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
 

Abstract — We demonstrate for the first time generation of 

16-state quadrature amplitude modulation (16QAM) signals at a 

symbol rate of 40 GBd using silicon-based modulators. Our 

devices exploit silicon-organic hybrid (SOH) integration, which 

combines silicon-on-insulator slot waveguides with electro-optic 

cladding materials to realize highly efficient phase shifters. The 

devices enable 16QAM signaling and quadrature phase shift 

keying (QPSK) at symbol rates of 40 GBd and 45 GBd, 

respectively, leading to line rates of up to 160 Gbit/s on a single 

wavelength and in a single polarization. This is the highest value 

demonstrated by a silicon-based device up to now. The energy 

consumption for 16QAM signaling amounts to less than 

120 fJ/bit – one order of magnitude below that of conventional 

silicon photonic 16QAM modulators.  
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I. INTRODUCTION 

AST and efficient in-phase/quadrature-phase (IQ) 

modulators are key elements for high-speed links in 

telecom and datacom networks. [1]. To maximize the data rate 

that can be transmitted on a single wavelength channel, both 

large symbol rates and the ability to use higher-order 

modulation formats are essential [2]. At the same time, 

minimizing the power consumption of the devices is of utmost 

importance regarding high-density integration and scalability 

of interconnect counts.  

Silicon photonics is a particularly attractive platform for 

realizing electro-optic modulators, leveraging mature 

complementary metal-oxide-semiconductor (CMOS) 

processing and enabling high-density integration of photonic 

devices along with electronic circuitry. However, the inversion 

symmetry of the silicon crystal lattice inhibits electro-optic 

effects, thereby making high-performance IQ modulators 

challenging. As a consequence, conventional silicon 

modulators have to rely on carrier depletion or carrier 

injection in pn, p-i-n or metal-oxide-semiconductor (MOS) 

structures [3]–[6]. Using a depletion-type device, generation 

of quadrature phase shift keying (QPSK) signals was recently 

shown at a symbol rate of 56 GBd resulting in a total line rate 

of 112 Gbit/s [7]. However, when using more advanced 

modulation formats, the achievable symbol rates are still 

significantly lower – record values amount to 28 GBd 

demonstrated for dual-polarization 16-state quadrature 

amplitude modulation (16QAM) [8], which leads to a line rate 

(net data rate) of 112 Gbit/s (93.3 Gbit/s) encoded on each 

polarization. The performance of these devices is inherently 

limited by the underlying depletion-type phase shifters, which 

exhibit rather low efficiencies with typical voltage-length 

products UπL of 10 Vmm or more. As a consequence, large 

drive voltages, on the order of several volts, have to be used, 

leading to high energy consumption – for 16QAM modulation 

at 28 GBd, the modulation energy amounts to approximately 

1.2 pJ/bit at a peak-to-peak drive voltage of 5 Vpp [8]. In 

addition, phase modulation based on the plasma dispersion 

effect is inevitably linked to amplitude modulation due to free-

carrier absorption. This may eventually hamper the generation 
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of advanced modulation formats with high order, where phase 

and amplitude of the signals have to be controlled 

independently of one another.  

In this paper we show that silicon-organic hybrid (SOH) 

integration can overcome these limitations. We use silicon-on-

insulator (SOI) slot waveguides [9] and combine them with 

electro-optic (EO) cladding materials to realize Pockels-type 

phase shifters [10]–[13] . SOH integration enables remarkably 

small voltage-length products of down to 0.5 Vmm measured 

at DC [14], and at the same time avoids unwanted amplitude-

phase coupling and thereby enables higher-order modulation 

formats [15], [16]. We demonstrate 16QAM and QPSK 

signaling at symbol rates of 40 GBd and 45 GBd, respectively, 

leading to line rates (net data rates) of up to 160 Gbit/s 

(133.3 Gbit/s) on a single polarization [17]. This is the highest 

value achieved by a silicon-based modulator up to now. The 

energy consumption of our 16QAM device is estimated to be 

120 fJ/bit at 40 GBd – one order of magnitude better than for 

best-in-class 28 GBd 16QAM all-silicon modulators. The 

work builds upon and expands our earlier experiments, where 

we have demonstrated energy-efficient on-off-keying [18], 

generation of multi-level amplitude modulation at symbol 

rates of up to 84 Gbit/s [15]  and 16QAM modulation at 

28 GBd [19]. 

II. SILICON-ORGANIC HYBRID MODULATOR 

SOH modulators exploit interaction of the guided light with 

the electro-optic cladding material under the influence of a 

modulating RF field. A cross section of an SOH Mach-

Zehnder modulator (MZM) is depicted in Fig. 1(a). Each 

phase shifter consists of a silicon slot waveguide which is 

covered by the organic EO material. Fig. 1(b) and 1(c) show 

the optical Ex field. The discontinuity and the high refractive 

index contrast at the silicon – slot interface leads to a field 

enhancement within the slot and therefore to a large 

interaction of the light with the organic EO material [12]. The 

rails of the slot waveguide have a width of wrail = 240 nm and 

are connected to a coplanar ground-signal-ground (GSG) 

