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Abstract 

Electric vehicles (EV) are often considered a promising technology to decrease external costs 

of road transport. Therefore, main external cost components are estimated for EV and internal 

combustion engine vehicles (ICEV). These include costs of accidents, air pollution, climate 

change, noise, and congestion. All components are estimated over the product lifetime and, 

where appropriate, differentiated according to fuel type, vehicle size as well as emission 

location and time. The advantage of this differentiation is, however, compensated by high 

uncertainties of most cost estimates. Overall, the external costs of EV and ICEV do not differ 

significantly. Only for climate change, local air pollutants, and noise some advantageous effects 

can be observed for EV. The advantages depend strongly on the national electricity power plant 

portfolio and potentially also on the charging strategy. Controlled charging might allow for 

higher emission reductions than uncontrolled charging of EV. 

Keywords: External costs; Environmental impact; Electric vehicle; Passenger car; Internal 

combustion engine vehicle 

Introduction 
In 2012, almost the entire (99.8 %) global vehicle stock was still based on internal combustion 

engine vehicles (ICEV) using petroleum-based fuels (Clean Energy Ministerial et al., 2013). 

Europe is highly dependent on transport fuels imported mainly from the Middle East and Russia 

(IEA, 2012a) and road transport induces several environmental problems (e.g. acidification and 

eutrophication, ozone alarm, particulate matter, noise nuisance, etc.). Hence, road transport is 

a key sector in the context of environmental protection and energy security. 

Currently, climate change is in the focus of politics, public, and scientific literature. In the 

European Union (EU-27), the emissions of the most relevant greenhouse gas (GHG), carbon 

dioxide (CO2), were reduced by almost 12% between 1990 and 2010, whereas the transport 

sector increased its CO2emissions by 20.6% during the same period. In the new EU member 
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states this increase even reached 58.5% versus a decrease in overall CO2 emissions by 29.5% 

(Eurostat, 2013). These trends are expected to continue, although somewhat weakened (JRC, 

2008). In view of these trends, high technical CO2abatement costs, and the expected change of 

conduct, many studies came to the conclusion that transport will be among the last sectors to 

bring its emissions down below current levels (e.g. Stern, 2006, Annex 7c and Skinner et al., 

2010). On the global scale, the situation is even more severe. The World Business Council on 

Sustainable Development (WBCSD, 2004) expects the global vehicle fleet1 to more than double 

until 2050. This is supported by several other studies (cf.Gomez-Vilchez et al., 2013). 

Electric vehicles (EV) might help to master some of those challenges (e.g.Anable et al., 2012). 

Even though this idea is not new (cf. Hamilton, 1980), the electrification of the road transport 

sector is said to be an ecologically promising pathway. Some studies show that the marginal 

abatement costs for GHG emissions are lower compared to ICEV (Hacker et al., 2009, and TNO 

et al., 2006). Needless to say, EV have considerable external costs which highly depend on the 

electricity generation during the EV’s lifetime and for the construction of the vehicle and battery 

(e.g. Bickert and Kuckshinrichs, 2011). Besides the impact on GHG emissions there are several 

other influences on the environment and the society, which are not jet explicitely considered in 

the users’ utility - and are therefore extrenal costs. Economic concepts for measuring and 

internalising external costs seem convenient to identify these effects (cf. Proost and Van 

Dender, 2012). We therefore apply this concept in the following and compare the external costs 

from EV with those from ICEV. 

Even though EV have been existing as long as ICEV, they were rather insignificant during the 

last century and gained relevance in recent years only. This recovery was mainly driven by the 

pressure of rising GHG emissions and high fuel dependency of industrialised countries as well 

as by strong breakthroughs in battery development (cf. Nykvist and Nilsson, 2015). To date, a 

number of studies have dealt with the environmental impacts of EV – most of them focusing 

on CO2 emissions (e.g. a broad literature overview by Hacker et al., 2009). In addition, first in-

depth studies (e.g. Torchio and Santarelli, 2010) were published, with some even using life 

cycle assessment (LCA) approaches (cf. Hawkins et al., 2012a,b; Messagie et al., 2010; Lane, 

2006). For Germany, e.g. Helms et al. (2013), Zimmer et al. (2011), and Peters et al. 

(2012) provide first analyses. However, current literature remains at the level of average driving 

cycles, averaging urban and rural travel. In the discussion on charging vehicles according to 

their local and temporal impact, as promoted by the European Commission’s vision of marginal 

social cost pricing (MSCP) for all transport modes, more disaggregated figures of the external 

costs of EV in comparison to ICEV are needed. The present paper aims at shedding some light 

on this issue taking into account the transport and energy sectors. 

https://doi.org/10.1016/j.trd.2015.09.022
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We are well aware that environmental and climate issues are important challenges for the 

transport sector, but do not capture completely the social burden of transport. Current policies 

and visions on sustainable transport try to get cars completely out of the city centers (cf. Anas 

and Lindsey, 2011) – a place where EV have their main environmental advantage over 

traditionally powered cars. We also pay attention to safety and congestion issues. Space 

consumption and the separation of cities by busy roads will be discussed qualitatively. 

Furthermore, our analysis will focus on pure battery electric vehicles (BEV) even though other 

EV, such as plug-in hybrid electric vehicles (PHEV) or range-extended electric vehicles 

(REEV), will probably have a much higher market potential (Kay et al., 2013).  Their emissions, 

however, are somewhere between the ICEV and the BEV.  

The structure of this paper is as follows: We give a short introduction to external costs in the 

next section, before outlining current external costs of ICEV (i.e. external costs of accidents, 

air pollution, climate change, noise, congestion as well as other external costs) in chapter three. 

As the market share of EV seems to be rather low before 2030 and as vehicle technology as 

well as electricity consumption will improve until then, we give an outlook on external costs 

until 2030. Then, in chapter four, the current and future external costs of EV are given. A 

comparison of the external costs of ICEV and EV completes this paper. 

 

External costs 

 
Overview 

Challenges associated with measuring external costs of transport are serious (cf. Verhoef, 

1994). However, in order to compare the environmental sustainability of different modes and 

technologies, the concept of external costs is hardly evitable. Their (uniform) assessment is 

claimed to be necessary for reasons of equity and international comparisons (e.g. CE Delft et 

al., 2008). The challenges in assessing external costs are mainly based on the different impacts 

due to individual local conditions (e.g. different vulnerability or population density) or complex 

interdependencies of the emission and its impact (e.g. the statistically proven impact of noise 

emissions on life time or the evaluation of long-term impacts of climate change) (cf. Jochem 

and Rothengatter, 2011). 

In the past, approaches to measuring external costs temporarily prevailed. However, methods 

for willingness to pay and willingness to accept concepts, such as stated or revealed preference 

approaches, were criticised strongly throughout the 1990s (e.g. by Rosenthal and Nelson, 1995; 

Hausman, 1993; Diamond and Hausman, 1994). Even the more recent contingent valuation 

approach is increasingly criticised (e.g. Hausman, 2012). The development of new methods 

https://doi.org/10.1016/j.trd.2015.09.022
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(e.g. with the help of data envelopment analysis) is continuing (Kuosmanen and Kortelainen, 

2007). However, emergence of an all-convincing approach remains highly unlikely. 

