned to one FCDS, resulting in a FCDS packing in which each FCDS has
at least weight 1/O(log n). The virtual nodes are assembled to a virtual graph G,
and partitioned in layers such that there are 1 to 3 copies of a node in each layer. A
nodes copy is connected to all copies of the nodes original neighbors in G (cf. Sec-
tion 7.2 for details). Now, layer for layer, the virtual nodes are assigned different
classes, each of which shall result in a FCDS once the algorithm finishes. Using
the first half of the layers, dominating sets are formed, which are then connected
by selecting so-called connector paths between components using nodes from the
remaining layers. Both our algorithm and the algorithms of [20, 21] follow this
general scheme.

The improvement in our algorithm is achieved by improving the process of how
connector paths are matched to existing components. In [21], paths are matched
to components by building a so-called bridging graph. In the bridging graph,
whole components (which may span large parts of the network) are simulated
by a virtual node and participate in a matching. Thus, the matching algorithm

116

7.1 introduction

must communicate through the component, which may require time in the order
of Ω(D) in each step of the matching. In our algorithm we construct a matching
graph that can directly be executed by transmitting one message to each neighbor
in each round. As we determine the connector paths explicitly, this routine must
be executed separately for each FCDS that is computed, resulting in a factor of k
in our runtime. Overall, finding the connector paths requires O(k∆ log n) rounds
for each one of the O(log n) layers. Once the connector paths are found, they can
be used to connect the components in order to create multiple CDS in the virtual
graph. By translating each CDS to a FCDS in the network, Θ(k) communication
backbones are established in the network, each with weight 1/ log n.

Related Work

Research on FCDS was started by Censor-Hillel et al. in [20]. They propose a cen-
tralized algorithm to compute CDS partitions of size Ω(k/ log5 n), as well as FCDS
packings of size Ω(k/ log n), where k is the vertex-connectivity of the network.
FCDS packings are the natural generalization of CDS partitions, which allows each
node to participate in multiple CDS with a fractional weight between 0 and 1 per
CDS such that the sum of the weights is at most 1. Additional to computing
FCDS packings, they show that the broadcast throughput using a FCDS packing of
size Ω(k/ log n) is Ω(k/ log n) messages per round, which is optimal if restricted
to routing-based approaches. In contrast to network coding [39], which can achieve
a throughput of Θ(k) broadcast messages [20], routing-based approaches consider
messages as atomic tokens and use simple store-and-forward methods to route
the message. Ene, Korula and Vakilian [34] consider FCDS packings under the
constraint that each node has a capacity and compute packings of size Ω(k) for
planar and minor-closed families of graphs, and Ω(k/ log n) for the general case
using centralized algorithms. The first distributed implementation is again due
to Censor-Hillel, Ghaffari and Kuhn [21]. In this work they consider both vertex-
and edge-connectivity. For vertex-connectivity they compute a FCDS packing (or
a fractionally disjoint weighted dominating tree, which is a similar concept) of
size Ω(k/ log n), building on the initial approach in [20] as we do in this chapter.

Other related topics are connected dominating sets [27, 59], as well as domi-
nating set partitions (see e.g. [37]). Regarding the application of FCDS to in-
crease the throughput, related works are multi-message broadcasting in wireless
networks [17] and network coding [39].

Contribution

Our main contribution is that we improve the distributed computation of FCDS
packings of size Θ(k/ log n) for large but relatively sparse networks to a runtime of
O(log2 n(min{ n log n

k , D+
√

n log n log∗ n}+ k∆)) rounds in the CONGEST model.
To achieve this result we show how to explicitly compute the connector paths be-

tween components, which is interesting on its own. We show how to construct and
distributively compute a bipartite helper graph, which is then used in a maximal

117

improved distributed construction of fcds packings

Figure 7.1: From left to right: A 3-vertex connected graph G, a (not optimal) connected
dominating set in G marked by blue nodes, and a FCDS packing in G establish-
ing 3 fractional connected dominating sets.

matching to select a sufficient fraction of the available connector paths. Interest-
ingly, we can construct the helper graph and compute the connector paths without
communication through the components.

Outline

In the next section we introduce the notation used in the construction of the FCDS
packing. In Section 7.3 we describe how the FCDS can be computed distributively.
Our main contribution is described in Section 7.4, where we show how to explicitly
compute the connector paths between components. We conclude this chapter in
Section 7.5.

7.2 preliminaries

Our algorithms operate on the communication graph G = (V, E) of a wireless ad
hoc or sensor network. As described in Section 2.1, an edge e = (u, v) ∈ E is in
the communication graph if v, u ∈ V can communicate with each other directly
in the network. We assume the communication to be bidirectional, and hence
the communication graph to be undirected. We use the standard CONGEST
message-passing model, which we introduced in Section 2.2.1. Communication is
based on synchronous rounds, in which each node can receive the messages of
its neighbors as well as transmit one identical message to all neighbors itself. In
contrast to the edge-CONGEST model, in which the nodes may transmit different
messages to their neighbors, the congestion is on the nodes instead of the edges of
the corresponding communication graph. Note that this fits the broadcast nature
of wireless networks.

A dominating set S ⊆ V is a set of nodes in the network such that for each
node v ∈ V it holds that either v ∈ S or a neighbor of v is in S. If such a set is
connected we denote it by connected dominating set (CDS). Fractional CDS (FCDS)FCDS

packings are the natural generalization of CDS. In an FCDS packing, each node
can participate in multiple FCDSs with a weight xi ∈ [0, 1] for each FCDS, such
that ∑i xi ≤ 1 for each node. We illustrate a CDS and a FCDS in Figure 7.1. The
virtual graph G = (V , E) used in the construction of the FCDS was first introducedvirtual graph G
in [20]. For each node v ∈ V we introduce O(log n) copies in the set of virtual
nodes V . Each copy of v is connected to all other copies of v in V and to each

118

7.2 preliminaries

copy of a neighbor w ∈ V of v in G. We denote the neighbors of v in G by Nv,
and in G by Nv. In contrast to the original description, which was also used for the
first distributed implementation in [21], we use 3L copies of each node instead of 4L
for L ∈ O(log n), however, this is a minor technical detail. In total the virtual graph
has 3L copies of the original graph, plus some additional edges. We subdivide the
virtual graph in layers and call the first L copies of V in V the lower layers. Each lower layers

so-called upper layer consists of two copies of V. We call the nodes of the first copy upper layer

type-1 nodes, and the nodes of the second copy type-2 nodes. For each layer l we type-1 nodes

type-2 nodesdenote the nodes of layers 1 to l by Vl and the subgraph induced by these nodes
by Gl .

As we compute multiple FCDS simultaneously in the virtual graph and distin-
guish each FCDS by a class i ≤ t ∈ Θ(k). We denote the subset of nodes of
class i up to layer l by V i

l , and the induced subgraph by G i
l . We use Ψ(vl) = v to Ψ(vl)

project from nodes (or a set of nodes) of the virtual graph to the corresponding real
node(s). Throughout the rest of this chapter we shall use the term node to refer to
virtual nodes in G, and real node to refer to a node in G. During the execution of the
algorithm, we aim at connecting not-yet-connected components of the dominating
set of a class i to other components of the same class. Given a connected compo-
nent C we use so-called connector paths to identify vertices that could connect C to
another component C ′ with Ψ(C) ∩ Ψ(C ′) = ∅, both of the same class. In compli-
ance with [20] we call a path P a connector path for component C if it satisfies the connector path

following conditions:

a) P has one endpoint in C and the other endpoint in C ′.

b) P has at most two internal vertices.

c) P cannot be shortened, i.e., for P = (s, v, w, u) with s ∈ C and u ∈ C ′, u does
not have a neighbor in C ′ and v does not have a neighbor in C.

d) if P = (s, v, w, u) with s ∈ C and u ∈ C ′ has two internal nodes, v is of type-2
and w of type-1.

e) if P = (s, v, u) with s ∈ C and u ∈ C ′ has one internal vertices, v is of type-1.

Connector paths can have at most one or two internal nodes, as the components of
each class are already dominating. We call connector paths with one internal node
short and those with two internal nodes long. For a path (v1, v2, . . . , vi−1, vi), we short

longcall the set of nodes {v2, . . . , vi−1} the internal nodes or internal vertices. We call a set
of paths {P1, . . . , Pj} internally vertex-disjoint if the internal nodes of {P1, . . . , Pj} are internally

vertex-disjointmutually disjoint.
The following lemma states that we always find at least k connector paths for

each component in a k-connected graph.

Lemma 7.1 (Lemma 4.3 in [21]). For each component C of an arbitrary class i at an
arbitrary level l it holds that C has at least k internally vertex disjoint connector paths

119

improved distributed construction of fcds packings

Note that the algorithms proof of correctness requires the connector paths of
one component to be internally vertex-disjoint. We assume our connector paths to
have this property in the following section. It is easy to verify (based on Menger’s
Theorem [102] or [3, Theorem 10.4]) that enough short connector paths are available.
For long connector paths, we shall explain how a sufficient number of internally
vertex-disjoint long connector paths can be found in Section 7.4. In the virtual
graph G, our algorithm computes t CDSs, as each node selects exactly one class i.
Let us now briefly consider how this translates to a FCDS packing in G. Let v ∈ G
be a node of the network and v1, . . . , v3L the corresponding virtual nodes in G.
Given t = Θ(k) connected dominating sets in G, we can construct a FCDS in G by
weighting the class of each virtual node vi by 1/3L at the real node v. As there
are 3L virtual copies of v, the weight constraint is satisfied, and the CDS partition
translates to a FCDS packing. Before describing the distributed FCDS algorithm,
let us consider an example network that benefits from our runtime improvement.

Example network

Given a network with n nodes and a parameter d. We distribute the nodes of the
network on d lines with n/d nodes on each line. We iterate over the nodes on each
line and connect the ith node on a line to the node before and after i on the line
and to the ith nodes on the other lines. Thus, d nodes, one from each of the lines,
form a clique. For d = 4, an example of such a network is displayed in Figure 7.2.
We can see that such a network is d connected, and has maximum degree d + 1.

. . .

Figure 7.2: A d = 4-vertex connected network, with diameter in Ω(n/d).

The diameter of the network, however, is in Ω(n/d). Thus, even for instances with
very high connectivity d = 3

√
n, our algorithms results in an improvement over [21]

as k∆ = D = O(n2/3). For sparser variants our algorithm is faster as well.

7.3 distributed fcds computation

Computing the t = Θ(k) connected dominating sets in G consists of two main
components. Recall that we assign each virtual node to one of t classes, which
shall form the CDSs after the execution of the algorithm. The first O(log n) lay-
ers of virtual nodes establishes that each class dominates the whole graph with
high probability, cf. Lemma 7.2. This is surprisingly simple and can be achieved
by having each virtual node select one of the classes at random. For the second
O(log n) layers we aim at connecting a constant fraction of the connected compo-

120

7.3 distributed fcds computation

nents in each layer with constant probability. This leads to connectivity of each
class with high probability after the last layer, yielding the desired CDSs. The ex-
isting distributed algorithm to compute FCDS packings uses the same approach
for the lower layers, and essentially matches existing components in each of the
upper layers without computing the connector paths. Our approach on the other
hand explicitly computes the long connector paths by constructing a helper graph
in which a matching algorithm finds Ω(k) such paths. Thus we do not require
communication through existing components to compute the paths, which is ben-
eficial for many networks, especially if they are large with respect to the diameter.
Our algorithm consists of the following steps. Note that the overall design of the
algorithm is similar to that of [21], however, we use a different method to connect
the components of each class, which is one of the key parts of the algorithm.
A) Each virtual node in the lower layers randomly selects one of the t classes. This
leads to domination of each class w.h.p., cf. Lemma 7.2.
B) For each upper layer l from L to 2L we try to connect existing connected

components of each class in the nodes of layers 1 to l − 1 using nodes of layer l.
We call the nodes of the previous layers 1 to l − 1 old nodes and the nodes of layer l old nodes

new nodes. For each layer we execute steps B.1 to B.4. new nodes

B.1) Identify connected components of old nodes. We use the protocol of [21],
which is based on an algorithm by Thurimella [124] to identify connected compo-
nents. To be self-contained, we describe the protocol in Appendix A.4.

B.2) Let nodes of type-1 select a random class.
B.3) For each class i: If the nodes component is not yet connected by short a con-

nector path, find Ω(k) internally vertex-disjoint long connector paths. We construct
a helper graph Hi and run a simple matching algorithm to find the long connector
paths. For details on this step we refer to Section 7.4.

B.4) If the nodes type-2 node is on long connector paths, the node discards the
paths for which the type-1 node selected a wrong class, and selects the class of one
of the remaining paths at random. If no path remains, the node selects a random
class.

After executing this algorithm each virtual node in G has assigned itself to one
of the t classes. Each class dominates the whole graph (Step A) and is connected
(Step B). Thus, the nodes computed t = Θ(k) CDSs in the virtual graph G. The
CDSs can be converted to one FCDS of size Ω(k/ log n) by assigning each CDS
a weight of 1/3L, cf. Section 7.2. Note that the matching algorithm in Step B.2
matches type-1 with type-2 nodes, thus it does not require communication and
coordination within the components. Let us now briefly reference the result that
achieves dominance in the lower layers.

Lemma 7.2 (Lemma 4.1 in [21]). For each class i, V i
l is a dominating set in G w.h.p.

The proof idea is based on the fact that, for class i and a node v ∈ V, the
probability that v’s virtual copy on layer l selects i is at least 1/t = 1/O(k). As
each node has at least k neighbors on l, this yields constant probability per layer,
and w.h.p. over all log n layers.

121

improved distributed construction of fcds packings

7.4 finding connector paths

In this section we show how our algorithm computes internally vertex-disjoint con-
nector paths for each component in order to connect a constant fraction of the
components in each upper layer. We begin this section by giving a high-level proof
showing that we can indeed connect a constant fraction of the components with
each new layer. In the next sections we introduce the necessary tools and prove
the remaining results. In Section 7.4.1 we introduce the graph Hi, which helps to
reduce the problem of finding long connector paths for each component to a match-
ing problem. The matching problem is discussed in more detail in Section 7.4.3.

As introduced in Section 7.2, connector paths can have one or two internal nodes,
we call them short and long connector paths, respectively. To prove correctness for
the algorithm, it must hold for each one of the upper layers that at least a constant
fraction of the components (formed by old nodes) of each class are connected to
another component of the same class using nodes from the current layer with at
least constant probability. We shall now state the overall result of this section,
which was first obtained and proven in [21]. We give a brief sketch of the proof
to be self-contained. Note that there is a minor technical flaw in the original proof
regarding the number of missing connections Ml in layer l, see [130, p. 21] for
details and a corrected proof.

Lemma 7.3 (Lemma 4.4 in [21]). Let l ∈ [L, 3L]. Then Ml+1 ≤ (1 − δ)Ml with
probability at least ρ.

Sketch of proof, based on [21, 130]. To prove the theorem we consider each compo-
nent and show that the component is connected to another component by layer l + 1
with constant probability. This implies that a constant fraction of the existing com-
ponents are connected by layer l + 1 with constant probability. Given a compo-
nent C of class i on layer l and assume class i has at least two components. It holds
that C has at least k connector paths, connecting C to another component of class i,
according to Lemma 7.1. There are two cases: Either at least k/2 of the paths are
short connector paths, or at least k/2 of the paths are long connector paths.

