
Zur Erlangung des akademischen Grades eines
Doktors der Ingenieurwissenschaften (Dr.-Ing.)
von der Fakultät für Wirtschaftswissenschaften
des Karlsruher Instituts für Technologie (KIT)
genehmigte Dissertation von
Steffen Walter Stadtmüller, M.Sc.

D Y N A M I C I N T E R A C T I O N A N D M A N I P U L AT I O N O F
W E B R E S O U R C E S

steffen walter stadtmüller

Tag der mündlichen Prüfung: 01.12.2015

Referent: Prof. Dr. Rudi Studer

Korreferent: Prof. Dr. Jorge Cardoso

Karlsruhe, 2015

This document was created on January 26, 2016.

A B S T R A C T

The World Wide Web is the single largest information system of mankind, which
allows for the ubiquitous access to data and services for over 3 Billion people.
Apart from human readable Web pages providers offer APIs, which allows appli-
cations to combine and include available information and functionality to fulfill
arbitrary tasks.

However, there is little coordination between providers, and applications have
to handle heterogeneous interfaces with unaligned vocabularies. Linked Open
data unifies an interaction model for the consumption of information of graph-
structured interlinked data resources and schemata. Thus, applications can be
designed to follow links to discover relevant information and align different
resources using reasoning features leveraging the schemata. Due to the unpre-
dictable and dynamic nature of the Web, applications have to interpret discov-
ered schema information at runtime and evaluate queries directly over derefer-
enced resources without relying on pre-existing index structures over the data.
At the same time applications must exhibit high-performance characteristics
with regard to data processing and retrieval to achieve short response times
and a fluent interaction with users.

In this thesis we describe how we join methods for evaluating queries over
interlinked resources via link traversal with approaches for the integration of
data over interlinked schemata via reasoning. In particular, we show how declar-
ative rule-based programs can be used to specify desired dynamic interactions
with Web resources. We introduce a system with a parallel push-based execution
model that allows for the balancing of the heterogeneous workload of resource
retrieval and data processing. Specifically, we show different alternatives to im-
plement such an execution model to avoid communication overhead in the face
of a parallel execution and detail how the retrieval of remote information can be
integrated without hampering the data processing. Our approach allows for the
on-the-fly alignment and processing of dynamically retrieved data in a stream-
ing fashion including incremental query answering. We conduct experiments to
analyse the behaviour of a fully implemented system that realises the proposed
interaction model with respect to different workloads for data processing and
resource retrieval.

As further contribution we go beyond the simple consumption of exposed
information by enabling rules to define intended manipulations of remote re-
sources. We describe the synergies of the combination of Linked Data principles
as data representation model and Representational State Transfer as interaction
model. In particular, we formalise the combination of both technologies as state
transition systems. Build upon such state transition systems we describe how
rule programs can be employed to effectively define the manipulation of remote
Web resources for integration of functionality from various providers. Specifi-
cally, the effected interactions can be derived from at runtime identified informa-
tion to enable applications to dynamically follow links. We show how our ap-

iii

proach can be applied to achieve a dynamically reacting system for Web-based
applications, thus accommodating the constantly changing environment of the
Web. Further we conduct experiments to provide evidence that the considera-
tion of resource manipulations beyond data consumption does not impede the
performance of our system.

Web-based applications can be built to discover resources at runtime via link
traversal. However, an entry point for applications to start the interaction with
web resource must be identified. We detail how graph patterns can be employed
to describe resources, thus enabling to search for such entry points. Specifically,
resources can be identified that provide the required information for an appli-
cation to begin the interaction with a Web API. Further, we detail methods to
realise a system for resource search build upon graph patterns in a scalable dis-
tributed manner, which we experimentally confirm.

Overall the contributions of this thesis focus on the development of applica-
tions that leverage remote Web resources dynamically. Given the increasing im-
portance of Web-based applications, advances in this field can provide valuable
insights for the use of remote knowledge on the Web.

iv

P U B L I C AT I O N S

Text as well as figures in this thesis have partly been already published. That is,
the thesis is based on the following papers:

Steffen Stadtmüller and Barry Norton. Scalable discovery of linked APIs.
International Journal of Metadata and Semantics and Ontologies, 8(2):95–105,
2013. [106]

Steffen Stadtmüller, Sebastian Speiser, Andreas Harth, and Rudi Studer. Data-
Fu: A language and an interpreter for interaction with read/write linked
data. In Proceedings of the International Conference on World Wide Web, Rio de
Janeiro, Brazil, 2013. ACM International Conference Proceeding Series. [108]

Steffen Stadtmüller, Jorge Cardoso, and Martin Junghans. Service seman-
tics. In Jorge Cardoso, Hansjörg Fromm, Stefan Nickel, Gerhard Satzger,
Rudi Studer,and Christof Weinhardt, editors, Fundamentals of Service Systems.
Springer, 2015. [110]

v

A C K N O W L E D G M E N T S

Without the advice, support and encouragement I received from so many people,
this dissertation would not have been possible. First and foremost I want to
thank my advisor Prof. Dr. Rudi Studer for providing me with the opportunity
and granting the freedom to do this research. His guidance was invaluable and
always a great source of inspiration. It has been an great honor to be a member
of his research group at the institute AIFB. I would also like to thank Dr. Andreas
Harth, my frequent co-author and patient advisor that supported and motivated
me during my work on this thesis.

Many thanks also to Prof. Dr. Jorge Cardoso and Prof. Dr. Gerhard Satzger for
their interest and their consent to serve as members of the board of examiners.
The many fruitful discussions with them provided me with valuable insights for
my work.

The work with all my friends and colleagues at the Knowledge Management
research group at AIFB and the institute KSRI has been very inspirational and
helped to improve my work. I am truly grateful that I had the chance to work
with so many talented individuals in an incredibly friendly and supportive at-
mosphere.

Especially, I would like to extend my deepest gratitude to my parents, Re-
nate and Walter Stadtmüller and my whole family, who always encouraged and
supported me in my endeavors. Without them I would not be where I am today.

vi

C O N T E N T S

1 introduction 1

1.1 Motivation . 1

1.1.1 Challenges . 2

1.1.2 Scope of the Thesis . 4

1.1.3 Dynamic Web Resources . 5

1.2 Scenario . 6

1.3 Hypotheses . 7

1.4 Contributions . 9

1.5 Outline . 10

2 foundations 12

2.1 Overview . 12

2.2 Linked Data . 12

2.2.1 Resource Description Framework 14

2.2.2 Interlinked Resources . 18

2.2.3 Basic Graph Pattern . 21

2.3 Representational State Transfer . 25

2.3.1 Operation-oriented API . 27

2.3.2 Resource-oriented API . 28

3 parallel processing of web resources 34

3.1 Introduction . 34

3.1.1 Challenges . 36

3.1.2 Contributions . 37

3.2 Rule-based Programs . 38

3.3 Processing Architecture . 45

3.3.1 Network Request Component 48

3.3.2 Physical Operator Plan Component 49

3.3.3 EquiJoin Operator . 53

3.4 Coordination of Data Processing and Network Requests 57

3.4.1 Threading Models . 58

3.4.2 Blocking Worker Control . 60

3.4.3 Adaptive Processing . 65

3.4.4 Handling Duplicates . 67

3.5 Experiments . 71

3.5.1 CPU-bound Tasks . 74

3.5.2 I/O-bound Tasks . 82

3.5.3 Mixed CPU- and I/O-bound Tasks 85

3.6 Related Work . 88

3.7 Summary and Future Work . 90

vii

contents viii

4 dynamic manipulation of web resources 93

4.1 Introduction . 93

4.1.1 Challenges . 96

4.1.2 Contributions . 97

4.2 Combining Linked Data and REST 98

4.2.1 URI-identified Resources . 99

4.2.2 Interaction Methods . 99

4.2.3 Hypermedia Links . 102

4.2.4 Wrapping APIs . 104

4.3 Linked API Interaction Model . 107

4.4 The Linked Data-Fu Language . 110

4.4.1 Program Execution . 118

4.4.2 Non-Deterministic Behaviour 120

4.4.3 Repeated Program Execution 125

4.5 Experiments . 129

4.5.1 Number Retrieval and Manipulation 130

4.5.2 Game of Life . 137

4.6 Related Work . 142

4.7 Summary and Future Work . 143

5 web resource search 146

5.1 Introduction . 146

5.1.1 Challenges . 148

5.1.2 Contributions . 149

5.2 Graph Pattern Descriptions . 149

5.3 Matching . 153

5.4 Ranking . 154

5.4.1 Containment-based metric 155

5.4.2 Vocabulary-based metric . 158

5.5 Search Architecture . 161

5.6 Experiments . 164

5.6.1 Distributed Search . 165

5.6.2 Containment Ratio Calculation 168

5.7 Related Work . 170

5.8 Summary and Future Work . 171

6 conclusion 173

6.1 Summary . 173

6.2 Future Work . 176

bibliography 178

List of Figures 189

List of Tables 191

List of Algorithms 193

Acronyms 194

contents ix

a appendix : addendum 196

a.1 OWL LD Operator Plan . 196

a.2 Experiment Result Details . 198

a.3 Rule Program Examples . 216

1
I N T R O D U C T I O N

1.1 motivation

The World Wide Web (Web) has become the single largest information system of
mankind, providing ubiquitous access to data and services for over 3 Billion peo-
ple (42.3% of the world population)1. With over 50 billion indexed Web pages2 a
strong focus of the Web remains the provisioning of interlinked human-readable
documents.

Going beyond the traditional human-readable web, Tim Berners-Lee, the in-
ventor of the Web, described 2001 his vision of the transformation of the Web
to the Semantic Web [12], which allows automated agents to fulfill sophisticated
tasks for humans by accessing, combining and interacting with data on the Web.
Such agents would rely on the possibility to process the semantics of the data
and a defined structure of the meaningful part of the Web. Consequently Linked
Data (LD) has become a popular way to publish data. LD is identified with a set
of principles and best practices regarding the use of certain technologies for the
publication of data. The core idea of LD is that links connect entities (rather than
Web pages). Links are typed to allow a characterization of the relationship of the
entities. Schemata that are also available on the Web provide reusable vocabu-
laries for the publishing of information as LD. In combination with the push to
opening up public sector data as well as data from other domains LD has seen
tremendous growth in recent years [13] with over thousand publicly available
data sets [96], which contain at least 4 Billion statements, as confirmed by recent
crawls3.

However, general purpose agents that are able to perform arbitrary tasks
with such datasets remain elusive. There is a trend to provide Application Pro-
gramming Interfaces (API) and services on the Web that allow the development
of client applications performing a specific task. Amazon AWS Marketplace4,
which was launched in 2012, has up to now more than 1 250 services available.
Noor et al. [78] found that almost 6 000 services are already available on the
Web. The study carried out consisted of searching the Web using a customized
service crawler engine to find websites that offered services. Additionally, Pro-
grammableWeb5, a popular registry for Web-based APIs lists over 13 000 inter-

1http://www.internetworldstats.com/, retrieved 2015-03-15.
2http://www.worldwidewebsize.com/; retrieved 2015-03-15.
3http://km.aifb.kit.edu/projects/btc-2014/; retrieved 2015-03-15

4http://aws.amazon.com/marketplace; retrieved 2015-03-15

5http://programmableweb.com; retrieved 2015-03-15

1

http://www.internetworldstats.com/
http://www.worldwidewebsize.com/
http://km.aifb.kit.edu/projects/btc-2014/
http://aws.amazon.com/marketplace
http://programmableweb.com

1.1 motivation 2

faces. Statistics of ProgrammableWeb show an exponential growth of the service
ecosystem on the Web that can be seen over the last years. In principle, the pos-
sibility to combine the abundantly available data sources and functionalities of
Web services open up a broad spectrum of opportunities to develop complex
specialised client applications.

Independently from the question if the trend for APIs and services represents
the first step towards autonomous general purpose agents or has to be consid-
ered as a move away from the original vision, the challenges that arise in the
development of specialised client applications are ultimately also hurdles for the
effort to create autonomous agents.

1.1.1 Challenges

Runtime Requirements. The general advice with regard to response times of
applications, i.e., the time a user of an application has to wait after a command
to see the effect of the command, is summarized as follows [74, 77]:

• 0.1 second: The limit for users to feel that they directly manipulate objects
in an User Interface (UI) of an instantaneously reacting system.

• 1 second: The limit for users to feel that they are freely navigating, without
interruption of the users flow of thought because of the response time.
Delay between 0.2 and 1 second results in the user noticing a delay due
to the system working on the command, rather then directly manipulating
the system.

• 10 seconds: The limit for users to keep their attention on the currently per-
formed task. A delay above 10 seconds implies that users might have to
reorient themselves after returning to the UI.

Although these limits can only be seen as general guidelines, for which mitigat-
ing approaches like wait time indicators exist, their application on Web-based
applications, where response time is additionally affected by network latency
and bandwidth, highlights the importance of the consideration of processing
time. Especially the response time of an application that leverages and combines
a multitude of data sources and Web services should not simply be the cumula-
tive sum of the required runtime to interact with underlying sources and APIs.

Purely network related tasks like the retrieval of data from Web sources and
the invocation of a Web service influence runtime by themselves for the most
part by the delay caused by network latency and bandwidth limitations. How-
ever, data retrieval and service invocation require less computational resources
from a client application than processing related tasks e.g., query answering over
the retrieved data, inferencing, data integration and decision making with regard
to the steps to be performed to achieve the objective of the application. Conse-
quently the parallel execution of network and processing tasks is necessary to
efficiently leverage the available computation resources on the system on which
a Web-based application is executed.

The management of several in parallel executed tasks can, however, also cause
additional system overhead, especially since the different network tasks and pro-

1.1 motivation 3

cessing tasks can be interdependent. E.g., a query over a data set can locally only
be completed after the data set was retrieved. The design of a parallel system for
Web-based applications has to take into account the runtime requirements of the
application, which is a hard but important challenge.

Entropy. Understood as a measure of unpredictability [98] the entropy6 entailed
in the use of Web-based data and services represents an important challenge in
the development of client applications. An autonomous agent that generally acts
on the Web, would have to have a plethora of information available to be able to
decide which of the available datasets and services are most helpful for achiev-
ing the intended goal of the agent, and to be able to retrieve the data, invoke
the services and finally to interpret the received messages and data for further
decisions.

The required information can pertain to the semantics of the functionality of a
service. Information about what can be achieved by a service are especially rele-
vant when an agent has to identify which service to use for a specific task. Fur-
thermore there can be multiple non-functional properties, that can be relevant
for the decision which available services should be used, e.g., pricing, availability
or legal constraints.

Another aspect for which information is required is the actual invocation and
use of functionality. There are multiple interaction schemata, API designs, data
formats and annotations possible, the variety of which drives the entropy an
autonomous agent would have to handle.

Even if we consider a manually crafted application for a specific task, instead
of a general purpose agent, the entropy remains an important challenge, as the
possible heterogeneity of the involved datasets and services translates into a
large amount of information that a developer needs to gather and integrate when
developing the application.

To mitigate the variety one can rely on convention and descriptions. Conven-
tion implies that some aspects of the Web-based functionality potentially follow
an agreed upon standard, on which an agent or developer can rely. Although not
all available datasets or services might follow such an agreement, it allows to re-
strict a client application to a subset of possibilities, thus reducing the entropy. A
prime example for such an agreement is the use of Representational State Trans-
fer (REST), which has become the predominantly used interaction paradigm on
the Web (see Section 2.3). REST constrains the available operations of an API,
thus limiting the variety of possibilities how to us a service.

Descriptions rely on the idea that necessary information to use a given func-
tionality is directly provided for client applications. Such descriptions can be
human-readable documents (e.g., Web pages) that a developer can use to gain
an understanding of the functionality and how to use it. In contrast machine-
readable descriptions are based on a formal specification and aim at an au-

6Formally entropy is defined in [98] as the expected value of the information contained in
a message as H = −

∑N−1
i=0 pilog2pi with pi the probability of a given symbol. Thus, entropy

provides a way to estimate the average minimum number of bits necessary to encode a string
of symbols. Here we use the term to describe the average information necessary to conduct an
interaction with Web-based functionality and data.

1.1 motivation 4

tomatic consumption and interpretation of a client application. While human-
readable descriptions can rely on the human for interpretation, a machine read-
able description only works for client applications that are build with the cor-
responding specification in mind. Thus, a client application might not be able
to interpret a description, which renders the description useless for this appli-
cation. The amount of existing approaches (see e.g., [93, 129]) consequently just
encodes the existing variety and does not combat entropy, as an application has
either be able to deal with the very large number of description approaches or
be limited to a smaller subset. Ultimately the lacking of a shared understanding
(i.e., convention) on what description approach to use, prevents the reduction of
the entropy.

LD leverages schemata and ontologies to provide "a formal, explicit specifica-
tion of a shared conceptualization" [113] expressing the meaning of data. Thus
client applications can automatically infer the relevance of data for their intended
task. As schemata are interlinked with mappings between concepts (see Section
2.2), a client application can to some extent also leverage previously unknown
schemata. Therefore LD provides mechanisms to cope with entropy with regard
to the interpretation of the data.

The use and combination of approaches to handle the entropy in a Web envi-
ronment is an important challenge that has to be addressed to ease the develop-
ment of Web-based applications.

1.1.2 Scope of the Thesis

In this thesis we design and study methods to interact with and process data and
services in a distributed Web-environment that minimise application response
time. Specifically we address methods that tackle the entropy of dynamic Web
resources (see Section 1.1.3) with a performance that allows for high fidelity
applications. We focus on REST and LD as well-adopted core Web-technologies
that allow to build applications in the face of the entropy of a Web-ecosystem
with services and data. Specifically we focus on the use of rule-based programs
for the interaction and manipulation of Web resources and the use of graph
patterns to support the search for relevant resources7.

Our approach does not target the development of autonomous Artificial In-
telligence (AI) agents, but centers around methods for the development of client
applications, that could also be leveraged by such agents. Furthermore, we do
not aim to provide an additional approach for Web Service descriptions, but fo-
cus on commonalities of existing description approaches in the context of REST
and LOD.

Also out of scope of the thesis are issues related with access control and trust
when interacting with Web resources. We assume that wherever necessary, mech-
anisms are in place to ensure authorised access, e.g., OAuth2.08, and the trust-
worthiness of sources, e.g., a web of trust [28].

7We introduce rules and graph patterns in the corresponding Chapters 3-5.
8http://oauth.net/2/; retrieved 2015-04-10

http://oauth.net/2/

1.1 motivation 5

1.1.3 Dynamic Web Resources

Both LD and REST are focused on resources9:

• LOD centers around the publication and consumption of data about inter-
linked resources.

• REST establishes a service architecture, where the invocation and use of a
service is synonymous with interacting and manipulating resources.

In the context of this thesis we define Web resources based on the Web characteri-
zation terminology of the World Wide Web Consortium (W3C)10:

ó Definition 1: Web Resource

A Web resource is any physical or abstract entity that has identity. A Web re-
source is identified by a Uniform Resource Identifier (URI), which allows the
entity to be accessed by any implemented version of the Hypertext Transfer
Protocol (HTTP) as part of the protocol stack, either directly or as data about
the entity via an intermediary. Specifically, an entity can be

• a real world object (e.g., concert ticket, sports team)
• a digital object (e.g., blog post, Web page)
• a concept (e.g., membership, payment)
• a collection of other resources (e.g., list of all teams in sports league)

Resources and specifically their properties can change over time. The W3C specif-
ically defines11 resource manifestations as “a rendition of a resource at a specific
point in time and space”, where a conceptual mapping exists between the re-
source and its manifestation.

The change of a resource can be slow, e.g., resulting from curation of the data,
or fast paced, because the properties of the resource are inherently fast changing.

. Example 1

The data describing a sports stadium (which is available as Web resource)
might be updated after renovations with the new amount of seats in the
stadium. However, if the resource is updated with data from sensors in
the stadium providing information about the number of people currently
in the stadium, the resource might change several times per second.

The dynamicity of Web resources is the reason for building Web-based appli-
cations: If a dataset is completely static and never changes, there is no reason
to use the data remotely over the Web. Instead one could simply download the
data once and use them locally, thus avoiding network delays. It is the inherent
constant change of the Web resources that makes them valuable, as the changes
allow to leverage up-to-date information from a variety of sources.

9A detailed introduction in both technologies, REST and LD, is provided in Chapter 2.
10http://www.w3.org/1999/05/WCA-terms/; retrieved 2015-04-10.
11http://www.w3.org/1999/05/WCA-terms/; retrieved 2015-04-10.

http://www.w3.org/1999/05/WCA-terms/
http://www.w3.org/1999/05/WCA-terms/

1.2 scenario 6

The constant change of Web resources, however, also amplifies the challenges
to use them for applications. The entropy for a client application retrieving a
resource stays high even after the first retrieval, as the client might encounter
different information every time. Not only the properties of a resource might
change, but also links to other resources and schemata. Therefore, clients re-
quire a dynamic interaction and manipulation approach that allows to decide at
runtime which links to follow and how to interpret the available schemata.

The entropy caused by the change in the resources also increases the challenge
with respect to the runtime requirements of an application: As resources are
retrieved dynamically a parallel processing model must be able to process data
at arrival and cannot rely on preexisting indexes over the data. Also the schema
information to interpret the data has to be processed on-the-fly, as no knowledge
about the schemata can be assumed.

1.2 scenario

Throughout the thesis we use examples from the fictitious company ACME. The
business model of ACME is derived from existing companies like eventim12 and
last.fm13 that act as event recommendation and ticket agent.

. Example 2

ACME is an online ticket agency that sells tickets to various events like con-
certs and sports matches. Customers and users can register with ACME
and create a profile with information about their interests, like their fa-
vorite music genre or sports team. As additional service to foster customer
retention, ACME provides the users up-to-date information relevant to
the provided interests, like scores of matches of their favorite sport team
or upcoming concerts of their favorite band. To provide such information
ACME relies on third party Web sources, from which ACME gathers rele-
vant data.

Additionally, users can also provide information in their profiles about
other social networks and message boards on which the users have ac-
counts. ACME uses the account information to disseminate offers about
special sales over multiple channels.

The services of ACME can be used via a web site, but ACME also of-
fers an API to allow third party applications to make use of the provided
functionality and consequently increase outreach and available customer
basis. ACME functions as service and data consumer as well as provider
on the Web and relies on dynamic approaches for the interaction and ma-
nipulation of Web resources, to allow for a flexible change of the used
information sources as well as dynamic dissemination of information.

We assume the URI namespaces and prefixes of ACME as listed in Table 1

12http://www.eventim.com/; retrieved 2015-04-10

13http://www.last.fm/; retrieved 2015-04-10

http://www.eventim.com/
http://www.last.fm/

1.3 hypotheses 7

Table 1: URI namespaces and prefixes of the fictitious company ACME used throughout
the thesis

Prefix URI namespace

acme: http://acme.example.org/api/

data: http://acme.example.org/data/

p: http://acme.example.org/vocabulary#

1.3 hypotheses

To address the challenges outlined in Section 1.1 we define the following hy-
potheses with associated research questions:

2 Hypothesis 1

Declarative rule-based programs can be utilised to define desired dynamic
retrieval and processing of Web resources for client applications in such a
way that retrieval and processing can be executed in a highly parallel stream-
ing fashion, thus enabling applications with short runtimes. (Chapter 3)

Associated with Hypothesis 1 are the following research questions:

1. How can dynamic interactions with Web resources based on on-the-fly dis-
covered schemata be specified in a rule-based language?

2. How can a data-driven parallel execution model for the interactions be de-
signed that is capable of on-the-fly processing of arriving data and schema
information?

3. How do different implementations of data-driven execution models per-
form with respect to processing time in the face of intertwined data pro-
cessing and network lookups?

2 Hypothesis 2

The principles of Linked Open Data and Representational State Transfer
can be combined to an interaction model for APIs based on state transitions
that allows to design rule-based programs also for the manipulation of Web
resources, which are dynamically discovered via link traversal, while pre-
serving short runtimes. (Chapter 4)

Associated with Hypothesis 2 are the following research questions:

1. Can the interaction models of LD and REST be combined and formalised
as a state transition system?

2. How can manipulations of dynamically via link traversal discovered Web
resources be defined based on a state transition interaction model?

3. What are the execution semantics of a declarative rule-based program for
the manipulation of Web resources?

http://acme.example.org/api/
http://acme.example.org/data/
http://acme.example.org/vocabulary#

1.3 hypotheses 8

2 Hypothesis 3

Graph patterns to describe the possible interactions and manipulations of
Web resources can be leveraged to allow for the scalable search of resources,
which can serve as entry point for an interaction. (Chapter 5)

Associated with Hypothesis 3 are the following research questions:

1. How can potential interactions and manipulations of Web resources be
described with graph patterns with respect to applied operations?

2. How can graph pattern-based descriptions be used to search for resources
with desired functionality?

3. How can search results be identified in a scalable fashion, given a graph
pattern-based search request?

Hypothesis 1 is mainly concerned with the realisation of a processing model
for rule-based programs that includes query answering, network resource re-
trieval and inferencing to achieve Web-based applications with low response
times. However, the approach build upon Hypothesis 1 as described in Chapter
3 respects the requirements resulting from a dynamically changing Web envi-
ronment. Therefore, the specific focus is on the on-the-fly processing of arriving
data in a streaming fashion, which includes the dynamic inclusion of schema
information discovered at runtime.

Hypothesis 2 goes beyond the simple retrieval of resources and targets also the
manipulation, i.e., effected change, of resources. The corresponding approach in
Chapter 4 tackles the entropy-related challenges by combining LOD and REST,
while specifically retaining the advantages with respect to processing time of
applications, as developed for Hypothesis 1. The approach further addresses en-
tropy with methods to describe desired dynamic link traversal; i.e., applications
are enabled to follow links that are unknown at design-time to achieve desired
processing goals.

Hypothesis 3 addresses the application of description methods to mitigate ex-
isting entropy for the search of resources. While Hypotheses 1 and 2 do not pre-
suppose the existence of descriptions for processing data and services in client
applications, Hypothesis 3 specifically focuses on the high-level task of resource
search build upon the existence of descriptions. However, also the runtime re-
quirements of the approach to search, based on Hypothesis 3, and specifically
the scalability of the approach with respect to the amount of available services
remains in focus in Chapter 5.

1.4 contributions 9

1.4 contributions

With regard to the aforementioned hypotheses, this thesis provides the following
contributions:

+ Contribution for Hypothesis 1

Parallel data-driven push-based execution model for on-the-fly processing
of rule-based programs to access Web resources.

We describe an execution model for the parallel evaluation of rule-based pro-
grams that allow inferencing over distributed Web resources, as well as query
answering over the processed data. We describe a rule language that intertwines
data processing and network lookups, which can be evaluated with the execution
model. Our approach realises the combination of data-driven operator schedul-
ing with a push model. The operator scheduling avoids overhead of inter-process
communication. The push model allows data to be processed as soon as it arrives,
thus specifically caters to applications build upon network lookups in a Web en-
vironment. In particular, we detail different implementations of the proposed
execution model and describe how the workload resulting from data processing
and data retrieval can be balanced.

+ Contribution for Hypothesis 2

Formal model of Linked Data-based REST APIs for dynamic manipulation
of Web resources.

Based on our work in [108] we introduce a formal model for APIs based on the
principles of REST and LD as state transition system, which is the basis for the
extension of the introduced rule-based programs for the manipulation of Web
resources. Specifically, the formal model allows to specify intended effects of
a program to manipulate resources as a reaction to resource manifestations at
runtime, thus addressing the required dynamicity for the interaction and ma-
nipulation of Web resources. Specifically we provide the execution semantic of
a rule program to manipulate Web resources and describe approaches to miti-
gate potential non-deterministic behaviour. Furthermore, our approach enables
to specify at design time the manipulation of resources that are discovered at run-
time via link traversal. The extension of the programs for the manipulation of
Web resources preserves the applicability of the parallel execution model (Con-
tribution 1).

+ Contribution for Hypothesis 3

Methods to realise a scalable resource search based on graph pattern de-
scriptions of Web resources.

Based on our work in [106, 110] we describe how an often found commonality of
approaches to describe resource-oriented services (i.e., the application of graph
patterns) can be used to effectively encode the interactions and manipulations

1.5 outline 10

that are possible for a given LD Web resource. Further we show how such de-
scriptions can be exploited for a scalable search system of resources with respect
to the amount of available resources. For the search of resources we consider the
specification of search requests, the matching of search requests against resource
descriptions, as well as ranking of matching results with respect to the search
request.

Our research for the described contributions has led to the development of the
end-to-end data processing system Linked Data-Fu (LD-Fu)14, which consists of
a Notation3

15-based language to specify programs with logical and production
rules as well as an engine to evaluate such programs. LD-Fu supports query
answering, reasoning and HTTP-based data access and manipulation. Amongst
other deployments LD-Fu is used in various research projects, e.g., I-VISION16

and ARVIDA17, where it manages the communication and integration of hetero-
geneous data sources in virtual reality environments.

Experiments conducted with LD-Fu throughout this thesis are based on ver-
sion 0.9.3 of the engine.

1.5 outline

The remainder of this thesis consists of five chapters, which convey Foundations
and the Hypotheses (1) - (3).

Ë Chapter 2 – Foundations
In Chapter 2 we provide preliminaries for our approaches in Chapters 3- 5.
In particular, we introduce the principles and technologies associated with
LD as well as REST-based architectures.

Ì Chapter 3 – Parallel Processing of Web Resources
In Chapter 3 we present a parallel data-driven processing model for rule-
based programs, that combines inferencing capabilities with the network
retrieval of Web resources. We provide alternatives for the implementation
of such a data-driven processing model and compare their behaviour with
respect to the involvement of Web resource retrieval.

Í Chapter 4 – Dynamic Manipulation of Web Resources
In Chapter 4 we go beyond the retrieval and processing of resources with
programs that effect changes in Web resources. For this purpose we intro-
duce a formal model for APIs based on the principles of REST and LD.
We show how programs can be defined that manipulate Web resources dy-
namically as subject to conditions regarding other resources and provide
the execution semantics of such programs.

14http://linked-data-fu.github.io/; retrieved 2015-04-10

15http://www.w3.org/TeamSubmission/n3/; retrieved 2015-04-10

16http://www.ivision-project.eu/; retrieved 2015-04-10

17http://www.arvida.de/; retrieved 2015-04-10

http://linked-data-fu.github.io/
http://www.w3.org/TeamSubmission/n3/
http://www.ivision-project.eu/
http://www.arvida.de/

1.5 outline 11

Î Chapter 5 – Web Resource Search
In Chapter 5 we describe how graph pattern can be used to encode possi-
ble interactions and manipulations of Web resources. We show how graph
pattern-based descriptions can be leveraged in resource search systems.
Specifically we introduce algorithms on-top of the graph patterns for match-
ing and ranking of resources given a search request.

Ï Chapter 6 – Conclusion
Last, we summarize our contributions and results in Chapter 6. Further, we
give an outlook on important future work.

2
F O U N D AT I O N S

2.1 overview

Now we present the preliminaries for the remainder of the thesis. In particular,
we introduce LD and its associated core technologies in Section 2.2. The technolo-
gies described in the context of LD provide the data model for Web resources, as
well as basic graph pattern as foundation for queries, rules and descriptions.

Furthermore, we introduce REST in Section 2.3 in the context of Web-based
APIs and services. Differentiated from operation-oriented approaches, REST pro-
vides the general resource-oriented model for the interaction with Web resources.

Where necessary, we expand on specific aspects of the technologies introduced
in this Chapter throughout the thesis.

2.2 linked data

With the goal to develop ways to allow computers to interpret (sometimes termed
understand) information on the Web, the W3C introduced the concept of a Se-
mantic Web. The objective behind the introduction of the Semantic Web is to
provide solutions for data integration and interoperability. The Semantic Web
identifies a set of technologies and standards that form the basic building blocks
of an infrastructure that supports the vision of Web-ecosystem for applications.

Linked Data is a subset of the Semantic Web that focuses on the publication
and consumption of interlinked Web resources in a Semantic Web architecture.
Such an architecture implies the commitment to the use of URIs to denote things
as well as a set standards for data provision and queries. In particular, Linked
Data adheres to the following four design principles18 [13]:

• Use URIs as names for “things”.

• Use HTTP URIs so that people can lookup the names.

• When someone looks up a URI, provide useful information, using the stan-
dards (RDF*, SPARQL)

• Include links to other URIs in the descriptions to allow people to discover
more “things”.

18http://www.w3.org/DesignIssues/LinkedData.html; retreived 2015-04-10

12

http://www.w3.org/DesignIssues/LinkedData.html

2.2 linked data 13

The amount of published Linked Data on the Web has been increasing rapidly
in resent years. The domains covered by these publicly available datasets in-
clude life sciences (e.g., PubMed19 and Drugbank20), multimedia and entertain-
ment (e.g., LastFM21 and BBC Music22), publications (e.g., O’Reilly Products23

and DBLP24), and geospatial services (e.g., Geo Names25 and GADM26). There
are also cross-domain datasets that provide encyclopedic information about a
variety of topics like DBpedia27 and Wikidata28. The available data is not only
offered from the private sector, but also derived from user-generated content
(e.g., Flickr). Also the public sector drives the push towards the provision of
openly available structured information. E.g., the governments of the United
States29 and the United Kingdom30 provide data about CO2 emissions, postal
codes, mortality rates and crime statistics.

While the term Linked Data is often used synonymous with Linked Open
Data, the latter specifically stresses the requirement that the resources are openly
available. The openness of resources allows arbitrary applications and agents to
be build upon the exposed LOD information, which is in agreement with the
vision of the Semantic Web. Open data also fosters an interlinked structure of
resources on the Web, as it allows a resource provider to find related resources
of other providers and create links to these related resources. However, in the
context of this thesis not all considered Web resources have to be openly available
for everyone, which is often not even sensible.

. Example 3

A resource provided by ACME, which contains information about the
band Metallica can be open and freely available for everyone. In contrast
a resource describing the invoice for the purchase by a specific user of a
ticket to a concert with Metallica, should only be visible for even that user
and system administrators of ACME.

Adhering to the Linked Data principles has many advantages that apply in the
context of structured representation of data on the Web but also in the context of
the formal descriptions of services, e.g., for service search, selection, composition,
and analysis.

Advantages of Linked Data include:

• Explicit and simple data representation based on a common data represen-
tation (RDF) hides from underlying technologies and systems.

19http://pubmed.bio2rdf.org/; retrieved 2015-04-10.
20http://wifo5-03.informatik.uni-mannheim.de/drugbank/; retrieved 2015-04-10.
21http://lastfm.rdfize.com/; retrieved 2015-04-10.
22http://www.bbc.co.uk/music/; retrieved 2015-04-10.
23http://labs.oreilly.com/opmi.html; retrieved 2015-04-10.
24http://dblp.l3s.de/d2r/; retrieved 2015-04-10.
25http://www.geonames.org/; retrieved 2015-04-10.
26http://gadm.geovocab.org/; retrieved 2015-04-10.
27http://wiki.dbpedia.org/; retrieved 2015-04-10.
28http://www.wikidata.org/; retrieved 2015-04-10.
29http://www.data.gov/; retrieved 2015-04-10.
30http://www.data.gov.uk/; retrieved 2015-04-10.

http://pubmed.bio2rdf.org/
http://wifo5-03.informatik.uni-mannheim.de/drugbank/
http://lastfm.rdfize.com/
http://www.bbc.co.uk/music/
http://labs.oreilly.com/opmi.html
http://dblp.l3s.de/d2r/
http://www.geonames.org/
http://gadm.geovocab.org/
http://wiki.dbpedia.org/
http://www.wikidata.org/
http://www.data.gov/
http://www.data.gov.uk/

2.2 linked data 14

• Simple publishing and consumption of Linked Data supported by easy-to-
use systems and technologies.

• Cross-referencing allows for linking and referencing of existing data, via
reuse of identifiers.

• Incremental data integration, i.e., add mappings, without extensive upfront
effort.

• Decentralized distributed ownership and control facilitates adoption and
scalability.

• Large and scalable systems can be developed more easily due to a loose
coupling that Linked Data introduces with a common language and com-
munication layer.

2.2.1 Resource Description Framework

Maintained by the W3C [69], the Resource Description Format (RDF) provides a
common data model enabling the encoding of information that can be read and
interpreted by computer applications. RDF provides a graph model for describ-
ing resources on the Web. The RDF model is based upon the idea of making
statements about resources in the form of a subject-predicate-object expression,
a triple in RDF terminology. Each element has the following meaning:

subject is the resource; the “thing” that is being described.

predicate is an aspect about a resource that expresses the relationship be-
tween the subject and the object.

object is the value that is assigned to the predicate.

Triples are composed of URIs, blank nodes and literals as follows:

ó Definition 2: RDF Term, RDF Triple, RDF Graph

Let U, B, L be pairwise disjoint infinite sets representing respectively URIs,
blank nodes and literals.
The set of all RDF terms is denoted by T = U∪B∪L.
An RDF triple is defined as 〈s,p,o〉 ∈ (U∪B)×U× (U×B×L).
An RDF Graph is a finite set of RDF triples G ⊂ (U ∪B)×U× (U×B×L).
We denote TG as the finite set of RDF terms in graph G.
For a set of RDF Graphs Γ , we denote

.⋃
G∈ΓG as the merged RDF graph, i.e.,

the union of all triples 〈s,p,o〉 ∈ G, ∀G ∈ Γ after forcing any shared blank
nodes, which occur in more than one graph to be distincta.

aFor the detailed definition of RDF merge see http://www.w3.org/TR/rdf11-mt/, re-
trieved 2015-04-10.

http://www.w3.org/TR/rdf11-mt/

2.2 linked data 15

URIs are used to identify resources. Literals express values, such as strings,
numbers, and dates. Literals can be typed with a data type, e.g., using the ex-
isting types from the XML Schema specification [15]. Untyped literals are inter-
preted as strings. Blank nodes serve as locally scoped identifiers for entities that
do not have a URI.

RDF is a directed labeled graph data model: Subjects and objects are nodes,
which are connected by a directed edge. Edges are labeled with identifiers (i.e.,
URIs in predicate position) that make them distinguishable from each other and
allow for multiple edges between the same subject and object.

We can distinguish between predicates in given triples that form a relation or
predicates that express an attribute:

ó Definition 3: Property, Relation, Attribute

Let 〈s,p,o〉 be an RDF triple of RDF graph G.
The resource identified by p is called the property of the triple.
p is called a relation, if o is either a URI or a blank node o ∈ (U×B).
p is called an attribute, if o is a literal o ∈ L.

. Example 4

The RDF triple, published by ACME, that describes the statements "Metal-
lica’s place of origin is Los Angeles" is:

http://acme.example.org/api/metallica ,

http://acme.example.org/vocabulary#origin ,

http://acme.example.org/api/losAngeles

This triple encodes the relation between the entities Metallica and Los
Angeles.

The RDF triple that describes the statements "Metallica was founded in
1981." is:

http://acme.example.org/api/metallica ,

http://acme.example.org/vocabulary#founded ,

1981

This triple expresses an attribute of the band Metallica.
Both triples together form a graph, which is graphically represented in

Figure 1

RDF Data Model and Format

While RDF is a graph-based data model, there are several serialisation formats
that can represent RDF graphs. Originally, the W3C proposed an XML-based se-
rialisation [35] for the adoption by RDF data processing and management tools.
Because of its readability we use the Terse RDF Triple Language (Turtle) seriali-
sation [7] for the examples throughout the thesis. Turtle is a compact syntax for

2.2 linked data 16

(subject, predicate, object)

http://acme.example.org
/vocabulary/origin

http://acme.example.org
/api/metallica

http://acme.example.org
/api/losAngeles

1981

http://acme.example.org
/vocabulary/founded

Figure 1: Example of an RDF graph (graphical representation).

RDF that allows for the representation of graphs with abbreviations for triples
with the same subject or triples with same subject and predicate. Furthermore,
the namespaces of URI can be abbreviated with prefix definitions31. Listing 1

and Listing 2 show the graph introduced in Example 4 in Turtle and RDF/XML
serialisation respectively.

Listing 1: Turtle syntax representation of an RDF graph

1 @prefix acme: <http://acme.example.org/api/> .

2 @prefix p: <http://acme.example.org/vocabulary#> .

3

4 acme:metallica p:origin acme:losAngeles ;

5 p:founded "1981" .

Listing 2: RDF/XML serialization of an RDF graph

1 <?xml version="1.0" encoding="utf-8" ?>

2 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

3 xmlns:p="http://acme.example.org/vocabulary#">

4

5 <rdf:Description rdf:about="http://acme.example.org/api/metallica">

6 <p:origin rdf:resource="http://acme.example.org/api/losAngeles"/>

7 <p:founded>1981</p:founded>

8 </rdf:Description>

9 </rdf:RDF>

The distinction between the actual data model and its serialisation is impor-
tant with respect to the entropy an application faces, when interacting with Web
resources. Both data model and format represent distinct sources of entropy that

31In the examples throughout the thesis we omit prefix definitions for brevity, if the namespace
is clear due to the context of the example. For an overview of commonly used prefixes see http:

//prefix.cc/; retrieved 2015-04-10.

http://prefix.cc/
http://prefix.cc/

2.2 linked data 17

have to be considered when trying to negotiate the interoperability between a
client application and an API (see Section 2.3.2). Staying within the RDF realm
the data model is not affected by the choice of any of the serialization formats;
the graph structures remain unchanged. Or from another point of view, a client
application that supports the RDF data model must still handle the variety of
the possible formats, i.e., being able to parse one or more of the available seri-
alisations. However, the translation between the formats is merely a syntactical
transformation. Client applications can leverage existing conversion tools32 to
transform retrieved RDF data to any required RDF format.

RDF Schema and Ontologies

RDF Schema (RDFS) is a vocabulary language for RDF [17] and allows the mod-
eling of simple ontologies [104]. RDFS describes the logic dependencies among
classes, properties, and values. While RDF provides universal means to encode
facts about resources and their relationships, RDFS is used to express generic
statements about sets of individuals (i.e., classes)33. With RDF it is already pos-
sible to specify the membership of an individual in a class, i.e., define instances
of classes (by using the property rdf:type). RDFS allows to state the relations
between classes and properties, thus providing more expressive semantics for
the automated interpretation of data.

. Example 5

ACME provides schema information to help client applications to inter-
pret the data about artists and events. Listing 3 shows an excerpt of the
schema specification relevant to the RDF graph in Example 4.

The properties p:origin and p:founded are specified to be members
of the class of all properties. p:origin is definied to be a subproperty of
p:hometown, i.e., all relations between two nodes by p:origin also con-
stitute a relation between the same nodes by p:hometown. By definition
of domain and range, it is specified that p:origin always forms a rela-
tion between instances of the class p:Artist and instances of the class
p:City. Similarly domain and range definitions specify that founded pro-
vides an attribute (i.e., a label) for instances of the class p:Artist. Finally
the schema defines that p:Artist is a subclass of p:Performer, i.e., all
instances of the class p:Artist are also instances of p:Performer.

The schema itself is also a Web resource, which can be retrieved by
resolving e.g., the URI p:origin. Thus, a client that encounters RDF triples
including the property p:origin, can simply resolve the URI to gain access
to the schema to interpret the triples.

32see e.g., http://www.easyrdf.org/converter
33Both individual and classes are resources, in the sense of Definition 1

http://www.easyrdf.org/converter

2.2 linked data 18

Listing 3: Specification of domain and range of properties in RDFS

1 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

2 @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

3 @prefix p: <http://acme.example.org/vocabulary/> .

4

5 p:origin rdf:type rdfs:Property ;

6 rdfs:subPropertyOf p:hometown ;

7 rdfs:domain p:Artist ;

8 rdfs:range p:City .

9

10 p:founded rdf:type rdfs:Property ;

11 rdfs:domain p:Artist ;

12 rdfs:range rdfs:Literal .

13

14 p:Artist rdfs:subClassOf p:Performer

Beyond RDFS more expressive entailment regimes are possible to enable more
automatic inferences, e.g., by using the Web Ontology Language (OWL) [71]
or fragments of OWL. The use of more expressive semantics implies a trade-
off: A higher expressivity allows for more inferences, thus potentially enabling
clients to draw inferences necessary to interpret data automatically to mitigate
entropy. However, the expressivity is bought with increasing complexity result-
ing in longer processing times to draw inferences, i.e., increasing the challenge
to reduce application runtime.

OWL LD combines features of RDFS and OWL with the goal to define ade-
quate, implementable and robust semantics that cover many use-cases [39]. The
entailment of OWL LD includes e.g., subclass and equivalence expressions, but
relinquishes other OWL concepts, such as intersection of classes or cardinality
expressions34.

However, only a general automated Web agent has ultimately the requirement
to be able to interpret a predefined set of entailment instructions. Given the trade-
off between expressivity and complexity, an application for a specific task should
be designed with only the features that result in the entailment of the inferences
necessary to achieve the goal of the application; all features unnecessary to draw
the required inferences should be excluded (see Chapter 3).

2.2.2 Interlinked Resources

The use of an HTTP URI allows machines and humans to lookup the name
and get useful information about resources adhering to the RDF standards. The
Hypertext Transfer Protocol (HTTP) is used to exchange data on the Web35. The
use of an HTTP URI further guarantees the uniqueness of the identifier.

Linked Data identifies a subset of resources as information resources. Informa-
tion resources are documents that actually contain RDF triples. Thus resolving
the URI of an information resource returns triples directly, while resolving a

34For a complete overview see http://semanticweb.org/OWLLD/; retrieved 2015-04-10.
35See the IEEE RFC7230 specification for details at https://tools.ietf.org/html/rfc7230;

retrieved 2015-04-10.

http://semanticweb.org/OWLLD/
https://tools.ietf.org/html/rfc7230

2.2 linked data 19

Figure 2: Linked Data information resource provided by the New York Times (HTML
representation) with statements about the document at the bottom.

resource that is another entity than an RDF document refers to an information
resource that describes the entity (see Definition 1).

To have a URI for each, the resource representing an entity and the resource
that is the document that describes the entity, allows to make a clear differenti-
ation between statements about the entity and statements about the document.
E.g., the Linked Data resource shown in Figure 2 (rendered in an HTML page36)
contains statements about the band Metallica at the top, such as the number of
associated articles, and statements about the document itself at the bottom, like
licensing information.

The referral to an information resource when a client tries to resolve the URI
of an entity that is not a RDF document can be realised in two ways:

• A server can redirect the client via HTTP status code 303 SEE OTHER and
provide the URI of the infomation resource that describes the entity. The
client has to resolve the provided URI to access the data about the entity.

36http://data.nytimes.com/50309500102065499172; retrieved 2015-04-10.

http://data.nytimes.com/50309500102065499172

2.2 linked data 20

• The URI of the entity can contain a fragment behind a hashtag #37. Fol-
lowing the HTTP specification a client is supposed to crop the fragment
from the URI before resolving the URI. Thus the complete URI with frag-
ment can be interpreted as the URI of the entity, while the URI without the
fragment can be interpreted as the URI of the information resource.

The approach to use a hashtag-fragment is potentially faster, because it does
not require to establish an additional HTTP connection as it is the case with the
approach via redirects. However, a redirect is closer to the HTTP specification as
it also allows for content negotiation, as described in Section 2.3.2.

The Linked Data principles require that the retrieved data, when resolving a
URI, contains links to other resources so that clients can follow those links to
discover further relevant information. We define links between resources in the
context of Linked Data as follows:

ó Definition 4: Information Resource, Link

A linked data information resource, identified by an HTTP URI u, is a doc-
ument that contains a set of triples 〈s,p,o〉, denoted as Tu.

We denote r i−→ Tu, if a resource, identified by the HTTP URI r, refers to the
triples of the information resource, identified by the HTTP URI u, i.e., u is
the information resource of r. If r is an information resource itself, it holds
true that r i−→ Tr.
There is a link from a resource r1 to a resource r2, denoted with r1

l−→ r2 , if
u is the information resource of r1 and r2 appears as subject or object in at

least in one triple of Tu, i.e., ∃t ∈ Tu : r1
i−→ Tu ∧ (t = 〈r2,p,o〉 ∈ Tu ∨ t =

〈s,p, r2〉 ∈ Tu)

Links can be internal or external. An internal link is a link between two
resources with the same namespace (i.e., both resources are from the same
provider). An external link is a link to a resource with a different namespace,
which can specifically be used to express relations between resources of differ-
ent providers. In particular, the property owl:sameAs specifies the equivalence of
two resources that represent the same thing.

External links are also used to link schemata of different providers, expressing
relations between classes and properties in the different schemata. Overlapping
information from different resources can be aligned using such equivalence state-
ments and schema mappings.

. Example 6

ACME regularly includes external links in their provided resources to al-
low users to find additional information about events and performers. The
band Metallica is identified by ACME with the URI

http://acme.example.org/api/metallica

37See the IEEE RFC3986 specification for details at https://www.ietf.org/rfc/rfc3986.txt;
retrieved 2015-04-10.

https://www.ietf.org/rfc/rfc3986.txt

2.2 linked data 21

<http://acme.ecample.org/api/metallica>

<http://acme.ecample.org/data/metallica>

T data:metallica

<http://data.nytimes.com/50309500102065499172>

T nyt:50309500102065499172

<http://data.nytimes.com/metallica_org>

@prefix nyt: <http://data.nytimes.com/> .
…

acme:metallica owl:sameAs nyt:metallica_org ;

rdf:type p:Artist .
p:origin acme:losAngeles ;
p:founded “1981“ .

@prefix dbpedia: <http://dbpedia.org/resource/> .
@perfix fb: <http://rdf.freebase.com/ns/>
…

nyt:metallica_org owl:sameAs dbpedia:metallica ;
owl:sameAs fb:en.metallica ;

nyt:first_use “2006-01-07“ .

link

refers
to

refers
to

303
SEE OTHER

303
SEE OTHER

Figure 3: Illustration of an external link between two resources as equivalence relation.
(Some prefix definitions omitted for brevity.)

When a client application resolves the URI the server refers the client to an
information resource, as ACME cannot send the actual band to the client.
The information resource is identified with the URI

http://acme.example.org/data/metallica

Resolving the information resource returns triples describing the band,
including the following triple constituting a link to the Metallica resource
provided by the New York Times as equivalence relation:

acme:metallica owl:sameAs nyt:metallica_org .

The resource provided by the New Your Times also refers to an informa-
tion resource, which is also depicted in Figure 2. Here, further links to
resources representing Metallica from other providers can be found. The
link from the resource provided by ACME to the resource provided by the
New York Times is illustrated in Figure 3.

2.2.3 Basic Graph Pattern

The established query language for RDF is SPARQL protocol and RDF query
language (SPARQL) [123]. While SPARQL offers a wide range of features, Basic
Graph Pattern (BGP) are an important fragment, which cover a wide range of
information needs. We focus on BGPs as they are not only relevant for queries,
but also form a major building block of the rule language described in Chapter 3

and Chapter 4.

2.2 linked data 22

ó Definition 5: Triple Pattern, Basic Graph Pattern, Join Variable

Let V be the infinite set of variables, disjoint with U,B, and L.
The union of all variables and RDF terms is denoted by E = V∪ T.
A triple pattern, denoted with TP, is a triple 〈s,p,o〉 ∈ (V ∪ U ∪B)× (V ∪
U) × (V ∪ U ∪ B ∪ L), where subject, predicate and object can either be a
variable or an RDF Term.
A basic graph pattern is a set of triple patterns Q = {t1, ..., tn}.
We denote VQ as the finite set of all variables in the basic graph pattern Q.
We denote EQ = VQ ∪TQ as the union of all variables and RDF terms in the
basic graph pattern Q.
If two triple patterns in a basic graph pattern tk, tl ∈ Q share the same
variable vj ∈ E{tk} ∧ vj ∈ E{tl}, the variable vj is the join variable for the
triple patterns tk and tl in Q.

The triple patterns of a BGP form a graph similar to RDF triples. Intuitively to
execute a BGP query Q over an RDF graph G implies finding a mapping of all
variables in Q to RDF terms in G in such a way that the substitution of variables
in Q with their mapped terms, yields a subgraph of G. Computing answers to a
BGP query over an RDF graph amounts to the task of graph pattern matching:

ó Definition 6: Solution Mapping, Instance Mapping, Result Binding

A solution mapping is a partially defined function µ : V → T that maps
variables to RDF terms. A solution sequence is a possibly unordered list of
solution mappings.
We denote dom(µ) ⊂ V as the domain of µ, i.e. the subset of V where µ is
defined.
An RDF instance mapping is a partially defined function ι : B → T that
maps blank nodes to arbitrary RDF terms t ∈ T.
Let Q be a BGP and G an RDF graph. Further let the pattern instance map-
ping Pιµ : EQ → T be a function that maps variables and RDF terms in Q to
RDF termsa:

Pιµ(x) =


µ(x) if x ∈ V

ι(x) if x ∈ B

x if x ∈ U∪L

We denote Pιµ(EQ) for the RDF graph resulting from a substitution of all
elements e ∈ EQ in the BGP Q according to Pιµ(e).
A mapping µ for the variables VQ is a result binding for Q from G if Pιµ(EQ)
is a subgraph of G; i.e., µ satisfies that

∃ι∀〈s,p,o〉 ∈ Q : 〈P(s),P(p),P(o)〉 ∈ G and dom(µ) = VQ

2.2 linked data 23

We denote Ωg(Q) for the setb of all unique result bindings for the BGP Q
from RDF graph G, i.e.,

Ωg(Q) = {µ| ∃ι : Pιµ(EQ) ⊆ G}}
aWe deviate slightly from the SPARQL specification in http://www.w3.org/TR/

sparql11-query/ by explicitly defining pattern instance mappings as function over RDF
terms and variables. However, the semantics remain unchanged.

bPlease note that we assume set semantics, in-line with [88, 97].

Finally we can define the join of two sets of solution mappings:

ó Definition 7: Compatible Mappings, Join

Two solution mappings µ1 and µ2 are compatible, if every join variable vj is
mapped to the same term, i.e., ∀v ∈ (dom(µ1)∩ dom(µ2)) : µ1(v) = µ2(v).
We denote merge(µ1,µ2) as the union of two mappings, such that

merge(µ1,µ2) = {v 7→ µ1(v)| v ∈ dom(µ1)}∪ {v 7→ µ2(v)| v ∈ dom(µ2)}

If µ1 and µ2 are compatible, merge(µ1,µ2) is also a mapping.
Let Ω1 and Ω2 be sets of solution mappings. The join of Ω1 and Ω2 is the
set of all solution mappings resulting from the union of all mappings in Ω1
and Ω2 that are also mappings, i.e.,

join(Ω1,Ω2) = {merge(µ1,µ2) |µ1 ∈ Ω1, µ2 ∈ Ω2, (µ1,µ2) compatible}

For a complete definition of the semantics of all features of SPARQL see [89].
We require the RDF instance mapping in Definition 6 to handle blank nodes in
BGPs. Intuitively blank nodes act like variables, whose scope is outside of the
result binding, i.e., variables that are not part of the solution mapping.

Data providers sometimes provide query capabilities, which can be remotely
accessed via the Web. These query capabilities are referred to as SPARQL end-
points and allow for federated query processing. However, providing remote
query capabilities represents a technical as well as an economic challenge for
data providers as the endpoints must be managed. Consequently many providers
restrict themselves to the Linked data principles and offer data simply as URI-
identified resources, retrievable via HTTP without processing queries remotely
on the servers of the provider.

Making data retrievable as Linked data resources prevents that the strain of
all queries from a multitude of user clients is put on a central query processor
maintained by the data provider, by pushing the effort of querying onto the
clients. The clients consuming Linked Data need not execute their queries over
the potentially large data dumps from a provider, as the resource-centric data
model of Linked Data results in small encapsulated units of data. Clients can just
retrieve a required subset of data by following the links between the resources.

Because links can also point to resources from third party providers, clients
can assemble the data required for their task from a multitude of sources. To
align the resources from providers, who might use different vocabularies one can
draw inferences provided by schema mappings such as equivalence or subclass

http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-query/

2.2 linked data 24

statements between classes and instances, as explained in Section 2.2.1. SPARQL
as defined by the W3C is a pure query language and does not stipulate any in-
ferences over the processed data. In [38] an extension of SPARQL with the entail-
ment regimes of RDF, RDFS and OWL is proposed. However, in a scenario where
clients operate over Linked Data resources, clients can be developed, which only
materialise the statements required for the goal of the client.

. Example 7

We consider an application that analyses how much time successful music
bands on average need until they are widely known. For this purpose
the application compares the founding date of bands with the time they
are first mentioned in large newspapers. The required information for the
analysis is gathered from Web resources describing the bands.

In particular the following BGP query is used in the application, based
on the vocabulary employed by ACME and the New York Times:

?band rdf:type p:Artist .

?band p:founded ?date .

?band nyt:first_use ?first .

Intuitively the BGP queries for anything that is of type artist, its founding
data and its first use in the New York Times. By default, the application
retrieves the information resource describing a band from ACME. Because
ACME does not offer information about the first publication in newspa-
pers, the application follows links to acquire the corresponding data. For
instance, in the case of the band Metallica the application follows the link
as outlined in Example 6 and retrieves the resource from the New York
Times.

The application has the following RDF graph available:

acme:metallica rdf:type p:Artist .

acme:metallica p:founded "1981" .

acme:metallica p:origin acme:losAngeles .

acme:metallica owl:sameAs nyt:metallica_org .

nyt:metallica_org nyt:first_use "2006-01-07" .

However, the result binding for the query from this graph is empty,
as there is no mapping for the join variable ?band. Only if the seman-
tics of the property owl:sameAs are taken into account, the equivalence of
acme:metallica and nyt:metallica_org can be inferred and the following
triple can be materialised and added to the graph:

acme:metallica nyt:first_use "2006-01-07" .

Now the query gives a result binding with the following solution map-
ping:

2.3 representational state transfer 25

µ(?band) = acme:metallica

µ(?date) = "1981"

µ(?first) = "2006-01-07"

Thus the application acquires the necessary information to complete its
task. Other inferences stemming from other entailment features, like the
fact that p:Artist is a subclass of p:performer are not required for the
application to achieve its goal.

2.3 representational state transfer

LD implies an interaction schema with resources based on HTTP, but LD is
merely focused on the provisioning of data and data consumption by client ap-
plications. However, the tasks of Web-based applications often require services
that go beyond the retrieval of resources. Examples for such services include the
search and ordering of products, the booking of flights and hotels, or the upload
of user generated content.

The term Web Service has several different definitions in the literature; for an
overview see [19, 33]. In the context of this thesis we use term broadly to refer to
any kind of system to provide functionality offered by a provider over the Web.
While the offer of a service is Web-based the actual delivery of the functionality
can entail not Web-based aspects and effects, e.g., the actual physical delivery of
an online ordered product. For brevity we often use the term service when we
refer to the functionality offered by a Web Service.

In this section we focus on Representational State Transfer (REST), a paradigm
for the resource-oriented interaction with services on the Web. In particular
we introduce REST by differentiating resource-oriented APIs from operation-
oriented APIs, based on our work in [110].

An Application Programming Interfaces (API) is generally used to provide
access to the functionality of a Web service. An application can use one or more
APIs to implement Web-based functionalities and offer the services to users. If an
application implements more than one service, the application has to integrate
the services to make use of the combined functionality. The resulting layered
architecture is depicted in Figure 4.

A Web site, can include pages containing interactive Web forms, which make
use of the API to offer functionalities to users. Users have to use browsers to
render and interact with the Web page. Thus, a browser together with the Web
page build a client application for the API.

Client applications like mobile apps or web sites can be provided by the ser-
vice providers themselves or by third parties. An API can be open or closed:

open api : Third parties, different from the provider, can access and make use
of the API. An API is also considered to be open, if the access is not free,
i.e., the provider charges money for the use of the API, which allows to
establish a whole business model around the provisioning of services on
the Web. Open APIs provide the advantage that applications using the Web

2.3 representational state transfer 26

Web Site

Service, Functionality

Browser Mobile App

End Users

Service
Provider

Client
Applications

API

Service

…

…

API (resource-oriented, operation-
oriented)

Figure 4: Architecture of services provided via APIs, implemented in client application
for the consumption by end users.

API that are developed by third party developers increase the potential
reach of the service, i.e., increase the amount of potential users.

closed api : The API is only for the internal usage within the provider organ-
isation. Closed APIs are useful to allow providers to group and combine
functionalities to products. Either the functionality of the underlying ser-
vice is only a supporting function for the business model of the provider,
or the functionality is offered to end users only via client applications de-
veloped by the provider itself.

. Example 8

ACME offers an open API that allows to search for music artists and sports
teams. Further tickets for upcoming concerts and matches of the artists and
teams can be bought via the API. The tickets can be downloaded as digital
version or are delivered physically.

The Web site of ACME makes use of the API to offer these functionali-
ties to users. Further ACME offers a mobile app for the Google Android
operating system as additional client application, so that users can sponta-
neously buy tickets en route. ACME did not invest into the development
of an mobile app for the Apple iOS operating system. However, a third
party developer offers an iOS mobile app, that allows users to buy tickets
from ACME, but also from other ticket agencies, which offer APIs. The
business model of the third party developer is based on advertisements
shown in the mobile app.

According to a W3C note38, when constructing a Web API two general alter-
natives for the implementation exist:

38http://www.w3.org/TR/ws-arch/#relwwwrest; retrieved 2015-04-10.

http://www.w3.org/TR/ws-arch/#relwwwrest

2.3 representational state transfer 27

70%

23%

5% 2%

REST

SOAP

JavaScript

XML-RPC

Source: ProgrammableWeb.com; retrieved 2013-12-09.

Figure 5: Proportion of different protocols used for open Web interfaces.

• An API that exposes an arbitrary set of operations.

• A resource-oriented API with a uniform set of stateless operations.

We give a brief overview of operations-oriented approach for differentiation and
focus on the architecture of resource-oriented interfaces, since the latter are pre-
dominantly used on the Web (see Figure 5): A detailed comparison of both API
paradigms is available from [82, 109].

2.3.1 Operation-oriented API

An API with arbitrary operations is often designed by adhering to the variety
of specifications and languages commonly referred to as the WS-* stack. Ar-
guably the most well known of these technologies are the Simple Object Access
Protocol (SOAP) [43], which defines the XML-based exchange of structured in-
formation in distributed environments, and the Web Service Description Lan-
guage (WSDL) [23] to describe service endpoints, which offer operations.

However, other variants of operation-oriented approaches exist, e.g., remote
procedure calls. The main characteristic of this style of API is that the operations
that make out the service are directly defined and offered. When implemented
for services such an API uses the Web as a transport layer for the data and entails
a high degree of freedom.

. Example 9

ACME used to offer the functionalities described in Example 8 with an
operation oriented approach. In particular the API offered the following

2.3 representational state transfer 28

operations, which could be invoked by client applications for the corre-
sponding functionality.

• findArtistInfo using the name of an artist as input.

• findConcerts using an identifier of concerts as input.

• orderConcertTicket using an identifier of the concert as input.

2.3.2 Resource-oriented API

A resource-oriented API complies to the constraints of a Representational State
Transfer (REST) architecture [29]. REST is identified as the interaction between a
client (i.e., an application) and a server based on three principles, according to
the Richardson maturity model [94]:

1. The use of URI-identified resources.

2. The use of a constrained set of operations, i.e., the HTTP methods, to access
and manipulate resource states.

3. The application of hypermedia controls, i.e., the data representing a re-
source contains links to other resources. Links allow a client to navigate
from one resource to another during interaction.

Resource Structure

A REST API offers the service functionality under the primacy of resources rather
than operations. A resource can be a real world object or a data object on the
Web. Resources are uniquely identified with a URI (cf. Definition 1). In contrast
to Linked Data REST does not make an explicit difference between a resource
representing a real world object and a document containing data that describe
the object [29] (cf. Definition 4). If a client resolves a URI that identifies a real
world object, the data representation of the resource is returned directly to the
client, without any referral. The representation of a resource details its current
state, i.e., relevant information associated with the resource.

Resources can be grouped into collections. These collections in turn are URI-
identified resources themselves and referred to as collection resources. The result-
ing tree-like structure of the resources is similar to the well known directory
structure of file systems.

Constrained Operations Set

The interaction of client applications with services via a REST API is not based
on the call of API-specific operations but rather on the direct manipulation of ex-
posed resource representations or the creation of new resource representations.
If a resource represents a real world object, a manipulation of the state repre-
sentation might imply that the represented resource is manipulated accordingly,
i.e, there can be an implicit connection between the data representation of a re-
source and the actual object, that is represented. This connection guarantees that

2.3 representational state transfer 29

the data representation of a resource always conforms to the actual state of the
represented entity. The implication of the such a connection is that

• if the data representation is manipulated, the represented entity has to
change accordingly;

• if the represented entity changes its state, the data representation has to
change as well to reflect the new state.

However, the connection between a data representation and the represented ob-
ject is not always given. E.g., if the origin city of the band Metallica is changed
in the data representation, the actual origin of the band stays the same (see Sec-
tion 4.2).

To manipulate data representations, REST offers only a constrained set of op-
erations that can be applied to a resource. These operations are shared by all in-
terfaces following REST principles, thus the entropy for clients interacting with
REST APIs is significantly reduced. The constrained set of operations increases
interoperability and understandability of the interfaces. Nevertheless, not all re-
sources must necessarily allow the application of all possible methods.

Some of the methods can carry input data as a payload, which describes the
intended new state of the addressed resource39. On the Web, the allowed opera-
tions are the HTTP methods40 (see Table 2).

After using a method to interact with a resource the client application receives
a status code in the response, which informs the client about the success or
failure to which the application can react at run time. The status codes can be
categorised as follows:

1xx (informational) Indicates a provisional response to a request, prior to
the regular final response, e.g., used to inform a client that it can continue
with its request.

2xx (successful) Indicates that the request was understood and accepted,e.g.,
used to inform the client that a resource has been created.

3xx (redirection) Indicates that further action by the client is required to
complete the request, e.g., used to inform the client that the request should
be redirected to another resource.

4xx (client error) Indicates that the request failed and the fault lies with
the client, e.g., used if the requested resource does not exist.

5xx (server error) Indicates that the request failed and the fault lies with
the server, e.g., used if a service is not available.

Two types of methods exist: safe and unsafe. Safe methods guarantee not to
affect the current states of resources, while unsafe methods change the state of
the resources. Furthermore, most of the methods are idempotent. The repeated

39The HTTP POST method is a noteworthy exception as it permits the submission of data to
process, which is similar to an RPC call and therefore should be used carefully.

40See the IEEE RFC7231 specification for details at https://tools.ietf.org/html/rfc7231;
retrieved 2015-04-10.

https://tools.ietf.org/html/rfc7231

2.3 representational state transfer 30

Table 2: Overview of HTTP methods (excerpt) and their characteristics.

Method Safe Idempotent Description

GET X X Retrieve the current state of a resource.

OPTIONS X X Retrieve a description of possible interac-
tions.

DELETE X Delete a resource.

PUT X Create or overwrite a resource with the
submitted input.

POST Send input as subordinate to a resource
or submit input to a data-handling pro-
cess.

application of an idempotent method on a resource does not change the state of
the resource beyond the first application of the method. For example, if a client
application deletes a resource, deleting it again has no effect.

The application of a HTTP method is called a request to which a server replies
with a response. We define request and response as follows41:

ó Definition 8: Request, Lookup, Response

Let M = {GET ,PUT ,POST ,DELETE,OPTIONS} be the finite set of HTTP
methods.
Let C be the finite set of HTTP status codes.
A request is a tuple req = (m,u,Dreq) with

• m ∈M, an HTTP method
• u ∈ U, the URI of the addressed resource
• Dreq, a dataset as request payload

A lookup is a request with m = GET and Dreq = ∅
A response is a tuple res = (c,Dres) with

• c ∈ C, a HTTP status code
• Dres, dataset as response payload

Specifically, we denote (req)ג for the response to the request req.
We denote RP(req) for the dataset returned in the response to request req,
i.e.,

(req)ג = (c,RP(req))

Hypermedia Controls

A REST API fosters loose coupling between clients and services on the premise
that client applications do not need to know about all available resources in
advance. The retrievable representations of some known resources contain links

41For simplicity we constrict the definition to the attributes relevant for the approaches in the
following chapters and exclude most of the header information potentially contained in HTTP
Requests and Responses.

2.3 representational state transfer 31

to other resources that the client can discover during runtime. Applications can
use such discovered resources to perform further interaction steps. Collection
resources specifically contain links to all the resources in the collection. This
architectural design allows client applications to be robust toward changes in
the API, because the client application has to react to whatever the client finds
when it interacts with the API [94, 124].

In conjunction with the constrained set of available operations, the approach to
have client applications react to the state of a resource as discovered at runtime
shifts the entropy from the execution of service operations to the interpretation
of the data representations of the resources. Intuitively it is easy for a client
application to choose the right operation for a task (little entropy), but hard to
interpret the meaning of the data representing a resource and the contained links
(large entropy).

In a REST architecture, no constraints are given on how the state of a resource
has to be represented. There is no defined standard regarding data model or
serialization format of the data that detail the current state of a resource or the
input and output data of a method.

Client application and API are, however, supposed to agree on the format of
the exchanged data and implicitly on how the data is supposed to be interpreted.
The process of establishing this agreement is called content negotiation. For dif-
ferent application scenarios such an agreement requires vendor specific content
types (i.e., content types defined by the service provider) for the individual ser-
vices to convey the meaning of the communicated data.

If a client application applies a method to a resource requesting a certain con-
tent type, the client signals, that it is capable to parse the corresponding data
format and interpret the data following the intention of the provider. A server
that is not able to provide the requested content type has to deny the application
of the method (response code 406 NOT ACCEPTABLE).

The idea behind vendor specific content types is that service providers can
reuse content types and application developers can make use of specific content
type processors in their applications to work with the data. Such content type
processors would encapsulate the capabilities to interpret the resources from
different providers, thus mitigating the entropy clients have to face interacting
with resources.

In practice, however, most Web API providers simply make use of standard
non-specific content types, e.g., text/xml or application/json [68]. Developers
therefore have to write applications that are individually adapted for the API
they make use of. In Chaper 4 we propose how the combination of Linked Data
resource representations and REST can improve on this situation.