Besides these challenges in the evaluation methodology, the considered time horizon 

(cf. Fouquet, 2011), system boundaries, technical measurement, cost category (e.g. marginal 

vs. average), equity, handling of subjective evaluations, etc. are highly contentious issues when 

assessing external costs. They may be obstacles when comparing different results. 

Notwithstanding the concept of external costs serves as a basis for many environmental policies. 

Therefore, comprehensive best practice approaches for different cost categories (e.g. from CE 

Delft et al., 2008:8) have been used so far to cope with this contradiction and to give sound 

estimates for their internalization (e.g. in Maibach et al., 2008; UBA, 2012; Korzhenevych et 

al., 2014). Despite these uncertainties, we compare the external costs of ICEV with those of EV 

and try to indicate the corresponding uncertainties in the following sections. We consider 

(where possible) the product lifetime of the vehicle by LCA and of the fuel by comprehensive 

well-to-wheel (WTW) analysis data. Hence, the following LCA includes the emissions caused 

by well-to-tank (WTT) activities and tank-to-wheel (TTW) emissions during vehicle use as well 

as the emissions associated with vehicle production, maintenance, and disposal. 

We focus our analysis on Europe, because – according our literature review– only for European 

road transport comprehensive cost factors in high resolution are available. Only a few values 

are found for other countries, however, often restricted to certain areas or situations. There is a 

focus on developing countries, mainly for Asia and Latin America, where the problem of urban 

air quality is most evident (e.g. Sen et al., 2010, quantify main externalities for Dehli, Cravioto 

et al., 2013, adopt European approaches to Mexico or Tseng et al., 2014, relate the development 

of external costs to the introduction of road tolls in Taiwan). For North America Delucchi and 

McCubbin (2010) compile national estimates of transport externalities in the United States 

and Litman (2014) broadens the methodology and evidence for assessing the social costs and 

benefits of transport and urban development for Canada and the United States. 

 

Methodology 

The assessment makes use of latest European research relating to external costs. We concentrate 

on European, and more precisely on German assessments, as in particular for EV external 

impacts are closely related to power generation and national power plant fleets are very 

heterogeneous in Europe. Transferring our external cost estimates to other countries seems 

highly inappropriate. 

Before we determine the specific cost estimates we specify main categories. First, we consider 

the following four main external impacts (on both ICEV and EV): 

https://doi.org/10.1016/j.trd.2015.09.022
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• Accident consequences: We value the loss of human lives or impairment of health according to 

the degree of severity. 

• Air pollution: The impact from air pollution considers emissions of nitrogen oxides (NOX), 

carbon monoxide (CO), non-methane volatile organic compounds (NMVOC) as well as of 

particles below 10 μm (PM10) and below 2.5 μm (PM2.5). 

• Climate change: We consider all emissions of GHG expressed in CO2equivalents. 

• Noise exposure: We mainly distinguish between persistent exposure above 55 dB(A) 

night/65 dB(A) day and above 70 dB(A) day and night with the corresponding health impacts. 

 

Other external impacts, such as further impacts of vehicle production (costs of up- and 

downstream processes), perception and use of soil and groundwater pollution, costs of energy 

dependency, the deterioration of nature, landscape, natural habitats, and urban fabric by the 

road infrastructure as well as the financial burden of public households resulting from the 

construction and maintenance (which is partly internalized) of roads, are neglected, as they 

hardly contribute to the total external costs and do not differ considerably between ICEV and 

EV. 

Second, most cost estimates are differentiated with respect to the following characteristics  

• Fuel type (gasoline, diesel, and electricity): For ICEV we focus on gasoline (and values for diesel 

added where appropriate). Other fossil fuels (such as LPG or CNG), biofuels, hydrogen, and 

different forms of hybrid fuels are not considered here. 

• Vehicle size (small and medium): We assume a trend towards smaller vehicles and assume that 

large cars (>2 l engine displacement) will not be in the focus of manufacturers of BEV in the 

beginning of market penetration (Peters et al., 2012 and Mock et al., 2009). We do not consider 

light vehicles, such as bicycles, scooters, and motor cycles, and delivery vehicles – even though 

EV have already reached considerable market shares in these segments in some countries. 

• Emission location (urban, rural): This differentiation is mainly due to the corresponding 

population density: Local pollutants (e.g. air pollutants, noise) should be valued according to 

the number of potential victims. Furthermore, the difference in the driving cycle may affect the 

amount of emissions, too. Consequently, also global emissions (e.g. CO2emissions) are affected 

by this differentiation. 

• Time of day of emission (day peak, day off-peak, night): This distinction is particularly relevant 

to congestion and noise impacts. Also accident rates and the exposure of residents to air 

pollutants may vary over the day. However, these variations are not investigated in detail in 

current literature and, hence, excluded. Furthermore, the electricity mix might differ between 

day and night time. 

https://doi.org/10.1016/j.trd.2015.09.022
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With regard to the people’s willingness-to-pay, other cost items, population density, and 

geographical structures, we refer to the German conditions in the reference year of 2010 and 

our forecast for 2030. 

 

External costs of ICEV 

 
External costs of ICEV in 2010 

The latest study “External Costs of Transport in Europe” conducted by CE Delft et al. (2011) on 

behalf of the International Union of Railways (UIC) and the initial issue of the European 

Commission’s Handbook on the Estimation of the External Costs of Transport (Maibach et al., 

2008) are considered highly valuable bases for the estimation of the external costs of transport 

for ICEV. Recently, the methodology was developed further by the German Federal 

Environmental Agency (UBA, 2012). The differentiated average cost values reported for the 

year 2008 in the study are transferred to 2010 values for Germany in order to make them 

comparable to latest estimates for EV. The cost values of the studies are given for the years 

2000 (Maibach et al., 2008) and 2008 (CE Delft et al., 2011) for Europe. From these, we extract 

cost figures for Germany, apply the given country adjustment factor of 1.16 to average 

European values, and finally deflate them to the year 2010 using price indices of 16.7% from 

2000 to 2010 and 0.5% from 2008 to 2010 (according CE Delft et al., 2011). The subsequent 

sections report on the valuation principles and results by cost category, followed by summary 

tables. 

Accidents 

The non-monetized consequences of traffic accidents make up the largest share in external costs 

of road passenger transport. Among these, the value attached by the society to preserving human 

health and life is the most expensive component by far. This so-called “value of statistical 

life” (VSL) includes utility losses for the victim as well as suffering and grief of relatives and 

friends (CE Delft et al., 2011). When adapting the VSL of 1.5 million € proposed by CE Delft 

et al. (2008) to 2010 values in terms of price inflation and PPP adjustment according to CE 

Delft et al. (2011), a European value of 1.67 million € results. With a PPP adjustment for 

Germany, a German VSL of 2 million € is obtained for 2010. For severe injuries, 13% (230,000 

euros) and for slight injuries 1% (20,000 euros) of the VSL is used according to Maibach et al. 