Let us first consider the case of at least k/2 short connector paths. This is in-
tuitively the easier case, as only one node separates C from another component
on Ω(k) paths. Recall that each layer has two copies of each real node: a type-1
and a type-2 node. Let us consider only the type-1 node for now. According to
Lemma A.4 (in Appendix A.4, from [20]) it is sufficient that all type-1 nodes select
a random class to connect C to a neighboring component with constant probabil-
ity in this case. Intuitively, this holds as Ω(k) nodes can connect C with another
component, and each of these nodes selects one of t classes.

For the case of less than k/2 short connector paths, it holds that there are Ω(k)
long connector paths as in total k connector paths exist according to Lemma 7.1.
We use the remainder of this section to prove that a component C selects a long
connector path with constant probability. The theorem follows with the result
stated in Lemma 7.13: At least one of the connector paths selects the required class
with at least constant probability.

122

7.4 finding connector paths

7.4.1 Helper Graph Hi

Finding internally vertex-disjoint long connector paths is only relevant if a compo-
nent has less than k/2 internally vertex-disjoint short connector paths. We consider
this case here as short connector do not need to be found explicitly if sufficiently
many exist (Step B.2) is sufficient). Since each component has at least k internally
vertex disjoint connector paths, the component must have at least k/2 long connec-
tor paths in this case. We introduce a helper graph in this section, which is defined
such that a maximum matching in this graph corresponds to finding a maximum
number of internally vertex-disjoint long connector paths.

For each class i on an upper layer l we define the helper graph Hl
i as the union helper graph Hi

of the helper graphs Hl
i [C] constructed for each component C of class i on layer l.

Note that although the helper graphs are constructed for each layer, we omit the
layer l in the following as the helper graphs are used only in the layer in which
they are constructed. Thus, we always refer to the helper graph of the current level.

Let us now define the helper graph Hi[C] for class i and component C. For each
type-2 node v of layer l we add a node vC to Hi[C] iff the following three conditions
are met:

1) Ψ(v) 6∈ Ψ(C).
2) v has a neighbor in C.

3) v does not have a neighbor belonging to another component of class i.

For each node vC we added to Hi[C], we add for each type-1 neighbor w of v a
node wC to Hi[C], if w has a neighbor in another component C ′ of class i but no
neighbor in component C. Intuitively , this procedure ensures that we added the
potential long connector path of component C to Hi[C] using a type-2 node as the
node closer to C and a type-1 node as the node closer to the neighboring component
of the same class. An edge between vC and wC is added to Hi as there is an edge
between v and w in G. We illustrate the construction of the helper graph Hi in
Figure 7.3.

u v

x
y

w

C1 C3

C2

u v

x
y

G Hi Hi[C1]

u v

x
y

real node type-1 node type-2 node

Figure 7.3: A graph G with three components of a class i, along with the helper graph Hi
and Hi[C1] restricted to component C1. Note that w is not in the helper graph
as it is on a long connector path.

The connection between long connector paths of a component and edges in Hi

is shown in the following lemma.

123

improved distributed construction of fcds packings

Lemma 7.4. There is an edge (vC, wC) in Hi[C] iff there is a long connector path from C
to another component of class i through v and w on the current layer.

Proof. Let us first assume an edge (vC, wC) is added to Hi[C]. Then v has at least
one neighbor in C, which we denote by s. Also, v has a neighbor w (of type-1) which
does not have a neighbor in component C but has at least one in a component C ′ 6=
C of class i. Let us denote this neighbor by u. We claim that P = (s, v, w, u) is a
long connector path (cf. Section 7.2 for the definition), which holds as a) P has one
endpoint in C, the other in C ′ 6= C of class i, b) P has two internal vertices, c) P
cannot be shortened as v does not have a neighbor in a component C ′ 6= C of class i
and w does not have a neighbor in C, and d) v is of type-2 while w is of type-1.

Let us now assume we have a long connector path P = (s, v, w, u). Then it
holds that 1) w does not have a neighbor in C, 2) s is in C, and 3) w is not in C
and v is of type-2. Thus, vC is added to Hi[C]. Furthermore, w is of type-1 and
has a neighbor u that is in another component C ′ 6= C of class i but no neighbor
of component C, which implies that wC and the corresponding edge (vC, wC) are
added as well.

The matching algorithm is executed on Hi, which is the union of helper graphs
for each component, however, observe that we know for each edge in Hi from
which component it is induced.

Observation 7.5. Given an arbitrary layer l ≥ L, a class i, and the corresponding helper
graphHi. Then each edge in the helper graph can be attributed to exactly one component C.

We have shown that the construction ensures that there is a vertex disjoint long
connector path through v and w for component C iff there is an edge between vC

and wC in Hi[C]. Thus a matching induces long connector paths. We shall argue
in Section 7.4.3 that we can compute a matching of size Ω(k) in Hi for each com-
ponent of class i with Ω(k) long connector paths. However, let us first describe the
distributed algorithm to construct Hi

7.4.2 Distributed Construction of Hi

Due to Step B.1 of the algorithm, which is executed for each layer before construct-
ing the graph Hi, each type-2 node v knows the classes and components of its
neighbors. Thus v can decide whether a node vC should be added for neighbor-
ing components C. Note that due to Lemma A.5 (in Appendix A.4) a type-2 node
lies only on one long connector path for each class, however, up to t components
may have a long connector path through v, see Observation A.6 in Appendix A.4.
If v adds vC for a component C to Hi[C], it transmits this information along with
the class i and the ID of C (which is also used in Step B.1) to its type-1 neighbors.
These type-1 neighbors can now easily check whether they have a neighbor in C
and resign, or verify if at least one neighbor is in another component of class i due
to information obtained during Step B.1. If so, w adds wC and the edge between wC

and vC to Hi[C].

124

7.4 finding connector paths

Lemma 7.6. For each class i on layer l it requires O(∆) rounds to construct Hi.

Proof. First note that each real node v simulates exactly the two virtual copies of v
on layer l. Due to Conditions 2) and 3) in the definition of Hi, the type-2 copy of
a node participates in Hi only if its neighbors of class i belong to the same com-
ponent C. In this case, v sends the ID of C, which requires one message. After
receiving these messages, each type-1 node w transmits one message for each mes-
sage they received from a type-2 node. Note that as w has received at most one
message from each neighbor, w responds to at most ∆ messages. Hence, this results
in O(∆) messages.

The following observation follows from the fact that a type-2 node is only added
to Hi if all its neighbors of the class i are in one component, while one type-1 copy
is added for each message received by another type-2 node. It helps bounding the
runtime of our matching algorithm operating on Hi.

Observation 7.7. For each node v ∈ V, there is at most one type-2 copy in Hi, but up
to ∆ type-1 copies in Hi.

7.4.3 Matching Internal Vertices

Let us now consider how to distributively compute a matching of cardinality Ω(k)
in the helper graph Hi for each component. We shall use this in the next section to
prove that each component finds a long connector paths with constant probability
in each layer. We use a simple distributed maximal matching algorithm, which
is based on a parallel matching algorithm by Israeli and Itai [74]. The matching
algorithm is similar to that of Censor-Hillel et al. [21] , however, in our case each
node in the helper graph Hi is simulated by only one node and not by several
nodes that have to coordinate their actions through components. The algorithm
makes use of the special structure of Hi.

Lemma 7.8. The helper graph Hi is bipartite.

Proof. As described in the previous section, all nodes in the helper graph Hi are
either added by a type-1 or type-2 node of G. Hence, we may say that the nodes of
the helper graph also have these types, which induces a partitioning of the nodes
of Hi. For two nodes vC and wC to be connected in Hi, it must hold that v is
of type-2 and w of type-1 or vice versa. Thus, all edges in Hi connect nodes of
different types, which shows that the graph is bipartite.

Using this lemma the matching algorithm operates as follows. A node is active ex-
actly if none of the adjacent edges is matched, and an edge is active if both adjacent
nodes are active. In each step of the matching algorithm, we assign random num-
bers from a sufficiently large range to all active edges such that no two edges have
the same number w.h.p. Since Hi is bipartite, assigning the numbers is particularly
easy as each type-2 node can pick a number for each incident edge. Each active
type-2 node then selects the edge with the largest number and sends its choice to

125

improved distributed construction of fcds packings

its neighbors. In this step only the selected edges may be added to the matching.
At this point, there is at most one edge selected at each type-2 node. However, each
type-1 node may have received more than one proposal. To satisfy the matching
condition, each type-1 node that has received at least one proposal picks the pro-
posed edge with the largest number and adds it to the matching. The two adjacent
nodes and their incident edges become inactive. It can be shown that after O(log n)
steps all edges are deactivated with high probability and thus, a maximal matching
is achieved [74]. Let us now show that such a maximal matching is of cardinality
Ω(k) if the corresponding component has Ω(k) long connector paths.

Lemma 7.9. Given a component C of class i with Ω(k) long connector paths. A maximal
matching in Hi[C] is of cardinality at least Ω(k).

Proof. If follows from Lemma 7.1 and the one-to-one correspondence of the long
connector paths and the edges in Hi of Lemma 7.4 that there are Ω(k) independent
edges in Hi[C]. Thus, the maximum matching is of size at least Ω(k). As the
maximal matching is at least a 2-approximation to the maximum matching, it is
also of size Ω(k).

After showing that the matching is of sufficient size, we prove that this allows us
to identify the Ω(k) long connector paths for each component.

Lemma 7.10. Consider a component C of class i with Ω(k) long connector paths. Then a
maximal matching in Hi identifies Ω(k) long connector paths for C.

Proof. Let us consider a maximal matching in Hi, and component C as required.
According to Observation 7.5, we can consider the subgraph Hi[C] of Hi corre-
sponding to component C as disjoint from other parts of Hi. Thus, the matching is
maximal also inHi[C]. It holds by Lemma 7.9 that the size of the maximal matching
is Ω(k). It remains to show that two independent edges in Hi[C] correspond to two
internally vertex disjoint connector paths. Consider the edges (vC, wC) and (v′C, w′C)
and assume the corresponding long connector paths with internal vertices v, w
and v′, w′ are not internally vertex disjoint. Thus, either v = v′ or w = w′ which im-
plies either vC = v′C or wC = w′C. This contradicts the assumption as the edges are
not independent. As each matched edge is independent, the set of matched edges
in Hi[C] corresponds to a set of internally vertex-disjoint long connector paths of
cardinality Ω(k).

The correspondence between a maximal matching in Hi and long connector
paths in G is depicted in Figure 7.4. Let us now consider the number of time
slots required to compute the maximal matching. The matching algorithm is exe-
cuted once for every class i, and operates on the virtual graph Hi. The next lemma
proves that O(∆) rounds are sufficient for each step of the matching algorithm.

Lemma 7.11. In each step of the matching algorithm on Hi, we transmit over each real
edge at most twice in each direction. Thus O(∆) rounds are sufficient for each step.

126

7.4 finding connector paths

u v

x
y

w

C1 C3

C2

u v

x
y

GHiHi[C1]

u v

x
y

real node type-1 node type-2 node

Figure 7.4: A maximal matching in the helper graph Hi is marked by bold lines. The
corresponding long connector paths are marked in G. Several long connector
paths may use the same nodes, however, each path is at most used twice (once
from each direction).

Proof. Let v be an arbitrary real node, and note that there may be up to ∆ copies
of v as type-1 node in Hi, but only one copy of v as type-2 node in Hi according
to Observation 7.7. Consider any real edge from v to an arbitrary neighbor w.
We may assume that there is at least one copy of the edge (v, w) in the helper
graph Hi, as otherwise this edge is not used for the matching algorithm at all.
Since the type-2 copy of v sends only one message over one of its incident edges,
it uses the edge (v, w) at most once. After the type-1 copies of v have received the
messages from the type-2 nodes, they respond to one of them. Hence, each type-1
copy sends at most one message. It remains to show that no two type-1 copies use
the same real edge. Assume that there were two type-1 copies of v that transmit
over the real edge (v, w). This would imply that both type-1 copies have received
a message from the type-2 copy of w over the real edge (w, v). However, we have
shown above that each real edge is used at most once by the type-2 nodes, which
contradicts our assumption. Thus, in one step each real edge transmits at most
one message from a type-1 and one from a type-2 copy of v. Combined with the
analogous considerations for w this results in two messages per edge per direction.
As we operate in the CONGEST model, this results in O(∆) rounds per step.

It follows from [74] that O(log n) rounds are sufficient to compute a maximal
matching with high probability.

Corollary 7.12. Our distributed randomized matching algorithm computes a maximal
matching in Hi in O(∆ log n) time.

This implies that we can find Ω(k) long connector paths for all components of
one class that have less than k/2 short connector paths in time O(∆ log n). As we
have t = Θ(k) classes, this results in O(k∆ log n) rounds for Step B.3 on each layer.
Let us now prove that the long connector paths can indeed be used to connect the
components with at least constant probability on each layer.

127

improved distributed construction of fcds packings

7.4.4 From Long Connector Paths to Connected Components

As components with at least k/2 short connector paths are connected using those
connector paths, we keep focusing on components with at least k/2 long connector
paths. In the previous section we showed how to find Ω(k) vertex-disjoint long con-
nector paths for each such component. As type-1 nodes already selected a random
class to connect those components that have a sufficient number of short connector
paths, the class of the type-2 nodes on the current layer remains to be selected.
Since each type-2 node lies on at most one long connector path per class, there
are at most t long connector paths per type-2 node. On these paths, however, the
internal type-1 nodes may have chosen classes that differ from the class of the path.
Intuitively, this means that the path cannot be used to connect two components of
the same class since one of the internal nodes has already picked the wrong class.
Therefore, as described in Step B.4, the type-2 nodes discard these long connector
paths and select the class of one of the remaining paths at random. If no long
connector paths remains, the node selects a random class.

We show in this section that this is sufficient to guarantee that a constant fraction
of the components are connected with constant probability. Let us consider an
arbitrary component C of class i. There are two challenges. The first is to show
that each connector path connects to another component of the same class with
probability in the order of 1/k. This is non-trivial, as the type-1 node on each
long connector path already selected a random class, which upper bounds the
probability by 1/t. The second challenge is, that the events that two type-2 nodes
on different connector paths of C select class i are not necessarily independent. This
can be circumvented by using a tail bound once the probability for each event is
upper and lower bounded independently of the outcome of other events. Let us
now state the result.

Lemma 7.13. Given a component C of class i on an upper layer l with Ω(k) long connector
paths. The probability that one of the long connector paths can connect the component with
another component of the same class is at least δ.

As the proof is similar to the original one, we shall only sketch the main ideas
here. For more technical details we refer to [21] and [130].

The analysis is structured in three parts. The first part considers how likely it is
that a type-2 node v selects another class, given that the corresponding type-1 node
is of the correct class. In order to bound this probability, a random discard step for
long connector paths is introduced. This allows to show that all other possible long
connector paths through v are discarded with constant probability. This results in
a probability in the interval [1/4t, 1/t] for the event that both internal vertices of a
long connector path of C select class i—independent of the class selected by nodes
on other long connector paths of C. In the second part it is shown that the proven
bound holds even if the random discard step is not used (this is required, as it is
not used in the algorithms). The third and final step uses the independent bounds
on the probability of a long connector path to select class i with a tail bound to

128

7.5 conclusion

show that for at least one of the Ω(k) long connector paths both internal vertices
selected the same class i.