transmission line via thin (hslab = 70 nm), slightly conductive, 

n-doped silicon slabs. A voltage applied to the transmission 

line will drop predominantly across the wslot = 80 nm wide 

slot, thereby generating a large electric field. A plot of the Ex 

component of the electrical field can be seen in Fig. 1(d). This 

configuration ensures excellent overlap between the 

modulation field and the optical fields, leading to high 

modulation efficiency. The RF transmission line comprises the 

metal traces and the silicon slot waveguides and is designed 

  

 
Fig. 1. Silicon-organic hybrid (SOH) modulator. (a). Schematic of the IQ 
modulator and cross-section of a single SOH Mach-Zehnder Modulator 

(MZM). The slot waveguides have a rail width of wrail = 240 nm and a slot 

width of wslot = 80 nm. As an EO cladding, a mixture of the chromophores 
YLD124 (25 wt.%) and PSLD41 (75 wt.%) is deposited via spin coating. Thin 

n-doped silicon slabs with (hslab = 70 nm) are used to electrically connect the 

rails to the metal strips of an RF transmission line in a ground-signal-ground 
configuration. A poling process is used to align the chromophores in both 

waveguides along the same direction. Operating the device via the GSG 
transmission line results in opposite phase shifts in the two arms of the MZM 

(push-pull operation). The π-voltage at DC is Uπ = 0.9 V. A gate voltage UGate 

between the Si substrate and the SOI device layer improves the conductivity 
of the silicon slab, resulting in an electro-optic bandwidth of the device of 

18 GHz. (b) Contour plot of the normalized Ex component of the optical field 

in the slot waveguide. (c) Plot of the Ex-component of the optical mode field 
as a function of the horizontal position x at half the waveguide height 

(y = 110 nm). Discontinuities of the Ex-component at the slot sidewalls lead to 

strong field enhancement in the slot. (d) Ex component of the electrical RF 
drive signal below the RC limit. The silicon slabs are doped such that the 

applied RF voltage drops predominantly across the slot. As a consequence, the 

RF mode and the optical mode are both well confined to the slot, resulting in 
strong interaction and hence in an efficient modulation. (e) Measured 

frequency response of a 1.5 mm-long MZM. The 6 dB electrical-optical-

electrical (3 dB electro-optic) bandwidth amounts to 18 GHz. 

  
Fig. 2. Schematic of the experimental setup. Two nested MZM form an IQ 
modulator. An intentional imbalance allows for adjusting the π/2 phase offset 

of the in-phase (I) and the quadrature-phase (Q) component by wavelength 

tuning. Electrical multilevel drive signals are generated by a Keysight 
M8195A arbitrary waveform generator (AWG) operating at 65 GSa/s, the 

outputs of which are amplified and coupled to the silicon chip via RF probes. 

Bias-Ts are used to connect a DC voltage for controlling the operation point. 
The optical output is amplified by an EDFA, bandpass filtered and 

subsequently fed into an optical modulation analyzer (OMA) for intradyne 

detection. Standard digital post processing is performed at the OMA for 

equalization. 
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for a wave impedance of 50 Ω. This is confirmed by 

measurements –  at RF signals of up to 40 GHz, we find wave 

impedances of 50 ± 5 Ω. 