(2008). 

The marginal cost principle, however, goes beyond the counting and assessment of incidents 

and the allocation of costs to user groups: It measures the impact of an additional vehicle 

entering the road on total accident costs. Two very different outcomes may result. On the one 

hand, an increasing number of vehicles leads to a rising number of accidents (i.e. higher total 

https://doi.org/10.1016/j.trd.2015.09.022
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accident costs) due to the increase in mutual interferences. On the other hand, increasing traffic 

density implies lower speeds and, thus, reduces the severity of crashes and, consequently, the 

number of fatal injuries. We argue that for a very empty infrastructure the first principle 

outweighs the second and vice versa. 

The UNITE project (Nash, 2003) studied the interrelationship between traffic density and 

accident costs using data from Switzerland. The results reveal that the net effect of additional 

vehicle kilometres (vkm) on accident costs is positive, but that the resulting marginal costs for 

all road categories (15.6 €/1.000 vkm) are well below the corresponding average accident costs 

(43.9 € per 1.000 vkm) (i.e. the corresponding cost function is concave). Table 1presents the 

highly diverging results of CE Delft et al. (2011), updated to 2010 by road class. 

Table 1 Marginal external accident costs by road class 2008 (€2010 per 1000 vkm) for Germany. 

Source: CE Delft et al. (2011), Table 33, inflated to 2010 with consumer price index according toDeStatis 

(2013). 

Road type Marginal accident costs 

Motorways 4.16 

Rural roads 21.7 

Urban roads 55.1 

All roads 15.8 

 

Air pollution 

Air pollutants affect health and cause cardiovascular and respiratory diseases. These can be 

valued by the loss of healthy life years based on epidemiological studies and dose–response 

relationships derived from them. Further impacts are building and material damages, crop 

losses, impacts on biodiversity and ecosystems (CE Delft et al., 2011). The most relevant 

substances are particulate matter (PM), nitrogen oxides (NOX), carbon monoxide (CO), and 

non-methane volatile organic compounds (NMVOC). Particulate matter appears in different 

particle diameters: PM10 includes all particles smaller than 10 μm mainly due to tire abrasion 

and re-suspension, while PM2.5 denotes particles below 2.5 μm mainly stemming from fuel 

combustion. The share of PM2.5 in the PM10 cocktail from ICEV is estimated to be 70% by UBA 

(2012). 

The damage potential of air pollutants – as well as of GHG – can be determined by two 

approaches: The impact pathway approach as developed by the ExternE in the mid-1990s 

(Friedrich, 2005) or the eco-inventories or LCA approach (Guinée et al., 2011). While the 

impact pathway method is well suited for tracking emission, dispersion, re-formation, and 

absorption of pollutants from the source to people or objects affected at different times and 

https://doi.org/10.1016/j.trd.2015.09.022
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under varying topographical and climate conditions, the LCA aims at analysing the composition 

of materials and their environmental damage potential. Hence, the impact pathway approach is 

typically applied to TTW emissions (e.g. Jensen et al., 2008), whereas the LCA approach is 

better suited for the vehicle production and WTT emissions (e.g. Hawkins et al., 2012a,b). 

WTT and TTW (and, hence, WTW) emissions are directly linked to the usage of the vehicle 

and, thus, count when estimating the marginal external costs of transport. Production and 

disposal are mainly one-off emissions and, hence, considered only when computing the average 

external costs of transport. However, a vehicle with a longer lifetime usually has lower average 

costs (except if comprehensive investments are necessary). 

Tank-to-wheel emissions of ICEV 

The TTW emissions of ICEV are mainly dependent on the fuel-type, the combustion engine, 

and the filter technologies. The corresponding monetized impact is determined mainly by an 

assumption of cost factors and number of affected persons. Therefore, the cost factors for 

metropolitan areas are significantly higher than for non-urban areas (cf. Jensen et al., 2008). 

However, the uncertainty is high. For Germany, the latest assessment (by the impact pathway 

approach) is provided by the update of the methodological convention on estimating the 

external costs of energy use by the Federal Environmental Agency in UBA (2012). The study 

only provides local differentiations for PM emissions, which are valued three times higher in 

urban areas than in inter-urban transport for both particle sizes (i.e. PM10 and PM2.5). 

The corresponding cost estimates for particulate matter significantly differ from other studies, 

such as for example CE Delft et al. (2011) (cf. Table 2). This difference is non-systematic: The 

German values from UBA (2012) are significantly higher for PM2.5, but lower for PM10. As for 

other pollutants, the differences are minor and more systematic, indicating that the definition 

of PM10is not the same across the studies. It either denotes the mix of all particles smaller than 

10 μm or only those from 2.5 to 10 μm. In addition, the studies are based on varying 

assumptions regarding population density and/or the value of a healthy life year lost. 

Table 2 Assessment of air pollutants by transport (€2010 per t). 

Sources: UBA (2012) and CE Delft et al. (2011), Table 7, values for Germany, transformed to 2010 values using 

the DeStatis (2013) consumer price index. 

Pollutant CE Delft et al. (2011) UBA (2012) 

Metropolitan Urban Non-urban Urban Inter-urban 

PM2.5 436,410 140,771 85,091 364,100 122,800 

PM10 174,544 56,288 34,077 33,700 11,000 

NOX 14,310 15,400 

https://doi.org/10.1016/j.trd.2015.09.022
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Pollutant CE Delft et al. (2011) UBA (2012) 

Metropolitan Urban Non-urban Urban Inter-urban 

NMVOC 1420 1700 

SO2 11,318 13,200 

NH3 – 26,800 

We quantify the emissions released per vkm for vehicle compliant with the Euro-5 standard in 

order to ensure fair comparison of new electric and gasoline or diesel cars. According to the 

regulations of the European Commission (EC, 2007), the maximum permissible local emissions 

from passenger cars in the New European Driving Cycle (NEDC) differ neither in vehicle size 

nor in weight. Although smaller cars usually emit fewer pollutants, this simplification is 

maintained. When restricting the analysis to the tailpipe emissions regulated by the Euro 

emission standards, we neglect the important category of particles re-suspended from the 

pavement and from brakes and tires. However, this is less problematic, since these emissions 

are mostly independent of the propulsion system. 

Well-to-tank emissions of ICEV 

The emissions of drilling, transporting, and processing of crude oil occur globally, mainly 

outside of populated areas. We use the unit costs per ton of pollutant given for the 

category “industry world” in UBA (2012). Emission factors are taken from IFEU (2011) for 

fossil energy production. Finally, we take fuel consumption rates by size class and fuel type 

from the Handbook Emission Factors for Road Transport (HBEFA) vehicle emission database 

(INFRAS, 2010). With these data, we calculate the average WTT emissions per vkm. Table 

3 shows the results by vehicle and settlement category for both direct (TTW) and upstream 

(WTT) emissions. 