7.5 conclusion

The algorithm presented in this chapter computes a fractional connected domi-
nating set packing in the CONGEST model of distributed computation. It is
based on an algorithm by Censor-Hillel, Ghaffari and Kuhn [20, 21], however,
our distributed implementation computes the long connector paths explicitly, in-
stead of matching components under the assumption that sufficiently many long
connector paths exist. The runtime of our algorithm is O(log2 n(min{ n log n

k , D +√
n log n log∗ n}+ k∆)) , which is beneficial for large networks with moderate den-

sity, i.e. if k∆ ∈ o(min{ n log n
k , D,

√
n log n log∗ n} log n). We expect future large-

scale wireless ad hoc and sensor networks to satisfy such conditions. Open prob-
lems in this setting are: Can the dependence on k or ∆ be reduced without com-
municating through the components to compute the connector paths? And is it
possible to reduce the complexity of the protocol to simplify implementation on
small sensor nodes?

129

Part III

C O N C L U S I O N

8
C O N C L U S I O N

In this thesis we studied several problems related to establishing initial and efficient
communication in wireless ad hoc or sensor networks and proposed distributed
algorithms to solve these problems.

In the first part we focussed on algorithms in the realistic SINR model of interfer-
ence and studied two important and basic problems: In Chapter 3 we considered
the local broadcast problem, which is the problem of allowing each node to success-
fully transmit one message to its neighbors. Solving this problem enables nodes
in a network to establish initial communication without precomputing a commu-
nication structure or a backbone. Thus, the method can be used in wireless sensor
networks just after their deployment. We studied the problem for heterogenous
transmission powers and established a general bound on the probabilistic interfer-
ence. This bound allowed us to generalize known local broadcasting algorithms
from the case of uniform transmission power to this more general setting. The
second problem we considered is distributed node coloring, which is the problem
of assigning a color to each node such that no two neighbors have the same color.
Such a coloring can be used to establish more efficient communication. We con-
clude Chapter 3 by generalizing a coloring algorithm to the case of heterogenous
transmission powers using the results already obtained in the chapter. In Chap-
ter 4 we proposed two algorithms that solve the problem in the classical setting of
uniform transmission powers. The first algorithm, Rand4DColoring, is extremely
simple and achieves a (4∆)-coloring, while the second algorithm, ColorReduc-
tion, is more involved and computes a (∆ + 1)-coloring. Our algorithms improve
the state-of-the-art either by reducing the number of required colors or the runtime.
We evaluated our algorithms experimentally and compared them to the existing
distributed node coloring algorithms for the SINR model using a network simula-
tor in Chapter 5. We found that both algorithms are faster than their competitors
in all considered settings. In particular Rand4DColoring distributively computed
a valid coloring very fast, even faster than one round of local broadcasting.

In the second part of this thesis we put our focus on higher-level algorithms
such as those designed for the CONGEST model. In Chapter 6 we aimed at estab-
lishing communication schemes that enabled the efficient execution of algorithms
designed for higher-level models in the SINR model. As the CONGEST model
is round-based and does not consider interference, each round can be emulated
by one execution of local broadcasting, however, this is not yet efficient. Thus, we

133

conclusion

proposed a method to compute a local broadcasting schedule of asymptotically
optimal length using a node coloring combined with position information. This
allows to execute CONGEST algorithms in time asymptotically optimal. In Chap-
ter 7 we improved an existing algorithm that increases the broadcast throughput
in networks of high connectivity and operates in the CONGEST model. The al-
gorithm uses multiple fractional connected dominating sets, each of which can be
seen as a separate backbone structure. We proposed a new method to explicitly
compute connector paths, which is used in the construction of the backbones and
improves the runtime of the algorithm for large or moderately dense networks.

Outlook

There are several lines of research and interesting theoretical and practical open
problems that we mentioned at the end of each chapter. Thus, we take a broader
look on the algorithmic research for wireless sensor networks here.

Although the gap between theory and practice is considerable in many fields,
this is particularly true for research on distributed algorithms for wireless ad hoc
and sensor networks. Thus, although we design our algorithm for worst case mod-
els, it is important to bear more practical settings in mind. This includes testing the
algorithms using simulation tools, as e.g. done in Chapter 5, however, it is by far
not limited to that. Implementing algorithms on real hardware and testing them
in real-world environments is not yet popular enough, although several testbeds
for wireless sensor networks are available to researchers or even the general pub-
lic [36].

Another interesting direction is to incorporate dynamics, such as mobility and
node failures. So far, this is often considered only for graph-based models, however,
the problem is also relevant in the SINR model. We observed in the experiments
of our distributed node coloring algorithms that the simple Rand4DColoring al-
gorithm, which did not build or maintain any structure, performed best in the
mobile setting. One immediate question is: Can we construct theoretically sound
algorithms that can cope with network dynamics without building and maintain-
ing complex structures?

Another research direction that potentially has both theoretical and practical im-
plications is to further explore the possibilities of the SINR model. Recall that a bet-
ter throughput performance can be achieved (in practice!) under the SINR model
than theoretically possible in less realistic models as the protocol model [105]. How-
ever, currently most distributed algorithm are not yet able to transfer this positive
result and achieve a better performance in the SINR model than in the protocol
model. An important research direction is to study how the specifics of the SINR
model can be exploited to obtain faster algorithms. One approach that could lead
into this direction is to differentiate successful message reception by more than the
broadcasting range, as for example done in [79].

134

A
A P P E N D I X

In this appendix we provide additional material deferred from the main part of this
thesis. In the first section we describe the modifications to Sinalgo to correct a flaw
in the simulators SINR model implementation, which is deferred from Section 2.3.
In Appendix A.2 we provide a proof related to an extended local broadcasting
strategy used in Chapter 4. In Appendix A.3 we report results of experiments
for the deployment strategies not presented in the main part of Chapter 5, and in
Appendix A.4 we provide additional material for Chapter 7.

a.1 sinalgo - patch for sinr model

In this section we report on a modification of the SINR interference model that
is delivered with Sinalgo version 0.75.3 [33]. The modifications are required to
ensure that the SINR interference constraints are correctly evaluated. Without
modification, the simulation framework considers for a transmitted packet p the
signal emitted during the transmission of the same packet p both as desired sig-
nal and interference. To correct this issue we equip each packet with a broadcast
ID (or transmission ID), and ensure that we do only consider the interference of
other packets (i.e., other transmissions). We state the modification in detail in Al-
gorithms A.1 to A.3. The name of the algorithms gives the path to the respective
file relative to the src folder of Sinalgo. The line number before and after the code
marks the lines between which the code should be added (all line numbers are
relative to the unchanged file).

135

appendix

Algorithm A.1: projects/defaultProject/models/interferenceModels/SINR.java

116

/* detect if a packet is from the same broadcast as this packet.

* If so, ignore the active packet.

* If the broadcast id is -1, the packet is not from a broadcast,

* and duplicate packets are found via pack == p

*/

if (p.broadcastId != -1 && (pack.origin.ID == p.origin.ID &&

&& pack.broadcastId == p.broadcastId))

continue;

}

117

Algorithm A.2: sinalgo/nodes/messages/Packet.java

104

/** broadcast id, allows to determine whether

* 2 packets origined from the same broadcast

*/

public int broadcastId;

105

194

pack.broadcastId = -1;

195

259

broadcastId = -1;

260

Algorithm A.3: sinalgo/nodes/Node.java

77

import sinalgo.tools.Tools;

78

1487

int broadcastId = Tools.getRandomNumberGenerator().nextInt(100000);

1488

1495

sentP.broadcastId = broadcastId;

1496

136

A.2 distributed node coloring : extending local broadcasting

a.2 distributed node coloring : extending local broadcasting

We show in this section that local broadcasting with constant success probability in
time inversely proportional to the transmission probability can be achieved. This
extends known results regarding local broadcasting, which guarantee local broad-
casting with high probability for a fixed number of time slots. As in these results,
we require the nodes transmission probability to conform with the requirement that
the sum of transmission probabilities from each broadcasting region is at most 1,
which is stated in Lemma A.1. This local property is used in the following theo-
rem to ensure that both the interference by few local transmissions as well as the
summed interference by all globally simultaneous transmissions can be handled.

Lemma A.1. Let all nodes in the network execute Algorithm 4.1, Algorithm 4.2, or Algo-
rithm 4.3, and let v be an arbitrary node. Then the sum of transmission probabilities from
within v’s broadcasting range is at most 1.

Proof. Depending on the algorithm, nodes in v’s broadcasting range are either
transmitting with probability p1 or p2. It holds that most nodes transmit with
probability p1 for all algorithms. For the use of probability p2 in Algorithm 4.2 it
holds that at most a 5 nodes from within each broadcasting range transmit with
probability p1, since in a broadcasting range in which more than 5 nodes have the
same color, two of them must be neighbors. This would violate the validity of
the given coloring. For Algorithm 4.3 it holds that at most 90 nodes within v’s
broadcasting range use p1 according to Lemma 4.9.

Let us now consider both cases jointly, and let pw be the current transmission
probability of w, which is either p1, p2 or 0 if w is currently not trying to transmit
(e.g. if ct

v 6= i in Algorithm 4.2). Let us now bound the sum of transmission
probabilities from within Bv.

∑
w∈Bv ,

w transmits

pw ≤ ∑
w∈Bv

p1 + ∑
w∈Bv ,

w transmits with p2

p2

≤ ∆ · 1
2∆A + 90 · 1

180
≤ 1,

where the last inequality holds since rA > 2rB which implies ∆ ≤ ∆A.

For the remaining proof we require some additional definitions. For an arbitrary

node v the proximity range around v is defined as rA = rB (332αβ ·
(

α−1
α−2

)) 1
α−2 , and

denote set of nodes within the transmission range of v by Av. Let χ := 2π
3
√

3
(rA+2rB)2

(rB)2 ,
which is, intuitively speaking, a bound on the number of independent broadcasting
regions that can be fit in a disk of radius rA. Note that these definitions differ from
those in Section 3.2, however, this is only a technicality that could be circumvented
by modifying the transmission probability. Let us now state the lemma, which is
first stated in Section 4.2.1. We shall prove it in the following.

Lemma 4.1. Let v be a node transmitting with probability p1. Then v successfully trans-
mits to its neighbors with probability ≥ 11/12 within κ0 time slots. Transmissions with
probability p` for κ` time slots are successful w.h.p. for ` ∈ {1, 2}.

137

appendix

The lemma implies that in each phase of Algorithm 4.1, the currently selected
color is transmitted to all neighbors with constant probability. This is a funda-
mental part enabling us to analyze Algorithm 4.1 and correctly account for the
uncertainty in the message transmission in this algorithm in Section 4.3.1. The
lemma includes the standard local broadcasting bounds known from [55], but also
enables the algorithms to use a more coordinated (and faster) medium access based
on the coloring. Local broadcasting achieves successful message transmission from
each node in the network in O(∆ log n) time slots, while the more coordinated
approach used in the color reduction scheme achieves successful message trans-
mission from a constant number of nodes in each broadcasting region to their
neighbors in O(log n) time slots.

The proof of the lemma is along the lines of the proof that local broadcasting can
be achieved in O(∆ log n) time slots [55] and similar to bounding the interference
in Section 3.3.

Proof of Lemma 4.1. Let us first consider the first part, which enables local broad-
casting with constant success probability. Let us therefore prove two claims.

Claim A.2. The probability PAv
none that v is the only node in the proximity region that

transmits a signal in the current time slot is at least (1/4)χ, and thus constant.

Proof of the claim. Let us consider the probability that any other node in v’s proxim-
ity region attempts to transmit. Let pw be the current transmission probability of
w. The probability that v is the only node in the proximity region that transmits a
signal in the current time slot is at least

PAv
none ≥ ∏

w∈Av\{v}
(1− pw) ≥

(
1
4

)∑w∈Av\{v} pw

≥
(

1
4

)∑ u∈Av\{v},
u independent

∑w∈Bu pw

≥
(

1
4

)∑ u∈Av\{v},
u independent

1

≥
(

1
4

)χ

,

where the second inequality holds due to Fact 3.1 in [55], the third inequality fol-
lows by covering the nodes in Av by broadcasting ranges of independent nodes in
Av. The next inequality is implied by Lemma A.1, while the last inequality holds
as χ is (roughly speaking) an upper bound on the number of independent nodes
in Av. The claim follows from observing that χ is indeed constant as the number
of disks required to cover a (by a constant) larger disk is constant.

As the proof of the following claim is in parts as in [55], we omit the bound on
the interference received from nodes outside of the proximity area of v on nodes in
the broadcasting range of v.

Claim A.3. The probability Pv
SINR that the SINR constraint holds for a given transmission

is at least 1/2.

Proof of the claim. The proof is based on the concept of rings around the transmit-
ting node v. With increasing distance the number of nodes in a ring increases,
however, also the effects on nodes in the broadcasting range of v decreases. Based

138

A.3 experiments : other distributions

on Lemma A.1, the bound on the interference received at an arbitrary node w in v’s
broadcasting range can be bound by P

4β(rB)α . Now, applying the Markov inequal-
ity it holds that the probability that the interference is more than twice this level
(and thus the SINR constraint is violated) is at most 1/2. It follows that the SINR
constraint holds with probability at least 1/2.

By combining these probabilities with the transmission probability it follows that
the probability that v successfully transmits a message to all neighbors in a given

time slot is at least p · PAv
none · Pv

SINR. As we set λ :=
(

PAv
none · Pv

SINR

)−1
, the probability

for a successful transmission to all neighbors after κ0 = λ ln 12
p time slots is at least

1−
(

1− p
λ

) λ ln 12
p ≥ 1− e− ln 12 ≥ 1− 1

12
≥ 11

12
,

which implies the first part of Lemma 4.1.
Let us now consider the second part. Note that in both algorithms most nodes

transmit with probability p1 and only few, i.e., a constant number of nodes in each
broadcasting range, are allowed to transmit with probability p2 simultaneously.
Having all nodes transmitting with p1 for κ1 ∈ O(∆ log n) time slots is essen-
tially the well-known result on local broadcasting by Goussevskaia et al. [55]. The
transmission probability p2 is constant and selected such that the constant num-
ber of nodes required by the respective algorithms may use p2 without violating
Lemma A.1.

Similar to the argumentation before both claims hold and transmitting with prob-
ability p` for κ` time slots (` = 1, 2) yields a failure probability of at most

1−
(

1− p`
λ

)κ` ≥ 1− ec ln n ≥ 1− 1
nc ,

which completes the proof.

a.3 experiments : other distributions

In Chapter 5 we showed detailed data only for the random deployment strategy,
for other deployments we restricted ourselves to show only the overall best results.
In this section we present additional data obtained from the experiments described
in the referenced chapter. This data justifies our selection of the parameters as used
to obtain the overall best results.

Let us briefly describe the contents of each table. The overall setting is described
in Section 5.3. In each table we report the average number of conflicts and the aver-
age runtime and mark the best or the selected combination as bold. In Table A.1 we
consider variants of our phase-based (4∆)-coloring algorithm Rand4DColoring,
in which nodes simply select a new random color at the end of a phase if a conflict
was detected during the phase. For ColorReduction we need to determine the
parameter factor, the results for different values are given in Table A.2. For all
deployment strategies we selected the same factor of 0.6 to be an optimal balance

139

appendix

between number of conflicts and runtime. In Table A.3 we consider ColorReduc-
tion and its variant CRRandColor, which replaces the valid color of each node
with a random color. We observe that, despite differences in the average runtime
and the number of conflicts, the results are similar and as for 2∆ available colors
good results are achieved for all deployments. For the algorithms MWColoring

and YuColoring we show the results for various values of the parameter factor

in Tables A.4 and A.5, respectively. We select factor = 0.2 as optimal value for
both algorithms and all deployment strategies.

