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Summary

Automatic speech recognition (ASR) systems are usually based on statistical
machine learning methods and require a sufficient amount of training data
to generalize to unseen test data. However, since the manual transcription
of audio data is very costly and time consuming (e.g. the transcription of
the recordings of the interviews used in this work required twelve times the
length of the actual recordings), many speech recognition systems are trained
on data whose transcriptions have been automatically created by an existing
speech recognition system.

Errors that were made in this automatic transcription by the speech recog-
nition system are included in the training data of the new speech recognition
system. Thus, the newly trained speech recognition system learns not only
to produce the same mistakes as the speech recognition system, which was
used for automatic transcription, but will now generate these errors with
a higher probability. To mitigate this problem, it is important to identify
these systematic errors in the automatically transcribed data and fix them.
Since current systems are trained on several thousand hours of speech data
and consist of several components, the localization of frequent or systematic
errors and their assignment to individual components poses a problem.

The aim of this thesis is to automatically detect and fix errors in speech
recognition systems, to mitigate the problem of systematic errors described
above. For this purpose, we developed a framework in which individual errors
are assigned attributes and clustered. Each cluster is characterized by a set
of attributes. A set of attributes is referred to as an error signature. The
accumulation of errors and the computation of error signatures is the key
contribution of this thesis and is based on algorithms for concept discovery in



the field of data-mining by means of which structures can be identified in data
sets. These signatures are analyzed by an expert to derive improvements for
the speech recognition system. This method can be divided into the following
steps:

1. Error detection: in general, audio recordings that need to be tran-
scribed have no existing reference transcriptions. Therefore, it is nec-
essary to automatically assign error probabilities to each word in the
hypothesis, based on the ASR system’s output.

2. Error signature computation: In order to derive systematic errors of a
system, potential errors have to be aggregated and clustered. In this
thesis a method is presented which extracts a multitude of attributes
from each word of all available transcriptions and introduce a clustering
method to derive systematic errors. In contrast to existing methods
in speech recognition, this method is able to identify commonalities
between errors and to estimate the frequency of their occurrence.

3. Error analysis and error correction: The discovered error signatures
can be examined by an expert to determine fixes for the ASR system’s
components. In order to reduce the labor required of an expert, it
is possible to not only fix problems, but to also select signatures and
exclude any data which matches these signatures from ASR training
data.

We demonstrate the usefulness of the proposed framework on two speech cor-
pora. The SEAME code-switching corpus, which was recorded in Singapore
and consists of mixed English and Mandarin utterances. The ILSE corpus
contains interview style recordings of about a thousand German speaking
participants. We were able to significantly increase the performance of ASR
systems on both corpora and only relied on automatically transcribed data.
An additional contribution of this thesis is the development of a toolkit for
automatic speech recognition in which the error signature framework has
been integrated into.



Zusammenfassung

Automatische Spracherkennungssysteme (ASR Systeme) basieren in der Re-
gel auf statistischen Lernverfahren und bendétigen eine geniigend grofie Menge
an Trainingsdaten, um auf ungesehenen Testdaten zu generalisieren. Da je-
doch die manuelle Transkription von Audiodaten sehr kosten- und zeitinten-
siv ist (z.B. die Verschriftung der Aufnahmen der in dieser Arbeit benutzten
Interviews benétigte die zwolffache Dauer der eigentlichen Aufnahmen), wer-
den viele Spracherkennungssysteme auf Daten trainiert deren Transkriptio-
nen mit bereits bestehenden Spracherkennungssystemen automatisch erstellt
wurden.

Fehler, die bei dieser automatischen Transkription durch das Spracherken-
nungssystem gemacht wurden, flieen in die Trainingsdaten des neuen Spra-
cherkennungssystems ein. Das neu trainierte Spracherkennungssystem lernt
damit nicht nur die gleichen Fehler zu produzieren, wie das Spracherken-
nungssystem, das zur automatischen Transkription genutzt wurde, sondern
wird durch die zusétzlichen fehlerhaften Trainingsdaten diese jetzt auch mit
hoherer Wahrscheinlichkeit generieren. Um diesem Problem entgegenzuwir-
ken ist es wichtig diese systematischen Fehler des Spracherkennungssystems
zu identifizieren und zu beheben. Da aktuelle Systeme auf mehreren tausend
Stunden an Sprachdaten trainiert werden und diese Systeme aus mehreren
Teilkomponenten bestehen, stellt die Lokalisierung von haufig auftretenden
bzw. systematischen Fehlern und deren Zuordnung zu einzelnen Komponen-
ten ein Problem dar.

Ziel dieser Dissertation ist es, automatisch Fehlerquellen in Spracherken-
nungssystemen aufzudecken, diese zu beheben, und damit dem oben be-
schriebenen Problem der Verstédrkung von systematischen Fehlern entgegen-



zutreten. Einzelnen Fehlern werden in dem vorgestellten Verfahren Attribute
zugewiesen und anhand dieser zu Gruppen zusammengefasst. Jede Grup-
pe wird von einer Menge von Attributen charakterisiert. Eine Menge von
Attributen wird dabei als Fehlersignatur (Error Signature) bezeichnet. Die
Akkumulation von Fehlern und die Berechnung der Fehlersignaturen ist ein
zentraler Beitrag dieser Arbeit und basiert auf Algorithmen zur Konzeptent-
deckung aus dem Data-Mining mit deren Hilfe Strukturen in Datenmengen
identifiziert werden kénnen. Diese Signaturen werden durch einen Experten
analysiert, um Verbesserungen fiir das Spracherkennungssystem abzuleiten.
Das Verfahren lésst sich in folgende Schritte unterteilen:

1. Fehleridentifikation: Im Allgemeinen steht fiir die zu transkribierenden
Audioaufnahmen keine Referenztranskription zur Verfiigung. Daher ist
es erforderlich anhand der generierten Hypothese jedem Wort automa-
tisch eine Fehlerwahrscheinlichkeit zuzuordnen.

2. Fehlersignaturen berechnen: Es ist notwendig, einzelne potentielle Feh-
ler zusammenzufassen, um daraufhin den zugrundeliegenden systema-
tischen Fehler zu erschlieen. In dem vorgestellten Verfahren werden
zu diesem Zweck eine Vielzahl von Attributen eines jeden Wortes aller
verfiighbaren Transkriptionen extrahiert und eine Menge von Attribu-
ten berechnet, welche bestimmte systematische Fehler identifizieren.
Im Gegensatz zu existierenden Methoden in der Spracherkennung ist
es mit dem in dieser Arbeit vorgestellten Ansatz moglich Beziehun-
gen zwischen Fehlern zu erkennen und die Haufigkeit ihres Auftretens
abzuschétzen.

3. Analyse der Fehler und Fehlerbehebung: Um den Arbeitsaufwand fiir
einen Experten bei der Sichtung der gefundenen Fehlersignaturen ge-
ring zu halten, ist es moglich, nicht nur direkt Probleme in den ASR
Modellen zu beheben, sondern auch eine Menge an Fehlersignaturen
auszuwéhlen mit denen die zusétzlichen Trainingsdaten vor dem ASR
Training gefiltert werden konnen.