. Example 10

The current API of ACME is resource-oriented. In particular ACME’s API
contains collection resources representing artists, teams, concerts, events,
etc., which correspond to the folders of a file system. The resources repre-
senting the concrete instances of artists, teams, concerts and events corre-
spond to files put into the corresponding folders. The API of ACME com-

2.3 representational state transfer 32

prises thousands of resources, with the exact number constantly changing.
The following list contains examples of instances and collection resources
of the ACME Web API:

• Collection resources of music artists a sports teams respectively; the
representation contains links to all artists and teams.

– acme:artistCollection

– acme:teamCollection

• Resources representing individual music artists; the representation
contains information about the artist (e.g., name and origin) and
links to upcoming concerts.

– acme:metallica

– acme:eminem

• Collection resource of concerts and matches; the representation con-
tains links to all upcoming concerts and matches.

– acme:concertCollection

– acme:matchCollection

• Resources representing individual concerts; the representation con-
tains information about the concert (e.g., location, date, and price
per ticket), links to the performing artist and to an instance of the
acme:ticketorder resource.

– acme:concert1234

– acme:concert1235

• Collection resource of ticket orderings; the representation contains
links to all ticket orderings.

– acme:ticketorder

• Resources representing individual ticket orderings with information
about the ordering (e.g., delivery and address) and link to corre-
sponding concert or match.

– acme:order567

– acme:order568

ACME allows HTTP operations on the resources in the following man-
ner:

get Almost all resources of the ACME API allow for the application of
GET to retrieve information. A GET on one of the collection resources
gives an overview of the known instances (i.e., concerts, matches,
teams, and artists). The retrieval of the information of a specific ticket
order, however, is only allowed with the correct credentials. Only a
user who created the ordering can look it up again. The retrieval of
the collection resource for all orderings is generally not permitted.

2.3 representational state transfer 33

post The collection resource for ticket orderings allows POST to enable
users to add a new ticket order for a specific concert.

put The use of PUT is only allowed to overwrite existing ticket orders,
thus enabling users to update an order.

delete Ticket orders can also be canceled with DELETE up to a prede-
fined time before the corresponding concert or match takes place.

At the behest of an end user a client application can interact with the
resources of the ACME API in the following way, leveraging hypermedia
controls:

1. Retrieve the information (i.e., representation) of a specific artist, which
contains links to upcoming concerts (method GET).

2. Retrieve the information of one of the concerts, which contains a link
to the collection of ticket orderings (method GET).

3. Create in this collection a new resource representing a new ticket
order (method POST).

For the described interaction only the identifier of the resource repre-
senting the artist needs to be known in advance (i.e., before the interaction
can start). This could be further refined by providing a search interface
over the available artists as contained in the artist collection resource.

3
PA R A L L E L P R O C E S S I N G O F W E B R E S O U R C E S

3.1 introduction

Linked Data has resulted in a large amount of Web resources openly available
on the Web, providing information across a multitude of domains. Recent crawls
of these Web resources confirm at least 4 Billion statements42, and a total of
30 Billion statements43,44 is estimated to be accessible.

Application clients can access the available information, combine, process the
data and present the results to users. In particular, value can be generated when
multiple data sources are integrated, as the combination of information obtained
from multiple providers in large distributed environments such as the Web can
result in new insights, which can not be obtained from a single source.

Linked Data supports the combination of resources from multiple sources by
client applications as the Linked Data principles reduce the entropy encountered
by the clients. The principles imposed by Linked Data mandate a uniform data
model for the representation of resources as well as a way to access these re-
sources with HTTP as access protocol [9].

Mappings between resources via hyperlinks lead to a very large intercon-
nected data graph. But client applications built upon this data graph still face
the problem of entropy, due to the fact that various sources use different iden-
tifiers to denote the same schema elements. The providers of Linked Data Web
resources can use schemata with constructs from RDFS and OWL to help clients
to interpret the resources. As different providers employ different vocabularies,
links between the schemata establish relations between the different identifiers of
objects and documents. Client applications can use these relations to align Web
resources, i.e., integrate the data representing the resources by reasoning over the
semantics of the data. Thus the client application is able to extract the required
information for their task by evaluating queries over the integrated data.

However, it remains difficult to evaluate queries over data that is scattered
across many sources and thus enabling client applications that perform with
short runtimes in an environment, which can be characterised as follows:.

• The retrieval of required Web resources can be time consuming, as it is
subject to network latency and available bandwidth and can stall the actual
processing and query evaluation. The processing and retrieval of data has

42http://km.aifb.kit.edu/projects/btc-2014/; retrieved 2015-04-10.
43http://www4.wiwiss.fu-berlin.de/lodcloud/state/; retrieved 2015-04-10.
44http://wp.sigmod.org/?p=786; retrieved 2015-04-10.

34

http://km.aifb.kit.edu/projects/btc-2014/
http://www4.wiwiss.fu-berlin.de/lodcloud/state/
http://wp.sigmod.org/?p=786

3.1 introduction 35

to be carefully orchestrated, in particular because Linked Data implies the
acquisition of the data based on the traversal of links between resources,
which are dynamically discovered at runtime.

• To retrieve all available resources (or a very large subset, e.g., every re-
source in a specific domain) is prohibitively expensive. Client applications
cannot follow all available links blindly, but should be designed in manner
to specifically target individual resources and schemata.

• Taking into account all semantic features of data items for reasoning (such
as transitivity, symmetry or equality of properties) is computationally ex-
pensive and often not needed for specific applications. Developers should
be able to choose which features their application is going to support in
such a way, that the application can evaluate the semantics of schemata,
which are not known a priori and are retrieved at runtime.

In this chapter we join two currently isolated strands of research to provide
query processing capabilities over Web sources:

• Methods for evaluating queries over interlinked sources via link traversal.

• Approaches for integrating data over interlinked schemata via reasoning.

We describe algorithms for the parallel streaming evaluation of cyclic (recursive)
pipelined query plans in conjunction with network requests based on a data-
driven execution model. Thus we present methods that intertwine the evaluation
of query plans with network requests to fetch data. In particular, we focus in this
chapter on retrieval and processing of Web resources, before we look beyond the
consumption and address the manipulation of Web resourced in Chapter 4.

Building applications that use distributed Web resources to acquire and query
relevant information involves several steps:

1. The Web resources have to be accessed and downloaded.

2. The retrieved data has to be integrated.

3. The integrated data has to be queried.

To access, integrate and query Linked Data multiple specialised systems can be
employed. The use of multiple systems implies that the steps are carried out se-
quentially. Alternatively, one has to implement the data processing in imperative
code; those mash-ups are often tailored for specific data sources in a narrowly-
defined domain. We describe the architecture of a fully implemented system that
is able to follow links in processed sources, retrieve the data from the newly dis-
covered resources, integrates the data by reasoning over dynamically retrieved
schemata, and evaluate queries , all in a cohesive integrated process.

We design and study methods to access and integrate data from disparate in-
terlinked Web Resources. In our approach, the different steps can be encoded
in a high-level specification based on rules. The topic of this chapter are meth-
ods for efficiently evaluating queries taking into account such specifications on
shared memory machines.

3.1 introduction 36

Several systems exist that evaluate queries directly over resources accessible
as Linked Data [48, 46, 30, 62]. However, these systems do not take the semantics
of data sources (the mappings of schema and instance elements) into account
during query processing. Other systems rely on a fixed set of sources, with fixed
reasoning constructs. Reasoners [100, 76] operate over locally accessible (or a
priory downloaded) single-source datasets. We assume a hyperlinked environ-
ment, in which applications benefit from an approach, where data access and
data processing are interleaved.

Dataspace systems [32] rely on a centralised catalogue of sources and operate
therefore in scenarios with less entropy. On the Web, we have to handle the links
between resources at runtime to discover new data sources.

Stream reasoning systems [70] and complex event processing systems [5] rely
on a fixed number of sources that push data. On the Web, polling is the preva-
lent communication mode, which is also fostered by Linked Data. Polling allows
client applications to retrieve data when needed [58] and to include new reason-
ing constructs while traversing the graph of resources.

3.1.1 Challenges

We address the following challenges in the context of runtime requirements and
entropy (see Section 1.1.1):

• To retrieve all available resource (or a very large subset, e.g., every resource
in a specific domain) is prohibitively expensive. Client applications cannot
follow all available links blindly, but should be designed in manner to
specifically target individual resources and schemata. Further, there is lit-
tle coordination between providers, and resources have to be aligned and
integrated. The reasoning constructs required to align the resources can
vary depending on the goal of the application. The supported degree of
complexity for drawing inferences directly translates into an increased pro-
cessing time. Rather than generally supporting all semantic features of an
entailment regime, a developer should be able to chose which constructs
to employ or to relinquish.

• There is little or no a priori information about the size or schema of the
overall graph, if client applications collect information by traversing links,
which are found piece by piece at runtime. Consequently, an approach to
process the data cannot rely on traditional indexing architectures, in which
the data is indexed before processing time. Queries over Linked Data have
be executed directly over the resources dereferenced at query time. Thus,
an execution model for programs to interact with Web resources has to
achieve short processing times in the face of dynamic network lookups.

• Sources exhibit heterogeneous performance characteristics, which together
with bandwidth and network latency constraints influence the time neces-
sary to retrieve resources. An application client has to accommodate for the
retrieval time as well as the processing time. Specifically, we require parallel
algorithms, to deal with both the computationally expensive rule process-
ing and the low bandwidth and unpredictable network latency of sources.

3.1 introduction 37

In the implementation of such algorithms different parallel tasks have to
be coordinated and processing bottlenecks have to be avoided. Specifically,
if the evaluation of interdependent rules and queries is conducted with
parallel processes, it is hard to determine when the processing is finished,
i.e., a fixpoint in the processing is reached.

3.1.2 Contributions

Our contributions are as follows:

• We describe rule-based programs that can be used encode reasoning fea-
tures intertwined with link traversal specifications. In particular, we in-
troduce the notion of request rules, which infer required network lookups
from the processed data. Request rules complement deduction rules, which
infer and materialise implicit information from the processed data (Sec-
tion 3.2).

• We introduce a parallel execution model for the evaluation of queries and
rules, in which operators of a physical evaluation plan schedule each other
in a data-driven manner: every operator pushes intermediate results to sub-
sequent operators in the evaluation plan within a single thread. Thus sev-
eral sequences of operators can be executed in parallel. The scheduling of
our parallel execution model avoids overhead from inter-process communi-
cation and thread scheduling of the operating system. At the same time the
push approach caters to scenarios with dynamic network requests, where
data from multiple sources has to be processed on arrival (Section 3.3).

• We describe several threading models to implement the execution model
for the parallel evaluation of programs. We identify the different trade-offs
of the individual threading models. In particular we show the details of a
threading model that allows to use multiple queues for the input data of re-
trieved resources. The use of multiple input queues specifically eliminates
the bottleneck that a single input queue otherwise represents. We describe
for each of the identified threading models how to probe for the termina-
tion of the evaluation, i.e., when a fixpoint is reached. (Section 3.4.1). Ad-
ditionally we detail an algorithm to coordinate the parallel processes and
actively track when a fixpoint is reached, thus potentially avoiding unnec-
essary waiting time to finish the processing (Section 3.4.2). Our approach
intertwines rule based reasoning and query processing with the network
retrieval of resources. At the same time it allows to separate the network-
related workload from the processing-related workload. The separation of
workload allows to balance available computing resources between data
processing and network lookups to minimise overall runtime depending
on the application scenario (Section 3.4.3).

We describe experiments in Section 3.5, cover related work in Section 3.6, and
conclude the chapter with Section 3.7.

3.2 rule-based programs 38

3.2 rule-based programs

For a Web-based application to perform its intended task, it has to retrieve re-
quired resources, integrate the retrieved data by materialising implicit statements
derived from the semantics of the data and evaluate queries over the resulting
graph. In our approach we propose to specify the application logic with rules,
which use BGPs as basis. In particular, we employ rule-based reasoning to align
the vocabularies of the Web resources. The rules to encode the desired reasoning
constructs are called deduction rules.

ó Definition 9: Deduction Rule

A deduction rule ρd : {B} =⇒ {H} consists of two BGPs:
• the rule body B
• the rule head H

Every variable in the head H has also to be part of body B, i.e., VH ⊂ VB.
An execution step of a deduction rule ρd over a graph G adds the graph
Gadd to G, where Gadd is the RDF graph resulting from the substitution
of the variables in H according to all result bindings of B from graph G,
i.e., ∀µ ∈ ΩG(B)∀〈s,p,o〉 ∈ H : 〈Pιµ(s),Pιµ(p),Pιµ(o)〉 ∈ Gadd with a unique
blank node mapping ι for every µ ∈ ΩG(B).
We denote fd as the function that maps a deduction rule and a graph to
the graph of derived triples resulting from one execution step of the deduc-
tion rule and stepd as the function mapping to the resulting graph of an
execution step:

fd(ρd,G) = Gadd

stepd(ρd,G) = G
.
∪ fd(ρd,G)

The complete execution of a deduction rule ρd over graph G is the recursive
evaluation of n execution steps of ρd over G until no new triples can be
derived, i.e., a fixpoint is reached:

min(n) : (stepd1 ◦ ... ◦ stepdn)(ρd,G) = (stepd1 ◦ ... ◦ stepdn+1)(ρd,G)

Deduction rules can be used to specify application specific data transforma-
tions and domain knowledge. Furthermore different rule sets encode reasoning
constructs according to RDF, RDFS and OWL semantics. In particular, it is pos-
sible to employ only parts of the rule sets to restrict the reasoning to subsets of
the entailment regimes. Thus, the rule-based processing allows to scale the em-
ployed reasoning features with respect to the requirements of the application.

Furthermore we also use rules to encode the requests to be performed accord-
ing to the application logic, which are called request rules. In the context of this
chapter we only focus on lookups as requests:

3.2 rule-based programs 39

ó Definition 10: Request Rule

A request rule ρr : {B} =⇒ {x} consists of
• a BGP B as rule body
• a variable or URI x ∈ V∪U as rule head.

If x is a variable x ∈ V, then it has to appear in the rule body, i.e., x ∈ VB.
The execution step of a request rule ρr over a graph G adds the graph Gresp
to G, where Gresp is the RDF graph returned in the payload of resource
lookups. The resources to lookup are identified by

• x, if B has at least one result binding from graph G, and if x is a URI.
• the URIs µ(x) ∈ U, to which x is mapped in all result bindings of B

from G, if x is a variable.
The responses to the lookupsa are defined by

(c,Dres) =

{
GET))ג , x, ∅)) if x ∈ U∧ΩG(B) 6= ∅
GET))ג ,µ(x), ∅)) ∀µ ∈ ΩG(B) if x ∈ V∧ µ(x) ∈ U

Therefore the graph Gresp is defined as

Gresp =


RP(x) if x ∈ U∧ΩG(B) 6= ∅
.⋃
µ∈ΩG(B)RP(µ(x)) if x ∈ V∧ µ(x) ∈ U

∅ otherwise

We denote fr as the function that maps a rule and a graph to the graph of
retrieved triples resulting from one execution step of the request rule and
stepr as the function mapping to the resulting graph of an execution step:

fr(ρr,G) = Gresp

stepr(ρr,G) = G
.
∪ fr(ρr,G)

The complete execution of a request rule ρr over graph G is the recursive
evaluation of n execution steps of ρr over G until no new lookups can be
found, i.e. a fixpoint is reached:

min(n) : (stepr1 ◦ ... ◦ steprn)(ρr,G) = (stepr1 ◦ ... ◦ steprn+1)(ρr,G)
aFor brevity we implicitly assume that all lookups are automatically referred to an infor-

mation resource.

Intuitively a request rule allows to specify which resources to retrieve. The
resources are identified in one of two ways:

• The URI of the resource is directly provided. If a match for the rule body
is found in the processed graph, the identified resource is retrieved. To
directly specify the resource allows to include resources in the processing,
which are known to be useful a priori, but potentially are not interlinked
with other processed resources.

3.2 rule-based programs 40

• A variable in the rule body is identified. For every identified result binding
of the rule body from the processed graph, the provided variable signifies
a resource to lookup. If the mapping for the identified variable of a result
binding points to a URI, the URI is the identifier of a resource to retrieve.
The mapping of the provided variable could also point to a literal or a
blank node, in which case we do not retrieve a resource. To determine the
URIs dynamically from the processed data, allows to follow and expand
the links between the resources.

Similar to deduction rules, request rules are applied recursively to a graph,
where the retrieved triples are added to the graph after every step. The recur-
sive application is necessary, because the retrieved data in one step can lead to
the identification of further links to follow.

Request rules allow to determine in a fine grained manner what resources to
retrieve and which resources to follow. Thus an application does not have to fol-
low all links in an exploratory manner. Consequently, the results of employed
queries are not necessarily complete in the sense that all by link traversal poten-
tially reachable results are identified. However, request rules can be defined to
follow all found links, thus achieving seed complete results. For an introduction
into completeness classes of query results from Linked Data see [45]. The intu-
ition behind the approach to request rules is, that the application logic can be
specified in such a way that only necessary results are obtained rather then all
possible results.

To define the application logic we combine deduction rules and request rules
to linked programs:

ó Definition 11: Linked Program

A linked program P = (G,R,Pd,Pr) is a tuple with
• G a finite set of initial triples, i.e., the starting graph,
• R a finite set of initial resources,
• Pd a finite set of deduction rules,
• Pr a finite set of request rules,

where G 6= ∅∨ R 6= ∅, i.e., there has to be at least one triple in the starting
graph or one initial resource specified.
The execution of a linked program implies that the initial resources are re-
trieved and the returned triples are added to the starting graph G. The rules
Pd and Pr are recursively executed over G until the fixpoint is reached. We
denote stepp as the function mapping to the resulting graph of an execution
step of multiple deduction and request rules over a graph G:

stepp(Pd,Pr,G) = G
.
∪

.⋃
ρd∈Pd

fd(ρd,G)
.
∪

.⋃
ρr∈Pr

fr(ρr,G)

The complete execution of a program P is the recursive evaluation of n
execution steps of all rules Pd ∈ P and Pr ∈ P until a fixpoint is reached:

min(n) : (stepp1 ◦ ... ◦ steppn)(Pd,Pr,G) = (stepp1 ◦ ... ◦ steppn+1)(P
d,Pr,G)

3.2 rule-based programs 41

We denote GP as the graph resulting from the execution of the linked pro-
gram P.
We denote RP as the set of all resources retrieved by a linked program, which
includes initial resources as well as resources retrieved via request rules.
BGP queries can be registered to linked programs. If a BGP query Q is
registered to a program P, the query Q is evaluated over the result graph
GP of program P. We denote ΩP(Q) as the result bindings of query Q from
program P.

The evaluation of a linked program continuously extends the initial graph G.
Specifically, both deduction and request rules monotonously add triples to G
and are not capable of removing triples. Neither deduction rules nor request
rules can generate new RDF terms, i.e., terms that are not present in the initial
graph G, the retrieved resources RP, or the rules Pd and Pr. Consequently, given
that the set of retrieved resources RP is finite, a linked program is guaranteed
to have a fixpoint, as the number of combinations of RDF terms to form valid
triples is finite. Therefore, eventually a linked program will not be able to infer
new triples in another recursion to add to the result graph, and reach the fixpoint.
Consequently, the result graph will also be a finite set of triples.

However, on the Web we cannot guarantee that the set of retrieved resources
is finite. Consider a set of resources, where every resource represents a natu-
ral number45. Retrieving a number yields a link to its next natural successor46.
Now consider a linked program acting upon the resources of natural numbers,
consisting of

• A request rule that specifies that for every found natural number, the suc-
cessor of the number has to be retrieved,

• The URI of an arbitrary natural number in the initial requests.

The described program would never reach a fixpoint, as it would always find
another resource (i.e., the next successor of a natural number) to retrieve.

In Section 3.3 we describe the architecture of a system to execute linked pro-
grams, which produces results of queries from programs incrementally, i.e., re-
sult bindings are returned as soon as they are found during execution of the
program. Thus, an application can leverage the extracted information as early as
possible, which reduces the runtime requirements of the application.

For the serialisation of the queries we use SPARQL syntax restricted to BGP
queries. To serialise the rules of a linked program we use Notation 3 (N3) syntax,
which is similar to Turtle, but allows for variables and triple quoting [11]. In par-
ticular, the allowed constructs in Turtle are a subset of the allowed constructs in
N3. Listing 4 shows three deduction rules encoding the symmetry and transitiv-
ity of owl:sameAs, as well as the semantics of owl:inverseOf, to specify inverse
properties.

45http://km.aifb.kit.edu/projects/numbers/; retrieved 2015-04-10.
46As the dataset of all natural numbers would be infinitely large, every resource has to be

generated by the server upon request, rather than stored.

http://km.aifb.kit.edu/projects/numbers/

3.2 rule-based programs 42

Listing 4: Deduction rules specifying the symmetry and transitivity of owl:sameAs and
semantics of owl:inverseOf in N3 syntax.

1 @prefix owl: <http://www.w3.org/2002/07/owl#> .

2

3 # (1) Symmetry of owl:sameAs

4 { ?x owl:sameAs ?y . } => { ?y owl:sameAs ?x . } .

5

6 # (2) Transitivity of owl:sameAs

7 { ?x owl:sameAs ?y .

8 ?y owl:sameAs ?z . } => { ?x owl:sameAs ?z . } .

9

10 # (3) Inverse property

11 { ?p1 owl:inverseOf ?p2 .

12 ?x ?p1 ?y . } => { ?y ?p2 ?x . } .

The implication symbol => is a short hand for the URI log:implies47. There-
fore a rule in N3 is also a triple 〈s,p,o〉, with

• s = B; subject is the body of the rule.

• p =log:implies; predicate is the URI identifying the concept of implica-
tion.

• o = H; object is the head of the rule.

Request rules are encoded using W3C vocabularies48,49 to describe HTTP mes-
sages and methods. Listing 5 shows two request rules, which specify that ex-
plicitly the schema of property foaf:depiction has to be retrieved, if a triple is
found that uses the property as predicate, and that links of owl:sameAs relations
should be followed.

Listing 5: Request rules specifying the explicit retrieval of a resource, and the following
of all links established by owl:sameAs.

1 @prefix owl: <http://www.w3.org/2002/07/owl#> .

2 @prefix acme: <http://acme.example.org/api/> .

3 @prefix p: <http://acme.example.org/vocabulary#> .

4 @prefix foaf: <http://xmlns.com/foaf/0.1/> .

5 @prefix http: <http://acme.example.org/api/> .

6 @prefix httpm: <http://acme.example.org/vocabulary#> .

7

8 # (1) Explicit retrieval of foaf schema

9 { ?x foaf:depiction ?y . } => { [] http:mthd httpm:GET;

10 http:requestURI foaf:depiction .} .

11

12 # (2) Follow all owl:sameAs links

13 { ?x owl:sameAs ?y . } => { [] http:mthd httpm:GET;

14 http:requestURI ?y .} .

47http://www.w3.org/2000/10/swap/log#implies; retrieved 2015-04.10.
48http://www.w3.org/2011/http; retrieved 2015-04.10.
49http://www.w3.org/2011/http-methods; retrieved 2015-04.10.

http://www.w3.org/2000/10/swap/log#implies
http://www.w3.org/2011/http
http://www.w3.org/2011/http-methods

3.2 rule-based programs 43

Our system treats the appearance of a predicate from the W3C HTTP vocab-
ularies as keyword to differentiate between request and deduction rules. Intu-
itively the triples in the rule head are not directly derived, if results for the
rule body are found, but simply identify resources to retrieve with the object of
http:requestURI.

. Example 11

A third-party provider develops a Web application on which users can
buy tickets to soccer games. One of the design features of the application
is that the users are shown pictures of the stadium in which a game takes
place.

ACME identifies the Allianz Arena in Munich as resource with the URI
acme:allianzArena, which contains a relation to the location of the sta-
dium, a link to the representation of the stadium from dbpediaa, and a
link to a picture of the stadium. The relation to the picture is established
with the friend-of-a-friend vocabulary (foaf)b. Retrieving the resource re-
turns the following graph:

@prefix dbpedia: <http://dbpedia.org/resource/> .

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

acme:allianzArena p:location acme:munich ;

owl:sameAs dbpedia:Allianz_Arena .

acme:allianzArenaPic.jpg foaf:depicts acme:allianzArena .

The third party provider uses a linked program to retrieve pictures of
stadiums. In particular to retrieve pictures of the Allianz Arena a linked
program P can be used with

• G = ∅; an empty starting graph;

• R = {acme:allianzArena}; the resource of the stadium provided by
ACME as initial resource;

• Pd: the deduction rules as shown in Listing 4;

• Pr: the request rules as shown in Listing 5.

To extract the URIs of pictures the following query is registered to P:

SELECT ?x

WHERE {?x foaf:depicts acme:allianzArena . }

The execution of P retrieves the resource from ACME, follows the link
to the representation of dbpedia, and from there all following owl:sameAs

relations. The deduction rules (1) and (2) ensure that the correct infer-
ences with respect to symmetry and transitivity are derived from retrieved

3.2 rule-based programs 44

owl:sameAs statements. The materialization of the transitive symmetric clo-
sure of owl:sameAs allows that all links are followed that represent the
stadium via the request rule (2).

Additionally, if a triple with the property foaf:depiction is found, the
schema of foaf is retrieved, where foaf:depiction is defined as the inverse
property of foaf:depicts. Due to deduction rule (3) the linked program
materialises inverse triples accordingly to the definition of the schema.

Instead of the three specific deduction rules, the linked program could
also be built using e.g., the complete OWL LD rule setc. However, the
defined deduction rules are sufficient for the task of finding pictures of
the stadium.

Executing P returns 9 distinct results for Q, i.e., the program identifies 9

different pictures that can be displayed by the applicationd. The program
follows links to 71 other representations of the stadium via owl:sameAs.
The result graph GP contains 8318 distinct triples. However, not all triples
in the result graph represent original information about the stadium, e.g.,
a relation to the architect of the stadium can be given multiple times
with properties from different vocabularies. The result graph contains 216

unique properties that are directly connected with the ACME representa-
tion of the stadium, with 213 properties derived from other resources.

Table 3 shows a comparison of the result graph from a program with
custom rules as described in the example, with a program that uses no
deduction rules or the complete OWL LD rule set.

Without deduction rules, the program only follows one link and identi-
fies only one picture of the stadium. In contrast employing the complete
OWL LD rule set results in the same amount of identified pictures, but ma-
terialises significantly more triples and properties, which are not necessary
for the goal of the application.

ahttp://dbpedia.org; retrieved 1015-04-10.
bhttp://xmlns.com/foaf/spec/; retrieved 1015-04-10.
chttp://semanticweb.org/OWLLD/; retrieved 2015-04-10.
dAs ACME and its Web presence is fictitious, we simulate the initial resource described

in the example, which contains a link to an actual LOD Web resource.

Table 3: Result sizes of programs with different complexity retrieving information about
a sports stadium.

Deduction
Rules

Retreived
Pictures

Equivalent
Resources

Direct
Properties

Total
Triples

none 1 1 3 3

custom 9 71 216 8318

OWL LD 9 71 2098 241745

When looking at different data-processing scenarios an important aspect is the
speed at which the retrieved data changes. While data on the Web can generally
be considered dynamic (i.e., changing over time), the previous examples can be
seen as relatively stable. In contrast, data like stock trading information or sen-

http://dbpedia.org
http://xmlns.com/foaf/spec/
http://semanticweb.org/OWLLD/

3.3 processing architecture 45

sor measurements change multiple times per second. Applications that monitor
such information can require to execute linked programs repeatedly with high
frequencies. Even if the processed data does not change multiple times per sec-
ond, the requirement to immediately react to a change can imply the repeated
execution of queries.

. Example 12

ACME displays live updates of sport match scores on its homepage. To
acquire the required information ACME aggregates news of sports events
from various sources.

During a soccer match the following query might be executed with a
program, that retrieves and data from other sports news providers:

SELECT ?home ?guest ?score

WHERE {

?x rdf:type ex:SoccerMatch.

?x dbpedia:hometeam ?home.

?x dbpedia:awayteam ?guest.

?x dbpedia:score ?score.

}

To be competitive ACME wants to display updates as soon as they are
published. Therefore, the linked program is executed repeatedly as fast as
possible potentially over data from several sources.a

aIn this example we assume the sources do not limit the number of requests per minute,
which might only be realistic if ACME pays fees to the data providers.

While in Example 11 the challenge lies in a speedy one-time processing of
a large amount of data from distributed sources, in Example 12 the challenge
is rather the repeated processing in fast succession of smaller or medium sized
data sets.

There is an apparent implication, that smaller queries over smaller data sets
can be processed faster and can therefore be executed repeatedly with higher
frequencies. However, in this chapter we are also interested in the effects of our
proposed execution model for parallel processing on the achievable frequencies.
In particular, we study the impact of the overhead stemming from the manage-
ment of several threads when executing a linked program multiple times.

3.3 processing architecture

In this section we describe an architecture to interpret linked programs, specifi-
cally we detail the query planning and summarise the evaluation of linked pro-
grams.

A Web-based application obtains required information by evaluating queries
over an only implicitly defined dataset. The dataset consists of initial requests
and triples, which contain links to further resources. A linked program defines
the specifications of how to expand links and map vocabularies.

3.3 processing architecture 46

The purpose of the architecture is to find results for queries from a graph
which is extended by the deductions and network lookups as defined in a linked
program. The processing thus includes query and rule processing in tandem
with the fetching of resources. The optimisation goals are to increase through-
put, i.e., process as many triples and resources lookups as quickly as possible to
decrease the runtime of the application. (i.e., return results as quickly as possi-
ble).

The architecture for accessing and processing Linked Data should exhibit the
following characteristics:

• All algorithms should work in streaming fashion to reduce overall runtime
by enabling results to be returned incrementally. Incremental processing
is required, because the lookups are derived from the processed data, and
lookups should be done as soon as possible to account for latency in net-
work sources. Our assumption is that interleaving data and request pro-
cessing reduces overall elapsed time relative to step-wise evaluation.

• The workload to process linked programs and queries should be as small
as possible to not strain the system resources unnecessarily. To minimise
the workload implies the applications of optimisations to reduce dupli-
cates on data and requests. We want to reduce peak size of intermediary
results (i.e., size of queues) during program evaluation, as well as time and
space requirements. Afrati and Ulman [2] identify derivations as measure
of runtime complexity. A reduction of duplicates implies a reduction of
unnecessary derivations.

• The processing should be done in parallel processes to be able to leverage
multi-core machines. The parallelisation should approach linear speed-up
with respect to the employed cores. In particular, we have to balance I/O-
bound and CPU-bound processes based on a data-driven execution model.

A physical operator plan is responsible for identifying result bindings for the
BGPs in rule bodies and queries. The physical operator plan is derived from
queries and rules in three steps:

1. Parse the program and the queries, and build an internal representation of
rules and queries.

2. Create the logical operator plan from the rule bodies and BGP queries
encoded with the equivalent of named relational algebra expressions. The
logical operator plan contains cycles due to the recursive application of
derivations from deduction rules. We generate the logical plan in a way
that minimises the size of intermediate results.

3. Create the physical operator plan encoded with the equivalent of unnamed
relational algebra expressions. The use of unnamed relational algebra im-
plies that tuples instead of entire solution mappings are used in the phys-
ical plan. Omitting variables from the solution mappings saves memory
and makes elimination of common subexpressions easier.

3.3 processing architecture 47

Physical
Operator Plan
Component

Network Request
Component

Triple

TripleQueue

Triple

…

Triple

Request

RequestQueue

Request

…

Request

Input:
Initial Triples

Input:
Initial Requests

Output:
Query Results

Figure 6: Illustration of the data flow between physical operator plan and request com-
ponents of a system to process linked programs.

We describe details of the physical operator plan in Section 3.3.2.
The request component is responsible for carrying out HTTP requests. We

describe details of the network request component in Section 3.3.1.
Figure 6 illustrates the dataflow between components of the system. Input

to the system are initial triples and resources; output are query results. Data
is input to and output from the system in a streaming fashion. Both physical
operator plan and request components are multi-threaded.

We use concurrent sets for duplicate elimination (see Sections 3.4.4), and con-
current multimaps for storing the intermediate results of joins (see Section 3.3.2).

In the overall system we use two concurrent queues for passing work items
between components, thus resolving the cycles between operators and compo-
nents:

• TripleQueue qt: for triples to be processed by the physical operator plan.

• RequestQueue qr: for requests to be performed by the request component.

The RequestQueue is used to pass requests from the physical operator plan to
the request component. The TripleQueue is used to pass triples from the request
component to the physical operator plan and feed derived triples back into the
physical operator plan.

We need the queues to break the cycle between the components, to avoid arbi-
trary deep call stacks due to the recursion. The cycle between physical operator
plan and request component requires a queue as buffer due to different paral-
lelisation and processing speeds. For the system to start, there has to be at least
a triple in the TripleQueue or a request in the RequestQueue (see Definition 11).

Having constructed an optimised physical plan, the system evaluates the phys-
ical plan in parallel, and perform requests in parallel. Processing triples and
carrying out requests is done with separate thread pools:

3.3 processing architecture 48

• TripleWorkers, which take triples from the TripleQueue for processing, and
push derived triples back into the TripleQueue and derived requests into
the RequestQueue. Let Wt = {wt1, ...,wtn} be the set of triple workers, with
n the number of workers.

• RequestWorkers, which take request objects from the RequestQueue, and
push triples resulting from HTTP GET requests into the TripleQueue. Let
Wr = {wr1, ...,wrm} be the set of request workers, with m the number of
workers.

The workers operate until the system determines that the processing should
be finished. Conditions for the processing to finish include:

• a specified timeout has been reached;

• the system has requested a pre-defined number of resources;

• the system has reached a pre-defined depth in traversing the graph of re-
sources, starting from the initial resources; or

• the computation has reached a fixpoint, i.e., the result graph is completely
calculated according to the rules of the linked program and all queries are
completely evaluated.

In the following we consider reaching the fixpoint as termination condition.
The cycles between components complicate the detection of the fixpoint, espe-
cially when performing the processing in parallel. That the fixpoint is reached
should be determined as quickly as possible to decrease the runtime of the sys-
tem, which is non-trivial given the parallel setup with queues.

The next Sections 3.3.1 and 3.3.2 introduce the main components of the sys-
tem, the physical operator plan and the request component, in more detail. The
parallel execution of, and coordination between request component and physical
operator plan is topic of Section 3.4.

3.3.1 Network Request Component

We assume data is distributed across HTTP-accessible resources, with links be-
tween these resources. The task of the request component is to carry out requests
as specified in request rules. These requests are incrementally generated during
program evaluation (link-following), based on the request rules.

The request component has the following requirements:

• Retrieve data as fast as possible, to not become the bottleneck in processing.

• Do not repeat equivalent requests.

• Carry out requests in a polite fashion, that is, do not overload servers with
parallel requests.

3.3 processing architecture 49

Input to the request component are requests (GET ,u, ∅) via the RequestQueue.
The requests are represented by their URIs u as we allow only for lookups. Out-
put are triples from parsing the payload Dres of the responses of the requests
GET))ג ,u, ∅)) = (c,Dres). If the response to a lookup is a redirection indicated
by c = 3xx, the request component follows the redirect, i.e., performs another
lookup on the referred resource. The output triples are fed into the TripleQueue
so that the triples can be further processed.

To prevent multiple equivalent requests on the same resource, the request
component can maintain a set of all URIs that were already used for requests in
a visited set. Multiple requests on the same URI can then be detected and rejected
by the request component. Multiple requests on the same URI might also occur if
a previously unknown URI is requested that simply redirects to an already seen
URI. Consequently, the system also needs to store information about redirects,
i.e., which URIs redirected to the information resource that eventually delivered
data. To prevent unnecessary requests rather than just filtering out the arriving
duplicate triples is advantageous, to reduce source server load, network traffic
and the amount of I/O-bound work.

To achieve a speedy but polite execution of a large number of requests across
many Web servers, the request components can implement several best-practices
for HTTP interactions, such as:

• Adherence to robots.txt50 declarations.

• Implementation of a wait time between consecutive requests to the same
host51.

• Dead host detection, i.e., have requests to resources on servers that do not
reply timeout. A long timeout threshold can lead to a prolonged program
evaluation, if there is an unresponsive server. However, a too short timeout
threshold might cause the system to not retrieve all available resources.

3.3.2 Physical Operator Plan Component

The physical operator component is used to identify the result bindings for the
BGPs in rule bodies as well as queries:

• Result bindings of deduction rule bodies are used to generate derivations
with the rule head.

• Result bindings of request rule bodies are used to generate requests with
the rule head.

• Result bindings of queries are the output of a program.

The physical plan contains operators which actually carry out data process-
ing operations to calculate the result bindings. The operators are connected

50http://www.robotstxt.org/; retrieved 2015-04-10.
51It used to be customary to wait several seconds between requests to the same server. In our

implementation used for the experiments in Section 3.5 we just make sure that requests are made
in sequence, that is, there are no parallel requests to the same host.

http://www.robotstxt.org/

3.3 processing architecture 50

Table 4: Operators used in the logical and physical plans to process data.

Operator Description

Input Distinguished node for input of triples

TriplePattern Evaluate triple patterns

EquiJoin Compute equi-join between two inputs

Binding Store intermediate results; only in physical plan

Project Projection of tuples for SELECT queries

Output Output query results

Derivation Generate derived triples

Request Generates requests

via sender/receiver relationships. The workers propagate solution sequences
through the physical operator plan along these sender/receiver relationships.

During the generation of the logical operator plan, we use a heuristic to min-
imise the amount of intermediate results. We employ a version of the approach
in [117], where the number of variables in a query is used as estimate for the
cardinality of results. Thus, the logical plan is constructed in such a way that
more selective joins are carried out first.

Both logical and physical operator plans consist of a finite set of operators (see
Table 4). The logical and physical plan use the same operators, with the exception
of the EquiJoin operator, which is extended in the physical plan by two Binding
operators (see Section 3.3.3). The translation of the logical plan to the physical
operator plan includes an optimisation to eliminate common subexpressions, i.e.,
equivalent operators are reused.

Rather than using named relational algebra to represent the solution sequences
as in the logical plan, the physical plan does not know about variables, and
therefore uses unnamed relational algebra expressions. We express the solution
sequences as tuples of RDF terms, and do not need to carry the full variable-term
mapping. The position of an RDF term in the tuple determines which variable
maps to the term.

Individual triple patterns of BGPs of queries and rule bodies are represented
with TriplePattern operators. BGPs with multiple triple patterns lead to multi-
ple TriplePattern operators, connected via EquiJoin operators to represent join
conditions (see Definition 7). Thus, each BGP is represented as a tree, and the
combination of all BGPs in the program and queries form a forest of join trees52.

The Input operator is the distinguished node in the operator plan, the place
where to input data, which connects to all TriplePattern operators.

The trees receive tuples via the TriplePattern operators, which in turn receive
triples from the Input operator. Depending on whether the BGP is from a query,
a deduction rule or a request rule, the top operator of the BGP tree is connected

52Due to the reuse of equivalent Binding operators, BGPs are only trees in the logical opera-
tor plan. In the physical operator plan, the forest forms a connected graph, rather than a set of
independent join trees.

3.3 processing architecture 51

to an Output operator (via Project operators), to a Derivation operator, or to a
Request operator.

Instead of a directed acyclic graph of operators, which is the basis for most
dataflow-systems, our operator graph may contain cycles. The possible cycles
are established by connections from the Derivation operators to the Input operator,
i.e, the cycles reflect the recursive application of deduction rules. That is, the
Derivation operators send the generated triples back to the Input operator. We
break cycles in the physical operator plan with the TripleQueue between Derivation
operators and Input operator.

The RequestQueue decouples the physical operator plan and request compo-
nent, to allow for taking into account the different processing speeds and differ-
ent worker threads.

. Example 13

Listing 6 shows the rules of a linked program, which encodes that the
property foaf:depiction is the inverse property of foaf:depicts with a
deduction rule (1). Further a request rule (2) specifies that all resources
that represent something, which is found to be a member of a team have
to be retrieved. The rules of the linked program are to be executed together
with the following query to retrieve pictures of teams:

SELECT ?y

WHERE { ?x foaf:depicts ?y .

?x rdf:type p:Team . }

The resulting logical operator plan is shown in Figure 7. Every triple
pattern is represented with its own TriplePattern operator. Two EquiJoin
operators represent the join variable ?x in the query and the join variable
?n in the request rule. The query results are projected to variable ?y.

The physical operator plan derived from the logical plan is shown in Fig-
ure 8. The variable names are replaced, as only the position is relevant. The
duplicate TriplePattern operators are removed, as common subexpressions
have been eliminated. The EquiJoin operators are extend by two BindingOp-
erators, where one BindingOperator is shared between both joins.

Listing 6: Linked program which encodes the inverse of foaf:depicts and the retrieval of
resources representing members of teams.

1 @prefix p: <http://acme.example.org/vocabulary#> .

2 @prefix foaf: <http://xmlns.com/foaf/0.1/> .

3 @prefix http: <http://acme.example.org/api/> .

4 @prefix httpm: <http://acme.example.org/vocabulary#> .

5

6 # (1) Inverse of foaf depicts

7 { ?u foaf:depicts ?v . } => { ?v foaf:depiction ?u . } .

8

9 # (2) Retrieve team members

10 { ?n rdf:type p:Team

11 ?m p:memberOf ?n . } => { [] http:mthd httpm:GET;

3.3 processing architecture 52

12 http:requestURI ?m .} .

In
p
u
t

TriplePattern

?u foaf:depicts ?v

TriplePattern

?x foaf:depicts ?y

TriplePattern

?x rdf:type p:Team

TriplePattern

?n rdf:type p:Team

TriplePattern

?m p:memberOf ?n

x,y

x

EquiJoin

n

m,n

EquiJoin

Project

x,y y
Output

Derivation

?v foaf:depiction ?u

Request

?m

Figure 7: Logical operator plan for linked program in Listing 6 and query in Example 13.

In
p
u
t

TriplePattern

1 foaf:depicts 2

TriplePattern

1 rdf:type p:Team

TriplePattern

1 p:memberOf 2

EquiJoin
Project

1,2 2
Output

Derivation

2 foaf:depiction 1

Request

1

Tr
ip
le
Q
u
eu

e
R
eq

u
es
tQ

u
eu

e

Binding
1,2

Binding
1

Binding
1,2

EquiJoin

1=1

1=2

Figure 8: Physical operator plan for linked program in Listing 6 and query in Exam-
ple 13.

An illustration of the physical operator plan for the complete OWL LD rule
set can be found in Appendix A.1 in Figures 35 and 36.

With the exception of the EquiJoin operator (in conjunction with the Binding op-
erators), none of the operators store intermediate results. Therefore, the workers
can use the logic of the operators in multiple parallel processes without inter-
fering with each other. In the following Section 3.3.3 we describe the algorithm
upon which the EquiJoin operator is built, which allows to include the operator
in the parallel evaluation setting of the system.

3.3 processing architecture 53

3.3.3 EquiJoin Operator

The EquiJoin operator takes as input tuples, and emits tuples according to the join
condition. Our parallel algorithm to evaluate join operations in the physical plan
is based on the symmetric hash join [128]. Consequently, we call our algorithm
the parallel symmetric hash join.

Let B = (b1, ...,bn) be a tuple of RDF terms that represents a solution mapping
µ : V→ B.

Every EquiJoin in the logical plan is realised in the physical operator plan with
two kinds of operators:

• A left and a right Binding operator, which store arriving tuples from pre-
ceding operators.

• An EquiJoin operator, which carries out the computation of the join and
pushes the combined tuple to subsequent operators.

A physical EquiJoin operator receives tuples from its left and right Binding
operator. The join operators contain information at what position in an arriving
tuple the term is located to which the join variable is mapped. bj denotes the
solution in an arriving tuple for the join variable of the EquiJoin operator. The
physical EquiJoin operators do not require any information about the names of
the variables to which the RDF terms in the propagated tuples are mapped. The
information about variable names is only required in the Output operators, which
construct the query results.

The Binding operators that feed an EquiJoin operator store the arriving tuples
from their preceeding operators in the plan in multimaps. The multimaps relate
solutions to sets of tuples that contain the solution at join position, similar to tra-
ditional symmetric hash joins. The key of an entry in a multimap is the solution
bj for the join variable of the join operator in the arriving tuple. The values of
the map are the subsets of all arrived tuples, which have the key value bj is in
join position.

Let Mx = {bj → {B|bj ∈ B}} be the left and right multimap of an EquiJoin with
x ∈ {l, r} and bj the term in join position.

Unlike operator plans with traditional symmetric hash joins, the approach
to differentiate between the Binding and EquiJoin operators allows us to reduce
memory consumption during evaluation. We can use the same physical Binding
operator for several EquiJoin operators if the EquiJoin operators evaluate the same
triple pattern on the left or right side, i.e., elimination of common subexpressions
in the plan.

A multimap of a Binding operator provides two basic operations: put tuples
into the map and read sets of tuples from the map:

• Mx.put(A) : adds the tuple A with bj ∈ A to the set in value position of
the entry (bj → {B|bj ∈ B}) in Mx. Note the entry for the key bj is created,
if the entry does not exist yet in the map.

3.3 processing architecture 54

• Mx.read(bj) returns the set in value position of the entry (bj → {B|bj ∈ B})
in Mx, i.e., the set of all tuple with bj in join position.

Both operations are non-blocking, i.e., multiple threads can read and write in
parallel. A read operation only returns the tuple for which the write operation
has been completely finished.

For brevity we define

Let x̄ =

l if x == r

r if x == l

When a tuple Bx is propagated to a join node from its left (right) predecessor,
the join node produces combined tuples by joining Bx with the matching tuples
Mx̄.read(bj) in the right (left) map. Algorithm 1 describes the parallel symmetric
hash join as implemented in the join operator, which allows parallel access by
multiple threads.

Algorithm 1: Parallel Symmetric Hash Join.
Input :Υx = {B} with x ∈ {l, r} incoming tuples from left and right operator
Output :Σ outgoing joined tuples

1 foreach Bx ∈ Υx parallel do
2 Σ← ∅
3 Mx.put(Bx)
4 Θ←Mx̄.read(bxj)
5 forall T ∈ Θ do
6 add (Bx ∪ (T \ {bx̄j })) to Σ

7 Push Σ

We consider sets Υx = {B} with x ∈ {l, r} of incoming tuples from the left or
right predecessor. The sets Υx are constantly filled with tuples from preceding
operators. In particular multiple tuples can be pushed to the same Binding op-
erator by several threads simultaneously. Every tuple in one of the input sets is
processed in parallel (line 1). Σ will contain the joined tuples for an incoming
tuple and is initialized as empty set (line 2).

In line 3 the incoming tuple Bx is added to the corresponding map, where
x ∈ {l, r} indicates if the tuple was pushed to the left or right Binding operator.

Next, the set of tuples from the opposite map Mx̄.read(bxj) is retrieved, where
RDF term bx̄j in join position matches RDF term bxj in join position of Bx (line
4).

Finally, in line 6 every retrieved matching tuple from the opposite hash map
is combined with Bx and stored in Σ. We remove the RDF term in join position
from the retrieved tuples, as that term is also present in Bx.

The EquiJoin operator pushes the tuples in Σ to subsequent operators within
the same thread, in which the incoming tuple Bx was pushed to the EquiJoin
operator.

3.3 processing architecture 55

Next, we show that the join algorithm is correct in a parallel scenario, i.e., all
joined binding lists are generated for in parallel arriving binding lists.

3.3 processing architecture 56

ú Lemma 1

∀Bl ∈ Υl and ∀Br ∈ Υr eventually Bl ∪Br ∈ Σ is generated,
iff blj ∈ L = brj ∈ R

Multiple TripleWorker threads act in parallel on the same multimaps Mr and
Ml in the Binding operators connected to an EquiJoin operator. Every TripleWorker
thread wti accesses the maps at only two points during processing of a binding
list Bx at a join node:

• Write access on the multimap Mx in line 3 to create an entry in the hash
map for Bx. We denote Wx

B for this access operation.

• Read access on the opposite multimapMx̄ in line 4 to retrieve the matching
binding lists for Bx. We denote Rx̄B for this access operation.

We further denote φ� ψ, if an operation φ is completed before an operation
ψ starts.

Proof Sketch

When a TripleWorker wti pushes a tuple Bx to an EquiJoin, the TripleWorker
first creates an entry in Mx, before the matching tuples from Mx̄ are re-
trieved. Because both operations are done by the same thread, it holds triv-
ially true that

Wx
B � Rx̄B (1)

We assume that there is a situation when we do not create a joined tuple
for two arriving and matching tuples:

Assumption:

∃U ∈ Υl and ∃V ∈ Υr with blj ∈ U = brj ∈ V
and (U∪ V) ∈ Σ is not generated.

(2)

Eventually, a TripleWorker creates for every tuple Bx ∈ Υx, which he pushes
to an EquiJoin an entry in the corresponding map Mx (line 3). During the
processing of a tuple Bx, we generate all joined tuples in the loop in lines 5

to 6 with the matching binding lists retrieved from Mx̄.

Let wei be the TripleWorker thread that pushes U.
Let wej be the TripleWorker thread that pushes V .

If wei cannot generate the joined tuple (U ∪ V), it follows that wei reads
Mr before the entry for V in Mr is written by wej . If wej cannot generate the

3.4 coordination of data processing and network requests 57

joined tuple (U ∪ V) either, it follows analogously that wej reads Ml before
the entry for U in Ml is written by wei :

RrU �Wr
V and RlV �Wl

U (3)

A simultaneous read and write access on the same map Mx is also covered
in (3), as the write operation has to be completely finished, before the written
entry is returned by the read operation.

If (3) holds true it is a contradiction to (1):

(3) with (1): Wl
U � RrU �Wr

V � RlV and RlV �Wl
U (4)

=⇒ Wl
U � RlV and RlV �Wl

U

contradiction
(5)

Therefore the assumption in (2) can not hold true and we have shown
Lemma 1.

�

Intuitively we do not miss a join result in the parallel processing of two tu-
ples U and V , because if the processing of U does not generate the result, the
processing of V will generate the result and vice versa.

However, the parallel processing of two arriving triples can lead to the dupli-
cate generation of a joined tuple in case it holds true that

Wl
U � RlV and Wr

V � RrU.

If both, the entry for U is written to Ml and the entry for V is written to Mr

before the respective TripleWorker threads read Ml and Mr, the resulting joined
binding tuple is generated twice (see Section 3.4.4).

3.4 coordination of data processing and network requests

In the following we first describe different threading models to implement a
push-based execution model for the parallel evaluation of linked programs (Sec-
tion 3.4.1). In particular, we show how different threads for evaluating the phys-
ical operator plan and performing network requests can be coordinated in a
threading model that allows to actively track when the termination condition of
the processing is reached (Section 3.4.2). Further, we describe how the number
of active TripleWorker and RequestWorker threads can be dynamically determined
during runtime to improve hardware utilisation (Section 3.4.3). Finally, we de-
scribe how duplicate solutions can arise during processing and such duplicates
can be handled(Section 3.4.4).

3.4 coordination of data processing and network requests 58

3.4.1 Threading Models

For parallel evaluation of programs [62] propose an execution model, where
every operator iterates over the data items it has produced and pushes these
results to other processes (i.e., threads), which execute subsequent operators in
the evaluation plan. Thus, every operator is executed in its own process, which
allows for the parallel evaluation of query plans.

In contrast we propose an execution model that does not use an individual
thread for every operator in the physical operator plan. Instead, we allow op-
erators to schedule each other within a single thread. Therefore we avoid the
overhead of the thread scheduling by the operating system as well as overhead
of inter-process communication [41]. In particular, our approach allows to de-
termine the number of employed parallel processes freely, as the number is not
implied by the amount of operators in the plan.

Traditional execution models [41, 48], which allow operators to schedule each
other in the same processing thread, are demand-driven. In demand-driven exe-
cution models operators request data items from preceding operators as required
for the processing. The operators iterate over the received (pulled) data items to
produce new (intermediate) results. In contrast, we use a data-driven push-based
scheduling of operators, where the operators immediately push intermediate re-
sults to subsequent operators within the same thread along the sender-reciever
link in the physical operator plan.

Such a push-based execution model especially caters to data processing scenar-
ios that include network lookups, as data can be processed immediately when it
arrives, rather than waiting on operators during slow network request. The ad-
vantage of a push-based model in scenarios where data-sources have to unload
data as it arrives, is also pointed out in [41].

A worker thread can be in one of three states:

idle Worker tries to acquire a new element from the queue.

processing Worker processes an element from the queue.

sleeping Worker is set to sleep when its queue is empty.

We consider a linked program P to be completely processed, when the re-
sult graph GP is materialised and all result bindings of the registered queries
are found (i.e., its fixpoint is reached). The decision when a linked program is
completely evaluated and the processing can be stopped has to be made at run-
time as the data that is processed is not completely known before the processing
starts.

During processing the fixpoint of a linked program is reached, once two ter-
mination conditions are met:

• All queues are empty, i.e., there are no further triples or requests to process.

• All worker threads are idle or sleeping, i.e., the worker threads are not
processing triples or requests.

3.4 coordination of data processing and network requests 59

To terminate the processing simply when the queues are empty is not sufficient,
as workers could be currently processing an item (i.e., triple or request) and add
results to the queues again.

In the following we describe different threading models that can be used to
realise a push-based execution model including an approach to check for the
termination conditions.

serial There is only one thread, with a dual role as TripleWorker and Request-
Worker. The thread takes one item (triple or request) from one of the queues
and processes the item. Derived triples and requests are stored in the re-
spective queues. There is no parallel processing, and all operations are
carried out sequentially. The check for the termination condition is straight-
forward: When the thread tries to take a new item (i.e., is idle), but both
queues are empty, the fixpoint is reached. We use the single-threaded serial
model as baseline.

rounds A naive approach to a multi-threaded model is to use dedicated Triple-
Worker and RequestWorker, which work in conjunction to process a linked
program in rounds: Triples and requests for the current round n are taken
from the respective queue and processed by the workers. In round n de-
rived triples and requests are stored into new queues for the next round
n + 1. Once the queues in round n are empty, round n + 1 starts. Ev-
ery round corresponds to an execution step of all rules step(ρ,G)∀ρ ∈
(Pd ∪ Pr), where G are the triples in the TripleQueue. The rounds model
does not fully leverage the available system resources towards the end of
each round: As a queue contains fewer items than there are threads, only
some of the threads are processing the last items while the other threads
are sleeping, even though the queues for round n+ 1 might already con-
tain items that could already be processed by the sleeping threads. The
rounds approach allows for an easy identification of the fixpoint, which is
reached once the queues are empty at the beginning of a new round. At
the beginning of a round all threads are necessarily idle.

spinning Several dedicated TripleWorker and RequestWorker take and process
items from the respective TripleQueue and RequestQueue. Derived triples
and requests are directly pushed back into the same queues. If a worker
is idle but finds its queue to be empty, the worker sleeps for a time and
periodically wakes up to try to acquire an item from the queue again (i.e.,
busy waiting). The wait time can be freely chosen and results in a trade off:
A short waiting time can cause system overhead as workers often wake up
unnecessarily; a long waiting time can cause the workers to stay unneces-
sarily asleep while items in the queues are present. To identify the fixpoint
the main thread of control checks periodically whether i) the queues are
empty and ii) all workers are in sleeping state.

blocking Several dedicated TripleWorker and RequestWorker take and process
items from the respective TripleQueue and RequestQueue. Derived triples
and requests are directly pushed back into the same queues. If a worker
tries to take an item from an empty queue, the queue blocks the worker,

3.4 coordination of data processing and network requests 60

i.e., puts the worker to sleep. If a new item arrives at the TripleQueue or Re-
questQueue, the queue signals all sleeping TripleWorker and RequestWorker
respectively, and the workers wake up. The main thread of control has pro-
gram logic that actively tracks how many workers are sleeping and if the
queues are empty to identify the fixpoint (see Section 3.4.2). As the block-
ing approach directly controls the state of the worker, it might leverage
the system resources better. However, the necessary program logic to de-
termine the fixpoint can also cause more overhead compared to rounds and
spinning.

Apart from the single-threaded serial baseline approach, we focus on architec-
tures with dedicated TripleWorkers and RequestWorkers, i.e., the threads do not
change their role from executing I/O-bound tasks to core-bound tasks or vice-
versa. We reserve the development of models where threads can change their
role for future research work.

3.4.2 Blocking Worker Control

Although there are queue data structures that allow for parallel access to some
extent53, a single TripleQueue and RequestQueue can still be a bottleneck for the
execution model, due to lock contention during some phases of the processing.
Lock contention refers to a situation in which multiple threads try to access the
same data object simultaneously; all but one thread have to wait as the object
can only be accessed by one thread at a time.

We extend the blocking approach by employing multiple TripleQueues and Re-
questQueues, so that adding and reading from the queues can be done in parallel
without interference. In particular we use an individual queue for every worker.
While employing multiple queues can reduce lock contention it requires addi-
tional overhead for coordination, e.g., to evenly balance the workload for the
workers the queues should be filled evenly.

We now describe the blocking model with multiple queues in more detail. A
simplification of blocking with only single queues is straight-forward.

Every TripleWorker (RequestWorker) only takes triples (requests) from its asso-
ciated queue.

Let Qt = {qti |∃qti∀wti ∈Wt} be the set of TripleQueues of the TripleWorker threads.
Let Qr = {qri |∃qri∀wri ∈ Wr} be the set of RequestQueues of the RequestWorker
threads.

Every queue qxi with x ∈ {t, r} has an associated lock, which a worker must
hold to perform read and write operations on the queue. All workers act in
parallel, but not more than one worker can hold a specific lock simultaneously.
If a worker tries to acquire a lock that is already taken, the worker waits until the
lock becomes free again, i.e., lock contention. However, the use of an individual
queue for every worker reduces the incidence of lock contention.

53e.g., ConcurrentLinkedQueue in Java: https://docs.oracle.com/javase/7/docs/api/java/
util/concurrent/ConcurrentLinkedQueue.html; retrieved 2015-04-10.

https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ConcurrentLinkedQueue.html
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ConcurrentLinkedQueue.html

3.4 coordination of data processing and network requests 61

Derived triples and triples from requests are pushed into a randomly chosen
TripleQueue. Derived requests are pushed into a randomly chosen RequestQueue.
The random choice of the queues is done with an equal distribution and results
in an approximately even dispersion of the overall workload across workers.

While read and write operations on an individual queue have to be synchro-
nised with the associated locks, the actual processing after taking an item from
a queue does not require to keep the queue locked for a write operation. E.g., if
an TripleWorker takes a triple from its TripleQueue, the queue is locked for write
operations from other worker threads. However, when the TripleWorker starts to
process the triple, the lock of the TripleQueue can be released immediately for
other workers to add items.

We use a boolean vector to store whether the termination conditions are met.
Every entry in the vector corresponds to a worker.

Let V = (v1, ..., vk) with vi ∈ {true, false} and k = n+m be a boolean vector,
where n is the number of TripleWorker and m the number of RequestWorker.

An entry in the vector is set to false if the corresponding worker is set to sleep,
as the associated queue of the worker is empty. Therefore, an entry summarises
the state of a worker and its queue. The use of a boolean vector allows to check
the termination conditions without interfering with processing workers.

Algorithm 2 describes how the workers are controlled and the fixpoint is de-
termined during runtime. In the beginning we assume every worker is idle and
at least one request or triple has to be in one of the queues. We continuously
process until we reach the fixpoint (line 2). Every idle worker acquires the lock
for its queue (lines 3 - 4). There are two main parts in the algorithm, depending
on the state of the queue of the worker:

• If the queue of a worker is empty it is taken as an indicator that processing
might have finished, and the process starts to test if a fixpoint has been
reached (lines 5 - 16).

• If there is at least one element in the queue of a worker, the processing of
the element starts (lines 17 - 26).

If the queue of a worker is empty, the vector entry of the worker is set to false
(line 6). Next the locks of all queues are acquired and it is checked if all entries
in the vector are set to false. If all entries are false, the fixpoint is reached and
processing stops, as all worker threads are idle or sleeping and all queues are
empty (lines 8 - 12). If at least one of the entries in the array is true, processing
is ongoing and the worker is just set to sleep (lines 13 - 16).

If the queue of a worker is not empty, the worker takes an element from its
queue, releases the lock of the queue and starts processing the element (lines 17

- 20). If the worker derives a triple or a request during processing, the derived
element is pushed into a randomly chosen queue and the corresponding vector
entries are set to true (lines 21 - 25). Finally, the worker thread of the chosen

3.4 coordination of data processing and network requests 62

queue is woken up (line 26); waking up an idle or processing worker has no
effect.
Algorithm 2: Control of parallel workers threads

Input :Wx, Qx with x ∈ {t, r}; the workers and queues
Output :done; is true when fixpoint is reached
Requirement : All triple workers wti ∈Wt are idle
Requirement : All request workers wri ∈Wr are idle
Requirement : At least one qxi ∈ Qx contains an element

1 done← false
2 while ¬done do
3 foreach idle wxi ∈Wx parallel do
4 AcquireLock(qxi)

5 if qxi is empty then
6 vi ← false
7 forall qx ∈ Qx do
8 AcquireLock(qx)

9 if every v ∈ V == false then
10 forall qx ∈ Qx do
11 ReleaseLock(qx)

12 done← true
13 else
14 wxi .sleep()
15 forall qx ∈ Qx do
16 ReleaseLock(qx)

17 else
18 e← qxi .take()
19 ReleaseLock(qxi)

20 wxi .process(e)
21 AcquireLock(qtu and qrv) with random u, v
22 vu, vv ← true
23 add derived triples of wxi to qtu
24 add derived requests of wxi to qrv
25 ReleaseLock(qtu and qrv)
26 wake up wxu,wxv

Next, we show that in Algorithm 2 we determine correctly that when a fixpoint
is reached, i.e., done will be set to true, iff all queues are empty and all workers
have finished processing. We have to show both directions:

1. When done is set to true, the fixpoint is reached; i.e., the evaluation of a
linked program does not terminate to early (Lemma 2).

2. When the fixpoint is reached, done is set to true; i.e., if there is a fix-
point we do not miss it and the evaluation of a linked program terminates
(Lemma 3).

3.4 coordination of data processing and network requests 63

ú Lemma 2

(done = true)⇒
((∀qix ∈ Qx : qix = ∅) and (∀wxi ∈Wx : wxi idle or sleeping))

Intuitively: If done = true, all queues are empty and all workers have finished
processing.

Proof Sketch

First we show that the assertion holds true that if an entry in vector vi is
false, the corresponding worker wxi is not processing.

vi = false =⇒ wxi is idle or sleeping (6)

If an vi ∈ V is set to false in line 6, the corresponding worker wxi has to
be idle, as asserted with line 3. Afterwards either the fixpoint is reached
(lines 9 to 12) and no further processing will take place, or wxi is set to sleep
(line 14). If any worker wxi is asleep it can only be awoken in lines 26, after
vi was set to true in line 22. Therefore, (6) holds true.

Further we show that the assertion holds true that if an entry in vector vi
is false, the corresponding queue qxi is empty.

vi = false =⇒ qxi = ∅ (7)

Any vi ∈ V can only be set to false in line 6, if the corresponding queue
qxi is empty (line 5). Elements can only be added to a qxi in lines 23 and 24.
Before elements are added to qxi the corresponding vi is set to true in line 22.
Therefore, (7) holds true.

To show that we determine correctly that the fixpoint is reached, we as-
sume that we determine the fixpoint to early.

Assumption:

(done = true) and

((∃qix ∈ Qx with qix 6= ∅) or (∃wxi ∈Wx with wxi processing))
(8)

Intuitively, we assume that we determine that a fixpoint is reached, but ei-
ther one of the queues still contains an element or one of the worker threads
is still processing. Line 9 asserts that done can only be set to true, if all
vi ∈ V are false. However, this is a contradiction with (6) and (7) :

=⇒ ((∀vi ∈ V : vi = false) and (∃qix ∈ Qx with qix 6= ∅)) or

((∀vi ∈ V : vi = false) and (∃wxi ∈Wx with wxi processing))

contradiction with (6) and (7)

(9)

Therefore (8) can not hold true and we have shown Lemma 2.
�

3.4 coordination of data processing and network requests 64

ú Lemma 3

((∀qix ∈ Qx : qix = ∅) and (∀wxi ∈Wx : wxi idle or sleeping))⇒
eventually (done = true)

Intuitively: If all queues are empty and all workers have finished processing,
done will eventually be set to true.

Proof Sketch

We first show that the assertion holds true, that if a worker is sleeping and
never been woken up again, its corresponding entry in V is false.

wxi forever sleeping =⇒ vi = false (10)

A worker wxi can only be set to sleep in line 14, after its corresponding
vector entry vi is set to false. A vector entry vi can only be set to true in
line 22. However if a vector vi entry is set to true, its corresponding worker
will eventually be woken up in line 26. Therefore (10) holds true.

We assume that a the fixpoint is reached, but it is not identified:

Assumption:

(done = false) and

((∀qix ∈ Qx : qix = ∅) and (∀wxi ∈Wx : wxi idle or sleeping))
(11)

As all queues are empty and no processing takes place, it is trivial to see,
that sleeping workers will not be woken up again.

Furthermore, every idle worker (line 3) with an empty queue (line 5) is
either put to sleep (line 14) or done is set to true (line 12). Therefore, we can
simplify (11) to:

(done = false) and

((∀qix ∈ Qx : qix = ∅) and (∀wxi ∈Wx : wxi sleeping forever))
(12)

A worker can only be set to sleep in line 14. Setting workers to sleep can
not be done in parallel as in line 8 the locks for all queues are acquired,
which are released in line 16.

It follows that if (∀wxi ∈Wx : wxi sleeping forever) in (12) holds true (i.e.,
all workers are forever sleeping), there was a point during processing where
all, but one worker wxk were forever sleeping. Line 6 asserts, that vk is false
when wxk is set to sleep. As done = false in (12) it follows with lines 9 to 12,

3.4 coordination of data processing and network requests 65

that there has to be another vl that is true, otherwise the fixpoint would
have been identified. This is a contradiction to (10):

=⇒ ∃vl ∈ V with k 6= l and vl = true and wxl forever sleeping

contradiction with (10)
(13)

Therefore (11) can not hold true and we have shown Lemma 2.
�

3.4.3 Adaptive Processing

The set of TripleWorkers Wt and the set of RequestWorkers Wr perform the eval-
uation of a program in parallel. The workers operate on the shared physical
operator plan (including multimaps), which allows multiple threads to operate
on the data in parallel. It can be freely configured how many workers should be
there for data processing, and how many workers for request processing.

TripleWorker threads can be considered to be CPU-bound, i.e., in general a
running TripleWorker thread utilises almost completely the core on which the
thread is executed. Therefore the number of TripleWorker is driven by the number
of available cores: Fewer threads than available cores would not fully utilise
the capacity of the system and more threads can not generate a benefit, as the
existing threads are already able to fully utilise the system [87].

RequestWorker threads can be considered I/O-bound, i.e., a running Request-
Worker thread utilises only a fraction of the core on which the thread is executed,
as requests are constrained by network bandwidth and latency. The number of
RequestWorker threads can therefore exceed the number of available cores until
the overhead of coordinating the threads outweighs the benefit of using parallel
requests [87].

Operating systems rotate the threads that are active on the cores of a system.
A too large amount of RequestWorkers threads can consequently also interfere
with the efficiency of the TripleWorkers, as the the operating system can allot less
processing time for the CPU-bound threads.

As the number of RequestWorker threads depends on network properties we
introduce Algorithm 3, which adapts dynamically the number of employed Re-
questWorker to the average response times and amount of requests to be executed.

3.4 coordination of data processing and network requests 66

Thus, we improve the performance of the system for different execution scenar-
ios with varying constraints in terms of requests.

Algorithm 3: Adaptive employment of RequestWorker threads
Input : T ; threshold
Output : m; number of request worker threads during runtime

1 m←System.availableCores()
2 forall i in 1..m do
3 wri .open()
4 reqCounti ← 0

5 avgTimei ← 0

6 add wri to Wr

7 foreach wri ∈Wr parallel do
8 wri .process(e ∈ qri)
9 timei ← wri .getResponseTime()

10 avgTimei =
(avgTimei∗reqCounti)+timei

(reqCounti+1)

11 reqCounti = reqCounti + 1

12 if (avgTimei ∗ qri .size()) > T and wri .isOpen() then
13 wri .close()
14 m← m+ 1

15 wrm.open()
16 reqCountm ← 0

17 avgTimem ← 0

18 add wrm to Wr

19 if (avgTimei ∗ qri .size()) < T and wri .isClosed() then
20 wri .open()
21 wrm.terminateWhenDone()
22 remove wrm from Wr

23 m = m− 1

Algorithm 3 takes threshold parameter T as input and determines during run-
time the number of employed request worker threads m. We assume the blocking
threading model with multiple queues.

A RequestWorker can be

open Worker accepts new requests in its request queue.

closed Worker does not accept new requests in its request queue, but keeps
processing the requests that are already in the queue.

In lines 2 to 6 we initialise the first m RequestWorker, where m equals the
number of cores available on the system. We set all RequestWorker to be open
(line 3) and initialise two variables to count the performed requests (line 4) and
to track the average response times (line 5).

All RequestWorker process in parallel requests from their RequestQueue (lines 7

and 8). When a RequestWorker is finished processing a request from its queue, we
update the tracked average response time (lines 9 to 10) and increase the request
counter (line 11).

3.4 coordination of data processing and network requests 67

We close a RequestWorker, if the currently expected time for the worker to
process all requests in its queue (i.e., the average response time multiplied by
the current queue size of a worker) exceeds the threshold T of an open worker
(line 12). Further, we increase m (line 14) and open a new worker (lines 15 to 18).

We re-open a previously closed worker, if its average response time is again
below the threshold T (lines 19 to 20). Further, we decrease m and signal one
of the RequestWorker that was created when another worker was closed to termi-
nate when it has finished processing the items in its queue (lines 21 to 23). The
algorithm ensures that the initiated workers in line 3 will never be terminated,
as for every closed worker, a new one is created.