The results of our heuristic improvements of CRRandColor, MWColoring,
and YuColoring for different values of duration’ are given in Tables A.6 and A.7.
In these heuristics we reduce the number of conflicts by allowing nodes to reset
to certain points in the algorithms once a conflict is detected. This increases the
runtime for the standard duration, however, using a decreased duration’ we can
decrease both the average runtime and the average number of conflicts. The values
selected as optimal are marked bold and use a 1/16 or 1/8 fraction of duration

as duration’.

140

A.3 experiments : other distributions

Table A.1: Runtime and number of conflicts for Rand4DColoring and its variants.

Deployment Algorithm Runtime Conflicts

Cluster

Rand4DColoring 3321 0.00

Rand4DRespectColoring 15 639 0.00

Rand4DFinalColoring 16 110 0.00

Rand1DColoring 11 822 0.00

Cluster&Grid

Rand4DColoring 2186 0.00

Rand4DRespectColoring 10 172 0.00

Rand4DFinalColoring 10 456 0.00

Rand1DColoring 8211 0.00

Cluster&PGrid

Rand4DColoring 2016 0.00

Rand4DRespectColoring 9847 0.00

Rand4DFinalColoring 10 199 0.00

Rand1DColoring 6627 0.00

Cluster&Random

Rand4DColoring 2316 0.00

Rand4DRespectColoring 10 175 0.00

Rand4DFinalColoring 10 349 0.00

Rand1DColoring 8153 0.00

Grid

Rand4DColoring 974 0.00

Rand4DRespectColoring 4244 0.00

Rand4DFinalColoring 4354 0.00

Rand1DColoring 3358 0.00

PGrid

Rand4DColoring 1372 0.00

Rand4DRespectColoring 6114 0.00

Rand4DFinalColoring 6283 0.00

Rand1DColoring 4548 0.00

Random

Rand4DColoring 1256 0.00

Rand4DRespectColoring 5668 0.00

Rand4DFinalColoring 5865 0.00

Rand1DColoring 4174 0.00

141

appendix

Table A.2: Average number of conflicts and average runtime for ColorReduction using
different parameters factor. We report the values for each deployment strategy.

factor 0.05 0.1 0.2 0.3 0.4 0.6 0.8

Cluster

conflicts 0.00 0.04 0.02 0.17 0.18 1.04 2.74

runtime 902 421 468 046 240 713 163 781 126 039 88094 69 837

Cluster&Grid

conflicts 0.00 0.00 0.06 0.17 0.20 1.05 3.15

runtime 590 431 297 464 151 579 103 595 80 001 55760 44 176

Cluster&PGrid

conflicts 0.00 0.04 0.02 0.18 0.63 3.32 9.55

runtime 583 200 294 533 150 570 103 126 78 824 55157 43 619

Cluster&Random

conflicts 0.00 0.04 0.04 0.04 0.30 1.31 4.31

runtime 578 623 292 450 150 245 102 685 78 946 55005 43 716

Grid

conflicts 0.00 0.08 0.12 0.11 0.08 0.30 1.17

runtime 272 122 137 497 70 855 48 354 37 137 25770 20 258

PGrid

conflicts 0.02 0.02 0.00 0.04 0.06 0.14 0.52

runtime 375 157 190 144 97 660 66 541 51 139 35624 27 964

Random

conflicts 0.00 0.04 0.10 0.00 0.12 0.51 2.47

runtime 339 013 171 099 87 924 59 995 46 266 32224 25 384

142

A.3 experiments : other distributions

Table A.3: Average runtime for ColorReduction and CRRandColor for colorings of dif-
ferent sizes. The runtimes are almost identical although CRRandColor uses
only a random color to replace the valid coloring used in ColorReduction.

Number of colors ∆ + 1 2∆ 3∆ 4∆

Cluster

ColorReduction
conflicts 4.99 0.88 0.88 0.64
runtime 51 476 67 624 88 101 108 721

CRRandColor
conflicts 13.19 1.05 0.76 0.67
runtime 53 566 67881 88 529 109 178

Cluster&Grid

ColorReduction
conflicts 2.56 1.08 0.98 1.31
runtime 30 861 42 682 55 536 69 465

CRRandColor
conflicts 5.67 1.03 0.63 0.95
runtime 31 713 42692 55 599 68 964

Cluster&PGrid

ColorReduction
conflicts 6.00 3.45 3.32 3.49
runtime 32 024 42 094 55 148 68 682

CRRandColor
conflicts 10.62 3.23 3.77 3.67
runtime 32 913 42385 55 091 68 015

Cluster&Random

ColorReduction
conflicts 2.63 1.53 1.34 1.17
runtime 30 337 42 466 54 884 68 399

CRRandColor
conflicts 5.94 1.83 1.12 1.24
runtime 30 939 42034 55 113 68 619

Grid

ColorReduction
conflicts 9.22 0.42 0.42 0.20
runtime 16 128 20 310 25 929 31 297

CRRandColor
conflicts 31.01 0.82 0.42 0.32
runtime 17 555 20367 25 798 31 257

PGrid

ColorReduction
conflicts 1.54 0.18 0.10 0.04
runtime 20 367 27 669 35 683 43 631

CRRandColor
conflicts 5.31 0.10 0.10 0.15
runtime 20 996 27817 35 682 43 633

Random

ColorReduction
conflicts 3.29 0.86 0.55 0.61
runtime 18 638 24 824 32 197 39 737

CRRandColor
conflicts 6.52 0.93 0.65 0.63
runtime 19 766 24758 32 287 39 696

143

appendix

Table A.4: Average number of conflicts and average runtime for MWColoring using dif-
ferent parameters factor. We report the values for each deployment strategy.

factor 0.05 0.1 0.2 0.3 0.4 0.6

Cluster
conflicts 0.14 0.24 0.56 1.22 2.03 3.66

runtime 197 790 111 416 73670 67 658 65 895 64 854

Cluster&Grid
conflicts 0.02 0.20 0.34 0.66 1.66 3.19

runtime 130 064 73 089 47041 42 956 41 848 40 854

Cluster&PGrid
conflicts 0.16 0.28 1.06 1.47 2.9 7.89

runtime 129 632 70 384 46142 41 730 40 823 38 883

Cluster&Random
conflicts 0.18 0.16 0.44 0.84 1.33 3.78

runtime 129 266 74 177 46363 41 599 39 944 39 601

Grid
conflicts 0.02 0.06 0.26 1.16 2.04 4.1

runtime 76 474 41 798 25456 20 680 18 918 17 221

PGrid
conflicts 0.04 0.06 0.28 0.48 0.84 1.14

runtime 95 826 53 807 32812 27 421 25 652 23 765

Random
conflicts 0.10 0.12 0.42 1.02 1.48 2.71

runtime 81 195 44 700 27982 23 995 22 807 21 870

Table A.5: Average number of conflicts and average runtime for YuColoring using dif-
ferent parameters factor. We report the values for each deployment strategy.
C=Cluster, G=Grid, PG=PGrid, R=Random

factor 0.05 0.1 0.2 0.3 0.4 0.6

C
conflicts 0.42 0.57 0.9 1.55 3.84 13.61

runtime 382 860 233 591 164839 145 760 135 567 137 233

C&G
conflicts 0.5 0.52 0.94 2.19 4.2 15.68

runtime 298 736 189 883 141003 127 842 127 151 120 294

C&PG
conflicts 0.56 1.20 1.30 3.56 9.03 36.42

runtime 286 326 175 088 126488 112 753 107 833 109 203

C&R
conflicts 0.48 0.58 0.88 2.52 6.05 23.38

runtime 277 447 172 869 122267 110 815 104 874 106 367

Grid
conflicts 1.04 1.06 2.01 3.7 6.16 20.48

runtime 379 283 195 925 113105 86 592 73 141 60 833

PGrid
conflicts 1.00 0.96 1.12 1.83 3.04 10.35

runtime 402 421 214 349 129054 100 451 88 521 76 147

Random
conflicts 0.62 0.71 1.39 2.90 6.41 22.43

runtime 286 167 160 088 99946 82 707 72 660 67 131

144

A.3 experiments : other distributions

Table A.6: Average number of conflicts and average runtime for the correcting variants
CRRCorrecting, MWCorrecting, and YuCorrecting for different values of
duration’. In this table: Deployments involving the cluster deployment

Fraction of duration 1/32 1/16 1/8 1/4 1/2 1

Resulting duration’ 143 287 575 1150 2300 4600

Cluster

CRRCorrecting

conflicts 0.00 0.00 0.00 0.00 0.00 0.00

runtime 24 425 17 860 17802 25 023 40 185 68 493

MWCorrecting

conflicts 0.63 0.94 0.45 0.10 0.00 0.00

runtime 30 931 21 637 23531 33 245 50 780 105 200

YuCorrecting

conflicts 3.13 0.74 0.14 0.02 0.00 0.00

runtime 12 843 20849 31 481 49 630 92 327 176 551

Cluster&Grid

CRRCorrecting

conflicts 0.00 0.00 0.00 0.00 0.02 0.00

runtime 17 008 12 473 11333 15 642 24 069 43 139

MWCorrecting

conflicts 0.32 0.59 0.36 0.04 0.00 0.00

runtime 20 963 14 189 13535 18 601 30 008 54 896

YuCorrecting

conflicts 3.13 1.23 0.22 0.02 0.02 0.00

runtime 7615 15835 25 747 42 543 78 202 154 572

Cluster&PGrid

CRRCorrecting

conflicts 0.00 0.02 0.02 0.00 0.00 0.00

runtime 13 609 10896 11 133 15 440 23 863 42 658

MWCorrecting

conflicts 0.38 0.42 0.41 0.02 0.02 0.00

runtime 19 031 13353 13 402 17 490 30 973 55 544

YuCorrecting

conflicts 3.11 0.64 0.17 0.02 0.00 0.00

runtime 7681 14620 22 982 38 887 71 253 139 299

Cluster&Random

CRRCorrecting

conflicts 0.00 0.00 0.00 0.00 0.00 0.00

runtime 16 903 12 789 11884 16 009 24 272 42 773

MWCorrecting

conflicts 0.23 0.33 0.44 0.04 0.00 0.00

runtime 22 256 14 631 12780 17 341 28 919 53 017

YuCorrecting

conflicts 3.74 0.81 0.20 0.08 0.00 0.00

runtime 7391 15060 24 173 38 689 69 636 135 511

145

appendix

Table A.7: Average number of conflicts and average runtime for the correcting variants
CRRCorrecting, MWCorrecting, and YuCorrecting for different values of
duration’. In this table: Grid, PGrid and Random deployment

Fraction of duration 1/32 1/16 1/8 1/4 1/2 1

Resulting duration’ 143 287 575 1150 2300 4600

Grid

CRRCorrecting

conflicts 0.00 0.00 0.00 0.00 0.00 0.00

runtime 7538 5343 5113 7013 11 839 20 756

MWCorrecting

conflicts 0.04 0.12 0.21 0.02 0.02 0.00

runtime 8300 5740 5741 8287 15 636 27 958

YuColoring

conflicts 5.86 1.77 0.26 0.09 0.02 0.04

runtime 3625 8654 16 819 33 089 68 253 135 904

PGrid

CRRCorrecting

conflicts 0.00 0.00 0.00 0.00 0.00 0.00

runtime 10 804 7904 7017 9638 15 267 27 889

MWCorrecting

conflicts 0.08 0.12 0.12 0.06 0.00 0.00

runtime 11 831 7925 7567 10 558 18 263 35 860

YuCorrecting

conflicts 7.09 2.15 0.63 0.14 0.07 0.02

runtime 4770 11479 20 947 38 641 77 174 155 428

Random

CRRCorrecting

conflicts 0.00 0.00 0.00 0.00 0.00 0.00

runtime 8965 6984 6489 8883 14 348 25 218

MWCorrecting

conflicts 0.13 0.23 0.10 0.02 0.02 0.00

runtime 11 065 7688 6834 9105 15 762 31 027

YuCorrecting

conflicts 4.62 1.23 0.28 0.09 0.00 0.00

runtime 4370 9807 16 652 29 635 58 189 116 646

146

A.4 fcds-algorithm : network and components

a.4 fcds-algorithm : network and components

In this section we present additional material deferred from Chapter 7. We refer-
ence two results required for our analysis, before we briefly describe the protocol
we use to identify connected components.

Enough short connector paths are sufficient

We state the lemma without a formal proof, which is given as part of the proof of
Lemma 4.4 in [21].

Lemma A.4 (part of Lemma 4.4 in [21]). Given a class i and a component C of layer l >
L log n with at least k/2 short connector paths, C has at least one short connector path of
class I with probability at least δ.

Number of connector paths for type-2 node

Lemma A.5 (Proposition 4.2 in [20]). For an arbitrary class i and a type-2 node v, v lies
on at most one long connector path of one component of C.

Which implies the following Observation.

Observation A.6. Each type-2 node lies on at most t ∈ Θ(k) long connector paths.

Identifying Connected Components

To identifying and communicate through connected component, we use the pro-
tocol described in [21, Theorem B.2]. There are two protocols that can be used,
depending on the maximum diameter D′ of the components in the virtual graph
maximum diameter D′ of the components, which is in O(n log n

k) whp. If it is rel-
atively small, i.e. n log n

k = o(D +
√

n log n log∗ n), a simple protocol can be used,
while a variation of a protocol to identify connector components by Thurimella
[124] is used otherwise.

Let us now consider the simpler variant. Each node transmits its class, and the
smallest node ID it received so far (including its own). Nodes discard received
IDs if they are transmitted by nodes with different classes. After D′ = O(n log n

k)

rounds, each node in each component received the smallest ID of the component,
which is selected as the component ID and the components root node. The union
of paths from the root to nodes of the components can be used as communication
tree in the component.

The more complex protocol, which is a variation of the algorithm to identify
connected components by Thurimella [124] is originally based on an minimum
spanning tree (MST) algorithm by Garay, Kutten and Peleg [51], which was im-
proved to the current runtime bound by a new MST algorithm in [93]. The pro-
tocol allows each node in a network to learn the smallest ID in its component
in O(D +

√
n log∗ n) rounds. The ID of each virtual node vl (of layer l) is set

to (IDv, l, type), where IDv is the ID of the corresponding real node, l the vir-
tual nodes layer, and type its type (either 1 or 2). The algorithm by Thurimella

147

appendix

is executed on G, which has a diameter in O(D), and O(n log n) nodes, resulting
in O(D +

√
n log n log∗ n) rounds for identifying the connected components.

148

B I B L I O G R A P H Y

[1] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. “Wireless sen-
sor networks: a survey.” In: Computer Networks 38.4 (2002), pp. 393–422. doi:
10.1016/S1389-1286(01)00302-4 (cit. on pp. 1, 2).

[2] Cristina Alcaraz, Pablo Najera, Javier Lopez, and Rodrigo Roman. “Wireless
sensor networks and the internet of things: Do we need a complete integra-
tion?” In: Proc. 1st Internat. Workshop on the Security of the Internet of Things
(SecIoT’10). 2010 (cit. on p. 2).

[3] Joan M. Aldous and Robin J. Wilson. Graphs and applications: an introductory
approach. Vol. 1. Springer Science & Business Media, 2000 (cit. on p. 120).