Die Niitzlichkeit des Verfahrens wird an zwei Sprachkorpora demonstriert.
Der SEAME Code-Switching Korpus wurde in Singapur aufgenommen und
besteht aus Aufnahmen in denen Englisch und Mandarin gesprochen werden.
Der ILSE Korpus enthélt Aufnahmen von circa tausend deutschsprachigen
Probanden, welche in Interviews erstellt wurden. Die Leistung der Spracher-
kennungssysteme auf beiden Korpora konnte, durch den Einsatz des vor-
gestellten Verfahrens, signifikant verbessert werden. Ein zusétzlicher Beitrag
dieser Arbeit ist die Entwicklung eines Toolkits zur Spracherkennung, in wel-
ches das vorgestellte Verfahren integriert wurde.
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CHAPTER 1

Introduction and Motivation

This chapter serves as motivation for this dissertation, giving a brief overview
over the recent development of the field and presenting the major contribu-
tions of this thesis. In addition, the structure of this thesis is described.

1.1 Motivation

With the ever increasing prevalence of mobile devices, starting with the intro-
duction of smart-phones in 2007, moving to increasingly smaller devices such
as smart-watches, the conventional input method of typing on a keyboard is
getting too cumbersome. The input method of choice is increasingly by voice.
Advances in the capability of speech processing lead to the development of
voice activated assistants such as Apple Siri, Google Now, and Microsoft
Cortana. Any first step in such a device is the automatic speech recogni-
tion component which transforms the recorded audio into text for further
processing. While a lot of research and progress has been made regarding
the modeling of both speech and acoustic phenomena, the machine learning
component tying all individual parts together is still a Hidden Markov Model
(HMM) based sequence recognition system.

Therefore, while the models themselves vary and are tailored to the language
or domain they are used in, the structure of the recognition process remains
the same. Additionally, other applications such as motion recognition share
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the same framework. Since the HMM framework ties various complex sta-
tistical models together, the interpretation of errors in the system and their
linkage to their causes is not straight-forward and sometimes even impossi-
ble. To still improve HMM-based sequence recognition systems, researchers
[ , ] in the field of speech recognition have proposed approaches
to compare the reference to the generated result and deduce error categories
from each recognition example.

While the available tools are sufficient to get an overview over which error
categories are prevalent or which words/motions are commonly misrecog-
nized, they fall short in giving a detailed summary of frequent errors and
specific underlying causes. In order to alleviate this problem we propose a
new approach to analyzing HMM-based sequence recognition systems and
embed it into an iterative error correction process to finally improve speech
recognition systems.

1.2 Contributions

The objective of this dissertation is to simplify the process of creating and
improving an HMM-based sequence recognition system. The major contri-
butions of this thesis are as follows:

1. We implemented a new easy to use HMM-based recognition toolkit,
called BioKIT. It was developed during the duration of this thesis and
was applied to various recognition tasks with state-of-the-art perfor-
mance, such as automatic speech recognition, motion recognition and
silent speech recognition. The modular C++ design and light-weight
interfaces for the main components makes it easy to extend. The whole
toolkit is exposed to the Python scripting language, such that BioKIT
can easily be integrated with other Python libraries.

2. Integrated into BioKIT is a new approach to analyzing recognition
systems, we call error signatures. The multitude of errors encountered
on a specific data set are difficult to blame to error causes. In this thesis
we create a novel framework, where various attributes are assigned to
errors and sets of attributes are found to characterize a group of errors.
These sets of attributes are referred to as error signatures in this thesis.

3. Since creating a reference for any task is a tedious and time-consuming
exercise and data without reference transcriptions is often available in
abundance, the analysis of ASR systems without reference transcrip-
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tions is of great interest. To leverage off the data with no reference
transcriptions for the analysis of an ASR system, we extend the error
signatures introduced in this thesis to compute signatures and identify
errors in an unsupervised fashion.

1.3 Structure of this Thesis

This thesis is separated into the following chapters:

Chapter 2 gives an introduction into the field of automatic speech recogni-
tion and HMM-based sequence recognition in general. It also introduces the
core search algorithm used for finding the best sequence in a given HMM.
Furthermore, the related work to this thesis is discussed.

Chapter 3 presents the data corpora that were used in this thesis and de-
scribes the challenges of the two corpora.

Chapter 4 presents our work on a novel toolkit for HMM-based sequence
recognition, which combines various aspects of other toolkits into a new and
flexible architecture.

Chapter 5 contains the error correction framework, which is at the core of
this thesis. It introduces the notion of error signatures. Furthermore, it
describes how the signatures are obtained and how they can be used for
error correction.

Chapter 6 contains the experiments we conducted with error signatures. Af-
ter an initial experiment, where reference transcriptions are available to com-
pute error signatures, we show how the algorithm can be extended to not
rely on the availability of reference transcriptions. Finally, we perform ex-
periments on both, the SEAME and the ILSE corpus to demonstrate the
usefulness of our approach without reference transcriptions.

Chapter 7 concludes the thesis with a summary of the results and discusses
potential future research directions.



Introduction and Motivation




CHAPTER 2

Background

This chapter gives an introduction into the field of automatic speech recog-
nition, as well as to all other fundamentals necessary for this thesis. Addi-
tionally, related work relevant to this thesis is discussed in the last sections
of this chapter.

2.1 Automatic speech recognition

This section gives an overview of the components of an automatic speech
recognition system. The goal is to find the most likely word sequence W*
given an audio recording. Mathematically the problem can be expressed as

in equation 2.1:
W* = argmax P(W|O)
W

POW)P(W)
= arg max 2.1
“w P(0) 2
= arg max P(O|W)P(W)
w
where W = wq,...,w, is a word sequence and O = oq,...,o0r is the seg-

mented and preprocessed audio recording, and is called the observation se-
quence. Transforming P(WW|O) using Bayes’ rule and omitting P(O) we get
the final equation of P(O|W)P(WW).
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A schematic overview of an ASR system is given in Figure 2.1. Input to the
ASR system is an audio recording which is put into the signal-preprocessing
component. The preprocessing segments the audio file into smaller chunks
and extracts a vector of features from each. The resulting observation se-
quence O serves as input to the decoder. Output of the decoder process is
the word transcription of the observation sequence. The decoder combines all
components of the ASR system and conducts a Viterbi search to find the most
likely word sequence using the Viterbi algorithm (refer to Section 2.1.1.1).

Decoder
iosi [N Signal [N Acoustic Lan [N inti
_— guage
Audiosignal oreprocessing e Dictionary S Transcription

Figure 2.1: Overview of an automatic speech recognition system.

The subsequent sections will introduce the components of a speech recogni-
tion system in more detail.

2.1.1 Hidden markov models

Due to the reformulation of our problem in Equation 2.1, we can apply a
generative model to our problem. A model which has been frequently used
in the context of sequence recognition is the Hidden Markov Model (HMM).
Each HMM is defined by the 5-tuple (S, A, V, B, 7):

e Set of states S = s1,...,sn

e N x N matrix of transition probabilities A, where a;; is the probability
of transitioning from state s; to state s;

e The vocabulary V' containing all possible emissions

e Set of emission probability functions B = by,...,by, where b; is the
emission probability function of state s; with b;(0;) = P(o¢|s;) for an
emission/observation o; at time t in state s;

e The probability distribution 7 over all states in S, modeling the prob-
ability of each state being the start of a state sequence

To relate the HMM to automatic speech recognition: each phone, which
appears in the language to be recognized, is represented by its own HMM.
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Usually, a left-to-right three state topology is employed as depicted in Fig-
ure 2.2.

a1l azo dss
[ X [ X [N

S —a1 P S2 —ay3 P S3

b]_ b2 b3

Figure 2.2: Three state left-to-right HMM, with s; being the only initial
state, i.e. m(s1) = 1.