The threshold parameter T can be set before execution depending on the em-
ployed hardware, where a PC with better parallelisation capabilities (i.e., more
cores) implies a lower value for T . Thus, the decision on the number of employed
RequestWorker is tied to local hardware capabilities, rather than a priori unknown
and changing network properties.

The employment of Algorithm 3 allows the system to dynamically scale out
the number of RequestWorker threads, when it is determined during runtime
that there are a large amount of requests with higher response times to be done.
However, as the system adapts over time it can not be expected that the system
always acts with a strictly optimal amount of RequestWorker during processing.
Consequently, a fixed amount of RequestWorker threads can outperform a dy-
namic scaling of threads; especially if the network properties are known and
stable, the amount of RequestWorker can be chosen before runtime, so the system
can continuously run with a close-to-optimal performance.

3.4.4 Handling Duplicates

During processing, the same tuple can be generated multiple times. Such du-
plicate solution mappings result in unnecessary derivations, and potentially in-
crease the processing time. [49, 119] describe how duplicates can affect query
evaluation time.

Such duplicates can be singular occurrences or the result of execution loops.
Singularly occurring duplicates do not prevent the program evaluation from
terminating. The same tuple can be generated in a singular instances due to the
following cases:

• During an calculation of joins the same tuple be may produced twice,
due to the parallel access to the multimap in a EquiJoin operator (see Sec-
tion 3.3.3).

• Different data sources may contain the same triple, which might be re-
trieved causing the TriplePattern operators to produce the same tuples mul-
tiple times.

• Multiple rules can derive the same tuple independently of each other, as
the same tuple is generated by disjoint paths in the operator plan. Simi-
larly duplicate derivation paths can also result in the same request to be

3.4 coordination of data processing and network requests 68

executed more than once, which results the same (duplicate) triples to be
retrieved.

. Example 14

Listing 7 shows a linked program with two rules, specifying that
every soccer player is also an athlete (1) and everybody who is mem-
ber of a sport team is an athlete. The starting graph contains triples
about somebody who is a soccer player and member of a team. The
starting graph allows for the derivation that the described person is
an athlete from both rules, i.e., two derivation paths in the operator
plan lead to the same inferred tuple.

Listing 7: Linked program with two derivation paths leading to the same tuple.

1 # Starting graph

2 acme:johnDoe rdf:type p:SoccerPlayer ;

3 p:memberOf acme:practiceTeam .

4 acme:practiceTeam rdf:type p:Team .

5

6 # (1) Every soccer player is an athlete

7 { ?x rdf:type p:SoccerPlayer . } => { ?x rdf:type p:Athlete . } .

8

9 # (2) Every member of a sport team is an athlete

10 { ?n rdf:type p:Team

11 ?m p:memberOf ?n . } => { ?m rdf:type p:Athlete . } .

In contrast to the singular occurring duplicates, execution loops prevent the
processing from finishing. An execution loop can occur as the result of the ap-
plication of a cyclic operator plan and prevent that the system reaches a fixpoint.
Instead, during the execution of the linked program the same tuples are repeat-
edly derived.

ó Definition 12: Execution Loop

Let P = (G,R,Pd,Pr) be a linked program.
Let f and step be the functions that map any rule and a graph to the derived
graph and resulting graph respectively from one execution step of the rule
(see Definitions 9 and 10):

f(ρ,G) =

{
fd(ρ,G) if ρ ∈ Pd a deduction rule

fr(ρ,G) if ρ ∈ Pr a request rule

step(ρ,G) =

{
stepd(ρ,G) if ρ ∈ Pd a deduction rule

stepr(ρ,G) if ρ ∈ Pr a request rule

3.4 coordination of data processing and network requests 69

Further, let F and Step be the functions that map sets of rules P and a graph,
to the derived graph resulting from one execution step of all rules in the set:

F(P,G) =
.⋃
∀ρ∈P

f(ρ,G)

Step(P,G) =
.⋃
∀ρ∈P

step(ρ,G)

There is an execution loop in program P if there is a subset of the result
graph of the program G ⊆ GP and a subset of rules P ⊆ (Pd ∪ Pr) so that
a recursive execution of P over G eventually extends the graph G with the
identical graph G:

F(P, (Step1 ◦ ... ◦ Stepn)(P,G)) = Gnew ∧G ⊆ Gnew

Intuitively an execution loop occurs, if a series of recursive applications of a
set of rules derives a graph, which triggers the same series of recursive rule
applications.

Generally an execution loop of a linked program cannot be a priori predicted,
as the data retrieved by request rules is not known before the program is exe-
cuted. However, if a program P = (G,R,Pd, ∅) contains no request rules an exe-
cution loop can appear, if there is a subset of deduction rules Pdloop ⊆ Pd, where
the union of all rule bodies is a subgraph pattern (see Section 5.3 Definition 20

54)
of the union of all rule heads.

∀ρd ∈ Pdloop :
⋃
B ⊆

⋃
H with ρd : {B} =⇒ {H}

For the execution loop to appear all rules Pdloop have to be triggered during
execution of the program:

∀ρd ∈ Pdloop : ΩGP
(B) 6= ∅ with ρd : {B} =⇒ {H}

Intuitively, there is at least one solution mapping for all rule bodies (i.e., BGPs)
from the resulting graph of the evaluation of the linked program P. Thus every
rule in Pdloop is guaranteed to be triggered.

Because the same tuples are generated repeatedly, the TripleQueue and Re-
questQueue are constantly re-filled with items. Thus, the program evaluation
cannot be terminated e.g., by Algorithm 2. However, the existence of an exe-
cution loop cannot be understood as a design flaw of a given linked program, as
it cannot be prevented in every case to achieve the goals of an application (see
Example 15).

. Example 15

The linked program in Listing 8 has a starting graph that denotes the re-
source acme:practiceTeam is of type p:Team and establishes a owl:sameAs

relation between p:Team and the concept of dbpedia for sports teams. The

54In Chapter 5 we employ the concept of subgraph pattern to match resource descriptions with
search requests.

3.4 coordination of data processing and network requests 70

rules of the program together with the starting graph cause two execution
loops:

1. Rule (1) causes every sports team to be retrieved. In particular the
information resource of acme:practiceTeam returns the following
graph:

acme:player1 p:memberOf acme:practiceTeam .

The returned triple causes rule (2) to infer that acme:practiceTeam
is of type p:Team. In turn the retrieval of acme:practiceTeam is trig-
gered by to rule (1) due to this inference. Thus rule (1) and (2) con-
tinue to be triggered alternately.

2. Rule (3) encodes the symmetry of owl:sameAs and is an example
of a single rule that causes an execution loop: The rule infers that
db-owl:SportsTeam is the same as p:Team and vice versa alternately.

Listing 8: Linked program that causes execution loops.

1 @prefix db-owl: <http://dbpedia.org/ontology/> .

2

3 # Starting graph

4 acme:practiceTeam rdf:type p:Team .

5 p:Team owl:sameAs db-owl:SportsTeam .

6

7 # (1) Lookup every team

8 { ?u rdf:type p:Team . } => { [] http:mthd httpm:GET ;

9 http:requestURI ?u . } .

10

11 # (2) Member of a team

12 { ?m p:memberOf ?n . } => { ?n rdf:type p:Team . } .

13

14 # (3) Symmetry of owl:sameas

15 { ?x owl:sameAs ?y . } => { ?y owl:sameAs ?x . } .

Removing duplicate tuples from processing can decrease the runtime of the
system, as unnecessary derivations can be prevented. Duplicate tuples that are
not just singular occurrences, but result from an execution loop have to be re-
moved from processing to allow the program execution to terminate properly.
The following mechanisms can be employed to remove duplicates from process-
ing (compare [49, 119]):

• EquiJoin operators may directly filter out some duplicates, if the multimaps
used in the Binding operators use distinct sets rather than lists to store arriv-
ing tuples. When the same tuple arrives multiple times at the same Binding
operator of an EquiJoin operator the duplicate is removed automatically.
The use of sets in the Binding operators does generally not to remove all
duplicates from the processing, as not all triples are pushed to EquiJoin op-
erators in the plan (see rule (3) in Listing 8). Thus, the use of distinct sets
is not sufficient to guarantee the proper termination of a program with
execution loops.

3.5 experiments 71

• We can use a distinct set to additionally store all triples that are pushed to
the TripleQueue. If the set already contains an arriving triple, the triple is
dropped, i.e. not put in the TripleQueue and thus removed from processing.
The distinct set is sufficient to guarantee proper termination, as every triple
has to pass the TripleQueue before processing. However, duplicates are not
removed immediately once the duplicate is derived in the physical plan,
thus the duplicates might still cause unnecessary derivations.

• We could use a distinct set at every operator in the plan to store every arriv-
ing tuple. If a set already contains an arriving tuple, the tuple is dropped.
Thus duplicates are immediately filtered out after they are generated at
any point in the physical plan and consequently a proper termination is
guaranteed also in the face of execution loops.

• Finally, the approach to use a distinct set to store URIs of resources that
have already been retrieved (including information about redirects) to pre-
vent duplicate lookups, prevents duplicates from being processed (see Sec-
tion 3.3.1). Strictly, duplicate tuples are not removed, but prevented as du-
plicate lookups are removed. To remove duplicate lookups guarantees ter-
mination of programs where all execution loops contain a request rule
∃ρr ∈ Ploop.

Using sets to keep track of duplicate requests and tuples requires more mem-
ory, but prevents unnecessary derivations. Additionally, managing the distinct
sets, i.e., writing and reading of tuples, can also increase the runtime of the
system, especially if there are not many unnecessary derivation that are pre-
vented. Also, not every linked program necessarily causes an execution loop.
Consequently, different combinations of the described mechanisms can be ad-
vantageous depending on the evaluated linked program.

. Example 16

Consider a linked program that only retrieves a few initial resources P =

(∅,R, ∅, ∅) without further rules. The program only serves the purpose of
evaluating a registered query over the retrieved data. There can be no
execution loops and single occurrences of duplicates only appear if some
of the retrieved resources contain the same triples. Therefore, the use of
distinct sets to remove duplicates is unnecessary.

3.5 experiments

In this section we describe experiments as part of a systematic evaluation. We
analyse the behaviour of a fully implemented system for the parallel evalua-
tion of linked programs with the described push-based execution model. In
particular, we use different threading models and analyse the system in terms
of throughput with different degrees of parallelism, i.e., a different number of
worker threads and cores. We also describe the processing time in experiments
with different workloads, i.e., a different amount of triples and requests, and
different sets of rules.

3.5 experiments 72

Our experiments are based on the Lehigh University Benchmark (LUBM) [44]
and a synthetic tree dataset, to evaluate either mostly CPU-bound, mostly I/O-
bound or mixed tasks. The LUBM benchmark evaluates the performance of 14

extensional queries over a dataset, which is scalable with respect to size, and
an ontology from the university domain. While LUBM is a purely CPU-bound
benchmark, we specifically use an additional synthetic dataset to be able to pre-
cisely control the size of the processed data and the delay of network requests,
which allow us to evaluate the system behaviour under different conditions and
identify the dependencies between network lookups and data processing.

We choose a tree as data structure of the synthetic dataset that can be traversed
with recursion. The tree-shaped dataset is retrievable as distributed Linked Data
resources, i.e., every node in the tree is a URI-identified information resource.
We use numbers to denote individual nodes, with root node :1.

:1

:2

 :p

:3

 :p

:4

 :p

(a)

:1

:2

:p

:3

:p

:4

:p

(b)

:1

:2

:p

:3

:p

:4

:p

:5

:p

:6

:p

:7

:p

:8

:p

:9

:p

:10

:p

:11

:p

:12

:p

:13

:p

(c)

Figure 9: Synthetic tree dataset shapes: (a) a path (d = 3,b = 1), (b) a star (d = 1,b = 3),
and (c) a tree (d = 2,b = 3). Leaf nodes are circles with dashed lines.

Parameter b specifies the breadth, and d specifies the depth of the completely
balanced tree. Specifically, we denote b as the number of child nodes for every
node, except for the leaves. We denote d as the length of the path from the root
note to any leaf. Figure 9 shows some generated tree-shaped datasets, including

3.5 experiments 73

the two distinguished cases of a path-shaped dataset with b = 1 in Figure 9(a)
and a star-shaped dataset with d = 1 in Figure 9(b).

When one of the nodes is retrieved, the returned triples represent the relation
(i.e., a link) between the node and its children with a property :p. Consequently,
the parameter b also specifies how many triples are returned when we retrieve
a node, with the exception of leaf nodes: As leaves do not have any child nodes,
a lookup on a leaf does not return any triples. However, a lookup on a leaf is
possible with a response (200, ∅).

. Example 17

We consider a tree with d = 2 and b = 3 as shown in Figure 9(c). A lookup
(GET , :1, ∅) on the root node results in the response (200,D), where D is
the set of returned triples:

:1 :p :2 .

:1 :p :3 .

:1 :p :4 .

In Listing 9 we show the initial request (0) on the root node and the request
rules (1) that specifies that the system will retrieve every child node by following
the links. In some of the experiments we define the property :p to be symmetric
with deduction rule (2) and transitive with deduction rule (3). With rules encod-
ing symmetry and transitivity we materialise the transitive closure over :p from
the synthetic dataset.

Listing 9: Rules used in experiments with synthetic tree dataset.

1

2 # (0) Initial request on the root node

3 { [] http:mthd httpm:GET ;

4 http:requestURI :1 . }

5

6 # (1) Request rule to follow all links to child nodes

7 { ?x :p ?y . } => { [] http:mthd httpm:GET ;

8 http:requestURI ?y . }

9

10 # (2) Symmetry of :p

11 { ?x :p ?y . } => { ?y :p ?x . } .

12

13 # (3) Transitivity of :p

14 { ?x :p ?y .

15 ?y :p ?z . } => { ?x :p ?z . } .

We run experiments with the following hardware setups:

setup a A local machine with two Intel Xeon E5-2670 processors with 8 physi-
cal cores per processor at 2.60GHz and 250 GB main memory. Hyperthread-
ing is enabled resulting in 32 logical cores. The operating system is Debian
Wheezy 64bit GNU/Linux with 3.2.0 kernel.

setup b An Amazon Web Services c4.8xlarge instance with two Intel Xeon E5-
2666 v3 processors with 9 physical cores per processor at 2.90GHz and

3.5 experiments 74

60GB main memory. Hyperthreading is enabled resulting in 36 logical
cores. The operating system is Ubuntu 14.04.2 LTS 64bit GNU/Linux with
3.13.0 kernel.

setup s Additionally, in experiments that involve network lookups we use a
server on which the resources of the synthetic tree dataset are deployed: A
virtual machine with 4 logical cores based on a AMD Opteron 6344 proces-
sor at 2.60GHz and 16GB main memory connected via 1Gbit/s Ethernet.
The operating system is Debian Wheezy 64bit GNU/Linux with 3.2.65 ker-
nel.

Our system for the evaluation of linked programs is implemented in Java,
and the experiments are executed on OpenJDK 1.7u24

55. We use Java’s Con-
currentLinkedQueues for the queues, ConcurrentHashMaps as multimap imple-
mentation, with ConcurrentLinkedQueues as tuple lists in value position of the
multimaps56, and a ConcurrentHashMap as basis for a distinct set to remove du-
plicates at the TripleQueue (see Section 3.4.4). Thus, we are guaranteed to break
execution loops, and the programs terminate.

We experiment with different threading models: serial57, rounds, spinning and
blocking. We implemented the blocking threading model with a single TripleQueue
and RequestQueue (blocking single), as well as separate queues for each worker
thread (blocking multi).

3.5.1 CPU-bound Tasks

We use the LUBM benchmark as a completely CPU-bound task to evaluate the
performance of our system while answering the queries of LUBM, where deduc-
tion rules materialise the necessary inferences. In particular, we use the OWL LD
rule set58 directly, as well as a rewritten rule set, custom tailored for LUBM to
generate the inferences. The employed custom rule set for LUBM can be found
in Appendix A.3 in Listing 19. We first generate all input triples, before applying
a rule set.

Figures 10(a) and 10(b) show the throughput on LUBM(200) on Setup A and
B respectively with the custom rule set, depending on the number of employed
threads. A detailed list of results can be found in Appendix A.2 in Tables 15

and 16.
In general we see a decreasing speedup with an increasing amount of em-

ployed threads. E.g., on average (over all threading models) adding one thread
between 1-8 threads on setup A increases the throughput by 38 715 triple/s. Be-
tween 9 and 32 threads adding one thread increases the throughput by 21 169

55We use the following Garbage Collector settings: -XX:+UseParallelGC

-XX:+UseParallelOldGC.
56In early experiments, ConcurrentLinkedQueues turned out to use less memory and to be

faster then ConcurrentHashMap (as basis for sets), despite not removing duplicates (cf. Section
3.4.4).

57The serial model is only partially comparable, as it does not allow to increase the number of
threads.

58http://semanticweb.org/OWLLD/, retrieved 2015-04-10.

http://semanticweb.org/OWLLD/

3.5 experiments 75

0

200000

400000

600000

800000

1000000

1200000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

Tr
ip

le
/s

ec

TripleWorker Threads

rounds

spinning

blocking single

blocking multi

(a) Setup A

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

Tr
ip

le
/s

ec

TripleWorker Threads

rounds

spinning

blocking single

blocking multi

(b) Setup B

Figure 10: Throughput of of parallel processing of LUBM 200 with custom rule set.

3.5 experiments 76

0

50000

100000

150000

200000

250000

300000

350000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

Tr
ip

le
/s

ec

TripleWorker Threads

rounds

spinning

blocking single

blocking multi

(a) Setup A

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

Tr
ip

le
/s

ec

TripleWorker Threads

rounds

spinning

blocking single

blocking multi

(b) Setup B

Figure 11: Throughput of of parallel processing of LUBM 200 with OWL LD rule set.

3.5 experiments 77

triple/s and between 33 and 42 threads adding an additional thread even de-
creases the throughput by -2 023 triple/s. Similarly on setup B on average adding
one thread between 1-9 threads increases the throughput by 62 518 triple/s. Be-
tween 10 and 36 threads adding one thread increases the throughput by 22 378

triple/s and between 37 and 42 threads adding an additional thread decreases
the throughput by -3 254 triple/s.

One reason for these diminishing returns is described in Amdahl’s Law [3], as
the reasoning tasks in LUBM cannot be completely parallelised [80] and only the
part of the system that can be parallelised is optimised by increasing the amount
of employed threads. Additionally, an increase of threads beyond 32 threads on
setup A and 36 on setup B decreases throughput, as only 32 and 36 cores are
available on the respective machines. The completely CPU-bound task leverages
the system resources fully with 32 threads and adding more threads does not
increase the degree of parallelism, but rather adds unnecessary overhead.

When comparing the individual threading models, we see on both setups
that the differences between the models increase with an increase in employed
threads. We see that the blocking single approach results in a generally lower
throughput compared to the other approaches. The overhead of the rounds and
spinning approach are of minor importance for the LUBM benchmark, as the
large set of input triples is generated before the processing starts. Therefore,
the threads are rarely in a sleep state, which results in a greater effect of the
overhead of directly managing the thread state in the blocking single approach.
However, blocking multi generally performs best, achieving about 1 mio triple/s
on setup A and 1.4 mio triple/s on setup B, as the advantage of removing the
bottleneck of having a single TripleQueue and RequestQueue mitigates the over-
head. The serial approach is not included in Figure 10, as it cannot be used with
more than one thread. On setup A serial reaches 244 008 triples/s and on setup B
434 267 triples/s, thus serial performs better than other threading models with
one thread, because there is no unnecessary coordination overhead.

Figures 11(a) and 11(b) show the throughput on LUBM(200) on Setup A and B
respectively with the OWL LD rule set, depending on the number of employed
threads. A detailed list of results can be found in Appendix A.2 in Tables 17

and 18.
We see a similar behaviour of diminishing returns when employing the OWL

LD rule set compared to the custom rule set. However, the individual thread-
ing models exhibit almost no differences. The more complex OWL LD rule set
causes an overall longer processing time with a larger amount of solution se-
quences stored in the multimaps of the Binding operators in the physical plan.
As individual processes executed in a thread require more time to be executed
(e.g., due to longer read and write times in the larger multimaps), the differences
of the threading models are largely mitigated.

Figures 12 and 13 show again the throughput of LUBM(200) on setup A and
B with a custom rule set and the OWL LD rule set, depending on the number of
employed threads. Here however, we only employ the same amount of cores as
TripleWorker threads and deactivated the other cores for the individual runs. If
we use more threads than the maximum amount of cores available on the system,

3.5 experiments 78

we use all cores. 59 E.g. if we use 8 threads on setup A (32 cores) we deactivate
24 of the 32 cores of the machine; if we use 33 threads, we use all available 32

cores. A detailed list of results can be found in Appendix A.2 in Tables 19–26.
Please observe the following vertical markers:

1. Up to 8 threads on system A and 9 threads on system B, all employed
threads run on the cores of the same processor, as the cores of the other pro-
cessor are deactivated. Above 8 threads on system A and above 9 threads
on system B, the threads run on the cores of both processors. Data of
the running processes has to be transferred over the Quick Path Intercon-
nect (QPI)60 of the mainboard, as the operating system switches threads
between the cores on different processors.

2. Above 16 threads on system A and 18 threads on system B, the processes
are not guaranteed to be executed on a dedicated physical core, but share
partially share physical cores via hyperthreading.

3. Above 32 threads on system A and 36 threads on system B, we fully lever-
age all available logical cores of the systems and just increase the amount
of employed threads.

We show the average throughput out of 5 runs and provide error bars indicat-
ing the standard error from those five runs.

We see again a decreasing speedup with an increasing amount of threads and
cores. However, the speedup before the marker 1 is considerably higher com-
pared to the experiments without deactivated cores. Between marker 1 and 3 the
speedup is lower compared to the experiments without deactivated cores. E.g.,
with custom rules on average (over all threading models) adding one thread
between 1-8 threads on setup A increases the throughput by 63 475 triple/s. Be-
tween 9 and 32 threads adding one thread increases the throughput by 13 780

triple/s and between 33 and 42 threads adding an additional thread decreases
the throughput by -5 239 triple/s. Similarly with custom rules on setup B on av-
erage adding one thread between 1-9 threads increases the throughput by 81 618

triple/s. Between 10 and 36 threads adding one thread increases the throughput
by 9 756 triple/s and between 37 and 42 threads adding an additional thread
decreases the throughput by -10 175 triple/s.

The reason for the different behaviour is that the overhead of using QPI on
both systems is avoided before marker 1, and comes only into effect when em-
ploying more then 8 cores on setup A and 9 cores on setup B. We can especially
observe that the throughput decreases shortly after marker 1, as 1-3 additional
cores does not make up for the overhead introduced by QPI. The decrease of
throughput occurring on two independent setups when employing slightly more
cores than available on one processor supports the conclusion that the effect is
related to the QPI.

We also see a tendency that the standard error increases with the amount
of cores implying a higher variance of the throughput when more cores are

59We use Linux taskset to specify the number of cores on which processors used for the JVM.
60http://www.intel.com/content/www/us/en/io/quickpath-technology/

quick-path-interconnect-introduction-paper.html

http://www.intel.com/content/www/us/en/io/quickpath-technology/quick-path-interconnect-introduction-paper.html
http://www.intel.com/content/www/us/en/io/quickpath-technology/quick-path-interconnect-introduction-paper.html

3.5 experiments 79

0

200000

400000

600000

800000

1000000

1200000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

Tr
ip

le
/s

ec

TripleWorker Threads / Cores (up to 32)

rounds

spinning

blocking single

blocking multi

31 2

(a) Setup A

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

Tr
ip

le
/s

ec

TripleWorker Threads/Cores (up to 36)

rounds

spinning

blocking single

blocking multi

321

(b) Setup B

Figure 12: Throughput of of parallel processing of LUBM 200 with custom rule set; num-
ber of cores adapted to number of threads (average of 5 runs).

3.5 experiments 80

0

50000

100000

150000

200000

250000

300000

350000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

Tr
ip

le
/s

ec

TripleWorker Threads/Cores (up to 32)

rounds

spinning

blocking single

blocking multi

1 2 3

(a) Setup A

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

Tr
ip

le
/s

ec

TripleWorker Threads/Cores (up to 36)

rounds

spinning

blocking single

blocking multi

1 2 3

(b) Setup B

Figure 13: Throughput of of parallel processing of LUBM 200 with OWL LD rule set;
number of cores adapted to number of threads (average of 5 runs).

3.5 experiments 81

employed. Table 5 and 6 show the average standard error we measured for
Lubm(200) with custom rules between the markers for the two systems respec-
tively. However, increasing the amount of employed threads with the same num-
ber of cores (e.g., above 32 threads with system A) does not further increase
the standard error. The operating system assigns threads to cores randomly. As
more cores are available, there are more possibilities for assignments of threads
to cores. E.g., a thread might constantly be assigned to cores on the same proces-
sor, thus avoiding data transfer between processors via QPI; a thread might be
constantly switched between cores on different processors, thus increasing the
amount of data transferred via the QPI.

The differences of the threading models are similar to the experiments without
deactivated cores.

Table 5: Average standard error from 5 LUBM runs for the throughput between the
marked amount of threads for system A.

between threads: 1-8 9-16 16-32 32-42

rounds 6201 9295 11638 18203

spinning 6159 10500 11863 13787

blocking single 5578 7026 8781 12503

blocking multi 7311 8529 15088 17018

Table 6: Average standard error from 5 LUBM runs for the throughput between the
marked amount of threads for system B.

between threads: 1-9 10-18 19-36 37-42

rounds 2343 10944 17601 16235

spinning 2517 8191 14178 12751

blocking single 2745 8264 9027 10078

blocking multi 2069 10409 29883 28138

Next, we experiment with the synthetic tree dataset in a completely CPU-
bound setting. We use a tree datasets with breadth b = 2 and increasing depth
d, and thus an increasing amount of triples. The triples are all locally generated,
i.e., no resources have to be retrieved via HTTP, but the complete graph is lo-
cally available as initial graph. We employ a program consisting of deduction
rules for symmetry and transitivity (2) and (3) in Listing 9 and measure the re-
quired processing time until the fixpoint is reached on setup A. As the data is
generated locally, rather than retrieved from the server, the program evaluation
is completely CPU-bound. Figure 14 shows the results, with the amount of pro-
cessed triples including derived triples (i.e., the amount of triples in the result

3.5 experiments 82

1

10

100

1000

10000

100000

1000000

10000000

1

10

100

1000

10000

100000

1000000

10000000

1 (2) 2 (6) 3 (14) 4 (30) 5 (62) 6 (126) 7 (254) 8 (510) 9 (1022)

to
ta

l t
ri

p
le

s

ru
n

ti
m

e
m

s

tree depth (triples in tree)

rounds
spinning
blocking single
blocking multi
serial
total processed triples

Figure 14: Runtime to process locally generated synthetic tree dataset with rules for sym-
metry and transitivity depending on tree with breadth b = 2 and increasing
depth.

graph of the program) on a secondary horizontal axis for comparison. We fix the
amount of TripleWorker threads to 32. A detailed list of results can be found in
Appendix A.2 in Table 29.

We see that the different threading models with the exception of serial exhibit
differences only up to a tree depth of 5 (3 969 processed triples). Below depth
5 the triples arriving in the TripleQueue can almost instantly be taken and pro-
cessed by a TripleWorker. Beyond depth 5 the processed data in the operator
tree becomes large enough that the read and write operations in the larger mul-
timaps become a dominant factor for the processing time. Consequently the dif-
ferences in the threading models become less important with increasing number
of triples.

The baseline serial model is faster than the other multi-threaded models below
trees of depth 4 (961 processed triples), with the exception of the blocking multi
model, indicating that the data size is to small to sufficiently leverage parallel
processing to make up for the overhead of most of the multi-threaded models.
The blocking multi model, however, shows consistently the shortest runtimes.

The experiment shows that in a CPU-bound setting below a certain dataset
size to process only blocking multi would be preferable over serial. Above a certain
dataset size any multi-threaded model is preferable over serial.

3.5.2 I/O-bound Tasks

Next we run experiments that contain predominantly I/O-bound tasks. We re-
trieve the information resources of a synthetic tree dataset with breadth b = 6

and depth d = 6, which results in a total graph with 55 986 triples and re-
sources61, from the server (setup S). We do not use any derivation rules to calcu-
late symmetry or transitivity of the property. Thus, we execute a linked program

61The amount of triples and information resources in the dataset is equivalent, as for every
resource there is exactly one triple linking to a it.

3.5 experiments 83

0

2000

4000

6000

8000

10000

12000

32 64 96 128 160 192 224 256 288 320

Tr
ip

le
/s

ec

RequestWorker Threads

rounds
spinning
blocking single
blocking multi

(a) Between 32 and 320 RequestWorker threads.

0

2000

4000

6000

8000

10000

12000

320 640 960 1280 1600 1920 2240 2560 2880 3200

Tr
ip

le
/s

ec

RequestWorker Threads

rounds
spinning
blocking single
blocking multi

(b) Between 320 and 3200 RequestWorker threads.

Figure 15: Throughput of system retrieving a tree dataset without deduction rules with
breadth b = 6 and depth d = 6 depending on number of request threads;
data is retrieved by network requests with about 2ms delay per request.

on setup A with the initial request (0) and rule (1) in Listing 9, which is I/O
bound, as the tasks to perform mostly consist of network lookups.

The program retrieves the root note as initial request and then follows all the
links until the complete graph is retrieved. Leaf nodes are also retrieved, albeit
leaves do not return any triples. On average a HTTP request on a node takes
2 ms, which also holds true for the leaf nodes, even though a request on a leaf
does not include any data transfer.

Figure 15 shows the achieved throughput of the system for the processing
of the linked program depending on the number of employed RequestWorker
threads. In particular, Figure 15(a) shows values between 32 and 320 employed
threads and Figure 15(b) shows values between 320 and 3 200 employed threads.
As every retrieved triple causes a distinct request, the shown values for triple/s
are equivalent to the achieved request/s value. A detailed list of results can be
found in Appendix A.2 in Table 27.

As the program evaluation is I/O-bound, we see an increase in throughput
when increasing the number of request thread well beyond the number of avail-
able cores. While a thread that executes a request waits for the response, the
operating system can switch another thread onto the core of the waiting thread.
Thus, more requests can be executed in parallel than there are cores available on
the setup62.

The effect of using a large number of threads is less prevalent in the rounds
model, as towards the end of every round only a fraction of the threads stay ac-
tive and the others just cause overhead. Consequently, the rounds model exhibits
only a speedup with up to 288 request threads. Adding more threads decreases
throughput due to overhead for managing more threads.

62For the experiments we deactivated the politeness policy that not more than one request per
host can be executed in parallel. In a real setting the parallel requests can be executed on resources
from multiple hosts.

3.5 experiments 84

0

200

400

600

800

1000

1200

1400

1600

1800

32 64 96 128 160 192 224 256 288 320

Tr
ip

le
/s

ec

RequestWorker Threads

rounds
spinning
blocking single
blocking multi

Tr
ip

le
/s

ec

(a) Between 32 and 320 RequestWorker threads.

0

200

400

600

800

1000

1200

1400

1600

1800

320 640 960 1280 1600 1920 2240 2560 2880 3200

Tr
ip

le
/s

ec

RequestWorker Threads

rounds
spinning
blocking single
blocking multi

(b) Between 320 and 3200 RequestWorker threads.

Figure 16: Throughput of system retrieving a tree dataset with rules for symmetry and
transitivity with breadth b = 6 and depth d = 6 depending on number of
request threads; data is retrieved by network requests with about 200ms delay
per request.

The other models show a speedup with up to 1920 request threads. Beyond
that the throughput decreases, as the overhead of managing additional threads
outweighs the benefits of parallelism. The trade-off effect is especially visible for
the blocking single model, where the overhead of directly controlling the Request-
Worker states is not mitigated by resolving the bottleneck of having only single
queues.

The highest achieved throughput is about 100̇00 triple/s (or requests/s) for
all multi-threaded models except rounds. For comparison, the baseline model
serial, which can only employ one thread reaches in the same experiment only
873 triple/s. However, using the approach to dynamically adapt the amount
of RequestWorker threads, as described in Section 3.4.3 with the blocking multi
model, the system achieves a throughput of 11 151 triple/s. We use a threshold
of 400 ms for the maximum expected worktime of a RequestWorker. The adaptive
adjustment of threads is especially in a scenario like the tree dataset advanta-
geous, where the amount of available requests to perform in the RequestQueue
varies strongly over the processing time: After the first request to the root node
only 6 links are found (i.e., 6 requests), however every retrieved resource adds 6

new requests, thus the rate at which resources to retrieve are identified increases
over time. The adaptive adjustment of threads is able to scale the amount of em-
ployed threads over the course of the processing, thus avoiding overhead of too
many threads in the beginning and increasing the amount of threads towards
the end as necessary.

Next we run an experiment on the same synthetic tree dataset (b = 6, d = 6),
but simulate a delay of 200 ms for every request. The delay causes the effect of
I/O-bound tasks to be more prevalent as shown in Figure 16. A detailed list of
results can be found in Appendix A.2 in Table 28. We see a larger speedup when
increasing the number of request threads compared to the experiment without
simulated delay, as the longer delay time allows to perform more requests simul-
taneously. As the requests take generally longer, the rounds model also profits

3.5 experiments 85

longer from increasing the number of threads, because the individual rounds
take more time and the down time towards the end of the round does not domi-
nate the overall runtime.

We also see that the approach to use multiple queues in the blocking multi
model has an adverse effect: With the longer delay the chances that one of the
RequestQueues is briefly empty increases, which causes the algorithm to check
whether the fixpoint is reached more often (see Algorithm 2), thus introducing
overhead. In contrast, the other models use only one RequestQueue, thus the
single queue is rarely empty, leading to fewer termination checks. With the delay
the top throughput, the system achieves id about 1 500 triple/s.

For comparison, the approach with a dynamic adjustment of RequestWorker
thread achieves 3024 triple/s. The positive effect of scaling the amount of threads
is increased when delay is introduced for the requests, as the individual active Re-
questWorker, reach their threshold faster with only a few requests in their queue.
Thus the system can react more precisely on the amount of requests and by
increasing of decreasing the amount of employed threads more quickly.

In summary we see that a large amount of threads beyond the number of
available cores for the I/O-bound tasks is advantageous, especially if the delay
causes the input rate to be slow. However, the overhead of introducing more
threads can outweigh the benefits of the increased parallelism, with different
threading models causing different amounts of overhead. Dynamically adjust-
ing the amount of employed threads to execute requests is a valid approach to
mitigate the overhead and allows the blocking multi model to perform fastest.

3.5.3 Mixed CPU- and I/O-bound Tasks

Finally, we combine the retrieval of the synthetic tree dataset from the server
(setup S), with the application of rules for the symmetry and transitivity on
setup A. Consequently, we execute the linked program with the initial request
and all rules in Listing 9. Thus, in the following experiments we require Triple-
Worker (fixed to 32) and RequestWorker (fixed to 64) threads, combining CPU-
bound and I/O-bound tasks.

We again use a tree with breadth b = 2, increase the depth of the tree, and
measure the absolute runtime to retrieve all resources via link traversal and ma-
terialise all triples resulting from symmetry and transitivity of property :p. Fig-
ure 17(a) shows the results without artificial delay and Figure 17(b) shows the
results with a simulated delay of 200 ms. A detailed list of results can be found
in Appendix A.2 in Table 31.

Without artificial delay the blocking multi model performs consequently best,
but larger differences between the threading models are only visible below a tree
depth of d = 5, with the exception of serial. As the resources of the tree can be
retrieved with almost no delay the behaviour of the system in terms of runtime is
similar as in the experiment with a locally generated tree dataset (see Figure 14).

However, the I/O-bound tasks in the experiment with no delay influence the
runtime to some extent: Compared to the completely CPU-bound experiment,
the baseline serial model does not outperform the spinning and blocking single
model equally well under small tree sizes. Only with a tree of depth d = 1 (i.e.,

3.5 experiments 86

1

10

100

1000

10000

100000

1000000

10000000

1

10

100

1000

10000

100000

1000000

1 (2) 2 (6) 3 (14) 4 (30) 5 (62) 6 (126) 7 (254) 8 (510) 9 (1022)

to
ta

l t
ri

p
le

s

ru
n

ti
m

e
m

s

tree depth (triples in tree)

rounds
spinning
blocking single
blocking multi
serial
total processed triples

(a) 2 ms delay per request

1

10

100

1000

10000

100000

1000000

10000000

1

10

100

1000

10000

100000

1000000

10000000

1 (2) 2 (6) 3 (14) 4 (30) 5 (62) 6 (126) 7 (254) 8 (510) 9 (1022)

to
ta

l t
ri

p
le

s

ru
n

ti
m

e
m

s

tree depth (triples in tree)

rounds
spinning
blocking single
blocking multi
serial
total processed triples

(b) 200 ms delay per request

Figure 17: Runtime to process retrieved synthetic tree dataset without derivation rules
depending on tree with breadth b = 2 and increasing depth; data is retrieved
via network requests.

3.5 experiments 87

1

10

100

1000

10000

100000

0

1

10

100

1.000

1 (2) 2 (6) 3 (14) 4 (30) 5 (62) 6 (126)

to
ta

l t
ri

p
le

s

fe
q

u
e

n
cy

 H
z

tree depth (triples in tree)

rounds spinning

blocking single blocking multi

serial blocking multi reset

Figure 18: Average frequency of 1 000 repeated runs of a linked program retrieving a tree
dataset with breadth b = 2 and increasing depth and materialising triples for
symmetry and transitivity.

2 triples), serial remains the second best approach, as parallel processing is not
required. However the rounds approach still suffers from the downtime at the
end of the on average shorter rounds, with smaller tree sizes.

In the experiment with 200 ms delay per request, the multi-threaded mod-
els exhibit almost no difference, indicating that the I/O-bound tasks dominate
the overall runtime. In turn the differences in the experiment with no delay are
caused by the different performances of the TripleWorkers. The serial model re-
quires at least the runtime of the summed up delay of all requests, which is why
it performs considerably slower than the other models with a delay.

Lastly, we run an experiment for a scenario where a linked program has to be
repeatedly executed in fast succession, e.g., to constantly probe if Web resources
have changed (see Example 12). We again execute the linked program shown
in Listing 9, including retrieval of resources and deduction rules for symmetry
and transitivity. However, once the system reaches the fixpoint, i.e., is finished
processing and the complete result graph is materialised, we start the processing
of the program again. We repeat the execution of the program 1 000 times and
measure the average frequency with which we can run the program. Results are
shown in Figure 18. A detailed list of results can be found in Appendix A.2 in
Table 30.

In correspondence to the absolute runtimes in Figure 17(a), we see that rounds
achieves the lowest frequencies and blocking multi the highest frequencies. E.g.,
for a tree dataset with b = 2 and d = 4, with results in 30 retrieved triples,
the system calculates the result graph containing 961 triples with 31 Hz using
blocking multi. The serial approach performs with lower frequencies compared to
the multi-threaded models with an increasing tree size.

When the fixpoint of the processing is reached and the program terminates,
all worker threads are shut down. Therefore, if the processing has to start again,
new threads have to be initiated in the system. We extended the blocking multi
threading model to not shutdown the threads after the fixpoint is reached, which
is specifically possible as we control the state of the threads directly in the block-
ing multi model. Rather than shutting the threads down, the physical operator

3.6 related work 88

plan is cleared from intermediate results, i.e., the multimaps in all Binding oper-
ators are discarded and all distinct sets are emptied. To restart the program the
initial request on the root node is performed again63, which triggers again the
same processing. With this approach, denoted as blocking multi reset in Figure 18

the system is capable to outperform the other threading models for all tree sizes
smaller than d = 6. E.g., for a tree dataset with b = 2 and d = 4, which results in
30 retrieved triples, the system calculates the result graph containing 961 triples
with 66 Hz using blocking multi reset.

Above a tree depth of d = 6 the achieved frequencies of the individual thread-
ing models converge (with the exception of serial), as the overall runtime of
a singe program run is large enough to mitigate individual differences of the
models with respect to execution frequencies.

Overall the experiments provide evidence that our proposed execution model
has advantages in the presence of I/O-bound tasks, even when the performed
tasks are predominantly CPU-bound. In particular the capability to scale the
number of employed threads for I/O-bound and CPU-bound tasks indepen-
dently emerges as important, as both thread pools can be separately adjusted
to achieve a higher throughput before the introduced overhead outweighs the
benefits.

Intertwining I/O-bound and CPU-bound tasks allows to conflate linked pro-
grams to a mostly CPU-bound problem, if enough data processing tasks have to
be performed. Thus, the network requests are done in parallel to the processing
without interfering with the data processing.

The choice of the used threading model can have a sizable impact. Specifically,
the overhead of managing threads directly is only worthwhile, if few I/O-bound
tasks are present in relation to the CPU-bound tasks. However, the introduced
overhead can be mitigated, if the direct control is leveraged for the use of multi-
ple queues, which removes a bottleneck in the processing.

3.6 related work

There are many approaches for link-traversal query processing. In their work
Umbrich et al. [118] study the impact on the recall of query results when taking
into account reasoning constructs. We describe methods to carry out rule-based
reasoning in combination with HTTP requests. In contrast to [30], who specify
path expressions on queries, we only allow for processing of BGP queries. How-
ever, we can specify link expansion in a more fine-grained manner using request
rules.

Our work also differs from approaches to answer queries over multiple data
sources using views [66], as we do not assume to have source descriptions that
provide a mapping of the local source schemata to a global schema. We allow
to follow links during evaluation without prior knowledge about the retrieved
content until a lookup is performed.

63The system would also include an initial graph to restart processing, if one is defined in the
linked program.

3.6 related work 89

In [108] we propose a system that also takes into account data manipulation
(CRUD) operations, which will be the basis of our extension to programs that
allow to change resources in Chapter 4. Here, we focus on read operations and on
the parallel execution, specify optimisations, and conduct extensive performance
evaluation.

Our algorithm to calculate joins in the evaluation plan described in section
3.3.3 is based on the symmetric hash join operator as proposed by Wilschut and
Apers [128]. To enable parallel processing Wilschut describes a pipeline execu-
tion model, where every operator is executed by a process. In the pipeline model
data is “pushed” from one operator to another by inter-process communication
(i.e., pipes).

Ladwig and Tran [62] also propose a push-based based model where every op-
erator is executed in its own process. Ladwig argues that the resulting streaming
architecture, where data is streamed between the running processes is specifi-
cally advantageous, if at least some data sources are unknown before the query
evaluation starts. However, they implement their system using the Scala actor
model, with a queue and a lightweight thread for each operator, and do not
consider rules.

Graefe [41] argues that the overhead introduced by the inter-process commu-
nication can be avoided by employing an execution model that allows operators
to schedule each other within a single process. In Graefes model operators can
request new data items from other operators whenever new data items are re-
quired. The operators iterate over the received (pull) data items to produce new
(intermediate) results. Thus, Graefe also eliminates the need to buffer data in
pipelines. However, Graefe points out that in a scenario where data-sources have
to unload data as it arrives, a more data-driven push-based model might be more
appropriate.

Hartig et al. [48] also use a demand-driven (iterator) model for query evalua-
tion, with provisions for delaying/postponing requests to other operators.

In our execution model operators also schedule each other within a single pro-
cess, but in a data-driven push-based manner: Every operator iterates over its
intermediate results and pushes the data items to subsequent operators within
the same process. Thus, we avoid the overhead of inter-process communication
as well as cater to a scenario where new data from network lookups can contin-
uously processed.

Motik et al. [76] also propose a parallel system for general recursive Datalog
rules, where multiple processes extract facts from a database and evaluate the
facts over sub-queries obtained from the rules. The result of the evaluation is
written back to the database and consequently available for the evaluation of
other sub-queries. The approach of Motik et al. relies on the availability of a stor-
age scheme that allows for efficient evaluation of the sub-queries (i.e., indexes
over the facts in the database) and efficient update mechanisms. In our approach,
the data is fetched from the network, and triples are directly pushed through the
operators which maintain multimaps for joins.

Also motivated by the goal to avoid overhead from process scheduling and
inter-process communication Carney et al. [22] propose an execution model with
an active scheduler. Here sequences of operators are stored in a queue. A router

3.7 summary and future work 90

assigns data items to the queue elements and a scheduler that monitors avail-
able system resources decides which queue elements (i.e., operator sequences)
are executed in a process. The active scheduler is comparable to the coordina-
tion approach in our approach described in Section 3.4. However, we do not
queue specific operator sequences to be executed, as the scheduling of operators
is data-driven, i.e., data items are pushed from one operator to another. Further
our approach does not actively monitor available system resources, but rather
employs as many evaluation worker threads as there are cores available to opti-
mally leverage system resources. In the scenario with network requests that we
focus on, we optimise the amount of request worker threads with respect to the
latency of remote data sources, as the network latency represents the bottleneck
of the system.

Many approaches rely on an a priori fixed T-Box. Thus, a strand of work in
rule-based reasoning revolves around the idea of separating T-Box (triples with
rdf:type property and those with RDF, RDFS and OWL vocabularies) and A-
Box. Hogan et al. [53] were the first to use the fact that many rule sets consist of
joins between T-Box statements and A-Box statements. Their system holds T-Box
in memory, and does scans over A-Box triples to perform the joins. Similarly,
[119] uses specialised algorithms tailored to a particular rule set. In contrast, we
provide a general rule processor for positive Datalog on triples, that allows e.g.,
for arbitrary join operations over instance data. Heino and Pan [49] propose a
parallel reasoning system based on a shared memory architecture that avoids
memory and communication overhead of duplicate results during evaluation.
The reasoning system of Heino uses individual compute kernels for different
rules. An instance of a compute kernel (i.e., a thread) evaluates the result of a
rule for a single instance triple, based on separation of A-Box and T-Box. The
approach of Heino requires no rule to depend on more than one instance triple,
as the communication of entailment results is only performed between the eval-
uation of a complete rule.

Grosof et al. [42] note that rules can be rewritten in the face of T-Box state-
ments, yielding more efficient rule sets. The drawback for using the T-Box to op-
timise rule processing is that the T-Box needs to be known (and fixed) before eval-
uating the query plan. Given that we aim for a general-purpose link-following,
in which the processor might access hitherto unknown T-Box statement during
query evaluation, the optimisation does not apply in our scenario.

3.7 summary and future work

In this chapter we have presented methods to access, integrate and query Linked
Data in an integrated system for the use in the development of Web-based appli-
cations. In particular, we have shown how the application logic can be specified
with linked programs consisting of a set of declarative rules.

The specifications include request rules, to take into account the links between
resources to be able to discover new resources in a decentralised environment,
and deduction rules, to specify the semantics of data items as defined in knowl-
edge representation languages such as RDFS and fragments of OWL. Request
rules that allow to define the expansion of links can be defined in a fine-grained

3.7 summary and future work 91

manner, thus avoiding unnecessary requests. Deduction rules allow to define
the semantics that has to be taken into account for the alignment of retrieved re-
sources, leveraging interlinked Web-accessible schemata on-the-fly. Additionally,
queries can be specified to extract the required information from the materi-
alised graph. By providing syntax and semantics of the rules we have answered
Research Question 1.1.

We have introduced a system for the parallel evaluation of the cyclic plans
resulting from the rules and queries, built upon a push-based execution model.
The push based execution model allows to separate threads for the evaluation of
the plan (i.e., CPU-bound tasks) and the execution of network requests (i.e., I/O-
bound tasks). Thus, the system can be configured to leverage system resources
adjusted for the combination of both CPU-bound and I/O-bound tasks. We also
introduced an approach for the adjustment of the amount of employed threads
at runtime to react to the dynamically discovered amount of required network
lookups. Consequently, the proposed execution model answers Research Ques-
tion 1.2: The model caters specifically for data processing scenarios with network
lookups, as it is capable of including interlinked schema information discovered
at runtime for the data integration.

We have answered Research Question 1.3 by describing and evaluating sev-
eral threading models that implement the push-based execution model for the
parallel evaluation of rules and queries. In particular, we evaluated the perfor-
mance of the system with respect to the ratio of required data processing tasks
and network lookup tasks. We further introduced and evaluated an approach to
increase the frequency with which linked programs can be executed repeatedly
that improves upon a simple sequential re-start of a program.

In summation we can confirm Hypothesis 1, as we have shown how declara-
tive rule-based programs can be utilised to define desired dynamic interactions
with Web resources for client applications in such a way that the described inter-
actions can be executed in a highly parallel streaming fashion. Applications built
upon such linked programs achieve low runtimes in the face of Web-distributed
data resources for the acquisition of information.

The focus of future research work building upon the topics of this chapter can
be twofold:

First, a further increase of control over the evaluation of linked programs can
result in an additional performance increase. Additional control can relate to
more precise restrictions on what links to follow; e.g., one could specify that
only resources should be retrieved and included in the processing that are reach-
able from the initial resources in a defined number of hops. Thus, the processing
can be further limited to a subset of resources, which contain the necessary data
for the goal of an application. Such control mechanisms would require a pre-
cise provenance tracking of the individual statements that are processed, i.e.,
retaining of information which triple comes from which resource. Provenance
tracking for a system that combines reasoning with query answering over inter-
linked resources presents a challenge, as some statements will be derived from
other triples that come from different resources.

Control over the evaluation of linked programs can also relate to a more de-
liberate scheduling of processing and lookup tasks. E.g., algorithms can be de-

3.7 summary and future work 92

veloped that determine at runtime when the employed queues are filled so that
the data processing threads can be saturated and therefore stall further resource
lookups. Thus, the size of the employed queues during evaluation could be kept
smaller reducing the memory footprint of the evaluation and potentially reduc-
ing runtime, as read and write times to the smaller data structures are reduced.

The second aspect of future research work can be a higher level of parallelisa-
tion: While we parallelise the evaluation with multiple processes executed simul-
taneously on different cores of processors in a single machine, a higher level of
parallelisation implies the distribution of the evaluation over several machines.
Similar to a MapReduce framework [24] several machines can work together in
evaluating an evaluation plan. The communication between machines can cause
overhead comparable to the overhead caused by the use of QPI when employ-
ing multiple processors. Therefore, algorithms have to be developed to share an
overall evaluation plan among multiple machines that minimise inter-machine
communication. The identification of beneficial strategies to share plans repre-
sents a challenge as the processed data is unknown before executing a program.

This chapter was mostly concerned with the realisation of a parallel processing
approach for the evaluation of linked programs. Thus the challenge of achiev-
ing a low runtimes for Web-based applications was in the focus of this chapter.
However, the described processing model adheres to constraints as required in
high entropy environments such as the Web. Specifically, the capabilities for the
on-the-fly processing of interlinked schemata in conjunction with reasoning fa-
cilities for the alignment of resources enable applications to react to dynamically
changing Web resources.

We restricted the described approach to linked programs on the retrieval of
resources for the extraction of information used by applications. Even though
many use cases fall under such scenarios, there are also many tasks a Web ap-
plication can perform, that require that resources are actively changed by the
application. I.e., rather than just retrieving information, an application can also
produce new data and change existing resources. We extend linked programs
with manipulation capabilities in the following chapter by combining Linked
Data with REST.

4
D Y N A M I C M A N I P U L AT I O N O F W E B R E S O U R C E S

4.1 introduction

The Web offers more than simple access to data and information as supplied
by data providers. Rather a wide variety of possibilities to create and edit data
exist, e.g., in the context of user generated content. Existing service offerings on
the Web not only go beyond the simple exposure of data by providing facilities
for the manipulation of data and offer a broad spectrum of functionalities that
can entail real world effects. Examples for such services include online banking,
reservation of hotels and flights, ordering of food.

An increasing amount of providers do not only offer such functionality via
their homepage (i.e., human-usable interface), but also allow for programmatic
access via an Application Programming Interfaces (API). ProgrammableWeb64, a
popular registry for Web-based APIs lists over 13 000 interfaces and describes
an exponential increase in the number of available APIs over the last years.
Consequently applications like mobile or desktop apps can be built upon the
utilisation of these functionalities. An increased value realised by such applica-
tions comes from combining data from multiple sources and functionality from
multiple providers. The importance of such compositions is also reflected in
the constant growth of mashups – small programs that combine multiple web
APIs [125].

In addition to the momentum generated by the Linking Open Data community
towards opening up public sector and other data [13] as Web resources, there is
also a strong movement toward a resource-oriented model of APIs based on
Representational State Transfer (REST) [29]. REST gains popularity with an inter-
action architecture based on the manipulation of resources by fostering a loose
coupling between client application and server. A loose coupling between client
and server refers to the concept that the client requires only little or no knowl-
edge about the server for a successful interaction. In particular, REST achieves
loose coupling by constraining the available operations a client can choose from
for an interaction. Furthermore, clients can draw flexibility from links between
resources, which allow the clients to discover a priori unknown resources at
runtime.

The characteristic of an architecture to be loosely coupled directly relates to the
property of an API to present potential clients with little entropy, as the clients
can rely on a predefined interaction model. Adaptivity and robustness are direct

64http://programmableweb.com; retrieved 2015-03-15

93

http://programmableweb.com

4.1 introduction 94

consequences of such an interaction model and are particularly useful for soft-
ware architectures in distributed data-driven environments such as the Web [82].
However, the resources, which are the target of the interactions, are published us-
ing different data formats and non-aligned vocabularies built on heterogeneous
schemata. Thus, clients still have to face the entropy from the heterogeneous re-
source representations, which makes writing programs that integrate offers from
multiple providers a tedious task.

In a REST architecture, client and server are supposed to form a contract with
content negotiation, not only on the data format but implicitly also on the se-
mantics of the communicated data, i.e., an agreement on how the data have
to be interpreted [124]. Since the agreement on the semantics is only implicit,
programmers developing client applications have to manually gain a deep un-
derstanding of the provided data, often based on natural text descriptions. The
combination of REST resources originating from different providers suffers par-
ticularly from the necessary manual effort to use and combine them. The reliance
on natural language descriptions of APIs has led to mashup designs in which
programmers are forced to write glue code with little or no automation and to
manually consolidate and integrate the exchanged data.

As described in Chapter 3, Linked Data unifies a standardised interaction
model with the possibility to align vocabularies using RDF, RDFS and OWL.
Thus, Linked Data specifically mitigates the entropy caused by heterogeneous
resources. However, the interactions are currently constrained to simple data re-
trieval, rather than the active manipulation of resources as intended by REST.
Consequently, a combination of Linked Data and REST is mutually beneficial
for both approaches. Linked Data offers a uniform data model for REST with
self-descriptive resources that can be leveraged to avoid a manual ad-hoc devel-
opment of Web-based applications. Following the motivation to look beyond the
exposure of fixed datasets, the extension of Linked Data with REST technolo-
gies has been explored [10, 127] and led in particular to the establishment of the
Linked Data Platform (LDP)65 W3C working group. LDP devises a recommenda-
tion [101] with a set of rules regarding the use of HTTP for accessing, updating,
creating and deleting Linked Data resources, which are denoted with Read/Write
Linked Data. Several existing approaches recognise the value of combining REST
services and Linked Data [61, 102, 120, 105].

In this chapter we study synergies and discrepancies in the combination of
Linked Data and REST, based on our work in [108]. Specifically, we propose
Linked Data-Fu (LD-Fu), a data- and resource-driven programming approach for
the development of applications built on Semantic Web resources with a declar-
ative rule language. The lightweight rule language of LD-Fu is an extension of
linked programs introduced in Chapter 3.

The goal of our work is to reduce the tedious effort to develop applications in
a high-entropy environment such as the Web, by providing the means to spec-
ify application logic including the active change and creation of Web resources.
While preserving the possibility to realise applications with short response time,
such declarative specifications provide a modular way of composing the func-
tionality of multiple APIs and preserve loose coupling by

65http://www.w3.org/2012/ldp/charter

http://www.w3.org/2012/ldp/charter

4.1 introduction 95

• leveraging links between resources provided by Linked Data, and

• specifying desired interactions dependent on resource states, which is en-
abled by a uniform state description format, i.e., RDF,

• specifying the required reasoning constructs to align resources.

LD-Fu programs, can be evaluated with the same parallel push-based execu-
tion model as detailed in Chapter 3. Consequently, we retain similar performance
characteristics, that allow to realise applications with low runtime requirements,
also for Web applications that manipulate resources. While there has been recent
work on extending the Map/Reduce model for data-driven processing [54, 6],
these approaches are geared towards deployment in data centers. In contrast,
our approach operates on the networked open Web.

. Example 18

ACME aims at extending their social media activities to a broader range of
dissemination channels (for further information on multi-channel commu-
nication see [16]). Acme’s marketing department observes that while the
number of potential channels is constantly increasing, the channels can be
broadly categorised into micro blog services and social networks. Infor-
mation about upcoming events, special offers, and other news should be
disseminated in the following ways:

• Posts on the company’s micro blogs

• Messages to social network users who are followers of the company.

Both ways to disseminate ACME’s news require the creation and update
of resources on the Web. We assume that the dissemination channels offer
Linked APIs, i.e., resources are exposed that offer read/write Linked Data
functionality.

The marketing department orders a system from Acme’s IT that man-
ages the dissemination channels and automatically disseminates a post to
all available channels either as a micro blog entry or as a personal mes-
sage. Initially the micro blog service MB and the social network SNA have
to be supported. Marketing will supply their posts in an Acme-specific
vocabulary as so-called opInfoItems.

After a while, the marketing department decides to add the new social
network SNB as a dissemination channel, which requires two steps:

• The IT department extends the dissemination system to support the
interface of SNB; and

• The marketing department adds Acme’s identity in SNB to the dis-
semination channels.

Marketing wants to promote sales, where special offers for concert tick-
ets are created. The sales will be implemented by posting InfoItems with
the offer to the available dissemination channels.

4.1 introduction 96

Send Message to
Follower n
Timeline

Send Message to
Follower_2

Timeline

Retrieve
Communication

Channels

Create Micro Blog
Post

Retrieve
Followers Send Message to

Follower 1
Timeline

Resource
Provider

ACME

MB

SNA

Figure 19: UML Activity Diagram illustrating the dissemination of news.

Table 7: URI prefixes used for social networks and micro blog

Prefix IRI

sna: http://sna.example.org/lapi/

snb: http://snb.example.org/rest/

mb: http://mb.example.org/interface/

Throughout this chapter, we will illustrate technical contributions by
realising bits and pieces of the proposed scenario. When modeling services
and interactions, we will use a number of URI prefixes for the fictitous
microblog and social networks as listed in Table 7.

Figure 19 illustrates the activities related with the dissemination of news.

4.1.1 Challenges

We address the following challenges in the context of runtime requirements and
entropy (see Section 1.1.1):

• The use of Linked Data provides REST with a uniform way to represent re-
sources. However, both REST and Linked Data imply their own interaction
model. Although related, the interaction models exhibit differences, which
relate to the focus of both approaches on data provisioning and resource
manipulation respectively. E.g., Linked Data imposes a distinction between
a resource representing a real world object and the resource that is the doc-
ument describing the object (i.e., information resource) [29]. REST does not
know such a distinction and generally equates the object and the data de-
scribing it. Such differences have to be resolved in a way to leverage the
advantages of of both approaches.

http://sna.example.org/lapi/
http://snb.example.org/rest/
http://mb.example.org/interface/

4.1 introduction 97

• REST is a general software architecture. The specification of HTTP consti-
tutes the definition of the implementation of REST on the Web. To achieve
the desired effect of reducing the entropy of APIs and in turn the man-
ual effort for the creation of applications, we must define a rigorous for-
mal model for the interaction with Linked Data-based REST APIs. The
formal model is required, so that client applications can rely on a specific
behaviour of an API. Consequently the formal model has to be general
enough to cover many use-cases.

• A program defining application logic must combine facilities for dynamic
link traversal with the possibility to specify the kind of intended interac-
tion as well as the intended result of a resource manipulation. Specifically,
it has to be possible to describe how and under what conditions resources,
which are discovered at runtime, are supposed to be changed or deleted.
Furthermore, it has to be possible to describe under what condition re-
sources have to be created. The instructions for the manipulations, i.e., the
messages sent to resources, have to respect the vocabulary that is accepted
by a given API. The alignment of manipulation instructions with the rest of
the data processing can build upon predefined reasoning constructs. Spec-
ifications for manipulations have to be precise and fine-grained to prevent
an application from doing unnecessary work. However, it must also be pos-
sible to define manipulations that affect a large set of resources at once to
keep the program specification simple.

• The execution of intended resource manipulations has to be integrated
into the scheduling push-based execution model to achieve short runtimes.
However, the manipulation of Web resources can result in race conditions,
which are not inherently preventable in a REST architecture, especially if
manipulations are carried out in parallel. E.g., the effect of two operations
to overwrite the same resource with different data depends on the order in
which the operations are completed. Consequently, the effected result of a
program, i.e., the state of the Web resources after execution of a program
is not necessarily deterministically defined.

4.1.2 Contributions

Our contributions are as follows:

• We identify discrepancies and synergies between Linked Data and REST.
In particular, we describe how the differences can be resolved and how
both approaches can be combined to Linked APIs. Linked APIs overcome
drawbacks and realise advantageous of both approaches. The described
combination defines a general architecture for APIs that remains compati-
ble with the LDP recommendation. We further introduce methods to create
Linked APIs by wrapping existing REST APIs on the Web. (Section 4.2)

• We introduce a model for REST APIs based on state transition systems
as formal grounding for the manipulation of resources exposed in Linked
APIs. Specifically we define the combined representation of Web resources

4.2 combining linked data and rest 98

as states, which allows to interpret manipulation upon the resources as
transitions between states. Thus, requests to manipulate resources can be
interpreted to trigger transitions in a formal state transition model. (Sec-
tion 4.3)

• We extend our previous definition of rule-based programs to allow the
specification of resource manipulations. Specifically LD-Fu programs are a
superset of linked programs, which allow for rules that cause state transi-
tions in the described model for Linked APIs. The manipulated resources
as well as the messages to trigger state changes can be dynamically derived
from the processed data, i.e., from retrieved resources. Thus, our approach
allows for a definition of intended resource changes conditioned to the cur-
rent state of resources leveraging reasoning capabilities to align heteroge-
neous vocabularies. The evaluation of LD-Fu programs can be done with a
parallel push-based execution model, to achieve low runtime requirements
similar to linked programs. (Section 4.4)

• We characterise the potentially non-deterministic behaviour of LD-Fu pro-
grams and introduce strategies to avoid or mitigate undesired effects. (Sec-
tion 4.4.2) We detail the behaviour of the repeated evaluation of programs
with resource manipulations and show how an iterative execution can be
employed to achieve the goals of an application. (Section 4.4.3)

We describe experiments in Section 4.5, cover related work in Section 4.6, and
conclude the chapter with Section 4.7.

4.2 combining linked data and rest

Both Linked Data and REST are concerned with the provisioning of Web re-
sources as well as the interaction of clients with such resources. Both approaches
overlap with respect to certain aspects of the interaction, but also cover topics
that are not addressed in the respective other approach. A combination of Linked
Data and REST extends both approaches in the following way:

• Linked Data receives capabilities to manipulate Web resources beyond the
the consumption of data, i.e., resources can be changed rather than just
retrieved. With a focus on the aspect to allow for resource manipulation,
the combination is denoted as read/write Linked Data [101, 10]

• REST receives a uniform data-model for self-descriptive resources, such
that clients can interpret the resources according to Linked Data principles.
With a focus on the aspect to leverage the LD data model, the combination
is denoted as Linked API [107].

Both read/write Linked Data and Linked APIs can be used synonymously, as
they describe the same combined approach to resource interaction. In particular,
read/write Linked Data stresses the extension of Linked Data with capabilities of
REST, and Linked APIs stress the extension of REST with capabilities of Linked
Data. However, both extensions converge to the same approach.

4.2 combining linked data and rest 99

Linked Data and REST can be characterized with a set of principles [13, 94]
(see Sections 2.2 and 2.3). In the following we describe differences and synergies
of Linked Data and REST, thus characterizing how both approaches can be used
together.

4.2.1 URI-identified Resources

Linked Data is about the provision of information as resources identified by
URIs, which is encoded in the first Linked Data principle. In the same way REST
is concerned with uniquely identifiable resources.

Linked Data REST

Use URIs as names for
“things”.

Use URI-identified resources..

Linked Data specifically addresses Web resources, therefore the URIs are specifi-
cally defined to be built upon HTTP. REST is a general software architecture [29]
that not necessarily uses Web technologies, therefore the URIs can adhere to an
arbitrary protocol. However, the Web is the main application domain of REST.
At least in the context of the interaction with Web resources we can assume that
both approaches use HTTP URIs to identify resources.

However, the understanding of what a resource is differs slightly. While any-
thing can be identified by a URI, REST does not distinguish between the doc-
ument describing an entity and the entity itself, in the same way it is done in
Linked Data. In REST a lookup of a client on a URI that identifies a real world
object can directly return data about the object, while Linked Data implies that
the client is referred to the URI identifying the document containing the data.
The distinction between the information resource of an entity and the resource
representing the entity itself does not contradict the principles of REST, as the
documents can just be considered resources in the sense of REST. Information
resources add the possibility to make meta-statements about the data describing
entities. We assume that Linked APIs generally use Linked Data resources, i.e.,
resources that adhere to the Linked Data principles, including the distinction for
information resources.

4.2.2 Interaction Methods

The interaction with a Web resource is encoded in the second and third Linked
Data principles as lookups. In contrast REST just generally defines the use of
methods.

The idea behind REST is that applications use functionalities provided on the
Web via APIs that are not based on the call of API-specific operations or proce-
dures, but rather on the direct interaction with exposed resources. While Linked
Data only talks about the lookup of URIs, REST just implies a constrained set
of operations for interactions. Again, in the context of Web resources we assume

4.2 combining linked data and rest 100

Linked Data REST

Use HTTP URIs so that people
can lookup the names.

Use a constrained set of opera-
tions..

When someone looks up a URI,
provide information, using the
standards.

the HTTP methods M = {GET ,PUT ,POST ,DELETE}66 to be the operations in
a REST architecture. Thus, REST goes beyond the principles of Linked Data by
allowing for unsafe methods, which we adopt for the combination of both ap-
proaches. The restriction of the allowed operations helps in the reduction of
entropy, as the clients can rely on the predefined implications of a small set of
methods.

The representation of a resource (i.e., the data returned from a lookup) details
the current state of the resource, therefore the representation can dynamically
change. A manipulation of the state representation with REST sometimes implies
that the represented resource is manipulated accordingly.

The distinction between resources and their information resources of Linked
Data can help to clarify if a manipulation only refers to data change or has an ac-
tual real world effect. Specifically, if an entity represented by a resource r cannot
be changed by manipulating the data representation, a server can forbid requests
with unsafe methods to be directed at the resource. However, manipulating the
data representation can still be possible, e.g., for the purpose of complementing
information. A request can be directed directly at the information resource u

with r i−→ Tu.

. Example 19

The resource acme:order37 represents an ordering of tickets for a con-
cert. A user might overwrite this resource with a request to change the
amount of ordered tickets for the concert (PUT , acme:order37,Dreq). As a
response the server refers the client (303 SEE OTHER) to the information re-
source data:order567, which the client can change with his request. Con-
sequently the actual order (i.e., the real world object) has changed.

The resource sna:user84 represents a user of a social network SNA. If
an attempt is made to overwrite the resource (PUT , sna:user37,Dreq), the
server can deny the request (405 Method Not Allowed), as the user itself
cannot be changed.

66For brevity we focus on the non-safe methods, as well as GET as defined in RFC 7230. Other
HTTP methods can be added in a straight forward manner. See https://tools.ietf.org/html/

rfc7230; retrieved 2015-04-10.

https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc7230

4.2 combining linked data and rest 101

However, to manipulate the information resource sna:userProfile84

of the user with sna:user84
i−→ Tsna:userProfile84 to change a wrongly

entered birthday remains possible.

It has to be noted, that if a server relies on hashtags to differentiate infor-
mation resources, the server exhibits no direct control over the referral: Every
request to a resource is automatically referred to an information resource. Thus,
the approach as described in Example 19 cannot be employed to clarify, if the
application of an unsafe method actually influences the represented object.

Furthermore, a client executing a request on an information resource directly,
cannot in any case predict if the effect of the request extends to a real entity. In
fact, in the absence of other information, a client should always expect that an
information resource reflects the current state of an entity correctly, and conse-
quently that a manipulation of the information resource extends to the entity.

REST does not impose a specific data format or model for the representation
of a resource. In an interaction of an application with a resource, a contract has
to be established between client and server in a process called content negotia-
tion (conneg). This contract represents an agreement that the server provides the
representation of the resource in a format that is understood by the client. If
server and client cannot identify a common format, an interaction cannot take
place.

In different application scenarios REST assumes vendor specific content types
for the contract between client and server to convey the meaning of the com-
municated data. The idea behind vendor specific content types is, that service
providers can reuse content types and client applications can make use of spe-
cific content type processors for the individual content types. In practice how-
ever, we see that many REST APIs on the Web simply make use of standard non-
specific content types, e.g., text/xml or application/json [68]. Further, API providers
sometimes offer a programming library or a Software Development Kit (SDK) to
support the use of their exposed API in client applications (e.g., see the Facebook
API SDKs67). Such SDKs increase the coupling between client and API and re-
quire developers to write glue-code if an application is supposed to combine the
functionality of multiple providers. Also API SDKs are mostly only applicable
for the APIs of one provider, i.e., SDKs cannot be re-used for other APIs as it is
intended with content type processors.

In contrast, Linked Data imposes the use of a standard semantic representa-
tion format, i.e., RDF. Thus, clients can leverage Web-accessible schemata for the
interaction with Linked Data resources and in conjunction with reasoning capa-
bilities integrate resources from different providers. The interpretation of differ-
ent resources can be done in a uniform way. Therefore, if the employed schemata
are interlinked, the entropy with respect to the representation of resources refers
mostly on the translation of different RDF serialisation formats.