[4] Noga Alon, Amotz Bar-Noy, Nathan Linial, and David Peleg. “On the Com-
plexity of Radio Communication.” In: Proc. 21th Ann. ACM Symp. Theory
Comput. (STOC’89). ACM Press, 1989, pp. 274–285. doi: 10.1145/73007.
73033 (cit. on pp. 102, 110, 111).

[5] Robert B. Ash. Basic probability theory. Dover Publications, 2008 (cit. on p. 7).

[6] Chen Avin, Asaf Cohen, Yoram Haddad, Erez Kantor, Zvi Lotker, Merav
Parter, and David Peleg. “SINR diagram with interference cancellation.”
In: Proc. 23th Ann. ACM-SIAM Symp. Discrete Algorithms (SODA’12). SIAM.
2012, pp. 502–515 (cit. on p. 11).

[7] Chen Avin, Yuval Emek, Erez Kantor, Zvi Lotker, David Peleg, and Liam
Roditty. “SINR diagrams: Convexity and its applications in wireless net-
works.” In: Journal of the ACM 59.4 (2012), 18:1–18:34. doi: 10.1145/2339123.
2339125 (cit. on p. 11).

[8] Chen Avin, Zvi Lotker, Francesco Pasquale, and Yvonne Anne Pignolet. “A
note on uniform power connectivity in the physical signal to interference
plus noise (SINR) model.” In: Theor. Comput. Sci. 453 (2012), pp. 2–13. doi:
10.1016/j.tcs.2011.12.066 (cit. on p. 11).

[9] Baruch Awerbuch, Michael Luby, Andrew V. Goldberg, and Serge A. Plotkin.
“Network decomposition and locality in distributed computation.” In: Proc.
30th Ann. IEEE Symp. Foundations Comput. Sci. (FOCS’89). IEEE. 1989, pp. 364–
369. doi: 10.1109/SFCS.1989.63504 (cit. on p. 51).

[10] F. Bai and A. Helmy. “A Survey of Mobility Modeling and Analysis in Wire-
less Adhoc Networks.” In: Wireless Ad Hoc and Sensor Networks. Springer,
2006 (cit. on p. 15).

[11] Joe Bardwell. “Converting signal strength percentage to dBm values.” In:
WildPackets’ White Paper (2002) (cit. on p. 53).

149

http://dx.doi.org/10.1016/S1389-1286(01)00302-4
http://dx.doi.org/10.1145/73007.73033
http://dx.doi.org/10.1145/73007.73033
http://dx.doi.org/10.1145/2339123.2339125
http://dx.doi.org/10.1145/2339123.2339125
http://dx.doi.org/10.1016/j.tcs.2011.12.066
http://dx.doi.org/10.1109/SFCS.1989.63504

Bibliography

[12] Leonid Barenboim. “Deterministic (∆ + 1)-Coloring in Sublinear (in ∆) Time
in Static, Dynamic and Faulty Networks.” In: Proc. 2015 ACM Symp. on Prin-
ciples of Distributed Computing (PODC’15). PODC ’15. ACM, 2015, pp. 345–
354. doi: 10.1145/2767386.2767410 (cit. on p. 51).

[13] Leonid Barenboim and Michael Elkin. Distributed Graph Coloring: Fundamen-
tals and Recent Developments. Synthesis Lectures on Distributed Computing
Theory. Morgan & Claypool Publishers, 2013 (cit. on pp. 50, 51, 54, 59).

[14] Leonid Barenboim, Michael Elkin, and Fabian Kuhn. “Distributed (∆ + 1)-
Coloring in Linear (in ∆) Time.” In: SIAM J. Comput. 43.1 (2014), pp. 72–95.
doi: 10.1137/12088848X (cit. on p. 51).

[15] Leonid Barenboim, Michael Elkin, Seth Pettie, and Johannes Schneider. “The
locality of distributed symmetry breaking.” In: Proc. 53rd Ann. IEEE Symp.
Foundations Comput. Sci. (FOCS’12). IEEE. 2012, pp. 321–330. doi: 10.1109/
FOCS.2012.60 (cit. on p. 51).

[16] Leonid Barenboim and David Peleg. “Nearly Optimal Local Broadcasting
in the SINR Model with Feedback.” In: Proc. 22nd Internat. Colloq. Structural
Inform. and Communication Complexity (SIROCCO’15). Lecture Notes Com-
put. Sci. Springer, 2015, pp. 164–178. doi: 10.1007/978-3-319-25258-2_12
(cit. on pp. 11, 12, 23, 102, 103, 104, 107).

[17] Reuven Bar-Yehuda, Amos Israeli, and Alon Itai. “Multiple communication
in multihop radio networks.” In: SIAM J. Comput. 22.4 (1993), pp. 875–887.
doi: 10.1137/0222055 (cit. on p. 117).

[18] Marijke H. L. Bodlaender and Magnús M. Halldórsson. “Beyond geom-
etry: towards fully realistic wireless models.” In: Proc. 2014 ACM Symp.
on Principles of Distributed Computing (PODC’14). 2014, pp. 347–356. doi:
10.1145/2611462.2611476 (cit. on p. 12).

[19] Marijke H. L. Bodlaender, Magnús M. Halldórsson, and Pradipta Mitra.
“Connectivity and aggregation in multihop wireless networks.” In: Proc.
2013 ACM Symp. on Principles of Distributed Computing (PODC’13). 2013,
pp. 355–364. doi: 10.1145/2484239.2484265 (cit. on p. 12).

[20] Keren Censor-Hillel, Mohsen Ghaffari, and Fabian Kuhn. “A New Perspec-
tive on Vertex Connectivity.” In: Proc. 25th. Ann. ACM-SIAM Symp. Discrete
Algorithms (SODA’14). 2014, pp. 546–561. doi: 10.1137/1.9781611973402.41
(cit. on pp. 115, 116, 117, 118, 119, 122, 129, 147).

[21] Keren Censor-Hillel, Mohsen Ghaffari, and Fabian Kuhn. “Distributed Con-
nectivity Decomposition.” In: Proc. 2014 ACM Symp. on Principles of Dis-
tributed Computing (PODC’14). ACM, 2014, pp. 156–165. doi: 10.1145/
2611462.2611491 (cit. on pp. 115, 116, 117, 119, 120, 121, 122, 125, 128, 129,
147).

150

http://dx.doi.org/10.1145/2767386.2767410
http://dx.doi.org/10.1137/12088848X
http://dx.doi.org/10.1109/FOCS.2012.60
http://dx.doi.org/10.1109/FOCS.2012.60
http://dx.doi.org/10.1007/978-3-319-25258-2_12
http://dx.doi.org/10.1137/0222055
http://dx.doi.org/10.1145/2611462.2611476
http://dx.doi.org/10.1145/2484239.2484265
http://dx.doi.org/10.1137/1.9781611973402.41
http://dx.doi.org/10.1145/2611462.2611491
http://dx.doi.org/10.1145/2611462.2611491

Bibliography

[22] Dan Chen, Zhixin Liu, Lizhe Wang, Minggang Dou, Jingying Chen, and Hui
Li. “Natural Disaster Monitoring with Wireless Sensor Networks: A Case
Study of Data-intensive Applications upon Low-Cost Scalable Systems.” In:
Mobile Netw. Appl. 18.5 (2013), pp. 651–663. doi: 10.1007/s11036-013-0456-
9 (cit. on p. 1).

[23] Imrich Chlamtac and Shay Kutten. “On Broadcasting in Radio Networks–
Problem Analysis and Protocol Design.” In: Communications, IEEE Transac-
tions on 33.12 (12/1985), pp. 1240–1246. doi: 10.1109/TCOM.1985.1096245
(cit. on p. 9).

[24] Brent N. Clark, Charles J. Colbourn, and David S. Johnson. “Unit disk
graphs.” In: Discrete Mathematics 86.1 (1990), pp. 165–177. doi: 10.1016/
0012-365X(90)90358-O (cit. on p. 9).

[25] Richard Cole and Uzi Vishkin. “Deterministic Coin Tossing and Acceler-
ating Cascades: Micro and Macro Techniques for Designing Parallel Algo-
rithms.” In: Proc. 18th Ann. ACM Symp. Theory Comput. (STOC’86). ACM,
1986, pp. 206–219. doi: 10.1145/12130.12151 (cit. on p. 51).

[26] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms (3rd ed.) MIT Press, 2009 (cit. on p. 7).

[27] Bevan Das and Vaduvur Bharghavan. “Routing in ad-hoc networks using
minimum connected dominating sets.” In: Proc. Internat. Cartographic Conf.
(ICC’97). Vol. 1. IEEE Comp. Soc. 1997, pp. 376–380 (cit. on p. 117).

[28] Sebastian Daum, Seth Gilbert, Fabian Kuhn, and Calvin Newport. “Broad-
cast in the Ad Hoc SINR Model.” In: Proc. 27th Internat. Symp. on Distributed
Computing (DISC’13). Vol. 8205. Lecture Notes Comput. Sci. Springer, 2013,
pp. 358–372. doi: 10.1007/978-3-642-41527-2_25 (cit. on p. 12).

[29] Bilel Derbel, Mohamed Mosbah, and Akka Zemmari. “Fast Distributed
Graph Partition and Application (Extended Abstract).” In: Proc. 20th In-
ternat. Parallel and Distributed Processing Symp. (IPDPS’06). 2006. doi: 10.
1109/IPDPS.2006.1639362 (cit. on p. 102).

[30] Bilel Derbel and El-Ghazali Talbi. “Distributed Node Coloring in the SINR
Model.” In: Proc. 30th Internat. Conf. on Distributed Computing Systems (ICD-
CS’10). IEEE Computer Society, 2010, pp. 708–717. doi: 10.1109/ICDCS.
2010.35 (cit. on pp. 12, 22, 23, 34, 35, 36, 37, 42, 43, 44, 50, 51, 52, 54, 62, 63,
66, 69, 70, 74, 102, 103, 104, 107).

[31] Reinhard Diestel. Graph Theory (4th ed.) Vol. 173. Graduate texts in mathe-
matics. Springer, 2012 (cit. on p. 7).

[32] Michael Dinitz. “Distributed Algorithms for Approximating Wireless Net-
work Capacity.” In: Proc. 29th. IEEE Internat. Conference on Comput. Comm.
(INFOCOM’10). INFOCOM’10. IEEE Press, 2010, pp. 1397–1405. doi:
10.1109/INFCOM.2010.5461905 (cit. on p. 11).

151

http://dx.doi.org/10.1007/s11036-013-0456-9
http://dx.doi.org/10.1007/s11036-013-0456-9
http://dx.doi.org/10.1109/TCOM.1985.1096245
http://dx.doi.org/10.1016/0012-365X(90)90358-O
http://dx.doi.org/10.1016/0012-365X(90)90358-O
http://dx.doi.org/10.1145/12130.12151
http://dx.doi.org/10.1007/978-3-642-41527-2_25
http://dx.doi.org/10.1109/IPDPS.2006.1639362
http://dx.doi.org/10.1109/IPDPS.2006.1639362
http://dx.doi.org/10.1109/ICDCS.2010.35
http://dx.doi.org/10.1109/ICDCS.2010.35
http://dx.doi.org/10.1109/INFCOM.2010.5461905

Bibliography

[33] Distributed Computing Group, ETH Zurich. Sinalgo - Simulator for Network
Algorithms. version 0.75.3. 2008. url: http://sourceforge.net/projects/
sinalgo/ (cit. on pp. 12, 32, 69, 79, 96, 135).

[34] Alina Ene, Nitish Korula, and Ali Vakilian. “Improved Approximation Algo-
rithms for Connected Domatic Partitions and Related Problems.” In: CoRR
abs/1305.4308 (2013). url: http://arxiv.org/abs/1305.4308 (cit. on
p. 117).

[35] Alexander Fanghänel, Thomas Kesselheim, Harald Räcke, and Berthold Vöck-
ing. “Oblivious interference scheduling.” In: Proc. 28th ACM Symp. on Prin-
ciples of Distributed Computing (PODC’09). ACM. 2009, pp. 220–229. doi:
10.1145/1582716.1582752 (cit. on p. 11).

[36] Muhammad O. Farooq and Thomas Kunz. “Wireless sensor networks test-
beds and state-of-the-art multimedia sensor nodes.” In: Appl. Math. Inf. Sci
8 (2014), pp. 935–940 (cit. on p. 134).

[37] Uriel Feige, Magnús M. Halldórsson, Guy Kortsarz, and Aravind Srinivasan.
“Approximating the Domatic Number.” In: SIAM J. Comput. 32.1 (2002),
pp. 172–195. doi: 10.1137/S0097539700380754 (cit. on p. 117).

[38] Irene Finocchi, Alessandro Panconesi, and Riccardo Silvestri. “An experi-
mental analysis of simple, distributed vertex coloring algorithms.” In: Algo-
rithmica 41.1 (2004), pp. 1–23. doi: 10.1007/s00453-004-1104-3 (cit. on
pp. 51, 70).

[39] Christina Fragouli and Emina Soljanin. “Network Coding Fundamentals.”
In: Foundations and Trends in Networking 2.1 (2007). doi: 10.1561/1300000003
(cit. on p. 117).

[40] Fabian Fuchs. “Brief Announcement: Fast and Simple Node Coloring in the
SINR Model.” In: Proc. 2015 ACM Symp. on Principles of Distributed Comput-
ing (PODC’15). ACM, 2015. doi: 10.1145/2767386.2767445 (cit. on pp. 4,
49).

[41] Fabian Fuchs. “Experimental Evaluation of Distributed Node Coloring Al-
gorithms for Wireless Networks.” In: Proc. 18th Meeting on Algorithm Engi-
neering and Experiments (ALENEX’16). SIAM, 2016, pp. 30–38. doi: 10.1137/
1.9781611974317.3 (cit. on p. 69).

[42] Fabian Fuchs. “On Asynchronous Node Coloring in the SINR Model.” un-
published manuscript. 2015. url: http://i11www.iti.kit.edu/f-oancs-
15.pdf (cit. on p. 58).

[44] Fabian Fuchs and Roman Prutkin. “Simple Distributed ∆ + 1 Coloring in
the SINR Model.” In: Proc. 22nd Internat. Colloq. Structural Inform. and Com-
munication Complexity (SIROCCO’15). Lecture Notes Comput. Sci. Springer,
2015, pp. 149–163. doi: 10.1007/978-3-319-25258-2_11 (cit. on pp. 4, 49).

[43] Fabian Fuchs and Roman Prutkin. “Simple Distributed Delta+1 Coloring
in the SINR Model.” In: CoRR abs/1502.02426 (2015). url: http://arxiv.
org/abs/1502.02426 (cit. on p. 49).

152

http://sourceforge.net/projects/sinalgo/
http://sourceforge.net/projects/sinalgo/
http://arxiv.org/abs/1305.4308
http://dx.doi.org/10.1145/1582716.1582752
http://dx.doi.org/10.1137/S0097539700380754
http://dx.doi.org/10.1007/s00453-004-1104-3
http://dx.doi.org/10.1561/1300000003
http://dx.doi.org/10.1145/2767386.2767445
http://dx.doi.org/10.1137/1.9781611974317.3
http://dx.doi.org/10.1137/1.9781611974317.3
http://i11www.iti.kit.edu/f-oancs-15.pdf
http://i11www.iti.kit.edu/f-oancs-15.pdf
http://dx.doi.org/10.1007/978-3-319-25258-2_11
http://arxiv.org/abs/1502.02426
http://arxiv.org/abs/1502.02426

Bibliography

[45] Fabian Fuchs and Dorothea Wagner. “Arbitrary Transmission Power in the
SINR Model: Local Broadcasting, Coloring and MIS.” In: CoRR abs/1402.4994

(2014). url: http://arxiv.org/abs/1502.02426 (cit. on p. 21).