The device was fabricated on an SOI wafer with a 220 nm-

thick device layer and a 3 µm-thick buried oxide (BOX) using 

electron beam lithography for defining the silicon waveguides 

and optical lithography for the metallization. The chip is 

coated with a mixture of the electro-optic multi-chromophore 

dendritic molecule PSLD41 (75 wt.%) and the chromophore 

YLD124 (25 wt.%) [14], [20]. The cladding material is poled 

by heating it close to its glass transition temperature while 

applying a poling voltage across the two floating ground 

electrodes of each MZM. Half of the voltage drops across each 

slot, resulting in an orientation of the chromophores in the slot 

which is antisymmetric with respect to the signal electrode, as 

indicated in Fig. 1(a) by green arrows. The blue arrows 

indicate the RF field applied to the GSG electrodes after 

poling, which results in opposite phase shifts in the two arms 

of the MZM and enables push-pull operation. For DC fields, 

the π-voltage of one push-pull MZM amounts to 0.9 V. Taking 

into account the device length of 1.5 mm, this corresponds to a 

voltage-length product of UπL = 1.35 Vmm. This is higher 

than previously published values of SOH devices [14] and is 

attributed to different device geometry and the resulting 

difference in poling efficiency. The bandwidth of the SOH 

devices is dictated by the RC time constant of the slot 

waveguide: The slot corresponds to a capacitor which is 

charged and de-charged via the resistive silicon slabs. To 

increase the conductivity of the slab by a charge accumulation 

layer and hence to increase the bandwidth, a static gate voltage 

Ugate is applied between the substrate and the top silicon layer 

[21], Fig. 1(a). A bandwidth measurement of the current MZM 

results in a 6 dB electrical-optical-electrical (3 dB electro-

optic) bandwidth of 18 GHz, see Fig. 1(e), with significant 

potential for further improvement [22]. The roll-off is 

relatively smooth and resembles that of an RC low-pass, 

thereby still allowing 40 GBd 16QAM and 45 GBd QPSK 

signaling using root-raised-cosine Nyquist pulses.  

For practical applications of SOH devices, the long-term 

stability of the organic cladding is of high importance. 

Recently novel materials have become available, featuring 

glass transition temperatures of more than 130 °C while 

maintaining electro-optic coefficients in excess of 100 pm/V 

[23]. The investigation of aging and temperature stability of 

organic EO materials is subject to ongoing research. It can be 

expected, that the stability of the materials can be further 

improved by synthetically modified chromophores that bear 

specific crosslinking agents for post-poling lattice hardening 

or by increasing the molar mass of the chromophores. The 

viability of the first approach has been demonstrated for 

similar EO compounds [24], [25] where material stability of 

up to 250 °C has been achieved. 

III. EXPERIMENT 

The setup for the modulation experiments is depicted Fig. 2. 

Two MZM are nested in an on-chip IQ configuration. The 

parent Mach-Zehnder interferometer features a path length 

imbalance, which is used to adjust the π/2 phase shift between 

the I and the Q signal via wavelength tuning. The drive signals 

for QPSK and 16QAM modulation are generated by a 

Keysight M8195A arbitrary waveform generator (AWG) 

operated at 65 GSa/s. We use root-raised-cosine pulses with a 

roll-off factor of β = 0.35 to reduce the occupied spectral 

bandwidth and to exploit the benefits of a matched filter at the 

receiver. The transmitted data are derived from a pseudo-

random bit sequence with a length of 2
11

-1. After the AWG, 

the analog signals are amplified to peak-to-peak voltages of 

approximately 1.8 Vpp by two linear RF-amplifiers, which 

drive the GSG-electrodes of the on-chip IQ-modulator via 

microwave probes. A 50 Ω termination is used at the end of 

each transmission line to avoid back-reflection of the RF 

signal. For each MZM a DC voltage is applied to the device 

via bias-Ts to set the operating point of the modulator. To 

improve the bandwidth of the device, a static gate field of 

EGate = 0.1 V/nm is applied between the silicon substrate and 

the device layer. Grating couplers are used to couple laser 

light at λ = 1550 nm from an external cavity laser (ECL) to the 

silicon waveguide. After the device, the light is amplified by 

an erbium doped fiber amplifier (EDFA), followed by an 

optical band-pass filter (2 nm passband) to suppress out-of-

band amplified spontaneous emission (ASE). An optical 

modulation analyzer (OMA) with two real-time oscilloscopes 

(80 GSa/s) serves as a receiver. A second ECL is used as a 

local oscillator (LO) for intradyne reception. Digital post-

processing comprising polarization demultiplexing, phase 

recovery, compensation of the frequency offset between signal 

and LO, and channel equalization is performed by the OMA. 