This model has two assumptions: first, the model assumes a first order
Markov process, implying that the probability of transitioning to the next
state in the model only depends on the current state. Second, the emission
probability function is only dependent on the current state. In addition, the
state sequence generating the observation sequence O is not observable and
therefore hidden. The most likely sequence of states can be extracted using
the Viterbi algorithm. The algorithm is explained in more depth in the fol-
lowing subsection. A more detailed introduction of HMMs in general is given
by Rabiner et al. | ].

2.1.1.1 Viterbi path

The goal in speech recognition is to find the most likely word sequence given
an observation sequence. By using the HMM framework as explained above
we are interested in the most likely path in an HMM given the observation
sequence, called the Viterbi path. The Viterbi algorithm used to compute
the most likely path employs a dynamic programming approach. It uses the
fact that for any two paths ending in the same state s; at time ¢, only the best
path in state s; can be a part of the best path. Therefore, at any time ¢ only
N partial paths exist in the algorithm, where N is the total number of states
in the HMM. Therefore, the algorithmic complexity of the algorithm is in
O(NT), where T is the number of observations in the observation sequence.
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2.1.2 Signal preprocessing

The signal preprocessing component is responsible for converting the audio
signal input to the observation sequence needed in the HMM model. The
audio signal is in a first step cut into smaller segments of typically 16ms of
audio, with a 6ms overlap between segments, also referred to as frames. In
combination with the three state HMM topology, this segmentation enforces
a minimum length of all phones of 30ms. A common set of features that
is extracted based on the segmented audio file are Mel-Frequency-Cepstral-
Coefficients (MFCCs) | ]. MFCCs employ a mel scale filter bank to
mimic the human hearing. Typically, the dimensionality of MFCCs is 13.

In order to include information on the audio context of each frame, neigh-
boring frames are often stacked onto the current frame. Usually, the five
neighboring frames to the left and right are stacked onto each frame. Due to
the increase in the feature dimensionality, feature reduction techniques such
as linear discriminant analysis (LDA) are applied | ], which reduces the
dimensionality of the feature space to 40.

2.1.3 Acoustic model

The emission probability functions B of the HMM are realized in the acoustic
model (AM). Two types of models have been frequently used in the acoustic
model for this purpose: Gaussian mixture models (GMM) and Deep Neural
Networks (DNN).

2.1.3.1 Gaussian mixture model

Gaussian mixture models (GMM) are commonly used in conjunction with
HMDMSs to model the emission probabilities. Each GMM consists of M Gaus-
sian components and the emission probability b;(o;) of emitting o, in state s;
is defined as:

bi(0) = Z CnN (0] fom, X)) (2.2)

where ¢,, is the weight of the m-th Gaussian. pu,, and ¥, are the mean vector
and covariance matrix of the m-th Gaussian respectively.
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2.1.3.2 Deep neural network

A neural network consists of several perceptrons, which are interconnected.
Each perceptron is a linear binary classifier, whose input is the weighted sum
of all K input activations X = x1,..., 2, as shown in Figure 2.3. Each input
activation z; is multiplied with its weight w; before the activation function
f(2) of the perceptron is evaluated.

X1 bias
X, Wy v
V4 Activation
W2 ¥ 7—» ) f(z) >
* ¥ Function
Wi
Xk

Figure 2.3: Single perceptron inside a neural network.

Perceptrons can be arranged in layers as depicted in Figure 2.4. The figure
shows a feed-forward network, where no recurrences exist. An input layer
receives the observation o;, and is connected to the first hidden layer, which
in turn can be connected to subsequent hidden layers. The last hidden layer
is finally connected to the output layer.

Input Layer Hidden Layer Output Layer

Figure 2.4: Feed-forward network with one hidden layer. The number of
perceptrons in the input and hidden layer is three and the output layer
consists of two perceptrons.
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The name deep neural networks (DNN) stems from the many hidden lay-
ers they contain [ ]. The size of the input layer corresponds to the
dimensionality of the input feature vector. The size of the output layer is
determined by the number of unique states in all the HMMs.

All perceptrons in the DNN typically have the same activation function,
which is commonly chosen to be the sigmoid function:

1

£ = 7

(2.3)

where z is the weighted sum of the activations of all connected perceptrons
from the previous layer, as shown in Figure 2.3. The perceptrons in the
output layer form a softmax-layer, such that the output of the DNN is a
probability distribution over the HMM states. The softmax activation func-
tion is defined as:

e
T =K
Y peq €7

where Z = z1,...,2x and z; is the weighted sum of the activations of all
connected perceptrons from the previous layer for the i-th perceptron in the
output layer, and K is the total number of perceptrons in the output layer.

fi(Z) (2.4)

Since the DNN is a discriminative model, the output of the model has to be
transformed to use it for modeling emission probabilities in the HMM:

P(s;|ot) P (o)

P(oils;) = P(s)

(2.5)

where P(s;|o;) is the output of the DNN and P(o;) is the probability of
observing the feature vector, which is omitted from the computation resulting
in a pseudo likelihood. An evaluation of different optimization functions to
train DNNs was performed by Vesely et al. -

2.1.3.3 Context-dependent modeling

Due to co-articulation effects between phones which are caused by the human
vocal tract, modeling of phones based on their context increases the discrim-
inability between them | ]. Commonly a decision tree is trained on
the available training data, where at each node in the tree questions regarding
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the phonetic context are posed | |. The leaf nodes in the tree corre-
spond to context-dependent acoustic models which are then realized with a
GMM or as part of a DNN.

2.1.4 Dictionary

To be able to recognize words instead of phones, the dictionary contains
a mapping from words to their respective pronunciation, expressed as a se-
quence of phones. A word-level HMM is constructed by simply concatenating
the HMMs of single phones. If the acoustic model is context-dependent, the
correct phone HMM has to be chosen such that context restrictions of the
acoustic model are not violated.

2.1.5 Language model

The probability of word sequences is modeled by the language model (LM). A
wide-spread approach is the usage of N-grams | ], where the probability
of a word depends on the context it has been observed in. The N-gram
corresponds to an n — 1-th order Markov chain. The probabilities of the
N-grams are computed by counting the word sequences in a training text:

Count(Wm—(n—-1; - - -, W)

P(wp, | Wm—1,. .., Whn—(n-1)) = 2.6
(| ! (1) Count(Wm—(n-1y, - - -, Wm—1) (2:6)
where P(wWp, W1, - - ., Wy—(n—1)) is the probability of word w,, appearing in
the word context of wy,—(n—1),. .., Wm_1.

To be able to compute the probability of word sequences whose N-grams have
not been seen in the training text, backoff to lower order N-grams is usually
performed | ]. However, since no probability mass for backing off would
be available if N-grams are estimated as given in Equation 2.6, discounting
the word sequence counts of N-grams and thereby shifting probability mass
to the backoff probability has to be performed. A very successful and widely
used smoothing strategy was introduced by Kneser et al. | |, called
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Kneser-Ney smoothing. As a result, the probability of a word w,, becomes:

P |h Pdlscount wm|h> if Count(wm, h) >k
backos £ (Wm Pbackoff(wm|h) otherwise
(2.7)
= W, <oy Wim—(n— 1)
il W, ey Wiy — (n—2)

where the discounted N-gram probability Piscoun: is used if the count of the
N-gram exceeds a threshold k on the training set, and otherwise the backoff
to the lower order N-gram is performed using the backoff probability ~(h),
such that we have a probability distribution over all words given the word
history h.