[46] Fabian Fuchs and Dorothea Wagner. “Local Broadcasting with Arbitrary
Transmission Power in the SINR Model.” In: Proc. 21st Internat. Colloq. Struc-
tural Inform. and Communication Complexity (SIROCCO’14). Vol. 8576. Lecture
Notes Comput. Sci. Springer, 2014, pp. 180–193. doi: 10.1007/978-3-319-
09620-9_15 (cit. on pp. 4, 21).

[47] Fabian Fuchs and Dorothea Wagner. “On Local Broadcasting Schedules
and CONGEST Algorithms in the SINR Model.” In: Proc. 9th Internat. Work-
shop on Algorithmic Aspects of Wireless Sensor Networks (ALGOSENSORS’13).
Vol. 8243. Lecture Notes in Computer Science. Springer, 2013, pp. 170–184.
doi: 10.1007/978-3-642-45346-5_13 (cit. on pp. 5, 101).

[48] Fabian Fuchs and Matthias Wolf. “On the Distributed Computation of Frac-
tional Connected Dominated Set Packings.” In: CoRR abs/1508.04278 (2015).
under review. url: http://arxiv.org/abs/1508.04278 (cit. on p. 115).

[49] Takahito Fujii, Michito Takahashi, Masaki Bandai, Tomoyuki Udagawa, and
Iwao Sasase. “An efficient MAC protocol in wireless ad-hoc networks with
heterogeneous power nodes.” In: Proc. 5th Internat. Symp. Wireless Personal
Multimedia Communications (WPMC’02). Vol. 2. IEEE. 2002, pp. 776–780 (cit.
on p. 22).

[50] Saurabh Ganeriwal, Ram Kumar, and Mani B. Srivastava. “Timing-sync pro-
tocol for sensor networks.” In: Proc. 1st Internat. Conf. on Embedded Networked
Sensor Systems (SenSys’03). ACM. 2003, pp. 138–149. doi: 10.1145/958491.
958508 (cit. on p. 67).

[51] Juan A. Garay, Shay Kutten, and David Peleg. “A sublinear time distributed
algorithm for minimum-weight spanning trees.” In: SIAM J. Comput. 27.1
(1998), pp. 302–316. doi: 10.1137/S0097539794261118 (cit. on p. 147).

[52] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., 1979 (cit. on p. 50).

[53] Stephen M. George, Wei Zhou, Harshavardhan Chenji, Myounggyu Won,
Yong Oh Lee, Andria Pazarloglou, Radu Stoleru, and Prabir Barooah. “Dis-
tressNet: a wireless ad hoc and sensor network architecture for situation
management in disaster response.” In: IEEE Communications Magazine 48.3
(2010), pp. 128–136. doi: 10.1109/MCOM.2010.5434384 (cit. on p. 1).

[54] Olga Goussevskaia, Magnús M. Halldórsson, and Roger Wattenhofer. “Al-
gorithms for Wireless Capacity.” In: IEEE/ACM Trans. Netw. 22.3 (2014),
pp. 745–755. doi: 10.1109/TNET.2013.2258036 (cit. on p. 11).

153

http://arxiv.org/abs/1502.02426
http://dx.doi.org/10.1007/978-3-319-09620-9_15
http://dx.doi.org/10.1007/978-3-319-09620-9_15
http://dx.doi.org/10.1007/978-3-642-45346-5_13
http://arxiv.org/abs/1508.04278
http://dx.doi.org/10.1145/958491.958508
http://dx.doi.org/10.1145/958491.958508
http://dx.doi.org/10.1137/S0097539794261118
http://dx.doi.org/10.1109/MCOM.2010.5434384
http://dx.doi.org/10.1109/TNET.2013.2258036

Bibliography

[55] Olga Goussevskaia, Thomas Moscibroda, and Roger Wattenhofer. “Local
Broadcasting in the Physical Interference Model.” In: Proc. 5th ACM Inernat.
Workshop on Foundations of Mobile Computing (DialM-POMC’08). ACM Press,
2008, pp. 35–44. doi: 10.1145/1400863.1400873 (cit. on pp. 10, 11, 15, 22,
23, 25, 27, 29, 31, 45, 49, 50, 102, 103, 104, 138, 139).

[56] Olga Goussevskaia, Yvonne Anne Oswald, and Rogert Wattenhofer. “Com-
plexity in geometric SINR.” In: Proc. 8th ACM Internat. Symp. on Mobile Ad
Hoc Networking and Computing (MobiHoc’07). ACM. 2007, pp. 100–109. doi:
10.1145/1288107.1288122 (cit. on p. 11).

[57] Olga Goussevskaia, Yvonne Anne Pignolet, and Roger Wattenhofer. “Effi-
ciency of Wireless Networks: Approximation Algorithms for the Physical
Interference Model.” In: Foundations and Trends in Networking 4.3 (11/2010).
doi: 10.1561/1300000019 (cit. on p. 11).

[58] Olga Goussevskaia, Roger Wattenhofer, Magnús M. Halldórsson, and Emo
Welzl. “Capacity of Arbitrary Wireless Networks.” In: Proc. 28th IEEE Inter-
nat. Conference on Comput. Comm. (INFOCOM’09). 2009, pp. 1872–1880. doi:
10.1109/INFCOM.2009.5062108 (cit. on p. 11).

[59] Sudipto Guha and Samir Khuller. “Approximation algorithms for con-
nected dominating sets.” In: Algorithmica 20.4 (1998), pp. 374–387. doi:
10.1007/PL00009201 (cit. on p. 117).

[60] Piyush Gupta and Panganmala R. Kumar. “The capacity of wireless net-
works.” In: IEEE Trans. on Inform. Theory 46.2 (2000), pp. 388–404. doi:
10.1109/18.825799 (cit. on pp. 2, 9, 11, 51).

[61] William K. Hale. “Frequency assignment: Theory and applications.” In:
Proceedings of the IEEE 68.12 (1980), pp. 1497–1514 (cit. on p. 4).

[62] Magnús M. Halldórsson. “Wireless scheduling with power control.” In:
ACM Transactions on Algorithms (TALG) 9.1 (2012), 7:1–7:20. doi: 10.1145/
2390176.2390183 (cit. on p. 11).

[63] Magnús M. Halldórsson, Stephan Holzer, and Nancy A. Lynch. “A Local
Broadcast Layer for the SINR Network Model.” In: Proc. 2015 ACM Symp.
on Principles of Distributed Computing (PODC’15). 2015, pp. 129–138. doi:
10.1145/2767386.2767432 (cit. on pp. 12, 103).

[64] Magnús M. Halldórsson and Pradipta Mitra. “Nearly optimal bounds for
distributed wireless scheduling in the SINR model.” In: Proc. 38th Internat.
Colloquium on Automata, Languages, and Programming (ICALP’11). Springer,
2011, pp. 625–636. doi: 10.1007/978-3-642-22012-8_50 (cit. on p. 11).

[65] Magnús M. Halldórsson and Pradipta Mitra. “Towards Tight Bounds for
Local Broadcasting.” In: Proc. 8th ACM Inernat. Workshop on Foundations of
Mobile Computing (FOMC’12). ACM Press, 07/2012. doi: 10.1145/2335470.
2335472 (cit. on pp. 11, 22, 23, 27, 29, 30, 31, 49, 67, 103, 104).

154

http://dx.doi.org/10.1145/1400863.1400873
http://dx.doi.org/10.1145/1288107.1288122
http://dx.doi.org/10.1561/1300000019
http://dx.doi.org/10.1109/INFCOM.2009.5062108
http://dx.doi.org/10.1007/PL00009201
http://dx.doi.org/10.1109/18.825799
http://dx.doi.org/10.1145/2390176.2390183
http://dx.doi.org/10.1145/2390176.2390183
http://dx.doi.org/10.1145/2767386.2767432
http://dx.doi.org/10.1007/978-3-642-22012-8_50
http://dx.doi.org/10.1145/2335470.2335472
http://dx.doi.org/10.1145/2335470.2335472

Bibliography

[66] Magnús M. Halldórsson and Pradipta Mitra. “Wireless capacity and admis-
sion control in cognitive radio.” In: Proc. 28th IEEE Internat. Conference on
Comput. Comm. (INFOCOM’09). IEEE. 2012, pp. 855–863. doi: 10.1109/
INFCOM.2012.6195834 (cit. on p. 11).

[67] Magnús M. Halldórsson and Pradipta Mitra. “Wireless capacity with ar-
bitrary gain matrix.” In: Theor. Comput. Sci. 553 (2014), pp. 57–63. doi:
10.1016/j.tcs.2013.09.035 (cit. on p. 11).

[68] Magnús M. Halldórsson and Pradipta Mitra. “Wireless Connectivity and Ca-
pacity.” In: Proc. 23th Ann. ACM-SIAM Symp. Discrete Algorithms (SODA’12).
SODA ’12. SIAM, 2012, pp. 516–526 (cit. on pp. 11, 22).

[69] Magnús M. Halldórsson and Tigran Tonoyan. “The Price of Local Power
Control in Wireless Scheduling.” In: CoRR abs/1502.05279 (2015). url: http:
//arxiv.org/abs/1502.05279 (cit. on p. 11).

[70] Magnús M. Halldórsson, Yuexuan Wang, and Dongxiao Yu. “Leveraging
Multiple Channels in Ad Hoc Networks.” In: Proc. 2015 ACM Symp. on
Principles of Distributed Computing (PODC’15). 2015, pp. 431–440. doi: 10.
1145/2767386.2767437 (cit. on p. 51).

[71] Nathaniel Hobbs, Yuexuan Wang, Qiang-Sheng Hua, Dongxiao Yu, and
Francis C. M. Lau. “Deterministic Distributed Data Aggregation under the
SINR Model.” In: Proc. 9th. Ann. Conf. Theory and Applic. of Models of Comp.
(TAMC’12). Vol. 7287. Lecture Notes Comput. Sci. Springer, 2012, pp. 385–
399. doi: 10.1007/978-3-642-29952-0_38 (cit. on p. 12).

[72] Stephan Holzer and Roger Wattenhofer. “Optimal Distributed All Pairs
Shortest Paths and Applications.” In: Proc. 31th ACM Symp. on Principles
of Distributed Computing (PODC’12). ACM Press, 2012, pp. 355–364. doi:
10.1145/2332432.2332504 (cit. on p. 102).

[73] Thomas Moscibroda and Roger Wattenhofer. “The Complexity of Connectiv-
ity in Wireless Networks.” In: Proc. 25th IEEE Internat. Conference on Comput.
Comm. (INFOCOM’06). IEEE Computer Society Press, 04/2006, pp. 1–13.
doi: 10.1109/INFOCOM.2006.23 (cit. on p. 11).

[74] Amos Israeli and A. Itai. “A Fast and Simple Randomized Parallel Algo-
rithm for Maximal Matching.” In: Inform. Process. Lett. 22.2 (02/1986), pp. 77–
80. doi: 10.1016/0020-0190(86)90144-4 (cit. on pp. 125, 126, 127).

[75] Thomas Janson and Christian Schindelhauer. “Analyzing randomly placed
multiple antennas for MIMO wireless communication.” In: Proc. 8th IEEE
Internat. Conf. on Wireless and Mobile Computing, Networking and Communi-
cations (WiMob’12). IEEE. 2012, pp. 745–752. doi: 10.1109/WiMOB.2012.
6379159 (cit. on p. 12).

[76] Thomas Janson and Christian Schindelhauer. “Broadcasting in Logarithmic
Time for Ad Hoc Network Nodes on a Line Using Mimo.” In: Proc. 25th
ACM Symp. on Parallelism in Algorithms and Architectures (SPAA’13). SPAA
’13. ACM, 2013, pp. 63–72. doi: 10.1145/2486159.2486190 (cit. on p. 12).

155

http://dx.doi.org/10.1109/INFCOM.2012.6195834
http://dx.doi.org/10.1109/INFCOM.2012.6195834
http://dx.doi.org/10.1016/j.tcs.2013.09.035
http://arxiv.org/abs/1502.05279
http://arxiv.org/abs/1502.05279
http://dx.doi.org/10.1145/2767386.2767437
http://dx.doi.org/10.1145/2767386.2767437
http://dx.doi.org/10.1007/978-3-642-29952-0_38
http://dx.doi.org/10.1145/2332432.2332504
http://dx.doi.org/10.1109/INFOCOM.2006.23
http://dx.doi.org/10.1016/0020-0190(86)90144-4
http://dx.doi.org/10.1109/WiMOB.2012.6379159
http://dx.doi.org/10.1109/WiMOB.2012.6379159
http://dx.doi.org/10.1145/2486159.2486190

Bibliography

[77] Philo Juang, Hidekazu Oki, Yong Wang, Margaret Martonosi, Li Shiuan Peh,
and Daniel Rubenstein. “Energy-efficient computing for wildlife tracking:
Design tradeoffs and early experiences with ZebraNet.” In: ACM Sigplan
Notices 37.10 (2002), pp. 96–107 (cit. on p. 2).

[78] Tomasz Jurdzinski and Dariusz R. Kowalski. “Distributed Backbone Struc-
ture for Algorithms in the SINR Model of Wireless Networks.” In: Proc. 26th
Internat. Symp. on Distributed Computing (DISC’12). Vol. 7611. Lecture Notes
Comput. Sci. Springer, 10/2012, pp. 106–120. doi: 10.1007/978-3-642-
33651-5_8 (cit. on pp. 12, 102, 103, 104, 106, 107, 108).

[79] Tomasz Jurdzinski, Dariusz R. Kowalski, Michal Rozanski, and Grzegorz
Stachowiak. “Distributed Randomized Broadcasting in Wireless Networks
under the SINR Model.” In: Proc. 27th Internat. Symp. on Distributed Com-
puting (DISC’13). Vol. 8205. Lecture Notes Comput. Sci. Springer, 2013,
pp. 373–387. doi: 10.1007/978-3-642-41527-2_26 (cit. on pp. 12, 134).

[80] Tomasz Jurdzinski, Dariusz R. Kowalski, Michal Rozanski, and Grzegorz
Stachowiak. “On the impact of geometry on ad hoc communication in wire-
less networks.” In: Proc. 2014 ACM Symp. on Principles of Distributed Comput-
ing (PODC’14). 2014, pp. 357–366. doi: 10.1145/2611462.2611487 (cit. on
p. 12).

[81] Tomasz Jurdzinski, Dariusz R. Kowalski, and Grzegorz Stachowiak. “Dis-
tributed Deterministic Broadcasting in Uniform-Power Ad Hoc Wireless
Networks.” English. In: Proc. 19th Internat. Symp. on Fundamentals of Com-
putation Theory (FCT’13). Vol. 8070. Lecture Notes Comput. Sci. Springer,
2013, pp. 195–209. doi: 10.1007/978-3-642-40164-0_20 (cit. on p. 12).

[82] Tomasz Jurdziński and Grzegorz Stachowiak. “Probabilistic algorithms for
the wakeup problem in single-hop radio networks.” In: Proc. 13th. Internat.
Symp. on Algorithms and Computation (ISAAC’02). Springer, 2002, pp. 535–
549. doi: 10.1007/3-540-36136-7_47 (cit. on p. 26).