Table 3 Marginal external air pollution costs for Euro-5 ICEV (€2010 per 1000 vkm). 

Source: Own calculations based on different sources. 

Vehicle size and fuel (Euro 5) Metropolitan Other urban Rural 

WTT TTW WTT TTW WTT TTW 

Small gasoline 2.35 2.92 2.18 1.61 1.68 1.36 

Small diesel 1.78 3.19 1.63 1.88 1.18 1.63 

Medium gasoline 2.85 2.92 2.68 1.61 2.18 1.36 

Medium diesel 2.22 3.19 2.07 1.88 1.63 1.63 
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Vehicle size and fuel (Euro 5) Metropolitan Other urban Rural 

WTT TTW WTT TTW WTT TTW 

Average values 2.30 3.06 2.14 1.75 1.67 1.50 

Average values (WTW) 5.36 3.89 3.16 

These values from 1.36 up to 3.19 € per 1.000 vkm are significantly lower than the marginal 

costs of gasoline cars across all size classes and emission standards reported in CE Delft et al. 

(2011) of 148 €/1.000 vkm in metropolitan areas and 49 €/1.000 vkm on rural roads. The 

discrepancy can be explained by the great uncertainty of the local impacts of air pollution at the 

location of fossil fuel extraction and production. In case drilling and refinery take place close 

to settlement areas, as e.g. in Nigeria, the impacts on people’s health are enormous. By contrast, 

as long as no major accidents occur, off-shore drilling causes only little impacts on people. 

Climate change 

The impacts of GHG emissions from road vehicles on global warming are independent of their 

timing and location. Moreover, the emission standard of vehicles, i.e. filtering of exhaust fumes 

in the tailpipe, does not affect the GHG emissions directly. However, fuel efficiency and 

(adding) biofuels may decrease GHG emissions considerably – even if these measures seem to 

be limited today. Hence, for assessing the global warming impact of ICEV, two parameters are 

relevant: Fuel consumption and GHG content (including WTT emissions) of the fuel. The 

analysis of the GHG content can be limited to the global warming potential of CO2 (i.e. neglectig 

other GHG and focusing on the carbon content of the fuel, which reacts to CO2 during the 

combustion process), as the share in the global warming potential of non-CO2 GHG emissions 

amounts to 0.3 % only for delivery vans and to 1.2% for passenger cars (Peters et al., 2012). 

However, the monetization of the global warming potential is crucial (cf. Jochem and 

Rothengatter, 2011). 

For internalizing the economic impact of GHG emissions, the damage cost approach seems to 

be more appropriate at first. However, due to the long persistence of CO2 in the atmosphere 

(about 90 years), the multitude of impacts all over the globe, and potential reaction mechanisms 

of human societies and nature, reliable estimations are hardly possible. Moreover, 

internalization is associated with the problem of using the “right” discount rate (inter-

generational equity) and the “right” valuation of damages in all affected continents (intra-

generational equity) (cf. Jochem and Rothengatter, 2011). For these long time horizons, the 

discount rate has a very significant impact on the corresponding monetary values (cf. Stern, 

2006 and Nordhaus, 2007). Consequently, the right discount rate no longer is an economic 

question, but rather a question of inter-generational equity (Stirling, 1997) and, hence, an 

ethical question (Nordhaus, 2007), for which a consensus on the “right” discount rate seems to 

https://doi.org/10.1016/j.trd.2015.09.022
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be impossible. Furthermore, the forecasted impact on countries differs significantly 

(e.g. Anthoff et al., 2009), which affects the intra-generational equity. 

For these reasons, a unique external cost for GHG emissions is highly unlikely and we should 

rather calculate with a range of probable estimates. We use the recommendations made by the 

German Environmental Agency for CO2 emissions (UBA, 2012) (cf. Table 4). These are 

somewhat below the value recommended by CE Delft et al. (2011:49). Due to the underlying 

risks (high uncertainty of high costs) confirmed by the recent IPCC report (IPCC, 2013) and 

the responsibility we should have for future generations, we use the still rather high prices of 

120 €/t CO2. 

Table 4 Marginal external costs of CO2 emissions (€2010 per ton of CO2). 

Source: UBA (2012). 

 Short run Medium run Long run 

2010 2030 2050 

Lower value 40 70 130 

Medium value 80 145 260 

Upper value 120 215 390 

As already mentioned, GHG emissions of fossil fuels during vehicle usage (TTW) are a direct 

function of fuel consumption. The CO2 emissions, however, vary slightly among the fuel types. 

Fuel consumption is mainly determined by the engine efficiency and driving patterns. Here, we 

assume that in metropolitan and urban peak traffic fuel consumption rates are 20% above urban 

off-peak values, while for rural driving patterns consumption rates are 20% lower. 

For the CO2 emissions of the WTT processes, the values from Peters et al. (2012) are used. The 

study reports the ratio of WTT to TTW emissions to be 17% for gasoline and 19% for diesel 

cars. Multiplying these values by the monetary factor of 120 € per ton from UBA (2012), we 

obtain the costs of GHG emissions by vehicle category, fuel concept, and traffic condition 

(cf. Table 5). 

Table 5 Marginal external costs of climate change for ICEV (€2010 per 1000 vkm). 

Source: Own compilations based on different sources. 

Car size and Urban peak Urban off-peak Rural peak & off-

peak 

Fuel WTT TTW WTT TTW WTT TTW 

Mini gasoline 2.59 15.26 2.16 12.72 1.73 10.18 

Mini diesel 2.51 13.15 2.09 10.96 1.67 8.76 

https://doi.org/10.1016/j.trd.2015.09.022
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Car size and Urban peak Urban off-peak Rural peak & off-

peak 

Fuel WTT TTW WTT TTW WTT TTW 

Comp. gasoline 4.08 23.92 3.40 19.93 2.72 15.95 

Comp. diesel 3.72 19.40 3.10 16.16 2.48 12.93 

Average values 3.23 17.93 2.69 14.94 2.15 11.96 

Average values 

(WTW) 

21.16 17.63 14.11 

Noise 

Constant exposure to high levels of environmental noise leads to disturbance and, thus, to a 

decrease in the perceived quality of life as well as to physical health impacts. The stress impact 

of noise pollution can be quantified by stated or revealed preference surveys, e.g. by the 

observation of prices of real estates exposed to different noise levels (cf. Bickel and Friedrich, 

2005 or CE Delft et al., 2011). According to the World Health Organisation (WHO and JRC, 

2011), this includes cardiovascular diseases, cognitive impairment, sleep disturbance, and 

tinnitus. The quantification of these “environmental burdens of disease” (EBD) requires 

estimating noise emission levels, the number of affected people, and appropriate dose–response 

functions. 

The level of annoyance and health impacts on a particular person exposed to high sound 

volumes depend on the noise level in decibels (dB), its frequency spectrum, its dynamics, the 

time of day, and the physical and psychological condition of the person affected. Exposure–

response functions for transportation noise show that people are annoyed by noise at levels 

below 55 dB (Miedema and Vos, 1998, 1999 and Finegold et al., 1994; Brandt and Maennig, 

2011) and that elimination of noise annoyance occurs at 37–40 dB (and theoretically even 

lower). In practice other noise sources, e.g. noise from neighbours, may dominate road noise. 