The effect of a request (m, r,Dreq) : m ∈ {PUT ,POST ,DELETE} with non-safe
method on the state of an addressed resource r can depend on the input data
Dreq. The communicated input data can be subject to requirements that need to
be described to allow an automated interaction, e.g., the input data can impose

67https://developers.facebook.com/docs/apis-and-sdks; retrieved 2015-04-10.

https://developers.facebook.com/docs/apis-and-sdks

4.2 combining linked data and rest 102

the use of a specific vocabulary. The dependency between communicated input
and the resulting state of resources also needs to be described. We cover such
description mechanisms in Chapter 5.

The state of a Linked Data resource is expressed with RDF, which is returned
in the response of a lookup. Therefore, it is sensible to serialise the input data
Dreq in RDF as well, i.e., data that is submitted to resources to manipulate their
state.

4.2.3 Hypermedia Links

Both Linked Data and REST agree on the use of links, however, their principles
have a different point of view.

Linked Data REST

Include links to other URIs in
the descriptions to allow people
to discover more “things”.

Apply hypermedia controls as
engine of application state.

Linked data mandates links between resources to allow for the discovery of
further relevant information. Where Linked Data is only concerned with the
retrieval of information, REST bases the manipulation of resources also on the
discovery of resources via links.

The flexibility of REST results from the idea that client applications do not have
to know about all necessary resources. The retrievable representations of some
known resources contain links to other resources, that the client can discover
during runtime. Clients can use such discovered resources not only to acquire
further information, but also to perform manipulations upon them.

Understanding the goal of an application not only to be the acquisition of
information by data processing, but also the modification of resources into an
intended state, the links reflect possible transitions of resource states towards
the goal of an application. Consequently, links between resources are referred to
as hypermedia controls. The point of view to interpret the links as the elements
driving an application towards its goal is called Hypermedia as the engine of
application state (HATEOAS) [29].

The development of applications in a REST framework is especially challeng-
ing, since the links between resources and the resource states can only be de-
termined during runtime, However, programmers have to specify their desired
interactions including intended changes at design time. To respect the link archi-
tecture allows client application to not rely on hard-coded manipulations, but
dynamically address resources as required. Specifically, a client can retrieve a
set of resources, and manipulate them as a consequence of their current state.
The reaction on state changes becomes especially important in a distributed pro-
gramming environment, since a client cannot ex ante predict the influence of
other clients on the resources, i.e., REST does not allow a client to make assump-
tions on resource states. The dynamic reaction to state changes of resources is in

4.2 combining linked data and rest 103

particular possible, because interactions with resources are stateless, i.e., requests
and responses are self contained and can be executed independently from a pri-
ori knowledge about the state of the addressed resource.

. Example 20

ACME’s IT creates the resource acme:acme representing the company ACME
itself. A lookup (GET , acme:acme, ∅) redirects to the information resource
data:acme, which in turn leads to a response (200,Dres) with the follow-
ing initial RDF graph Dres as payload:

acme:acme rdf:type p:Company .

The marketing department updates the acme:acme resource with the dis-
semination channels SNA and MB with a request (PUT , data:acme,Dreq)
with the following graph Dreq as input data:

acme:acme rdf:type p:Company .

acme:acme p:dissChannel sna:acmeID, mb:acme .

sna:acmeID rdf:type p:SocialNetworkID .

mb:acme rdf:type p:MicroBlogTimeline .

A subsequent lookup on acme:acme would result in exactly the descrip-
tion that marketing supplied with their PUT request.

A lookup (GET , sna:acmeID, ∅) on ACME’s identifier in the social net-
work SNA, would result in a description of ACME in SNA’s vocabulary,
including its fans:

sna:acmeID rdf:type sna:CommercialOrganisation .

sna:acmeID sna:founded "03/07/1984" .

sna:acmeID sna:fan sna:userA, sna:UserB,

The resources representing users in the SNA network provide function-
ality to send messages to the corresponding users. A POST can be em-
ployed to send a message to a user resource (e.g., to sna:userA). A request
(POST , sna:userA,Dreq) details the message to be sent, the sender, as well
as relevant links for the message in the payload Dreq:

[] rdf:type sna:Message ;

sna:sender acme:acme .

sioc:content "Upcoming concert of Metallica at ..." .

rdfs:seeAlso acme:concert123 .

Acme’s timeline mb:acme on the micro blogging service MB also sup-
ports the POST operation: Similarly a request (POST , mb:acme,Dreq) can
be used to create a new resource, which is a distinct entry in the timeline
containing a message and relevant links:

4.2 combining linked data and rest 104

[] rdf:type sioc:Post ;

sioc:content "Upcoming concert of Metallica at ..." .

rdfs:seeAlso acme:concert123 .

Applying a DELETE on a blog post, e.g., one that advertises an expired
sale, does not require input; its effect is inherently defined by the method:
the entry is erased.

ó Definition 13: Linked API

A Linked API is a set of Web resources R, such that
• every resource is identified with an HTTP URI, ∀r ∈ R : r ∈ U;
• every resource allows successful requests

– with RDF graphs as input and output payload, and
– with HTTP methods

either directly or the resource refers to an information resource of the
linked API that allows successful requests, i.e., ∀r ∈ R ∃m ∈ M :

,m)ג r,Dreq) = (2xx,Dres)∨ (m,u,Dreq)ג = (2xx,Dres) with r i−→ Tu,
u ∈ R, M = {GET ,PUT ,POST ,DELETE}, and Dreq, Dres are RDF
graphs; Also empty graphs are allowed as input and output payload
Dreq = ∅ or Dres = ∅.

• some resources contain links to other resources, ∃S ⊂ R such that
∀r ∈ S ∃u ∈ U : r

l−→ u.

4.2.4 Wrapping APIs

It should be noted that due to the Definition 13, every existing set of Linked Data
resources is a Linked API. The constrained that client applications can address
resources with requests using any HTTP methods, is the only aspect of the defi-
nition that goes beyond the Linked Data principles. However, we cannot enforce
that a resource is allowing methods that are different from GET . Indeed, if a
provider intends an API to just provide information to client applications, with-
out any interactivity, i.e., the data should not be changed, extended or deleted
by the client, the provider only needs to allow lookups.

However, there is a large amount of APIs on the Web that allow for dynamic
manipulations of resources. But only few of them adhere at the same time to
Linked Data principles, i.e., are Linked APIs68.

Existing REST APIs can be easily extended to be Linked APIs, thus allowing
clients for an easy integration of the functionality offered by various providers. A
provider can modify the existing conneg of an API to allow clients to request re-
sources represented in an RDF serialisation. Existing hypermedia controls in the
API become links between the Linked Data resources. However, for competitive
economic reasons a provider might not be interested to foster the composition
of APIs from other providers with their own APIs. Especially providing links to

68See http://lapis.planet-data.eu/, retrieved 2015-04-10, for a small catalogue of existing
Linked APIs.

http://lapis.planet-data.eu/

4.2 combining linked data and rest 105

external resources offered by other providers might be seen as problematic, as
the external resource cannot be directly controlled. A link to an external resource
potentially leads customers away from the provider.

APIs can also be extended to offer Linked Data functionality without interven-
tion of the original provider by a process called wrapping. Wrapping refers to
the concept of mapping elements of input and output messages of a service to
ontological concepts, thus enriching the messages with semantic constructs for
the interpretation by a client. The annotation of messages of operation-oriented
services is described in the W3C recommendation for Semantic annotations
for WSDL (SAWSDL) [59, 25]; an approach for the annotation of REST APIs is
Semantic annotations for REST (SA-REST) [64]. Here, we just discuss the general
concept and feasibility of wrapping REST-based APIs [61].

In particular, a wrapper is a software component that intervenes in the com-
munication between a client application and an API. In the case of linked APIs a
client sends and receives RDF graphs as payload of requests and responses via
the wrapper, which triggers a subsequent communication with the actual API.
Thus, the wrapper acts as mediator between client and API by exposing Linked
Data resources linked to other Web resources of the API in two ways:

lowering The client can formulate a request with an RDF graph Dreq as pay-
load to a resource of the wrapper. The wrapper translates the payload
according to a predefined mapping into a data model and format under-
stood by the actual API. The wrapper sends a request with the translated
payload to the API.

lifting The wrapper receives responses from the API and translates the pay-
load into and RDF graph Dres according to a predefined mapping. The
wrapper sends a response with the translated payload to the client.

. Example 21

ACME’s marketing recommends to include the small social network SNC
as a dissemination channel. However, SNC does not offer a Linked API,
but a REST API which allows the interaction with resources as JSON ob-
jects.

ACME’s IT creates an account on SNC. As ACME’s analysists do not
expect that SNC will offer a Linked API in the near future, ACME’s IT
develops and deploys a wrapper. The wrapper contains mappings from
JSON keys to RDF properties of ACME’s and other vocabularies as fol-
lows:

JSON key RDF property

"founded" p:founded

"fans" p:fan

"from" p:sender

"message" sioc:content

"link" rdfs:seeAlso

4.2 combining linked data and rest 106

SNC:userAacme:sncUserA

C
lie

n
t

A
p

p
lic

at
io

n

{ „from": "acme:acme",
"message": "Upcoming concert...",
"links": "acme:concert12"}

{ "founded": "3/7/1984", "fans": [
"snc:userA", "snc:userB"]}

acme:sncAcmeID p:founded "3/7/1984" .
acme:sncAcmeID p:fan acme:sncUserA,

acme:sncUserB, … .

acme:sncAcmeID snc:acmeID

[] p:sender acme:acme ;
sioc:sontent "Upcoming concert...„ ;
rdfs:seeAlso acme:concert12 .

Request

Request

Request

Request

Response

Response

Response

Response

200 OK

201 CREATED201 CREATED

200 OK

GET

POSTPOST

GET

Wrapper SNC API

Payload

Figure 20: Illustration of a wrapper mediating between a client application and a social
network API.

The wrapper exposes Linked Data resources corresponding to the re-
sources of SNC’s API. Clients can interact with the resources of the wrap-
per, which uses the mappings to consruct JSON objects from RDF graphs
and vice versa for underlying interactions with SNC’s API. Figure 20

shows a lookup on ACME’s account and the submission of a message
to a user on SNC via the wrapper.

Multiple resources from various providers that do not offer Linked APIs can be
combined via wrappers leveraging schemata and reasoning as e.g., described in
Chapter 3. Thus, wrappers provide a homogeneous interface for heterogeneous
data sources. For an approach to combine various data sources in a wrapper-
mediator architecture see [126].

Even though several wrappers could use mappings to the same vocabularies,
the wrappers have to be considered specific for individual APIs not for an ap-
plication; the integration can be done by the client application. Combining APIs
via wrappers is scalable, as only one wrapper needs to be provided for a data
source, rather than having a mediator for every pair of sources to be combined.
In particular, while a wrapper can be an integral part of the application using
an API, the wrapper can also be independently deployed to be accessible on
the Web69. Thus, further improving the scalability of the employment of wrap-
pers, as multiple applications can make use of the same wrapper to integrate the
functionality of the underlying API.

It is noteworthy that the effort to create wrappers for an APIs, can be expected
to be similar to directly integrating the APIs in an application by writing custom
glue code, because all elements of messages to and from the resources of the
API need to be mapped. Furthermore, sometimes elements can not be directly

69The tunneling of functionality via a wrapper to an arbitrary set of users and clients can be in
conflict with the terms and conditions of the original provider.

4.3 linked api interaction model 107

mapped and require additional transformations, e.g., the serialisation format
of a date must be changed to adhere to the ontology standard. However, as a
wrapper needs only to be created once, the wrapper subsequently reduces the
effort to integrate the corresponding API in other applications, potentially also
by third parties.

Additionally, the process to create a wrapper can be automated to a large ex-
tent. Only the concrete association of message elements to ontological concepts
requires manual intervention, as it adds additional information to the wrapper.
This additional information reduces the entropy for the interaction with the API
to effectively enable clients applications to leverage the schemata for the align-
ment with other resources. There are data integration tools available that support
users in the mapping process by providing graphical interfaces, learning mech-
anisms and an automated export of transformation rules derived from the map-
pings [47, 116]. An example of such a tool is Karma70. Experiments have shown
that Karma can be directly deployed on the Web, where it can make example
calls to an API that is to be wrapped. Users can provide the mappings for the
example calls and immediately deploy a Web-accessible wrapper, thus cutting
the time required to create a wrapper down by orders of magnitude compared
to a manual wrapper implementation for Linked APIs [52].

4.3 linked api interaction model

A Linked API can be identified with the resources it exposes. An interaction
within a REST architecture is based on the manipulation of the states of these
exposed resources. While we often denote a set of resources offered by the same
provider as a specific Linked API, there are no constraints on the origin of the re-
sources. Intuitively, a client can interact with a set of resources, which are offered
from a variety of providers in the same way as it would with resources from a
single providers. Indeed, due to the homogeneous interface a client might not
even be able to distinguish between resources from different providers, except
for the different top level domains of the URIs identifying the resources.

To allow client applications to dynamically perform interactions, the client has
to be able to rely on a uniform and defined behaviour of the resources. We de-
velop a model, that allows to formalise the functionalities exposed by a Linked
API. A formal service model serves as rigorous specification of how the use of in-
dividual HTTP methods influences resource states and how these state changes
are conveyed to interacting clients. We derive the model from the RFC specifica-
tion for HTTP71 based on the requests and responses to Linked Data resources.
The specification allows for several optional features and allows APIs a certain
variety in the implementation, resulting in increased entropy. Additionally in
a real setting on the Web, providers might not completely adhere to the speci-
fication. Consequently, we focus on what we consider the bare minimum of a
convention on the behaviour of Linked APIs, which client applications have to

70http://www.isi.edu/integration/karma/; retrieved 2015-04-10.
71https://tools.ietf.org/html/rfc7230; retrieved 2015-04-10.

http://www.isi.edu/integration/karma/
https://tools.ietf.org/html/rfc7230

4.3 linked api interaction model 108

rely on72. Client applications that interact with resources that offer more features
as covered by our model, can choose to ignore these features. E.g., if a response
contains information in the payload, where our model defines responses with an
empty payload, the client can just discard the retrieved information.

We define the interaction model of Linked APIs as a Linked Data State Transi-
tion System (LDSTS) similar to a state machine as defined by Lee and Varaiya [65]
and to Mealy machines [72], where a state transition is dependent on the pre-
vious state and an input alphabet. The behavior of the clients themselves is not
in the scope of this model, it rather formalises all possible interaction paths of a
client with a set of resources.

ó Definition 14: Linked Data State Transition System

A LDSTS is defined as a 5-tuple
LDSTS = (R,Σ, I,O, δ) with:

• A set of URI-identified resources R = {r1, r2, ...}.

• A set of states Σ = {σ1, ...,σm}. Each state σk ∈ Σ of the LDSTS is
defined as the union of the states of all resources: σk =

⋃
ri∈R r

k
i . The

state of a single resource ri ∈ R in a state σk is given by its RDF
representation, i.e., a graph rki ⊂ G, where G is the set of all possible
RDF triples.

• An input alphabet I = {(m, r,Dreq) : M× R× 2G}, which is the set of
possible requests, where
M = {GET, DELETE, PUT, POST} is the set of the supported HTTP
methodsa and Dreq ∈ 2G an RDF graph as input payload.

• An output alphabet O = {(c,Dres) : C × 2G}, which is the set of
possible responses, where C is the set of all HTTP status codes and
Dres ∈ 2G an RDF graph as output payload..

• An update function δ : Σ× I→ Σ×O that returns for a given state and
input the resulting state and the output. We decompose δ into a state
change function δs : Σ× I → Σ and an output function δo : Σ× I →
O, such that δ(σ, i) = (δs(σ, i), δo(σ, i)). We define the state change
function as

δs(σk, (m, ri,Dreq)) =


σk, if m = GET

σk \ {r
k
i }, if m = DELETE

(σk \ {r
k
i })∪D

req, if m = PUT

postsi (σk,Dreq), if m = POST,

72An API adhering to the RFC7239 et seq. and the LDP is compatible with our interaction
model, such that a client relying on our interaction model can interact with the API.

4.3 linked api interaction model 109

where the function posti encapsulates the resource specific behaviour
of a POST request. We define the output function as

δo(σk, (m, ri,Dreq)) =


(2xx , rki), if m = GET

(2xx , ∅), if m = DELETE

(2xx , ∅), if m = PUT

(2xx , postoi (σk,Dreq), if m = POST

aFor brevity we focus here on the four most important methods, i.e., unsafe operations
and GET.

For brevity we assume all resources to be information resources. The model
can, however, be trivially expanded to general Linked Data resources, where for
every request on a resource (m, r,Dreq), the response refers to the corresponding

information resource u with r i−→ Tu. Furthermore, we only describe successful
requests and omit requests that result in responses with error codes 4xx or 5xx.
Again, the model can be trivially expanded for unsuccessful requests, as they do
not result in a state change.

Resources do not necessarily allow the use of all HTTP methods. Note that
all state change functions are defined for every resource, i.e., every resource can
be addressed with all methods: If a resource does not allow for the application
of a specific method, the response contains an error code and the state change
function describes a self-transition.

A client interacting with a Linked API modeled by an LDSTS = {R,Σ, I,O, δ}
creates an input i = (m, ri,Dreq) (i.e., a request) for LDSTS by invoking the
HTTP method m on the resource ri and passing the potentially empty RDF
graph g in the request body. Depending on the current state σk the following
happens:

1. A transition into the state δs(σk, (m, ri,Dreq)).

2. The client gets an HTTP response with the HTTP code c and the RDF graph
Dres in the body, where (c,Dres) = δo(σk, (m, ri,Dreq)).

Safe methods (i.e., GET) that do not change any resource states, describe self-
transitions, i.e., transitions that start and end in the same state. The output func-
tion for a GET returns the current state of the addressed resource rki as RDF
graph, which is a part of the current state as rki ⊂ σk.

Unsafe methods (i.e., PUT, POST, and DELETE) potentially cause a state tran-
sition. The state change resulting from a DELETE is always that the addressed
resource does not longer exist in the next state. A PUT results in adding the pay-
load Dreq to the next state as resource ri; if ri already existed in the current state
it is removed. The precise state change effect of a POST depends on the resource
ri it is applied to and is defined by a function postsi : Σ× 2G → Σ. Following to
the RFC specification a POST allows various effects:

• The creation of a new resource defined by the payload Dreq with URI
chosen by the server.

4.4 the linked data-fu language 110

• The extension of the addressed resource ri with the triples in Dreq, similar
to appending data to a file.

• The submission of the the payload Dreq to a data-handling process. Such a
data handling process can have no effect on existing resources, create new
resources or modify resources and is therefore similar to a general remote
procedure call (RPC)73.

The output function for the unsafe methods PUT and DELETE generally only
considers an empty payload with a status code. The output for a POST request
depends on the various effects a POST request can have. Thus, output for a POST
request is also defined by a function postoi : Σ× 2G → G, which might detail
the effected state change or provide the output of the data-handling process
triggered by the POST request.

We do not require an application to react on the payload in the response to an
unsafe method, as the application can apply GET requests to retrieve the state of
resources (see Section 4.4.3).

It is noteworthy that all unsafe methods can have cascaded effects, i.e., re-
sources might be changed that are not specified as target ri in the request. E.g.,
creating a resource with PUT might create a link in a collection resource. For
unsafe methods such cascaded effects are not in the scope of the model. A client
application can only rely on a change of the addressed resource. However, the
precisely effected change is only defined for the idempotent methods (i.e., PUT
and DELETE). For the remainder of this chapter we do not consider cascading
effects explicitly. However, a client application cannot distinguish anyway be-
tween a resource that changed on its own, due to interaction of another client, or
a cascading effect of a request executed by the application itself. Thus, we cover
cascading effects insofar we consider Web resource to change dynamically.

The defined model serves as formal grounding of the execution language de-
scribed in Section 4.4.

. Example 22

Figure 21 illustrates a state transition in an LDSTS, where an entry is cre-
ated on ACME’s time line on MB. State σ1 contains the RDF graphs of the
the time line and messages on MB.

After executing a request (POST , mb:acme,Dreq), where the payload
Dreq defines a new entry, the state transitions into σ2. In σ2 the new
message exists.

4.4 the linked data-fu language

In this section, we describe how linked programs (see Definition 11) can be ex-
tended to allow for the manipulation of resources. Specifically, we introduce
Linked Data-Fu (LD-Fu)74, as execution language to instantiate a concrete interac-

73https://www.ietf.org/rfc/rfc1057.txt; retrieved 2015-4-10.
74We use the name Linked Data-Fu in adaption of the term google-fu, which adopts the suffix

Fu from Kung Fu, implying great skill or mastery. Thus Data-Fu hints at the mastery of data
interaction that can be achieved with the language.

https://www.ietf.org/rfc/rfc1057.txt

4.4 the linked data-fu language 111

Figure 21: State transition of a LDSTS, with excerpts of two states.

tion between a client and resources, which preserves the adaptability, robustness
and flexibility of REST.

In a resource-driven environment, applications retrieve and manipulate re-
sources exposed on the Web. The manipulation has to be dynamic in two as-
pects:

• The resources that are to be changed might not be known before runtime,
i.e., the resources have to be discovered via link traversal.

• Manipulations might be conditioned on specific circumstances under which
they are to be executed.

Both, links and the current circumstances are reflected in the current state of an
LDSTS. A linked program retrieves resources as specified (request rules) and ma-
terialises implicit information (deduction rules) from the retrieved resources in-
cluding a combination with local information (initial graph and requests). Thus,
a linked program acquires a snapshot impression of the current state of the LD-
STS, which is constituted by the resources RP that are retrieved by the program.
This snapshot includes initial resources as well as resources retrieved via request
rules. Further let LDSTSP = (RP,ΣP, I,O, δ) be the LDSTS that is constituted by
the resources retrieved by a linked program P.

The result graph GP of a linked program P represents the entirety of infor-
mation available to an application about the current state σ from the execution
of P. Assuming that the resources RP are fixed and stable in the current state
σ ∈ ΣP of LDSTSP, it holds true that σ ⊆ GP. As per definition every resource
of LDSTSP is retrieved by the the linked program P, the graph representation of
every resource in the current state is included in the result graph GP. We denote
GσP as the result graph of linked program P executed at state σ.

However, since resources can potentially change on their own or can be ac-
cessed and changed by other clients, the result graph of a linked program might
not accurately represent a distinct state of an LDSTS. Specifically, resources can
change while the linked program is still running, thus the result graph might con-
tain information from different states of LDSTSP. Furthermore, resources might
change after a linked program reaches its fixpoint, thus the state reflected in the
result graph is outdated. Ultimately, in a dynamic Web environment it cannot be
avoided that an application built upon remote resources bases its decisions on
only approximate information.

4.4 the linked data-fu language 112

We enable applications to man ipulate resources based on their available in-
formation about the current state of the resources, i.e., the application reacts
dynamically on the state of the resources as derived by a linked program. Conse-
quently, there is a dependency between the state transitions in an LDSTS invoked
by an application and the current resource states. The dependency between the
invoked state transitions (i.e., applied HTTP methods) and the states of resources
is that

1. links to the resources that are to be manipulated are derived from the result
graph reflecting the current state of resources,

2. input data for the transition is derived from the result graph reflecting the
current state of resources, and/or

3. the transition is only invoked, if the result graph shows that resources are
in a specified state.

. Example 23

ACME might want to create entries about upcoming concerts in the time
line of social network accounts of users that follow ACME. However, ACME
marketing suggests that concert information is only posted to users that
live in the same town, where a concert takes place.

The links to the time lines of followers of ACME can be found in the
resource sna:acme representing ACME on the social network (1). Infor-
mation about the concerts that is used to create the time line entries, are
derived from the resources provided by ACME itself (2). New entries (i.e.,
resources) are created by sending concert information to the time lines by
POST, if a user account specifies that a user lives in the town a concert
takes place (3).

We use transition rules to encode resource manipulations (i.e., transitions in an
LDSTS) derived from an RDF graph.

ó Definition 15: Transition Rule

A transition rule ρt : {B} =⇒ {(m, x,H)} consists of
• a BGP B as rule body
• a tuple as rule head containing

– a method m ∈ {PUT ,POST ,DELETE}
– a variable or URI x ∈ V∪U
– a potentially empty BGP H

If x is a variable x ∈ V, then it has to appear in the rule body x ∈ VB. Every
variable in the head H has also to be part of body B, i.e., VH ⊂ VB.
The execution of a transition rule ρt : {B} =⇒ {(m, x,H)} over a graph G
derives a set of requests Reqρt , where for every result binding of BGP B

from graph G a request is constructed such that the addressed resource is
either the given URI or the binding µ(x). The payload of the request is the

4.4 the linked data-fu language 113

graph resulting from the substitution of all elements e ∈ (E)H in BGP H

according to a pattern instance matching Pιµ(e) for a random and unique
RDF instance mapping ι for every request.

∀µ ∈ ΩG(B) :

{
(m, x,Pιµ(EH)) ∈ Reqρt if x ∈ U

(m,µ(x),Pιµ(EH)) ∈ Reqρt if x ∈ V

We denote ft as the function that maps a transition rule and a graph to the
set of derived requests resulting from the execution of the transition rule:

ft(ρt,G) = Reqρt

Intuitively, a transition rule describes how from a given graph requests should
be constructed. Result bindings for the BGP in the rule body are used to substi-
tute variables in the rule head to identify the target resource and payload of a
request. Consequently, the head of a rule corresponds to an update function of
an LDSTS in that it describes an HTTP method that is to be applied to a resource.
Thus, a transition rule allows to dynamically infer desired resource changes de-
rived from a given graph.

If no result bindings for the BGP in the rule body are found, no request can
be constructed. Therefore, the rule bodies allow to express an intention under
which condition an unsafe method is to be applied to a resource.

We want applications to derive their manipulations dynamically from the
available information about the current state of resources they interact with.
Therefore we extend linked programs to LD-Fu programs:

ó Definition 16: Linked Data-Fu Program

A Linked Data-Fu program PFu = (G,R,Pd,Pr,Pt) is a tuple with
• G a finite set of initial triples, i.e., the starting graph,
• R a finite set of initial resources,
• Pd a finite set of deduction rules,
• Pr a finite set of request rules,
• Pt a finite set of transition rules,

where G 6= ∅∨ R 6= ∅, i.e., there has to be at least one triple in the starting
graph or one initial resource specified.
The execution of a Linked Data-Fu program implies in a first step that a re-
sult graph GP is calculated equivalently to a linked program, i.e., the initial
resources are retrieved and the returned triples are added to the starting
graph G. The rules Pd and Pr are recursively executed over G until the
fixpoint is reached.
In a second step after the fixpoint is reached, all transition rules are executed
over the result graph GP, which results in a set of derived requests ReqP to
manipulate resources:

ReqP =
⋃
ρt∈Pt

ft(ρt,GP)

4.4 the linked data-fu language 114

The order in which the request rules are evaluated does not affect ReqP,
as manipulating requests do not modify the result graph. Specifically, re-
sponses to unsafe methods are considered to contain an empty payload (see
Definition 14)a.

aFor simplicity we assume POST requests to have empty response payloads. However,
the response of POST requests could be included in the initial graph of a subsequent execu-
tion of a LD-Fu program (see Section 4.4.3)

LD-Fu programs enable programmers to define their desired state transitions
in a declarative rule-based execution language. The transition rules specify the
interaction of a client application with REST-based Linked Data resources and
congruously a path through the LDSTS. Further, LD-Fu programs allow to spec-
ify the conditions under which a specific transition is to be invoked as subject to
the states of resources.

Concretely, LD-Fu programs establish the relation between the available infor-
mation on the current state of resources and the decision on effected changes by
leveraging the result graph GP. Specifically, the BGP B in the body of a transition
rule is used to dynamically

1. identify the resource to which an HTTP method has to be applied, i.e.,
leveraging hypermedia controls, as found in GP,

2. derive input data from GP,

3. determine if the conditions under which a transition is to be invoked hold
true according to GP.

Regarding 1: Instead of specifying the addressed resource r of a request rule
explicitly as URI, a variable x can be used. For every solution binding µ of B from
GP, a resource to address is identified by µ(x). Thus, LD-Fu programs preserve
the flexibility implied by REST, as an application does not require the URIs of the
resources to change a priori, but can discover them via link traversal. However,
we retain the possibility to directly specify a URI.

Regarding 2: Instead of specifying the input payload Dreq of a request explic-
itly as RDF graph, a graph pattern H can be used. For every solution binding µ
of B from GP, a payload is constructed by substituting every variable in H ac-
cording to the mapping µ. Thus, LD-Fu programs can dynamically derive input
payload to identify different manipulating requests, depending on the available
information GP about the current state of resources. However, per Definition 5

an RDF graph is also a valid BGP, thus the input payload can also be directly
specified, where no substitution has to take place in H.

Regarding 3: Instead of defining the manipulations in a fixed manner (i.e., to
be executed in any case), the BGP B establishes a condition which has to hold
with respect to GP for requests to be derived. As requests are only derived for
every solution binding µ of B from GP, no requests are derived if no solution
binding can be found. Not every variable VB in the BGP of the rule body has
to be used in the rule head, thus arbitrary conditions over GP can be defined,
that are not related to the identification of the resources to address and the
construction of the input payload. However, as every variable in the rule head

4.4 the linked data-fu language 115

has to appear in the rule body B at least enough information has to be present
to derive the URI of the target resource and the payload for a request.

Apart from the transition rules is the expressive power with regard to data
processing of LD-Fu programs similar to Datalog [18].

The approach to establish a local graph that represents the available informa-
tion on which an application can base its decisions is motivated by the idea that
clients have to maintain a knowledge space, in which they store their knowledge
about the states of the resources they interact with [61, 99]. Here, the knowledge
space is equivalent to the monotonically growing result graph GP, which is filled
with the RDF data the client receives after retrieving a resource, as defined by
the output function of LDSTSP.

Additionally many parallels can be identified of LD-Fu programs and the
Believe Desire Intention (BDI) software model for intelligent agents as outlined
by Rao and Georgeff [92]. Rao describes the BDI model as suited systems acting
in environments characterised as follows: The system can have different objec-
tives to accomplish. The environment can at any point in time evolve in many
different ways and allows systems to perform many different actions, which
achieve the objectives depended on the state of the environment. Further the sys-
tem might not be capable of fully determining the state of the environment. The
rate at which the system can carry out computations and actions is within the
bounds of the rate at which the environment changes75. The described system–
environment architecture strongly resembles the scenario of applications inter-
acting with Web resources, with which we are concerned.

According to Rao, systems adhering to the BDI model have to acquire informa-
tion about the current state of the environment by performing a series of sensing
actions. Such information is called belief, and is congruent to the result graph GP

established by a LD-Fu program with a series of lookups (i.e., sensing actions).
Further, the system requires information about goals to accomplish, called desire.
From these goals, together with the information about the current state of he
environment, the system can derive the actions to be performed to accomplish
the objectives of the system. Such actions are interpreted as choices in a decision
tree. LD-Fu programs do not strictly contain goals to achieve, but the transition
rules encode in a declarative manner what resource states are desired subject to
conditions of the current state of resources. LD-Fu derives requests (i.e., actions)
from the acquired current state to achieve the desired resource states.. Thus, the
transition rules determine the behaviour of the application similar to the goals
in the BDI model. Hence, the described decision tree is akin to the tree of all pos-
sible paths through an LDSTS76, where every request is a decision to transition
into a new state.

The abstract architecture of a BDI interpreter, as outlined by Rao, implies that
a system should derive a set of options for intended actions from which a subset
has to be chosen. We cover the choice which of the derived requests of a LD-Fu

75When Interacting with Web resources the rate at with resources change, might exceed the rate
at which an application can carry out requests. However, both rates can vary a lot and depend on
the Web resources and the hardware on which a client application is executed.

76In the decision tree described by Rao the nodes represent decisions, in contrast in an LDSTS
the nodes are states and the edges represent the decisions on how to change the state.

4.4 the linked data-fu language 116

program are actually carried out in Section 4.4.2 in the context of the potentially
non-deterministic behaviour of LD-Fu programs. Further, the algorithm of an
BDI interpreter implies that a system carries out multiple rounds of acquiring
information about the current state and deriving intentions. We describe the
repeated execution of a LD-Fu program in Section 4.4.3.

Like deduction and request rules, we serialise transition rules with N3 syntax,
leveraging W3C vocabularies to describe HTTP messages and methods. In par-
ticular we define the BGP H in a rule head of a transition rule as nested triples
that represent the object of the property http:body. Examples of transition rules
are the rules (2), (4), and (5) in Listing 10.

Listing 10: Rules of an LD-Fu program constituting an information dissemination sys-
tem.

1 # (1) Request rule to retrieve resource representing ACME

2 { ?x rdf:type p:InfoItem . } => { [] http:mthd httpm:GET;

3 http:requestURI acme:acme .} .

4

5 # (2) Transition rule to create new blog posts

6 { ?x rdf:type p:InfoItem .

7 ?x p:content ?c .

8 acme:acme p:dissChannel ?mb .

9 ?mb rdf:type p:MicroBlogTimeline . }

10 => { [] http:mthd httpm:POST;

11 http:requestURI ?mb ;

12 http:body { [] rdf:type mb:Message ;

13 sioc:content ?c . } } .

14

15 # (3) Request rule to retrieve social network account of ACME

16 { ?sid rdf:type p:SocialNetworkId . } => { [] http:mthd httpm:GET;

17 http:requestURI ?sid .} .

18

19 # (4) Transition rule to send message to every found follower on SNA

20 { sna:acme sna:hasFan ?fan .

21 ?x rdf:type p:InfoItem .

22 ?x p:content ?c . }

23 => { [] http:mthd httpm:POST;

24 http:requestURI ?fan ;

25 http:body { [] rdf:type sna:Message ;

26 sioc:content ?c . } } .

27

28 # (5) Transition rule to send message to every found follower on SNB

29 { snb:acme snb:followedBy ?fo .

30 ?x rdf:type p:InfoItem .

31 ?x p:content ?c . }

32 => { [] http:mthd httpm:POST;

33 http:requestURI ?fo ;

34 http:body { [] rdf:type snb:PrivateMsg ;

35 snb:text ?c . } } .

4.4 the linked data-fu language 117

. Example 24

The IT department of Acme creates the dissemination system with four
rules as shown in Listing 10 rules (1)–(4). The marketing department has
simply to create new InfoItems and add them to the initial graph G of the
program. The system automatically distributes the information over the
dissemination channels of Acme. The rules are defined as follows:

1. Whenever an InfoItems is found, retrieve the resource acme:acme to
get an up-to-date list of the current dissemination channels.

2. If a p:MicroBlogTimeline is found (from the retrieved dissemination
channels), post a new entry to the time line using the content from
the InfoItems.

3. If a social network ID of Acme is found (from the retrieved dissemi-
nation channels), retrieve the representation of Acme from the social
network to get a list of Acme’s followers.

4. Post to every found follower of Acme on SNA a message with the
content of the InfoItems.

The described rules disseminate new information items automatically to
social network SNA and the micro blog MB.

IT deploys the dissemination system so that marketing can input new
InfoItems, i.e., defining the initial graph G, and run the LD-Fu program.
The LD-Fu program will retrieve acme:acme to get all dissemination chan-
nels with rule (1). For every found social network account, information of
ACME are retrieved with rule (3) to acquire a list of followers on the social
network. After all resources are retrieved the fixpoint of the program is
reached and a result graph with all relevant information is established.

With the transition rules (2) and (4) new posts on the micro blog and
entries in the time lines of followers are created, derived from the result
graph of the program.

Other dissemination channels can easily be added to the system, simply
by adding corresponding rules in the system. For example, we consider
that IT adds support for social network SNB by adding transition rule (5)
that uses SNB’s vocabulary for retrieving followers and sending a mes-
sagea.

The new dissemination channel is active when marketing overwrites
(PUT) acme:acme to include ACME’s identifier in SNB as dissemination
channel, typed as p:SocialNetworkId.

aThe vocabulary and structure of messages accepted as request payload can be derived
from descriptions as covered in Chapter 5

4.4 the linked data-fu language 118

4.4.1 Program Execution

For the execution of a LD-Fu program we can extend the system described in Sec-
tion 3.3. The BGPs of transition rule bodies are included in the operator plan in
a straight forward manner. In particular the TriplePattern and EquiJoin operators
become subject to the overall optimisations to remove duplicate operators.

To include the head of transition rules we extend the Request operator to also
be used for transition rules. Request operators can still construct lookups, which
are immediately and in parallel executed once a result binding is found. Addi-
tionally, in the case of a transition rule, Request operators construct requests with
the specified HTTP method and the payload by substituting the variable in the
BGP of the rule head.

The lookup component is extended to be able to execute all kinds of requests
(i.e., it becomes a request component). The identified requests resulting from
transition rules are passed to the request component, where the requests are
stored until the program has reached its fixpoint. After the result graph is de-
termined and all manipulating requests are derived, these requests are executed
in parallel by the RequestWorker threads. Under some circumstances the manip-
ulating requests can also be executed in parallel with the CPU-bound tasks of
the TripleWorker threads and the lookups, i.e., before the fixpoint is reached (see
Section 4.4.2).

The request component is able to send messages as input payload of manip-
ulating requests and receive data from lookups in various RDF serialisations.
The RDF graphs in different serialisations are mapped to and derived from the
internally used Java object model for triples and bindings of our system. Thus,
the system is capable of interacting with Linked APIs independently from the
employed RDF serialisation of the API. The transformation of serialisations is
similar to the functionality that could be provided by a wrapper for the API
(see Section 4.2.4). However, the transformation does not include an additional
mapping to a vocabulary or ontology, as the vocabulary used in the original
RDF serialisation of the API is preserved. Thus, the transformation can be done
completely automated without any additional manual intervention.

An LD-Fu program terminates when the result graph is constructed (i.e., a
fixpoint is reached) and the derived manipulations are executed (or a subset of
the derived manipulations, cf. Section 4.4.2). The determination of the fixpoint
in an LD-Fu program is equivalent to the determination of a fixpoint in a linked
program, i.e., request and deduction rules are applied recursively until no new
triples can be derived and no further requests are identified to lookup. Thus,
given that the set of retrieved resources RP is finite, an execution of a LD-Fu pro-
gram is guaranteed to reach a fixpoint with a finite result graph (see Section 3.2).
As the result graph is finite, the set of requests derived via transition rules from
the result graph is also finite. The transition rules are not executed recursively,
i.e., the payload of responses to manipulating requests are not processed by the
operator plan. In particular, an LDSTS assumes that such responses have an
empty payload. Consequently, the termination of a single execution of a LD-Fu
program is also guaranteed, if RP is finite.

4.4 the linked data-fu language 119

Figure 22: Dataflow of ACME’s dissemination system

The overall architecture establishes a data flow similar to a Rete algorithm,
where the TriplePattern operators form the alpha network and the rest of the
operator plan establishes the beta network. The triples and tuples of binding
results are working memory elements in the data flow system and are processed
in a streaming fashion.

. Example 25

Figure 22 illustrates the data flow of ACME’s dissemination system as it is
established by the rules in Listing 10. Due to the optimisations of the op-
erator plan the join on ?x is re-used, i.e., has multiple outgoing edges. The
data stream receives data from the initial graph G and the request com-
ponent after executing lookups. The data stream is in the operator plan
buffered by the TripleQueue. The initial graph contains InfoItems, which
trigger the retrieval of acme:acme containing links to the dissemination
channels. The social networks fire a rule, which retrieves the social net-
work id’s of ACME and thus retrieve the corresponding followers. Both,
social network followers and micro blog time lines trigger the correspond-
ing POST transaction rules that sent the information in the appropriate
vocabulary to the dissemination channels, i.e., as micro blog posts or per-
sonal messages to the followers.

4.4 the linked data-fu language 120

4.4.2 Non-Deterministic Behaviour

The final effect of an execution of a LD-Fu program on the remote resources is
not necessarily deterministically defined, i.e., the final state of the LDSTSP after
executing a LD-Fu program cannot a priori be predicted even if we assume that
resource do not change on their own or are changed by other applications. Such
a non-deterministic behaviour is described in Example 26.

. Example 26

Marketing proposes to implement more intricate strategies to maintain al-
ready created entries on the time lines of followers of ACME on social
networks. In particular, a user can opt-out to receive information from
ACME on social networks. If a user opts-out a resource is created repre-
senting the users opt-out statement and all entries of ACME on the user’s
time line should be deleted. Further, if a user buys a ticket for a concert,
the entry on the user’s time line informing about this concert should be
extended to include a "thank you" message. Consequently IT extends the
dissemination channel with the following transition rules:

1. If a resource is found containing a user’s opt-out message, all entries
are to be removed via a DELETE request.

2. If a resource is found containing the order of tickets for a concert by
a user, the corresponding entry on the user’s time line is overwritten
via a PUT request.

However, if a user buys a ticket for a concert and also uses the occasion to
opt-out of receiving entries on his time line, both rules derive two conflict-
ing requests for the entry about the concert. On the one hand, the entry
should be deleted. On the other hand it also should be overwritten. Espe-
cially because a PUT also creates a resource, if it does not exist (or was
deleted), it remains undetermined if the user has an extended entry or no
entry after the next execution of the dissemination system.

To analyse the non-determinism of a given LD-Fu program we adopt the no-
tion of conflict sets from the domain of production rule systems [91]. Every con-
flict set of an LD-Fu program contains the derived manipulating requests from
the result graph GP that represent conflicting changes on a resource. To describe
sets of requests we first must define the equivalence of requests, as a set cannot
contain two equivalent requests:

ó Definition 17: Request Conflict Set

Two requests (m1, r1,Dreq1) and (m2, r2,Dreq2) are equivalent, iff
• the methods are equivalent, m1 = m2,

• both target resources refer to the same information resource, r1
i−→ Tu,

and r2
i−→ Tu

• an RDF instance mapping exists, such that both payloads contain the
same triples, ∀〈s,p,o〉 ∈ Dreq1 ∃ι : 〈ι(s), ι(o), ι(o)〉 ∈ Dreq2

4.4 the linked data-fu language 121

Let ReqP be the set of all requests derived from the result graph GP of
LD-Fu program PFu.
A request conflict set CSuP of LD-Fu program PFu for a resource r is a sub-
set of all derived manipulating requests (m ∈ {PUT ,POST ,DELETE}) that
modify the same information resource u, i.e.,

CSuP = {(mi, ri,D
req
i)| ∀ri : ri

i−→ Tu} CSuP ⊆ ReqP

We denote ΓP as the set of all conflict sets of a LD-Fu program PFu.

∀(m, r,Dreq) ∈ ReqP : CSuP ∈ ΓP, if r i−→ Tu

Intuitively, a request conflict set contains all manipulating requests that target
the same resource. If a conflict set contains more than one request, the corre-
sponding LD-Fu program has derived different actions to change the same re-
source and the ultimate effect of the program is not deterministically defined.
If all request conflict sets of a LD-Fu program contain exactly one element
∀CSuP ∈ ΓP : card(CSuP) = 1, the outcome is deterministic, as every resource
that is manipulated is addressed with a unique request.

It is noteworthy, that two requests with the method POST in a conflict set
(i.e., two POST requests with different input payload at the same resource), do
not necessarily represent a conflict. A request with the POST method can have
no effect or an additive effect on the addressed resource, e.g., adds the triples
to the addressed resource. Thus, multiple POST requests can affect a resource
independently from the order of execution, as POST is not defined to be idem-
potent. However, the specification for POST allows to change resources in an
arbitrary way (see Section 4.3) and therefore might result in conflicting changes.
As a client application cannot a priori predict if multiple POST requests on the
same resource represent a conflict, we include POST requests in conflict sets in
a non-discriminatory manner.

Further, only successful requests on the same resource can constitute conflicts,
as unsuccessful requests (with response codes 4xxand5xx) do not change re-
sources. However, as client application cannot a priori predict, if a request will
be successful, we have to assume all derived requests will be successful and
potentially cause a conflicting change.

Several strategies can be employed to handle conflicting requests. Such strate-
gies can be employed to resolve or mitigate the non-deterministic behaviour of
a LD-Fu program. In the following we describe approaches that can be used in
the face of conflicting requests:

naive All derived requests ReqP are executed independently of conflicts. Such
a naive approach fully accepts the potentially non-deterministic behaviour.

A naive approach can decrease the runtime of an application, as the results
graph GP, does not have to be completely constructed, before a manip-
ulating request is executed. Rather, as soon as a manipulating request is
derived it can be executed, similar to the lookups derived by request rules,

4.4 the linked data-fu language 122

as we do not require to establish the conflict sets.77 Thus, the derived re-
quests can be executed in parallel with the CPU-bound tasks of the data
processing.

However, the naive approach might lead to unnecessary requests in the
sense that requests are executed that result in changes that are undone
by subsequent requests, e.g., if the same resource is repeatedly overwrit-
ten. Unnecessary requests can negatively influence the overall runtime of
the program. The final state of a resource addressed by multiple requests,
depends on the order in which the requests are executed.

random From every request conflict set CSuP ∈ ΓP exactly one, randomly cho-
sen request is executed. A random choice still accepts the potentially non-
deterministic behaviour of program PFu.

Similar to the naive approach requests can be executed without waiting for
the complete construction of the result graph GP: As soon as a request is
derived it is executed, where a list of all addressed resources is maintained.
If a second manipulating request on the same resource is derived it will
not be executed.

For all conflict sets CSuP that only contain requests with idempotent meth-
ods ∀(m, r,Dreq) ∈ CSuP : m ∈ {PUT ,DELETE}, the final state of the
addressed resource is equivalent to the naive approach: With the naive ap-
proach the final state only depends on the last executed idempotent request
on a resource, which could also be chosen in the random approach. How-
ever, due to the potentially arbitrary changes of POST requests, the effect
of the random approach for conflict sets containing POST requests might
differ from the naive approach.

The random approach guarantees that every manipulated resource is only
changed once. Thus no unnecessary requests are executed.

none Every resource u, for which a conflict set exists with more than one el-
ement card(CSuP) > 1, is not changed, i.e., no manipulating request is
executed if conflicting requests are derived.

To not affect resources for which derived requests are in conflict ensures
a fully deterministic behaviour. No unnecessary requests are executed, as
every changed resource is only manipulated once.

To apply the approach all conflict sets have to be completely established,
i.e., manipulating requests can only be executed after a LD-Fu program has
reached the fixpoint and the result graph GP is established, from which
all manipulating requests ReqP are derived. Only after all request conflict
sets are completely established, the client application can determine with
certainty the cardinality of each conflict set, and execute only the requests
from conflict sets with with exactly one element.

77If a resource is manipulated, it must not be retrieved via a request rule anymore, as this could
cause the program to make decisions on already changed resources and thus change the execution
semantics.

4.4 the linked data-fu language 123

stratification In every request conflict set CSuP a distinct request is chosen

according to some weak ordering
o
>. An ordering

o
> establishes a preference

relation between pairs of requests, such that for any requests j,k, l ∈ CSuP
the following holds true:

• ∀j : j 6
o
> j (irreflexivity)

• ∀j,k, l : if j
o
> k and k

o
> l then j

o
> l (transitivity)

• ∀j,k, l : if (j 6
o
> k)∧ (k 6

o
> j) and (k 6

o
> l)∧ (l 6

o
> k) then (j 6

o
> l)∧ (l 6

o
> j)

(transitivity of incomparability)

From the requests in a conflict set we choose a request j to execute, such
that no other request is preferred over j, i.e., @k ∈ CSuP : k

o
> j,k 6= j. How-

ever, we can only grantee that a chosen request is unique if
o
> establishes

a total ordering for all pairwise disjoint requests in the request conflict set,
i.e., no two requests are incomparable.

∃!j@k ∈ CSuP : k
o
> j,k 6= j ⇐⇒ ∀k, l ∈ CSuP with k 6= l : (k

o
> l)∨ (l

o
> k)

Thus, there is a distinct request in a conflict set, which is preferred over all
other requests. Multiple possible orderings are possible, examples include:

• Order via request method: An ordering of the request methods can
be defined, from which the preference of the requests in conflict sets
can be derived. E.g., DELETE could be preferred over PUT, which
is preferred over POST. If a conflict set contains a DELETE request,
this request would be preferred over all other requests. Similarly, if
a conflict set does not contain a DELETE request, but a PUT request,
the PUT request would be preferred. However, a request conflict set
might contain multiple requests with the same method, i.e., multiple
requests that are not comparable according to this ordering. Thus, an
ordering via request method does not necessarily guarantee a deter-
ministic behavior, as a unique request cannot be chosen in all cases.

• Order via rule priority: The transition rules of an LD-Fu program can
have a priority assigned, which determines the order of requests in a
conflict set, i.e, requests derived from transition rules with a higher
priority are preferred over requests from transition rules with lower
priority. However, a request conflict set might contain multiple re-
quests derived from the same transition rule, i.e., multiple requests
that are not comparable according to this ordering. Thus, an order-
ing via rule priority does not necessarily guarantee a deterministic
behavior, as a unique request cannot be chosen in all cases.

Multiple stratification strategies can also be combined. However, which
strategy is appropriate and results in a deterministic behaviour depends
on the application context. In Example 26 the introduced rules could be
prioritized in such a way that the removal of time line entries is prioritised
over the extension of entries, which might capture the intentions of the
marketing department best.

4.4 the linked data-fu language 124

In the case a LD-Fu program is inherently determined, i.e., all conflict sets
contain exactly one request, all described approaches are equivalent in terms of
the final effect on changed resources. The approaches described above can have
a different impact on overall runtime and memory consumption of a LD-Fu
program, depending on the number of unnecessarily executed requests (in the
case of naive), the number of requests that have to be executed after the fixpoint
is reached (in the case of none and stratification), and the necessity to maintain
lists of already performed requests (in the case of random). This impact depends
on size and amount of conflict sets for a given LD-Fu program. E.g., if a LD-Fu
program has only one very large conflict set, the naive approach implies that
many unnecessary requests are executed causing a large overhead. In contrast,
the impact of the fact that none and stratification have first to completely establish
the conflict set is minor, because no or only one request have to be executed after
the fixpoint is reached.

To implement approaches none or stratification a client application would re-
quire information to what information resource u a target resource r of a request

refers r i−→ Tu. However, such information, which is necessary to correctly estab-
lish the conflict sets, is not necessarily a priori given. Therefore, a client might
have to approximate the conflict sets, by assuming all target resources are infor-
mation resources, i.e., the request conflict sets contain all derived requests with
the same target resource. Such an approximation can cause distinct conflict sets,
which contain requests that are referred to the same information resource, i.e.,
the distinct conflict sets actually should form a joined conflict set. E.g., two con-
flict sets CSr1P and CSr2P could be established for the target resources r1 and r2,

where r1 and r2 refer to the same information resource u, i.e., r1
i−→ Tu and

r2
i−→ Tu. The requests in both conflict sets actually belong to a single conflict

set CSuP, as all requests modify the same resource, i.e., all requests represent the
same conflict.

The approaches naive and random do not require to establish the conflict sets
to execute a request. With the approach none, some resources might be modi-
fied even though there are conflicting requests, because of the approximation
of conflict sets. Specifically, if a conflict set with a single resource is established,
the request is executed, even if requests in other conflict sets refer to the same
information resource. Similarly with a stratification approach a request might be
chosen for execution, even though another request should be preferred, which is
not considered in the ordering, because it is in another conflict set.

Finally it should be noted that a deterministic LD-Fu program (either inher-
ently or by use of an appropriate conflict resolution approach) has only a defined
outcome for a given result graph GP. In turn, the result graph GP of a program
is deterministically defined for a finite and stable set of retrieved resources. How-
ever, we have to assume that resources on the Web are not stable and can change
dynamically. Thus, the characteristic of a LD-Fu program to exhibit deterministic
behaviour does not necessarily imply that its outcome can be a priori predicted
from the program alone. The determinism rather allows to make predictions un-
der what circumstances (i.e., from what state in an LDSTS) what actions will be
derived (i.e., what requests will be executed), i.e., a LD-Fu program is capable of
handling the entropy of a Linked API resulting from the dynamically changing

4.4 the linked data-fu language 125

resources by reaction on it, but does not reduce the inherent entropy by making
the reaction of the Linked API predictable.

4.4.3 Repeated Program Execution

The objective of an application can not always be achieved with a single exe-
cution of an LD-Fu program. The goal of a program might imply a constant
monitoring of the state of some resources to ensure an appropriate reaction as
soon as the resource states change, as discussed in Section 3.2, Example 12. Such
a monitoring requires the repeated execution of a LD-Fu program, where the
frequency of the repetition reflects how closely the resources are monitored.

In other scenarios the goal of a LD-Fu program might require that a resource
is modified multiple times, or that a resource is retrieved after it is modified.
Similarly, to accomplish the objective in such scenarios an LD-Fu program has
to be executed multiple times until the goal is achieved.

. Example 27

The social network SNB changes its policy regarding the creation of entries
in users time lines. Links to other resources cannot anymore be directly in-
cluded when an entry is created. Rather, an entry with a message has to be
first created and can afterwards be overwritten to include links. Such over-
writes do not immediately change an entry resource, but are first checked
by SNB, if the included links adhere to the terms and conditions of SNB.

To adapt to the new situation ACME’s IT devises a new LD-Fu program
for the dissemination system. For every new InfoItem created by the mar-
keting department a new entry is created in the time lines of ACME’s fans
containing only the message of the InfoItem. Once an entry is created, it
is overwritten to include the designed links of the InfoItem. After the over-
writing request is sent, the entry is monitored, to ensure that the links
eventually appear in the entry.

To analyse the temporal behaviour of the repeated execution of LD-Fu pro-
grams we require a notion of time. For an application built upon an LD-Fu
program PFu we define a point in time as a discrete state σ of LDSTSP.

At first, we assume that all resources are stable, i.e., the resources do not
change on their own and no other application influences the resources. If a pro-
gram PFu is executed, it derives a result graph from the current state σ1 and exe-
cutes manipulating requests, thus advancing time to a new state σ2, see Figure 23.
The execution of the program might imply a series of requests, i.e. LDSTSP can
advance through several states before eventually reaching σ2. However, as an
LD-Fu program PFu defines declaratively all changes to be made under given
circumstances in a cohesive manner, we consider a single execution of PFu as a
single step in time from σn to σn+1. We denote P(G) → σ as a step in time to
state sigma, derived from graph GP by program PFu.

If a LD-Fu is executed repeatedly, it advances iteratively the current point in
time, i.e., the current state of LDSTSP. Thus, at every execution the program
takes into account the resources, which were changed by the previous execution.

4.4 the linked data-fu language 126

𝜎1 𝜎2 𝜎3

𝑃(𝐺1) 𝑃(𝐺2) 𝑃(𝐺3)

time

…

Figure 23: Points of time as distinct states, driven by an LD-Fu program.

However, a repeated execution is stateless, in the sense that no information about
previous actions are available, i.e., every execution P(G) does not depend directly
on previous executions, but only on graph GP. We denote Pn(σk) → σl as the
n-th iterative execution of program PFu starting at state σk, which results in
state σl.

The repeated execution of a program PFu starting in a state σs can result in
the following developments of the LDSTSP, given that the behaviour of PFu

is deterministic (either inherently or due to the application of an appropriate
conflict resolution approach):

fixpoint The LDSTSP reaches a fixoint, i.e., a state σf is reached after n iter-
ative executions, where every further application of PFu does not change
the state anymore.

∃n ∈N : Pn(σs)→ σf ∧P(n+1)(σs)→ σf

oscillation After a series of iterative executions a state σo is reached, over
which PFu was already executed in a previous iteration. Thus a cycle is
triggered, which always leads back to σo.

∃n∃m ∈N : Pn(σs)→ σo ∧Pm(σo)→ σo with n < m,m > 0

infinite evolution At every point of an iterative execution the continued
execution adds new triples (by extending existing resources or creating
new resources) to the subsequent states, which are never removed. Thus,
every iteration creates a new state.

∀n∃k ∈N : Pn(σs)→ σn∧Pk(σn)→ σk with k > 0, card(σn) < card(σk)

The repeated execution of an LD-Fu program does not necessarily reach a
fixpoint, even if the number of all retrieved resources ReqP at every iteration step
is finite. If ReqP is finite, only the construction of the result graph is guaranteed
to reach a fixpoint at the current state σn, i.e., the next σn+1will be reached. The
reason for the repeated execution of an LD-Fu program potentially not reaching
a fixpoint is that the manipulating requests at any iteration Pn(σn) can result
in triples with new URIs or literals, which become part of the next state σ(n+1).
Here, new URIs or literals are terms that are not part of the result graph GP

78

78RDF terms not in the result graph, have to be terms that are not in the initial graph G, the
request and deduction rules or any of the retrieved resources ReqP, see Section 3.2.

4.4 the linked data-fu language 127

Specifically POST requests can result in the creation of new resources, identified
with a URI chosen by the server, i.e., a new URI not part of the result graph.
Further, POST requests can change resources to include URIs and literals that
are not part of the request payload. Thus, at every iteration of the repeated
execution a new result graph might be derived from the new state σ, which
again can again lead to the creation of triples with new URIs or literals.

Resources can be deleted and created. If a repeated execution of a program
causes at any point all previously deleted resources to be created again without
adding any new triples the states, the program will permanently cycle through
the same set of states, thus have an oscillating development. E.g., consider a pro-
gram PFu that derives exactly two manipulating requests: a request to DELETE
resource r, if r exists and a request to create the same resource r via PUT. Further,
PFu operates with a stratification conflict resolution, where DELETE requests are
always preferred over PUT requests. At every iteration of the repeated execution
of PFu either r is created or deleted, thus the program cycles between two states.

If at every iteration of a repeated execution a state is reached, which was
not reached at any previous iteration, the repeated execution causes a continu-
ous evolution of the LDSTSP. An infinite evolution development is in particular
possible due to POST requests, which can change addressed resources in an ar-
bitrary manner. E.g., consider a program PFu that retrieves a resource r, which
represents a counter as a natural number. If the counter is found in the result
graph GP, the program executes a POST request at r, which results the counter
to increase by 1. Thus, every iteration of a repeated execution of PFu increases
the counter79.

. Example 28

The new LD-Fu program for the dissemination system of ACME (see Ex-
ample 27) contains the transition rules shown in Listing 11. To create en-
tries on time lines of social network SNB the program has to be executed
repeatedly.

As the initial creation of an entry on SNB happens via POST request, IT
has to prevent that a new entry is created at every iteration of the repeated
execution, i.e., an infinite evolution of the state has to be prevented. As a
repeated execution is stateless, the InfoItems are extended: InfoItems now
contain an additional triple, which details the state of the InfoItems with
respect to the entries in SNB. Thus, the InfoItems which are created by the
marketing department now contain the message content, a relevant link,
and the status with respect to SNB:

acme:infoItem37 p:content "Upcoming concert..." .

acme:infoItem37 rdfs:seeAlso acme:concert84 .

acme:infoItem37 p:snbState "not created" .

Furthermore, InfoItems are retrievable and changable URI-identified re-
sources. Specifically, InfoItems can be adressed with POST requests to specif-
ically change the SNB status of the InfoItems. Thus, at ever iteration the

79The arithmetic calculation of the successor of the current counter position is done server-side.

4.4 the linked data-fu language 128

dissemination system has information available, if a corresponding entry
has to be created or is already present on time lines of SNB.

At every iteration all InfoItems (as specified by marketing in the initial
requests), all time lines of followers of ACME on SNB, and all entries on
the time lines are retrieved to build a result graph. To create entries on SNB
the LD-Fu program of the dissemination system contains five transition
rules:

• Rule (1): If an InfoItems is found, which shows that a corresponding
entry has not been created, an entry is created with a POST request.

• Rule (2): The state of an InfoItems is changed from "not created" to
"created". Rule (2) is always triggered together with rule (1) in the
same iteration, as the BGP in the body of rule (2) is a subset of the
BGP of rule (1). Thus, the state of the InfoItems is changed, when an
entry is created.

• Rule (3): If an entry ?ent is found, with the same message content
?c as an InfoItems, which shows to be "created" on SNB, then ?ent is
overwritten with the same message content and the links designated
by the InfoItems.

• Rule (4): The state of an InfoItems is changed from "created" to "link
submitted". Rule (4) is always triggered together with rule (3) in the
same iteration, as the BGP in the body of rule (4) is a subset of the
BGP of rule (3). Thus, the state of the InfoItems is changed, when an
entry is extended to contain a link.

• Rule (5): Finally, if an InfoItems shows that its link was submitted and
an entry actually contains the link of the InfoItems, the state of the In-
foItems is changed to "done". As the dissemination system keeps re-
peatedly executing the program, rule (5) implements the monitoring
of the entry resource to report if the link is eventually addeda.

Every transition rule depends in the rule body on the state of the In-
foItems. The repeated execution continuously advances the state of the In-
foItems from "not created" over "created" to"link submitted" and potentially
"done", if the extension with a link is successful. Assuming that no addi-
tional InfoItems are created (or added to the initial requests), the repeated
execution of the program converges at a fixpoint, where for every InfoItems
an entry is created. At the fixpoint every InfoItems is either in state "done"
(if a link was added) or in state "created" (if no link can be added).

aAlthough the change of the entry to include a link is effectively caused by the PUT
request from the dissemination system, from the viewpoint of the LD-Fu program the
entry changes on its own, i.e., is not stable, because of the statelessness of the repeated
execution.

Listing 11: Transition Rules of an LD-Fu program for the repeated execution to create
entries on a social network

1

2 # (1) Create entry to every found follower on SNB

3 { snb:acme snb:followedBy ?fo .

4 ?x p:snbState "not created" .

4.5 experiments 129

5 ?x p:content ?c . }

6 => { [] http:mthd httpm:POST;

7 http:requestURI ?fo ;

8 http:body { [] rdf:type snb:PrivateMsg ;

9 snb:text ?c . } } .

10

11 # (2) Change status resource of InfoItem

12 { ?x p:snbState "not created" . }

13 => { [] http:mthd httpm:POST;

14 http:requestURI ?x ;

15 http:body { ?x p:snbState "created" . } } .

16

17 # (3) Create entry to contain link

18 { ?fo snb:containsEntry ?ent .

19 ?ent snb:text ?c .

20 ?x p:snbState "created" .

21 ?x p:content ?c .

22 ?x rdfs:seeAlso ?link . }

23 => { [] http:mthd httpm:PUT;

24 http:requestURI ?ent ;

25 http:body { [] rdf:type snb:PrivateMsg ;

26 snb:text ?c ;

27 snb:link ?link . } } .

28

29 # (4) Create entry to contain link

30 { ?x p:snbState "created" . }

31 => { [] http:mthd httpm:POST;

32 http:requestURI ?x ;

33 http:body { ?x p:snbState "link submitted" . } } .

34

35 # (5) Create entry to contain link

36 { ?x p:snbState "link submitted" .

37 ?x rdfs:seeAlso ?link .

38 ?ent snb:link ?link .}

39 => { [] http:mthd httpm:POST;

40 http:requestURI ?x ;

41 http:body { ?x p:snbState "done" . } } .

4.5 experiments

In the following we describe the results of two experiments to evaluate the perfor-
mance of our system for the execution of LD-Fu programs to realise applications
with low runtimes. Specifically, we are interested in the behaviour of the system
in the face of manipulations. In particular, we evaluate the overall runtime of a
single program execution given an increasing amount of resources that are ma-
nipulated by the program, as well as an increasing amount of transition rules (see
Section 4.5.1). We compare the runtime of a single program runs with the run-
time of Cwm, a Semantic Web data processor. Further, we evaluate the runtime
behaviour of our system under repeated program executions by implementing
Conway’s Game of Life [36] (see Section 4.5.2).

All experiments are conducted on the following local machine:

4.5 experiments 130

setup l Lenovo Thinkpad with an Intel i7–4600U processor with 2 physical
cores at 2.10 GHz and 12 GB main memory. Hyperthreading is enabled
resulting in 4 logical cores. The operating system is Arch Linux SMP PRE-
EMPT (2015-05-13) 64bit GNU/Linux with 4.0.3-1-Arch kernel.

Thus, we evaluate our system to execute LD-Fu programs on commodity hard-
ware with the intent to show the performance achieved by the parallel execution
architecture not simply on high-end industrial servers.

4.5.1 Number Retrieval and Manipulation

We deploy a sets of consecutive numbers as Linked Data resources. Every re-
source represents a natural number. We deploy the resources used locally to min-
imise execution time variations caused by network latency. Retrieving a number
resource returns three triples, as shown in Listing 12. Resources can also be over-
written with a PUT request. We use namespace prefix local for the deployed
numbers. Every number resource is typed as number, contains its value as literal,
and a link to the successor of the number:

Listing 12: RDF graph of a resource representing a natural number.

1 local:1 rdf:type gol:Number .

2 local:1 local:value "1" .

3 local:1 local:successor local:2 .

We choose this design to easily keep track of the amount of performed interac-
tions.

For the evaluation we start with the resource number 0 in the initial requests.
We identify and retrieve the successor of the number. The successor of a number
yields a new successor to retrieve. Thus, we retrieve continuously the complete
set of number resources. Once we retrieve a number resource we overwrite the
resource with a triple, which indicates that the resource was retrieved. The inter-
actions of this set-up are illustrated in Figure 24.

local:0 local:1 local:2
retrieve
initial

retrieve
successor

retrieve
successor

retrieve
successor

…

overwrite overwrite overwrite

Figure 24: Interactions with a set number resources.

We implement the described scenario with an LD-Fu program and measure
the necessary runtime to overwrite all number resources in sets of different sizes.
We compare the runtime for number resource sets of different size with an imple-
mentation in Cwm80 version 1.2.1, a data-processor for the Semantic Web. Cwm
uses a local triple store that supports the full N3 language to save data and in-
termediate results. The local triple store of Cwm uses seven indices to allow for

80http://www.w3.org/2000/10/swap/doc/cwm.html; retrieved 2015-04-10.

http://www.w3.org/2000/10/swap/doc/cwm.html

4.5 experiments 131

a rapid readout of the local data with almost every combination of subject, pred-
icate and object patterns. If data is added on-the-fly, the index structures have
to be updated. For inferencing Cwm uses a forward chain reasoner for N3 rules.
The pattern matching for the rules is done by recursive search with optimisa-
tions, such as identifying an optimal ordering for the evaluation of the rules and
patterns.

Cwm is built as a general purpose tool to query, process, filter and manipu-
late data from the Semantic Web, i.e., it is focused on the interaction with Linked
Data. As such, the motivation behind Cwm is close to LD-Fu programs. How-
ever, Cwm is not targeted on the direct manipulation of Web resources accord-
ing to REST principles, but only their retrieval and the local manipulation of
the data. Therefore, we cannot overwrite the number resources with Cwm, but
only retrieve the data and identify the numbers. An application, in which Cwm
is integrated, would have to use the information about the number resources
and implement the manipulating request separately. For our evaluation, we ex-
clude the time necessary for manipulations when using Cwm, i.e., with Cwm
we measure only the time to perform lookups and evaluate queries to realise the
necessary link traversal, while with LD-Fu we also perform the manipulations
and include the required time in the measurements.

We realise the interactions with a LD-Fu program and two Cwm implementa-
tions:

ld-fu For LD-Fu we use a request rule and a transition rule as shown in List-
ing 13.

We add the first number local:0 to the initial requests. If a number ?n with
value and successor is found, request rule (1) retrieves the successor ?succ
of the number. Thus, all numbers are found and retrieved in an iterative
manner in one program execution. Rule (2) overwrites any found number
?n with an new triple, if it has a value. For the execution we employ the
blocking multi threading model with four TripleWorker and eight Request-
Worker threads (see Section 3.4). The program is inherently deterministic,
as every resource is only manipulated once with rule (2). Therefore, we use
the naive conflict resolution approach, which allows us to execute manipu-
lating requests as soon as they are found, rather than first constructing the
complete result graph with all numbers.

Listing 13: Request and transition rule to retrieve and overwrite number resources.

1 #(1) Retrieve successor

2 { ?n rdf:type local:Number .

3 ?n local:value ?val .

4 ?n local:successor ?succ . } => { [] http:mthd httpm:GET;

5 http:requestURI ?succ . }.

6

7 #(2) Overwrite Number

8 { ?n rdf:type local:Number .

9 ?n local:value ?val . }

10 => { [] http:mthd httpm:PUT;

11 http:requestURI ?n ;

12 http:body { ?n local:status "seen" . } . }.

4.5 experiments 132

cwm direct Cwm offers built-in functions to perform Web-aware queries in
rules. The keyword log:semantics in a BGP of a rule allows to resolve
a URI and bind the retrieved RDF graph to a variable as formula. The
formula bound to a variable can then be used to construct triples in the
rule head. Listing 14 shows the Cwm rule to retrieve all numbers.

Like in the approach for the LD-Fu program we us a BGP to identify a num-
ber ?n with value and successor, however we have to expect this graph to
appear nested in the subject of a triple (lines 2–4). The successor is marked
to be retrieved (line 5) and bound as formula in subject position to a new
triple (line 6) that is written to the triple store. Cwm recursively applies the
rule to the triple store, thus retrieving all numbers.

Since a retrieved number representation can only be bound as formula
in triples (i.e., nested in subject or object position of a triple), we have to
employ a rule with nested BGPs in the rule head, making the evaluation of
the rule more complex than in the case of the LD-Fu program.

Listing 14: Rule in N3 Cwm syntax to retrieve all numbers via link traversal.

1 #(1) Retrieve successor

2 { { ?n rdf:type local:Number .

3 ?n local:value ?val .

4 ?n local:successor ?succ .} local:status "seen".

5 ?succ log semantics ?sem . }

6 => { ?sem local:status "seen". }.

cwm import To compare the performance of Cwm with the LD-Fu, with rules
bodies that are equally complex, we implement the retrieval of the number
resources with another Cwm rule shown in Listing 15.

We use the same BGP in the Cwm rule body to identify the successor of
a number as in the request rule of the LD-Fu program. For every found
match Cwm writes a triple in its store, with predicate owl:imports and
the successor as object. Cwm offers a command to retrieve all resources
in object position of triples with owl:imports as predicate. Thus, we pro-
grammatically instruct Cwm to apply the rule and retrieve the successors,
as many times as needed. However, the Cwm import implementation does
not have the same functionality as the LD-Fu program: A priori we have to
programmatically define how often the rule followed by the retrieve com-
mand have to be executed (once for every number), rather than retrieving
all identified successors automatically via link traversal.