[83] Erez Kantor, Zvi Lotker, Merav Parter, and David Peleg. “The topology
of wireless communication.” In: Proc. 43th Ann. ACM Symp. Theory Comput.
(STOC’11). ACM. 2011, pp. 383–392. doi: 10.1145/1993636.1993688 (cit. on
p. 11).

[84] Elliott Kaplan and Christopher Hegarty. Understanding GPS: principles and
applications. Artech house, 2005 (cit. on p. 105).

[85] Richard M. Karp. “Reducibility Among Combinatorial Problems.” In: Proc.
of a Symposium on the Complexity of Computer Computations. 1972, pp. 85–103.
url: http://www.cs.berkeley.edu/~luca/cs172/karp.pdf (cit. on p. 4).

[86] Bastian Katz, Markus Völker, and Dorothea Wagner. “Energy efficient schedul-
ing with power control for wireless networks.” In: Proc. 8th Internat. Symp. on
Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt’10).
IEEE. 2010, pp. 160–169 (cit. on p. 11).

156

http://dx.doi.org/10.1007/978-3-642-33651-5_8
http://dx.doi.org/10.1007/978-3-642-33651-5_8
http://dx.doi.org/10.1007/978-3-642-41527-2_26
http://dx.doi.org/10.1145/2611462.2611487
http://dx.doi.org/10.1007/978-3-642-40164-0_20
http://dx.doi.org/10.1007/3-540-36136-7_47
http://dx.doi.org/10.1145/1993636.1993688
http://www.cs.berkeley.edu/~luca/cs172/karp.pdf

Bibliography

[87] Thomas Kesselheim. “A Constant-factor Approximation for Wireless Ca-
pacity Maximization with Power Control in the SINR Model.” In: Proc. 22th
Ann. ACM-SIAM Symp. Discrete Algorithms (SODA’11). SODA ’11. SIAM,
2011, pp. 1549–1559. doi: 10.1137/1.9781611973082.120 (cit. on p. 11).

[88] Thomas Kesselheim and Berthold Vöcking. “Distributed Contention Reso-
lution in Wireless Networks.” In: Proc. 24th Internat. Symp. on Distributed
Computing (DISC’10). Springer, 2010, pp. 163–178. doi: 10.1007/978-3-642-
15763-9_16 (cit. on pp. 11, 22).

[89] Donald E. Knuth. Fundamental Algorithms. Vol. 1. The Art of Computer
Programming. Addison-Wesley, 2011 (cit. on pp. 108, 110).

[90] Kishore Kothapalli, Christian Scheideler, Melih Onus, and Christian Schin-
delhauer. “Distributed coloring in O(

√
log n) bit rounds.” In: Proc. 20th

Internat. Parallel and Distributed Processing Symp. (IPDPS’06). 2006. doi:
10.1109/IPDPS.2006.1639281 (cit. on p. 51).

[91] Fabian Kuhn, Nancy Lynch, and Calvin Newport. “The Abstract MAC
Layer.” In: J. Distr. Comp. 24.3-4 (11/2011), pp. 187–206 (cit. on p. 103).

[92] Fabian Kuhn and Roger Wattenhofer. “On the complexity of distributed
graph coloring.” In: Proc. 25th ACM Symp. on Principles of Distributed Com-
puting (PODC’06). 2006, pp. 7–15. doi: 10.1145/1146381.1146387 (cit. on
p. 51).

[93] Shay Kutten and David Peleg. “Fast Distributed Construction of Small k-
Dominating Sets and Applications.” In: J. Algorithms 28.1 (1998), pp. 40–66.
doi: 10.1006/jagm.1998.0929 (cit. on p. 147).

[94] Hongxing Li, Qiang Sheng Hua, Chuan Wu, and Francis C. M. Lau. “Mini-
mum-latency aggregation scheduling in wireless sensor networks under
physical interference model.” In: Proc. 13th ACM Internat. Conf. on Modeling,
Analysis, and Simulation of Wireless and Mobile Systems (MSWIM’10). ACM.
2010, pp. 360–367. doi: 10.1145/1868521.1868581 (cit. on p. 12).

[95] Xiang-Yang Li, XiaoHua Xu, ShiGuang Wang, ShaoJie Tang, GuoJun Dai,
JiZhong Zhao, and Yong Qi. “Efficient data aggregation in multi-hop wire-
less sensor networks under physical interference model.” In: Proc. 6th IEEE
Internat. Conf. on Mobile Adhoc and Sensor Systems (MASS’09). IEEE. 2009,
pp. 353–362. doi: 10.1109/MOBHOC.2009.5336978 (cit. on p. 12).

[96] Nathan Linial. “Distributive graph algorithms Global solutions from local
data.” In: Proc. 28th Ann. IEEE Symp. Foundations Comput. Sci. (FOCS’87).
IEEE. 1987, pp. 331–335. doi: 10.1109/SFCS.1987.20 (cit. on p. 50).

[97] Nathan Linial. “Locality in distributed graph algorithms.” In: SIAM Journal
on Computing 21.1 (1992), pp. 193–201. doi: 10.1137/0221015 (cit. on p. 50).

[98] Michael Luby. “A simple parallel algorithm for the maximal independent
set problem.” In: SIAM J. Comput. 15.4 (1986), pp. 1036–1053. doi: 10.1137/
0215074 (cit. on pp. 51, 54).

157

http://dx.doi.org/10.1137/1.9781611973082.120
http://dx.doi.org/10.1007/978-3-642-15763-9_16
http://dx.doi.org/10.1007/978-3-642-15763-9_16
http://dx.doi.org/10.1109/IPDPS.2006.1639281
http://dx.doi.org/10.1145/1146381.1146387
http://dx.doi.org/10.1006/jagm.1998.0929
http://dx.doi.org/10.1145/1868521.1868581
http://dx.doi.org/10.1109/MOBHOC.2009.5336978
http://dx.doi.org/10.1109/SFCS.1987.20
http://dx.doi.org/10.1137/0221015
http://dx.doi.org/10.1137/0215074
http://dx.doi.org/10.1137/0215074

Bibliography

[99] Luca Mainetti, Luigi Patrono, and Antonio Vilei. “Evolution of wireless
sensor networks towards the Internet of Things: A survey.” In: Proc. 19th
Internat. Conf. on Software, Telecomm. and Computer Networks (SoftCOM), 2011.
09/2011, pp. 1–6 (cit. on p. 2).

[100] Madhav V. Marathe, Alessandro Panconesi, and Larry D. Risinger Jr. “An
experimental study of a simple, distributed edge-coloring algorithm.” In:
ACM Journal of Experimental Algorithmics 9 (2004). doi: 10.1145/1005813.
1041515 (cit. on p. 70).

[101] Dániel Marx. “Graph colouring problems and their applications in schedul-
ing.” In: Electrical Engineering 48.1-2 (2004), pp. 11–16 (cit. on p. 4).

[102] Karl Menger. “Zur allgemeinen Kurventheorie.” ger. In: Fundamenta Mathe-
maticae 10.1 (1927). german, pp. 96–115 (cit. on p. 120).

[103] Thomas Moscibroda and Roger Wattenhofer. “Coloring unstructured radio
networks.” In: Proc. 17th ACM Symp. on Parallelism in Algorithms and Archi-
tectures (SPAA’05). ACM. 2005, pp. 39–48. doi: 10.1145/1073970.1073977
(cit. on p. 23).

[104] Thomas Moscibroda and Roger Wattenhofer. “Coloring unstructured radio
networks.” In: Distributed Computing 21.4 (2008), pp. 271–284. doi: 10.1007/
s00446-008-0070-4 (cit. on pp. 12, 21, 23, 33, 35, 51, 69, 70, 103).

[105] Thomas Moscibroda, Roger Wattenhofer, and Yves Weber. “Protocol design
beyond graph-based models.” In: Proc. of the ACM Workshop on Hot Topics in
Networks (HotNets-V). 2006, pp. 25–30 (cit. on pp. 10, 134).

[106] Rajeev Motwani and Prabhakar Raghavan. Randomized algorithms. Chapman
& Hall/CRC, 2010 (cit. on p. 10).

[107] Ayfer Özgür, Olivier Lévêque, and David Tse. “Hierarchical cooperation
achieves optimal capacity scaling in ad hoc networks.” In: IEEE Transactions
on Information Theory 53.10 (2007), pp. 3549–3572 (cit. on p. 11).

[108] Alessandro Panconesi and Aravind Srinivasan. “On the complexity of dis-
tributed network decomposition.” In: J. Algorithms 20.2 (1996), pp. 356–374.
doi: 10.1006/jagm.1996.0017 (cit. on p. 51).

[109] David Peleg. Distributed Computing: A Locality-Sensitive Approach. Society for
Industrial Mathematics, 2000 (cit. on pp. 9, 22).

[110] Satya Krishna Pindiproli and Kishore Kothapalli. “Experimental Analysis
of Distributed Coloring Algorithms.” In: IEEE Internat. Advance Computing
Conf. (IACC’09). 03/2009, pp. 147–152. doi: 10.1109/IADCC.2009.4808997
(cit. on pp. 51, 70).

[111] Neeraj Poojary, Srikanth V. Krishnamurthy, and Son Dao. “Medium access
control in a network of ad hoc mobile nodes with heterogeneous power
capabilities.” In: Proc. IEEE Internat. Conf. on Communications (ICC’01). Vol. 3.
IEEE. 2001, pp. 872–877. doi: 10.1109/ICC.2001.937363 (cit. on p. 22).

158

http://dx.doi.org/10.1145/1005813.1041515
http://dx.doi.org/10.1145/1005813.1041515
http://dx.doi.org/10.1145/1073970.1073977
http://dx.doi.org/10.1007/s00446-008-0070-4
http://dx.doi.org/10.1007/s00446-008-0070-4
http://dx.doi.org/10.1006/jagm.1996.0017
http://dx.doi.org/10.1109/IADCC.2009.4808997
http://dx.doi.org/10.1109/ICC.2001.937363

Bibliography

[112] Krishna N. Ramachandran, Elizabeth M Belding-Royer, Kevin C. Almeroth,
and Milind M. Buddhikot. “Interference-Aware Channel Assignment in
Multi-Radio Wireless Mesh Networks.” In: Proc. 25th. IEEE Internat. Con-
ference on Comput. Comm. (INFOCOM’06). Vol. 6. 2006, pp. 1–12. doi:
10.1109/INFOCOM.2006.177 (cit. on p. 9).

[113] Ram Ramanathan. “A unified framework and algorithm for channel assign-
ment in wireless networks.” In: Wireless Networks (1999), pp. 81–94. doi:
10.1023/A:1019126406181 (cit. on pp. 8, 49).

[114] Theodore S. Rappaport. Wireless communications : principles and practice. 2.
ed., 18. print. Prentice Hall communications engineering and emerging tech-
nologies series. Prentice Hall, 2009 (cit. on p. 15).

[115] Lawrence G. Roberts. “ALOHA Packet System with and Without Slots and
Capture.” In: SIGCOMM Comput. Commun. Rev. 5.2 (04/1975), pp. 28–42.
doi: 10.1145/1024916.1024920 (cit. on p. 10).

[116] Kay Römer and Friedemann Mattern. “The design space of wireless sensor
networks.” In: IEEE Wireless Communications 11.6 (2004), pp. 54–61. doi:
10.1109/MWC.2004.1368897 (cit. on p. 2).

[117] Christian Scheideler, Andrea W. Richa, and Paolo Santi. “An O(log n) Domi-
nating Set Protocol for Wireless Ad-Hoc Networks under the Physical Inter-
ference Model.” In: Proc. 9th ACM Internat. Symp. on Mobile Ad Hoc Network-
ing and Computing (MOBIHOC’08). 2008, pp. 91–100. doi: 10.1145/1374618.
1374632 (cit. on p. 12).

[118] Markus Schlegel. “Experimental Evaluation of Distributed Node Coloring
Algorithms in the SINR Model.” Bachelor thesis. Karlsruhe, Germany: Karl-
sruhe Institute of Technology (KIT), 2015. url: http://i11www.iti.uni-
karlsruhe.de/_media/teaching/theses/ba- schlegel- 15.pdf (cit. on
p. 71).

[119] Johannes Schneider and Roger Wattenhofer. “A Log-star Distributed Max-
imal Independent Set Algorithm for Growth-bounded Graphs.” In: Proc.
27th ACM Symp. on Principles of Distributed Computing (PODC’08). ACM,
2008, pp. 35–44. doi: 10.1145/1400751.1400758 (cit. on p. 51).

[120] Johannes Schneider and Roger Wattenhofer. “Coloring unstructured wire-
less multi-hop networks.” In: Proc. 28th ACM Symp. on Principles of Dis-
tributed Computing (PODC’09). ACM. 2009, pp. 210–219. doi: 10.1145/
1582716.1582751 (cit. on pp. 23, 62, 63).

[121] Yi Shi, Y. Thomas Hou, Jia Liu, and Sastry Kompella. “Bridging the gap
between protocol and physical models for wireless networks.” In: Mobile
Computing, IEEE Transactions on 12.7 (2013), pp. 1404–1416. doi: 10.1109/
TMC.2012.118 (cit. on p. 9).

[122] Fikret Sivrikaya and Bülent Yener. “Time synchronization in sensor net-
works: a survey.” In: IEEE Network 18.4 (2004), pp. 45–50. doi: 10.1109/
MNET.2004.1316761 (cit. on pp. 67, 105).

159

http://dx.doi.org/10.1109/INFOCOM.2006.177
http://dx.doi.org/10.1023/A:1019126406181
http://dx.doi.org/10.1145/1024916.1024920
http://dx.doi.org/10.1109/MWC.2004.1368897
http://dx.doi.org/10.1145/1374618.1374632
http://dx.doi.org/10.1145/1374618.1374632
http://i11www.iti.uni-karlsruhe.de/_media/teaching/theses/ba-schlegel-15.pdf
http://i11www.iti.uni-karlsruhe.de/_media/teaching/theses/ba-schlegel-15.pdf
http://dx.doi.org/10.1145/1400751.1400758
http://dx.doi.org/10.1145/1582716.1582751
http://dx.doi.org/10.1145/1582716.1582751
http://dx.doi.org/10.1109/TMC.2012.118
http://dx.doi.org/10.1109/TMC.2012.118
http://dx.doi.org/10.1109/MNET.2004.1316761
http://dx.doi.org/10.1109/MNET.2004.1316761

Bibliography

[123] Xu Su and Rajendra V. Boppana. “On the impact of noise on mobile ad
hoc networks.” In: Proc. 2007 Internat. Conf. on Wireless Communications and
Mobile Computing (IWCMC’06). ACM. 2007, pp. 208–213. doi: 10.1145/
1280940.1280986 (cit. on p. 15).

[124] Ramakrishna Thurimella. “Sub-Linear Distributed Algorithms for Sparse
Certificates and Biconnected Components.” In: J. Algorithms 23.1 (1997),
pp. 160–179. doi: 10.1006/jagm.1996.0832 (cit. on pp. 121, 147).

[125] Raymond S. Tomlinson. “Selecting Sequence Numbers.” In: Proc. of 1975
ACM SIGCOMM/SIGOPS Workshop on Interprocess Communications. ACM,
1975, pp. 11–23. doi: 10.1145/800272.810894 (cit. on p. 36).