2.1.6 Decoder

The decoder combines the acoustic model, dictionary, and language model
introduced above and realizes the Viterbi algorithm to find the most likely
word sequence given an observation sequence. Due to the high number of
possible word sequences, heuristics are used during the Viterbi algorithm
to limit the number of investigated word sequences. One of these methods
is called beam search and employs pruning of partial word sequences, to
ascertain that the scores of all investigated word sequences at any time are
within beam range of the score of the best partial word sequence.

The HMM that is generated by combining all the model information is called
a search network and depends on the type of the decoder. A static decoder
combines acoustic model, dictionary, and language model, creating one net-
work, where each node in the network is an HMM state. The search network
of a dynamic decoder does not contain the language model information and
is implemented as a word-loop. A word-loop contains all word-level HMMs
of the ASR system and the last state of each word-level HMM is connected
to the first state of each word-level HMM. Phonetic context constraints by
the acoustic model have to be accounted for across word boundaries.

The search network is usually determinized and minimized to reduce the total
number of states in the network | |. However, this delays the point at
which state in the network the identity of a word is certain, thereby delaying
the integration of the language model probability into the score of the partial
word sequence.
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2.1.6.1 Language model lookahead

Since the integration of the language model knowledge is delayed by the
determinization of the search network until a word is known, a heuristic called
language model lookahead is used | |. The lookahead gives a best case
estimate on the next word’s language model probability. At any state in the
search network the algorithm collects all words that are still possible to be
recognized and returns the highest probability among all collected words. To
limit the computation costs of the language model lookahead, the lookahead
is often limited to the first dozen states in the search network. The parameter
is called the lookahead depth.

2.1.7 Lattice

The lattice is a directed graph which can be extracted from the ASR system
after decoding an utterance. It represents a compressed form of all hypotheses
recognized in the decoding. A word-level lattice contains recognized words
on the edges, along with their acoustic model and language model scores
[ ]. The nodes in the lattice correspond to points in time.

2.1.8 Confidence models

The estimation of confidences on the output of an ASR system has long been
used for rescoring hypotheses of the system | | or just in general been
applied to the task of error detection | .

The confidence score is estimated on the lattice, giving the posterior prob-
ability of each word in the hypothesis given the observation sequence O =

01,...,0T:

p(w, ty, t.]O) = arg max Z p(w, t;,t;]0) (2.8)
BoStSte (@ ) ti<t<t;
in reference according to Wessel et al. | . p(w,tp, t|O) gives the

posterior probability of a word which was recognized in the time frames
ranging from ¢, to t.. p(w,t;,t;]O) gives the posterior probability of the
word w appearing in the exact time frame from ¢; to t;. The posterior
probabilities are computed by using a forward-backward algorithm | ]
on the lattice. Since the posterior probabilities are computed on the lattice
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and by picking the maximum posterior probability, the word confidence score
is an overestimate of the actual posterior probability.

2.1.9 Evaluation metric

Two evaluation metrics are used in this thesis and will be presented in this
section.

2.1.9.1 Perplexity

In order to compare language models among each other without the neces-
sity of evaluating a complete ASR system, the perplexity is used. It is the
reciprocal probability of a test word sequence W = wy, ..., wy, normalized
by the number of words | ].

PPOW) =} —1

1 (2.9)
P(w;|wi_1, ..., w)

I
52

=1

% > loga (P(wi|wi—1,...,w1))

=9 i=1

The perplexity (PP) can be interpreted as the average number of possible
successor words after each word.

2.1.9.2 Word error rate

The default evaluation metric of ASR systems is the word error rate (WER).
Given a hypothesis from the decoding and a reference for the same utter-
ance, the Levenshtein distance between them is computed. Substitutions,
deletions, and insertions have equal weight in the distance computation. The
resulting distance is normalized by the number of words in the reference to
obtain the word error rate. If smaller units are used for the distance com-
putation, such as syllables or characters, the name of the metric changes
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accordingly to syllable error rate (SER) or character error rate (CER):

M . .
= LWy o’Wﬁe
WER(W, o WL W WM = izt L Wipor Wies) 00,

T T M i
Zi:l ‘Wref |

(2.10)

where M is the number of utterances to compute the WER on, and W7, s
the reference transcription of the i-th utterance, and Wf;ypo the hypothesis of
the i-th utterance. L is the Levenshtein distance.

2.2 Automatic speech recognition toolkits

A great number of toolkits exists, which focus on acoustic speech as their core
modality, such as the HTK toolkit [ ], Sphinx-4 | |, Julius
[ |, and more recently the Kaldi toolkit | . A toolkit with a
broader focus is the RWTH Aachen toolkit | ]. The RWTH Aachen
toolkit is for example used for recognizing sign language | ]. The Geor-
gia Tech Gesture Toolkit | | extends HTK to simplify the process of
building HMM-based gesture recognizers.

Frameworks, which had a notable impact on the development of the toolkit
presented in Chapter 4, called BioKIT, are the Janus Recognition Toolkit
(JRTK) | ) |, the Attila toolkit [ |, and the Kaldi
toolkit [ |. This section will give an overview over the various prop-
erties of these toolkits.

2.2.1 Decoder programming languages

The choice of programming language determines the ease of extending a
toolkit, of setting up experiments, and of porting the framework to new
platforms.

2.2.1.1 Ease of extension

All recent toolkits make use of programming languages which use an object-
oriented programming paradigm, such as C++ and Java. Older toolkits such
as the JRTK are written in C and are more difficult to extend | ].
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Concerning C++ and Java: only the Sphinx toolkit uses a version which is
implemented in Java | ], all other toolkits use C++.

2.2.1.2 Setup of experiments

A common approach among toolkits is to use a two-layer design of either
C or C++ as the programming language for core algorithms, optimized for
speed and low memory footprint and an outer scripting layer, embedding
the core library. Toolkits following this two-layer design are for example
JRTK | | and Attila toolkit by Soltau et al. | ]. Similar to
the Attila toolkit, BioKIT has a Python scripting layer and a C++ layer
for the toolkit’s core library. The main concern is an easy to use scripting
language, which is well supported in different operating systems and has a
lot of developers contributing their libraries as a way of easily integrating
additional features into experiments. Examples are the Matplotlib library
[ | for visualization of plots as well as the SciKit-Learn library | ]
containing several machine learning methods.

2.2.1.3 Portability

Due to its extensive standard library and running in the Java Virtual Ma-
chine, makes toolkits using Java very ease to port to new platforms, such
as mobile devices. In contrast C++ toolkits require the toolkit to be ei-
ther compiled directly on the target platform or being cross-compiled on a
different platform.

2.2.2 Static and dynamic decoder

Current toolkits usually offer either dynamic | , | or static
decoders | |. Key difference is the search network. A static decoder
integrates the linguistic knowledge of the language model directly into the
search network, thereby increasing the size of the search network significantly
compared to a dynamic decoder, which does not include the language model
into the network | ].

While the decoding speed of the ASR system is usually faster using a static
decoder, the build time of the search network especially with large vocab-
ularies and big language models is considerably longer | |. However, if
the network does not change, as is the case for acoustic modeling research,
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where other components are kept constant, the search network only needs to
be created once and can be reused in experiments | |. Since acoustic
model, dictionary, and language model are integrated into the network, the
decoder is less complex than a dynamic decoder. A drawback is that only
language models which can be converted into a finite state transducer can be
used. Dynamic decoders offer more flexibility for language modeling at the
expense of more complex decoders | ].