Listing 15: Rule in N3 Cwm syntax to import the successor of a numbers

1 #(1) Retrieve successor

2 { ?n rdf:type local:Number .

3 ?n local:value ?val .

4 ?n local:successor ?succ . }

5 => { ?n owl:imports ?succ . }.

We measure the runtime of all three implementations for sets of 20, 40, 60,
80 and 100 number resources. For the approaches LD-Fu and Cwm direct the

4.5 experiments 133

1

10

100

1000

10000

100000

20 40 60 80 100

ru
n

m
ti

m
e

m
s

numbers per transition rule

LD-Fu

Cwm direct

Cwm import

Figure 25: Average runtime from ten executions for different evaluation set-ups to re-
trieve and modify one set of number resources.

interaction ends when the last number in a set does not refer to a next successor
to retrieve, i.e. the fixpoint is reached and in case of LD-Fu all manipulations are
done. For Cwm import we had to decide manually how often the rule is applied
and thus how many numbers are retrieved and when the interaction stops. The
results are shown in Table 8 and Figure 25. We provide the average runtimes
from ten executions to reduce variations.

Table 8: Average runtime from ten executions for different evaluation set-ups to retrieve
and modify one set of number resources.

number set size LD-Fu Cwm direct Cwm import

20 36 ms 1254 ms 369 ms

40 49 ms 4063 ms 790 ms

60 50 ms 9017 ms 1276 ms

80 65 ms 16383 ms 1801 ms

100 67 ms 25770 ms 2876 ms

LD-Fu is able to execute the interaction by orders of magnitude faster than
the other two approaches with Cwm. Also the growth-rate of the runtime with
the increasing amount of number resources is much lower with Data-Fu com-
pared to the Cwm approaches. Specifically, LD-Fu requires 1.9 times longer for
the interaction with 100 number resources compared to the interaction with 20

resources, where Cwm direct and Cwm import require 20.6 and 7.9 times longer
respectively. The LD-Fu achieves this time advantage, even though it addition-
ally includes manipulations, by leveraging the streaming execution model: With
LD-Fu newly retrieved triples are simply added to the TripleQueue for processing
in the operator plan, where further lookups and manipulation requests are done
on-the-fly. Cwm has to apply the rules repeatedly over the increasing dataset in
its triple store.

4.5 experiments 134

local-A:0 local-A:1 local-A:2
retrieve
initial

retrieve
successor

retrieve
successor

retrieve
successor

…

overwrite overwrite overwrite

A:

local-B:0 local-B:1 local-B:2
retrieve
initial

retrieve
successor

retrieve
successor

retrieve
successor

…

overwrite overwrite overwrite

B:

local-J:0 local-J:1 local-J:2
retrieve
initial

retrieve
successor

retrieve
successor

retrieve
successor

…

overwrite overwrite overwrite

J:

.

.

.

.

.

.

.

.

.

.

.

.

Figure 26: Interactions with ten sets number resources.

To evaluate the capabilities of our system with regard to an increasing amount
of rules we execute the same interaction of retrieving and overwriting successors
of numbers again, with ten different sets of numbers (A-J) in parallel. The differ-
ent sets of numbers are distinguished by different namespaces. Each of the three
evaluation set-ups employs ten rules for the retrieval each addressing another
namespace (and ten additional transition rules in case of LD-Fu)81, analog to the
previously shown rules in Listings 13–15. Figure 26 illustrates the implemented
interaction with the ten number resource sets.

The results for the different implementations are shown in Table 9 and Figure
27 as average from ten runs. Again, LD-Fu executes the interaction by order
of magnitudes faster with a lower growth rate than Cwm, even though LD-Fu
includes the manipulation requests. Specifically, LD-Fu requires 1.6 times longer
for the interaction with 100 number resources compared to the interaction with
20 resources, where Cwm direct and Cwm import require 43 and 11.6 times longer
respectively. In the case of the most interactions (10× 100) Cwm direct requires
over 13.5 minutes and Cwm import over 25 seconds, the Data-Fu engine handles
the same interactions in 0.22 seconds.

Comparing the results of the interactions with a single number resource set
and the interactions with ten number resource sets we see that the LD-Fu suffers
less than Cwm from the ten times increased workload or the larger amount of
employed rules: On average for the individual sizes of number sets

• LD-Fu requires 2.4 times longer,

• Cwm direct requires 23.9 times longer,

• Cwm import requires 7 times longer,

81The same interaction and manipulation of all ten number resource sets could also be achieved
with only two rules addressing all number sets in Ld-Fu.

4.5 experiments 135

Table 9: Average runtime from ten executions for different evaluation set-ups to retrieve
and modify ten sets of number resources.

number set size Data-Fu Cwm direct Cwm import

20 140 ms 18810 ms 2212 ms

40 165 ms 85668 ms 5519 ms

60 178 ms 251503 ms 10416 ms

80 186 ms 478476 ms 17600 ms

100 224 ms 810204 ms 25666 ms

1

10

100

1000

10000

100000

1000000

20 40 60 80 100

ru
n

m
ti

m
e

m
s

numbers per transition rule

LD-Fu

Cwm direct

Cwm import

Figure 27: Average runtime from ten executions for different evaluation set-ups to re-
trieve and modify ten sets of number resources.

when running with ten rules over ten number sets compared to one single rule
over one number set.

The reason for this time advantage is the parallel processing of our execution
mode, which allows to retrieve resources from all sets in parallel combined with
data processing. As we execute the manipulating requests in parallel as well, the
introduction of transition rules does not impede the scalability of our system.

Following the results of the comparison with Cwm, we devise an additional
evaluation setting to test the runtime of our system when performing larger
amounts of manipulations. Similar to the previous evaluation setting, we retrieve
number resources that are identified during runtime as successor of an already
found number. We fix the size of the number sets to 1000, i.e., we deploy sets
of 1000 consecutive number resources that are distinguished with their names-
pace. Then we retrieve and overwrite the numbers of every set with a respective
request and transition rule, i.e., there are two rules per number set.

We evaluate the runtime of our system with 20, 40, 60, 80 and 100 number
resource sets, thus performing between 20 000 and 100 000 lookups and ma-
nipulations. Additionally, we measure the time needed to establish the physical
operation plan (including creation of the logical operator plan and optimisation)

4.5 experiments 136

separately to compare it with the total execution time. The results are shown in
Table 10 and Figure 28.

Table 10: Average execution and planning time from ten executions of a LD-Fu program
to interact and manipulate sets of 1000 resources.

number sets execution time evaluation plan

20 5932 ms 9 ms

40 11840 ms 11 ms

60 17564 ms 15 ms

80 24385 ms 24 ms

100 32133 ms 27 ms

0

5000

10000

15000

20000

25000

30000

35000

20 40 60 80 100

ru
n

m
ti

m
e

m
s

transition rules

LD-Fu

Figure 28: Average execution and planning time from ten executions of a LD-Fu pro-
gram to interact and manipulate sets of 1000 resources.

The results of the evaluation for large amounts of interactions show that our
system scales well up to thousands of manipulations even on commodity hard-
ware. The system retrieved and manipulated 100 000 resources in about 0.5 min.
The necessary time required to establish the evaluation plan increases with the
number of rules, but remains a very small fraction of the overall runtime and is
therefore negligible.

Overall, the important result of the experiments in this section is not the abso-
lute runtime advantage of LD-Fu programs over Cwm, but the relatively better
scalability in the face of an increasing amount of resources to interact with and
rules in the programs. The evaluation shows the advantages of the parallel pro-
cessing are not negatively influenced by the presence of transition rules and the
necessity to perform manipulating requests. The integration of transition rules
in the operator plan allows the development of applications manipulating Web
resources dynamically, while preserving a low runtime requirements behaviour
as outlined in Section 3.5.

4.5 experiments 137

…

…

……

…

…

……

Generation n Generation n+1

…

…

……

…

…

……

Generation n Generation n+1

…

…

……

…

…

……

Generation n Generation n+1

…

…

……

…

…

……

Generation n Generation n+1

(a) Survival

…

…

……

…

…

……

Generation n Generation n+1

…

…

……

…

…

……

Generation n Generation n+1

…

…

……

…

…

……

Generation n Generation n+1

…

…

……

…

…

……

Generation n Generation n+1

(b) Birth

…

…

……

…

…

……

Generation n Generation n+1

…

…

……

…

…

……

Generation n Generation n+1

…

…

……

…

…

……

Generation n Generation n+1

…

…

……

…

…

……

Generation n Generation n+1

(c) Death (Overpopulation)

…

…

……

…

…

……

Generation n Generation n+1

…

…

……

…

…

……

Generation n Generation n+1

…

…

……

…

…

……

Generation n Generation n+1

…

…

……

…

…

……

Generation n Generation n+1

(d) Death (Isolation)

Figure 29: Examples of the evolution of a cell (center) according to Game of Life laws.

4.5.2 Game of Life

In this section we evaluate the runtime of a repeatedly executed LD-Fu program
that includes resource manipulations. For this purpose we implement Conway’s
Game of Life [36] with a LD-Fu program.

Game of Life is a zero-player game, i.e., it evolves independently without any
manual intervention as a result of the start configuration of the game board.
Specifically, the game board is a two dimensional grid of square cells. Thus,
every cell has eight neighbours (two neighbours on the horizontal, vertical, and
the two diagonal axis respectively). In particular, the neighbours of cells on the
outer boarder of the board are the cells on the opposite side of the board. E.g.,
the right neighbor of the cell in the first row on the right outer boarder is the
left outer cell on the first row. Every cell can be in of two states: alive or dead. A
population of cells on the board evolves from generation to generation according
to the following laws, which are illustrated in Figure 29:

survival Every cell with two or three alive neighbouring cells survives for the
next generation.

death Every alive cell with four or more alive neighbouring cells dies due to
overpopulation. Every alive cell with one or no alive neighbours dies from
isolation.

birth Every dead cell with exactly three alive neighbours comes to life for the
next generation.

The evolution laws are applied to all cells simultaneously to advance the pop-
ulation from one generation to another.

For our experiment we implement a game board as Linked API, where every
cell is a URI-identified resource. In particular, we use the row and column coordi-
nates of the cells in the identifier. The resources are deployed locally and we use

4.5 experiments 138

namespace prefix gol for the deployed cells. The cell resources can be retrieved
(via GET) and changed (via POST). If a cell is retrieved the returned RDF graph
contains ten triples as shown in Listing 16, providing information about the state
of the cell, the amount of its live neighours82, and links to all its neighours.

Listing 16: Example RD graph of a Game of Life cell.

1 gol:r2c4 gol:state "alive" .

2 gol:r2c4 gol:livingNeighbors "4" .

3 gol:r2c4 gol:leftUpperNeighbour gol:r1c3 .

4 gol:r2c4 gol:leftNeighbour gol:r2c3 .

5 gol:r2c4 gol:leftLowerNeighbour gol:r3c3 .

6 gol:r2c4 gol:upperNeighbour gol:r1c4 .

7 gol:r2c4 gol:lowerNeighbour gol:r3c4 .

8 gol:r2c4 gol:rightUpperNeighbour gol:r1c5 .

9 gol:r2c4 gol:rightNeighbour gol:r2c5 .

10 gol:r2c4 gol:rightLowerNeighbour gol:r3c5 .

We use an LD-Fu program to implement the logic of the evolution on the game
board. In particular we use

• request rules to retrieve all cell resources,

• deduction rules to derive if a cell needs to change its state,

• transition rules to execute derived changes.

We use a deduction rule for every possible state of a resource in combination
with their neighboring cells that lead to a change in the state of the resource.
Thus the deduction rules encode the Game of Life laws regarding birth and death.
As cells that do not fall in the categories of birth and death do not need to be
changed, i.e., cells that stay dead or alive in the next generation, we do not
require additional rules to encode survival.

Listing 17 shows the deduction rule and transition that encode the birth law in
our Game of Life implementation. Similarly we require further deduction rules
to encode the death law. The complete list of all employed rules to encode Game
of Life is provided in Appendix A.3 in Listing 20.

Listing 17: Example rules to encode the birth law in Game of Life.

1 #(1) Derive birth

2 { ?cell gol:state "dead" .

3 ?cell gol:livingNeighbors "3" . } => { ?cell gol:change "birth" . }.

4

5 #(2) Execute birth

6 { ?cell gol:change "birth" . }

7 => { [] http:mthd httpm:POST ;

8 http:requestURI ?n ;

9 http:body { ?cell gol:state "alive" . } . }.

82In our implementation the Linked API provides the number of live neighbours directly, rather
than having the client application counting live neighbours, as arithmetic expressions are not
supported by the semantics of LD-Fu.

4.5 experiments 139

(a) Generation 0 (b) Generation 130

Figure 30: Visualisation of the population (black) on a Game of Life board.

It is noteworthy, that dedicated deduction rules are not strictly necessary. Ev-
ery deduction rule could be directly encoded as transition rule. E.g., in Listing 17,
the body of deduction rule (1) could be used as body of the transition rule (2),
thus the transition rule would directly encode the birth law. However, for our
evaluation we intentionally want to use an LD-Fu program that contains all three
kinds of rules.

We initialise the game board randomly, where every cell has a 50% chance to
be alive in generation 0. We execute the LD-Fu program repeatedly, where every
execution is equivalent to one evolution step from one generation to the next.
Since every resource has to be retrieved, the amount of processed data is the
same at every evolution step, independently of the population size. Specifically,
we use the blocking multi threading model with fourTripleWorker and 100 Request-
Worker (see Section 3.4). The individual threads are kept alive between different
executions (see Section 3.5.3).

The LD-Fu program is inherently deterministic, as the Game of Life laws result
in a unique decision about the change of every cell. We use the random conflict
resolution approach. However, we ensure that no cell resource is changed before
it is retrieved to guarantee that every new generation is calculated correctly, as
if all laws are applied simultaneously.

Additionally we visualise the current state of the resources with the Java Swing
architecture83. Figure 30 shows the game board after initialisation in generation
0 and after 130 generations.

Different areas of a game board decrease in population size until they reach
stable or osculating configurations, other configurations continuously add new
live cells to the board [36]. We let random initialised boards of size 10× 10 (i.e.,
100 cell resources), 33× 33 (i.e., 1 089 cell resources), and 100× 100 (i.e., 10 000
cell resources) evolve for 100 generations and measure the required time to de-
rive and execute the necessary changes. Figure 31 shows the necessary time for

83http://docs.oracle.com/javase/7/docs/api/javax/swing/package-summary.html; re-
trieved 2015-04-10.

http://docs.oracle.com/javase/7/docs/api/javax/swing/package-summary.html

4.5 experiments 140

an evolution step together with the population size and the necessary manipu-
lation requests for every generation. A detailed list of results can be found in
Appendix A.2 in Tables 32 to 34.

With a game board of size 10 × 10 the average time to transition from one
generation to the next was 58 ms, thus on average our system executed the LD-
Fu program with a frequency of about 17.2 Hz. With the relatively small size
of the board Figure 31(a) shows particularly how the amount of manipulations
influences the necessary runtime. After 64 generations the population stabilised
and the evolution started to oscillate between two configurations, with only two
manipulating requests. Once the population stabilised the execution frequency
also became relatively stable with about 32.4 Hz (standard deviation of 3.7).

With a game board of size 33 × 33 the average time to transition from one
generation to the next was 138 ms, thus on average our system executed the LD-
Fu program with a frequency of about 7.2 Hz. Figure 31(b) shows how with a
decreasing population the necessary manipulations decline and in turn the run-
time decreases. E.g., over the last 10 generations the average execution frequency
was about 35.8 Hz (standard deviation of 3.3) with on average 55 manipulating
requests. The fact that the repeated execution with 55 requests results in roughly
the same frequency as the repeated execution with only 2 requests on the game
board with size 10× 10 points to the fact that with a small amount of manip-
ulating requests the derivation of the required changes via the deduction rules
dominate the required runtime and not the requests themselves. Thus, we see
evidence that the manipulating requests (i.e., I/O-bound tasks) are effectively
executed in parallel with the data processing (i.e., CPU-bound tasks).

In early generations with a higher population count we see that the runtime
decreases faster than the number of required manipulating requests: E.g., in the
first ten generations the amount of executed requests decrease by 51% (from 499

to 243 requests), however the necessary runtime decreases by 74% (from 1566 ms

to 414 ms). Again, the increasing relative runtime reduction is a result of the
parallel execution of requests and data processing. As the amount of processed
data (from all 1084 cell resources) is the same at every evolution step, while the
amount of necessary requests decrease. With a decreasing amount of requests,
the dominating factor of the overall runtime changes from I/O-bound tasks to
the CPU-bound tasks.

With a game board of size 100× 100 the average time to transition from one
generation to the next was 592 ms, thus on average our system executed the LD-
Fu program with a frequency of about 1.7 Hz. In large populations the effect of
an increasing reduction of runtime relative to the amount of requests (while the
amount of processed data stays the same between generations) becomes more
apparent (Figure 31(c)). In the first ten generations the amount of executed re-
quests decrease by 56% (from 4478 to 1808 requests), however the necessary
runtime decreases by 89% (from 7774 ms to 641 ms).

In summary, the experiments provide evidence that the manipulating requests
as I/O-bound tasks integrate well in the execution model of our system, as the re-
quests are executed in parallel with the data processing, thus reducing the effect
of the manipulation of remote resources on the overall runtime. Specifically, we
see that the repeated retrieval of resources, data processing and subsequent ma-

4.5 experiments 141

0

10

20

30

40

50

60

0

20

40

60

80

100

120

140

160

180

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Li

ve
 C

el
ls

Ti
m

e
m

s

Generation

elapsed

population

manipulations

(a) Size 10x10

0

100

200

300

400

500

600

0

200

400

600

800

1000

1200

1400

1600

1800

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Li

ve
 C

el
ls

Ti
m

e
m

s

Generation

elapsed

population

manipulations

(b) Size 33x33

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Li

ve
 C

el
ls

Ti
m

e
m

s

Generation

elapsed

population

manipulations

(c) Size 100x100

Figure 31: Runtime to derive and execute evolution changes in a Game of Life imple-
mented with LD-Fu.

4.6 related work 142

nipulation can be performed with high frequency. The frequency of the repeated
execution is scalable over an increasing amount resources. Thus applications to
monitor or iteratively manipulate Web resources with high frequencies can be
realised.

4.6 related work

Pautasso introduces an extension to BPEL [81] for a composition of REST and
operation-oriented Web services. REST services are wrapped in WSDL descrip-
tions to allow for a BPEL composition. Our approach focuses on a native compo-
sition of resource-oriented services, rather than shifting the focus on operations.
A comparison between REST services and operation-oriented services is given
in [83].

There exist several approaches that extend the operation oriented WS-* stack
with semantic capabilities by leveraging ontologies and rule-based descriptions
(e.g., [114, 27, 21]) to achieve an increased degree of automation in high level
tasks, such as service discovery, composition and mediation. Those approaches
extending WS-* are known as Semantic Web Services (SWS). An Approach to
combine REST services with SWS technologies (in particular WSMO-Lite [122])
was investigated by Kopecky et al. [60]. In contrast to SWS, REST architectures
do not allow to define arbitrary functions, but are constrained to a defined set of
methods and are built around another kind of abstraction, i.e., resource. There-
fore our approach is more focused on resource and data-centric scenarios in
distributed environments such as the Web.

Active XML introduces service calls as XML nodes that are placeholders for
new XML documents that can be retrieved from the service [1]. The service calls
are comparable to the traversal of hypermedia links between resources. An active
XML document corresponds to the result graph of an LD-Fu program. In contrast
to Active XML, LD-Fu programs discover links to new resources rather than links
to function calls. The resource model of Linked APIs allows more flexibility for
the API design and evolution, as a client can generally try to execute any HTTP
method on a discovered resource, whereas the Active XML equivalent would be
constrained to the given operation in the original link.

The scripting language S [14] allows to develop Web resources with a focus
on performance due to parallelisation of calculations. Resources can make use of
other resources in descriptions, thus enabling a way of composing REST services.
S does not explicitly address the dynamicity of REST APIs, as it has no explicit
facilities to leverage hypermedia controls or to infer required operations from
resource states.

RESTdesc [120] is an approach in which REST Linked Data resources are de-
scribed in N3-Notation. The composition of resources is based on an N3 reasoner
and stipulates manual interventions of users to decide which hypermedia con-
trols should be followed.

Hernandez et al. [50] proposes a model for semantically enabled REST services
as a combination of pi-calculus [75] and approaches to triple space computing
[26] pioneered by the Linda system [37]. They argue, that the resource states
can be seen as triple spaces, where during an interaction triple spaces can be

4.7 summary and future work 143

created and destroyed as proposed in an extension of triple space computing by
Simperl et al. [99]. Our interaction model is in contrast not based on an explicit
choreography of service calls, but is more focused on data-driven decisions with
regard to interaction and manipulation. Similar to the idea of triple spaces is the
composition of REST resources in a process space, proposed by Krummenacher
et al. [61] based on resources described using graph patterns.

Stream reasoning systems from the area of complex event processing (e.g., [4]
and [90]) are capable to deduce implicit information and derive decisions from
on-the-fly processed data, similar to LD-Fu programs. However, these stream
reasoning systems employ timestamps for retrieved data items and infer infor-
mation over sliding windows over the incoming data. In contrast, our approach
has a dedicated notion of a current state of the resources upon which an appli-
cation is built, independently from the size of the data, which constitutes such a
state. To constrain the size of the processed data of a state we employ the ability
to define in a fine-grained manner what resource to take into account as well as
what reasoning constructs to use.

Finally, production rule systems also employ rule-based reasoning to derive
necessary actions from the current state of the world to achieve a goal. The cur-
rent state of the world is reflected in a database as working memory, similar to
the result graph of an LD-Fu program. Well-known examples of production rule
systems are Drools84 and Jess85 [51]. Drools is part of the Knowledge is Every-
thing tool suite of the Red Hat JBoss Middleware86 portfolio and implements
forward and backward chaining reasoning built upon the RETE algorithm [31].
Jess is a programming language and engine for declarative rules; it employs
backward chaining inferencing to reason over and manipulate Java objects. In
contrast to the production rule systems described above, our approach is di-
rectly built upon the Web, as it allows for dynamic link traversal and allows for
the on-the-fly consideration of distributed and interlinked schemata. However,
our system can be classified as a production rule system for Web.

4.7 summary and future work

In this chapter we focused on applications that go beyond data retrieval and pro-
cessing by also allowing for the manipulation of Web resources. In particular we
describe how Linked Data can be combined with REST –a core Web technology–
and applications can be defined upon such a combination, which preserve the
capability to achieve low runtimes while allowing for the dynamic change of
Web resources.

Both Linked Data and REST are concerned with interlinked URI-identified
Web resources. While Linked Data is focused on a uniform data model and the
provision of interlinked schemata, REST addresses an interaction modal that al-
lows retrieval as well as manipulation of resources with a constrained set of
methods. Thus, we outlined the synergies from the combination of both tech-
nologies, which relate to the creation of Linked API architectures that enable

84http://www.drools.org/; retrieved 2015-04-10.
85http://www.jessrules.com/; retrieved 2015-04-10.
86http://www.jboss.org/; retrieved 2015-04-10.

http://www.drools.org/
http://www.jessrules.com/
http://www.jboss.org/

4.7 summary and future work 144

an interaction with little entropy. Finally, we provided a formal definition as
state transition system for the interaction with Linked Data resources accord-
ing to the principles of REST, thus positively answering research question 2.1. A
Linked API is defined via the set of resources it exposes, in such a way that an
API adhering to the standard specifications for HTTP and the Linked Data prin-
ciples is compatible with the state transition interaction model. Additionally, we
described how existing REST APIs on the Web can be wrapped to also provide
a Linked Data interface.

We extended the previously introduced linked programs with transition rules
to LD-Fu programs, which allow to derive manipulating requests from a given
RDF graph. Thus, desired manipulations can be described where the links to the
effected resources can be derived out of the current state of the state transition
system. Further, potential changes can be conditioned to the state of retrieved
resources as reflected in the state transition system. Via transition rules derived
requests represent a transition between the states in the state transition model.
Consequently, our approach to describe desired manipulations of a program
with transition rules provides a solution for research question 2.2.

An LD-Fu program retrieves resources with request rules and derives new in-
formation according to deduction rules. The resulting graph forms the basis for
the deduction of necessary requests according to transition rules. We answered
research question 2.3 by describing the execution semantics of an LD-Fu program
as a reaction to the information available about the current state of a state tran-
sition system. The available information is represented in the result graph of a
program. Thus, an execution of an LD-Fu program implies the calculation of the
result graph and the subsequent (i.e., after arrival at the fixpoint) construction
of manipulating requests out of result bindings from the result graph. In par-
ticular, we described the potentially non-deterministic behaviour of an LD-Fu
program with respect to the effected changes of resources and outlined differ-
ent approaches to mitigate the resulting uncertainty. Further, we described the
repeated execution of a program to achieve an iterative progression through the
defined state transition system, i.e., the manipulation of resources. While the cal-
culation of a result graph always reaches a fixpoint given a finite set of resources,
the repeated execution might exhibit different bahaviours, which might not be a
priori predictable.

Finally, we conducted experiments to provide evidence that the introduced
approach to manipulate resources does not impede the runtime of applications.
Specifically, we have shown that programs with transition rules scale with re-
spect to the amount of manipulated resources. Further, we established that ap-
plications operating with high frequency repetitions of LD-Fu executions are
possible.

Consequently, we can confirm Hypothesis 2, as we have shown how desired
manipulations of applications can be expressed in the context of declarative rule-
based programs, which are built upon the combination of Linked Data and REST
in the form of state transition systems. Resources that are modified can be dy-
namically discovered via link traversal in existing resources. The execution of
manipulating requests can be defined over conditions on the state of resources,

4.7 summary and future work 145

which are evaluated with performance characteristics that allow for applications
with low runtimes.

Future work building upon this chapter relates to the increase of expressive-
ness of the employed rules to improve the possibilities for the definition of ap-
plication logic. For instance, disjunctive graph patterns in rule bodies can allow
to formulate alternative conditions under which a manipulating request is de-
rived, while the conjunctive BGPs require to define an individual rule for every
alternative.

Furthermore, the possibility to include arithmetic expressions in LD-Fu pro-
grams would result a in more expressive semantic allowing for a wide range
of additional application scenarios to be implemented. However, an increase of
semantic expressiveness comes at the price of increased computational costs. Ad-
ditionally, a rise in complexity can also result in undesired characteristics, e.g.,
the inclusion of arithmetic expressions in a rule based program might lead to
the creation of new identifiers, and thus inherently preventing the existence of a
fixpoint even without an interaction with remote resources. The identification of
the right balance between complexity and expressiveness for Web-based applica-
tion remains an important challenge.

Finally, the combination of process modeling approaches with the presented
declarative rule-based approach can allow to incorporate explicit choreographies
in the data-driven interaction with Web resources. Specifically, the inclusion of
suitable choreography representations in the initial graph of an LD-Fu program
in conjunction with the repeated execution of the program to iteratively execute
a defined process can be explored. Establishing a bridge between explicit process
definitions and declarative rule programs might result in a better control over the
execution while retaining dynamic reactions and fostering parallel execution.

So far we focused on the specification of the desired interaction and manipula-
tion of client applications with Web resources. However, developing a Web-based
application involves other high-level tasks, like the identification of suitable re-
sources to start an interaction. Additionally, resources might impose constraints
on the interaction with regard to the communicated data. An application re-
quires certainty about such constraints to establish an interaction to achieve ob-
jectives. In the following chapter we address description mechanisms for Web
resources that allow applications to acquire necessary information and identify
resources adequate to achieve the application goals.

5
W E B R E S O U R C E S E A R C H

5.1 introduction

The interaction with Linked Data Web resources is based on the traversal of
links. However, an application that follows links requires a starting point. Such
a starting point are the first resources the application can retrieve to obtain links
to further resources. In the context of REST these first resources of an interaction
are called entry resources [124]. For a LD-Fu program entry resources are directly
contained in the set of initial resources R or can be derived from links in the
initial graph G.

The identification of suitable entry resources of APIs for an application, i.e.,
resource search, is a high level task in the context of interacting with Web re-
sources. Resource descriptions can help to provide a higher level of automation
for such tasks. Other examples of high level tasks in the context of interaction
with Web resources that profit from description mechanisms include composi-
tion, comparison, and clustering of services [20].

In this chapter, based on our work in [106, 110], we focus on graph pattern-
based descriptions of Linked Data resources to support the interaction with those
resources by applications. In particular we describe how graph-pattern-based
descriptions can be used for the task of resource search, which consists of

• matching a resource search request with resource descriptions,

• ranking available resources according to the matching degree with a re-
quest.

Many approaches [61, 103, 120, 121] propose the use of graph patterns for
the description of Linked Data-based APIs. Here, we do not introduce a further
alternative approach, but describe the applicability of BGP-based descriptions to
support applications in the interaction with Web resources. Thus, we focus on the
underlying commonality of the existing approaches applied to the introduced
state transition interaction model, specifically for the high level task of resource
search.

. Example 29

To further improve sales ACME introduces two concert recommendation
systems in their Linked API. Both recommendation systems are repre-
sented by Linked Data Web resources, to which users can send messages

146

5.1 introduction 147

via POST requests to receive recommendations about upcoming concerts
in their area:

• acme:simpleRecommender allows to send the identifiers of a band and
a location. The response contains a recommendation for a concert of
a similar band in the given location.

• acme:complexRecommender allows to send the identifier of a band and
precise longitude and latitude coordinates. The response contains a
recommendation for a concert of a similar band nearby the provided
coordinate point as well as the ticket price for the concert.

The recommendation resources are expected to serve as entry resources for
applications, where users can look for concerts and subsequently buy tick-
ets. To foster the use of the new recommendation systems ACME wants
to provide descriptions for the two resources, so application developers
can search for the resources in a precise manner. Specifically, developers
should be able to identify, which of the two recommendation resources
suits their needs, with respect to required input data and expected infor-
mation returned.

Since ACME expects to further extend their Linked API, entry resources
should be searchable in an automated fashion.

Other work [84], which introduces the name Linked Services, proposes the idea
that service descriptions should also be exposed as Linked Data. The original ap-
proach, pursued in the SOA4All project87 and leading to the iServe service repos-
itory88, uses the Minimal Service Model (MSM)89 as a lightweight RDF model of
Web services. MSM-based descriptions characterise input and output expecta-
tions of service operations by annotating structural message parts with ontology
classes.

Similarly OWL-S90, an ontology for the description of Semantic Web Services
[21, 27, 114], hinges on the annotation of syntactical messages (usually assumed
to be bourne in plain XML) with ontological classes. E.g., the input as well as
the output of the recommendation systems of Example 29 could be annotated
with acme:Artist, among other classes. Other information on how input or out-
put maps to ontological concepts is contained in non-semantic transformation
instructions for lifting and lowering, e.g., with XSL Transformations [56]. Addi-
tional information are given with pre- and post-conditions in rule expressions,
e.g., with the Semantic Web Rule Language (SWRL)91, which describe require-
ments and effected changes of a service invocation.

However, annotations with ontological concepts do not clarify the relation be-
tween the input and corresponding output. E.g., it would remain unclear in Ex-
ample 29, if the acme:Artist in the response is the same as in the input, or –as
it is the case– refers to a different band. Additionally, the use of RDF (and BGPs)

87http://www.soa4all.eu/; retrieved 2015-04-10.
88http://iserve.kmi.open.ac.uk/; retrieved 2015-04-10.
89http://iserve.kmi.open.ac.uk/ns/msm/msm-2014-09-03.html; retrieved 2015-04-10.
90http://www.w3.org/Submission/OWL-S/; retrieved 2015-04-10.
91http://www.w3.org/Submission/SWRL/; retrieved 2015-04-10.

http://www.soa4all.eu/
http://iserve.kmi.open.ac.uk/
http://iserve.kmi.open.ac.uk/ns/msm/msm-2014-09-03.html
http://www.w3.org/Submission/OWL-S/
http://www.w3.org/Submission/SWRL/

5.1 introduction 148

inherently allows to declare the class membership of instances, which makes
additional annotations cumbersome.

The Web Service Modeling Ontology (WSMO)92 improves on class-based an-
notations by allowing to define explicit choreographies with the Web Service
Modeling Language (WSML)93. Such a choreography allows to indicate not just
which classes (called concepts in WSML) are communicable, but also enables
a description of relations (an n-ary generalisation of binary RDF property re-
lations). However, the relations do not clarify the relation between input and
output. Thus, in Example 29 it remains undefined if the recommended concert
relates to the artist provided in the request or to a different artist.

The approaches to the use of graph patterns for service descriptions can be
traced back to an extension of OWL-S, in the work described in [95]. Here, the
graph patterns were used to encode pre- and post-conditions. We focus on de-
scriptions for the required input and expected output of an interaction with a
Web resource. The presented algorithms for the search of resources can, however,
be applied analogously for graph patterns describing pre- and post-conditions.

The achieved changes with respect to the current state (see section 4.3) of a
successful request are often inherently defined by the applied HTTP method
with the exception of POST (see Section 5.2).

5.1.1 Challenges

We address the following challenges in the context of runtime requirements and
entropy (see Section 1.1.1):

• To resolve the uncertainty about what resources can serve an application as
entry resources requires to identify, if the necessary data is available to start
an interaction, and if the desired information can be retrieved from an inter-
action. BGP descriptions are mostly focused on the graph representation of
resources, in particular the communicated data to retrieve or influence the
graph representation. However, as the interaction with resources depends
on the applied operations, so does a description providing necessary infor-
mation to identify entry resources. Therefore, to establish useful descrip-
tions an interpretation with respect to the employed interaction model has
to be defined.

• When searching for resources it can be too limiting to just consider re-
sources whose description perfectly match the search conditions. Resources
that nearly meet the defined requirements can be worth considering, espe-
cially if no perfect match can be found. Thus, we need to rank resources
according to the degree a resource matches a search request without dis-
carding non-perfect matches.

• Although the search for entry resources of an application can be considered
part of the development process, runtime requirements are still a challenge
to be addressed. In particular, if many search requests have to be evaluated

92http://www.w3.org/Submission/WSMO/
93http://www.w3.org/Submission/WSML/

http://www.w3.org/Submission/WSMO/
http://www.w3.org/Submission/WSML/

5.2 graph pattern descriptions 149

against a multitude of different resource descriptions, the response time
of the system has to remain tolerable. Additionally, if additional resources
and their descriptions are added, existing search requests should be up-
dated with new results, without having to evaluate the complete search
again. Consequently, an approach to match and rank resources against
search requests has to be scalable with respect to the considered descrip-
tions and committed search requests.

5.1.2 Contributions

Our contributions are as follows:

• We describe how BGPs can be used to describe input data of requests and
output data of responses. In particular, we define the relationship of the
descriptions to the interaction model described in Section 4.3. Thus, we
define the semantics of the descriptions with respect to the HTTP methods
applied in an interaction. (Section 5.2) We also show how BGPs can be
used to define interaction templates, which can be used to formulate search
requests for identifying resources. (Section 5.3)

• We define several metrics to describe to what degree a given interaction
template in a search request matches a resources description. In particular,
we define two metrics based on the used vocabulary terms in templates
and descriptions, which can be used as preliminary heuristic for matching
and ranking. Further, we provide a metric based on the actual containment
of triple patterns in the BGPs of description and template, which allows
to precisely determine, if a resource matches a given search request and
identify differences. (Section 5.4)

• We describe an architecture to match and rank BGP-based resource descrip-
tions with interaction templates. Specifically the architecture also updates
existing search requests, when new resource descriptions are committed
to the system. In particular, we show how service search is divided into
sub-tasks, which can be leveraged in a distributed computing architecture.
Based on an algorithm to quickly prune non-matching triple patterns, the
proposed architecture achieves scalability with respect to the amount of
descriptions and search requests. (Section 5.5)

5.2 graph pattern descriptions

In a REST-based interaction with Linked Data resources only the HTTP methods
can be applied to the resources. The semantics of the HTTP methods itself is
defined by the IETF94 and does not need to be explicitly described. However, the
input payload of a request with a specific method can be subject to conditions
with respect to the used vocabulary and the information that have to be included
in the payload. Furthermore, the output payload in a response depends on the
used method and the information given in the request payload.

94https://tools.ietf.org/html/rfc7230 et seq.; retrieved 2015-04-10.

https://tools.ietf.org/html/rfc7230

5.2 graph pattern descriptions 150

We use BGPs to describe input and output of a resource for a given HTTP
method.

ó Definition 18: BGP Resource Description

A BGP resource description is a tuple (ipd,opd) consisting of

• a BGP ipd as input description,

• a BGP opd as output description.

For a URI-identified resource r ∈ U and an HTTP method m ∈ M the in-
put description ipd represents a constraint of possible input payloads Dreq

in requests (m, r,Dreq), such that there is exactly one result binding for the
BGP ipd from Dreq for all variables in ipd, i.e.,

∃!µ ∈ ΩDreq(ipd)∧ dom(µ) = Vipd

For a URI-identified resource r ∈ U and an HTTP method m ∈ M the
output description opd represents a guarantee of output payload Dres in
responses to requests ,m)ג r,Dreq) = (c,Dres) for any Dreq adhering to the
input description, such that there is exactly one result binding for the BGP
opd from Dres for all variables in opd, i.e.,

∃!µ ∈ ΩDres(opd)∧ dom(µ) = Vopd

Further, to encode the relation between input and output it has to hold true,
that for all result bindings for the input description ipd from the request
payload Dreq, there is a result binding for the output description opd from
the response payload Dres, that maps the variables that appear in ipd as
well as in odp to the same term.

∀v ∈ Vipd ∩Vopd∀µi ∈ ΩDreq(ipd)∃µo ∈ ΩDres(opd) : µi(v) = µo(v)

A BGP resource description details for a resource the requirements on the input
data for an interaction, as well as the guarantee for the output data, with respect
to the employed HTTP method. In the following we detail the BGP descriptions
for the different HTTP methods with respect to the state transition system inter-
action model95 as definied in Section 4.3.

• A GET request retrieves the RDF graph representation of the addressed
resource and does not change the current state:

δs(σk, (GET , ri,Dreq)) = σk

δo(σk, (GET , ri,Dreq)) = (2xx , rki)

Consequently, a resources can be considered to ignore any input payload
in the request, i.e., the payload in the request can be considered empty,

95It would be analogously possible to use BGPs to define requirements on the state σk at which
an interaction can be performed as pre-condition, and guarantees on the resulting state δs(σk, req)
as post-condition.

5.2 graph pattern descriptions 151

i.e., Dreq = ∅. Thus, the input BGP description also is empty, i.e., ipd =

∅. However, other approaches consider parameters, encoded as key-value
pairs to be described with an input graph pattern description (cf. [103]). As
the response of a GET request returns the state of the addressed resource
ri, the output description odp also reflects the possible states of ri, i.e.,

∃µ ∈ Ω
rki
(opd)∧ dom(µ) = Vopd

• A DELETE request removes the addressed resource.

δs(σk, (DELETE, ri,Dreq)) = σk \ {rki }

δo(σk, (DELETE, ri,Dreq)) = (2xx , ∅)

The removal of a resource does not require an input payload (i.e.,Dreq = ∅)
and yields an empty output payload (i.e., Dres = ∅). Therefore, input and
output payload are completely determined by the DELETE method and no
further BGP description is required, as it is in every case (∅, ∅).

• A PUT request overwrites a resource or creates a new resource.

δs(σk, (PUT , ri,Dreq)) = (σk \ {r
k
i })∪D

req

δo(σk, (PUT , ri,Dreq)) = (2xx , ∅)

The RDF graph representing the addressed resource ri after a successful
PUT request is the graph in the input payload. Thus, the input BGP de-
scription also reflects the possible state to which ri can be changed, i.e.,

∃µ ∈ Ω
rk+1i

(opd)∧ dom(µ) = Vopd

As the output payload of the response is always empty (i.e., Dres = ∅), so
is is the output description (i.e., opd = ∅).

• A POST request can have various effects on the current state and result in
different output payloads in the response.

δs(σk, (POST , ri,Dreq)) = postsi (σk,Dreq)

δo(σk, (POST , ri,Dreq)) = (2xx , postoi (σk,Dreq)

If data is submitted in the request payload Dreq to a data- handling pro-
cess, the output payload in the responseDres is the result of some computa-
tion carried out over Dreq. The relation between input and output is given
as the common variables in input and output description are mapped to the
same terms. As interactions with the POST method are the only requests
that require both a non-empty input and non-empty output description,
the relation established via shared variables is specifically important.

5.2 graph pattern descriptions 152

. Example 30

The recommendation resources of ACME allow to submit data via POST.
Listing 18 shows the input and output BGP descriptions for the simple
and complex recommendation resources of ACME. For both resources the
variable ?artist appears in input and output description, signifying that
both are bound by the same term, i.e., the identifier of a band. The output
description shows that the recommended concert (?event) is performed
by a band that is similar to the band given in the request payload. Thus,
the relationship between input and output is expressed.

After a successful POST request to one of the recommendation resources,
a new resource is created representing the recommendation. The variable
?i in the output descriptions will be bound by the identifier of the created
resource, which can be used to lookup the recommendation againa.

aIt would be equivalently possible that the POST request to recommendation resources
does not create a new resource and just returns the response, in which case ?i would be
bound by a blank node.

Listing 18: BGP descriptions for recommendation resources.

1 # input pattern description for simple recommendation resource

2
_:i p:performer ?artist.

3 ?artist rdf:type p:Artist.

4
_:i p:location ?town.

5 ?town rdf:type schema:City.

6

7 # output pattern description for simple recommendation resource

8 ?i rdf:type p:recommendation.

9 ?i p:concert ?event.

10 ?event p:performer ?p.

11 ?p p:similar ?artist.

12 ?event rdf:type p:Event.

13

14

15 # input pattern description for complex recommendation resource

16 ?rec p:performer ?artist.

17 ?artist rdf:type p:Artist.

18 ?rec geo:nearby _:p.

19
_:p rdf:type geo:Point

20
_:p geo:latitude ?lat.

21
_:p geo:longitude ?long.

22

23 # output pattern description for complex recommendation resource

24 ?i rdf:type p:recommendation.

25 ?i p:concert ?event.

26 ?event p:performer ?p.

27 ?p p:similar ?artist.

28 ?event rdf:type p:Event.

29 ?event p:price ?p.

30 ?p rdf:type p:Cost

5.3 matching 153

5.3 matching

To enable the search for resources over their BGP descriptions, we define re-
source templates, which can be used to formulate a search request.

ó Definition 19: BGP Resource Template

A BGP resource template is a tuple (ipt,opt) consisting of

• a BGP ipt as input template,

• a BGP opt as output template.

The input template ipt represents all possible input RDF graphs an appli-
cation can provide in the payload Dreq of a request by specifying that the
application can provide input payloads such that ipt has at least one result
binding from Dres for the variables in ipt, i.e.,

∃µ ∈ ΩDreq(ipt)∧ dom(µ) = Vipt

The output template ipt represents the output RDF graphs such an applica-
tion expects to be delivered in the payload Dres of a response by specifying
that the output payload has to result in at least one result binding of opt
from Dres for the variables in opt, i.e.,

∃µ ∈ ΩDres(opt)∧ dom(µ) = Vopt

Further, it has to hold true, that for all result bindings for the input template
ipt from the provided request payload Dreq, there is a result binding for
the output template opt from the response payload Dres, that maps the
variables that appear in ipt as well as in opt to the same term.

∀v ∈ Vipt ∩Vopt∀µi ∈ ΩDreq(ipt)∃µo ∈ ΩDres(opt) : µi(v) = µo(v)

The BGP resource templates follow the same syntax as the resource descrip-
tions. Similar to the resource description a resource template encapsulates all
necessary request information needed to formalise an agents possibilities and
wishes, including the expected relation between the input and output.

Therefore, the question of whether a given resource description matches a re-
source template correlates to the problem of graph pattern containment. The
input graph pattern of a resource description must be contained in the resource
template’s input pattern. This containment relation implies that every graph that
satisfies the template input graph pattern must also satisfy the service descrip-
tion’s input graph pattern. Intuitively, this is to say that the input an application
can provide satisfies the requirements for the input payload of a request to the
described resource. Specifically, it is also possible for the input template to spec-
ify additional data, which the application can provide for an input payload, even
though a matching resource does not require the data.

5.4 ranking 154

. Example 31

An application can express in an input template that it can provide infor-
mation about a location and a music genre. If an input description details
that the input payload of a request requires just the information about the
location, template and description are matching, since the description is
contained in the template. However, if a description details that informa-
tion about location and an artist is required, template and description are
not matching.

Matching the output graph patterns works in an analogous way. The output
graph pattern of a resource description contains the output graph pattern of a
template, which implies that every graph that satisfies the resource description’s
output graph pattern also satisfies the template output graph pattern. So the
required containment relation of the output patterns is dual to that of the input
graph patterns. Intuitively, again this means a service output has to provide
enough information to satisfy the request, but can provide more.

. Example 32

An application can express in an output template that it is looking for
information about a concert. If a service details in an output description
that it provides information about concerts and genres, template and de-
scription are matching, since the template is contained in the description.
However, if template details it requires information about concerts and
ticket prices, template and description are not matching.

A BGP O is contained in another BGP P, if O is a sub-graph pattern of P:

ó Definition 20: Sub-graph Pattern

Let O and P be two BGPs. O is a sub-graph pattern of P, denoted as O
.
⊆ P,

iff for all possible RDF graphs G and every result binding µO for O from
G there is a result binding µP for P from G, such that for every variable vo
in O there is a varaible vp in P, where µO maps vo to the same term as µp
maps vp, i.e.,

∀G∀µO ∈ ΩG(O)∃µP ∈ ΩG(P)∀vo ∈ VO∃vp ∈ VP : µO(vO) = µP(vP)

The desired relations between the patterns in a resource description (ipd,opd)
and a resource template (ipt,opt) is summarised as follows:

ipd
.
⊆ ipt

opt
.
⊆ opd

5.4 ranking

The matching based on graph pattern containment subsists in two binary de-
cisions (one for the input and one for the output), answering if a resource de-

5.4 ranking 155

scription completely matches a resource template. However, it is sensible to as-
sume that often resources only partly satisfy the requirements of an application,
or that an application has not all the necessary data for the invocation. There-
fore, resources should be ordered according to the degree they match to a given
search request. To allow for a flexible search approach, we allow for the ranking
of resource descriptions against resource templates by providing continuously-
valued matching metrics:

predicate subset ratio (psr) measures to what degree the set of predicates
used in one pattern is subsumed within the set of predicates in another
pattern.

resource subset ratio (rsr) measures to what degree the set of named re-
sources, in subject or object position, used in one pattern is subsumed
within the set of named resources in another pattern.

containment ratio (cr) measures to what degree triple patterns in one graph
pattern are contained in the other pattern.

In the following we describe the metrics in detail and provide an example on
how they are applied to resource descriptions and templates.

5.4.1 Containment-based metric

The metric cr measures to what degree a BGP Psub is contained in another pat-
tern Psuper.

ó Definition 21: Containment Ratio

For two BGPs Psub and Psuper the containment ratio cr for Psub in Psuper
is the fraction of triple patterns in the largest subset of Psub, which forms a
sub-graph pattern of Psuper, i.e.,

cr = max

(
card(T)

card(Psub)

)
with T ⊆ Psub ∧ T

.
⊆ Psuper

where card(BGP) denotes the number of triple patterns in a graph pattern
BGP

Intuitively, the containment ratio measures how many triple patterns have to
be removed from a BGP, to make it a sub-graph pattern of another BGP.

The calculation of the containment cr is based on the power set 2Psub of triple
patterns derived from the graph pattern Psub. The largest set of triple patterns
Tmax ∈ 2Psub (i.e., the set with the most triple patterns) in the power set is
identified, that is still contained in Psuper:

Tmax
.
⊆ Psuper

Tmax is not necessarily unique in 2Psub . However, just one of the largest triple
pattern sets that are contained in Psuper needs to be identified for the calculation
of cr.

5.4 ranking 156

The metric cr describes the ratio between the number of triple patterns in
the identified set Tmax and the overall number of triple patterns in the original
pattern Psub, from which the power set is derived. cr measures precisely to what
degree a graph pattern is subsumed by another, thus expressing the containment
degree of one pattern in relation to another.

However, a naive calculation of cr would require to check for every set Ti ∈
2Psub), if it is contained in the other pattern Psuper, which can be computation-
ally expensive. To mitigate this problem we propose an algorithm that prunes
triple patterns as early as possible, if they are not contained in Psuper. Further,
the algorithm avoids an unnecessary testing of elements in 2Psub . Since the al-
gorithm is based on an iterative extension of subsets of Psub an identified set
Tk ∈ 2Psub), that is not contained in Psuper can be disregarded for further ex-
tension. This exclusion is possible due to the monotonicity of the containment
relation: Adding a triple pattern to an already not contained set cannot result in
a larger contained set.

Tk 6⊆ Psuper ⇒ ∀tpi ∈ Psup : Tk ∪ {tpi} 6⊆ Psuper

To improve the readability of the Algorithm 4, we define two functions: Let Q
be a BGP and G an RDF graph:

• A function that substitutes all variables in Q with URIs of the same name,
thus mapping the pattern to a graph:

skolem(Q) = {〈rn(s), rn(p), rn(o)〉| 〈s,p,o〉 ∈ Q}

The function rn defines the substitution of the variables:

rn(x) =

{
x if x ∈ U∪L∪B
: x with : x ∈ U if x ∈ V

• A function that returns true if a given BGP has a non-empty result binding
from G and false otherwise.

match : (G,Q) =

{
true if ∃µ ∈ ΩG(Q)∧ dom(µ) = VQ

false otherwise

5.4 ranking 157

Algorithm 4: Determine pattern containment ratio
Input :Psub = {tpsub−1, ..., tpsub−n}; a BGB with triple patterns tpi
Input :Psuper = {tpsuper−1, ..., tpsuper−m}; a BGB with triple patterns tpi
Output : cr; containment ratio of Psub for Psuper

1 G←skolem(Psuper)

2 MatchingTriplePattern← ∅
3 MatchingGraphPattern← ∅
4 ResultCandidates← ∅
5 foreach tpi ∈ Psub do
6 if match(G, {tpi})= true then
7 add tpi to MatchingTriplePattern
8 RPi ← {tpi}

9 add RPi to MatchingGraphPattern

10 while MatchingGraphPattern 6= ∅ do
11 ResultCandidates←MatchingGraphPattern

12 MatchingGraphPattern← ∅
13 foreach RPi ∈ ResultCandidates do
14 foreach tpk ∈ (MatchingTriplePattern− {RPi}) do
15 if match(G,RPi ∪ {tpk})= true then
16 add RPi ∪ {tpk} to MatchingGraphPattern

17 T ← one element in ResultCandidates
18 cr =

card(T)
card(Psub)

The algorithm takes the two graph pattern as input for which cr is to be cal-
culated. In the initialisation phase the pattern Psuper is skolemised (line 1) and
the resulting graph G is matched with every triple pattern in Psub individually
(line 5). The matching triple patterns are stored in the setMatchingTriplePattern
(line 7). Further, MatchingGraphPattern is initialised with a set of graph pat-
terns that match the graph G (line 9), where each of these initial graph patterns
contain exactly one of the matching triple patterns.

The algorithm keeps running as long as additional larger graph patterns are
found that are contained in Psuper, i.e., that have a result binding from G

(lines 10–16). The outer for loop in the execution phase iterates over the (largest)
found matching graph patterns in ResultCandidates (line 13). In the inner for

loop (line 14) the algorithm extends the considered graph pattern with one of
the matching triple patterns. If the resulting larger graph pattern matches G, the
pattern is stored (lines 15–16). The algorithm terminates when no larger graph
patterns that match G can be found (line 16).

In the worst case with respect to the runtime of Algorithm 4 the analysed
graph patterns of template and service discription are equivalent. In such a case
with cr = 1.0 the calculation time is equivalent to the calculation with a naive ap-
proach since all sets in 2Psub are evaluated. However, for the scenario of resource
search it can be expected, that the amount of templates and descriptions to com-
pare is quite high, where the majority of template and description pairs have
a very low matching degree or do not match at all. Under these circumstances

5.4 ranking 158

the proposed algorithm provides significant advantages with its pruning capa-
bilities: In the best case with respect to the runtime the analysed graph patterns
do not match (cr = 0.0). In this case the algorithm would identify the individ-
ual triple patterns tpi ∈ Psub as not matching with Psuper and do no further
calculations at all.

To apply the cr metric to the search of resource descriptions given a resource
template, the containment degree has to be calculated for the input pattern and
output pattern. In particular, it has to be calculated to what degree the input pat-
tern of the resource description is contained in the input pattern of the resource
template. Furthermore, it has to be calculated to what degree the output pat-
tern in the resource template is contained in the output pattern of the resource
description. The resulting values (crinput and croutput) provide an insight how
well a resource description matches a given resource template in terms of pattern
containment, rather than just relying on a binary matching decision.

5.4.2 Vocabulary-based metric

Intuitively the metrics psr and rsr indicate to what degree a resource description
and a resource template are using the same vocabulary. These vocabulary-based
metrics allow to test whether a description and a template use some of the same
named resources and predicates (and to what degree). Therefore the vocabulary-
based metrics provide a mechanism to discover resources, which are close to a
given template, but are not necessarily completely matching.

ó Definition 22: Predicate Subset Ratio

For two BGPs Psub and Psuper the predicate subset ratio psr for Psub in
Psuper is the fraction of predicates in Psub that are also contained in Psuper.
Let Predsub = {p| 〈s,p,o〉 ∈ Psub} the set of predicates in Psub.
Let Predsuper = {p| 〈s,p,o〉 ∈ Psuper} the set of predicates in Psuper.

psr =
card(Predsub ∩ Predsuper)

card(Predsub)

ó Definition 23: Resource Subset Ratio

For two BGPs Psub and Psuper the resource subset ratio rsr for Psub in
Psuper is the fraction of resources in subject and object position in Psub that
are also contained in Psuper.
Let Resub = {s| 〈s,p,o〉 ∈ Psub ∧ s ∈ U}∪ {o| 〈s,p,o〉 ∈ Psub ∧ o ∈ U} the set
of resources in Psub.

5.4 ranking 159

Let Resuper = {s| 〈s,p,o〉 ∈ Psuper ∧ s ∈ U} ∪ {o| 〈s,p,o〉 ∈ Psuper ∧ o ∈ U}

the set of resources in Psuper.

rsr =
card(Resub ∩ Resuper)

card(Resub)

Similarly to the pattern containment we have to distinguish between the met-
rics for input and output. A template input graph pattern can offer more data
than actually needed by a described resource without endangering their com-
patibility. Therefore, the subset ratios for the input patterns have to measure, to
what degree the named resources (respectively predicates) in the descriptions
are used in the template. For the subset ratios of the output patterns the same
concept applies in the opposite direction, because a described resource can offer
more output data than required by the template. Thus, the subset ratios have
to measure, to what degree the named resources (respectively predicates) in the
template are used in the description. In particular, for a resource description
(ipd,opd) and a resource template (ipt,opt) the vocabulary based metrics are
given by

psrinput =
card(predicates in ipt∩ predicates in ipd)

card(predicates in ipd)

psroutput =
card(predicates in opt∩ predicates in opd)

card(predicates in opt)

rsrinput =
card(resources in ipt∩ resources in ipd)

card(resources in ipd)

rsroutput =
card(resources in opt∩ resources in opd)

card(resources in opt)

Note, that if a graph pattern is completely contained in another pattern (i.e.,
cr=1.0), the subset ratios must necessarily result in a metric of 1.0.

The vocabulary-based metrics do not regard the structure of the graph pat-
terns to match resources descriptions and templates. The metrics rsr and psr are
therefore less precise discovery metrics compared to cr, i.e., even if all vocabulary-
based subset ratios result in a value of 1.0, it is not guaranteed, that resource
description and template match in terms of pattern containment. On the other
hand, if cr=1.0 for the input and output patterns, a complete match is guaran-
teed. However, the vocabulary-based metrics are less computationally expensive
to calculate. To achieve a scalable discovery system rsr and psr can be used to
filter service descriptions for a given template: If either rsr or psr result in a value
of 0.0, it can be inferred without additional calculation that the value of cr has
to be 0.0. Furthermore, other low values for rsr and psr can be used as thresh-
olds: If one of the vocabulary-based metrics falls below the defined threshold,
the calculation of cr can be omitted. The setting of this threshold depends on
the required reaction time of the resource search system, as well as the desired
values for precision and recall.

5.4 ranking 160

. Example 33

An application developer is looking for a concert recommendation service
for a Web-based application. In particular, users are supposed to identify
a band they like, as well as the location where the users want to go to a
concert. The application subsequently should show concerts by bands that
are similar to the provided band including the ticket prices for the concert.
As the application is not specifically a mobile app, for which GPS might
be available, the developer does not expect to have longitude and latitude
information available.

The developer formulates a resource template and matches it against
the descriptions of the two recommendation resources of ACME:

• acme:simpleRecommender expects a band and a location in the pay-
load, and returns a concert of a similar band as recommendation, but
no information on ticket prices.

• acme:complexRecommender expects a band as well as longitude and
latitude data in the request payload, and returns a concert of a simi-
lar band including ticket prices as recommendation.

Thus the application has enough information to invoke the interaction
with acme:simpleRecommender, which will not provide all the desired in-
formation, since no data about the price of concert tickets are delivered
by acme:simpleRecommender. Interacting with acme:complexRecommender

would provide all the desired information, but the application does not
have enough data to enact the interaction; specifically the latitude and
longitude coordinates of the location are missing.

Figure 32 shows how the template of the provider is matched against the
recommendation resource description. Table 11 lists the metrics resulting
from the matching of template and descriptions. It can be seen how the psr
and rsr metrics can serve as an estimation for the more precise cr metric.

In the given example no perfect match for the template can be found,
i.e., neither of the recommendation resources matches in input as well as
in output. Thus the application developer has to decide:

resolution 1 Choose acme:simpleRecommender and forgo some of the
desired results or acquire them from another Linked API.

resolution 2 Choose acme:complexRecommender and try to acquire miss-
ing information for the request, e.g., with the help of another Linked
API, which allows to resolve locations to latitude and longitude co-
ordinates.

In terms of ranking with regard to the input acme:simpleRecommender

would be preferred over acme:complexRecommender, but with regard to
the output acme:complexRecommender would have to be preferred over
acme:simpleRecommender. If a definite order of the resources is required,
a weighted average can be calculated from the input and output metrics.

5.5 search architecture 161

The weights reflect which of the resolution strategies is preferred by the
developer.

Figure 32: Search of recommendation resources by matching template with descriptions.

Table 11: Metrics for matching template with recommendation resource descriptions as
shown in Figure 32.

simple recommender complex recommender

input output input output

pattern containment YES NO NO YES

cr 1.0 0.71 0.33 1.0

psr 1.0 0.8 0.4 1.0

rsr 1.0 0.66 0.5 1.0

5.5 search architecture

In this section we propose an architecture for systems to search for Web re-
sources, where the described metrics can be calculated. In particular, our ar-
chitecture comprises a resource description and resource template repository
in a cloud-based environment, where descriptions as well as templates can be
submitted, managed, and the metrics for every combination of description and

5.5 search architecture 162

template can be retrieved. The insight pursued in the architecture to achieve scal-
ability is that the calculation of the metrics for every combination of description
and template can be structured as a MapReduce problem [24].

Work already exists on the provision of REST-based repositories for service de-
scriptions, and the design of such repositories according to Linked Data princi-
ples [79, 85]. We extend these approaches to resource descriptions as well as tem-
plates. Both description and template repository are identified by a URI. Users
can send two BGPs in the payload of a POST request to both repositories as
resource description or template respectively. When a description or template is
submitted to a repository, a URI-identified resource is created containing both
BGPs (i.e., the BGPs for input and output). In the standard REST manner, the
resource can be retrieved by GET, updated by PUT with new BGPs, and it can
be removed by a DELETE.

The architecture does not strictly adhere to the definition of Linked APIs, as
the resources and communicated messages are BGPs rather then RDF graphs
(cf. Definition 13). However, the BGPs can be embedded in RDF documents, to
achieve a full adherence to the definition of Linked APIs. E.g., the BGPs can be
part of more holistic service descriptions (like Linked USDL [86]), that detail
business and operational aspects beyond the technical perspective of resource
interaction as proposed in [110].

By managing templates as persistent resources in the same way as descriptions,
matching against the descriptions becomes an on-going task. The described met-
rics are calculated in two directions, depending on the creation of new descrip-
tion or template resources:

• When a new resource template is uploaded and a resource is created, the
template is matched against every existing resource description.

• When a new resource description is uploaded and a resource is created,
every existing template is matched against the new description.

To search for an entry resource for a given task a template can be submit-
ted. Every submitted template is stored and matched with all currently stored
resource descriptions, i.e., the system checks for the containment of the input
and output patterns and calculates the metrics Specifically, the input and out-
put BGPs of the submitted template and all descriptions are parsed and the
resource URIs in subject and object position are extracted as well as the URIs
of all predicates. The sets of resource and predicate URIs are used to calculate
the vocabulary-based metrics rsr and psr. All descriptions that do not reach an
rsr– and psr–value above a pre-defined threshold are not further considered for
matching, as these descriptions do not use the same vocabularies to a sufficient
degree.

Subsequently the system calculates the metric cr for the template and the de-
scriptions that resulted in vocabulary-based metric values above the threshold.
In particular, the variables in the input template and the output descriptions are
substituted with generated URIs, resulting in a template input and description
output graphs. Thus, Algorithm 4 can be applied to calculate cr by evaluating

• subsets of the description input BGPs over the template input graph, and

5.5 search architecture 163

• subsets of the template output BGP over the description output graphs.

Each set of metrics, generated in this way, for every combination of template and
service descriptions is assigned a URI and stored as resource. Additionally, links
from the template and description resources to the resource that contains the
corresponding matching metric values are added. Thus, users can lookup the
results for the template they submitted.

We employ an analogous process to allow resource descriptions to be updated,
or to populate the system with new resource descriptions. A Service provider
can submit (via POST request) resource descriptions, which are stored in the
system and matched with all existing resource templates. The resulting metrics
are also tagged with an identifier and complement the already existing results.
Thus, every combination of template and service description has a set of results
that is persistently saved and can be retrieved from the system.

If a search system is populated with descriptions for many resources, the
amount of calculations for determining all the metrics can be quite high. How-
ever, the calculation of every individual metric for the comparison of a template
with a resource description is a self-contained problem. This allows to perform
the matching process in a parallelised fashion, where the calculation of a set of
metrics for individual pairs of templates and descriptions are executed on dif-
ferent machines. Specifically, the matching of several BGPs can be described as
a MapReduce process, which can be realised e.g., with Apache Hadoop96, an
open-source MapReduce implementation. To foster scalability the overall com-
putation job of calculating all metrics of a submitted template (or description)
for every existing description (template) is divided into smaller sub-tasks, which
can be executed in parallel on different nodes in a cluster of machines (map func-
tion). Hadoop retrieves and combines the results of these sub-tasks to achieve the
overall goal of the original computation job (reduce function).

For this purpose Hadoop implements a distributed file system, which spans
over an arbitrary number of computers. Data is stored on blocks of this file sys-
tem; these blocks are distributed randomly over all nodes in the cluster. Hadoop
executes sub-tasks on the nodes that contain the blocks with the input data for
the task. Therefore, an important consideration with any MapReduce problem
is the locality of data; i.e., that the computation is reasonably well isolated from
the communication of large amounts of data. Additionally, the blocks can be
replicated several times to provide a safe mechanism against failure of nodes.

The resource descriptions, templates and matching results can be stored on the
distributed storage. The system automatically calculates the matching metrics,
when a template (or description) is submitted. Hadoop transfers and executes
the code, that implements the matching mechanism, together with the submitted
template (description) to the nodes where the resource descriptions (templates)
are stored, rather than moving the data to the code. Hadoop tries to balance the
workload of the nodes, taking into account that some nodes contain the same
data blocks due to the described replication mechanism.

After calculation of the metrics, the map function assigns a time stamp and the
identifier to every set of metrics and passes the generated results to the reduce

96http://hadoop.apache.org; retrieved 2015-04-10.

http://hadoop.apache.org

5.6 experiments 164

function. In our case the reduce function just gathers all the results and saves
them persistently on the distributed file system. Since the proposed architecture
also allows for updating templates and service descriptions by re-submitting a
new version with the same identifier, we have to run a second house-keeping
MapReduce job. This second job compares the newly generated results with the
results that are already stored. If an existing description or template is updated
with new BGPs, some of the generated results will also have the same identifiers.
If results with the same identifiers are detected the older results are deleted,
which can be checked by using the mentioned time stamps.

5.6 experiments

In the following we describe experiments to evaluate the scalability of our pro-
posed architecture. Specifically, we evaluate the scalability of an implementation
of the proposed search architecture and measure the scalability of the system
with respect to employed computation nodes in a cluster of machines. Further,
we confirm the capability of the algorithm to calculate the containment degree of
two BGPs, to prune non matching patterns, which implies runtime advantages
in scenarios where most matched BGPs are not expected to match.

All experiments are executed on the following hardware setup:

setup c A cluster of 11 virtual machines managed by the OpenNebula97 toolkit.
Each machine in the cluster operates with a singular virtual core based on
an Intel Xeon E5520 processor at 2.27 GHz and 2 GB main memory. The
operating system on each virtual machine is Ubuntu 10.04 LTS with 2.6.32

kernel.

We implement the search architecture on top of a Hadoop cluster (release
version 1.0.0) connecting the virtual machines. This implies, that our cluster runs
on top of a cloud, fully abstracting from actual physical hosts. The OpenNebula
environment allows us to easily add and remove virtual machines as computing
nodes to the cluster.

We develop a generator to create random pairs of related BGPs, that act as
resource description or template in our system. The graph pattern pairs can be
interpreted as service descriptions or templates, because both are syntactically
equivalent. The generator allows for a precise control of the data used to evaluate
the system. The BGPs are created within boundaries, set by parameters with
respect to the following aspects of the BGPs:

• Minimum and maximum amount of triple patterns in a BGP.

• Probability that the same resources are used in the input and output pat-
tern.

• Probability that the same predicates are used in the input and output pat-
tern.

• Amount of variables present in the BGPs.

97http://www.opennebula.org; retrieved 2015-04-10.

http://www.opennebula.org

5.6 experiments 165

• Probability that the same variables are used in the input and output pat-
tern.

The concrete values for the parameters are chosen randomly between set bound-
aries with equal distribution individually for every generated BGP.

5.6.1 Distributed Search

To evaluate our distributed search architecture we generate 10 000 pairs of BGPs
used as service descriptions. Both BGPs in these descriptions are composed out
of a random number between 5 and 50 triple patterns. The resources in subject
or object position, in the triple patterns for every respective pair are drawn out
of a local resource pool consisting of 10 to 50 different URI-identified resources.
These local resources are randomly drawn out of a global pool of 500 resources.
The predicates in the triple patterns of the descriptions are also randomly drawn
out of 3 to 25 different predicates in a local predicate pool. And again this local
pool is randomly chosen out of a global pool of 250 predicates. So the differ-
ence between the local and global pools is, that the global pools of resources
and predicates are used for all pairs of BGPs, whereas the local predicates and
resources are only consistent for one pair of BGPs. Thus the size of the local pool
determines the likelihood that the same URIs are used in input and output pat-
tern of a description. This approach is chosen to establish a credible relationship
between input and output and therefore results in credible datasets.

Additionally, the generator uses variables, rather than resources, in subject
or object position with a probability of 0.3 in each case. A variable is used in
predicate position with a probability of 0.2. For every BGP pair between 2 and 10

different variables are used. Since variables are already only locally valid within
one description, no global variable pool to draw from is needed. Additionally, we
generated a pair of graph patterns used as template with the same parameters.

We populate the search system with the resource description using different
amounts of virtual machines, i.e., we use one, two, five, eight and ten worknodes
in the Hadoop cluster, which are deployed on virtual machines of OpenNebula.
With every configuration of nodes one additional virtual machine is needed to
act as namenode for the Hadoop cluster. The namenode is used for the coordi-
nation of the distributed computation tasks, but does no computation itself.

The distributed HDFS storage is configured with a block size of 1MB with
a replication of factor 3 for every used block. The 10 000 resource descriptions
corresponded to 8.16MB of data and are therefore stored over 3 x 9 blocks on
the cluster. We chose this setup to illustrate the capabilities of our architecture
to leverage distributed computing to improve the performance of the system.
However, in a real enterprise scenario, the settings of a discovery cloud could be
easily adapted to the amount of templates and descriptions on the system. Our
evaluation gives an insight on how to decide on such adaptions. The setup with
only one worknode is equivalent to the processing in a non-distributed fashion
and allows a comparison of the calculation on a stand-alone machine with the
calculation in a distributed manner.

The matching process for the generated template over all service descriptions
is triggered on every setup. We measure the execution time needed for the match-

5.6 experiments 166

Table 12: Overall execution time to calculate matching metrics and combine results for
one template against 10 000 descriptions.

worknodes execution time (sec) mean (sec) std. dev. (sec) std. err. (sec)

1 1. 477.3

2. 463.3 470.3 9.9 7.0

2 1. 283.7

2. 277 280.4 4.7 3.3

5 1. 169.7

2. 156 162.9 9.6 6.8

8 1. 155.3

2. 167.1 161.2 8.2 5.9

10 1. 134

2. 121.7 127.8 8.7 6.2

ing itself (i.e., first MapReduce job) and the overall execution time, which in-
cludes the time needed for the second MapReduce job to combine the newly
calculated with the preexisting metric sets. To provide for comparable results re-
garding the overall time, we do not pre-populate the system with results. There-
fore, the second MapReduce job uses every time only the 10 000 newly calculated
metric sets as input (i.e., one for every combination of service description and
template).