The insertion loss of the silicon chip amounts to 27 dB, where 

10 dB – 12 dB are caused by fiber-chip coupling losses. This 

rather high loss can be significantly reduced in future devices: 

By employing optimized grating coupler [26] or photonic 

wirebonds [27], [28] the coupling loss to the fibers can be 

reduced from 10 dB to less than 4 dB. The current losses of 

5 dB in the 9 mm long access strip waveguide can be reduced 

to below 1 dB by improving the sidewall roughness and 

reducing the length. The strip-to-slot converters and 

multimode interference couplers (MMI) are already optimized 

and contribute only 1 dB to the total loss. To reduce the 11 dB 

losses of the 1.5 mm long slot waveguide to below 3 dB, 

asymmetric slot waveguide geometries can be used [29] 

together with an optimization of the doping profile of the 

phase shifter sections. We estimate that these measures will 

permit reducing the total on-chip excess loss of the device to 

less than 5 dB and the fiber-fiber insertion loss to less than 

9 dB.  

For testing the performance of the devices, we use QPSK 

signals up to a symbol rate of 45 GBd and 16QAM signals up 

to 40 GBd. Measurement of the bit error ratio (BER) allows 

for direct assessment of the signal quality. However, within 

our memory-limited record length of 62.5µs, we can only 

measure a maximum of 2.8 × 10
6
 symbols, which does not 

allow a measurement of BER smaller than 1 × 10
-6

. As a 

complementary measure of the signal quality, we therefore use 

the error vector magnitude (EVMm), which describes the 
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effective distance of a received complex symbol from its ideal 

position in the constellation diagram, using the maximum 

length of an ideal constellation vector for normalization. The 

EVMm can be directly translated into a BER assuming the 

signal is impaired by additive white Gaussian noise only [30]. 

In our experiment we find a very good agreement between 

BER values calculated from the EVMm and the measured 

BER, supporting our assumption that the channel is limited by 

Gaussian noise.  

Fig. 3 shows constellation diagrams for the various 

generated signals. In Fig. 3(a) - (d), received QPSK 

constellation diagrams at data rates between 30 GBd and 

45 GBd are depicted. At 45 GBd the EVMm amounts to 23 % 

and the measured BER is 1.5 × 10
-5

, well below the limit of 

4.5 × 10
-3

 for second-generation hard-decision forward error 

correction (FEC) with 7 % overhead [31]. At 40 GBd the 

number of measured errors was not sufficient for a reliable 

BER estimation. At symbol rates of 35 GBd and below, the 

QPSK signals can be considered error free: No errors were 

measureable, and the EVMm corresponds to a BER well below 

1 × 10
-9

. The constellation diagrams for 16QAM are depicted 

in Fig 3(e) - (g). 16QAM signaling is demonstrated up to a 

symbol rate of 40 GBd. At symbol rates of up to 35 GBd, the 

measured BER is below the threshold for hard-decision FEC. 

For 40 GBd, the BER increases significantly, but is still below 

the threshold of 2.4 × 10
-2 

for third-generation soft-decision 

FEC with 20 % overhead [32]. The results of the signal 

generation experiments are summarized in Fig. 4, where the 

EVMm is plotted for different symbol rates. The horizontal 

dashed lines in Fig. 4 indicate the calculated EVMm [30] of the 

various BER threshold levels. For QPSK signals in Fig. 4(a), 

the dashed line corresponds to the BER of 1 × 10
-9

, below that 

the signals can be considered error free. This applies to the 

signals measured at 30 GBd and 35 GBd. All other measured 

QPSK signals are well below the hard-decision FEC limit 

which corresponds to an EVMm of 38.3 % and is outside the 

scale of the vertical axis. For 16QAM signals in Fig. 4(b), the 

horizontal lines indicate the EVMm corresponding to the BER 

thresholds for hard-decision and soft-decision FEC, requiring 

7 % and 20 % overhead, respectively. For symbol rates up to 

35 GBd the EVMm is below the threshold for hard-decision 

FEC; for 40 GBd it is still below the soft-decision threshold, 

consistent with the directly measured BER indicated in 

Fig. 3(e)-(g). Using 35 GBd 16QAM signals with hard-

decision FEC, the line rate amounts to 140 Gbit/s, and the net 

data rate amounts to 130.8 Gbit/s. For 16QAM at 40 GBd, the 

line rate is 160 Gbit/s – the highest value hitherto achieved by 

a silicon photonic modulator on a single polarization with 

measured BER figures comparable to those achieved in 

reference experiments [8]. Taking into account the 20 % 

overhead for soft-decision FEC coding, the net data rate 

amounts to the record value of 133.3 Gbit/s. The signal quality 

in the 40 GBd experiment is limited by the device bandwidth 

of 18 GHz. We expect that by optimization of the waveguide 

geometry and of the doping profile in the slabs, the bandwidth 

of future SOH devices can be significantly increased [22], 

leading to considerably lower BER. 