The programming overhead in dynamic decoders is caused by the search net-
work. In static decoders computational overhead for each partial hypothesis
is the same. However, since the language model information is not encoded
in the network, a dynamic decoder has to use language model lookaheads to
effectively prune partial hypotheses. The lookahead computation is a costly
operation, requiring additional pruning thresholds for partial hypotheses to
reduce the total number of lookahead queries to the language model. Fur-
thermore, since the state does not automatically indicate the language model
context, as in static decoders, each partial hypothesis has to know its own
context, increasing the required amount of dynamically allocated memory.

If the vocabulary size or the language model is too big, the network of the
static decoder will not fit into the memory of most desktop machines. The
Kaldi toolkit [ | offers the possibility of creating a search network us-
ing a smaller language model and integrating the bigger language model on
the fly into the decoding process. While this enables Kaldi to keep the size
of the network in check and use big language models, the partial hypothe-
ses of the decoder have to keep track of their own language model context,
as in dynamic decoders. In this case, the smaller language model used for
network construction serves as a language model lookahead similar to dy-
namic decoders, if weight pushing is performed on the search network, i.e.
the language model probabilities are pushed towards the first states of the
word-level HMMs.

2.3 Error blaming and error correction

Previous work in the field of error blaming and error correction relies on
the availability of reference transcriptions. Ringger et al. | | proposes
a post-processing approach, wherein typical erroneous segments are learned
on a training set, viewing the task as a translation of erroneous to corrected
sentences. Other work investigates error correction in the context of user
interfaces, where the user can correct the recognized utterance | ].
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Other investigations focus on the analysis of errors to correct mistakes in the
models themselves. Among those is the work by Steinbiss et al. | ]
investigating the impact of pruning parameters of the decoding on the recog-
nition results. The SCTK toolkit | |, besides computing the word error
rate of an ASR system, depicts alignments of reference transcriptions and
hypotheses, collects information on word confusions, and offers statistical
analysis tools for ASR systems.

In order to analyze where the encountered errors originated from, Chase
[ |, and afterwards Nanjo et al. | |, introduced a rule based sys-
tem, wherein errors are assigned to error categories. This error blaming is
further described in the following two subsections. As a preliminary step, a
special alignment of reference transcription and hypothesis has to be com-
puted. Subsequently, the rule based system can be applied to assign each
error to an error category.

We focus on the work of Chase | ] here, who was the first to publish work
on error blaming and only few other papers were published in this area. The
field of unsupervised model training, presented in the next section, garnered
more attention, since ASR training data was scarce and improvements to
ASR systems were partly achieved by increasing the training data for the
acoustic model and language model | |. However, early papers already
observed a linear relationship between the word error rate of an ASR system
and the logarithm of the amount of training data [ ]. Current state-
of-the-art ASR systems are already trained on more than 10,000 hours of
speech data | |. Thus, renewing the interest in identifying errors in
ASR systems, such as the biennial ERRARE workshop.

2.3.1 Error regions

Differing from the alignment computed by the Levenshtein distance, the error
blaming algorithm requires the reference transcriptions and hypotheses to be
temporally aligned. Each segment in the alignment starts and ends at a word
boundary and contains one or multiple words. If a segment contains an error,
it is referred to as an error region | |. The computation of the error
regions can be performed in two steps:

1. A temporal alignment of reference transcription and hypothesis is com-
puted by using the Viterbi alignment of the reference and the Viterbi
path of the hypothesis. A valid segment in the temporal alignment
requires that the segment boundaries coincide with word boundaries of
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reference and hypothesis words. A segment is padded with additional
words from reference and hypothesis until this requirement is met. In
the worst case the utterance consists of only one segment containing
the complete utterance. The requirement can be relaxed by allowing a
deviation in word boundaries at the start and end of segments between
reference and hypothesis words. An example for a temporal alignment
with no allowed deviation of reference and hypothesis word boundaries
is given in Table 2.1.

2. Neighboring segments are merged if an error in a segment affects the
next segment. In the case of an N-gram language model, an error
affects the language model scores of the next N — 1 words. Table 2.2
shows an example alignment using a 3-gram language model based on
the temporal alignment depicted in Table 2.1. Segments one and two of
Table 2.1 had to be merged in the alignment, since errors in segment one
affect the language model score of the character sequence in segment
two.

Table 2.1:  Temporal alignment of partial utterance from the SEAME corpus

/ . No deviation between reference and hypothesis word boundaries
was allowed.
Segment 1 2 3

Ref. frames | 67-98 99-110 111-136 137-155 | 156-173 | 174-187
Hyp. frames 67-114 115-131 132-155 | 156-173 | 174-187
Ref. b. and above )ik E5d 8
Hyp. piano book ()3 £59 At

Table 2.2: Alignment of partial utterance from the SEAME corpus
/ |. Segments one and two of Table 2.1 are merged into one segment.

Segment 1 2
Ref. frames | 67-98 99-110 111-136 137-155 156-173 | 174-187
Hyp. frames 67-114 115-131 132-155  156-173 | 174-187

Ref. b. and above Mg * it
Hyp. piano book ah E24 i

Table 2.3 shows the partial output of an alignment computed on a single
utterance taken from the WSJO corpus | ]. The reference and hy-
pothesis are aligned and split into error regions, no deviation between refer-
ence and hypothesis word boundaries was allowed. AM and LM scores are
given for each segment. The scores are presented as negative log-likelihoods.
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Table 2.3 shows three segments. In the third segment both acoustic and
language model scores favor the erroneous hypothesis over the reference.

Table 2.3:  Utterance segment from the training set of the WSJO corpus
/ |. The table shows component scores for reference (R) and hypoth-
esis (H) of regions in the utterance. Error categories are listed in the last
row of each region. Scores in table are negative log-likelihoods.

| Frames | 73-85 | 86-103 | 104-147 |
Reference with that surge has
Hypothesis with that searches
Total score (R) 763.70 1054.16 2979.40
Total score (H) 763.70 1054.16 2862.51
AM score (R) 758.64 995.68 2799.51
AM score (H) 758.64 995.69 2725.93
LM cost (R) 5.06 58.48 179.89
LM cost (H) 5.06 58.48 136.58
Error-category | CORRECT | CORRECT | AM_LM_OVERWHELM

2.3.2 Blame assignment

After computing the error regions in an utterance, the decision tree as de-
picted in Figure 2.5 is used to determine the error category of each error
region | |. For this purpose the computed scores of each region, as
shown in Table 2.3 are used in the decision tree. Every segment which is not
an error region is automatically assigned the category CORRECT, stating
that there is no error in the segment. The following error categories exist:

e Search error: If the combined score of acoustic and language model is
lower for the reference segment than for the hypothesis, the misrecog-
nition is due to prematurely pruning the correct hypothesis from the
decoding process.

e Homophone: The phone sequence of reference and hypothesis are
the same in the segment. Therefore, only the language model is able to
distinguish between the two word sequences, and the language model
is at fault.

e LM overwhelm: If a wrong word sequence was recognized despite the
fact that the acoustic model score of the reference is better than the
hypothesis acoustic model score, the language model dominated
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TotalRef < TotalHypo True— Search error

False

Ref phones

—>
= Hypo phones True Homophone

False

Ref-LM > Hypo-LM
And
Ref-AM < Hypo-AM

True— LM overhwhelm

False

Ref-LM > Hypo-LM
And
Ref-AM > Hypo-AM

Both AM and LM
overhwhelm

False
4

AC or other

Figure 2.5: Binary decision tree used for assignment of error categories during
error blaming, based on Chase | ]. Scores for decision tree decisions are
assumed to be negative log-likelihoods.
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the acoustic model. Chase [ | further distinguishes between LM
errors that can be fixed by adjusting the language model weight and
LM errors that cannot.

e AM and LM overwhelm: If both acoustic and language model assign
a higher likelihood to the hypothesis, both models are at fault.

e AM or other: Errors that could not be assigned to any other category
are handled in this category. Chase | ] used additional rules to
determine if the error was caused by an erroneous pronunciation in the
dictionary, or if the acoustic models of reference and hypothesis are
problematic.