To account for fluctuations in network traffic we measured the matching on
each setup twice. The results are shown in Table 12 and Table 13 with a graphical
representation in Figure 33. The calculation of the metrics alone took between
81.4 sec, on ten worknodes, and 395.8 sec, on one worknode. The overall execu-
tion time was measured between 121.7 sec using ten worknodes, and 477.3 sec on
one worknode. It can be seen, that the system scales well by adding additional
worknodes between one to five nodes. Between five and eight nodes the execu-
tion time stagnates almost completely. By using ten worknodes in the Hadoop
cluster the measured times are further decreased compared to the setup with
eight worknodes, although the improvement is less significant than in the area
between one and five worknodes.

The behavior between one and five worknodes is easily accounted for by the
possibility to execute more computations simultaneously. The more nodes are on
the system, the more sub-tasks can be launched at the same time. By employing
up to eight worknodes no further decrease in execution time is achieved because
of the ability of the Hadoop system to balance the workload with fewer nodes.
The amount of blocks the input data fills on the HDFS storage limits the number
of map tasks that can be executed. So in our case not more than nine map tasks
can be launched (eight, and one with a small input size of 0.19MB). Therefore
on settings with one to five worknodes almost every worknode has to execute
at least two map tasks. This provides the namenode with more possibilities to
distribute the map tasks among the worknodes.

5.6 experiments 167

Table 13: Execution time to calculate matching metrics for one template against 10 000

descriptions.

worknodes execution time (sec) mean (sec) std. dev. (sec) std. err. (sec)

1 1. 394.3

2. 395.8 395 1 0.7

2 1. 223.6

2. 219.3 221.5 3 2.1

5 1. 120.6

2. 124 122.4 2.4 1.7

8 1. 121.7

2. 117.2 119.5 3.2 2.3

10 1. 81.4

2. 82.1 81.8 0.5 0.4

The load balancing takes into account that the worknodes contain non-dis-
junctive subsets of the overall input data set, due to the replication of blocks.
The tasks can therefore be assigned in such a way that all employed worknodes
contribute an equal amount of work to the calculation of the metrics. By using,
for example, eight nodes, the coordinating namenode loses this possibility to
some extent, since it always prefers parallel computation over load balancing
(i.e., it will not wait for a worknode to finish if another worknode is already
available). This also explains why a further, though diminishing, decrease of
execution time is achieved by using more than eight nodes. In a setting with ten
worknodes the namenode can (and must) decide not to use one of the nodes
(and assigning the insignificant small map job to another). In this situation the
least useful worknode is chosen to be disregarded by the namenode.

The effect of losing the possibility to balance the workload between the nodes
can easily be avoided by choosing a smaller blocksize that allows for more map
tasks than available nodes. But for our evaluation the choice of a larger block
size allows the observation, that the improvement in terms of execution speed
can not only be attributed to the increase of computation resources (i.e., adding
additional CPUs and memory with every worknode), but also to the strategic
distribution and execution of matching sub-tasks.

By comparing the results of the overall execution time and the matching time
without housekeeping, similar observations can be made. The time needed to ex-
ecute the second MapReduce job decreases due to the employment of a second
worknode compared to a setup with only one node, but no further improve-
ment can be achieved by adding additional nodes. The inputs for this second
job are the calculated metrics, for every combination of service descriptions and
template, which amounts to 2.68 MB of data. So only 3 MapJobs can be started
simultaneously.

The standard deviation and standard error of the individual results are also
shown in the tables, and represented in the figure (as bars). For the overall ex-
ecution time the standard deviation ranges between 4.7 sec and 9.9 sec, which

5.6 experiments 168

0

100

200

300

400

500

600

1 2 5 8 10

se
co

n
d

s

employed nodes

overall runtime

exclusive matching

Figure 33: Graphical representation of execution time measurements

results in a standard error between 3.3 sec and 7 sec. For the exclusive matching
process the standard deviation is measured between 0.5 sec and 3.2 sec, which
results in a standard error between 0.4 sec and 2.3 sec. Those values clearly indi-
cate the stability of the system.

Our results are not only valid for matching a template over resource descrip-
tions, but also for populating the discovery system with a new resource descrip-
tion, because they are syntactically equivalent and the process to submit a new
service description is symmetrical to the process of submitting a new template.
In other words the 10 000 used graph pattern tuples could have just as well been
interpreted as templates, that are already stored on the system and one new
service description (i.e., the former template) is submitted.

5.6.2 Containment Ratio Calculation

To further evaluate our algorithm for the calculation of the cr metric we match
a resource template with five sets each containing 1 000 resource descriptions
on a single virtual machine. The parameters for the generation of every set of
service descriptions are fixed except for the size of the global resource pool. In
every service description the graph patterns contain 20 triple patterns for each
input and output. Variables appear with a probability of 0.2 in every position of
a triple pattern. The predicates in the triple patterns are randomly chosen from
a local pool with 4 predicates drawn out of a global pool with 20 predicates.
The local resource pool from which subject and object of the triple patterns are
drawn contains 4 resources. The global resource pool for the individual sets of
resource descriptions contains between 4 and 8 resources respectively.

5.6 experiments 169

Table 14: Measurements of runtime to calculate cr for a template against 1 000 descrip-
tions.

resources in global pool 4 5 6 7 8

average cr value for input pattern 0.62 0.42 0.35 0.3 0.28

average cr value for output pattern 0.68 0.5 0.41 0.35 0.31

combined cr value (mean) 0.65 0.46 0.38 0.33 0.29

measured calculation time (sec) 85.7 51.1 42.9 35.7 32.6

Figure 34: Graphical representation of measured runtime to calculate cr for a template
against 1 000 descriptions.

The narrow margins for the boundaries of the pattern generation allow us to
influence the expected matching degree represented by cr. The smaller the size
of the global resource pool from which the descriptions are generated, the more
descriptions have a high matching degree. We measure the necessary time to
calculate all cr values (i.e. 1000 values for each input and output respectively)
for each set of resource descriptions matched with the template.

The results shown in Table 14 show that the measured time to calculate the
metrics ranges between 85.7 seconds and 32.6 seconds for the different service
description sets. Table 14 shows the average cr-value for the different sets, gen-
erated with different sized global resource pools. An increase of the size of the
global resource pool leads to a sub-proportional decrease of the average cr values.
The necessary computation time decreases linear with a declining containment
ratio. The decrease of calculation time can solely be attributed to the ability of
the employed algorithm to prune not matching BGP subsets, since the patterns
in the different service description sets are equal in size.

For a given resource search request (i.e., a resource template) we expect that
most service descriptions in a repository will have low cr degrees. Intuitively
this means, that very few resources will match the specific requirements formu-
lated in a search request. Therefore, the ability of our algorithm to exclude not
matching service descriptions fast is desirable for a scalable discovery system.

For the graphical representation of the results in Figure 34 we combined the
average cr values of input and output to a mean value.

5.7 related work 170

5.7 related work

A whole strand of work revolves around graph matching in the context of ontol-
ogy alignment and schema matching, e.g., [73]. The graph matching employed
in these approaches is effectively similar to the graph pattern matching we use
for resource search, although used for a different purpose. For a survey on graph
matching with a focur on problem variation emerging from different domains
see [34].

There are several discovery approaches that employ services descriptions based
on description logic [40, 8, 67]. For OWL-S a discovery mechanism was proposed
that uses OWL-S profiles to advertise services on a registry and to describe re-
quests [115]. A matchmaker determines if a request matches the advertised ser-
vices based on a scoring function, that classifies matches as exact, plugin, sub-
sumed or failed. Li et al. [67] use a similar classification to determine matching
degrees of service requests and service profiles. However, a discovery approach
for services described with class-based annotations does not take into account
the relationship between input and output messages of the communicated data.

Junghans et al. [55] argues that an intersection-based matchmaking of service
requests and descriptions, based on the service functionality is insufficient, be-
cause it can not be guaranteed that a discovered service is able to satisfy the
formalised request or that enough data is known to invoke the service. Further
intersection-based matchmaking lacks the identification of the missing data. We
addressed this problem by proposing a containment ratio, which can be used to
identify the subset of data in a search request that matches. Thus, the missing
information can be identified providing a clear understanding of necessary and
potentially missing data with respect to the request.

Goal-driven approaches allow agents to formalize a goal with respect to the
problem they try to solve [112, 57, 63]. Here a given goal has to be matched
against the effects of invoked services. Stollberg et al. proposes to employ a hi-
erarchy of goal templates [111] in the context of a state-based formal model of
service descriptions to improve the scalability of the discovery process. The state-
based model is similar to the communication of resource states in REST archi-
tectures, as used by Linked APIs. However, our approach focuses on the search
of resources from which an application has to discover dynamically changing
links, rather than statically identifying all services necessary to achieve a goal.
Goal-driven approaches abstract from the details of service invocation by the
definition of goals.

RESTdesc, another member of the Linked API family, proposes an interactive
goal-driven discovery approach [120]. Here services are described with graph
patterns in N3 rules. An agent starts with a high level plan that describes what
he wants to achieve and discovers services during runtime by leveraging hy-
permedia links. However, mechanisms for an agent to decide on the degree of
relevance of a found service to achieve the goals are not addressed.

5.8 summary and future work 171

5.8 summary and future work

In this chapter we focused on the use of BGPs as descriptions of resources. The
interaction and manipulation of Web resources is based on the traversal of links
to dynamically discover resources at runtime in the retrieved representations of
other resources. However, applications require resources, which serve as entry
point to begin a series of interactions. BGP-based descriptions of resources can
be used to identify the functionality provided by a Linked API and in turn allows
to identify suitable entry resources.

Specifically, we described how BGPs can be used to describe the input and
output payload of requests to interact with Web resources with respect to the
applied HTTP method of the request, thus answering research question 3.1. In
particular, POST requests require descriptions for input and output, where it is
important to encode how the output is generated by calculations carried out over
the input. We establish the relationship between input and output descriptions
with shared variables in both BGPs.

Further, we described how search requests for resources can be formulated as
resource templates, which also consist of BGPs. Templates can be used to encode
the data available to an application to use in a request, as well as the the infor-
mation sought after by the application. Similar to the resource descriptions, the
templates express the relationship between potential input and desired output,
with shared variables between BGPs. Templates can be matched with resource
descriptions by verifying the graph pattern containment of the BGPs. Thus, it is
possible to identify the resources that provide desired information, which can be
requested using available information. Therefore, we have described how graph
pattern-based descriptions can be used to search for resources with desired func-
tionality and answered research question 3.2.

To allow for resource ranking beyond a binary matching decision for given
search requests, we proposed two vocabulary-based metrics as well as a metric to
measure the containment degree of two BGPs. The metrics allow to identify the
resources that match a given template best, even if they do not match perfectly.
The vocabulary-based metrics give a heuristic for the matching by describing
if template and description use the same vocabularies. The containment metric
describes to what degree a BGP is subsumed by another.

To allow for a scalable calculation of the metrics for large sets of templates
and descriptions we provided an algorithm for computing the containment met-
ric, which prunes non-matching results. Further, we described an architecture of
a search system built upon distributed computing, which allows to divide the
matching into sub-tasks executed in a cluster of machines. Thus, we answered
research question 3.3 by describing how search results can be ranked in a scal-
able fashion, given graph pattern-based search requests. Finally, we conducted
experiments, which provide evidence that the proposed architecture allows to
match templates and descriptions in a scalable fashion in a distributed environ-
ment and confirmed the pruning capabilities of the algorithm to calculate the
containment metric.

In summary we can confirm Hypothesis 3, as we have shown how graph pat-
terns to describe the possible interactions and manipulations of Web resources

5.8 summary and future work 172

can be leveraged to allow for the scalable search of resources, which can serve
as entry point for an interaction.

Future work related to the topic covered in this chapter can extend the ex-
pressiveness of the descriptions and search requests. Even as the actual state
representations of resources remain at the level of BGPs, more expressive de-
scriptions can allow to encode additional information about the resources. E.g.,
the fact that some triples only appear under certain circumstances in the RDF
graph of a resource can be expressed by disjunctive graph patterns or optional
triple patterns. Furthermore, arithmetic constraints on the values that are bound
for the variables in the BGPs can establish more precise descriptions.

Analogously, templates can profit from more expressive descriptions by allow-
ing to formulate more precise search requests. An increase in expressiveness of
descriptions and templates requires an extended definition for the matching and
ranking. Thus, an approach with more expressive descriptions and templates
results in a more complex search process, which in turn can effect the required
time to calculate matching degrees.

Another aspect of future work relates to the properties that are described and
ultimately used to search for resources. We focused on the input and output
payload when interacting with resources, which can be extended to the pre- and
post-conditions before and after an interaction. However, other aspects can be
relevant for the search of resources, like the costs for using the resources or
potential service level agreements offered by a provider. Comprehensive search
approaches can integrate such information regarding business and operational
aspects with the technical information about the interaction with the resources.

Finally, the provision for inference and reasoning capabilities in the calcula-
tion of the metrics can also be the subject of future work. The containment of
a pattern in another is not necessarily directly given, but could be entailed by
schema information of the used vocabularies in the descriptions. An extended
search approach could retrieve relevant schemata and logically derive matching
descriptions for given templates, thus going beyond the direct BGP subsump-
tion.

6
C O N C L U S I O N

6.1 summary

We conclude by reiterating the hypotheses of this thesis and summarising our
contributions to answer the associated research questions, before we outline po-
tential future work related to the covered topics in Section 6.2.

� Hypothesis 1

Declarative rule-based programs can be utilised to define desired dynamic
retrieval and processing of Web resources for client applications in such a
way that retrieval and processing can be executed in a highly parallel stream-
ing fashion, thus enabling applications with short runtimes. (Chapter 3)

Research question 1.1 is concerned with the specification of desired dynamic in-
teractions with Web resources based on on-the-fly discovered schemata. For this
purpose we described rule-based programs that encode reasoning features inter-
twined with link traversal specifications. In particular, we introduced the notion
of request rules, which infer required network lookups from the processed data.
Request rules complement deduction rules, which infer and materialise implicit
information from the processed data.

Research question 1.2 asks for the design of a data-driven parallel execution
model for the interactions that is capable of on-the-fly processing of arriving
data and schema information. To answer this question we introduced a paral-
lel execution model for the evaluation of queries and rules, in which operators
of a physical evaluation plan schedule each other in a data-driven manner. The
scheduling of our parallel execution model avoids overhead from inter-process
communication and thread scheduling of the operating system. At the same
time the push approach caters to scenarios with dynamic network requests. Fur-
thermore, we described several threading models to realise the execution model
for the parallel evaluation of programs and identify the different trade-offs of
the individual threading models. Finally, we described for each of the identified
threading models how to probe for the termination of the evaluation, i.e., the
identification of the processing fixpoint.

Research question 1.3 addresses the performance of the implementations of
our execution model in the face of a intertwined data-processing and network
lookups. We have shown that it is possible to separate the network-related work-
load from the processing-related workload. The separation of workload allows

173

6.1 summary 174

to balance available computing resources between data processing and network
lookups to minimise overall runtime depending on the application scenario.

In summary we confirm Hypothesis 1 insofar as we have described rule pro-
grams for Linked Data resources, which can be executed in a parallel scheduling
execution model. Our experiments have confirmed that the proposed approach
is capable of balancing the workload resulting from lookups and data process-
ing. Although the network parameters unavoidably influence the execution be-
haviour our approach achieves short runtimes in relation to the time necessary
to perform individual lookups.

� Hypothesis 2

The principles of Linked Open Data and Representational State Transfer
can be combined to an interaction model for APIs based on state transitions
that allows to design rule-based programs also for the manipulation of Web
resources, which are dynamically discovered via link traversal, while pre-
serving short runtimes. (Chapter 4)

Research question 2.1 is concerned with the combination of Linked Data and
REST and the formalisation as a state transition system. First we identified dis-
crepancies and synergies between Linked Data and REST. In particular, we de-
scribed how the differences can be resolved and how both approaches can be
combined to Linked APIs. The described combination defines a general archi-
tecture for APIs that overcomes drawbacks and realise advantageous of both
approaches. Following the definition of Linked APIs we introduced a state tran-
sition interaction model for REST APIs as formal grounding for the manipulation
of resources exposed in Linked APIs. Specifically, we defined the combined rep-
resentation of Web resources as states, which allows to interpret manipulation
upon the resources as transitions between states.

Research question 2.2 asks how manipulations of dynamically via link traver-
sal discovered Web resources can be defined based on the state transition in-
teraction model. We extend the previously introduced rule-based programs to
allow for the specification of resource manipulations. Specifically, we introduce
transition rules, which describe desired state transitions in the described model
for Linked APIs. The manipulated resources as well as the messages to trigger
state changes can be dynamically derived from the processed data, i.e., from
retrieved resources. Thus, our approach allows for a definition of intended re-
source changes conditioned to the current state of resources leveraging reasoning
capabilities to align heterogeneous vocabularies.

Research question 2.3 requires to define the execution semantics of the declara-
tive rule-based program for the manipulation of Web resources. We characterised
the potentially non-deterministic behaviour of the rule-based programs and in-
troduce strategies to avoid or mitigate undesired effects. We further detailed the
behaviour of the repeated evaluation of programs with resource manipulations
and have shown how an iterative execution can be employed to achieve the goals
of an application.

In summary we confirm Hypothesis 2. Although we cannot design autonomous
agents that independently pursue given goals, we have shown how rule-based

6.1 summary 175

programs that are defined over Linked Data resources adhering to REST prin-
ciples can be used to define a dynamic application logic. Specifically, applica-
tions can be designed with such rule programs that react dynamically to the
current state of Web resources and derive actions according to declarative rules
to achieve defined states.

� Hypothesis 3

Graph patterns to describe the possible interactions and manipulations of
Web resources can be leveraged to allow for the scalable search of resources,
which can serve as entry point for an interaction. (Chapter 5)

Research question 3.1 asks how potential interactions and manipulations of Web
resources can be described with graph patterns with respect to applied oper-
ations. We described how BGPs can be used to describe input data of requests
and output data of responses. In particular, we defined the relationship of the de-
scriptions to the state transition interaction model and defined the semantics of
the descriptions with respect to the HTTP methods applied in an interaction. We
have also shown how BGPs can be used to define interaction templates, which
can be used to formulate search requests for identifying resources.

Research question 3.2 addresses the use of graph patterns for the search of
resources. We described how templates as search requests can be matched with
descriptions by identifying the sub-graph containment of the involved BGPs.
Additionally, we defined several metrics to describe to what degree a given inter-
action template in a search request matches a resources description. In particular,
we defined two metrics based on the used vocabulary terms in template and de-
scription, which can be used as preliminary heuristics for matching and ranking.
Further, we provided a metric based on the actual containment of triple patterns
in the BGPs of description and template, which allows to precisely determine, if
a resource matches a given search request and to identify differences.

Research question 3.3 is concerned with the identification of search results
in a scalable fashion given a graph pattern-based search request. Thus, we de-
scribed an architecture to match and rank BGP-based resource descriptions with
interaction templates. Specifically, the architecture also updates existing search
requests, when new resource descriptions are committed to the system. We have
shown how service search is divided into sub-tasks, which can be leveraged in
a distributed computing architecture. Based on an algorithm to quickly prune
non-matching triple patterns, the proposed architecture achieves scalability with
respect to the amount of descriptions and search requests.

In summary we confirm Hypothesis 3. In the context of input and output de-
scriptions we have shown the applicability of graph patterns to describe Linked
data resources, which are represented with graph-structured data. While we did
not focus on other aspects of services, which could be described, our experiments
provide evidence that a scalable system built upon graph pattern descriptions
can be designed to search for resources with respect to their technical usability.

6.2 future work 176

6.2 future work

Future work building upon the proposed rule based language to combine data
processing and network lookups in conjunction with the parallel execution model
(Hypothesis 1) relates to an increased control over the data retrieval and process-
ing. Provenance tracking for the retrieved data items could allow for more ex-
pressive restrictions on which resources to retrieve, e.g., a limitation of lookups
only to resources that are reachable with a specified number of hops from the
initial resources. Thus, the processed data could be even further constrained to
the strictly necessary resources that are required to achieve the goal of an ap-
plication. Provenance tracking for a system that combines reasoning with query
answering over interlinked resources presents a challenge, as some statements
will be derived from other triples that come from different resources. Therefore,
derived triples will have a provenance relation to multiple resources.

A more extensive control over the evaluation of rule-based programs can also
relate to a more deliberate scheduling of processing and lookup tasks. The size
of the input queues could additionally be taken into account to determine when
lookups are executed, to limit the maximal size of the queues and in turn reduce
the memory footprint of the program evaluation. Furthermore, the parsing of
retrieved data could be separated into an additional thread pool of CPU-bound
tasks, thus allowing for more possibilities to assign and distribute available com-
puting power.

Another aspect of future research work can be a higher level of parallelisation:
Beyond the parallel evaluation of programs over multiple cores, the applicability
of the proposed execution model in machine clusters can be studied. As the
communication between machines in a cluster introduces additional overhead in
processing, a significantly increased computing power can be applied. Thus the
arising challenge becomes the decision making how to distribute tasks over the
available machines. E.g., the operator plan could be divided in order to minimise
inter-machine communication, or dedicated machines for network lookups could
be introduced.

Future work building upon the proposed rule language for the processing,
interaction, and manipulation of Web resources according to REST principles
(Hypothesis 2) can be concerned with the expressiveness of the rules. Disjunctive
graph patterns in rules bodies as well as the possibility to include arithmetic
expressions would result in a more expressive semantic. However, an increase
of semantic expressiveness comes at the price of increased computational costs
and can generally result in undesired characteristics that have to be mitigated.
E.g., arithmetic expressions in a rule based program might lead to the creation
of new identifiers, and thus inherently prevent the existence of a fixpoint for the
program evaluation. The identification of the right balance between complexity
and expressiveness to cover a large set of potential use-cases while preserving
acceptable runtimes is an important challenge.

Finally, the combination of process modeling approaches with the presented
declarative rule-based approach can allow to incorporate explicit choreographies
in the data-driven interaction with Web resources. Specifically, the inclusion of
suitable choreography representations in the initial graph of an LD-Fu program

6.2 future work 177

in conjunction with the repeated execution of the program to iteratively execute
a defined process can be explored. Establishing a bridge between explicit process
definitions and declarative rule programs might result in a better control over the
execution, while retaining dynamic reactions and fostering parallel execution.

With respect to resource search by leveraging graph pattern-based descrip-
tions (Hypothesis 3) future work also relates to the expressivity of the descrip-
tions and search requests. Independently from the expressivity of the actual re-
source state representations, more expressive descriptions can allow to encode
additional information about the resources. Templates can profit from more ex-
pressive descriptions analogously by allowing to formulate more precise search
requests. An increase in expressiveness of descriptions and templates requires
an extended definition for the matching and ranking. Thus, an approach with
more expressive descriptions and templates results in a more complex search
process, which in turn can affect the required time to calculate matches.

Another aspect of future work relates to the properties that are described and
ultimately used to search for resources. Beyond a description of input and out-
put payload when interacting with resources other non-technical aspects can
be relevant for the search of resources, like the costs for using the resources or
potential service level agreements offered by a provider. Comprehensive search
approaches can integrate such information regarding business and operational
aspects with the technical information about the interaction with the resources.

Finally, the provision for inference and reasoning capabilities in the calcula-
tion of the metrics can also be the subject of future work. The containment of
a pattern in another is not necessarily directly given, but could be inferred by
leveraging schema information of the used vocabularies in the descriptions. An
extended search approach could retrieve relevant schemata and logically derive
matching descriptions for given templates.

Overall there are several research topics that can benefit from the contributions
described in this thesis, which have the potential to enhance the interaction and
manipulation of Web resources. Given the increasing importance of Web-based
applications, advances in this field can provide valuable insights for the use of
remote knowledge on the Web.

R E F E R E N C E S

[1] Serge Abiteboul, Omar Benjelloun, and Tova Milo. Positive active XML. In
Proceedings of the Symposium on Principles of Database Systems, Paris, France,
2004. ACM International Conference Proceeding Series.

[2] Foto N. Afrati and Jeffrey D. Ullman. Transitive closure and recursive data-
log implemented on clusters. In Proceedings of the International Conference on
Extending Database Technology, Berlin, Germany, 2012. ACM International
Conference Proceeding Series.

[3] Gene M. Amdahl. Validity of the single processor approach to achiev-
ing large scale computing capabilities. In Proceedings of the Spring Joint
Computer Conference, Atlantic City, New Jersey, 1967. ACM International
Conference Proceeding Series.

[4] Darko Anicic, Sebastian Rudolph, Paul Fodor, and Nenad Stojanovic.
Stream reasoning and complex event processing in ETALIS. Semantic Web
Journal, 3(4):397–407, 2012.

[5] Darko Anicic, Sebastian Rudolph, Paul Fodor, and Nenad Stojanovic.
Stream reasoning and complex event processing in ETALIS. Semantic Web
Journal, 3(4):397–407, 2012.

[6] Dominic Battre, Stephan Ewen, Fabian Hueske, Odej Kao, Volker Markl,
and Daniel Warneke. Nephele/PACTs: A programming model and execu-
tion framework for web-scale analytical processing. In Proceedings of the
ACM Symposium on Cloud Computing, Indianapolis, USA, 2010. ACM Inter-
national Conference Proceeding Series.

[7] David Beckett and Tim Berners-Lee. Turtle - terse RDF triple lan-
guage. W3C team submission, W3C, 2011. URL http://www.w3.org/

TeamSubmission/turtle/. accessed April 14, 2015.

[8] Boualem Benatallah, Mohand-Said Hacid, Alain Leger, Christophe Rey,
and Farouk. On automating Web services discovery. International Journal
on Very Large Databases, 14(1):84–96, 2005.

[9] Tim Berners-Lee. Linked Data. Technical report, W3C, 2006. URL http:

//www.w3.org/DesignIssues/LinkedData. accessed April 14, 2015.

[10] Tim Berners-Lee. Read-write Linked Data. Technical report, W3C, 2009.
URL http://www.w3.org/DesignIssues/ReadWriteLinkedData.html. ac-
cessed April 10, 2015.

[11] Tim Berners-Lee and Dan Connolly. Notation3 (N3): A readable RDF
syntax. W3C team submission, W3C, 2011. URL http://www.w3.org/

TeamSubmission/n3/.

178

http://www.w3.org/TeamSubmission/turtle/
http://www.w3.org/TeamSubmission/turtle/
http://www.w3.org/DesignIssues/LinkedData
http://www.w3.org/DesignIssues/LinkedData
http://www.w3.org/DesignIssues/ReadWriteLinkedData.html
http://www.w3.org/TeamSubmission/n3/
http://www.w3.org/TeamSubmission/n3/

bibliography 179

[12] Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web. Sci-
entific American, 284(5):34–43, 2001.

[13] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked Data - the story
so far. International Journal of Semantic Web and Information Systems, 5(3):
1–22, 2009.

[14] Daniele Bonetta, Achille Peternier, Cesare Pautasso, and Walter Binder. S:
A scripting language for high-performance RESTful Web services. In Pro-
ceedings of the Symposium on Principles and Practice of Parallel Programming,
Bangalore, India, 2012. ACM International Conference Proceeding Series.

[15] Tim Bray, Jean Paoli, C Michael Sperberg-McQueen, Eve Maler, and
François Yergeau. Extensible markup language (XML) 1.1 (second edition).
W3C recommendation, W3C, 2006. URL http://www.w3.org/TR/xml11/.
accessed April 14, 2015.

[16] Carmen Brenner, Anna Fensel, Dieter Fensel, Andreea Gagiu, Iker Lariz-
goitia, Birgit Leiter, Ioannis Stavrakantonakis, and Andreas Thalhammer.
How to domesticate the multi-channel communication monster. Techni-
cal report, STI2 Online Communication Working Group, 2012. URL http:

//oc.sti2.at/sites/default/files/oc_short_handouts.pdf. accessed
April 10, 2015.

[17] Dan Brickley and Ramanathan V. Guha. RDF vocabulary description
language 1.0: RDF Schema. W3C recommendation, W3C, 2004. URL
http://www.w3.org/TR/rdf-schema/. accessed April 14, 2015.

[18] Marco Cadoli, Luigi Palopoli, and Maurizio Lenzerini. Datalog and de-
scription logics: Expressive power. In Proceedings of Joint Conference on
Declarative Programming, Gardi, Italy, 1997. Springer.

[19] Jorge Cardoso and Hansjörg Fromm. Electronic services. In Jorge Car-
doso, Hansjörg Fromm, Stefan Nickel, Gerhard Satzger, Rudi Studer, and
Christof Weinhardt, editors, Fundamentals of Service Systems. Springer, 2015.

[20] Jorge Cardoso and Amit Sheth. Semantic e-workflow composition. Journal
of Intelligent Information Systems, 21(3):191–225, 2003.

[21] Jorge Cardoso and Amit P. Sheth. Semantic Web Services, Processes and Ap-
plications. Springer, 2006.

[22] Don Carney, Uğur Çetintemel, Alex Rasin, Stan Zdonik, Mitch Cherniack,
and Mike Stonebraker. Operator scheduling in a data stream manager. In
Proceedings of the International Conference on Very Large Data Bases, Berlin,
Germany, 2003. Springer.

[23] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weer-
awarana. Web services description language (WSDL) 1.1. W3C recommen-
dation, W3C, 2001. URL http://www.w3.org/TR/wsdl. accessed April 14,
2015.

http://www.w3.org/TR/xml11/
http://oc.sti2.at/sites/default/files/oc_short_handouts.pdf
http://oc.sti2.at/sites/default/files/oc_short_handouts.pdf
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/wsdl

bibliography 180

[24] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data process-
ing on large clusters. Communications of the ACM, 51(1):107–113, 2008.

[25] Joel Farrell and Holger Lausen. Semantic annotations for WSDL and XML
schema. W3C recommendation, W3C, 2007. URL http://www.w3.org/TR/

sawsdl/. accessed April 14, 2015.

[26] Dieter Fensel. Triple-space computing: Semantic Web services based on
persistent publication of information. In Proceedings of the IFIP Interna-
tional Conference on Intelligence in Communication Systems, Bangkok, Thai-
land, 2004. Springer.

[27] Dieter Fensel, Holger Lausen, Axel Polleres, Jos de Bruijn, Michael Stoll-
berg, Dumitru Roman, and John Domingue. Enabling Semantic Web Services:
The Web Service Modeling Ontology. Springer, 2006.

[28] Niels Ferguson and Bruce Schneier. Practical Cryptography. John Wiley &
Sons, Inc., New York, USA, 2003.

[29] Roy Fielding. Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis, University of California and Irvine, 2000.

[30] Valeria Fionda, Claudio Gutierrez, and Giuseppe Pirró. Semantic naviga-
tion on the Web of data: Specification of routes, web fragments and actions.
In Proceedings of International Conference on World Wide Web, Lyon, France,
2012. ACM International Conference Proceeding Series.

[31] Charles Forgy. Rete: A fast algorithm for the many pattern/many object
pattern match problem. Artificial Intelligence, 19(1):17–37, 1982.

[32] Michael Franklin, Alon Halevy, and David Maier. From databases to datas-
paces: a new abstraction for information management. SIGMOD Records,
34(2):27–33, 2005.

[33] Hansjörg Fromm and Jorge Cardoso. Foundations. In Jorge Cardoso, edi-
tor, Fundamentals of Service Systems. Springer, 2015.

[34] Brian Gallagher. Matching structure and semantics: A survey on graph-
based pattern matching. AAAI Fall Symposium Series, 6:45–53, 2007.

[35] Fabien Gandon and Guus Schreiber. RDF 1.1 XML syntax. W3C recommen-
dation, W3C, 2014. URL http://www.w3.org/TR/rdf-syntax-grammar/.
accessed April 14, 2015.

[36] Martin Gardner. Mathematical games: The fantastic combinations of John
Conway’s new solitaire game “life”. Scientific American, 233(4):120–123,
1970.

[37] David Gelernter. Generative communication in Linda. ACM Transactions
on Programming Languages and Systems, 7(1):80–112, 1985.

[38] Birte Glimm and Markus Krötzsch. SPARQL beyond subgraph matching.
In Proceedings of the International Semantic Web Conference. Springer, 2010.

http://www.w3.org/TR/sawsdl/
http://www.w3.org/TR/sawsdl/
http://www.w3.org/TR/rdf-syntax-grammar/

bibliography 181

[39] Birte Glimm, Aidan Hogan, Markus Krötzsch, and Axel Polleres. OWL:
Yet to arrive on the Web of data? In Proceedings of the WWW Workshop on
Linked Data on the Web, Lyon, France, 2012. CEUR-WS.

[40] Javier Gonzalez-Castillo, David Trastour, and Claudio Bartolini. Descrip-
tion logics for matchmaking of services. In Proceedings of the KI Workshop
on Applications of Description Logics, Vienna, Austria, 2001. CEUR-WS.

[41] Goetz Graefe. Query evaluation techniques for large databases. ACM
Computing Surveys, 25(2):73–169, 1993.

[42] Benjamin N. Grosof, Ian Horrocks, Raphael Volz, and Stefan Decker. De-
scription logic programs: Combining logic programs with description
logic. In Proceedings of the International Conference on World Wide Web, Bu-
dapest, Hungary, 2003. ACM International Conference Proceeding Series.

[43] Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques Moreau,
Henrik Frystyk Nielsen, Anish Karmarkar, and Yves Lafon. SOAP version
1.2: Messaging framework. W3C recommendation, W3C, 2007. URL http:

//www.w3.org/TR/2007/REC-soap12-part1-20070427/. accessed April 14,
2015.

[44] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. LUBM: a benchmark for
OWL knowledge base systems. Journal of Web Semantics, 3(2-3):158–182,
2005.

[45] Andreas Harth and Sebastian Speiser. On completeness classes for query
evaluation on Linked Data. In Proceedings of the National Conference on Arti-
ficial Intelligence, Totonto, Canada, 2012. AAAI.

[46] Andreas Harth, Katja Hose, Marcel Karnstedt, Axel Polleres, Kai-Uwe Sat-
tler, and Jürgen Umbrich. Data summaries for on-demand queries over
Linked Data. In Proceedings of the International Conference on World Wide
Web, Raleigh, North Carolina, USA, 2010. ACM International Conference
Proceeding Series.

[47] Andreas Harth, Craig Knoblock, Steffen Stadtmüller, Rudi Studer, and Pe-
dro Szekely. On-the-fly integration of static and dynamic sources. In Pro-
ceedings of the ISWC Workshop on Consuming Linked Data, Sydney, Australia,
2013. CEUR-WS.

[48] Olaf Hartig, Christian Bizer, and Johann-Christoph Freytag. Executing
SPARQL queries over the Web of Linked Data. In Proceedings of the In-
ternational Semantic Web Conference, Washington, USA, 2009. Springer.

[49] Norman Heino and Jeff Z. Pan. RDFS reasoning on massively parallel
hardware. In Proceedings of the International Semantic Web Conference, Boston,
USA, 2012. Springer.

[50] Antonio Garrote Hernandez and Maria N. Moreno Garcia. A formal defi-
nition of RESTful Semantic Web services. In Proceedings of the WWW Work-
shop on RESTful Design, Raleigh, USA, 2010. ACM International Conference
Proceeding Series.

http://www.w3.org/TR/2007/REC-soap12-part1-20070427/
http://www.w3.org/TR/2007/REC-soap12-part1-20070427/

bibliography 182

[51] Ernest Friedman Hill. Jess in Action: Java Rule-Based Systems. Manning
Publications Co., 2003.

[52] Jan Philipp Hofste. Linked API wrapping with Karma to integrate struc-
tured Web services into the Semantic Web. Bachelor thesis, Karlsruhe
Institute of Technology, Karlsruhe, 2014.

[53] Aidan Hogan, Andreas Harth, and Axel Polleres. SAOR: Authoritative
reasoning for the Web. In Proceedings of the Asian Semantic Web Conference,
Bangkok, Thailand, 2008. Springer.

[54] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fet-
terly. Dryad: Distributed data-parallel programs from sequential building
blocks. In Proceedings of the European Conference on Computer Systems, Lis-
bon, Portugal, 2007. ACM International Conference Proceeding Series.

[55] Martin Junghans, Sudhir Agarwal, and Rudi Studer. Towards practical
Semantic Web service discovery. In Proceedings of the Extended Semantic
Web Conference, Heraklion, Greece, 2010. Springer.

[56] Michael Kay. XSL transformations version 2.0. W3C recommendation,
W3C, 2007. URL http://www.w3.org/TR/xslt20/. accessed April 14, 2015.

[57] Uwe Keller, Ruben Lara, Holger Lausen, Axel Polleres, and Dieter Fensel.
Automatic location of services. In In Proceedings of the European Semantic
Web Conference, Heraklion, Greece, 2005. Springer.

[58] Felix Leif Keppmann and Steffen Stadtmüller. Semantic RESTful APIs for
dynamic data sources. In Proceedings of the ESWC 2014 Workshop on Services
and Applications over Linked APIs and Data, Heraklion, Greece, 2014. CEUR-
WS.

[59] Jacek Kopecky, Tomas Vitvar, Carine Bournez, and Joel Farrell. SAWSDL:
Semantic annotations for WSDL and XML schema. IEEE Internet Comput-
ing, 11(6):60–67, 2007.

[60] Jacek Kopecky, Tomas Vitvar, and Dieter Fensel. MicroWSMO: Semantic
description of RESTful services. Technical report, WSMO Working Group,
2008.

[61] Reto Krummenacher, Barry Norton, and Adrian Marte. Towards Linked
Open Services. In Future Internet Symposium, Berlin, Germany, 2010.
Springer.

[62] Günter Ladwig and Thanh Tran. Linked Data query processing strategies.
In Proceedings of the International Semantic Web Conference, Shanghai, China,
2010. Springer.

[63] Ruben Lara, Miguel Corella, and Pablo Castells. A flexible model for lo-
cating services on the Web. International Journal of Electronic Commerce, 12

(2):11–40, 2007.

http://www.w3.org/TR/xslt20/

bibliography 183

[64] Jonathan Lathem, Karthik Gomadam, and Amit P. Sheth. SA-REST and
(S)mashups : Adding semantics to RESTful services. In Proceedings of the
International Conference on Semantic Computing, Irvine, USA, 2007. IEEE In-
ternet Computing.

[65] Edward A. Lee and Pravin Varaiya. Structure and Interpretation of Signals
and Systems. Addison-Wesley, 2011.

[66] Alon Y. Levy, Alberto O. Mendelzon, and Yehoshua Sagiv. Answering
queries using views. In Proceedings of the ACM SIGMOD Symposium on
Principles of Database Systems, San Jose, USA, 1995. ACM International Con-
ference Proceeding Series.

[67] Lei Li and Ian Horrocks. A software framework for matchmaking based
on Semantic Web technology. In Proceedings of the International Conference
on World Wide Web, New York, USA, 2003. ACM International Conference
Proceeding Series.

[68] Maria Maleshkova, Carlos Pedrinaci, and John Domingue. Investigating
Web APIs on the World Wide Web. In Proceedings of the European Conference
on Web Services, Lugano, Switzerland, 2010. IEEE Computer Society.

[69] Frank Manola and Eric Miller. RDF primer. W3C recommendation, W3C,
2004. URL http://www.w3.org/TR/rdf-primer/. accessed April 14, 2015.

[70] Alessandro Margara, Jacopo Urbani, Frank van Harmelen, and Henri Bal.
Streaming the Web: Reasoning over dynamic data. Journal of Web Semantics,
25(0):24–44, 2014.

[71] Deborah L. McGuinness and Frank van Harmelen. OWL web ontology
language. W3C recommendation, W3C, 2004. URL http://www.w3.org/

TR/owl-features/. accessed April 14, 2015.

[72] George H. Mealy. A method for synthesizing sequential circuits. Bell Sys-
tem Technical Journal, 34(5):1045–1079, 1955.

[73] Sergey Melnik, Hector Garcia-Molina, and Erhard Rahm. Similarity flood-
ing: a versatile graph matching algorithm and its application to schema
matching. In Proceedings of the International Conference on Data Engineering,
San Jose, USA, 2002. IEEE Computer Society.

[74] Robert B. Miller. Response time in man-computer conversational transac-
tions. In Proceedings of the Fall Joint Computer Conference, New York, USA,
1968. ACM International Conference Proceeding Series.

[75] Robin Milner. Communicating and Mobile Systems: Pi-calculus. Cambridge
University Press, 1999.

[76] Boris Motik, Yavor Nenov, Robert Piro, Ian Horrocks, and Dan Olteanu.
Parallel materialisation of datalog programs in centralised, main-memory
RDF systems. In Proceedings of the AAAI Conference on Artificial Intelligence,
Québec, Canada, 2014. AAAI.

http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/owl-features/

bibliography 184

[77] Jakob Nielsen. Usability Engineering. Morgan Kaufmann Publishers Inc.,
1993.

[78] Talal H. Noor, Quan Z. Sheng, Abdullah Alfazi, Anne H.H. Ngu, and Jeriel
Law. CSCE: A crawler engine for cloud services discovery on the World
Wide Web. In Proceedings of the International Conference on Web Services
(ICWS), Santa Clara Marriott, USA, 2013. IEEE Computer Society.

[79] Barry Norton, Mick Kerrigan, and Adrian Marte. On the use of transfor-
mation and Linked Data principles in a generic repository for Semantic
Web services. In Proceedings of the ESWC Workshop on Ontology Repositories
and Editors for the Semantic Web, Heraklion, Greece, 2010. CEUR-WS.

[80] Peter F. Patel-Schneider. Reasoning in RDFS is inherently serial, at least in
the worst case. In Proceedings of the International Semantic Web Conference,
Boston, USA, 2012. Springer.

[81] Cesare Pautasso. RESTful Web service composition with BPEL for REST.
Journal of Data and Knowledge Engineering, 68(9):851–866, 2009.

[82] Cesare Pautasso and Erik Wilde. Why is the Web loosely coupled?: A
multi-faceted metric for service design. In Proceedings of the International
Conference on World Wide Web, Madrid, Spain, 2009. ACM International
Conference Proceeding Series.

[83] Cesare Pautasso, Olaf Zimmermann, and Frank Leymann. RESTful web
services vs. "big"’ Web services: Making the right architectural decision.
In Proceedings of the International Conference on World Wide Web, New York,
USA, 2008. ACM International Conference Proceeding Series.

[84] Carlos Pedrinaci, John Domingue, and Reto Krummenacher. Services and
the Web of data: An unexploited symbiosis. In Proceedings of the AAAI
Spring Symposium Workshop on Linked Data meets Artificial Intelligence, Palo
Alto, USA, 2010. AAAI press.

[85] Carlos Pedrinaci, Dong Liu, Maria Maleshkova, David Lambert, Jacek
Kopecky, and John Domingue. iServe: a Linked Services publishing plat-
form. In Proceedings of the ESWC Workshop on Ontology Repositories and
Editors for the Semantic Web, Heraklion, Greece, 2010. CEUR-WS.

[86] Carlos Pedrinaci, Jorge Cardoso, and Torsten Leidig. Linked USDL: A
vocabulary for web-scale service trading. In Valentina Presutti, Claudia
d’Amato, Fabien Gandon, Mathieu d’Aquin, Steffen Staab, and Anna Tor-
dai, editors, The Semantic Web: Trends and Challenges. Springer, 2014.

[87] Tim Peierls, Brian Goetz, Joshua Bloch, Joseph Bowbeer, Doug Lea, and
David Holmes. Java Concurrency in Practice. Addison-Wesley Professional,
2005.

[88] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics and com-
plexity of SPARQL. ACM Transactions on Database Systems, 34:16:1–16:45,
2009.

bibliography 185

[89] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics and com-
plexity of SPARQL. ACM Transactions on Database Systems, 34(3):1–45, 2009.

[90] Danh Le Phuoc, Minh Dao-Tran, Josiane Xavier Parreira, and Manfred
Hauswirth. A native and adaptive approach for unified processing of
linked streams and linked data. In Proceedings of the International Seman-
tic Web Conference, Bonn, Germany, 2011. Springer.

[91] King Jonathan Davis Randal. An overview of production systems. In El-
cock and Michie, editors, Machine Representations of Knowledge. John Wiley,
1977.

[92] Anand S. Rao and Michael P. Georgeff. BDI agents: From theory to prac-
tice. In Proceedings of the International Conference on Multi-agent Systems, San
Francisco, California, 1995. MIT Press.

[93] Jinghai Rao and Xiaomeng Su. A survey of automated Web service com-
position methods. In Jorge Cardoso and Amit Sheth, editors, Semantic Web
Services and Web Process Composition, volume 3387 of Lecture Notes in Com-
puter Science, pages 43–54. Springer, 2005.

[94] Leonard Richardson and Sam Ruby. RESTful Web Services. O’Reilly Media,
2007.

[95] Marco Luca Sbodio and Claude Moulin. SPARQL as an expression lan-
guage for OWL-S. In Proceedings of the ESWC Workshop on OWL-S: Experi-
ences and Directions, Innsbruck, Austria, 2007.

[96] Max Schmachtenberg, Christian Bizer, and Heiko Paulheim. Adoption of
the Linked Data best practices in different topical domains. In Proceed-
ings of the International Semantic Web Conference, Riva del Garda, Italy, 2014.
Springer.

[97] Michael Schmidt, Michael Meier, and Georg Lausen. Foundations of
SPARQL query optimization. In Proceedings of the International Conference
on Database Theory. Springer, 2010.

[98] Claude Shannon. A mathematical theory of communication. Bell System
Technical Journal, 27:379–423, 1948.

[99] Elena Simperl, Reto Krummenacher, and Lyndon Nixon. A coordination
model for triplespace computing. In Proceedings of the International Confer-
ence on Coordination Models and Languages, Paphos, Greece, 2007. Springer.

[100] Michael Sintek and Stefan Decker. TRIPLE - a query, inference, and trans-
formation language for the Semantic Web. In Proceedings of the International
Semantic Web Conference, Sardinia, Italy, 2002. Springer.

[101] Steve Speicher, John Arwe, and Ashok Malhotra. Linked Data platform
1.0. W3C recommendation, W3C, 2015. URL http://www.w3.org/TR/2015/

REC-ldp-20150226/. accessed April 14, 2015.

http://www.w3.org/TR/2015/REC-ldp-20150226/
http://www.w3.org/TR/2015/REC-ldp-20150226/

bibliography 186

[102] Sebastian Speiser and Andreas Harth. Taking the LIDS off data silos. In
Proceedings of the International Conference on Semantic Systems, Graz, Austria,
2010. ACM International Conference Proceeding Series.

[103] Sebastian Speiser and Andreas Harth. Integrating Linked Data and ser-
vices with Linked Data services. In Proceedings of the Extended Semantic
Web Conference, Heraklion, Greece, 2011. Springer.

[104] Steffen Staab and Rudi Studer, editors. Handbook on Ontologies. Springer,
2009.

[105] Steffen Stadtmüller and Andreas Harth. Towards data-driven program-
ming for RESTful linked data. In Proceedings of the ISWC Workshop on Pro-
gramming the Semantic Web, Boston, USA, 2012. CEUR-WS.

[106] Steffen Stadtmüller and Barry Norton. Scalable discovery of Linked APIs.
International Journal of Metadata and Semantics and Ontologies, 8(2):95–105,
2013.

[107] Steffen Stadtmüller, Sebastian Speiser, and Andreas Harth. Future chal-
lenges for Linked APIs. In Proceedings of the ESWC Workshop on Services
and Applications over Linked APIs and Data, Montpellier, France, 2013. CEUR-
WS.

[108] Steffen Stadtmüller, Sebastian Speiser, Andreas Harth, and Rudi Studer.
Data-Fu: A language and an interpreter for interaction with read/write
Linked Data. In Proceedings of the International Conference on World Wide Web,
Rio de Janeiro, Brazil, 2013. ACM International Conference Proceeding
Series.

[109] Steffen Stadtmüller, Sebastian Speiser, Martin Junghans, and Andreas
Harth. Comparing major Web service paradigms. In Proceedings of the
ESWC Workshop on Services and Applications over Linked APIs and Data, Mont-
pellier, France, 2013. CEUR-WS.

[110] Steffen Stadtmüller, Jorge Cardoso, and Martin Junghans. Service seman-
tics. In Jorge Cardoso, Hansjörg Fromm, Stefan Nickel, Gerhard Satzger,
Rudi Studer, and Christof Weinhardt, editors, Fundamentals of Service Sys-
tems. Springer, 2015.

[111] Michael Stollberg, Martin Hepp, and Jörg Hoffmann. A caching mecha-
nism for Semantic Web service discovery. In Proceedings of the International
Semantic Web Conference, Busan, Korea, 2007. Springer.

[112] Michael Stollberg, Uwe Keller, Holger Lausen, and Stijn Heymans. Two-
phase Web service discovery based on rich functional descriptions. In Pro-
ceedings of the European Semantic Web Conference, Innsbruck, Austria, 2007.
Springer.

[113] Rudi Studer, V. Richard Benjamins, and Dieter Fensel. Knowledge engi-
neering: Principles and methods. Data Knowledge Engineering Journal, 25

(1-2):161–197, 1998.

bibliography 187

[114] Rudi Studer, Stephan Grimm, and Andreas Abecker. Semantic Web Services:
Concepts and Technologies and Applications. Springer, 2007.

[115] Katia Sycara, Massimo Paolucci, Anupriya Ankolekar, and Naveen Srini-
vasan. Automated discovery and interaction and composition of Semantic
Web services. Journal of Web Semantics, 1(1):27–46, 2003.

[116] Mohsen Taheriyan, Craig Knoblock, Pedro Szekely, , and Jose Luis Ambite.
Rapidly integrating services into the Linked Data cloud. In Proceedings of
the International Semantic Web Conference, Boston, USA, 2012. Springer.

[117] Petros Tsialiamanis, Lefteris Sidirourgos, Irini Fundulaki, Vassilis
Christophides, and Peter Boncz. Heuristics-based query optimisation for
SPARQL. In Proceedings of the International Conference on Extending Database
Technology, Berlin, Germany, 2012. ACM International Conference Proceed-
ing Series.

[118] Jürgen Umbrich, Aidan Hogan, Axel Polleres, and Stefan Decker. Improv-
ing the recall of live Linked Data querying through reasoning. In Pro-
ceedings of the International Conference on Web Reasoning and Rule Systems,
Vienna, Austria, 2012. Springer.

[119] Jacopo Urbani, Spyros Kotoulas, Jason Maassen, Frank van Harmelen, and
Henri E. Bal. OWL reasoning with WebPIE: Calculating the closure of
100 billion triples. In Proceedings of the Extended Semantic Web Conference.
Springer, 2010.

[120] Ruben Verborgh, Thomas Steiner, Davy Van Deursen, Rik Van de Walle,
and Joaquim Gabarr Valls. Efficient runtime service discovery and con-
sumption with hyperlinked RESTdesc. In Proceedings of the International
Conference on Next Generation Web Services Practices, Salamanca, Spain, 2011.

[121] Ruben Verborgh, Andreas Harth, Maria Maleshkova, Steffen Stadtmüller,
Thomas Steiner, and Mohsen Taheriyan. Survey on semantic description
of REST APIs. In Cesare Pautasso, Erik Wilde, and Rosa Alarcón, editors,
REST: Advanced Research Topics and Practical Applications. Springer, 2014.

[122] Tomas Vitvar, Jacek Kopecky, Maciej, and Dieter Fensel. WSMO-Lite:
Lightweight semantic descriptions for services on the Web. In Proceed-
ings on the European Conference on Web Services, Halle, Germany, 2007. IEEE
Computer Society Press.

[123] W3C SPARQL Working Group. SPARQL 1.1 overview. W3C recommen-
dation, W3C, 2013. URL http://www.w3.org/TR/sparql11-overview/. ac-
cessed April 14, 2015.

[124] Jim Webber. REST in Practice: Hypermedia and Systems Architecture. O’Reilly
Media, 2010.

[125] Michael Weiss and G. R. Gangadharan. Modeling the mashup ecosystem:
Structure and growth. R&D Management Journal, 40(1):40–49, 2009.

http://www.w3.org/TR/sparql11-overview/

bibliography 188

[126] Gio Wiederhold. Mediators in the architecture of future information sys-
tems. IEEE Computer, 25(3):38–49, 1992.

[127] Erik Wilde. REST and RDF granularity, 2009. Available at http://dret.

typepad.com/dretblog/2009/05/rest-and-rdf-granularity.html and
accessed 6th March 2015.

[128] Annita N. Wilschut and Peter M. G. Apers. Dataflow query execution in
a parallel main-memory environment. In Proceedings of the International
Conference on Parallel and Distributed Information Systems, Miami, USA, 1991.
ACM International Conference Proceeding Series.

[129] Jiehan Zhou, Juha-Pekka Koivisto, and Eila Niemea. A survey on Semantic
Web services and a case study. In Proceedings of the International Conference
on CSCW in Design, 2006.

http://dret.typepad.com/dretblog/2009/05/rest-and-rdf-granularity.html
http://dret.typepad.com/dretblog/2009/05/rest-and-rdf-granularity.html

L I S T O F F I G U R E S

Figure 1 Example of an RDF graph (graphical representation). . . . 16

Figure 2 Linked Data information resource provided by the New
York Times (HTML representation) with statements about
the document at the bottom. 19

Figure 3 Illustration of an external link between two resources as
equivalence relation. (Some prefix definitions omitted for
brevity.) . 21

Figure 4 Architecture of services provided via APIs, implemented
in client application for the consumption by end users. . . 26

Figure 5 Proportion of different protocols used for open Web inter-
faces. 27

Figure 6 Illustration of the data flow between physical operator
plan and request components of a system to process linked
programs. 47

Figure 7 Logical operator plan for linked program in Listing 6 and
query in Example 13. 52

Figure 8 Physical operator plan for linked program in Listing 6 and
query in Example 13. 52

Figure 9 Synthetic tree dataset shapes: (a) a path (d = 3,b = 1), (b)
a star (d = 1,b = 3), and (c) a tree (d = 2,b = 3). Leaf
nodes are circles with dashed lines. 72

Figure 10 Throughput of of parallel processing of LUBM 200 with
custom rule set. 75

Figure 11 Throughput of of parallel processing of LUBM 200 with
OWL LD rule set. 76

Figure 12 Throughput of of parallel processing of LUBM 200 with
custom rule set; number of cores adapted to number of
threads (average of 5 runs). 79

Figure 13 Throughput of of parallel processing of LUBM 200 with
OWL LD rule set; number of cores adapted to number of
threads (average of 5 runs). 80

Figure 14 Runtime to process locally generated synthetic tree dataset
with rules for symmetry and transitivity depending on
tree with breadth b = 2 and increasing depth. 82

Figure 15 Throughput of system retrieving a tree dataset without
deduction rules with breadth b = 6 and depth d = 6

depending on number of request threads; data is retrieved
by network requests with about 2ms delay per request. . . 83

189

list of figures 190

Figure 16 Throughput of system retrieving a tree dataset with rules
for symmetry and transitivity with breadth b = 6 and
depth d = 6 depending on number of request threads;
data is retrieved by network requests with about 200ms
delay per request. 84

Figure 17 Runtime to process retrieved synthetic tree dataset with-
out derivation rules depending on tree with breadth b = 2

and increasing depth; data is retrieved via network requests. 86

Figure 18 Average frequency of 1 000 repeated runs of a linked pro-
gram retrieving a tree dataset with breadth b = 2 and
increasing depth and materialising triples for symmetry
and transitivity. 87

Figure 19 UML Activity Diagram illustrating the dissemination of
news. 96

Figure 20 Illustration of a wrapper mediating between a client ap-
plication and a social network API. 106

Figure 21 State transition of a LDSTS, with excerpts of two states. . . 111

Figure 22 Dataflow of ACME’s dissemination system 119

Figure 23 Points of time as distinct states, driven by an LD-Fu pro-
gram. 126

Figure 24 Interactions with a set number resources. 130

Figure 25 Average runtime from ten executions for different evalu-
ation set-ups to retrieve and modify one set of number
resources. 133

Figure 26 Interactions with ten sets number resources. 134

Figure 27 Average runtime from ten executions for different evalu-
ation set-ups to retrieve and modify ten sets of number
resources. 135

Figure 28 Average execution and planning time from ten executions
of a LD-Fu program to interact and manipulate sets of
1000 resources. 136

Figure 29 Examples of the evolution of a cell (center) according to
Game of Life laws. 137

Figure 30 Visualisation of the population (black) on a Game of Life
board. 139

Figure 31 Runtime to derive and execute evolution changes in a
Game of Life implemented with LD-Fu. 141

Figure 32 Search of recommendation resources by matching tem-
plate with descriptions. 161

Figure 33 Graphical representation of execution time measurements 168

Figure 34 Graphical representation of measured runtime to calcu-
late cr for a template against 1 000 descriptions. 169

Figure 35 Illustration of the operator plan for the OWL LD rule set
(part 1). Recursion to input operator omitted for clarity. . 196

Figure 36 Illustration of the operator plan for the OWL LD rule set
(part 2). Recursion to input operator omitted for clarity. . 197

L I S T O F TA B L E S

Table 1 URI namespaces and prefixes of the fictitious company
ACME used throughout the thesis 7

Table 2 Overview of HTTP methods (excerpt) and their character-
istics. 30

Table 3 Result sizes of programs with different complexity re-
trieving information about a sports stadium. 44

Table 4 Operators used in the logical and physical plans to pro-
cess data. 50

Table 5 Average standard error from 5 LUBM runs for the through-
put between the marked amount of threads for system A. 81

Table 6 Average standard error from 5 LUBM runs for the through-
put between the marked amount of threads for system B. . 81

Table 7 URI prefixes used for social networks and micro blog . . . 96

Table 8 Average runtime from ten executions for different evalu-
ation set-ups to retrieve and modify one set of number
resources. 133

Table 9 Average runtime from ten executions for different evalu-
ation set-ups to retrieve and modify ten sets of number
resources. 135

Table 10 Average execution and planning time from ten executions
of a LD-Fu program to interact and manipulate sets of
1000 resources. 136

Table 11 Metrics for matching template with recommendation re-
source descriptions as shown in Figure 32. 161

Table 12 Overall execution time to calculate matching metrics and
combine results for one template against 10 000 descriptions.166

Table 13 Execution time to calculate matching metrics for one tem-
plate against 10 000 descriptions. 167

Table 14 Measurements of runtime to calculate cr for a template
against 1 000 descriptions. 169

Table 15 Runtime and throughput for LUBM 200 with custom rule
set on Setup A. 198

Table 16 Runtime and throughput for LUBM 200 with custom rule
set on Setup B. 199

Table 17 Runtime and throughput for LUBM 200 with OWL LD
rule set on Setup A. 200

Table 18 Runtime and throughput for LUBM 200 with OWL LD
rule set on Setup B. 201

Table 19 Runtime and throughput for LUBM 200 with custom rule
set and number of active cores adapted to number of
threads on Setup A (part 1). 202

191

list of tables 192

Table 20 Runtime and throughput for LUBM 200 with custom rule
set and number of active cores adapted to number of
threads on Setup A (part 2). 203

Table 21 Runtime and throughput for LUBM 200 with custom rule
set and number of active cores adapted to number of
threads on Setup B (part 1). 204

Table 22 Runtime and throughput for LUBM 200 with custom rule
set and number of active cores adapted to number of
threads on Setup B (part 2). 205

Table 23 Runtime and throughput for LUBM 200 with OWL LD
rule set and number of active cores adapted to number of
threads on Setup A (part 1). 206

Table 24 Runtime and throughput for LUBM 200 with OWL LD
rule set and number of active cores adapted to number of
threads on Setup A (part 2). 207

Table 25 Runtime and throughput for LUBM 200 with OWL LD
rule set and number of active cores adapted to number of
threads on Setup B (part 1). 208

Table 26 Runtime and throughput for LUBM 200 with OWL LD
rule set and number of active cores adapted to number of
threads on Setup B (part 2). 209

Table 27 Runtime and throughput for retrieval of synthetic tree
dataset with breadth b = 6 and depth d = 6 (i.e., 55 986

triple/requests) with about 2 ms delay. 210

Table 28 Runtime and throughput for retrieval of synthetic tree
dataset with breadth b = 6 and depth d = 6 (i.e., 55 986

triple/requests) with about 200 ms delay. 210

Table 29 Runtime and throughput for evaluation of deduction rules
for symmetry and transitivity of locally generated syn-
thetic tree dataset (32 TripleWorker and 64 RequestWorker). . 211

Table 30 Frequency and throughput in 1 000 repeated runs for re-
trieval of synthetic tree dataset and evaluation of deduc-
tion rules for symmetry and transitivity (32 TripleWorker
and 64 RequestWorker). 211

Table 31 Runtime and throughput for retrieval with about 2 ms
and 200 ms delay of synthetic tree dataset and evalua-
tion of deduction rules for symmetry and transitivity (32

TripleWorker and 64 RequestWorker). 212

Table 32 Population, necessary manipulations and elapsed time in
a Game of Life of size 10 x 10 over 100 generations. 213

Table 33 Population, necessary manipulations and elapsed time in
a Game of Life of size 33 x 33 over 100 generations. 214

Table 34 Population, necessary manipulations and elapsed time in
a Game of Life of size 100 x 100 over 100 generations. . . . 215

L I S T O F A L G O R I T H M S

1 Parallel Symmetric Hash Join. 54

2 Control of parallel workers threads 62

3 Adaptive employment of RequestWorker threads 66

4 Determine pattern containment ratio 157

193

A C R O N Y M S

AI Artificial Intelligence

API Application Programming Interfaces

BDI Believe Desire Intention

BGP Basic Graph Pattern

conneg content negotiation

foaf friend-of-a-friend vocabulary

HTTP Hypertext Transfer Protocol

HATEOAS Hypermedia as the engine of application state

LD-Fu Linked Data-Fu

LDP Linked Data Platform

LD Linked Data

LUBM Lehigh University Benchmark

N3 Notation 3

OWL Web Ontology Language

QPI Quick Path Interconnect

RDF Resource Description Format

RDFS RDF Schema

REST Representational State Transfer

RPC remote procedure call

LDSTS Linked Data State Transition System

MSM Minimal Service Model

SAWSDL Semantic annotations for WSDL

SA-REST Semantic annotations for REST

SDK Software Development Kit

SOAP Simple Object Access Protocol

SPARQL SPARQL protocol and RDF query language

194

acronyms 195

SWRL Semantic Web Rule Language

SWS Semantic Web Services

Turtle Terse RDF Triple Language

UI User Interface

URI Uniform Resource Identifier

Web World Wide Web

WSDL Web Service Description Language

WSML Web Service Modeling Language

WSMO Web Service Modeling Ontology

W3C World Wide Web Consortium

A
A P P E N D I X : A D D E N D U M

a.1 owl ld operator plan

O
p
e
ra

to
r

G
ra

p
h

?y
 ?

p
 ?

z
 .

1
8

9
4

6
2

7
7

4
9

|>
<

|
?p

?p
 r

d
f:
ty

p
e
 o

w
l:
Tr

a
n

si
ti

v
e
P

ro
p
e
rt

y
 .

?p
 r

d
fs

:r
a
n

g
e
 ?

c1
 .

8
4

9
8

5
6

9
1

2
|>

<
|

?c
1

?c
1

 r
d
fs

:s
u

b
C

la
ss

O
f

?c
2

 .

1
7

8
5

8
4

9
4

2
1

|>
<

|
?c

1

1
5

6
2

4
9

0
5

9
9

|>
<

|
?c

2

8
0

4
6

0
6

2
1

3
|>

<
|

?c
1

2
0

6
9

1
7

2
0

0
1

|>
<

|
?c

1
 ?

c2

?p
1

 r
d
fs

:s
u

b
P

ro
p
e
rt

y
O

f
?p

2
 .

1
7

2
8

4
1

3
4

4
8

|>
<

|
?p

2

1
6

9
9

7
1

6
2

|>
<

|
?p

2

1
2

2
9

5
5

3
3

3
6

|>
<

|
?p

2

1
1

9
5

3
2

4
4

7
1

|>
<

|
?p

1

2
0

9
0

3
7

1
7

2
7

|>
<

|
?p

2
 ?

p
1

?p
2

 r
d
fs

:r
a
n

g
e
 ?

c
.

?x
 ?

p
 ?

y
 .

2
0

2
6

0
7

3
1

9
9

|>
<

|
?p

1
6

3
9

2
1

1
1

3
5

|>
<

|
?p

3
8

3
9

9
7

7
4

|>
<

|
?p

9
8

3
8

1
7

9
8

0
|>

<
|

?p
 ?

y

8
3

3
0

6
8

6
6

2
|>

<
|

?p
 ?

x
 ?

y

?p
 r

d
f:
ty

p
e
 o

w
l:
S

y
m

m
e
tr

ic
P

ro
p
e
rt

y
 .

?p
2

 r
d
fs

:s
u

b
P

ro
p
e
rt

y
O

f
?p

3
 .

?x
 o

w
l:
sa

m
e
A

s
?y

 .
d
e
d
u

ct
(?

y
 o

w
l:
sa

m
e
A

s
?x

 .
)

1
5

8
6

7
2

6
1

3
9

|>
<

|
?x

 ?
y

1
9

9
0

5
4

1
6

4
8

|>
<

|
?y

?s
 ?

p
 ?

o
 .

1
6

3
5

1
0

8
5

1
6

|>
<

|
?s

1
8

4
6

0
3

7
9

7
7

|>
<

|
?o

d
e
d
u

ct
(?

s
o
w

l:
sa

m
e
A

s
?s

 .
?p

 o
w

l:
sa

m
e
A

s
?p

 .
?o

 o
w

l:
sa

m
e
A

s
?o

 .
)

6
7

6
4

5
7

5
6

5
|>

<
|

?p

?s
 o

w
l:
sa

m
e
A

s
?s

0
 .

?p
2

 r
d
fs

:d
o
m

a
in

 ?
c

.

?p
 r

d
fs

:r
a
n

g
e
 ?

c
.

?p
 r

d
f:
ty

p
e
 o

w
l:
In

v
e
rs

e
Fu

n
ct

io
n

a
lP

ro
p
e
rt

y
 .

6
8

3
1

9
4

0
8

9
|>

<
|

?p
?x

2
 ?

p
 ?

y
 .

?x
 r

d
f:
ty

p
e
 ?

c1
 .

8
8

2
4

6
6

8
2

5
|>

<
|

?x

4
9

5
9

7
7

5
4

1
|>

<
|

?c
1

1
4

2
4

8
3

7
6

7
0

|>
<

|
?x

 ?
c1

?x
 ?

p
 ?

x
 .

1
1

5
3

3
3

9
4

3
4

|>
<

|
?p

?p
 r

d
f:
ty

p
e
 o

w
l:
Ir

re
fl

e
x
iv

e
P

ro
p
e
rt

y
 .

?x
 ?

p
1

 ?
y
 .

6
7

7
4

8
2

1
9

6
|>

<
|

?p
1

5
4

6
1

6
4

0
3

3
|>

<
|

?p
1

1
7

4
8

8
3

9
9

6
6

|>
<

|
?x

 ?
y

?p
1

 o
w

l:
e
q
u

iv
a
le

n
tP

ro
p
e
rt

y
 ?

p
2

 .
d
e
d
u

ct
(?

p
1

 r
d
fs

:s
u

b
P

ro
p
e
rt

y
O

f
?p

2
 .

?p
2

 r
d
fs

:s
u

b
P

ro
p
e
rt

y
O

f
?p

1
 .

)

9
7

5
6

4
5

1
0

1
|>

<
|

?p
2

?y
 ?

p
 ?

x
 .

1
2

2
6

6
1

7
1

6
2

|>
<

|
?p

?p
 r

d
f:
ty

p
e
 o

w
l:
A

sy
m

m
e
tr

ic
P

ro
p
e
rt

y
 .

?c
2

 r
d
fs

:s
u

b
C

la
ss

O
f

?c
3

 .

?c
 r

d
f:
ty

p
e
 o

w
l:
C

la
ss

 .
d
e
d
u

ct
(?

c
rd

fs
:s

u
b
C

la
ss

O
f

o
w

l:
T

h
in

g
 .

?c
 o

w
l:
e
q
u

iv
a
le

n
tC

la
ss

 ?
c

.o
w

l:
N

o
th

in
g
 r

d
fs

:s
u

b
C

la
ss

O
f

?c
 .

?c
 r

d
fs

:s
u

b
C

la
ss

O
f

?c
 .

)

?p
 r

d
f:
ty

p
e
 o

w
l:
D

a
ta

ty
p
e
P

ro
p
e
rt

y
 .

d
e
d
u

ct
(?

p
 o

w
l:
e
q
u

iv
a
le

n
tP

ro
p
e
rt

y
 ?

p
 .

?p
 r

d
fs

:s
u

b
P

ro
p
e
rt

y
O

f
?p

 .
)

?o
 o

w
l:
sa

m
e
A

s
?o

0
 .

?p
 r

d
fs

:d
o
m

a
in

 ?
c1

 .

?x
 o

w
l:
d
iff

e
re

n
tF

ro
m

 ?
y
 .

?x
 ?

p
 ?

y
2

 .

2
1

0
1

8
1

8
1

1
8

|>
<

|
?p

 ?
x

?x
 ?

p
 ?

y
1

 .

?y
 o

w
l:
sa

m
e
A

s
?z

 .

?x
 ?

p
2

 ?
y
 .

6
1

0
1

3
6

6
2

0
|>

<
|

?p
2

?p
1

 o
w

l:
in

v
e
rs

e
O

f
?p

2
 .

?x
 r

d
f:
ty

p
e
 ?

c2
 .

1
6

9
0

6
9

9
0

7
9

|>
<

|
?c

2

1
3

4
4

7
6

3
2

9
7

|>
<

|
?c

2

?c
1

 o
w

l:
e
q
u

iv
a
le

n
tC

la
ss

 ?
c2

 .
d
e
d
u

ct
(?

c2
 r

d
fs

:s
u

b
C

la
ss

O
f

?c
1

 .
?c

1
 r

d
fs

:s
u

b
C

la
ss

O
f

?c
2

 .
)

?c
1

 o
w

l:
d
is

jo
in

tW
it

h
 ?

c2
 .

?p
 o

w
l:
sa

m
e
A

s
?p

0
 .