The German Environmental Agency recommends target levels of 55 dB(A) at daytime and 

45 dB(A) at night, while in the long run 50 and 40 dB(A) should be reached (UBA, 2012). The 

lower value for night-time is based on the significant higher sensitivity especially for areas with 

a high population density (Tobías et al., 2015). 

With threshold levels of 55 and 45 dB(A), CE Delft et al. (2011) calculate 1.55 billion € of 

annual noise costs for Germany in 2008, of which 671 million €are caused by passenger cars. 

This corresponds to an average of 0.8 € per 1.000 passenger kilometres or 1.2 € per 1.000 vkm. 

According to the procedure proposed by CE Delft et al. (2008), the study derived marginal costs 

by applying the German transport noise model to typical traffic situations. Table 6 presents the 

updated values from CE Delft et al. (2011) – even if the local impact can significantly differ 

https://doi.org/10.1016/j.trd.2015.09.022
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depending on the local conditions (cf. Bickel et al., 2003). Due to the strongly non-linear 

perception of noise by the human ear, the recognised loudness of a vehicle strongly depends on 

the prevailing background noise. In other words: The higher the traffic density is, the less 

disturbing is an additional car. Accordingly, by far the highest marginal noise costs are obtained 

in night time where traffic density is low and the people’s sensitivity is high. 

Table 6 Marginal external noise costs for ICEV (€2010 per 1000 vkm). 

Source: Own compilation based on CE Delft et al. (2011), Table 37; costs adjusted from European average 2008 

to Germany 2010 by PPP-adjusted GDP/capita and consumer price index. 

 Urban Suburban Rural 

Day peak 10.5 0.6 0.1 

Day off-peak 25.5 1.6 0.2 

Night (off-peak) 46.5 3.0 0.5 

 

Congestion 

External costs of congestion occur when users plan their mobility individually but the required 

resource, the infrastructure, is (temporary) too scarce to fulfil this mobility demand. Even 

though the initiator bears already a share of these costs (own delay), she or he contributes to 

this congestion and therefore impose costs to other traffic participants (intra-sectoral external 

costs) and simultaneously to the society (the transport system becomes more inefficient, which 

leads to welfare losses) (cf. Rothengatter et al., 2015). The basic principle of the external costs 

of congestion was formulated by Pigou (1920) a century ago in the form of the famous “Pigou 

problem” of traffic assignment on two routes between origin and destination. The congestion 

externality is caused by involuntary interactions among road users and the fact that they do not 

take into account the impacts of their route choices on other users. Main cost elements in this 

case are time losses and their economic value, plus speed-dependent fuel costs. The value of 

travel time strongly varies with the travel purpose. CE Delft et al. (2011) suggest values of time 

between 7 € per hour for leisure travel and commuting and up to 20 € per hour for business 

trips. Other additional costs, i.e. environmental costs, traffic accident costs, and fuel 

consumption costs, are negligible (Qingyu et al., 2007). Increasing fuel costs due to stop-and-

go conditions usually amount to some 10 € of time costs. 

Nonetheless, the internalization remains challenging. As shown by CE Delft et al. (2008), the 

velocity in congestions might be strongly non-linear and in cases of complete breakdown, the 

corresponding marginal costs per vehicle kilometre increase to infinity. Thus, it seems hardly 

possible to identify reasonable and empirical marginal congestion costs. Therefore, CE Delft et 

al. (2011) derive the corresponding estimates by meta-studies comparing area-wide model 

https://doi.org/10.1016/j.trd.2015.09.022
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applications. These values in peak times may range between more than 2 € per vkm in central 

urban areas to 0.3 € per vkm in small towns and 0.1 € in rural areas (Maibach et al., 2008; CE 

Delft et al., 2011) (cf. Table 7). 

Table 7 Marginal external congestion costs for ICEV (€2000 per vkm). 

Source: CE Delft et al. (2011:108), Table 38. 

  Large urban areas Medium urban areas Rural areas 

Motorway 0.5 0.25 0.1 

Collectors 0.5 0.3 – 

Local street/trunk road 0.75–2 0.3 0.05 

Average values 0.79 0.28 0.08 

Summary of cost estimates for internal combustion engine 

vehicles 

So far, all cost estimates have been subject to uncertainties resulting from different market 

situations, differences in spatial circumstances, and the chosen internalization method. Even 

though the magnitudes differ widely, we can state that the main cost components of external 

effects of passenger cars are congestion, accidents, noise and air pollution costs. Climate change 

costs (in spite of the huge specific costs assumed) reach a minor share only. Fig. 1 gives cost 

estimates for all cost components on the logarithmic scale. 

 

Fig. 1 Maximum, minimum, and standard external costs of ICEV in €2010 per 1.000 vkm. 

In order to compare the two technologies, we aggregate the average of the marginal external 

cost values for ICEV. For this, we need assumptions of the total mileage of the vehicle, i.e. 

200,000 km, and of the share of inner-city mileage. According to a German mobility survey, 

26% of average mileage is driven in cities and 8% during night time (from 9 p.m. to 6 a.m.) 

(Infas and DLR, 2010: 46). Therefore, the external costs for a life cycle of a vehicle amount to 

about 65,000 €for ICEV for standard values (cf. Fig. 2 below). The most significant shares in 
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these external costs per vehicle are congestion (67%), vehicle production (16%), and accidents 

(10%). 

 

Fig. 2 External costs per ICEV in 2010 and 2030 (own calculation). 

Extrapolation of external costs of ICEV to 2030 

For analysing the potential of EV to reduce the social and environmental burden of road 

transport, we estimate external costs of ICEV in 2030. The corresponding forecast for EV will 

be made in the subsequent section. 

The forecast is considering ceteris paribus conditions, i.e. as many as possible of the 

determinants of external costs, which are not linked to the vehicle propulsion system, are kept 

constant. Furthermore, we do not expect breaking innovations in the field of passenger cars 

before 2030. These are in particular driving cycles, vehicle stock, population densities, 

willingness-to-pay values, etc. We then express the cost change per vehicle based on the 

following assumptions: 

• Traffic safety: According to new vehicle technologies and the European safety vision of zero 

fatalities in transport by 2050 (EC, 2011), we assume for 2030 50% less fatalities and, hence, a 

reduction of external accident costs by the same magnitude. 

• Air pollution: Our values for 2010 refer to Euro-5 vehicles. As the external costs are already low 

and as further reduction by technology seems to be limited, we assume a deceleration of Euro 

standards and, hence, only marginal decreasing in external costs by 10% until 2030. 

• 

Climate change: Even though we assume – forced by legislation – a further increase of 

fuel efficiency of about 40% (from about 6 to 3.5 litres gasoline per 100 km (40- 67 MPG)), 

the increase in unit costs per ton of CO2 from 120 to 200 € is balancing the effect. Therefore, 

the external costs of climate change remain stable until 2030. However, a potential 

breakthrough in bio-fuels might change this value significantly. 