In addition, by employing a phone-only decoding, Chase tried to detect out-
of-vocabulary words in utterances.

2.4 Unsupervised training

In unsupervised training either an initial ASR system is already available
to automatically transcribe data without reference transcriptions or some
data with reference transcriptions is available to train an initial ASR sys-
tem. There has been plenty of research applying this procedure, starting
with the work by Zavaliagkos et al. | |, conducting experiments on the
Switchboard corpus | ]. Kemp et al. | | used a lattice-based
confidence measure to select training data for unsupervised training of the
acoustic model on broadcast news data. Subsequent work by Lamel et al.
[ | showed that only small amounts of data (as little as 10 minutes) are
required to obtain improvements by using unsupervised acoustic model train-
ing. An additional more extensive study on broadcast news was conducted
by Wessel et al. | ]. Previous work only considered the best hypothe-
sis of each automatically transcribed utterance, Fraga-Silva et al. proposed
to use the lattice generated from the automatic transcription process to be
used instead, showing improvements on a broadcast news transcriptions task
[ ]. Vuetal | ] proposed to use several existing ASR systems
to automatically transcribe data and combine the resulting hypotheses for
unsupervised training. Finally, Laurent et al. | | showed the feasibility
of unsupervised acoustic model training on a state-of-the-art system trained
on Korean. They employ an iterative process, starting with an initial ASR
system trained on a small amount of transcribed data. In each iteration the
ASR system from the previous iteration is used to automatically transcribe
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the training data. The automatic transcriptions are then filtered using an
utterance-level confidence threshold, followed by training a new ASR sys-
tem.
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CHAPTER 3

Database

Several data corpora have been used throughout this thesis. They are in-
troduced in ascending order of difficulty, where their respective difficulty is
estimated based on the performance of ASR systems of each corpus.

3.1 GlobalPhone

The GlobalPhone corpus was created at the Karlsruhe Institute of Tech-
nology (KIT) by Schultz et al. | |. It is a collection of more than 20
languages from all around the world. Each language is comprised of high
quality audio recordings of about 20 hours, including transcriptions. The
corpus consists of read speech by about 100 speakers in each language. Pro-
nunciation dictionaries as well as baseline N-gram language models are a
part of the corpus. The data of each language is split into three parts. The
training set is used to train the acoustic model and language model, the
development set is used to tune parameters of the decoder such as pruning
parameters, and the evaluation set is used to test the ASR system on.

In this thesis we employ the Bulgarian, Czech, German, and Vietnamese data
collections from the GlobalPhone corpus. Information on the employed Glob-
alPhone languages and statistics are given in Table 3.1 and Table 3.2. The
vocabulary size, dictionary size, and number of tokens for language model
estimation for each language are given in Table 3.3. Further information on
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the language model is given in Section 4.3.1.

Table 3.1:  Statistics of parts of the GlobalPhone database: Bulgarian (BG),
Czech (CZ), German (GE), and Vietnamese (VN) languages.

Training Development Evaluation
Language | [h:mm| #Tokens | [h:mm] #Tokens | [h:mm] #Tokens
Bulgarian 16:48 119k 2:18 15k 2:00 14k
Czech 26:48 186k 2:24 17k 2:42 18k
German 14:54 116k 2:00 15k 1:30 12k
Vietnamese 22:18 164k 1:42 14k 1:30 16k

Table 3.2:  Number of speakers and utterances of parts of the GlobalPhone
database: Bulgarian (BG), Czech (CZ), German (GE), and Vietnamese
(VN) languages.

Training | Development Evaluation
Language #Spk.  #Utt. | #Spk. #Utt. | #Spk. #Utt.
Bulgarian 63 6,890 7 816 7 816
Czech 82 10,367 10 1,028 10 1,030
German 65 8,185 6 1,073 6 826
Vietnamese 131 18,239 10 1,291 10 1,225

Table 3.3:  Statistics on the vocabulary, dictionary, and number of tokens to
estimate the language model on, of parts of the GlobalPhone database.

‘ ‘ #Vocab ‘ #Dictionary entries ‘ #Tokens for LM ‘

Bulgarian 99,471 99,576 405M
Czech 32,942 33,035 508M
German 36,987 39,521 20M
Vietnamese 29,820 37,370 39M

3.2 SEAME corpus

The code-switching speech corpus we use is called SEAME (South East Asia
Mandarin-English). It was recorded in Singapore and Malaysia by Lyu et
al. | ] and contains spontaneously spoken interviews and conversa-
tions. Originally, it was used for the research project “Code-Switch” which
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was jointly performed by the Nanyang Technological University (NTU) and
the Karlsruhe Institute of Technology (KIT). Code-switching speech is de-
fined as speech which contains more then one language. The code-switches
in the SEAME corpus can appear at any point in an utterance. The corpus
contains about 62 hours of audio data and manual transcriptions which are
separated into training, development and evaluation set (refer to Table 3.4).

The words can be categorized into four language classes: Mandarin (58.6% of
all tokens), English (34.4% of all tokens), particles (Singaporean and Malayan
discourse particles, 6.8% of all tokens) and other languages (0.4% of all to-
kens). The average number of code-switching events between Mandarin and
English is 2.6 per utterance. A code-switching event is defined as a switch
between languages. The average duration of monolingual English and Man-
darin segments is only 0.67 seconds and 0.81 seconds, respectively. In total,
the corpus includes 9,210 unique English and 7,471 unique Mandarin types.
Lyu et al. published an initial analysis on a subset of the corpus | |.

The vocabulary contains 29,173 and the dictionary consists of 52,232 en-
tries. The language model is estimated on the training set transcriptions,
which amount to 571k tokens. In addition, the language model was inter-
polated with monolingual language models built on 246 M tokens of English
NIST data and 195M tokens of Mandarin from the GALE project | .
Further information on the language model is given in Section 6.1.1.

Table 3.4: The SEAME database.
‘ ‘ Training ‘ Development ‘ Evaluation ‘

#Speakers 157 8 8
#Utterances 48,040 1,943 1,018
#Tokens 571k 23k 11k
Duration [h:mm] 58:24 2:30 1:06

3.2.1 Splitting training data

To be able to conduct the experiments in Chapter 6 on unsupervised model
training we split the training data into two parts, since the SEAME corpus
does not contain any untranscribed data. A third of the data was used to
train the initial speech recognizer with which the remaining training data is
decoded and used for the unsupervised experiments. Table 3.5 contains in-
formation on the two new training sets. Each speaker in the original training
set is assigned to either transcribed training data or untranscribed training
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set. Training data was split such that the ratio of male to female and Sin-
gaporean to Malayan speakers remains the same as in the whole training
set.

Table 3.5: SEAME training data for the unsupervised clustering.