?p
 r

d
f:
ty

p
e
 o

w
l:
O

b
je

ct
P

ro
p
e
rt

y
 .

?p
 r

d
fs

:d
o
m

a
in

 ?
c

.

?c
2

 r
d
fs

:s
u

b
C

la
ss

O
f

?c
1

 .

?p
2

 r
d
fs

:s
u

b
P

ro
p
e
rt

y
O

f
?p

1
 .

?x
1

 ?
p
 ?

y
 .

7
2

9
1

6
8

3
2

8
|>

<
|

?p
 ?

y

?p
 r

d
f:
ty

p
e
 o

w
l:
Fu

n
ct

io
n

a
lP

ro
p
e
rt

y
 .

6
8

9
2

4
0

0
0

0
|>

<
|

?p

?c
1

 o
w

l:
co

m
p
le

m
e
n

tO
f

?c
2

 .

5
8

0
2

9
8

5
2

7
|>

<
|

?c
1

 ?
c2

?p
1

 o
w

l:
p
ro

p
e
rt

y
D

is
jo

in
tW

it
h

 ?
p
2

 .

2
0

2
7

2
4

6
1

5
4

|>
<

|
?p

2
 ?

p
1

d
e
d
u

ct
(?

p
 r

d
fs

:r
a
n

g
e
 ?

c2
 .

)

d
e
d
u

ct
(?

p
1

 r
d
fs

:r
a
n

g
e
 ?

c
.)

d
e
d
u

ct
(?

y
 ?

p
 ?

x
 .

)

d
e
d
u

ct
(?

p
1

 r
d
fs

:s
u

b
P

ro
p
e
rt

y
O

f
?p

3
 .

)

d
e
d
u

ct
(?

s0
 ?

p
 ?

o
 .

)

d
e
d
u

ct
(?

p
1

 r
d
fs

:d
o
m

a
in

 ?
c

.)

d
e
d
u

ct
(?

y
 r

d
f:
ty

p
e
 ?

c
.)

d
e
d
u

ct
(?

x
 r

d
f:
ty

p
e
 ?

c2
 .

)

d
e
d
u

ct
(?

x
 r

d
f:
ty

p
e
 o

w
l:
N

o
th

in
g
 .

)

d
e
d
u

ct
(?

x
 ?

p
2

 ?
y
 .

)

d
e
d
u

ct
(?

c1
 r

d
fs

:s
u

b
C

la
ss

O
f

?c
3

 .
)

d
e
d
u

ct
(?

s
?p

 ?
o
0

 .
)

d
e
d
u

ct
(?

p
 r

d
fs

:d
o
m

a
in

 ?
c2

 .
)

d
e
d
u

ct
(?

x
 r

d
f:
ty

p
e
 o

w
l:
N

o
th

in
g
 .

?y
 r

d
f:
ty

p
e
 o

w
l:
N

o
th

in
g
 .

)

d
e
d
u

ct
(?

x
 o

w
l:
sa

m
e
A

s
?z

 .
)

d
e
d
u

ct
(?

x
 ?

p
1

 ?
y
 .

)

d
e
d
u

ct
(?

y
 ?

p
1

 ?
x
 .

)

d
e
d
u

ct
(?

y
 ?

p
2

 ?
x
 .

)

d
e
d
u

ct
(?

x
 r

d
f:
ty

p
e
 ?

c1
 .

)

d
e
d
u

ct
(?

s
?p

0
 ?

o
 .

)

d
e
d
u

ct
(?

x
 r

d
f:
ty

p
e
 ?

c
.)

d
e
d
u

ct
(?

c1
 o

w
l:
e
q
u

iv
a
le

n
tC

la
ss

 ?
c2

 .
)

d
e
d
u

ct
(?

p
1

 o
w

l:
e
q
u

iv
a
le

n
tP

ro
p
e
rt

y
 ?

p
2

 .
)

d
e
d
u

ct
(?

x
 ?

p
 ?

z
 .

)

d
e
d
u

ct
(?

x
1

 o
w

l:
sa

m
e
A

s
?x

2
 .

)

d
e
d
u

ct
(?

y
1

 o
w

l:
sa

m
e
A

s
?y

2
 .

)

Figure 35: Illustration of the operator plan for the OWL LD rule set (part 1). Recursion
to input operator omitted for clarity.

196

addendum 197

O
p
e
ra

to
r

G
ra

p
h

?y
 ?

p
 ?

z
 .

1
8

9
4

6
2

7
7

4
9

|>
<

|
?p

?p
 r

d
f:
ty

p
e
 o

w
l:
Tr

a
n

si
ti

v
e
P

ro
p
e
rt

y
 .

?p
 r

d
fs

:r
a
n

g
e
 ?

c1
 .

8
4

9
8

5
6

9
1

2
|>

<
|

?c
1

?c
1

 r
d
fs

:s
u

b
C

la
ss

O
f

?c
2

 .

1
7

8
5

8
4

9
4

2
1

|>
<

|
?c

1

1
5

6
2

4
9

0
5

9
9

|>
<

|
?c

2

8
0

4
6

0
6

2
1

3
|>

<
|

?c
1

2
0

6
9

1
7

2
0

0
1

|>
<

|
?c

1
 ?

c2

?p
1

 r
d
fs

:s
u

b
P

ro
p
e
rt

y
O

f
?p

2
 .

1
7

2
8

4
1

3
4

4
8

|>
<

|
?p

2

1
6

9
9

7
1

6
2

|>
<

|
?p

2

1
2

2
9

5
5

3
3

3
6

|>
<

|
?p

2

1
1

9
5

3
2

4
4

7
1

|>
<

|
?p

1

2
0

9
0

3
7

1
7

2
7

|>
<

|
?p

2
 ?

p
1

?p
2

 r
d
fs

:r
a
n

g
e
 ?

c
.

?x
 ?

p
 ?

y
 .

2
0

2
6

0
7

3
1

9
9

|>
<

|
?p

1
6

3
9

2
1

1
1

3
5

|>
<

|
?p

3
8

3
9

9
7

7
4

|>
<

|
?p

9
8

3
8

1
7

9
8

0
|>

<
|

?p
 ?

y

8
3

3
0

6
8

6
6

2
|>

<
|

?p
 ?

x
 ?

y

?p
 r

d
f:
ty

p
e
 o

w
l:
S

y
m

m
e
tr

ic
P

ro
p
e
rt

y
 .

?p
2

 r
d
fs

:s
u

b
P

ro
p
e
rt

y
O

f
?p

3
 .

?x
 o

w
l:
sa

m
e
A

s
?y

 .
d
e
d
u

ct
(?

y
 o

w
l:
sa

m
e
A

s
?x

 .
)

1
5

8
6

7
2

6
1

3
9

|>
<

|
?x

 ?
y

1
9

9
0

5
4

1
6

4
8

|>
<

|
?y

?s
 ?

p
 ?

o
 .

1
6

3
5

1
0

8
5

1
6

|>
<

|
?s

1
8

4
6

0
3

7
9

7
7

|>
<

|
?o

d
e
d
u

ct
(?

s
o
w

l:
sa

m
e
A

s
?s

 .
?p

 o
w

l:
sa

m
e
A

s
?p

 .
?o

 o
w

l:
sa

m
e
A

s
?o

 .
)

6
7

6
4

5
7

5
6

5
|>

<
|

?p

?s
 o

w
l:
sa

m
e
A

s
?s

0
 .

?p
2

 r
d
fs

:d
o
m

a
in

 ?
c

.

?p
 r

d
fs

:r
a
n

g
e
 ?

c
.

?p
 r

d
f:
ty

p
e
 o

w
l:
In

v
e
rs

e
Fu

n
ct

io
n

a
lP

ro
p
e
rt

y
 .

6
8

3
1

9
4

0
8

9
|>

<
|

?p
?x

2
 ?

p
 ?

y
 .

?x
 r

d
f:
ty

p
e
 ?

c1
 .

8
8

2
4

6
6

8
2

5
|>

<
|

?x

4
9

5
9

7
7

5
4

1
|>

<
|

?c
1

1
4

2
4

8
3

7
6

7
0

|>
<

|
?x

 ?
c1

?x
 ?

p
 ?

x
 .

1
1

5
3

3
3

9
4

3
4

|>
<

|
?p

?p
 r

d
f:
ty

p
e
 o

w
l:
Ir

re
fl

e
x
iv

e
P

ro
p
e
rt

y
 .

?x
 ?

p
1

 ?
y
 .

6
7

7
4

8
2

1
9

6
|>

<
|

?p
1

5
4

6
1

6
4

0
3

3
|>

<
|

?p
1

1
7

4
8

8
3

9
9

6
6

|>
<

|
?x

 ?
y

?p
1

 o
w

l:
e
q
u

iv
a
le

n
tP

ro
p
e
rt

y
 ?

p
2

 .
d
e
d
u

ct
(?

p
1

 r
d
fs

:s
u

b
P

ro
p
e
rt

y
O

f
?p

2
 .

?p
2

 r
d
fs

:s
u

b
P

ro
p
e
rt

y
O

f
?p

1
 .

)

9
7

5
6

4
5

1
0

1
|>

<
|

?p
2

?y
 ?

p
 ?

x
 .

1
2

2
6

6
1

7
1

6
2

|>
<

|
?p

?p
 r

d
f:
ty

p
e
 o

w
l:
A

sy
m

m
e
tr

ic
P

ro
p
e
rt

y
 .

?c
2

 r
d
fs

:s
u

b
C

la
ss

O
f

?c
3

 .

?c
 r

d
f:
ty

p
e
 o

w
l:
C

la
ss

 .
d
e
d
u

ct
(?

c
rd

fs
:s

u
b
C

la
ss

O
f

o
w

l:
T

h
in

g
 .

?c
 o

w
l:
e
q
u

iv
a
le

n
tC

la
ss

 ?
c

.o
w

l:
N

o
th

in
g
 r

d
fs

:s
u

b
C

la
ss

O
f

?c
 .

?c
 r

d
fs

:s
u

b
C

la
ss

O
f

?c
 .

)

?p
 r

d
f:
ty

p
e
 o

w
l:
D

a
ta

ty
p
e
P

ro
p
e
rt

y
 .

d
e
d
u

ct
(?

p
 o

w
l:
e
q
u

iv
a
le

n
tP

ro
p
e
rt

y
 ?

p
 .

?p
 r

d
fs

:s
u

b
P

ro
p
e
rt

y
O

f
?p

 .
)

?o
 o

w
l:
sa

m
e
A

s
?o

0
 .

?p
 r

d
fs

:d
o
m

a
in

 ?
c1

 .

?x
 o

w
l:
d
iff

e
re

n
tF

ro
m

 ?
y
 .

?x
 ?

p
 ?

y
2

 .

2
1

0
1

8
1

8
1

1
8

|>
<

|
?p

 ?
x

?x
 ?

p
 ?

y
1

 .

?y
 o

w
l:
sa

m
e
A

s
?z

 .

?x
 ?

p
2

 ?
y
 .

6
1

0
1

3
6

6
2

0
|>

<
|

?p
2

?p
1

 o
w

l:
in

v
e
rs

e
O

f
?p

2
 .

?x
 r

d
f:
ty

p
e
 ?

c2
 .

1
6

9
0

6
9

9
0

7
9

|>
<

|
?c

2

1
3

4
4

7
6

3
2

9
7

|>
<

|
?c

2

?c
1

 o
w

l:
e
q
u

iv
a
le

n
tC

la
ss

 ?
c2

 .
d
e
d
u

ct
(?

c2
 r

d
fs

:s
u

b
C

la
ss

O
f

?c
1

 .
?c

1
 r

d
fs

:s
u

b
C

la
ss

O
f

?c
2

 .
)

?c
1

 o
w

l:
d
is

jo
in

tW
it

h
 ?

c2
 .

?p
 o

w
l:
sa

m
e
A

s
?p

0
 .

?p
 r

d
f:
ty

p
e
 o

w
l:
O

b
je

ct
P

ro
p
e
rt

y
 .

?p
 r

d
fs

:d
o
m

a
in

 ?
c

.

?c
2

 r
d
fs

:s
u

b
C

la
ss

O
f

?c
1

 .

?p
2

 r
d
fs

:s
u

b
P

ro
p
e
rt

y
O

f
?p

1
 .

?x
1

 ?
p
 ?

y
 .

7
2

9
1

6
8

3
2

8
|>

<
|

?p
 ?

y

?p
 r

d
f:
ty

p
e
 o

w
l:
Fu

n
ct

io
n

a
lP

ro
p
e
rt

y
 .

6
8

9
2

4
0

0
0

0
|>

<
|

?p

?c
1

 o
w

l:
co

m
p
le

m
e
n

tO
f

?c
2

 .

5
8

0
2

9
8

5
2

7
|>

<
|

?c
1

 ?
c2

?p
1

 o
w

l:
p
ro

p
e
rt

y
D

is
jo

in
tW

it
h

 ?
p
2

 .

2
0

2
7

2
4

6
1

5
4

|>
<

|
?p

2
 ?

p
1

d
e
d
u

ct
(?

p
 r

d
fs

:r
a
n

g
e
 ?

c2
 .

)

d
e
d
u

ct
(?

p
1

 r
d
fs

:r
a
n

g
e
 ?

c
.)

d
e
d
u

ct
(?

y
 ?

p
 ?

x
 .

)

d
e
d
u

ct
(?

p
1

 r
d
fs

:s
u

b
P

ro
p
e
rt

y
O

f
?p

3
 .

)

d
e
d
u

ct
(?

s0
 ?

p
 ?

o
 .

)

d
e
d
u

ct
(?

p
1

 r
d
fs

:d
o
m

a
in

 ?
c

.)

d
e
d
u

ct
(?

y
 r

d
f:
ty

p
e
 ?

c
.)

d
e
d
u

ct
(?

x
 r

d
f:
ty

p
e
 ?

c2
 .

)

d
e
d
u

ct
(?

x
 r

d
f:
ty

p
e
 o

w
l:
N

o
th

in
g
 .

)

d
e
d
u

ct
(?

x
 ?

p
2

 ?
y
 .

)

d
e
d
u

ct
(?

c1
 r

d
fs

:s
u

b
C

la
ss

O
f

?c
3

 .
)

d
e
d
u

ct
(?

s
?p

 ?
o
0

 .
)

d
e
d
u

ct
(?

p
 r

d
fs

:d
o
m

a
in

 ?
c2

 .
)

d
e
d
u

ct
(?

x
 r

d
f:
ty

p
e
 o

w
l:
N

o
th

in
g
 .

?y
 r

d
f:
ty

p
e
 o

w
l:
N

o
th

in
g
 .

)

d
e
d
u

ct
(?

x
 o

w
l:
sa

m
e
A

s
?z

 .
)

d
e
d
u

ct
(?

x
 ?

p
1

 ?
y
 .

)

d
e
d
u

ct
(?

y
 ?

p
1

 ?
x
 .

)

d
e
d
u

ct
(?

y
 ?

p
2

 ?
x
 .

)

d
e
d
u

ct
(?

x
 r

d
f:
ty

p
e
 ?

c1
 .

)

d
e
d
u

ct
(?

s
?p

0
 ?

o
 .

)

d
e
d
u

ct
(?

x
 r

d
f:
ty

p
e
 ?

c
.)

d
e
d
u

ct
(?

c1
 o

w
l:
e
q
u

iv
a
le

n
tC

la
ss

 ?
c2

 .
)

d
e
d
u

ct
(?

p
1

 o
w

l:
e
q
u

iv
a
le

n
tP

ro
p
e
rt

y
 ?

p
2

 .
)

d
e
d
u

ct
(?

x
 ?

p
 ?

z
 .

)

d
e
d
u

ct
(?

x
1

 o
w

l:
sa

m
e
A

s
?x

2
 .

)

d
e
d
u

ct
(?

y
1

 o
w

l:
sa

m
e
A

s
?y

2
 .

)

Figure 36: Illustration of the operator plan for the OWL LD rule set (part 2). Recursion
to input operator omitted for clarity.

addendum 198

a.2 experiment result details

Table 15: Runtime and throughput for LUBM 200 with custom rule set on Setup A.
rounds spinning blocking single blocking multi

threads time (ms) Triples/s time (ms) Triples/s time (ms) Triples/s time (ms) Triples/s

1 303562 120074 294785 123649 317829 114684 292085 124792

2 308359 117430 318228 114470 313360 115700 301795 120674

3 194646 182907 213783 161013 207411 173122 205739 171655

4 156697 225411 158859 210364 164593 216989 164977 213987

5 127647 277862 128872 256550 135942 261013 131242 266260

6 108542 321502 109098 305816 113927 309958 109057 313181

7 94371 366653 97821 338620 98073 358228 99407 343476

8 83460 410408 88126 385803 88680 388555 87480 382448

9 77137 449744 79362 402562 81239 430333 74174 452133

10 68451 497971 71490 456719 72261 477196 67070 504792

11 63711 524582 64419 525491 68659 500997 64581 520897

12 61881 557918 65396 514215 62531 551213 61297 535185

13 55164 608850 58254 562525 64088 539922 54234 609598

14 49082 698863 54391 611633 62002 547709 52772 614015

15 49364 686235 51957 638160 52553 645635 48499 689834

16 45758 722627 47399 692989 51033 673924 45728 719438

17 43922 759606 44273 726400 50859 675028 47771 686970

18 43128 784140 43659 752027 49118 692945 44277 704225

19 42257 806191 44677 727360 46618 727693 44584 737333

20 42417 799184 42042 780147 45457 739723 47514 672964

21 41932 818172 42746 766361 47181 729149 40311 801917

22 40367 820325 39660 830718 45485 759206 43242 770049

23 41796 797669 41428 793139 48104 712843 39143 832264

24 38127 877774 39179 821272 42023 808669 36572 882139

25 37347 899954 37565 842284 40346 829426 36494 855318

26 36798 911602 36315 877794 43491 760442 39233 821465

27 40138 787119 35934 887176 38770 872995 33887 952457

28 35230 946569 34588 932942 43275 781909 34273 901910

29 34802 942486 35675 888300 37854 895926 33885 910773

30 35510 933538 33862 965836 39540 814978 33939 914106

31 33087 1007388 34087 919247 37414 901045 32624 972914

32 38400 870413 34924 906424 42392 798802 30173 1023807

33 39545 844389 35963 898735 42870 801760 30835 981300

34 37962 872190 40218 810246 43655 781737 34916 904733

35 37947 883339 37199 862354 46429 739210 34344 955090

36 38216 869642 41383 748652 46367 739592 31224 1014343

37 37966 878298 36562 896321 43896 779878 31266 1020762

38 41090 814230 35762 912001 45939 744704 34078 940783

39 37707 878007 34183 942553 45078 751859 31982 1006692

40 38001 871210 35747 885847 45487 753176 32833 974756

41 37464 894490 35447 895398 43944 778900 29978 1000796

42 40086 832012 34876 892633 42811 791436 32161 1002441

addendum 199

Table 16: Runtime and throughput for LUBM 200 with custom rule set on Setup B.
rounds spinning blocking single blocking multi

threads time (ms) Triples/s time (ms) Triples/s time (ms) Triples/s time (ms) Triples/s

1 93296 196170 90700 201785 105526 173435 91769 199435

2 96494 189646 92513 197715 102858 177895 96778 188959

3 76337 233688 75556 236549 74194 245061 77016 233391

4 59655 297820 57711 299558 54645 331115 57997 307410

5 46573 374367 48677 342735 46560 382853 46798 375763

6 39897 441285 40367 406795 37657 478434 38891 445711

7 34976 500206 34798 479413 32529 548632 34955 486588

8 31182 551788 32248 516787 27975 642392 30242 564714

9 27921 628471 28227 576131 25601 705654 28767 611075

10 24488 705126 25545 637323 26272 673779 25294 670726

11 23810 736070 23762 701061 23507 758881 23810 726316

12 22784 761581 22985 744125 21815 824400 21367 783442

13 21121 821252 23788 711991 24146 729825 21064 823442

14 20969 828337 21632 781460 22804 776092 20143 864127

15 19416 889921 19676 849745 20669 860776 18040 946012

16 18962 915171 19230 863675 20233 864788 18264 953169

17 17931 956128 19453 873786 20425 854690 17346 970599

18 18534 941294 18449 901640 19750 888860 16178 1067246

19 16771 1027000 18245 903615 19369 892872 15800 1054507

20 16946 1007673 17425 960146 19363 888431 15338 1068579

21 15965 1069462 17233 956962 18397 941593 14969 1106205

22 15973 1054091 16222 1001640 18475 932578 14101 1192394

23 15668 1085089 17280 939637 18015 955027 13923 1193222

24 16169 1050054 15641 1026397 18650 917388 14137 1177309

25 15031 1124005 15559 1018831 17814 948173 13716 1167309

26 16370 1026554 15187 1059894 17666 961958 13195 1249268

27 15270 1083387 15888 1015768 17629 962832 13291 1210689

28 14916 1103401 15356 1024294 19457 884201 14172 1174598

29 14907 1109846 15493 1019493 17268 980803 14359 1151902

30 14690 1116471 14925 1038575 16992 1001960 13879 1207355

31 14320 1152799 15464 1018542 16546 1020310 13383 1246396

32 15106 1103706 18182 855691 18272 930272 13127 1266037

33 14233 1143826 15233 1040497 17502 971762 14463 1127239

34 13736 1201133 14760 1067116 17079 989989 13065 1259645

35 13844 1161407 14904 1046819 17181 977301 12595 1274835

36 13389 1241801 14246 1115501 19004 893877 11706 1418460

37 14167 1159645 15191 1037942 20096 854640 11088 1467688

38 14476 1154628 15349 991350 20125 852135 11655 1381125

39 14931 1117395 15078 1058841 20118 852532 12335 1331713

40 15354 1087166 14592 1079117 20293 840537 12031 1347225

41 14772 1132029 15322 1017706 19709 865862 12946 1269660

42 14704 1133714 15677 993975 20447 838568 11455 1390958

addendum 200

Table 17: Runtime and throughput for LUBM 200 with OWL LD rule set on Setup A.
rounds spinning blocking single blocking multi

threads time (ms) Triples/s time (ms) Triples/s time (ms) Triples/s time (ms) Triples/s

1 885700 37565 848268 39222 927713 35863 856945 38825

2 646822 51315 634700 51679 657958 50540 643969 51355

3 432254 75419 443419 73098 453832 72304 433937 75164

4 365703 89269 369087 84009 346846 94546 366980 87563

5 303292 106321 313808 98756 307022 106098 300800 106630

6 260532 124132 273185 115016 274438 118126 270116 118209

7 239649 134929 239514 125641 244659 131011 235158 134081

8 219315 147405 218122 142388 220482 146506 208101 153153

9 198690 162141 202238 156421 201175 160150 203068 153208

10 183105 174282 192401 161993 187356 173328 187769 166181

11 173622 184989 175367 176344 178297 180218 174818 174875

12 164923 195587 170206 184782 164696 196436 177525 175821

13 155110 203741 159913 198901 162043 198694 152151 194129

14 156963 204713 151462 202835 147184 216337 155157 194941

15 148064 216273 147634 212875 140705 225520 138974 216847

16 146106 219889 140284 219233 138913 229198 136535 219302

17 133998 237756 134725 229730 136908 235500 137576 215871

18 134077 238675 133102 235868 132879 242044 127607 243682

19 132013 240542 129200 241293 132323 241486 126479 242447

20 126686 253858 123553 252931 126824 255469 119190 256209

21 123849 259557 123690 253148 125635 255901 125884 252447

22 120812 265679 121807 256018 122850 262835 120861 263873

23 127538 252625 120265 261547 120631 267254 118155 268521

24 117740 268656 119045 265427 119645 269249 130057 236543

25 122645 260586 115813 269819 117164 274350 110877 286270

26 116835 271795 111127 278862 113819 281648 111607 273891

27 116168 274834 113989 276101 113201 281762 110644 279482

28 118519 266643 112251 277438 111474 289673 105532 294287

29 113882 280961 108020 289339 110413 292104 107386 286387

30 113247 279866 109017 285402 108512 295247 110283 276395

31 113189 279559 108960 281168 105727 300089 107245 276254

32 108413 286017 105372 290867 107859 298554 102669 285639

33 120513 264029 117862 263658 110345 288165 117523 259293

34 119145 263603 118244 265357 117918 269308 124735 253943

35 124883 257553 117525 264502 116964 272822 113174 272850

36 121715 263531 119739 265937 116892 271981 119902 259673

37 130839 243746 119325 259598 119984 265388 114776 256996

38 120203 266496 120080 261934 121239 262743 115347 269705

39 131675 244746 119654 259212 121166 262065 112284 271689

40 127892 251362 119499 265493 118481 268380 111792 278537

41 132933 238706 119279 266033 116979 274758 110777 277902

42 130378 247075 120148 258918 117550 270652 110611 284617

addendum 201

Table 18: Runtime and throughput for LUBM 200 with OWL LD rule set on Setup B.
rounds spinning blocking single blocking multi

threads time (ms) Triples/s time (ms) Triples/s time (ms) Triples/s time (ms) Triples/s

1 242803 68809 242377 68930 257549 64869 250048 66815

2 212025 78788 205404 81301 198239 84269 190080 87865

3 157688 104568 157118 104600 156210 106149 156339 104591

4 124470 131924 124796 128562 125144 131819 119644 136663

5 105737 153233 105573 147945 104148 157925 105521 154011

6 92039 176515 88531 178350 87541 188500 87294 184070

7 80466 201943 81258 193206 82109 198506 78921 203806

8 74013 218417 74585 205754 70070 232794 70607 220412

9 68839 235024 64846 237697 62355 264485 65990 241741

10 61900 261907 59429 267594 58708 281774 60728 261681

11 59196 275605 59251 265321 58336 277288 55714 284609

12 56044 288503 54775 287235 52485 314224 56478 277193

13 52929 304997 52147 303185 51169 322164 50926 309189

14 51833 312171 51053 312135 49926 324946 50453 315458

15 49658 327140 48371 320774 49385 330991 46241 338621

16 50727 319929 46462 336649 46411 352743 46689 342249

17 46727 347062 45575 347028 45715 356030 46627 346947

18 45748 354170 44159 357654 44638 364486 46663 339926

19 46146 351537 44333 352556 44554 360562 42627 378328

20 45099 357877 41817 375925 44127 366442 41370 383092

21 43523 369607 42620 371625 42987 375238 43956 359219

22 44438 363872 41156 381277 42353 380942 41670 382025

23 43823 365953 41610 381794 42356 378244 39813 399031

24 43760 367720 40298 381034 42467 381934 38205 410314

25 44045 364293 39943 390496 40096 402941 43137 368007

26 41414 383681 40329 388061 39289 408144 38837 398155

27 40536 389696 40216 387296 39882 398639 38201 413071

28 41662 384926 39771 384560 39548 406383 40924 383573

29 40559 391726 38145 405208 38422 417067 41182 385396

30 40179 394075 36811 419888 37666 426681 38303 417085

31 39568 400474 38846 396760 36076 444600 36922 422455

32 38838 407997 36455 423903 38348 416199 37080 417497

33 41514 382324 38080 405748 38529 413044 36937 422605

34 38976 407513 38317 396575 37071 430414 39397 399940

35 38421 410025 36834 422459 36961 432452 38629 399622

36 39844 396217 37648 404151 37826 422340 36760 429634

37 42733 374615 40668 381372 39332 408124 38394 411579

38 41113 385100 40760 377421 41243 389848 40700 385998

39 43521 365646 41467 374087 41602 385179 39780 394210

40 42967 369907 42033 366569 42791 374554 41536 376792

41 43919 364747 41329 379640 40536 396147 38367 411297

42 42795 373525 43482 358844 42058 379808 39736 401216

addendum 202

Ta
bl

e
1

9
:R

un
ti

m
e

an
d

th
ro

ug
hp

ut
fo

r
LU

BM
2

0
0

w
it

h
cu

st
om

ru
le

se
t

an
d

nu
m

be
r

of
ac

ti
ve

co
re

s
ad

ap
te

d
to

nu
m

be
r

of
th

re
ad

s
on

Se
tu

p
A

(p
ar

t
1
).

th
re

ad
s/

ro
un

ds
(a

vg
of

5
ru

ns
)

sp
in

ni
ng

(a
vg

of
5

ru
ns

)
bl

oc
ki

ng
si

ng
le

(a
vg

of
5

ru
ns

)
bl

oc
ki

ng
m

ul
ti

(a
vg

of
5

ru
ns

)

co
re

s
(u

p
to

3
2
)

ti
m

e
(m

s)
Tr

ip
le

s/
s

st
d

er
r

ti
m

e
(m

s)
Tr

ip
le

s/
s

st
d

er
r

ti
m

e
(m

s)
Tr

ip
le

s/
s

st
d

er
r

ti
m

e
(m

s)
Tr

ip
le

s/
s

st
d

er
r

1
2

8
9

7
8

4
.6

1
2

6
1

6
8

.8
3

1
6

6
.6

2
8

5
2

0
9
.2

1
2

8
3

2
0

3
6

9
2

.6
3

7
6

2
6

4
.4

9
6

9
8

8
.8

1
5
0

8
.2

2
8

1
6

7
3
.8

1
2
9

6
8

1
.8

2
7

1
2

.7

2
2

2
3

7
9

6
1

6
3

3
9

4
.6

4
3

4
0
.4

2
1

8
1

8
2
.2

1
6

7
1

3
1

1
9

1
8

.9
2

4
3

2
8

6
.6

1
5
0

6
2

1
.6

4
9
7

0
.8

2
1

5
6

4
0

1
6
9

2
7

5
.8

3
2
2

7
.4

3
1

4
7

7
3

0
.2

2
4

6
6

0
6

.6
5

2
1

0
.4

1
4

8
5

8
4
.2

2
4

5
1

2
2

4
1

6
4

.3
1

6
5

0
3

5
.6

2
2
0

7
3

1
.8

3
3
8

9
.9

1
5

3
8

8
1
.4

2
3

6
6

2
6

4
5
6

4

4
1

1
4

6
4

4
.8

3
1

7
0

8
6

5
4

0
8

.5
1

1
4

8
6

5
.8

3
1

6
4

2
4

.8
4

8
9

4
.4

1
2

7
4

1
4

.4
2

8
5

6
5

9
.4

4
5
7

3
.1

1
1

9
0

9
2
.2

3
0
5

2
8

5
.8

6
6

8
5

.4

5
9

4
2

4
5

3
8

5
1

1
6

5
5

2
9
.9

9
3

6
4

1
3

8
7

8
8

5
.4

6
0

4
7

.2
1

0
4

8
5

7
.2

3
4
6

7
9

6
.4

6
8
5

9
.1

9
7
9

3
4
.8

3
7
0

3
6

2
.6

6
9
5

4
.1

6
7

9
7

3
8

.2
4

5
4

6
9

4
.6

8
8

3
3
.4

7
9

2
1

8
.2

4
5

7
0

8
9

.2
7

4
1

2
.5

8
8

6
6

6
.4

4
0
9

4
1

5
.6

6
7
2

6
.1

8
3
8

2
6
.6

4
3
2

0
0

3
.6

8
8
0

4
.6

7
6

8
7

1
9

5
2

5
0

8
2
.8

7
6

4
2
.6

6
9

5
7

0
.6

5
2

0
0

2
5

.6
8

9
5

9
7

6
1

6
2

.8
4

7
5

6
5

1
9

2
7

5
.7

7
2

6
4

6
4

9
7

8
8

6
.6

1
3

2
4

7
.8

8
6

1
4

3
4

.8
5

8
6

3
4

7
.2

9
4

7
8
.3

6
1

0
2

2
.6

5
9

1
2

8
2

.6
1

2
1

8
6

.7
6

8
2

8
1

.8
5

3
0

0
6

3
.8

7
3
2

5
.5

6
5
5

7
7
.8

5
5
0

7
9

2
.4

1
2

2
8

9
.6

9
6

8
6

3
0

.4
4

9
9

7
8

1
1

7
8

7
3

.6
6

8
2

4
6
.8

5
0

4
5

8
8

.8
1

7
7

8
3

.9
7

9
3

7
4

.6
4

4
3

8
1

0
1

2
2

2
6

7
5

6
3

5
4

4
0

6
5

7
.2

5
5

1
3

1
0

6
6

7
8

2
.6

5
0

7
0

6
7

1
3

6
9

6
.6

6
5

8
4

2
.6

5
0

6
2

1
8

1
0

5
3

9
.5

7
4

4
0

9
4

6
5

1
8

9
.2

7
1
5

0
.7

6
9

3
8

8
4

7
1

4
7

1
.8

6
4
1

4
.5

1
1

6
2

9
7

6
.6

5
4

1
4

4
6

.4
3

2
8

4
.4

6
2

2
3

0
.6

5
2

7
5

9
4

.8
6

5
8

1
.2

7
1

3
9

4
4

7
9

8
9

6
.2

5
4
3

8
.1

6
5

6
4

0
4

8
5

6
4

1
.4

9
2
6

4
.5

1
2

5
9

2
3

0
.6

5
7

0
4

0
9

.2
7

2
2

7
.8

5
8

4
7

0
5

6
3

8
4

1
4

6
7

6
.6

7
1

3
3

9
.2

4
8
5

8
4

2
.6

8
1
9

8
.7

6
2

6
1

1
5

0
9

8
4

9
.2

3
5
4

6
.8

1
3

5
6

3
2

5
6

0
5

7
6

2
.2

6
2

2
5
.2

5
6

8
1

9
5

7
3

7
9

1
.6

1
1

4
4

8
.3

6
7

1
0

2
5
1

2
6

0
3

6
3

8
9
.2

5
6
6

4
2
.6

5
7
4

7
3

8
.2

1
0

2
1

2
.3

1
4

5
2

4
8

3
.6

6
5

0
7

7
5

.2
6

6
4

7
.9

5
4

1
2

8
.6

6
0

9
5

0
8

.6
1

4
5

0
3

.6
6

3
7

6
1

.2
5

3
8

0
7

9
.4

4
7
3

7
.2

5
4
4

4
8
.4

6
0
8

2
6

8
.4

1
7

4
0

5
.2

1
5

5
0

6
6

2
.4

6
6

8
2

4
3

.2
8

0
2

6
.7

5
2

0
8

1
6

3
1

2
4

9
.8

8
5

3
2

.4
6

0
9

9
3

.8
5

6
5

2
5

8
.6

6
1
5

4
.1

5
2
6

6
0
.8

6
2
4

9
9

9
.6

6
0
9

3
.2

1
6

4
7

9
9

8
7

0
4

2
0

5
.4

1
1

3
7

6
.8

4
7

2
1

8
6

9
5

7
3

5
.6

9
9

3
3

.4
5

9
9

9
0

.8
5

7
6

5
1

5
.2

5
9
1

3
.6

4
9
6

5
4
.6

6
6
3

3
8

3
.6

9
7
7

9
.9

1
7

4
7

1
3

8
.8

7
1

8
2

7
4

.6
6

7
9

1
.4

4
6

1
7

1
7

0
6

4
5

6
5

2
0

8
.9

5
7

0
3

5
.6

5
9
7

0
7

4
.2

7
3
6

1
.8

4
7
6

7
0
.8

6
8
2

9
2

2
.4

6
5
8

2
.5

1
8

4
5

3
9

8
7

4
2

0
4

7
.8

1
0

7
4

8
.8

4
5

4
0

0
.4

7
0

9
5

7
1

.2
4

2
6

6
.3

5
3

9
7

1
.8

6
3
1

6
9

0
1
2

9
0

7
.5

4
7
4

9
8
.8

6
8
2

2
3

3
.8

4
5
2

0
.9

1
9

4
4

8
6

9
.6

7
5

4
9

2
7

.4
1

4
0

1
6
.5

4
6

2
8

1
.6

7
1

1
0

7
7

.2
1

0
4

2
0

.9
5

2
5

6
2

.8
6

5
4

9
2

5
.8

6
4
3

8
.8

4
4
8

7
4
.8

7
2
8

6
3

7
.6

8
4
7

6
.4

2
0

4
3

2
4

2
.6

7
8

0
3

1
1

.4
8

2
1

9
.6

4
2

3
1

3
7

7
1

3
9

4
.2

1
2

0
2

4
.6

5
1

1
6

6
.6

6
7
1

7
9

9
.6

1
2
9

7
7

4
2
5

7
9
.6

7
6
4

6
3

2
.6

1
3

4
7

5
.1

2
1

4
2

4
4

0
.2

7
9

2
5

6
7

.4
6

1
9

8
.2

4
3

0
9

4
.8

7
6

6
4

7
7

8
8

7
8

.9
4

9
9

1
3

.8
6

8
2

2
1

4
.8

9
0
4

8
.1

4
1
6

7
9
.8

7
8
1

2
6

4
.6

2
3

0
9

7
.3

addendum 203

Ta
bl

e
2

0
:R

un
ti

m
e

an
d

th
ro

ug
hp

ut
fo

r
LU

BM
2

0
0

w
it

h
cu

st
om

ru
le

se
t

an
d

nu
m

be
r

of
ac

ti
ve

co
re

s
ad

ap
te

d
to

nu
m

be
r

of
th

re
ad

s
on

Se
tu

p
A

(p
ar

t
2
).

th
re

ad
s/

ro
un

ds
(a

vg
of

5
ru

ns
)

sp
in

ni
ng

(a
vg

of
5

ru
ns

)
bl

oc
ki

ng
si

ng
le

(a
vg

of
5

ru
ns

)
bl

oc
ki

ng
m

ul
ti

(a
vg

of
5

ru
ns

)

co
re

s
(u

p
to

3
2
)

ti
m

e
(m

s)
Tr

ip
le

s/
s

st
d

er
r

ti
m

e
(m

s)
Tr

ip
le

s/
s

st
d

er
r

ti
m

e
(m

s)
Tr

ip
le

s/
s

st
d

er
r

ti
m

e
(m

s)
Tr

ip
le

s/
s

st
d

er
r

2
2

4
1

1
9

2
.8

8
2

0
1

9
7

.2
1

3
1

5
3
.2

4
2

2
6

2
.6

7
8

2
6

1
5

.8
1

2
9

0
6

.2
4

8
0

2
0

7
1
0

2
2

7
.2

1
0

1
5

7
.9

4
1

5
0

8
7

8
2

0
4

6
.2

1
4

9
1

4
.5

2
3

4
0

1
6

8
.6

8
3

7
2

5
8

.4
1

1
8

0
5
.2

4
1

6
2

8
.2

7
8

6
3

1
1

.8
1

2
4

1
2

.5
4

8
5

5
6

.6
7

0
0

4
4

0
.2

1
0

3
2

9
.4

3
8
7

1
7
.2

8
2
0

9
3

4
2
5

5
7

9
.4

2
4

3
7

5
7

2
.2

8
9

2
9

9
0

.8
1

2
6

1
0
.7

3
9

2
8

6
.8

8
1

1
8

6
6

.8
1

0
9

3
7

.8
4

7
6

2
5

.8
7

1
1

6
8

4
.8

1
1

7
1

4
.6

3
9
1

3
9
.4

8
0
9

3
6

3
.8

2
5

1
6

5
.2

2
5

3
7

7
4

1
.4

8
8

7
0

8
1

.8
1

1
2

1
5
.1

3
9

0
2

6
.2

8
3

1
9

2
7

1
4

9
2

6
.5

4
6

9
6

2
.2

7
2
5

7
9

8
1
0

0
3

0
.8

3
8

6
2

4
8

2
8

5
0

6
.6

1
1

2
0

1
.8

2
6

3
6

6
6

7
.8

9
0

2
5

3
7

.4
1

7
0

9
4
.5

3
8

3
5

6
.6

8
4

5
3

5
8

.2
1

3
2

7
2

.9
4

4
7

1
3

7
5
8

3
9

4
.8

1
4

3
8

7
.3

3
6
7

1
9
.8

8
5
0

1
5

8
.4

2
1

4
4

8
.1

2
7

3
7

9
3

5
.8

8
7

3
2

8
7

.4
2

4
7

4
6
.2

3
7

7
9

9
.4

8
5

8
2

8
3

.8
1

7
8

8
6

.3
4

3
8

7
4

7
7
4

1
8

7
.4

8
7

0
2

3
5
7

7
3
.6

8
8
9

0
9

3
.4

1
9

0
8

3
.2

2
8

3
7

1
0

4
8

8
8

0
5

8
.6

9
2

2
5
.9

3
6

5
4

6
8

8
2

9
9

4
.6

2
1

5
5

3
.8

4
2

9
2

8
.2

7
8
8

4
4

1
.6

1
3

0
9

2
.4

3
5
7

5
1
.2

8
7
8

6
7

6
.6

8
3
4

7
.2

2
9

3
5

4
7

0
.2

9
4

0
0

7
8

.6
2

4
4

0
3

6
1

1
1
.2

8
9

7
1

8
7

3
7

6
8

.6
4

2
6

4
5

.4
7

9
6

4
3

6
.8

3
6
4

2
.9

3
4
0

3
4
.2

9
0
5

2
1

2
.2

9
8

6
8

3
0

3
4

8
1

9
9

5
2

4
5

2
.6

2
0

0
1

3
.6

3
5

2
0

4
9

0
7

6
6

6
.8

1
3

4
4

8
.9

4
2

0
1

4
8

0
6

6
4

3
.8

1
0
3

2
0

3
3
7

3
5
.8

9
2
2

1
5

8
.2

2
4

2
6

8
.9

3
1

3
4

6
7

4
.8

9
4

7
2

8
7

1
5

5
5

7
.7

3
3

8
2

0
.6

9
4

9
6

0
5

.4
1

5
5

3
4

.6
4

0
8

8
5

.4
8

3
3

2
8

3
.4

1
1

9
2

6
.1

3
3
7

2
5
.8

9
3
1

2
6

1
.8

2
1

3
9

7
.4

3
2

3
7

2
1

4
8

8
4

6
3

7
.2

1
9

9
1

3
.6

3
4

1
5

8
.8

9
3

2
7

9
3

2
1

8
4

2
.9

4
0

7
1

6
8

3
2

3
2

7
.2

7
7
3

2
.4

3
1
6

6
2
.8

9
9
1

2
2

6
.8

1
5

0
8

4
.5

3
3

3
7

5
3

2
8

8
2

0
3

7
.4

1
3

9
3

1
.1

3
5

4
0

1
.2

8
9

2
2

8
0

1
2

9
9

3
.9

4
5

8
9

7
7

4
4

0
3

9
.2

6
7
3

8
.4

3
3
0

2
9
.8

9
4
4

6
9

2
1
9

9
5

9
.2

3
4

3
8

1
3

2
.4

8
4

5
4

1
8

.8
1

8
0

2
4
.6

3
4

6
7

2
.2

9
1

5
2

1
8

.6
1

2
4

3
7

.3
4

5
6

8
0

.2
7

4
2

8
7

7
3

7
7

0
.1

3
4
2

0
1
.6

9
4
1

4
9

6
.6

1
4

8
7

9
.4

3
5

3
8

7
2

8
.4

8
5

1
9

0
5

.4
2

8
4

7
3
.7

3
4

2
5

5
.8

9
2

4
0

8
2

.2
7

7
3

2
.2

4
6

7
1

9
7

2
6

0
4

0
.4

1
4
4

3
5

3
3
9

3
2
.6

9
6
5

1
4

4
1
2

2
0

5
.9

3
6

4
0

2
9

6
.6

8
2

2
9

4
0

.8
7

8
9

4
.1

3
7

8
8

7
.4

8
7

6
8

6
8

.6
9

9
8

1
.1

4
6

1
5

0
.6

7
4
2

5
5

6
.6

1
4

5
7

3
.7

3
2
1

8
3
.6

9
7
5

5
6

4
.8

1
5

2
8

3
.2

3
7

3
8

6
2

6
8

4
1

2
8

2
.8

1
2

3
3

6
.5

3
7

0
8

8
.6

8
6

5
7

2
7

.6
2

1
5

7
9

.4
4

4
5

3
5

.4
7

5
3

3
6

0
.8

9
6
9

2
.7

3
3
8

9
2
.2

9
3
4

1
5

4
.2

6
4
1

8
.1

3
8

3
7

4
9

5
.4

8
3

8
0

0
3

.8
3

0
1

6
2

3
4

7
4

5
.4

9
2

1
4

4
5

9
9

7
5

.7
4

5
3

7
9

.2
7

5
0

9
6

3
.4

1
2

4
7

7
.6

3
4

0
7

4
9

2
9

5
7

6
.2

1
7

1
3

8
.1

3
9

4
1

0
5

8
.4

8
1

5
3

2
5

.4
2

1
7

2
9
.8

3
5

8
3

0
.4

8
9

9
0

0
1

.6
5

0
3

5
.3

4
5

1
1

6
.4

7
4
3

9
6

6
.8

1
5

8
9

8
.4

3
4
1

2
3
.6

9
2
5

2
3

7
.6

2
5

8
0

6
.8

4
0

3
8

0
9

7
8

7
4

2
8

4
.4

1
3

1
4

5
.7

3
5

7
1

1
8

9
5

7
0

4
1

0
9

8
2
.2

4
5

9
1

1
7

4
1

4
3

1
.4

1
9

3
8

2
.8

3
4
0

5
0
.4

9
2
6

9
8

4
.6

1
7
0

5
7

4
1

3
9

3
8

0
8

4
5

3
1

9
.8

2
0

1
8

6
.4

3
6

3
0

7
.2

8
9

0
6

3
6

.4
2

5
8

4
8

4
4

5
4

0
.6

7
6
2

8
2

0
.6

1
2

3
1

6
.2

3
3

4
2

2
9

3
8

7
6

9
.8

2
0

7
5

6
.3

4
2

3
8

5
2

6
.2

8
6

4
1

2
4

.6
1

6
1

5
5
.4

3
7

1
6

2
.2

8
7

2
3

5
2

2
1

3
0

5
.7

4
5

9
5

9
.2

7
3
9

1
6

3
.8

1
5

7
4

6
.2

3
2
5

3
3
.4

9
5
5

7
6

7
.2

2
0
6

7
4

addendum 204

Ta
bl

e
2

1
:R

un
ti

m
e

an
d

th
ro

ug
hp

ut
fo

r
LU

BM
2

0
0

w
it

h
cu

st
om

ru
le

se
t

an
d

nu
m

be
r

of
ac

ti
ve

co
re

s
ad

ap
te

d
to

nu
m

be
r

of
th

re
ad

s
on

Se
tu

p
B

(p
ar

t
1

).
th

re
ad

s/
ro

un
ds

(a
vg

of
5

ru
ns

)
sp

in
ni

ng
(a

vg
of

5
ru

ns
)

bl
oc

ki
ng

si
ng

le
(a

vg
of

5
ru

ns
)

bl
oc

ki
ng

m
ul

ti
(a

vg
of

5
ru

ns
)

co
re

s
(u

p
to

3
2
)

ti
m

e
(m

s)
Tr

ip
le

s/
s

st
d

er
r

ti
m

e
(m

s)
Tr

ip
le

s/
s

st
d

er
r

ti
m

e
(m

s)
Tr

ip
le

s/
s

st
d

er
r

ti
m

e
(m

s)
Tr

ip
le

s/
s

st
d

er
r

1
9

2
6

6
4
.6

1
9

7
5

0
8
.2

2
1

7
.7

9
0

8
1

6
2

0
1

5
3

1
.6

4
1

7
.4

1
1

6
7

9
2

1
5
6

7
3

8
1

0
1

1
.3

9
0
9

7
7
.8

2
0

1
1

7
1
.4

3
0
9
.6

2
7

8
8

8
4
.2

2
3

2
0

2
9
.4

1
1

7
1
.2

7
9

4
5

4
.6

2
3

0
3

5
3

.6
1

1
5

9
.6

9
2

2
3

5
.4

1
9
8

4
3

4
.4

1
1
7

9
.7

7
7
9

3
0
.8

2
3

4
8

5
9
.6

1
5

1
5
.4

3
5

4
1

9
8

3
3

7
4

3
0

1
0

5
8

.8
5

4
3

5
4
.2

3
3

6
1

1
5

.2
1

2
1

4
.4

6
3

2
9

4
.2

2
8
8

9
4

3
.6

1
8
4

5
.4

5
5
4

5
5
.8

3
2

9
3

9
7
.4

1
3

5
9
.2

4
4

2
1

0
1
.4

4
3

3
6

5
9
.2

7
1

9
.5

4
1

7
8

8
.2

4
3

6
3

3
0

.2
1

7
4

7
4

8
0

2
6

.8
3

8
0

4
5

8
.6

1
4
0

3
.3

4
2
5

4
4
.6

4
2

8
8

0
1
.2

1
4

4
6
.9

5
3

4
3

0
9
.6

5
3

2
1

1
7
.6

2
2

6
9
.4

3
4

3
2

8
.6

5
3

1
1

2
5

2
8

6
5

.5
3

9
4

2
0

.2
4

6
3

2
7

1
.6

2
7
9

2
.7

3
4
8

6
4
.2

5
2
2

1
4

4
2

7
0

1
.7

6
2

9
1

5
4
.8

6
2

5
4

5
0

3
7

9
7
.1

2
9

1
3

8
.8

6
2

4
2

9
5

.6
2

3
2

8
.9

3
3

2
0

9
5
4

9
4

9
0

2
8

7
1
.3

2
9

4
8

7
6
1

5
8

7
7

2
7

1
2
.6

7
2

5
4

8
3
.4

7
1

4
6

6
0
.6

2
6

0
7
.2

2
5

6
3

1
.8

7
0

8
9

8
8

4
1

7
6

.6
2

9
2

8
1

.6
6

2
1

9
1

2
.6

2
1
7

9
.8

2
5
7

4
0
.2

7
0
5

1
0

5
2

7
3

2
.3

8
2

2
6

3
3
.8

8
0

4
0

2
2
.2

3
6

7
3
.6

2
2

6
8

8
.8

7
9

7
7

5
4

.2
4

1
8

4
.1

2
6

0
7

7
6

9
8

2
5

0
.6

8
1
4

2
.3

2
2
9

8
3
.8

7
8

6
7

2
3
.2

2
6
1

2

9
2

0
4

8
2

8
8

7
8

9
7

5
5

7
3

.6
2

1
1

0
9
.4

8
5

8
6

3
9

4
5

5
6

.2
2

3
9

8
9

.6
7

5
6

6
5

7
.4

3
2
8

1
.9

2
0
8

5
8
.2

8
6
5

5
3

8
3

2
3

1
.6

1
0

2
2

0
0

0
.8

7
9

8
3

8
4
.2

5
3

0
7
.5

2
2

1
7

3
.8

7
7

5
1

2
4

6
1

6
6

.8
2

4
9

4
5

.8
7

1
6

6
9

4
.8

8
7

2
3

2
3
6

6
4
.6

7
2
7

8
6

8
8

3
4

9
.7

1
1

2
2

9
0

0
.6

7
5

7
5

5
7
.6

5
2

7
6
.4

2
3

3
2

5
.4

7
1

9
7

9
2

.2
4

2
2

5
.3

2
6

4
9

8
.4

6
6
1

9
9

7
.4

7
3
3

6
.2

2
2

7
3

4
7

2
6

5
0

1
.4

6
5

9
0
.4

1
2

2
2

3
1

1
.8

7
6

8
8

1
5
.4

8
3

2
0
.4

2
2

1
1

2
7

3
8

6
7

9
.2

4
1

0
7

.8
2

6
6

5
9

.4
6

5
0

3
2

3
.2

7
9

4
1

2
2
3

8
3
.8

7
3
7

0
0

3
3

8
6

4
.5

1
3

2
0

7
3

8
.6

8
1

7
2

9
7
.4

8
4

1
8

2
1

5
3

3
.6

7
5

5
2

6
6

.2
5

2
5

6
.1

2
6

0
7

4
.8

6
6
9

1
8

5
8

9
7

5
.4

2
0
9

0
1
.8

7
9
8

8
2

8
1
1

5
5

7
.9

1
4

2
0

6
0

3
8

2
4

1
3

2
.4

1
2

2
7

4
.1

2
0

7
1

9
.2

7
8

2
0

5
8

.6
9

8
0

5
.3

2
5

1
1

1
.8

6
9
2

6
2

6
.6

1
0

0
9

9
.8

1
9
9

3
8
.6

8
2

6
1

0
0
.4

1
2
6

5
4
.8

1
5

1
9

6
5

5
.4

8
6

4
8

5
6
.4

1
1

4
7

1
2

0
4

8
6
.8

7
9

7
0

2
8

.2
9

8
4

7
.1

2
4

8
5

4
.8

7
0
0

6
3

6
.8

8
3
2

4
.6

1
9
0

5
5
.8

8
6

3
3

0
5
.8

1
6
9

9
5
.4

1
6

1
8

8
6

9
9

0
0

5
7

6
.2

1
6

2
1

6
.6

2
0

0
7

2
.2

8
0

5
5

7
7

5
8

0
0

.7
2

3
6

1
3

.6
7

3
1

7
7

3
.8

5
6
3

5
.3

1
8

6
0

1
8

9
6

5
2

8
.2

1
0
0

0
0
.1

1
7

1
8

2
2

1
9

2
8

3
7

2
.2

1
5

7
2

0
.8

1
8

7
2

6
8

6
1

1
7

6
8

8
4

6
.4

2
2

7
2

7
7
5

8
2

1
6

6
9

0
6
.9

1
7
2

5
3
.4

9
6

0
6

6
7
.8

1
4
9

1
4
.7

1
8

1
7

5
2

9
.4

9
6

3
9

8
0

1
5

4
8

9
1

8
6

6
0
.2

8
6

9
0

9
0

.6
1

9
6

6
5

2
2

5
2

1
.8

7
6
4

8
5

2
1
0

4
3

1
.4

1
6
1

8
3
.6

1
0
1

2
5

6
8
.4

8
7
4

4

1
9

1
6

7
2

1
1

0
1

0
3

2
8

.6
8

2
4

8
.6

1
8

6
3

3
.2

8
7

6
9

4
1

.2
2

7
7

5
0

.4
2

2
5

3
9

.4
7

6
3

9
0

9
.8

8
9

2
7

1
7
1

2
4
.8

9
6

9
2

8
5
.2

1
5
8

4
5
.8

2
0

1
6

7
5

0
.6

1
0

1
0

4
5

5
8

9
8

2
.7

1
7

4
0

8
.6

9
2

6
1

3
7

1
0

5
0

5
.5

2
1

9
4

1
.6

7
8
8

1
0

1
8

9
7

4
.6

1
6

9
6

8
9

9
0

3
3

7
.4

2
5
5

8
1
.8

2
1

1
6

8
7

3
.4

9
9

7
0

1
6
.8

1
6

7
1

3
.7

1
7

2
5

5
9

3
1

1
0

3
.2

1
1

8
3

1
.5

2
1

7
0

2
.4

7
9
7

3
1

0
.6

9
2
9

1
.4

1
6
0

6
3
.2

1
0
3

8
9

0
5
.2

1
3
5

6
4
.6

addendum 205

Ta
bl

e
2

2
:R

un
ti

m
e

an
d

th
ro

ug
hp

ut
fo

r
LU

BM
2

0
0

w
it

h
cu

st
om

ru
le

se
t

an
d

nu
m

be
r

of
ac

ti
ve

co
re

s
ad

ap
te

d
to

nu
m

be
r

of
th

re
ad

s
on

Se
tu

p
B

(p
ar

t
2

).
th

re
ad

s/
ro

un
ds

(a
vg

of
5

ru
ns

)
sp

in
ni

ng
(a

vg
of

5
ru

ns
)

bl
oc

ki
ng

si
ng

le
(a

vg
of

5
ru

ns
)

bl
oc

ki
ng

m
ul

ti
(a

vg
of

5
ru

ns
)

co
re

s
(u

p
to

3
2
)

ti
m

e
(m

s)
Tr

ip
le

s/
s

st
d

er
r

ti
m

e
(m

s)
Tr

ip
le

s/
s

st
d

er
r

ti
m

e
(m

s)
Tr

ip
le

s/
s

st
d

er
r

ti
m

e
(m

s)
Tr

ip
le

s/
s

st
d

er
r

2
2

1
6

6
3

3
.8

1
0

1
7

8
5

8
.2

8
7

4
4

.4
1

7
0

9
8
.8

9
3

7
0

5
2

.2
1

5
6

4
3

.2
2

1
1

0
3

.4
8
1

5
0

3
5

7
8

6
1

.6
1
6

0
2

0
1
0

5
7

8
1

4
.2

8
7

2
4
.2

2
3

1
6

3
2

7
.2

1
0

3
7

5
1

8
.6

1
2

8
3

1
.7

1
7

2
3

6
.6

9
2

8
7

4
5

.2
1

2
1

8
8

.4
2

1
8

8
2

.8
7
9

1
4

2
6

9
6

6
1

.4
1

5
7

3
1
.8

1
0
6

4
3

4
3
.2

3
5
8

7
1
.4

2
4

1
6

3
0

5
.4

1
0

2
5

4
3

9
.6

2
2

9
8

0
1

6
6

6
9
.6

9
6

0
8

0
3

1
2

5
2

9
.6

2
0

9
7

2
.8

8
1

7
2

3
4

9
0

7
1

.7
1

5
2

6
7
.6

1
0
8

1
1

2
4
.2

1
9
4

8
0
.5

2
5

1
5

1
9

0
.4

1
1

0
9

2
4

7
.8

2
7

7
3

1
.8

1
6

5
2

3
9

6
4

2
4

4
.2

1
1

3
0

2
.6

2
0

9
4

7
.2

8
2
1

4
5

5
.4

1
3
6

0
6
.7

1
6

2
0

8
1

0
2

2
1

2
7

3
2
1

0
6

.5

2
6

1
5

3
9

8
.2

1
0

8
0

1
7

7
.2

1
6

6
2

3
.9

1
6

0
0

9
.8

9
9

2
9

2
8

.8
5

0
6

8
.4

2
0

9
1

8
.2

8
1
7

1
5

2
.6

4
2

1
3
.2

1
5
6

0
1
.6

1
0
6

6
1

8
4
.6

3
3
6

4
8
.8

2
7

1
5

5
8

3
1

0
7

6
1

8
7

.4
2

6
7

0
7

.6
1

5
9

9
9

9
9

7
1

3
9

.2
1

3
3

8
8

.4
2

0
1

3
4

.2
8

5
5

4
4

2
.6

2
1
4

5
4
.7

1
5

1
6

2
1
0

7
3

9
4

3
.6

3
1
4

7
5
.4

2
8

1
5

2
5

5
.6

1
1

0
2

1
0

9
.4

4
8

9
6

4
.6

1
5

7
0

9
.2

1
0

0
6

7
1

5
1

7
1

9
5

.6
2

0
5

1
5

.6
8

3
3

4
1

7
.4

6
6

8
3
.3

1
6

0
0

4
1
0

2
3

3
8

4
.2

2
1
3

5
0
.1

2
9

1
5

3
4

4
.2

1
0

7
1

5
9

6
1

2
9

7
7

.5
1

5
7

0
9
.4

1
0

0
3

3
6

1
.8

2
0

2
5

7
.8

1
9

3
5

0
.6

8
9

1
2

4
9

7
5

5
5

.8
1
4

3
4

2
1
1

5
7

5
4

7
.4

3
9
4

9
3
.4

3
0

1
4

5
7

8
.6

1
1

4
3

5
2

1
.6

1
8

4
0

6
.1

1
5

4
1

5
.4

1
0

1
8

1
7

9
.6

1
1

3
6

1
.5

1
9

4
4

6
.4

8
7
8

1
1

7
.6

5
6

9
1
.7

1
4

5
0

0
1

1
5

0
7

7
0

4
5
7

7
9

.3

3
1

1
5

7
9

5
.4

1
0

4
4

9
5

2
2

1
1

3
7

.1
1

5
3

9
8
.6

1
0

0
9

8
4

9
1

6
4

8
2

.5
1

9
4

2
9

.2
8
7

4
8

0
2

1
0
4

3
0

.9
1

4
4

7
8
.6

1
1
2

8
3

5
9
.4

3
3
6

3
8
.3

3
2

1
5

2
3

9
1

0
7

2
7

8
3

.4
1

4
7

5
8

.4
1

7
6

3
5

8
9

0
3

5
5

.6
2

8
6

7
0

.2
2

0
6

5
7

.4
8

2
5

4
8

0
.2

7
6

7
7
.1

1
3
6

9
7
.6

1
2
0

5
2

5
8
.2

2
6
6

9
9
.4

3
3

1
5

0
2

7
.8

1
0

8
3

1
6

2
.4

1
4

3
9

3
.5

1
5

0
3

9
.6

1
0

4
6

5
8

2
.8

9
6

7
6

.7
1

8
8

6
4

.2
9

0
4

0
5

5
.8

7
8

1
0
.4

1
3
8

5
0
.6

1
1
7

9
1

8
5
.2

2
7

0
2

8

3
4

1
4

4
6

9
.2

1
1

2
1

8
0

0
.2

8
8

1
9

.3
1

4
9

4
5
.2

1
0

3
8

5
6

5
.8

1
0

6
1

3
.3

1
9

1
3

8
.2

8
8
5

9
0

1
.4

8
8

2
9
.8

1
3

4
6

2
1
2

0
9

5
6

3
.8

2
5
5

8
5
.5

3
5

1
4

3
2

7
.6

1
1

4
4

4
5

5
.8

1
7

9
9

4
1

4
6

3
2
.8

1
0

4
1

7
3

1
6

8
2

4
.8

1
8

8
6

7
9

0
1

7
4

1
.6

7
2
6

6
.8

1
2
2

9
4
.6

1
3
1

7
5

6
9
.4

6
6
3

8
8
.9

3
6

1
3

5
5

9
.2

1
2

0
4

3
9

5
.6

9
8

0
5

.6
1

4
7

3
3

1
0

6
6

2
1

0
.6

1
3

9
2

2
.1

1
8

4
7

7
.8

9
1

9
1

0
2

7
4

7
8

.1
1

2
1

5
3
.8

1
3
4

2
2

4
5
.4

3
5
6

2
7
.1

3
7

1
4

5
8

2
.4

1
1

4
0

5
7

4
.2

2
3

6
2

8
.4

1
4

9
4

6
.2

1
0

4
9

1
5

5
1

0
5

5
9

.7
2

0
3

0
5

.8
8

4
6

5
9

4
.4

1
5
2

9
8
.6

1
2
3

9
2
.2

1
3
0

8
3

5
7
.4

3
4
9

6
2
.5

3
8

1
4

7
7

9
.8

1
1

2
1

2
6

8
.6

1
3

0
5

1
.5

1
5

1
1

0
.6

1
0

4
1

9
3

7
.4

1
2

1
8

9
.9

2
0

1
8

0
.6

8
4
9

4
9

6
.8

8
7

3
3
.2

1
2
1

7
3
.2

1
3
0

6
1

9
3
.6

2
6
4

1
3
.2

3
9

1
5

1
2

5
1

0
9

8
9

7
8

.2
2

4
6

6
3

1
4

8
9

3
.2

1
0

6
2

6
8

0
.8

2
1

6
2

3
.2

2
0

2
0

9
.6

8
4
8

3
5

4
.8

7
7

8
7
.5

1
2
4

6
0
.6

1
2
8

8
2

7
7
.2

2
5
7

3
6
.8

4
0

1
5

2
2

3
.6

1
0

8
9

0
2

8
1

6
7

8
4

.8
1

5
2

2
2

1
0

4
0

1
2

5
.8

5
4

6
0

.2
2

0
2

1
3

.8
8

5
0

1
3

7
.4

8
1

1
0
.1

1
1
8

3
9
.8

1
3
6

1
3

6
8
.8

4
0
8

5
9
.1

4
1

1
5

2
5

3
.8

1
0

9
1

6
0

2
.2

8
2

1
6

.2
1

5
3

3
5
.2

1
0

3
9

7
9

9
.6

2
3

2
1

5
.3

1
9

9
5

9
.4

8
6

3
1

4
5

6
2

4
4

.5
1

2
5

1
4
.4

1
2
9

7
7

0
2
.8

2
3
0

9
7
.2

4
2

1
5

1
0

1
.8

1
1

0
4

4
6

8
.8

1
1

0
6

4
.7

1
5

6
4

8
.6

1
0

2
0

0
2

1
.6

3
4

6
0

.6
2

0
6

7
9

.8
8

2
9

5
5

4
.2

1
4
2

9
5
.2

1
2
2

2
4
.2

1
3

3
3

6
9

9
1
7

7
6

3
.6

addendum 206

Ta
bl

e
2

3
:R

un
ti

m
e

an
d

th
ro

ug
hp

ut
fo

r
LU

BM
2

0
0

w
it

h
O

W
L

LD
ru

le
se

t
an

d
nu

m
be

r
of

ac
ti

ve
co

re
s

ad
ap

te
d

to
nu

m
be

r
of

th
re

ad
s

on
Se

tu
p

A
(p

ar
t

1
).

th
re

ad
s/

ro
un

ds
(a

vg
of

5
ru

ns
)

sp
in

ni
ng

(a
vg

of
5

ru
ns

)
bl

oc
ki

ng
si

ng
le

(a
vg

of
5

ru
ns

)
bl

oc
ki

ng
m

ul
ti

(a
vg

of
5

ru
ns

)

co
re

s
(u

p
to

3
2
)

ti
m

e
(m

s)
Tr

ip
le

s/
s

st
d

er
r

ti
m

e
(m

s)
Tr

ip
le

s/
s

st
d

er
r

ti
m

e
(m

s)
Tr

ip
le

s/
s

st
d

er
r

ti
m

e
(m

s)
Tr

ip
le

s/
s

st
d

er
r

1
8

6
1

3
4

3
.4

3
8

7
4

8
9

7
6

.4
8

4
6

0
6

1
.6

3
9

4
5

5
.8

1
0

4
9
.7

9
2

2
7

4
5
.8

3
6
1

3
2

.6
7
5

1
.7

8
4

9
7

6
6

3
9

2
7

1
.8

1
7
5

6
2
.9

2
5

3
2

8
8

5
.8

6
2

5
5

4
.4

1
2

7
3
.1

5
2

6
2

2
3

.6
6

3
2

8
4

.2
9

1
1

5
4

6
0

6
4
.8

6
1
0

3
8

.6
1

1
6

5
.4

5
5
6

9
6

0
.6

5
9
9

6
9

2
6
8

1
9

3
3

8
3

9
3

1
.4

8
6

6
8

4
.4

1
6

9
4
.3

3
7

6
4

1
2

.4
8

8
4

0
8

.4
1

7
5

1
.1

3
9

0
3

9
5
.8

8
5
3

6
6

.6
1

9
0

3
.6

3
7

8
7

5
3

8
7

9
3

4
.4

3
9
3

2
5
.5

4
3

0
1

3
9

9
.4

1
1

0
3

2
6

.4
2

4
7

5
2

9
6

4
4

6
.4

1
1

2
1

3
1

2
2

1
8

.5
3

0
8

7
8

8
.4

1
0
7

8
4

2
.2

2
7
0

1
.6

2
9

8
2

8
7

1
1
1

4
8

3
.8

4
9
8

5
7
.1

5
2

4
8

5
7

1
.8

1
3

3
6

0
5

.4
2

7
2

3
.9

2
4

9
0

4
6

.2
1

3
3

3
7

0
.8

2
4

9
2
.1

2
6

0
6

1
7
.8

1
2
7

6
3

4
.8

2
9
7

9
.3

2
5

2
3

1
8

1
3
1

6
3

7
5

8
8

6
9
.9

6
2

1
6

0
0

3
.6

1
5

3
6

5
2

3
2

6
1

2
1

4
9

5
3

.6
1

5
4

6
0

0
.2

3
3

2
5

2
2

3
3

8
7
.4

1
4
8

6
9

9
.2

3
1
1

5
.2

2
1
7

5
5

6
.6

1
5

2
5

5
4

6
8

2
2

4
.2

7
1

9
7

0
8

9
.4

1
6

8
3

2
7

.6
3

0
2

3
.7

1
9

1
9

9
1

.6
1

7
2

9
8

4
.8

3
9

0
0
.9

1
9

7
6

5
3
.4

1
6

7
9

9
9

3
3
0

2
.5

1
9
9

7
2

8
.2

1
6
6

2
2

2
.6

7
4
3

3
7

8
1

7
5

8
7

8
1

8
8

3
2

7
4

7
3

5
.3

1
7

6
8

9
3

.6
1

8
7

1
1

7
.6

4
2

0
8
.6

1
7

7
4

0
7
.2

1
8

6
9

2
8

3
1
9

6
.9

1
8
2

2
9

5
.6

1
8
2

0
8

9
.2

8
1

4
3

2
.8

9
1

8
1

3
1

6
.6

1
7

8
7

3
2

.8
4

3
5

5
.2

1
7

9
2

0
6

.8
1

7
9

1
2

4
.6

3
4

7
2
.8

1
8

1
0

6
4
.4

1
7

9
5

6
0

4
0
0

3
.1

1
8
3

6
6

9
.8

1
7
1

0
3

2
.2

7
6

4
8

7
.9

1
0

1
7

6
5

1
8
.4

1
8

0
1

6
6

.6
2

7
9

5
.2

1
7

7
1

3
5

.8
1

7
8

0
6

4
.6

4
1

8
8
.1

1
7

5
2

1
8
.8

1
8
3

6
0

3
.6

4
3
5

6
.6

1
7
4

9
7

3
.8

1
7
8

1
0

2
.4

7
9

6
4

9
.8

1
1

1
7

0
7

3
5
.6

1
8

5
9

9
7

.2
2

2
4

7
.1

1
7

2
5

9
9

.6
1

8
0

1
8

4
.8

1
6

1
2
.7

1
7

2
9

6
2
.8

1
8

4
9

5
5

1
9
0

0
.5

1
7

0
2

7
3

1
7
7

9
7

5
.2

7
9
5

9
2
.9

1
2

1
6

8
0

1
4

1
8

9
3

0
4
.2

1
5

7
2

1
6

7
1

8
2

.2
1

8
5

5
1

0
.6

1
5

2
3
.9

1
6

8
7

8
5

1
9
0

1
2

9
.4

9
9

5
.1

1
6
8

4
7

2
.2

1
8
3

3
8

8
.2

8
2

0
1

3
.7

1
3

1
5

7
3

2
1
.6

2
0

2
4

7
9

.8
2

0
4

2
.1

1
6

1
7

1
1

1
9

2
3

9
6
.8

1
0

4
3
.3

1
5

9
6

2
1
.8

2
0
1

1
1

8
.6

1
4
3

5
.3

1
5

2
6

9
5

1
9
8

3
3

1
.6

8
8
6

9
6
.6

1
4

1
4

9
0

1
1
.6

2
1

4
3

7
0

.8
1

3
7

8
.5

1
5

3
2

9
9

.6
2

0
2

1
3

1
.8

3
0

5
1
.2

1
4

9
9

0
7
.4

2
1
3

2
4

5
.8

2
1
1

9
.4

1
5
2

0
1

8
.4

2
0
2

6
8

5
.8

9
0

6
4

3
.8

1
5

1
4

8
9

0
4

2
1

3
2

2
8
.2

1
7

5
4
.1

1
5

0
0

5
6

.6
2

0
9

9
6

0
.8

1
8

2
0
.2

1
4

5
1

4
5

2
2
1

7
1

1
.4

6
5

9
.4

1
4
2

6
3

2
.6

2
1
1

7
1

2
.8

9
4

6
8

0
.8

1
6

1
4

6
1

8
6
.2

2
1

7
7

4
8

.8
2

2
1

0
.4

1
4

2
1

9
2

2
1

7
6

5
7
.6

1
8

7
9
.1

1
4

6
0

3
2
.6

2
1
8

0
3

8
.6

2
7
6

8
.3

1
3
7

8
3

4
.8

2
1
7

3
3

0
.4

9
7

1
9

3
.1

1
7

1
3

7
3

0
7
.6

2
3

0
6

2
4

.8
3

5
8

2
.4

1
3

9
3

5
1

2
2

1
5

7
5
.6

9
6

0
.1

1
3

9
8

5
3
.8

2
2
8

8
5

4
.8

1
7
2

8
.7

1
3

5
9

1
1

2
2
6

0
9

5
.2

1
0

1
1

1
2
.8

1
8

1
3

4
0

8
5
.6

2
3

7
8

3
9

3
6

7
4

.3
1

3
4

7
3

0
.6

2
3

3
2

2
4

.8
1

4
4

5
.9

1
3

5
0

7
6
.4

2
3
6

7
9

8
.4

2
2
9

5
.8

1
3
1

2
3

5
.2

2
3
6

4
5

8
.6

1
0
5

7
4

7
.5

1
9

1
2

9
5

3
6
.2

2
4

6
1

1
6

.8
3

2
1

8
.8

1
3

3
6

9
9

.8
2

3
3

8
9

4
.6

3
0

7
6
.9

1
3

0
9

8
5
.6

2
4

4
5

3
6

1
4
2

5
.5

1
2
4

0
7

3
.8

2
5
2

4
4

0
.8

1
1

2
8

9
5

2
0

1
2

7
7

1
5
.8

2
4

9
8

1
8

.6
2

6
7

2
1

2
8

8
6

3
2

4
3

0
8

3
.4

2
7

6
9
.9

1
2

5
1

4
1

2
5
7

0
7

3
.2

1
1
7

0
1

2
0

7
7

3
.8

2
5
8

4
8

8
.4

1
1
5

5
9

9
.5

2
1

1
2

4
4

4
7
.8

2
5

6
8

5
8

.4
3

2
5

8
.4

1
2

3
1

0
2

.8
2

5
4

4
2

0
.4

2
7

7
4
.3

1
1

9
6

0
1
.4

2
6
8

0
0

8
.8

2
3
3

1
.4

1
2
0

7
9

3
.8

2
5
9

7
3

3
.4

1
1
6

1
5

6
.3

addendum 207

Ta
bl

e
2

4
:R

un
ti

m
e

an
d

th
ro

ug
hp

ut
fo

r
LU

BM
2

0
0

w
it

h
O

W
L

LD
ru

le
se

t
an

d
nu

m
be

r
of

ac
ti

ve
co

re
s

ad
ap

te
d

to
nu

m
be

r
of

th
re

ad
s

on
Se

tu
p

A
(p

ar
t

2
).