[126] Tigran Tonoyan. “On some bounds on the optimum schedule length in
the SINR model.” In: Proc. 9th Internat. Workshop on Algorithmic Aspects of
Wireless Sensor Networks (ALGOSENSORS’13). Springer, 2013, pp. 120–131.
doi: 10.1007/978-3-642-36092-3_14 (cit. on p. 11).

[127] David Tse and Pramod Viswanath. Fundamentals of wireless communication.
Cambridge university press, 2005 (cit. on p. 21).

[128] Guoqiang Wang, Damla Turgut, Ladislau Bölöni, Yongchang Ji, and Dan C.
Marinescu. “A MAC layer protocol for wireless networks with asymmetric
links.” In: Ad Hoc Networks 6.3 (2008), pp. 424–440. doi: 10.1016/j.adhoc.
2007.03.004 (cit. on p. 22).

[129] Weizhao Wang, Yu Wang, Xiang-Yang Li, Wen-Zhan Song, and Ophir Frieder.
“Efficient interference-aware TDMA link scheduling for static wireless net-
works.” In: Proc. 12th Ann. Internat. Conf. on Mobile Computing and Networking
(MobiCom’06). ACM. 2006, pp. 262–273. doi: 10.1145/1161089.1161119 (cit.
on p. 9).

[130] Matthias Wolf. “On the Distributed Computation of Fractional Connected
Dominated Set Packings.” Bachelor thesis. Karlsruhe, Germany: Karlsruhe
Institute of Technology (KIT), 2014. url: http://i11www.iti.uni-karlsruhe.
de/_media/teaching/theses/ba-wolf-14.pdf (cit. on pp. 115, 122, 128).

[131] Tai-Kuo Woo, Stanley YW Su, and Richard Newman-Wolfe. “Resource al-
location in a dynamically partitionable bus network using a graph coloring
algorithm.” In: IEEE Transactions on Communications 39.12 (1991), pp. 1794–
1801. doi: 10.1109/26.120165 (cit. on p. 4).

[132] Jennifer Yick, Biswanath Mukherjee, and Dipak Ghosal. “Wireless sensor
network survey.” In: Computer Networks 52.12 (2008), pp. 2292–2330. doi:
10.1016/j.comnet.2008.04.002 (cit. on p. 2).

[133] Dongxiao Yu, Qiang-Sheng Hua, Yuexuan Wang, and Francis C. M. Lau.
“An O(log n) Distributed Approximation Algorithm for Local Broadcasting
in Unstructured Wireless Networks.” In: Proc. 8th Internat. Conf. on Dis-
tributed Computing in Sensor Systems (DCOSS’12). 2012, pp. 132–139. doi:
10.1109/DCOSS.2012.39 (cit. on pp. 11, 22, 29, 30, 31, 49, 67, 103, 104).

160

http://dx.doi.org/10.1145/1280940.1280986
http://dx.doi.org/10.1145/1280940.1280986
http://dx.doi.org/10.1006/jagm.1996.0832
http://dx.doi.org/10.1145/800272.810894
http://dx.doi.org/10.1007/978-3-642-36092-3_14
http://dx.doi.org/10.1016/j.adhoc.2007.03.004
http://dx.doi.org/10.1016/j.adhoc.2007.03.004
http://dx.doi.org/10.1145/1161089.1161119
http://i11www.iti.uni-karlsruhe.de/_media/teaching/theses/ba-wolf-14.pdf
http://i11www.iti.uni-karlsruhe.de/_media/teaching/theses/ba-wolf-14.pdf
http://dx.doi.org/10.1109/26.120165
http://dx.doi.org/10.1016/j.comnet.2008.04.002
http://dx.doi.org/10.1109/DCOSS.2012.39

Bibliography

[134] Dongxiao Yu, Qiang-Sheng Hua, Yuexuan Wang, Haisheng Tan, and Francis
C. M. Lau. “Distributed Multiple-Message Broadcast in Wireless Ad-Hoc
Networks under the SINR Model.” In: Proc. 19st Internat. Colloq. Structural
Inform. and Communication Complexity (SIROCCO’12). Vol. 7355. Lecture
Notes Comput. Sci. Springer, 2012, pp. 111–122. doi: 10.1007/978-3-642-
31104-8_10 (cit. on p. 12).

[135] Dongxiao Yu, Qiang-Sheng Hua, Yuexuan Wang, Jiguo Yu, and Francis C. M.
Lau. “Efficient distributed multiple-message broadcasting in unstructured
wireless networks.” In: Proc. 2013 IEEE Internat. Conference on Comput. Comm.
(INFOCOM’13). 2013, pp. 2427–2435. doi: 10.1109/INFCOM.2013.6567048
(cit. on p. 12).

[136] Dongxiao Yu, Yuexuan Wang, Qiang-Sheng Hua, and Francis C. M. Lau.
“Distributed (∆+1)-coloring in the physical model.” In: Theor. Comput. Sci.
553 (2014), pp. 37–56. doi: 10.1016/j.tcs.2014.05.016 (cit. on pp. 12, 22,
23, 50, 51, 53, 69, 70, 75, 96).

[137] Dongxiao Yu, Yuexuan Wang, Qiang-Sheng Hua, and Francis C. M. Lau.
“Distributed Local Broadcasting Algorithms in the Physical Interference Mod-
el.” In: Proc. 7th Internat. Conf. on Distributed Computing in Sensor Systems
(DCOSS’11). IEEE Computer Society, 2011, pp. 1–8. doi: 10.1109/DCOSS.
2011.5982163 (cit. on pp. 11, 22, 29, 31, 103, 104).

[138] Jiguo Yu, Lili Jia, Wei Li, Xiuzhen Cheng, Shengling Wang, Rongfang Bie,
and Dongxiao Yu. “A Self-Stabilizing Algorithm for CDS Construction with
Constant Approximation in Wireless Networks under SINR Model.” In:
Proc. 35th Internat. Conf. on Distributed Computing Systems (ICDCS’15). 2015,
pp. 792–793. doi: 10.1109/ICDCS.2015.112 (cit. on p. 12).

[139] Yan Zhang, Honglin Hu, and Jijun Luo. Distributed antenna systems: open
architecture for future wireless communications. CRC Press, 2007 (cit. on p. 15).

[140] Megat Zuhairi, Haseeb Zafar, and David Harle. “On-demand routing with
unidirectional link using path loss estimation technique.” In: Proc. Wireless
Telecommunications Symposium (WTS’12). 2012, pp. 1–7. doi: 10.1109/WTS.
2012.6266131 (cit. on p. 22).

161

http://dx.doi.org/10.1007/978-3-642-31104-8_10
http://dx.doi.org/10.1007/978-3-642-31104-8_10
http://dx.doi.org/10.1109/INFCOM.2013.6567048
http://dx.doi.org/10.1016/j.tcs.2014.05.016
http://dx.doi.org/10.1109/DCOSS.2011.5982163
http://dx.doi.org/10.1109/DCOSS.2011.5982163
http://dx.doi.org/10.1109/ICDCS.2015.112
http://dx.doi.org/10.1109/WTS.2012.6266131
http://dx.doi.org/10.1109/WTS.2012.6266131

C U R R I C U L U M V I TÆ

Name Fabian Fuchs

Date of Birth 2 June 1987

Place of Birth Sinsheim, Germany

Nationality German

04/2014 – 07/2014

Research intern at Microsoft Research Silicon Valley in
Mountain View, California, USA.

since 04/2012

Ph.D. student and research assistant in the research
group Algorithmics of Prof. Dr. Dorothea Wagner.
Faculty for Informatics, Karlsruhe Institute of
Technology (KIT), Karlsruhe, Germany

03/2012

Diploma (equiv. to Master’s degree) in computer science
at the Faculty of Informatics, KIT, Karlsruhe, Germany

10/2007 – 03/2012

Studies of Computer Science at the Faculty of
Informatics, KIT, Karlsruhe, Germany (previously:
Karlsruhe University)

06/2006

Abitur (university entrance qualification),
Wilhelm-Maybach-Schule, Heilbronn, Germany

163

L I S T O F P U B L I C AT I O N S

[1] Fabian Fuchs. “Experimental Evaluation of Distributed Node Coloring Algo-
rithms for Wireless Networks.” In Proceedings of the 18th Workshop on Algo-
rithm Engineering and Experiments (ALENEX’16). SIAM, 2016, pp. 30–38. DOI:
10.1137/1.9781611974317.3.

[2] Fabian Fuchs and Roman Prutkin. “Simple Distributed Degree + 1 Col-
oring in the SINR Model.” In Proceedings of the 22th International Collo-
quium on Structural Information and Communication Complexity (SIROCCO’15).
Lecture Notes in Computer Science. Springer, 2015, pp. 149–163. DOI:
10.1007/978-3-319-25258-2_11

[3] Fabian Fuchs. “Brief Announcement: Fast and Simple Node Coloring in
the SINR Model.” In Proceedings of the 2015 ACM Symposium on Princi-
ples of Distributed Computing (PODC’15). ACM Press, 2015, pp. 139–141. DOI:
10.1145/2767386.2767445.

[4] Fabian Fuchs and Dorothea Wagner. “Local Broadcasting with Arbitrary Trans-
mission Power in the SINR Model.” In Proceedings of the 21th International Col-
loquium on Structural Information and Communication Complexity (SIROCCO’14).
Vol. 8576. Lecture Notes in Computer Science. Springer, 2014, pp. 180–193. DOI:
10.1007/978-3-319-09620-9_15.

[5] Fabian Fuchs and Dorothea Wagner. “On Local Broadcasting Schedules and
CONGEST Algorithms in the SINR Model.” In Proceedings of the 9th In-
ternational Symposium on Algorithms and Experiments for Sensor Systems, Wire-
less Networks and Distributed Robotics (ALGOSENSORS’13), Vol. 8243. Lecture
Notes in Computer Science. Springer, 2013, pp. 170–184. DOI: 10.1007/978-
3-642-45346-5_13.

[6] Edith Cohen, Daniel Delling, Fabian Fuchs, Andrew V. Goldberg, Moises Gold-
szmidt, and Renato F. Werneck. “Scalable Similarity Estimation in Social Net-
works: Closeness, Node Labels, and Random Edge Lengths.” In Proceedings
of the ACM Conference on Online Social Networks (COSN’13). Vol. 1. ACM Press,
2013, pp. 131–142. DOI: 10.1145/2512938.2512944.

[7] Fabian Fuchs, Markus Völker, and Dorothea Wagner. “Simulation-based Anal-
ysis of Topology Control Algorithms for Wireless Ad Hoc Networks.” In Pro-
ceedings of the 1st Mediterranean Conference on Algorithms (MedAlg’12), volume
7659 of Lecture Notes in Computer Science. Springer, 2012 , pp. 188–202. DOI:
10.1007/978-3-642-34862-4_14.

165

http://dx.doi.org/10.1137/1.9781611974317.3
http://dx.doi.org/10.1007/978-3-319-25258-2_11
http://dx.doi.org/10.1145/2767386.2767445
http://dx.doi.org/10.1007/978-3-319-09620-9_15
http://dx.doi.org/10.1007/978- 3-642-45346-5_13
http://dx.doi.org/10.1007/978- 3-642-45346-5_13
http://dx.doi.org/10.1145/2512938.2512944
http://dx.doi.org/10.1007/978-3-642-34862-4_14

D E C L A R AT I O N

Ich versichere hiermit, diese Dissertation selbstständig angefertigt und alle be-
nutzten Hilfsmittel vollständig angegeben zu haben. Außerdem versichere ich, ken-
ntlich gemacht zu haben, was aus Arbeiten anderer und eigener Veröffentlichungen
unverändert oder mit Änderungen entnommen wurde.

Karlsruhe, 27. Jan. 2016

Fabian Fuchs

	Dedication
	Acknowledgments
	Abstract
	Deutsche Zusammenfassung
	Deutsche Zusammenfassung
	Contents

	1 Introduction
	2 Preliminaries
	2.1 Graph Theory
	2.2 Models for Distributed Computing and Wireless Communication
	2.2.1 LOCAL and CONGEST
	2.2.2 Protocol Model
	2.2.3 SINR Model
	2.2.4 Related Work in the SINR Model

	2.3 Experiments with Sinalgo
	2.3.1 Experimental Setup and Transmission Probabilities

	Algorithms for the SINR Model
	3 Arbitrary Transmission Powers in the SINR Model
	3.1 Introduction
	3.2 Preliminaries
	3.3 Bounding the Interference
	3.4 Local Broadcasting
	3.4.1 Arbitrary but Fixed Transmission Powers
	3.4.2 Variable Transmission Powers
	3.4.3 On the Factor
	3.4.4 Experimental Evaluation
	3.4.5 Discussion

	3.5 Distributed Node Coloring and MIS
	3.5.1 Directed Communication Graphs
	3.5.2 The Coloring Algorithm
	3.5.3 MW-Coloring for Arbitrary Transmission Powers
	3.5.4 Analysis
	3.5.5 Transmissions are Successful
	3.5.6 Runtime of the Algorithm
	3.5.7 Correctness of the Algorithm
	3.5.8 Asynchronous Node Wake-up
	3.5.9 Maximal Independent Set

	3.6 Conclusion

	4 Distributed (+1)-Coloring in the SINR Model
	4.1 Introduction
	4.2 Model and Preliminaries
	4.2.1 Extending Local Broadcasting:

	4.3 Simple (4)-Coloring
	4.3.1 Analysis of Rand4DColoring
	4.3.2 Asynchronous Simple Coloring

	4.4 Synchronous Color Reduction
	4.5 Asynchronous Color Reduction
	4.5.1 Notation for ColorReduction and MIS
	4.5.2 Analysis
	4.5.3 Discussion

	4.6 Conclusion

	5 Experimental Evaluation of Distributed Node Coloring Algorithms
	5.1 Introduction
	5.2 Considered Algorithms
	5.2.1 Rand4DColoring
	5.2.2 ColorReduction
	5.2.3 MWColoring
	5.2.4 YuColoring

	5.3 Experiments
	5.3.1 Rand4DColoring
	5.3.2 ColorReduction
	5.3.3 MWColoring
	5.3.4 YuColoring
	5.3.5 Correcting Variants
	5.3.6 Performance Comparison of Coloring Algorithms
	5.3.7 Coloring in Dynamic Networks
	5.3.8 Highly Asynchronous Wake-up

	5.4 Conclusion

	Towards CONGEST Algorithms
	6 Simulating CONGEST Algorithms in the SINR Model
	6.1 Introduction
	6.2 Models and Preliminaries
	6.3 Deterministic Local Broadcasting Schedule
	6.4 Simulating CONGEST Algorithms in SINR
	6.4.1 Lower Bound for Edge-CONGEST Algorithms
	6.4.2 On the Size of Messages

	6.5 Conclusion

	7 Improved Distributed Construction of FCDS packings
	7.1 Introduction
	7.2 Preliminaries
	7.3 Distributed FCDS Computation
	7.4 Finding Connector Paths
	7.4.1 Helper Graph Hi
	7.4.2 Distributed Construction of Hi
	7.4.3 Matching Internal Vertices
	7.4.4 From Long Connector Paths to Connected Components

	7.5 Conclusion

	Conclusion
	8 Conclusion
	A Appendix
	A.1 Sinalgo - Patch for SINR Model
	A.2 Distributed Node Coloring: Extending Local Broadcasting
	A.3 Experiments: Other Distributions
	A.4 FCDS-Algorithm: Network and Components

	Bibliography
	Curriculum Vitae
	List of Publications
	Declaration