‘ ‘ Supervised Training ‘ Unsupervised Training ‘ Total ‘

#Speakers 58 99 157
#Utterances 17,746 30,294 | 48,040
#Tokens 201k 370k | 571k
Duration [h:mm] 19:04 39:20 | 58:24

3.2.2 Challenges

The SEAME corpus is not only challenging because of the code-switching
events, which can appear mid-sentence. The speakers are Singaporean and
Malayan who both have their own language specific pronunciation of the
Mandarin characters and English words. Pronunciations that were available
for the initial systems are based on an American English dictionary from
CMU | ] and the Mandarin GlobalPhone dictionary. Vu et al. tried
to adapt the dictionary to the Singaporean/Malayan English by using ap-
plying several rules to the pronunciations | ]. Since code-switches
are a spoken event and do not appear in written texts, the training data
available for language modeling are limited to the audio transcriptions of the
SEAME corpus, making the estimation of code-switching events especially
challenging.

3.3 ILSE corpus

For the ILSE study | , |, an interdisciplinary team at Heidel-
berg University was given the task of conduction a large-scale investigation
into the impact of ageing on several aspects of daily life. Over the course
of 20 years they conducted interviews and medical examinations on about
1,000 participants. The collected German speech corpus was partly digitized
and transcribed. Details of the corpus and the subsets are given in Table 3.6.
The vocabulary is derived from the training set transcriptions of the ILSE
corpus and amounts to 71,928 words. The pronunciations for the words in
the vocabulary are either taken from the German GlobalPhone dictionary
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or automatically generated. The total number of entries in the dictionary
is 74,462. The language model is estimated on the 2M tokens of the ILSE
training set transcriptions and is further described in Section 6.3.2.2.

Table 3.6:  The ILSE corpus. The development and evaluation set statistics
only contain the first interview session for each speaker.

‘ ‘ Training ‘ Development ‘ Evaluation ‘

#Speakers 68 10 14
#Utterances 30,647 936 1766
#Tokens 2,000k 73k 118k
Duration [h:mm)] 265:24 9:00 14:24

3.3.1 Challenges

The audio recordings collected in the ILSE study pose several challenges to
an ASR system. The list of challenges are given in the following list and are
published by Weiner et al. | |:

e Transcription Quality: While transcriptions exists for the data listed
in Table 3.6, they do not reflect the verbatim content of the inter-
view. Furthermore, speaker changes and utterance boundaries were
transcribed but not marked in the interview recordings, and no time
alignment between recording and transcript was created. Each tran-
scription file is associated with 45min to 2 hours of recorded speech.
65% of the transcriptions were created without any post-checks and do
not include any annotation of hesitations, back-channeling, or disflu-
encies.

e Anonymized Transcriptions: To comply with ethical, legal, and so-
cial responsibilities, all transcriptions were anonymized. Proper names,
city names, and dates were substituted with generic place holders, re-
sulting in a mismatch between transcript and actual spoken content.

e Recording Quality: No special attention was paid to the recording
setup and the recording quality. Due to the start date of the study
in 1993, no ASR approach to automatic transcription was envisioned.
The setup consists of a single microphone placed in-between the in-
terviewer and the study’s participant. As a result, the recorded audio
data contains noise, such as shuffling of paper, writing, and placement
of objects, and often captures one speaker well, but the other not.
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Furthermore, the recording device and recording quality was changed
during the course of the study, such as switching from analogue to
digitial recording devices.

Speaking Style: While the interviewers were given specific questions
to ask and are as a result well planned, the participants were encour-
aged to give lengthy spontaneous answers. In addition, due to the
spontaneous nature of the interviews, cross-talk and disfluencies reg-
ularly appear during the course of a recording session. Also, due to
personal content, emotional speech occurs.

Dialectal Speech: The participants in the ILSE study are living in
Leipzig and Heidelberg/Mannheim. In both regions a very distinct
German dialect is spoken. While most parts of the transcriptions are
written in the standardized German writing system, some portions of
the transcriptions contain quasi-phonetic transcripts to write dialectal
variants. The quasi-phonetic dialect variants were not marked and the
standardized form of the dialectal variant was not annotated.



CHAPTER 4

BioKIT - Real-Time Decoder

The choice of the toolkit that is used for conducting the experiments is very
important, since it dictates the possibilities with regards to experiments as well
as ease of extension. Furthermore, to properly understand the encountered
errors in a hypothesis and to know how to correct them, an in-depth under-
standing of the toolkit is very beneficial. This chapter introduces the toolkit
BioKIT which we created during the course of this thesis and in which we
integrated our error signature algorithm further described in the next chapter.

4.1 Introduction

Several toolkits for HMM-based sequence modeling have been developed over
the last decades, especially in the area of automatic speech recognition, toolk-
its are well represented, as discussed in Section 2.2. Since the goal of this
thesis is to promote error correction based on error signatures for HMM-based
sequence recognition not only for speech signals, but biosignals in general,
an easy to handle toolkit in which the algorithms are embedded is needed.
However, most of the existing toolkits are tailored to the automatic speech
recognition community with a very specific terminology. The following para-
graph summarizes the key requirements that led us to develop a new toolkit
we call BioKIT | |:

e Accessibility: The terminology used in the toolkit should be suffi-
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ciently generic to appeal to an interdisciplinary audience. Furthermore,
interfaces and implemented modules, as well as the relation between
them, should be well documented and tutorials should demonstrate
common use-cases. In addition, a suite of integration and unit-tests
should ensure that the implemented algorithms work correctly.

Error analysis: During research it is important to analyze recogni-
tion errors to identify the responsible system components and room for
improvements.

Flexible processing and modeling of various types of signals, such
as multi-channel bio-physiological signals like muscle-activity, high-
resolution frequency based speech signals, and low-resolution time-
based signals like accelerometer signals: All signal pre-processing mod-
ules should have generic interfaces that allow flexible use within arbi-
trary chains of processing modules for state-of-the-art decoding. Model
assumptions should be minimal, e.g. flexible HMM architectures should
be supported, including multiple streams, and hierarchical modeling.

Fast setup of experiments and flexible code-base: The efforts of
creating a new recognition setup and performing experiments should be
small. Code should be designed in a modular fashion making it easy to
combine and replace features or change behavior of existing algorithms.
This should be possible during run-time and, in particular, without the
necessity of recompiling and linking the complete code-base.

Processing of big amounts of data: Sizes of data sets for ASR and
other human-machine interaction applications, such as wearable com-
puting and activity recognition, are increasing. Therefore, the toolkit
should be able to handle massive amounts of data with correspondingly
big models. Furthermore, parallelization which means utilizing clusters
and multi-core machines efficiently (i.e. share memory across threads)
is a requirement.

Online-capability: The decoder needs to process a continuous data
stream in real-time by chunk-wise decoding and outputting of interme-
diate results.

The remaining chapter gives an in-depth overview of the toolkit, its major
interfaces, relationships between them, and the capabilities of the library in
general. Finally, we present some experimental results comparing our toolkit
to the state-of-the-art Kaldi toolkit | |, which is a freely available
speech recognition library.
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4.2 Overview

BioKIT was designed in such a fashion that algorithmic changes in the code
can be made without the necessity of re-factoring the whole code-base. Fig-
ure 4.1 shows the dependency graph of the major classes and interfaces of the
BioKIT core library. Classes with a dotted frame indicate an abstract class,
having several implementations. To reduce the effort for new users to create
their own experimental setup, BioKIT contains an extensive documentation
including tutorials for several use-cases and a generic terminology to make
it accessible to users beyond automatic speech recognition. Furthermore, a
suite of unit- and integration-tests allows the user to verify the correctness of
the implemented algorithms. The following sections elaborate on the major
interfaces depicted in Figure 4.1, with Section 4.2.1 explaining our terminol-
ogy and the dependency between the Objects listed in Figure 4.1.