• Noise: As engine and tire technology will continue to result in more silent cars, we assume a 

further decrease of noise emissions and correspondingly of external costs of noise by 10% until 

2030. 

https://doi.org/10.1016/j.trd.2015.09.022
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• Vehicle production: We assume a further decrease of CO2 emissions during vehicle production 

(mainly due to a decrease of emissions for electricity generation) from currently 6 to 5 tons per 

vehicle in 2030. However, the assumed increase of CO2 prices to 200 € leads to an increase in 

external costs of 1.000 € per vehicle. 

• Congestion: For congestion we assume a heterogeneous development. Whereas the values in 

cities will decline by 10% due to better public transport systems, other alternatives, better 

communication systems, and more restrictive regulations for ICEV, we assume a slight increase 

of external costs in rural areas of 10% until 2030. 

• Rural vs. inner-city: Furthermore, we assume a decreasing share of trips within the city from 

0.26 to 0.2. 

• Up- and downstream processes: We assume a small decrease of costs by 10% due to an 

increasing awareness of these issues. 

 

Even though all our assumptions are rather vague, the following tendencies can be derived: The 

improvements in congestion costs (from about 53,000 to 49,000 € per vehicle – not illustrated 

in Fig. 2) and in accident costs contribute to decreasing external costs in passenger road 

transport. All other improvements are comparatively marginal (cf. Fig. 2). The overall external 

costs per vehicle decrease only from about 65,000 (11,600) to 57,000 (8.200) € per vehicle 

(without external costs of congestion). 

 

External costs of electric vehicles 
Despite the long history of EV, the estimation of their external costs is rather unknown. Due to 

the technology’s recent revival, the interest in this issue increased again (e.g. Bickert and 

Kuckshinrichs, 2011). Comprehensive studies of external effects in the field of electricity 

generation, which contribute the most during the EV life cycle, were accomplished during the 

ExternE project (e.g.Friedrich, 2005; Krewitt, 2002 and Krewitt and Schlomann, 2006; 

Sundqvist, 2004). In the following sections, we refer mainly to those contributions. 

 

External costs of electric vehicles in 2010 

Accidents and congestion 

The external costs of EV in the two cost categories of accidents and congestion do not 

significantly differ from those of ICEV. On the one hand some authors argue that the number 

of accidents at low speed (below 25 km/h; 15 mph) might rise due to the silent rolling of EV 

(e.g. Stelling-Kończak et al., 2015) – even though the problem seems to be marginal (Cocron 

et al., 2011; Dudenhöffer et al., 2011). On the other hand, the maximum speed of EV might be 

lower (or drivers avoid high speed due to inefficiencies), which could decrease the severity of 
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accidents at high speeds. Safety issues relating to the drivers of serial EV are comparable to 

ICEV (Paine, 2011). We therefore argue for equal external cost factors for EV and ICEV. 

Air pollution 

External costs of air pollution by EV include several pollutants emitted during electricity 

generation, i.e. WTT. TTW emissions are negligible – only some particles from tire abrasion 

or from the brakes can be measured (Garg et al., 2000) – and are reduced by recuperation 

processes. The WTT emissions of EV differ as a function of the time and location of the 

analysed charging process. This is usually advantageous for EV, as the emissions of air 

pollutants take place when the people stay at home and notably in less densely populated areas, 

which has a huge effect on external costs, as the impact especially from PM emissions is of 

very local character (Funk and Rabl, 1999). For other secondary pollutants (e.g. nitrate and 

sulphate aerosol particles), this effect is somewhat limited, as their formation takes some time 

and occurs over distances of tens to hundreds of kilometres (Funk and Rabl, 1999). 

For measuring the additional emissions through the increased electricity demand of EV, four 

assessment principles can be distinguished (Jochem et al.,2015): 

1. Annual average mix: A straightforward method would be to multiply the average annual 

emissions per energy unit (e.g. gram of NOX per kWh) by the electricity demand from EV (in 

kW h). 

2. Weighted average mix: As the energy mix might change during the day, it might be reasonable 

to integrate a weighting of the energy mix according to the amount of electricity demand from 

EV. 

3. Marginal electricity mix: The additional electricity demand of EV leads to an increase of local 

air pollutants from electricity generation. This marginal electricity mix is based on different 

power plant typs with different specific emission factors.  

4. Balancing a sugar-coated energy mix: It is ensured that the sum of the additional electricity 

demand of EV is generated by clean energy generation (e.g. from renewable energy sources). 

In times of expensive electrical storage systems, this only seems to be possible by a hypothetical 

balancing of energy. 

 

The resulting emissions may differ considerably, as the emissions from the 

underlying technologies  as well as their distance from settlement areas differ, too. Furthermore, 

the factors relevant for monetizing might differ with respect to population density, national 

specifications, time, etc. 

In Germany, emissions depend strongly on the charging time. The main impact on national 

emissions over time is caused by the share of electricity generation by renewable energy 

resoures (cf. Fig. 5). Most charging processes would mainly proceed in the early evening hours 
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when most vehicles arrive (infas and DLR, 2010) and the conventional electricity demand is 

already high. This would increase the share of peak-load power plants. A charging process 

automatically postponed to the night could lead to a decrease of emissions (e.g. by increasing 

the feed-in of electricity from renewable energy ressources (cf.Jochem et al., 2015). 

When multiplying the volumes of electricity generation during all charging processes by the 

corresponding electricity consumption and the fuel-specific external cost values given 

by Sundqvist (2004), we obtain the corresponding external effects during the vehicle use 

phase. Sundqvist (2004) highlights the uncertainty of these factors due to different 

methodologies applied (cf. e.g. Schleisner, 2000) and differences in local or regional costs (cf. 

e.g. Owen, 2006, and Stirling, 1997). However, Sundqvist's cost estimations do not consider 

recent power plant technology, but refer to literature from the 90ties. Our approach neglects 

additional emission through ramp-up and ramp-down processes – which might increase in the 

future German energy system due to an increasingly volatile electricity generation by wind and 

photovoltaic. 

Therefore, the formula for estimating the external costs of air pollutants and climate change 

during the usage phase of the EV (ECEV,use) is as follows: 

 

(1) 

  

where αi,t is the share of electricity generation at time t∈T from fuel i∈ I={natural gas, lignite, 

hard coal, nuclear, wind, ...}, cfi,t is the specific internalization factor for the fuel i at time t, 

and   is the electricity demand by the EV at time t. Hence, the overall external costs of an 

average EV in Germany can be estimated by assuming an expected electricity demand of an 

EV of about 40 MWh (200,000 km times 0.2 kWh/km) during its lifetime and multiplying this 

by the external cost estimates for air pollutants of an average German electricity generation mix 

of about 5 €-ct per kWh (obtained from the median emission values for electricity generation 

technologies given by Sundqvist, 2004, and the average electricity generation given by ENTSO-

E, 2013). This results to 1.836 € per vehicle. Hence, the kilometer-specific values amount to 

about 8 € per 1.000 vkm in Germany, excluding GHG emissions. As the energy efficiency of 

EV is higher in urban than in rural areas (Hacker et al., 2009:37), we assume for Germany 

external costs of air pollution for EV of 7.2 € in urban and 9.9 € per 1.000 vkm in rural areas. 