th
re

ad
s/

ro
un

ds
(a

vg
of

5
ru

ns
)

sp
in

ni
ng

(a
vg

of
5

ru
ns

)
bl

oc
ki

ng
si

ng
le

(a
vg

of
5

ru
ns

)
bl

oc
ki

ng
m

ul
ti

(a
vg

of
5

ru
ns

)

co
re

s
(u

p
to

3
2
)

ti
m

e
(m

s)
Tr

ip
le

s/
s

st
d

er
r

ti
m

e
(m

s)
Tr

ip
le

s/
s

st
d

er
r

ti
m

e
(m

s)
Tr

ip
le

s/
s

st
d

er
r

ti
m

e
(m

s)
Tr

ip
le

s/
s

st
d

er
r

2
2

1
2

2
0

4
6

2
6

1
8

3
6

1
7

1
5

.1
1

1
9

7
3

8
.2

2
6

2
7

2
8

.6
1

4
2

1
.8

1
2

1
4

9
6
.6

2
6
3

0
3

5
.4

2
0
2

8
.2

1
1
8

5
9

9
.8

2
6

3
6

5
1

1
1
7

9
0

8
.3

2
3

1
1

8
3

4
4
.6

2
6

9
5

1
3

.6
2

8
3

0
.4

1
1

8
4

3
4

.2
2

6
3

7
9

0
.4

8
7

2
.7

1
1

7
7

3
5
.6

2
7
1

0
1

7
.4

2
0
6

5
.9

1
1
4

5
7

2
.6

2
7
0

7
3

4
.8

1
2
1

0
7

6
.3

2
4

1
1

9
2

5
9
.4

2
6

3
8

2
5

.6
2

6
3

9
.4

1
1

8
2

7
3

.2
2

6
2

0
8

9
.2

2
3

7
4
.9

1
1

9
7

2
6
.8

2
6
6

0
4

5
.2

3
0
1

1
.8

1
1

4
5

3
3

2
6
7

3
2

1
.2

1
1

9
5

4
9
.7

2
5

1
1

7
2

2
2
.6

2
7

1
1

9
6

.6
2

3
4

6
.2

1
1

3
9

9
0

2
7

2
8

6
6
.4

4
6

0
0
.4

1
1

2
7

3
3
.2

2
8
2

1
5

3
.6

1
2
0

5
.2

1
1
0

5
5

3
.4

2
7
2

6
4

7
.6

1
2
1

9
3

1
.7

2
6

1
1

8
2

8
2

2
6

7
9

2
8
.6

2
7

7
1

1
1

3
9

1
9

.6
2

7
2

0
5

6
2

8
0

5
.9

1
1

4
4

9
2
.6

2
7
9

0
1

3
.8

1
7
7

8
.7

1
1
1

5
8

5
.4

2
7
4

1
2

0
.8

1
2
2

5
9

0
.5

2
7

1
1

6
2

6
8
.4

2
7

1
5

7
5

6
6

4
1

.9
1

1
2

6
0

0
.4

2
7

3
5

7
2

.6
2

7
5

9
1

1
2

4
9

0
.8

2
8

4
2

0
8

2
5
3

3
.5

1
0
7

9
4

8
.4

2
8
1

9
0

7
.6

1
2
6

0
7

2
.9

2
8

1
1

8
3

5
9
.4

2
6

7
6

7
6

.4
4

2
5

9
.3

1
1

1
1

5
9

2
7

7
9

0
6
.4

3
1

4
3
.9

1
1

2
2

1
9
.2

2
8
4

2
9

5
.2

2
5
3

8
.3

1
0
9

5
1

8
.6

2
7
9

2
9

1
.6

1
2

4
9

0
3

2
9

1
1

1
9

7
3
.2

2
8

2
5

9
1

.2
1

8
8

3
1

1
2

3
1

3
.2

2
7

7
0

1
9

.6
3

9
8

3
.2

1
1

0
9

1
1
.2

2
8

8
3

5
8

1
9
9

6
1

0
9

7
4

3
.2

2
7
4

1
1

6
.6

1
2
2

5
8

8
.7

3
0

1
1

0
7

0
2

2
8

6
9

3
6

5
1

3
7

.8
1

0
8

6
9

9
.4

2
8

3
3

1
6

.8
2

1
3

1
.5

1
1

0
1

8
9

2
9

0
2

1
1

1
9
5

5
.5

1
0
6

0
3

0
.2

2
8

5
3

6
8

1
2
7

6
2

0
.4

3
1

1
0

8
6

4
9

2
8

9
7

8
6
.6

4
2

2
6
.6

1
0

7
9

6
5

2
8

5
7

7
6
.8

3
1

4
9

1
1

0
7

6
0
.2

2
8
8

6
8

8
.8

3
0
3

7
.5

1
0
5

0
8

4
.6

2
8
5

7
6

7
.6

1
2
7

7
9

9
.2

3
2

1
1

0
0

9
4

2
8

5
8

6
3

4
7

2
8

.2
1

0
6

0
7

0
.8

2
8

6
0

0
5

.8
3

2
8

2
.9

1
0

7
3

2
8

2
9

6
4

6
9

5
8

3
.2

1
0
3

0
5

3
.2

2
8
3

9
6

7
.6

1
2
6

9
9

4
.2

3
3

1
1

8
3

4
3
.6

2
7

0
3

1
0

.8
3

6
2

2
.6

1
1

6
6

3
8

.8
2

6
8

1
0

9
1

3
2

8
.9

1
1

8
4

3
8
.6

2
6
9

4
1

7
.4

2
0
9

8
.6

1
0
7

6
4

0
.2

2
8
5

6
4

2
.2

1
2
7

7
4

3
.1

3
4

1
1

8
4

3
0
.4

2
6

9
4

3
1

.6
2

7
4

3
.7

1
1

8
8

2
4

.8
2

6
3

2
7

2
.6

2
8

8
9
.6

1
1

8
8

5
9

2
7
0

4
4

1
.2

2
8
4

7
1

1
1

1
3

2
.6

2
7
9

8
0

5
.6

1
2
5

1
3

2
.9

3
5

1
2

2
8

1
0
.8

2
5

9
5

7
3

.2
1

9
4

1
.3

1
1

8
4

9
8

2
6

4
2

9
6
.2

2
4

7
3
.9

1
1

8
9

1
7

2
6

8
5

3
6

1
2
9

8
.4

1
1
3

4
4

1
.2

2
7
0

6
5

5
.4

1
2
1

0
4

0
.8

3
6

1
2

1
3

5
5
.6

2
6

3
7

3
0

.2
3

8
3

4
.3

1
1

8
2

2
6

2
6

6
0

9
3
.8

4
6

3
9

1
2

0
2

7
8
.2

2
6
6

2
7

9
.8

2
1
0

1
1
1

3
9

4
0

2
6
9

7
7

0
.6

1
2

0
6

4
5
.1

3
7

1
2

6
5

2
6

2
5

3
3

0
0
.6

2
7

6
3
.5

1
2

0
6

8
7

.4
2

5
9

4
5

8
.6

2
3

4
9
.9

1
1

8
4

9
6

2
6

8
9

2
0

1
5
5

3
.3

1
1
4

5
3

5
.8

2
6

7
6

2
9

1
1
9

6
8

7
.3

3
8

1
2

0
3

1
8
.8

2
6

4
9

2
3

.2
1

8
0

3
.6

1
1

7
8

2
8

.4
2

6
6

4
2

8
.8

3
8

4
7
.2

1
1

8
7

3
6
.2

2
6
9

3
1

4
.8

3
2
1

6
.7

1
1

7
5

3
0

2
6
1

0
0

4
.2

1
1

6
7

2
4
.6

3
9

1
2

3
4

9
5
.6

2
5

9
5

8
2

.6
2

4
2

9
.1

1
1

9
1

7
3

.2
2

6
2

6
9

2
.8

2
6

2
0
.7

1
1

9
7

3
4
.6

2
6
7

5
1

0
.8

1
6
2

2
.7

1
1
3

6
2

7
.4

2
7

3
3

0
3

1
3
6

6
5

1
.5

4
0

1
2

3
7

3
9

2
5

8
4

7
5
.2

3
1

9
1
.9

1
1

9
0

9
5

.8
2

6
4

4
3

0
.8

9
9

2
.2

1
1

7
7

3
0
.8

2
7
1

7
7

8
.6

1
7
7

4
.2

1
1
3

5
0

1
.2

2
7
1

2
7

5
.6

1
5

6
6

2
1

4
1

1
2

1
7

9
1
.2

2
6

3
1

0
7

5
9

2
0

.6
1

1
8

2
7

5
.2

2
6

5
1

5
6

.6
9

2
6
.6

1
1

9
4

1
8

2
6
8

2
3

4
.8

1
7
5

2
.2

1
1
8

5
6

3
.2

2
6

0
7

3
1

1
8
4

3
6

4
.7

4
2

1
2

3
1

7
6
.4

2
6

0
1

4
9

.8
2

0
0

8
.8

1
1

7
1

6
7

.6
2

6
8

6
4

2
.8

2
6

2
3
.4

1
1

8
8

3
1
.2

2
7
0

6
6

3
.8

2
7
6

7
1

1
6

9
3

8
.8

2
6
5

7
6

4
.4

2
6
5

7
6

4
.4

addendum 208

Ta
bl

e
2

5
:R

un
ti

m
e

an
d

th
ro

ug
hp

ut
fo

r
LU

BM
2

0
0

w
it

h
O

W
L

LD
ru

le
se

t
an

d
nu

m
be

r
of

ac
ti

ve
co

re
s

ad
ap

te
d

to
nu

m
be

r
of

th
re

ad
s

on
Se

tu
p

B
(p

ar
t

1
).

th
re

ad
s/

ro
un

ds
(a

vg
of

5
ru

ns
)

sp
in

ni
ng

(a
vg

of
5

ru
ns

)
bl

oc
ki

ng
si

ng
le

(a
vg

of
5

ru
ns

)
bl

oc
ki

ng
m

ul
ti

(a
vg

of
5

ru
ns

)

co
re

s
(u

p
to

3
2
)

ti
m

e
(m

s)
Tr

ip
le

s/
s

st
d

er
r

ti
m

e
(m

s)
Tr

ip
le

s/
s

st
d

er
r

ti
m

e
(m

s)
Tr

ip
le

s/
s

st
d

er
r

ti
m

e
(m

s)
Tr

ip
le

s/
s

st
d

er
r

1
2

4
4

1
9

6
.6

6
8

4
1

7
.2

1
0

4
.5

2
4

4
0

2
8
.4

6
8

4
6

4
.6

1
2

2
.7

2
6

2
6

9
4

.8
6
3

5
9

9
.6

1
0
7
.8

2
4
1

9
0

5
.6

6
9

0
6

6
1

5
1

.3

2
1

6
9

2
8

3
.2

9
8

6
9

5
.8

3
2

1
.2

1
6

9
5

1
9

9
8

5
5

5
.8

3
2

4
.5

1
7

6
5

8
7

.2
9
4

6
0

2
.8

1
6
8
.2

1
6
8

0
2

8
.4

9
9

4
2

3
.4

4
0
9

.7

3
1

2
1

3
4

9
.6

1
3

7
6

0
5

.2
6

3
3

.5
1

2
1

0
0

7
1

3
7

9
1

6
2

6
9

.1
1

2
9

4
4

2
.4

1
2
8

9
8

2
.8

2
0
8
.4

1
2
1

8
4

1
.6

1
3
6

9
7

2
.8

8
7
7

.5

4
9

6
6

2
0
.2

1
7

2
7

0
2

.8
6

4
1

.1
9

5
8

4
0
.8

1
7

3
9

5
8

4
1

5
.6

1
0

2
8

4
4

1
6
2

2
9

2
.2

4
2
6
.3

9
5

9
4

5
.4

1
7
3

6
7

1
.4

6
5

7
.8

5
8

2
3

0
5
.6

2
0

2
6

1
0

.6
5

3
6

7
9

7
0

9
.8

2
0

9
0

0
2

.2
5

8
3
.3

8
5

8
2

1
.8

1
9
4

3
1

3
7

4
8

.7
8
0

8
4

7
.8

2
0
5

7
6

0
.4

1
6
0

2

6
7

0
7

8
3
.8

2
3

5
4

4
7

.4
4

8
8

.2
6

9
4

6
8
.8

2
3

9
5

2
8

.2
7

4
0
.4

7
3

8
1

2
2

2
5

7
9

3
.4

6
6
6
.9

7
0

0
5

0
.4

2
3
7

5
3

1
.8

2
0
8

2
.5

7
6

3
4

4
4
.6

2
6

2
7

2
1

.8
6

7
3

.5
6

2
0

3
8
.8

2
6

8
3

0
3

.4
5

0
1
.6

6
5

6
6

0
2

5
3

8
7

1
.8

5
2
7
.1

6
3

0
1

9
.2

2
6
3

7
9

5
.6

3
1
5

1
.7

8
5

8
8

8
5
.2

2
8

2
6

7
5

7
1

3
5

6
4

6
1
.4

2
9

3
8

5
6

.2
2

9
2
.4

5
9

4
7

5
.4

2
7
9

9
9

3
.2

6
3
0
.8

5
7

2
8

7
.6

2
8
9

5
0

2
.4

1
8
8

0
.2

9
5

4
1

2
8
.8

3
0

7
3

7
4

.2
5

7
5

.5
5

2
2

4
3
.2

3
1

7
8

3
2

.6
9

7
1
.3

5
4

7
5

4
.6

3
0
3

8
4

4
.8

4
5
1
.1

5
2

2
4

1
.4

3
1

7
6

4
0

3
4
0

7
.3

1
0

5
5

8
6

3
.4

2
9

3
4

5
2

9
8

8
.2

5
4

6
8

2
.2

2
9

5
5

3
0

.4
1

2
0

7
.8

5
5

6
1

5
2

9
6

8
6

8
.4

1
0

1
6
.8

5
4

4
1

5
.6

2
9
6

3
6

3
.2

1
8
4

7
.5

1
1

5
7

3
4

4
.8

2
8

1
1

5
4

.2
2

3
8

5
.5

5
6

1
8

4
2

8
0

6
6

2
2

7
1

2
.2

5
5

8
3

4
2
9

1
9

2
1

2
1
7

0
.5

5
5
2

1
5

2
8
7

4
3

9
.4

4
0
9

2
.7

1
2

5
6

5
2

2
.4

2
8

1
8

8
5

3
0

8
9

.2
5

4
7

7
6
.6

2
8

4
6

1
4

.6
2

1
8

1
.3

5
5

5
4

3
.4

2
9
0

9
3

6
.2

1
2

1
2
.5

5
4
3

3
7

2
8
4

8
2

5
.8

5
9
2

7

1
3

5
4

2
5

4
.2

2
9

4
7

2
2

.4
3

3
4

2
.4

5
3

4
8

0
.2

2
8

8
5

9
6

.8
3

8
4

9
.1

5
5

7
5

1
2

8
9

6
6

9
.4

2
3

6
9
.8

5
1

7
7

3
.4

2
9

4
2

8
6

3
1
2

4
.5

1
4

5
2

5
5

6
.4

3
0

4
5

6
6

.6
2

3
6

4
.4

5
1

5
2

2
.6

3
0

0
9

0
3

2
4

7
7

.4
5

3
9

6
5

.8
2

9
8

7
8

6
.6

2
1

0
9
.8

5
0

1
9

6
.4

3
0
5

5
9

4
.8

4
8
3

6
.1

1
5

5
0

8
9

1
.6

3
1

3
6

5
2

.4
2

1
1

1
.2

4
9

6
4

5
3

1
2

6
9

2
.8

1
8

5
8
.8

5
1

8
4

7
3

1
1

9
4

0
.8

2
0

2
2
.1

4
8

7
3

9
.8

3
1
3

3
2

8
.8

3
0
7

1
.7

1
6

4
9

8
9

2
.2

3
2

1
0

8
6

3
7

0
7

.4
4

7
8

0
4

3
2

3
4

6
1

1
4

1
1

.8
5

1
2

0
6

.6
3

1
4

0
1

3
.2

3
5

0
0

4
5

7
7

7
.4

3
4
2

9
9

1
.2

4
3
6

2
.3

1
7

4
8

8
5

1
3

2
7

0
7

5
3

3
0

.2
4

7
2

4
5
.6

3
2

7
8

4
6

.8
2

3
4

4
.8

4
8

2
1

6
.2

3
3
5

4
9

0
.6

3
1

0
7
.8

4
4

7
1

7
.8

3
3
9

2
6

6
.6

4
3
2

3
.4

1
8

4
7

4
2

6
3

3
5

1
9

3
1

8
0

2
.2

4
5

1
5

1
.8

3
4

1
8

2
3

1
4

8
5

.7
4

7
6

4
0

.8
3

3
7

2
1

2
.8

2
3

4
2

4
4

1
8

0
.6

3
4
7

1
2

6
.6

3
3
1

0
.3

1
9

4
6

9
1

9
.6

3
4

0
4

2
0

1
9

1
1

.8
4

4
9

2
3
.4

3
4

6
7

2
7

.4
2

7
0

1
4

6
8

1
5

.2
3

4
4

5
4

9
.4

3
0

4
7

4
3

0
9

0
.6

3
5
9

9
4

3
.4

5
4
7

2
.1

2
0

4
5

9
4

0
.6

3
5

0
3

4
5

2
2

8
8

4
3

8
3

2
.2

3
5

3
8

8
6

.8
1

9
7

3
.4

4
5

1
6

5
.4

3
5
7

9
5

0
1
1

7
5

.2
4
3

8
7

3
.6

3
5
8

3
8

0
.4

5
3
1

4
.2

2
1

4
5

8
4

7
.8

3
4

9
6

9
5

.6
2

1
0

9
.2

4
4

2
3

0
.4

3
5

1
9

2
1

.6
3

1
6

0
.7

4
5

0
0

8
.6

3
5
9

1
3

2
.2

1
7

5
9
.4

4
3
8

8
7

3
5
8

9
9

0
.8

8
2
0

5
.7

addendum 209

Ta
bl

e
2

6
:R

un
ti

m
e

an
d

th
ro

ug
hp

ut
fo

r
LU

BM
2

0
0

w
it

h
O

W
L

LD
ru

le
se

t
an

d
nu

m
be

r
of

ac
ti

ve
co

re
s

ad
ap

te
d

to
nu

m
be

r
of

th
re

ad
s

on
Se

tu
p

B
(p

ar
t

2
).

th
re

ad
s/

ro
un

ds
(a

vg
of

5
ru

ns
)

sp
in

ni
ng

(a
vg

of
5

ru
ns

)
bl

oc
ki

ng
si

ng
le

(a
vg

of
5

ru
ns

)
bl

oc
ki

ng
m

ul
ti

(a
vg

of
5

ru
ns

)

co
re

s
(u

p
to

3
2
)

ti
m

e
(m

s)
Tr

ip
le

s/
s

st
d

er
r

ti
m

e
(m

s)
Tr

ip
le

s/
s

st
d

er
r

ti
m

e
(m

s)
Tr

ip
le

s/
s

st
d

er
r

ti
m

e
(m

s)
Tr

ip
le

s/
s

st
d

er
r

2
2

4
5

7
2

5
.2

3
4

8
7

6
5

.4
2

1
6

3
.3

4
2

8
4

6
3

6
4

3
2

3
.2

5
3

4
8

4
4

9
6

0
3

5
8

2
0

2
.6

3
2

8
4
.4

4
1

1
4

6
.2

3
8
2

0
2

8
.8

5
0

4
4

.1

2
3

4
5

0
6

5
.8

3
5

5
6

2
5

.8
2

3
0

7
.3

4
1

5
2

6
.2

3
7

5
3

9
7

.8
2

6
8

8
.7

4
3

3
3

8
.6

3
7

1
6

3
7

2
0
8

5
4
1

3
4

8
.2

3
8
3

1
1

1
.4

4
1

2
4

.6

2
4

4
4

3
4

4
3

6
1

3
6

4
3

2
4

1
.3

4
2

5
5

5
.8

3
6

2
9

9
0

.8
3

3
2

3
4

3
2

2
7

3
7

3
3

6
5

5
0
2

7
.9

4
1

1
1

4
.4

3
8
5

0
0

8
.4

2
9

9
5

.2

2
5

4
3

3
1

9
.8

3
6

8
5

3
6

.6
3

9
0

6
.4

4
1

0
7

1
.4

3
7

8
7

9
3

.4
7

1
2

2
.9

4
1

6
9

5
.6

3
8
7

2
2

8
.4

3
0
1

7
4
0

3
3

2
.6

3
9

1
2

4
2

1
1
2

7
1

.9

2
6

4
3

8
8

1
.8

3
6

2
7

2
3

.2
6

4
5

2
.6

4
0

3
7

6
3

8
5

3
9

6
.6

3
4

4
7

.3
4

3
1

4
6

.2
3
7

2
9

5
1

3
5
7

7
.7

3
9

4
5

3
.2

3
9
8

3
3

8
.8

6
2

1
1

.7

2
7

4
1

4
1

3
.8

3
8

4
9

3
4

5
3

0
4

.9
4

0
4

0
3
.4

3
8

4
2

5
8

.4
3

8
8

9
.1

4
1

9
8

4
3

8
3

3
6

8
.6

5
4

7
1
.8

3
8

7
2

0
.8

4
0

5
2

3
2

8
5

9
4

.6

2
8

4
1

5
3

9
.2

3
8

1
4

8
7

.2
6

2
4

8
.7

4
0

3
3

1
3

7
9

5
7

0
7

1
7

0
.2

4
1

5
0

9
.4

3
8
5

3
8

2
.4

4
6
3

0
.6

3
8

3
7

4
.6

4
0
8

3
4

2
.2

7
4

9
9

.1

2
9

4
1

4
1

0
.6

3
8

1
9

5
1

.2
4

9
7

8
.2

3
9

5
9

7
.8

3
8

7
9

0
4

.2
5

5
8

9
.5

4
0

8
3

4
3

9
1

2
3

2
.4

2
5

7
7
.6

4
0
1

5
3

3
8
8

5
9

9
.8

4
3
7

1

3
0

3
9

8
8

6
.6

4
0

0
2

0
6

2
2

9
0

3
8

4
3

0
3

9
9

8
1

9
.8

2
8

5
4

.5
3

9
8

2
6

.8
4

0
3

3
7

2
.8

4
0
5

0
3
6

9
2

9
.4

4
2
5

1
4

6
.2

4
5

2
1

.7

3
1

4
0

7
0

6
.4

3
8

7
8

7
6

.2
3

8
5

3
.3

3
8

3
7

7
.8

4
0

0
3

9
6

.6
6

1
6

7
.9

3
9

5
7

1
.4

4
0

5
0

8
0

3
5
2

0
.9

3
8

5
8

7
.6

4
0
3

9
2

7
.2

4
5

9
0

.4

3
2

4
0

7
3

7
3

8
9

5
1

5
.8

4
4

7
0
.8

3
7

6
6

6
.6

4
0

7
2

6
1

.4
4

4
5

4
.2

3
9

9
1

5
.2

4
0
0

4
6

8
.8

2
2
8

6
.5

3
7
9

4
7

4
0
9

7
4

0
.4

6
6
4

3

3
3

4
0

4
5

6
.2

3
9

2
2

3
2

3
9

9
8

.5
3

8
9

1
1
.2

3
9

4
9

3
0

.6
3

9
6

9
.5

3
8

6
0

5
.2

4
1

4
9

3
1

2
1
1

8
.4

3
9

2
9

8
.6

3
9
5

8
8

8
.4

9
8

2
4

.1

3
4

4
0

1
9

4
.6

3
9

5
3

9
7

.2
5

9
3

5
.8

3
8

3
2

8
.4

4
0

0
4

8
7

.8
3

6
9

2
.1

3
8

4
5

7
4

1
5

3
8

5
.8

1
4

9
8
.4

3
7

9
0

6
.4

4
0
6

6
8

9
.2

2
6

5
6

.2

3
5

3
9

5
5

6
.8

4
0

2
3

9
7

.2
3

7
6

7
3

8
2

8
9
.4

3
9

9
7

4
6

1
7

1
3

.4
3

7
4

3
8

4
2
7

2
1

8
.4

4
3

1
5
.6

3
7

5
2

1
.2

4
1

8
8

6
4

3
8

0
9

.9

3
6

3
8

7
1

8
.8

4
0

8
5

7
3

.4
1

7
6

4
.4

3
7

8
7

0
4

0
5

3
1

8
.6

2
3

2
8

.2
3

8
0

3
9

.2
4

2
0

4
3

8
.2

4
3
1

1
.4

3
8

1
9

5
.6

4
0
8

6
9

6
.4

8
0
1

5

3
7

4
1

4
5

1
.6

3
8

3
6

1
5

.2
3

9
0

3
.6

4
1

1
5

5
.4

3
7

8
9

1
9

3
6

3
3

.6
4

0
1

3
9

3
9

9
8

1
7

2
9
8

4
.2

4
0

4
3

5
.2

3
9
0

2
4

3
.8

4
3

6
6

.5

3
8

4
3

0
3

9
3

7
2

5
2

0
.4

5
8

0
7
.6

4
1

4
2

6
.8

3
7

3
1

8
5

.4
3

0
1

3
.4

4
1

0
3

2
3
9

2
0

9
4

2
9
8

3
.9

4
0

9
6

2
.2

3
8

5
5

9
4

6
3

0
8

.2

3
9

4
3

4
7

2
3

6
8

3
0

8
3

9
6

2
.4

4
2

6
0

3
.4

3
6

4
6

7
1

.8
1

9
3

6
.4

4
1

4
8

4
.6

3
8
6

3
8

5
.2

2
6
8

1
.6

4
0

0
9

3
.2

3
9
2

7
5

5
.8

1
9

9
2

.4

4
0

4
3

7
9

5
.8

3
6

6
2

2
3

2
9

4
5

.5
4

1
6

7
2
.8

3
7

1
4

7
1

.6
1

8
3

4
.5

4
1

5
4

2
.8

3
8
7

2
4

2
.6

3
8
1

6
.2

4
1

5
0

9
.8

3
7
8

1
6

2
.6

6
3

4
2

.1

4
1

4
2

3
6

9
3

7
7

1
9

6
.8

4
7

4
1
.6

4
2

4
3

3
.4

3
6

4
4

9
5

.6
4

1
1

5
.6

4
0

6
6

4
.2

3
9

3
7

6
3

4
9

1
4
1

5
5

9
.4

3
8
0

2
8

5
.6

6
4

2
0

.3

4
2

4
3

6
3

0
.2

3
6

7
3

9
5

2
0

4
5

4
1

8
8

2
.4

3
7

2
3

9
5

2
3

3
0

.2
4

1
5

5
6

3
8
6

1
1

1
.8

4
2

7
3
.4

4
0

9
6

2
.2

3
8
3

2
3

1
.8

3
2
2

0

addendum 210

Table 27: Runtime and throughput for retrieval of synthetic tree dataset with breadth
b = 6 and depth d = 6 (i.e., 55 986 triple/requests) with about 2 ms delay.

request rounds spinning blocking single blocking multi

threads ms Triple/s ms Triple/s time (ms) Triple/s ms Triple/s

32 9777 5726 9413 5947 9438 5931 9436 5933

64 7477 7487 7475 7489 7388 7577 7401 7564

96 7134 7847 6864 8156 6940 8067 6958 8046

128 6838 8187 6428 8709 6432 8704 6514 8594

160 7277 7693 6415 8727 6326 8850 6414 8728

192 6797 8236 6153 9098 6190 9044 6163 9084

224 6946 8060 6082 9205 6018 9303 6098 9181

256 6710 8343 6070 9223 5923 9452 6015 9307

288 6754 8289 5981 9360 5843 9581 5957 9398

320 7600 7366 5877 9526 5817 9624 5822 9616

640 9772 5729 6467 8657 6353 8812 5907 9477

960 10858 5156 5846 9576 5717 9792 5994 9340

1280 13248 4225 5833 9598 5916 9463 6066 9229

1600 13008 4303 5844 9580 5786 9676 5792 9666

1920 16002 3498 5709 9806 5842 9583 5970 9377

2240 16370 3420 5805 9644 6191 9043 6082 9205

2560 19537 2865 5978 9365 8516 6574 6076 9214

2880 22748 2461 5967 9382 6783 5953 6454 8674

3200 25064 2233 6162 9085 11345 4934 6534 8568

Table 28: Runtime and throughput for retrieval of synthetic tree dataset with breadth
b = 6 and depth d = 6 (i.e., 55 986 triple/requests) with about 200 ms delay.

request rounds spinning blocking single blocking multi

threads ms Triple/s time (ms) Triple/s ms Triple/s ms Triple/s

32 353262 158 352699 158 352630 158 366291 152

64 177323 315 176764 316 176727 316 191706 292

96 118586 472 118078 474 118084 474 128829 434

128 89416 626 88820 630 88785 630 100711 555

160 71985 777 71164 786 71271 785 80572 694

192 60164 930 59458 941 59443 941 69513 805

224 51728 1082 51059 1096 51008 1097 59263 944

256 46662 1199 44851 1248 44790 1249 52197 1072

288 40640 1377 39985 1400 39944 1401 48977 1143

320 37308 1500 36226 1545 36164 1548 45452 1231

640 37799 1481 36211 1546 36178 1547 39679 1410

960 39544 1415 36210 1546 36194 1546 39655 1411

1280 39794 1406 36245 1544 36229 1545 39112 1431

1600 41180 1359 36244 1544 36209 1546 38210 1465

1920 42782 1308 36278 1543 36280 1543 38539 1452

2240 45412 1232 36330 1541 36363 1539 38299 1461

2560 46237 1210 36349 1540 36393 1538 38771 1444

2880 48346 1158 36361 1539 36504 1532 38384 1458

3200 52277 1070 36424 1537 36498 1533 38741 1445

addendum 211

Ta
bl

e
2

9
:R

un
ti

m
e

an
d

th
ro

ug
hp

ut
fo

r
ev

al
ua

ti
on

of
de

du
ct

io
n

ru
le

s
fo

r
sy

m
m

et
ry

an
d

tr
an

si
ti

vi
ty

of
lo

ca
lly

ge
ne

ra
te

d
sy

nt
he

ti
c

tr
ee

da
ta

se
t

(3
2

Tr
ip

le
-

W
or

ke
r

an
d

6
4

R
eq

ue
st

W
or

ke
r)

.
se

ri
al

ro
un

ds
sp

in
ni

ng
bl

oc
ki

ng
si

ng
le

bl
oc

ki
ng

m
ul

ti

de
pt

h
br

ea
dt

h
tr

ip
le

re
qu

es
ts

ti
m

e
(m

s)
Tr

ip
le

/s
ti

m
e

(m
s)

Tr
ip

le
/s

ti
m

e
(m

s)
Tr

ip
le

/s
ti

m
e

(m
s)

Tr
ip

le
/s

ti
m

e
(m

s)
Tr

ip
le

/s

1
2

9
3

1
4

6
4

2
2

1
6

4
1

6
1

1
4

7
4
1

2
1
9

1
4

6
4

2

2
2

4
9

7
2

4
2

0
4

1
1

9
0

2
5

7
6

2
7
9

0
4
0

1
2

2
5

1
6

3
0
6

2

3
2

2
2

5
1

5
3

4
6

6
1

7
1

9
6

1
1

4
7

6
4

3
5
1

5
5
1

1
6

9
1

2
4

1
6

2
7

1

4
2

9
6

1
3

1
5

1
1

8
8

4
3

1
6

0
6

0
0

6
6

5
1
4

7
8

4
5
9

1
6
2

8
8

4
1

2
3

4
3

9

5
2

3
9

6
9

6
3

1
5

8
2

5
1

2
0

2
0

7
1

9
1

7
3

1
1

0
3

6
0

8
1

1
2

3
3
2

2
6

8
8

1
4
9

0
0

0

6
2

1
6

1
2

9
1

2
7

1
3

1
8

1
2

2
3

7
6

3
0

2
5

6
0

1
5

8
9

2
7
3

8
3

5
1

1
3
1

5
6

3
5

4
8

2
9
4

3
2

7
2

6
5

0
2

5
2

5
5

1
3

0
6

1
4

9
7

8
3

9
8

9
1

6
3

0
1

5
0

6
9

1
2

8
2

7
4
3

9
9

1
4
7

8
1

5
0

0
2

1
2
9

9
9

8
2

2
6

1
1

2
1

5
1

1
1

2
0

5
8

2
2

1
6

5
2

9
1

1
2

8
9

6
9

3
4

8
9

9
7

4
8

2
3

5
0

5
8

7
4

4
8

3
4

9
6

1
7

4
6

8

9
2

1
0

4
6

5
2

9
1

0
2

3
1

0
5

3
3

1
2

9
9

3
2

4
0

0
3

4
4

3
5

9
2

4
0

7
1

7
4
3

4
7

3
3
2

6
7

0
3

1
4

5
3
8

7
9

4
0

2
6

9
7

Ta
bl

e
3

0
:F

re
qu

en
cy

an
d

th
ro

ug
hp

ut
in

1
0

0
0

re
pe

at
ed

ru
ns

fo
r

re
tr

ie
va

l
of

sy
nt

he
ti

c
tr

ee
da

ta
se

t
an

d
ev

al
ua

ti
on

of
de

du
ct

io
n

ru
le

s
fo

r
sy

m
m

et
ry

an
d

tr
an

si
ti

vi
ty

(3
2

Tr
ip

le
W

or
ke

r
an

d
6

4
R
eq

ue
st

W
or

ke
r)

.
se

ri
al

ro
un

ds
sp

in
ni

ng
bl

oc
ki

ng
si

ng
le

bl
oc

ki
ng

m
ul

ti
bl

oc
ki

ng
m

ul
ti

re
se

t

de
pt

h
br

ea
dt

h
H

z
Tr

ip
le

/s
H

z
Tr

ip
le

/s
H

z
Tr

ip
le

/s
H

z
Tr

ip
le

/s
H

z
Tr

ip
le

/s
H

z
Tr

ip
le

/s

1
2

4
7

4
2

0
1

1
9

4
1

9
1

6
8

5
0

4
4

5
4

9
3

8
7

2
0
7

1
8
6

0

2
2

4
2

2
0

6
2

7
3

5
9

1
8

8
7

9
4

8
2

3
5

6
4

8
2

1
6

1
1

9
3

9
4
4

8

3
2

2
9

6
5

2
0

6
1

2
5

6
1

6
3

5
4

5
4

2
9

4
3

7
4

3
9

7
8

0
1

5
5

3
4

8
2

9

4
2

1
3

1
2

6
5

4
4

4
1

7
5

1
2

1
1

7
3

5
3

0
2

9
2
0

2
3

2
3
1

2
1

5
6

6
6

3
5

0
3

5
2

4
1

6
9

0
6

3
1

2
2

3
4

7
2

7
7

2
4

1
1

4
2

8
6

1
1

1
4
5

5
9

8
1

3
5

2
8

0
5

6
2

0
.7

1
0

7
1

8
1

2
1

8
5

8
2

3
0

5
1

7
2

3
0

6
2
1

2
3
2

2
6

3
2

2
9

6
5

5

addendum 212

Ta
bl

e
3

1
:R

un
ti

m
e

an
d

th
ro

ug
hp

ut
fo

r
re

tr
ie

va
l

w
it

h
ab

ou
t

2
m

s
an

d
2

0
0

m
s

de
la

y
of

sy
nt

he
ti

c
tr

ee
da

ta
se

t
an

d
ev

al
ua

ti
on

of
de

du
ct

io
n

ru
le

s
fo

r
sy

m
m

et
ry

an
d

tr
an

si
ti

vi
ty

(3
2

Tr
ip

le
W

or
ke

r
an

d
6

4
R
eq

ue
st

W
or

ke
r)

.
se

ri
al

ro
un

ds
sp

in
ni

ng
bl

oc
ki

ng
si

ng
le

bl
oc

ki
ng

m
ul

ti

de
pt

h
br

ea
dt

h
tr

ip
le

re
qu

es
ts

ti
m

e
(m

s)
Tr

ip
le

/s
ti

m
e

(m
s)

Tr
ip

le
/s

ti
m

e
(m

s)
Tr

ip
le

/s
ti

m
e

(m
s)

Tr
ip

le
/s

ti
m

e
(m

s)
Tr

ip
le

/s
de

la
y

(m
s)

1
2

9
3

2
8

3
2

1
2

1
1

4
2

6
1

1
4
7

4
1

2
1

9
2
0

4
5
0

2

2
2

4
9

7
4

7
1

0
4

2
1

4
0

3
4

9
6

2
7

9
0

4
1

1
1
9

5
2
4

2
0

4
1

2

3
2

2
2

5
1

5
6

8
3

3
0

8
1

9
4

1
1

5
9

8
3

2
7

1
0

3
7

6
0
8

1
2
7

8
3

3
3

2

4
2

9
6

1
3

1
1

3
1

7
3

3
5

2
4

7
3

8
9

0
7

4
1

2
9

8
6

4
2

2
2

8
8

0
3
9

2
4
6

4
1

2

5
2

3
9

6
9

6
3

2
8

1
1

4
1

2
4

3
5

9
1

1
0

5
5

1
4

0
2

8
3
4

9
1

1
0

3
6
0

8
1

1
1

8
3
3

6
3

5
2

6
2

1
6

1
2

9
1

2
7

1
6

8
4

9
5

7
7

8
0

3
2

0
0

8
5

6
1

5
2

6
2
2

6
5

6
7

2
8
4

4
6

6
4

1
2
5

1
6

2
2

7
2

6
5

0
2

5
2

5
5

1
3

8
8

2
4

6
8

4
4

2
6

9
1

5
2

3
1

3
7

8
1

1
7
1

9
7

4
5
0

8
1
4

4
2

4
4

2
0

8
1
5

4
5

2
2

8
2

2
6

1
1

2
1

5
1

1
1

1
3

5
6

6
2

2
9

9
2

8
9

8
6

9
0

0
8

3
0

1
8

1
8

6
5

1
3
2

7
2

3
7

9
7

9
3

3
5

4
0

7
7

8
5

2

9
2

1
0

4
6

5
2

9
1

0
2

3
9

7
2

9
5

5
1

0
7

5
2

1
8

8
6

6
4

7
8

1
2

8
1

2
4

5
3

7
2

1
2
5

2
8

2
3

4
1

3
9

3
0
4

6
2

4
3

4
3

5
2

1
2

9
3

6
2

6
1

4
5

0
1

1
7

4
5

3
1

9
4

3
5

2
0

4
1

9
2

1
2

0
0

2
2

4
9

7
1

4
4

4
3

3
7

0
6

6
9

6
6

7
7

3
6

3
2

7
7

6
2

4
7

8
2

0
0

3
2

2
2

5
1

5
3

0
6

7
7

3
9

3
1

2
4

1
8

5
9

2
6

1
8

3
2

2
7
0

1
0
2

5
2
1

9
2

0
0

4
2

9
6

1
3

1
6

3
2

0
1

5
2

1
1

7
1

8
2

0
1

0
6

8
8

9
9

1
0
4

7
9
1

7
1

2
2

7
7
8

3
2

0
0

5
2

3
9

6
9

6
3

1
2

8
9

6
3

0
7

1
4

6
5

2
7

0
9

1
3

1
4

3
0

2
0

1
2
4

7
3

1
8

2
1

4
4

3
2

7
5

0
2

0
0

6
2

1
6

1
2

9
1

2
7

2
7

0
3

2
5

9
6

2
0

5
7

7
8

4
1

1
7

0
4

9
4

6
5

1
7
8

5
9

0
3

5
2

2
6

5
7

1
2

0
2

0
0

7
2

6
5

0
2

5
2

5
5

6
4

5
0

6
1

0
0

8
5

2
3

7
1

2
4

1
6

5
1

6
1

1
2
5

9
9

6
1
5

6
1
0

5
6

2
5

1
8

7
1
2

5
3

6
2

0
0

8
2

2
6

1
1

2
1

5
1

1
2

1
7

3
6

6
1

2
0

1
3

0
8

7
8

8
4

5
6

2
9

1
0

3
8

9
7

2
3
3

5
8

5
7

7
7

4
4

2
8

5
1

6
0

9
3

2
0
0

9
2

1
0

4
6

5
2

9
1

0
2

3
1

2
0

1
6

7
6

8
7

0
2

7
2

0
8

7
3

8
4

6
2

5
9

3
9

8
4

0
3

4
3
1

5
7

4
7

3
3

1
4

2
8
3

3
1

5
3

6
9

3
2

0
0

addendum 213

Table 32: Population, necessary manipulations and elapsed time in a Game of Life of
size 10 x 10 over 100 generations.

gen. pop. death birth total elap.

manip. (ms)

1 11 37 11 48 159

2 15 15 15 30 139

3 9 9 9 18 109

4 9 8 9 17 114

5 9 5 9 19 82

6 7 14 7 21 95

7 10 7 10 17 106

8 9 10 9 19 101

9 15 9 15 24 102

10 10 20 10 30 118

11 15 11 15 26 111

12 14 14 14 28 87

13 9 10 9 19 91

14 10 11 10 21 65

15 12 7 12 19 64

16 14 17 14 31 130

17 15 12 15 27 103

18 7 15 7 22 85

19 11 8 11 19 69

20 10 11 10 21 81

21 9 8 9 17 58

22 10 3 10 13 72

23 10 14 10 24 99

24 14 10 14 24 93

25 10 19 10 29 81

26 7 7 7 14 48

27 5 5 5 10 46

28 7 3 7 10 43

29 7 8 7 15 82

30 9 9 9 18 72

31 9 7 9 16 61

32 10 10 10 20 68

33 12 12 12 24 74

34 12 12 12 24 62

35 14 8 14 22 81

36 11 21 11 32 103

37 9 14 9 23 72

38 9 8 9 17 48

39 8 5 8 13 74

40 9 8 9 17 61

41 10 5 10 15 57

42 10 7 10 17 65

43 9 13 9 22 77

44 7 13 7 20 71

45 15 8 15 23 60

46 10 20 10 30 75

47 10 8 10 18 53

48 5 9 5 14 62

49 4 6 4 10 42

50 4 3 4 7 38

gen. pop. death birth total elap.

manip. (ms)

51 5 5 5 10 50

52 8 1 8 9 44

53 7 14 7 21 59

54 11 7 11 18 57

55 10 12 10 22 80

56 2 3 2 5 35

57 3 1 3 4 32

58 3 5 3 8 39

59 6 4 6 10 34

60 6 9 6 15 43

61 12 2 12 14 57

62 6 20 6 26 68

63 2 8 2 10 40

64 2 2 2 4 36

65 2 2 2 4 35

66 2 2 2 4 32

67 2 2 2 4 33

68 2 2 2 4 32

69 2 2 2 4 27

70 2 2 2 4 38

71 2 2 2 4 26

72 2 2 2 4 27

73 2 2 2 4 24

74 2 2 2 4 34

75 2 2 2 4 29

76 2 2 2 4 29

77 2 2 2 4 30

78 2 2 2 4 31

79 2 2 2 4 34

80 2 2 2 4 32

81 2 2 2 4 30

82 2 2 2 4 33

83 2 2 2 4 39

84 2 2 2 4 27

85 2 2 2 4 31

86 2 2 2 4 35

87 2 2 2 4 29

88 2 2 2 4 30

89 2 2 2 4 29

90 2 2 2 4 27

91 2 2 2 4 32

92 2 2 2 4 28

93 2 2 2 4 29

94 2 2 2 4 38

95 2 2 2 4 23

96 2 2 2 4 34

97 2 2 2 4 30

98 2 2 2 4 31

99 2 2 2 4 31

100 2 2 2 4 28

addendum 214

Table 33: Population, necessary manipulations and elapsed time in a Game of Life of
size 33 x 33 over 100 generations.

gen. pop. death birth total elap.

manip. (ms)

1 104 395 104 499 1566

2 121 129 121 250 673

3 102 115 102 217 483

4 101 106 101 207 415

5 107 98 107 205 438

6 118 107 118 225 378

7 119 105 119 224 368

8 109 124 109 233 358

9 128 117 128 245 399

10 100 143 100 243 414

11 108 90 108 198 339

12 99 111 99 210 337

13 110 103 110 213 361

14 89 121 89 210 353

15 105 94 105 199 317

16 94 112 94 206 340

17 100 78 100 178 276

18 77 113 77 190 138

19 68 93 68 161 185

20 67 75 67 142 260

21 62 72 62 134 150

22 65 58 65 123 180

23 60 71 60 131 206

24 66 61 66 127 240

25 56 77 56 133 125

26 61 49 61 110 99

27 53 66 53 119 106

28 58 58 58 116 109

29 60 48 60 108 130

30 73 53 73 126 292

31 62 67 62 129 219

32 65 57 65 122 146

33 56 73 56 129 166

34 75 64 75 139 102

35 69 63 69 132 87

36 70 79 70 149 162

37 75 83 75 158 201

38 64 70 64 134 221

39 60 64 60 124 158

40 49 65 49 114 91

41 57 45 57 102 51

42 51 62 51 113 64

43 52 52 52 104 59

44 54 47 54 101 49

45 54 46 54 100 50

46 57 57 57 114 55

47 55 56 55 111 177

48 62 57 62 119 194

49 66 59 66 125 130

50 49 66 49 115 116

gen. pop. death birth total elap.

manip. (ms)

51 58 53 58 111 122

52 45 72 45 117 82

53 57 47 57 104 74

54 46 51 46 97 61

55 50 41 50 91 81

56 43 47 43 90 63

57 50 57 50 107 139

58 53 44 53 97 132

59 38 45 38 83 104

60 50 34 50 84 137

61 48 53 48 101 94

62 55 62 55 117 167

63 59 51 59 110 146

64 58 67 58 125 215

65 56 52 56 108 106

66 63 57 63 120 49

67 59 64 59 123 188

68 48 57 48 105 129

69 50 41 50 91 109

70 52 58 52 110 135

71 48 48 48 96 134

72 47 52 47 99 110

73 45 38 45 83 120

74 40 44 40 84 110

75 45 56 45 101 97

76 46 39 46 85 83

77 49 63 49 112 119

78 38 36 38 74 69

79 48 31 48 79 38

80 45 52 45 97 41

81 36 54 36 90 35

82 37 34 37 71 32

83 32 29 32 61 71

84 40 39 40 79 50

85 33 50 33 83 71

86 40 30 40 70 37

87 32 44 32 76 43

88 29 24 29 53 23

89 28 33 28 61 43

90 28 31 28 59 28

91 31 28 31 59 31

92 24 17 24 41 22

93 24 36 24 60 31

94 35 23 35 58 24

95 24 29 24 53 30

96 24 24 24 48 27

97 27 22 27 49 24

98 32 23 32 55 32

99 33 35 33 68 28

addendum 215

Table 34: Population, necessary manipulations and elapsed time in a Game of Life of
size 100 x 100 over 100 generations.

gen. pop. death birth total elap.

manip. (ms)

1 1076 3402 1076 4478 7774

2 1174 1429 1174 2603 3745

3 1104 1174 1104 2278 3130

4 1024 1184 1024 2208 1251

5 972 1003 972 1975 863

6 983 1004 983 1987 777

7 939 1044 939 1983 716

8 961 896 961 1857 728

9 873 979 873 1852 909

10 909 899 909 1808 641

11 906 942 906 1848 648

12 853 874 853 1727 632

13 805 894 805 1699 758

14 768 815 768 1583 550

15 734 774 734 1508 557

16 760 735 760 1495 531

17 757 822 757 1579 567

18 733 822 733 1555 556

19 725 737 725 1462 528

20 752 753 752 1505 565

21 724 794 724 1518 539

22 716 744 716 1460 552

23 699 703 699 1402 494

24 650 721 650 1371 507

25 683 636 683 1319 495

26 629 726 629 1355 504

27 615 609 615 1224 514

28 587 613 587 1200 519

29 548 592 548 1140 512

30 582 583 582 1165 510

31 537 600 537 1137 504

32 514 497 514 1011 461

33 511 559 511 1070 492

34 537 525 537 1062 477

35 524 522 524 1046 476

36 496 485 496 981 448

37 498 545 498 1043 472

38 483 523 483 1006 440

39 432 501 432 933 413

40 435 451 435 886 415

41 421 449 421 870 408

42 406 427 406 833 412

43 392 363 392 755 354

44 433 445 433 878 406

45 429 409 429 838 403

46 444 465 444 909 427

47 439 425 439 864 420

48 433 464 433 897 428

49 434 426 434 860 391

50 440 423 440 863 389

gen. pop. death birth total elap.

manip. (ms)

51 434 418 434 852 418

52 428 427 428 855 416

53 466 440 466 906 432

54 473 478 473 951 420

55 502 460 502 962 424

56 490 476 490 966 435

57 526 510 526 1036 472

58 520 541 520 1061 484

59 487 541 487 1028 458

60 475 491 475 966 485

61 463 463 463 926 431

62 466 519 466 985 476

63 460 452 460 912 456

64 412 455 412 867 405

65 404 418 404 822 393

66 394 429 394 823 415

67 420 365 420 785 389

68 386 398 386 784 364

69 391 393 391 784 382

70 401 420 401 821 403

71 350 385 350 735 361

72 366 388 366 754 376

73 384 361 384 745 383

74 366 427 366 793 378

75 349 316 349 665 345

76 361 409 361 770 356

77 336 307 336 643 386

78 398 355 398 753 430

79 377 372 377 749 376

80 389 338 389 727 395

81 356 368 356 724 399

82 362 386 362 748 390

83 396 347 396 743 376

84 384 347 384 731 386

85 407 419 407 826 407

86 409 434 409 843 429

87 370 417 370 787 416

88 383 364 383 747 426

89 364 389 364 753 428

90 378 401 378 779 370

91 339 361 339 700 407

92 317 358 317 675 412

93 351 324 351 675 392

94 341 384 341 725 393

95 312 323 312 635 390

96 340 357 340 697 382

97 293 294 293 587 396

98 301 307 301 608 407

99 279 275 279 554 415

100 299 305 299 604 395

addendum 216

a.3 rule program examples

Listing 19: Custom rule set for LUBM.

1 @p r e f i x rdf : <ht tp ://www. w3 . org/1999/02/22− rdf−syntax−ns#> .
2 @p r e f i x : lubm <http :// swat . cse . lehigh . edu/onto/univ−bench . owl#> .
3

4 { ?x rdf : type lubm : Program . } => { ?x rdf : type lubm : Organization . } .
5 { ?x rdf : type lubm : PostDoc . } => { ?x rdf : type lubm : Facul ty . } .
6 { ?x lubm : t i t l e ?y . } => { ?x rdf : type lubm : Person . } .
7 { ?x rdf : type lubm : Dean . } => { ?x rdf : type lubm : P rof es sor . } .
8 { ?y lubm : subOrganizationOf ?x . } => { ?x rdf : type lubm : Organization . } .
9 { ?y lubm : orgPubl i ca t ion ?x . } => { ?y rdf : type lubm : Organization . } .

10 { ?y lubm : softwareVersion ?x . } => { ?y rdf : type lubm : Software . } .
11 { ?y lubm : undergraduateDegreeFrom ?x . } => { ?y rdf : type lubm : Person . } .
12 { ?y lubm : member ?x . } => { ?y rdf : type lubm : Organization . } .
13 { ?x lubm : emailAddress ?y . } => { ?x rdf : type lubm : Person . } .
14 { ?x rdf : type lubm : I n s t i t u t e . } => { ?x rdf : type lubm : Organization . } .
15 { ?y lubm : teacherOf ?x . } => { ?x rdf : type lubm : Course . } .
16 { ?y lubm : softwareDocumentation ?x . } => { ?y rdf : type lubm : Software . } .
17 { ?y lubm : r e s e a r c h P r o j e c t ?x . } => { ?x rdf : type lubm : Research . } .
18 { ?x rdf : type lubm : Book . } => { ?x rdf : type lubm : P u b l i c a t i o n . } .
19 { ?x rdf : type lubm : Chair . } => { ?x rdf : type lubm : P rof es sor . } .
20 { ?y lubm : advisor ?x . } => { ?x rdf : type lubm : P ro fes so r . } .
21 { ?y lubm : teach ingAss i s tantOf ?x . } =>
22 { ?y rdf : type lubm : TeachingAssis tant . } .
23 { ?y lubm : a f f i l i a t e O f ?x . } => { ?x rdf : type lubm : Person . } .
24 { ?x rdf : type lubm : ResearchGroup . } => { ?x rdf : type lubm : Organization . } .
25 { ?x rdf : type lubm : Manual . } => { ?x rdf : type lubm : P u b l i c a t i o n . } .
26 { ?x rdf : type lubm : Facul ty . } => { ?x rdf : type lubm : Employee . } .
27 { ?x rdf : type lubm : A r t i c l e . } => { ?x rdf : type lubm : P u b l i c a t i o n . } .
28 { ?x lubm : worksFor ?y . } => { ?x lubm : memberOf ?y . } .
29 { ?y lubm : member ?x . } => { ?x rdf : type lubm : Person . } .
30 { ?y lubm : advisor ?x . } => { ?y rdf : type lubm : Person . } .
31 { ?y lubm : undergraduateDegreeFrom ?x . } => { ?x rdf : type lubm : Univers i ty . } .
32 { ?x rdf : type lubm : V i s i t i n g P r o f e s s o r . } => { ?x rdf : type lubm : P ro fes so r . } .
33 { ?x rdf : type lubm : Univers i ty . } => { ?x rdf : type lubm : Organization . } .
34 { ?x rdf : type lubm : Research . } => { ?x rdf : type lubm : Work . } .
35 { ?y lubm : l i s t edCourse ?x . } => { ?y rdf : type lubm : Schedule . } .
36 { ?x rdf : type lubm : Department . } => { ?x rdf : type lubm : Organization . } .
37 { ?y lubm : a f f i l i a t e d O r g a n i z a t i o n O f ?x . } =>
38 { ?x rdf : type lubm : Organization . } .
39 { ?x rdf : type lubm : Software . } => { ?x rdf : type lubm : P u b l i c a t i o n . } .
40 { ?y lubm : doctoralDegreeFrom ?x . } => { ?x rdf : type lubm : Univers i ty . } .
41 { ?x rdf : type lubm : P ro fes so r . } => { ?x rdf : type lubm : Facul ty . } .
42 { ?x rdf : type lubm : A s s i s t a n t P r o f e s s o r . } => { ?x rdf : type lubm : P ro fes so r . } .
43 { ?x lubm : subOrganizationOf ?y .
44 ?y lubm : subOrganizationOf ?z . } => { ?x lubm : subOrganizationOf ?z . } .
45 { ?x rdf : type lubm : C l e r i c a l S t a f f . } =>
46 { ?x rdf : type lubm : A d m i n i s t r a t i v e S t a f f . } .
47 { ?x rdf : type lubm : Sys temsSta f f . } =>
48 { ?x rdf : type lubm : A d m i n i s t r a t i v e S t a f f . } .
49 { ?y lubm : orgPubl i ca t ion ?x . } => { ?x rdf : type lubm : P u b l i c a t i o n . } .
50 { ?y rdf : type lubm : Department .
51 ?x lubm : headOf ?y . } => { ?x rdf : type lubm : Chair . } .
52 { ?y rdf : type lubm : College .
53 ?x lubm : headOf ?y . } => { ?x rdf : type lubm : Dean . } .
54 { ?x rdf : type lubm : J o u r n a l A r t i c l e . } => { ?x rdf : type lubm : A r t i c l e . } .
55 { ?x lubm : doctoralDegreeFrom ?y . } => { ?x lubm : degreeFrom ?y . } .
56 { ?x rdf : type lubm : Lecturer . } => { ?x rdf : type lubm : Facul ty . } .
57 { ?y lubm : doctoralDegreeFrom ?x . } => { ?y rdf : type lubm : Person . } .
58 { ?y lubm : publ ica t ionDate ?x . } => { ?y rdf : type lubm : P u b l i c a t i o n . } .
59 { ?y lubm : mastersDegreeFrom ?x . } => { ?x rdf : type lubm : Univers i ty . } .
60 { ?x lubm : mastersDegreeFrom ?y . } => { ?x lubm : degreeFrom ?y . } .
61 { ?y lubm : degreeFrom ?x . } => { ?x lubm : hasAlumnus ?y . } .

addendum 217

62 { ?x lubm : age ?y . } => { ?x rdf : type lubm : Person . } .
63 { ?x rdf : type lubm : A s s o c i a t e P r o f e s s o r . } => { ?x rdf : type lubm : P ro fes so r . } .
64 { ?x rdf : type lubm : Course . } => { ?x rdf : type lubm : Work . } .
65 { ?y lubm : hasAlumnus ?x . } => { ?y rdf : type lubm : Univers i ty . } .
66 { ?x rdf : type lubm : ResearchAss is tant . } => { ?x rdf : type lubm : Student . } .
67 { ?y lubm : l i s t edCourse ?x . } => { ?x rdf : type lubm : Course . } .
68 { ?x rdf : type lubm : TechnicalReport . } => { ?x rdf : type lubm : A r t i c l e . } .
69 { ?x rdf : type lubm : F u l l P r o f e s s o r . } => { ?x rdf : type lubm : P rof es sor . } .
70 { ?x rdf : type lubm : ConferencePaper . } => { ?x rdf : type lubm : A r t i c l e . } .
71 { ?x rdf : type lubm : U n o f f i c i a l P u b l i c a t i o n . } =>
72 { ?x rdf : type lubm : P u b l i c a t i o n . } .
73 { ?x lubm : takesCourse ?y .
74 ?y rdf : type lubm : Course . } => { ?x rdf : type lubm : Student . } .
75 { ?y lubm : hasAlumnus ?x . } => { ?x lubm : degreeFrom ?y . } .
76 { ?y lubm : publ ica t ionResearch ?x . } => { ?y rdf : type lubm : P u b l i c a t i o n . } .
77 { ?x lubm : headOf ?y . } => { ?x lubm : worksFor ?y . } .
78 { ?y lubm : softwareDocumentation ?x . } => { ?x rdf : type lubm : P u b l i c a t i o n . } .
79 { ?y lubm : subOrganizationOf ?x . } => { ?y rdf : type lubm : Organization . } .
80 { ?y lubm : a f f i l i a t e d O r g a n i z a t i o n O f ?x . } =>
81 { ?y rdf : type lubm : Organization . } .
82 { ?y lubm : a f f i l i a t e O f ?x . } => { ?y rdf : type lubm : Organization . } .
83 { ?y lubm : publ icat ionAuthor ?x . } => { ?y rdf : type lubm : P u b l i c a t i o n . } .
84 { ?y rdf : type lubm : Organization .
85 ?x lubm : worksFor ?y . } => { ?x rdf : type lubm : Employee . } .
86 { ?y lubm : tenured ?x . } => { ?y rdf : type lubm : P ro fes so r . } .
87 { ?x lubm : undergraduateDegreeFrom ?y . } => { ?x lubm : degreeFrom ?y . } .
88 { ?y lubm : degreeFrom ?x . } => { ?x rdf : type lubm : Univers i ty . } .
89 { ?y lubm : r e s e a r c h P r o j e c t ?x . } => { ?y rdf : type lubm : ResearchGroup . } .
90 { ?y lubm : mastersDegreeFrom ?x . } => { ?y rdf : type lubm : Person . } .
91 { ?y lubm : degreeFrom ?x . } => { ?y rdf : type lubm : Person . } .
92 { ?x rdf : type lubm : S p e c i f i c a t i o n . } => { ?x rdf : type lubm : P u b l i c a t i o n . } .
93 { ?x lubm : memberOf ?y . } => { ?y lubm : member ?x . } .
94 { ?x rdf : type lubm : GraduateCourse . } => { ?x rdf : type lubm : Course . } .
95 { ?x rdf : type lubm : GraduateStudent . } => { ?x rdf : type lubm : Person . } .
96 { ?x rdf : type lubm : A d m i n i s t r a t i v e S t a f f . } => { ?x rdf : type lubm : Employee . } .
97 { ?y lubm : hasAlumnus ?x . } => { ?x rdf : type lubm : Person . } .
98 { ?x lubm : teach ingAss i s tantOf ?y .
99 ?y rdf : type lubm : Course .

100 ?x rdf : type lubm : Person . } => { ?x rdf : type lubm : TeachingAssis tant . } .
101 { ?y lubm : publ icat ionAuthor ?x . } => { ?x rdf : type lubm : Person . } .
102 { ?y lubm : teach ingAss i s tantOf ?x . } => { ?x rdf : type lubm : Course . } .
103 { ?x rdf : type lubm : College . } => { ?x rdf : type lubm : Organization . } .
104 { ?x lubm : telephone ?y . } => { ?x rdf : type lubm : Person . } .
105 { ?y lubm : publ ica t ionResearch ?x . } => { ?x rdf : type lubm : Research . } .
106 { ?y rdf : type lubm : Program .
107 ?x lubm : headOf ?y . } => { ?x rdf : type lubm : D i r e c t o r . } .
108 { ?x rdf : type lubm : UndergraduateStudent . } => { ?x rdf : type lubm : Student . } .
109 { ?x lubm : member ?y . } => { ?y lubm : memberOf ?x . } .
110 { ?y lubm : teacherOf ?x . } => { ?y rdf : type lubm : Facul ty . } .

Listing 20: Rules for Game of Life.

1 @p r e f i x ht tp : <http ://www. w3 . org /2011/ http #> .
2 @p r e f i x httpm : <http ://www. w3 . org /2011/ http−methods#> .
3 @p r e f i x gol : <ht tp :// l o c a l h o s t :8888/ gameof l i fe/> .
4

5 { ? c e l l gol : s t a t e " a l i v e " .
6 ? c e l l gol : l iv ingNeighbors " 4 " . } => { ? c e l l gol : change " death " . } .
7

8 { ? c e l l gol : s t a t e " a l i v e " .
9 ? c e l l gol : l iv ingNeighbors " 5 " . } => { ? c e l l gol : change " death " . } .

10

11 { ? c e l l gol : s t a t e " a l i v e " .
12 ? c e l l gol : l iv ingNeighbors " 6 " . } => { ? c e l l gol : change " death " . } .
13

14 { ? c e l l gol : s t a t e " a l i v e " .

addendum 218

15 ? c e l l gol : l iv ingNeighbors " 7 " . } => { ? c e l l gol : change " death " . } .
16

17 { ? c e l l gol : s t a t e " a l i v e " .
18 ? c e l l gol : l iv ingNeighbors " 8 " . } => { ? c e l l gol : change " death " . } .
19

20 { ? c e l l gol : s t a t e " a l i v e " .
21 ? c e l l gol : l iv ingNeighbors " 1 " . } => { ? c e l l gol : change " death " . } .
22

23 { ? c e l l gol : s t a t e " a l i v e " .
24 ? c e l l gol : l iv ingNeighbors " 0 " . } => { ? c e l l gol : change " death " . } .
25

26 { ? c e l l gol : s t a t e " dead " .
27 ? c e l l gol : l iv ingNeighbors " 3 " . } => { ? c e l l gol : change " b i r t h " . } .
28

29 { ? c e l l gol : change " death " . } => { [] ht tp : mthd httpm : POST ;
30 http : requestURI ? c e l l ;
31 http : body { ? c e l l gol : s t a t e " dead " . } .
32 } .
33

34 { ? c e l l gol : change " b i r t h " . } => { [] ht tp : mthd httpm : POST ;
35 http : requestURI ? c e l l ;
36 http : body { ? c e l l gol : s t a t e " a l i v e " . } .
37 } .

	Abstract
	Publications
	Acknowledgments
	Contents
	1 Introduction
	1.1 Motivation
	1.1.1 Challenges
	1.1.2 Scope of the Thesis
	1.1.3 Dynamic Web Resources

	1.2 Scenario
	1.3 Hypotheses
	1.4 Contributions
	1.5 Outline

	2 Foundations
	2.1 Overview
	2.2 Linked Data
	2.2.1 Resource Description Framework
	2.2.2 Interlinked Resources
	2.2.3 Basic Graph Pattern

	2.3 Representational State Transfer
	2.3.1 Operation-oriented API
	2.3.2 Resource-oriented API

	3 Parallel Processing of Web Resources
	3.1 Introduction
	3.1.1 Challenges
	3.1.2 Contributions

	3.2 Rule-based Programs
	3.3 Processing Architecture
	3.3.1 Network Request Component
	3.3.2 Physical Operator Plan Component
	3.3.3 EquiJoin Operator

	3.4 Coordination of Data Processing and Network Requests
	3.4.1 Threading Models
	3.4.2 Blocking Worker Control
	3.4.3 Adaptive Processing
	3.4.4 Handling Duplicates

	3.5 Experiments
	3.5.1 CPU-bound Tasks
	3.5.2 I/O-bound Tasks
	3.5.3 Mixed CPU- and I/O-bound Tasks

	3.6 Related Work
	3.7 Summary and Future Work

	4 Dynamic Manipulation of Web Resources
	4.1 Introduction
	4.1.1 Challenges
	4.1.2 Contributions

	4.2 Combining Linked Data and REST
	4.2.1 URI-identified Resources
	4.2.2 Interaction Methods
	4.2.3 Hypermedia Links
	4.2.4 Wrapping APIs

	4.3 Linked API Interaction Model
	4.4 The Linked Data-Fu Language
	4.4.1 Program Execution
	4.4.2 Non-Deterministic Behaviour
	4.4.3 Repeated Program Execution

	4.5 Experiments
	4.5.1 Number Retrieval and Manipulation
	4.5.2 Game of Life

	4.6 Related Work
	4.7 Summary and Future Work

	5 Web Resource Search
	5.1 Introduction
	5.1.1 Challenges
	5.1.2 Contributions

	5.2 Graph Pattern Descriptions
	5.3 Matching
	5.4 Ranking
	5.4.1 Containment-based metric
	5.4.2 Vocabulary-based metric

	5.5 Search Architecture
	5.6 Experiments
	5.6.1 Distributed Search
	5.6.2 Containment Ratio Calculation

	5.7 Related Work
	5.8 Summary and Future Work

	6 Conclusion
	6.1 Summary
	6.2 Future Work

	Bibliography
	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	A Appendix: Addendum
	A.1 OWL LD Operator Plan
	A.2 Experiment Result Details
	A.3 Rule Program Examples