When using a short SOH modulator at low symbol rates, the 

device can be operated without a terminal resistance and hence 

treated as a lumped capacitive load [33]. This is not possible 

for the high-speed data signals investigated here, for which the 

symbol duration is of the same order of magnitude as the 

propagation delay of the RF wave in the device. In this case, 

we need to model the modulator as a transmission line with a 

50 Ω wave impedance, which is fed by a 50 Ω probe and 

terminated by a matched 50 Ω resistor, Fig. 5. This 

configuration is equivalent to a single 50 Ω load resistor, 

which is directly connected to the drive amplifier. The power 

 
Fig. 4. EVMm plotted over the symbol rate, in red the corresponding BER [20] 

is indicated. (a) Plot for QPSK signals. Up to 35 GBd the signal can be 

considered error free with a corresponding BER < 10-9. The BER limit for 
hard-decision FEC corresponds to an EVMm of 38.3 %, outside the range of 

the plot. (b) Plot for 16QAM signals. The horizontal dashed lines indicate the 

EVMm that correspond to the BER thresholds for soft-decision and hard-

decision FEC in the case of 16QAM. 

 
Fig. 5. Equivalent-circuit diagram of one MZM for calculation of the energy 
consumption. The AWG which drives the MZM is represented by an ideal 

voltage source and an internal resistance of 50 Ω. The GSG line of the MZM 
is matched to the 50 Ω output of the DAC and terminated by an external 50 Ω 

impedance. To estimate the energy consumption, the transmission line and its 

termination is replaced by an equivalent resistor of R = 50 Ω. 

 

Fig. 3. Optical constellation diagrams. (a) – (d): QPSK signals at 30 GBd, 

35 GBd, 40 GBd, and 45 GBd. No bit errors were detected within our record 
length of 62.5 µs for symbol rates of 30 GBd and 35 GBd, and the error vector 

magnitude (EVMm) indicate error free signals with BER < 10-9. QPSK signals 

at 40 GBd and 45 GBd are well below the threshold for hard-decision FEC 
with 7 % overhead. At 40 GBd the number of measured errors was not 

sufficient for a reliable BER estimation, at 45 GBd the measured BER 

amounts to 1.5 × 10-5. (e) – (g): 16 QAM signals for 30 GBd, 35 GBd, and 
40 GBd. At data rates of up to 35 GBd the measured BER is below the hard-

decision FEC threshold. For 40 GBd 16QAM signals, the BER is below the 

threshold for soft-decision FEC with 20 % overhead.  
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consumption of a single MZM is then given by the power 

dissipation in this resistor. The output port of the drive 

amplifier is represented by an ideal voltage source with an 

internal generator impedance of 50 Ω. The energy per bit for 

the IQ modulator is obtained by adding the power 

consumptions of the two MZM and dividing by the total data 

rate. For 16QAM generation, the electrical drive signal for 

each MZM consists of two amplitude levels, which differ by a 

factor of 1/3. Assuming equal probability of the various 

symbols, the mean power consumption for each MZM can be 

calculated by averaging over the dissipated power of both 

amplitude levels. The energy per bit Wbit,16QAM is then obtained 

by taking into account the power consumption of both MZM 

and by dividing by the data rate. Denoting the peak-to-peak 

voltages at the input of the R = 50 Ω device as Ud, this leads to  

 

2 2

d d
bit,16QAM

16QAM

1 1 1 1 1

2 2 3 2
2

U

R
W

U

R r

 
    

  

   
   
   

. (1) 

For Ud = 1.80 V and a data rate of r16QAM = 160 Gbit/s, the 

energy consumption of the modulator is hence found to be 

113 fJ/bit. This is one magnitude below current all-silicon 

16QAM modulators [8], but still significantly higher than the 

energy consumption of a 28 GBd, 16QAM SOH device, for 

which 19 fJ/bit have been demonstrated [19]. It is the goal of 

ongoing research activity to further decrease the power 

consumption at high symbol rates.  

 

IV. SUMMARY 

We experimentally demonstrate that SOH integration is 

capable of boosting data rates and energy efficiency of silicon-

based IQ modulators to unprecedented values. We show 

16QAM modulation at 40 GBd, resulting in line rates (net data 

rates) of 160 Gbit/s (133.3 Gbit/s), and QPSK modulation at 

45 GBd, leading to 90 Gbit/s (84 Gbit/s). For 16QAM, the 

energy consumption is as low as 113 fJ/bit - an order of 

magnitude below that of comparable all-silicon devices.  
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