In other countries (especially with a lower share of fossil fuel power plants) the corresponding 

costs are significantly lower.  

 

Climate change 

As the air pollutants, GHG emissions are strongly dependent on the current electricity mix 

(cf. Fig. 5, Jochem et al., 2015). We refer in the following to the average electricity mix and 
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neglect the marginal consideration or  interactions with the current EU-ETS cap although we 

know about their momentousness (cf. Jochem et al., 2015 Heinrichs et al., 2014, Heinrichs et 

al., 2014). These average electricity mixes differ strongly between countries. In Europe, for 

instance, the specific CO2 emissions range from 0.03 (Sweden) to 0.78 kg CO2 per kW h 

(cf. Table 8). This corresponds to specific CO2 emissions of 6–156 g of CO2 per vkm. The 

marginal external costs of CO2of 120 € per ton (see above) lead to 1 up to 19 € per 1.000 vkm. 

The German values are somewhere in the middle and correspond to external costs of about 

11 € per 1.000 vkm. Together with the more efficient use in urban areas (see above), we assume 

14.8 € for rural and 9.8 € per 1.000 vkm for urban areas. 

Table 8 Specific CO2 emissions by EV in different European countries in 2010. 

Source: IEA (2012b), Assumption: Electricity consumption of EV is 0.2 kW h per km. Values above the current 

European regulation (130 g CO2 per km) are shown in bold. 

 Average CO2 emissions in 

Country kg CO2/kW hel g CO2/km 

Austria 0.19 38 

Belgium 0.22 44 

Denmark 0.36 72 

Finland 0.23 46 

France 0.08 16 

Germany 0.46 92 

Greece 0.72 144 

Ireland 0.46 92 

Italy 0.41 82 

Netherlands 0.42 84 

Poland 0.78 156 

Portugal 0.26 52 

Spain 0.24 48 

Sweden 0.03 6 

UK 0.46 92 

EU-27 0.43 86 
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GHG emissions from vehicle production seem to differ for EV and ICEV. Hawkins et al. 

(2012a,b) show that the higher CO2 emissions for EV production indicated in some studies 

(e.g. Held and Baumann, 2011) cannot be confirmed by the majority of the studies. 

Furthermore, they find decreasing emissions for EV production and point out that EV may have 

significantly lower overall CO2emissions during their whole life time than ICEV 

when “clean” electricity is used. Currently, literature gives about 6 t of CO2 emissions for the 

production of ICEV, about 7 tons for HEV and PHEV, about 8 to 9 tons for REEV, and between 

9 to 11 tons of CO2 for BEV (Kay et al., 2013 and Helms et al., 2013). These values amount to 

about 20 t CO2 over the life cycle with a decreasing tendency for all vehicles until 2020 – even 

though the decrease for ICEV seems to be somewhat smaller than for EV (Kay et al., 2013; 

Helmers and Marx, 2012, and Held and Baumann, 2011). 

Taking the marginal costs of 120 € per ton of CO2 into account and using an average vehicle 

mileage of 200,000 km, the marginal cost for climate change increases from 3.6 € per 1.000 vkm 

for ICEV to 6.6 € for EV due to vehicle production. 

 

Noise 

As depicted above, the marginal costs of noise per vehicle are highly dependent on the noise 

level of other cars (i.e. background noise level) and the traffic density (cf. Haling and Cohen, 

2007). As the share of noise by the engine is marginal, if the velocity of the vehicle exceeds 

40 km/h (25 mph) and the noise by tires and by the aerodynamic shape of the vehicle dominates 

the noise produced (cf. Fig. 3), EV do not differ from ICEV in the usual traffic, except for urban 

traffic during night at low speed. In this particular situation, the people’s noise perception is 

highest, which is expressed by a 10 dB(A) lower noise target level during light time compared 

to daytime limits. This positive effect could be even more significant, if extreme conditions, 

such as e.g. ICEV with high motor speed, are considered. 

 

Fig. 3 Audibility of passenger cars (LWA) vs. velocity of the vehicle. 

Source: Beckenbauer (2011). 
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We therefore assume benefits (halving of costs) during nighttime in urban areas (where speed 

is low and individual vehicles are noticed) and marginal benefits (0.1 € per 1.000 vkm) in rural 

areas (cf. Table 9). Other external costs of EV have been treated in the section of ICEV above. 

Table 9 Marginal external noise costs for EV (€2010 per 1000 vkm). 

 Urban Rural 

Day peak 10.5 0.1 

Night (off-peak) 23.25 0.4 

 

Summary of cost estimates for electric vehicles 

The external costs of EV mainly differ in air pollutants and climate change. These two 

components are highly dependent on the measuring approach and the underlying power plant 

portfolio as well as the charging time of the EV. This increases the uncertainty range of the cost 

estimates. Another difference is noise disturbance during nights, especially for inner-city 

transport. Fig. 4 gives an overview of cost estimates for all cost components of EV on the 

logarithmic scale. 

 

Fig. 4 Maximum, minimum, and standard external costs of EV in €2010 per 1.000 vkm. 

In analogy to the procedure chosen for ICEV, the future development of cost components for 

EV until 2030 is outlined. 

Extrapolation of external costs of EV to 2030 

For comparability reasons, we assume the same development of most considered external cost 

components for EV as for the ICEV (see above). This applies to the external cost components 

of traffic safety, noise, vehicle production, and congestion. Furthermore, in analogy to the 

scenario for the ICEV, we assume a decreasing share of trips within the city from 0.26 to 0.2 

and decreasing costs for up- and downstream processes by 10%. 

Only the cost components of air pollution and climate change are based on the development of 

the underlying power plant portfolio. As carbon intensity declines in most countries (cf. IEA, 

2012a:183), the specific carbon emissions of electricity will decrease, too. The German target 
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for the future energy system is ambitious and refers mainly to the electricity generation (known 

as the German Energy Transition). The political target for electricity generation from renewable 

energy sources amounts to 50% (80%) of gross electricity consumption until 2030 (2050). 

Together with an assumed increase of electricity from natural gas and a decreasing share of 

lignite and hard coal, this would lead to an average decrease of specific CO2emissions by about 

30% between 2010 and 2030 (Jochem et al., 2015). This emission reduction is in line with the 

development for ICEV (see above). Therefore, we assume the same constant cost components 

for climate change for EV. As regards the air pollutants, however, the change in electricity 

generation leads to a decrease of emissions. Even though the European directive 2010/75/EU 

will lead to decreasing specific emissions of air pollutants for most fossil power plants, we 

neglect this development, as the exact improvement for the heterogeneous power plant portfolio 

can hardly be predicted. Therefore, we take conservatively constant specific cost factors 

from the 90ties provided by Sundqvist (2004) for each fuel and consider the change in the 

composition of energy generation only. This leads to decreasing specific external costs of about 

32 % compared to the 2010 values. 

Looking at the German electricity mix in 2030 over time we still see a considerable share 

of electricity generation by hard coal and lignite (cf. Fig. 5). However, due to the increased 

capacity of wind turbines, the volatile electricity generation by wind power plants has a 

significant impact on the time dependent specific CO2 emissions: during hours with a high share 

on wind generated electricity the emissions are nearly negligible, whereas during some nights, 

the specific emissions are still high (cf. Jochem et al., 2015). The relevance of charging time is, 

therefore, increased. 
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Fig. 5 Example electricity mix over two weeks in 2030 (based on Jochem et al., 2015). 

The corresponding cost components lead to an external cost structure similar to that of ICEV 

(cf. Figs. 6 and 2). The improvements in congestion costs (see above) and in accident costs (by 

about 3.000 €) contribute to a decrease of external costs in passenger road transport. All other 

improvements are comparatively marginal (cf. Fig. 2). The overall external costs per vehicle 
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decrease similarly to the ICEV from about 65,000 (12,000) to 57,000 (8.400) € per vehicle 

(without external costs of congestion). 

 

Fig. 6 External costs per EV in 2010 and 2030 in Germany (own calculation). 

Comparison of external costs for EV and ICEV 
When comparing all cost components, the main differences between external costs of EV and 

ICEV are found for climate change, air pollutants, and noise (cf. Fig. 7). Whereas EV seem to 

have an advantage in climate change (especially in inner-city areas) and noise (especially during 

the night), the external costs for air pollutants are still somewhat higher than for ICEV. Overall, 

the external costs of congestion are still dominating. Consequently, an increased market share 

of EV will not provide a significant relief for our current external effects in transport. 

 

Fig. 7 Differences of standard external costs of ICEV and EV in 2010 in €2010 per 1.000 vkm. 

The broad literature overview of the impact on GHG emissions, air pollutants, and noise given 

by Hacker et al. (2009) confirms our results for GHG emissions and noise impacts. However, 

they expect a lower impact from air pollutants for EV and argue that emissions are relocated to 

rural areas. Our analysis shows, by contrast, that the overall costs from local air emissions are 

higher from the German power plant portfolio than from ICEV. In other countries (with a higher 

or lower share of fossil fuels), this value might differ significantly. Furthermore, optimised 

charging strategies (e.g. with the objective to integrate as much photovoltaic electricity 

generation as possible) could decrease those values considerably (e.g.  Jochem et al., 2015) and 

air quality of congested inner-cities could be improved by EV.  
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Air pollution costs of EV seem to stay above the costs of ICEV in Germany until 2030. The 

overall amounts as well as the cost structures of external costs of vehicles are very similar for 

both technologies (cf. Figs. 2 and 6). This confirms the result obtained by Torchio and Santarelli 

(2010) or Wietschel and Doll (2009). Only the ‘Balancing a sugar-coated energy mix’ approach 

(‘EVsugar’) seems to lead to a significant external cost advantage for EV (cf. Fig. 8). However, 

when congestion costs are included, the effect on the overall external costs is limited, as the 

share of external costs of climate change and air pollutants amounts to about 7.4% only 

(cf. Table 10). The corresponding cost savings (of 4.500 €) result in overall external costs per 

vehicle of 53,000 €. Measures leading to fewer vehicles (i.e. vehicle usage) seem to be more 

appropriate to significantly cut external costs in passenger road transport. 

 

Fig. 8 Differences of external costs of EV and ICEV in 2030 over lifetime (own calculation). 

Table 10 Shares of external costs for ICEV and EV in 2010 and 2030 (own calculation). 

 EV ICEV 

 2010 2030 2010 2030 

Production (%) 1.1 1.7 1.1 1.8 

Noise (%) 0.9 0.8 1.1 0.9 

Accidents (%) 9.3 4.9 9.4 5.0 

Air pollution (%) 2.8 2.6 1.2 1.2 

Climate change (%) 4.2 4.8 4.9 5.4 

Up-/downstream (%) 0.2 0.2 0.2 0.2 

Congestion (%) 81.4 85.0 82.0 85.6 

 

Critical appraisal 
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The uncertainty of the cost components limits our results. This is especially true for our 

estimated values in 2030. The assumed decrease of overall external costs – including congestion 

effects – by 10 % is lower than the uncertainty of external costs estimates for congestion alone. 

However, this uncertainty is not only related to methodological issues, but reflects the strong 

dependency of transport externalities on the technology and spatial settings. Although other 

unit cost values will lead to other results, we consider the tendency of our findings to remain 

valid. 

We neglected external costs of land use as well as other up- and downstream processes. 

According to literature, these effects seem to be of minor importance – especially with respect 

to differences between ICEV and EV. Additionally, we neglected a potential increase in 

efficiency of EV (cf. e.g. Karplus et al., 2010) and decreasing emissions of air pollutants from 

fossil power plants. This is a very conservative assumption for power plants, as we refer to cost 

estimates from the 1990ties here. Furthermore, our assumptions regarding the development 

until 2030 (cf. Sections ‘Extrapolation of external costs of ICEV to 2030’ and ‘Extrapolation 

of external costs of EV to 2030’) describe the right tendencies – their concrete values might, 

however, be somewhat arbitrary. 

 

Conclusions 
The electric vehicle (EV) is often considered a promising technology for coping with future 

challenges in road transport. We analysed the differences between EV and internal combustion 

engine vehicles (ICEV) from an environmental and economic point of view and compared the 

external costs of both alternatives. Even though we are aware of the high uncertainties of cost 

estimates in specific situations, we differentiated the analysis by fuel type, vehicle size as well 

as by emission location and time of day. This differentiation provides indications regarding 

specific discrepancies in some special applications. Our calculations indicate that locally 

emission-free and silent driving of EV in inner cities may contribute to meeting urban 

environmental challenges. 

However, we find that the external costs of EV and ICEV in Germany do not differ 

significantly. Only for oil dependency, climate change, local air pollutants in congested inner-

cities, and noise, some advantages of EV over ICEV can be found. These are strongly dependent 

on the electricity mix and potentially also on the charging strategy of vehicle users. Other 

countries with strongly diverging power generation technologies might face very different 

results. Nevertheless, EV are far from solving our main challenges in motorised individual 

transport and external costs of congestion still dominate the external costs in transport. A 

decreasing motorisation rate and the replacement of car trips by active mobility, i.e. walking, 

cycling, and use of public transport means, will be much more effective in improving the quality 
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of life in our cities. Stronger efforts in mitigating air pollutants and GHG from power plants 

would certainly contribute to a stronger advantage of EV. 
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Footnotes 

1This means light duty vehicle (LDV) fleet and includes most conventional passenger cars 

(with a payload capacity of less than 4.000 lb, i.e. 1.814 kg). 
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