Decoder

| |

— TokenSequenceModel | | SearchGraph :—»l ModelMapper i
L L ____ s N ___ J
________ L] I
| |
! TokenSequenceModel | SearchVocabulary | FeatureVectorScorer |
L ___ Context | L o

Dictionary <

AtomManager [«

Figure 4.1: Dependency graph of BioKIT. Boxes with dotted lines indicate
an abstract class.
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4.2.1 Terminology

The terminology we employ in our toolkit abstracts from the specific termi-
nology found in many speech recognition toolkits to appeal to a wide au-
dience of researchers investigating different biosignals and input modalities.
The goal of the recognition process in the BioKIT toolkit is to give the most
likely sequence of Tokens given an observation sequence. In terms of speech
recognition is the most likely word sequence given an audio signal as input.

The smallest unit in our system is an Atom. Each Atom is modeled by
an HMM. Attributes of these Atoms as well as the Atoms themselves are
managed by the AtomManager. A Token is a sequence of one or more Atoms,
which also compose BioKIT’s final recognition results. In the simplest case,
one Token consists of one Atom which equates to modeling a Token with
one distinct HMM. Each Atom can be associated with common attributes
defined in the AtomManager. Examples of attributes in the AtomManager
data-file for phonemes in the English WSJO corpus | | are given in
Table 4.1.

Table 4.1: Examples of attributes in the AtomManager data-file for
phonemes in the English WSJ0O Corpus. The attributes "Mid”, ”Low”, and
"Front” correspond to the position of the tongue.

‘ Attribute ‘ List of phonemes ‘

Vowel JAA/ /AH/ /EH/
Mid JAH/
Low JAA/
Front JEH/

The first entry in the list corresponds to an attribute and each following entry
is a phoneme in the AtomManager. The Dictionary describes the mapping
of Tokens to Atom sequences. Context-dependent attributes of Atoms can
be defined here. In addition, each Token in the Dictionary can have any
number of attributes which can be numbers (e.g. pronunciations weights), or
lists of strings (e.g. features for the factored language model as described in
Section 4.2.4). Name and form are left to the user as long as the appropriate
attribute handler is registered in the dictionary. Examples of these context-
dependent attributes for Atoms and attributes for Tokens are given in the
following list:

e what - {/W/ WB} /JAA/ {/T/ WB} [PronunWeight 1.61] [POS WDT]
o what - {/W/ WB} /AH/ {/T/ WB} [PronunWeight 0.22] [POS WDT]
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The first entry in the dictionary is the Token, followed by the sequence of
Atoms. Both Atoms in the beginning and end of the sequence have assigned
a tag to them: "WB” for word boundary. Each of the two Tokens has two at-
tributes appended to their sequence of Atoms, negative log-probability of its
pronunciation and their corresponding part-of-speech tag (e.g. "WDT” refers
to ”Wh-determiner”, for words such as "what”, "who”, ”where” | ).
The pronunciation weight is used to assign probabilities to pronunciation
variations of the same token.

The SearchVocabulary can be used to restrict the Tokens which can be recog-
nized during decoding and is an input to both the SearchGraph, constructing
the search network, and the TokenSequenceModel. The TokenSequenceModel
models occurrence probabilities of Token sequences. Emission probabilities
of HMM states are computed by the FeatureVectorScorer. The Feature Vec-
torScorer computes the scores given a model id and feature vector of the
input signal. The unit to create the search network is the ModelMapper
which is responsible for mapping sequence of Atoms to their corresponding
HMM.

To relate these terms to the common ASR terminology: A single Atom cor-
responds to a phone in speech. A sequence of Atoms equates to the pro-
nunciation of a Token, i.e. a word. The TokenSequenceModel conforms to
the language model. The Feature VectorScorer corresponds to the acoustic
model.

4.2.2 Preprocessing

The preprocessing is organized in modules which can be freely combined into
preprocessing chains. Each module is able to process any kind of multi-
channel data which are represented as lists of matrices where each matrix
corresponds to a single channel. Typical modules in BioKIT are window-
ing, spectral analysis, linear transformation (e.g. computed by Linear Dis-
criminant Analysis or feature-space Maximum Likelihood Linear Regression
(IMLLR) [Galog]).

Common preprocessing modules are implemented in the C++ layer, but
could also be implemented directly in Python allowing for rapid prototyp-
ing of new preprocessing modules. As all matrices in the Python layer are
represented as NumPy arrays, the NumPy and SciPy libraries | ] can
be seamlessly integrated. This offers the whole range of mature and op-
timized signal processing algorithms from these libraries to the user. The
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preprocessing chains are implemented in Python, enabling the user to mod-
ify and extend preprocessing operations on the fly. Processing modules can
be reconfigured and exchanged during run-time.

4.2.3 FeatureVectorScorer interface

The Feature VectorScorer manages the emission models in the HMM states
and computes the emission probabilities. Feature VectorScorer can be substi-
tuted with any valid implementation of the scorer interface to compute a score
for a given model identifier and feature vector. We support Gaussian Mix-

ture Models and Quicknet-trained neural networks| |. In addition, if a
compiled version of Kaldi is found during configuration of BioKIT, wrapper
classes integrate a range of Kaldi models | |. Currently supported

adaptation methods are Maximum Likelihood Linear Regression (MLLR)
[ | and Maximum-A-Posteriori (MAP) adaptation | .

4.2.4 TokenSequenceModel interface

The TokenSequenceModel (TSM) computes the probability of a Token given
a sequence of previous Tokens. An important reason for us to develop a dy-
namic decoder is the ability to use arbitrary knowledge sources for modeling
token sequences (concerning the type of model itself, as well as supporting
very small to very large models). Currently, we support a grammar, a stan-
dard N-gram model in the ARPA format | |, a factored language model
[ |, and the possibility to interpolate between TokenSequenceModels. In
addition, we implemented wrapper classes for the TSM, such as the CacheTo-
kenSequenceModel to cache queries to the TSM for faster turnaround times,
and the FillerWrapper class, which handles queries for Tokens which are
not modeled by the wrapped TSM. Custom TokenSequenceModelContexts
for each TSM ensure that any knowledge source can be integrated. The only
condition for TokenSequenceModelContexts to be valid is that they imple-
ment the AbstractTokenSequenceModelContext’s interface, which consists of
a hash function and a function to test two contexts for equality.

4.2.5 SearchGraphHandler interface

The decoder employs a token passing algorithm on a determinized and min-
imized search network | ]. Context-dependent modeling of Atoms, com-
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monly used in ASR (see Section 2.1.3.3), is directly integrated into the net-
work with unlimited context size. The only constraint of the network con-
struction algorithm is to use left-to-right HMM topologies. Currently, two
implementations of the AbstractSearchGraph interface exist. The Restrict-
edSearchGraph creates a search network consisting of a sequence of Tokens.
The RestrictedSearchGraph is used to compute the Viterbi path of a reference
transcription, given the corresponding observation sequence.

The SearchGraph implements the search network used for decoding and is
a Token-loop. The SearchGraphHandler is responsible for conducting the
actual search on any AbstractSearchGraph and is keeping a list of partial
hypotheses. The search is implemented similar to Kaldi | ] with
the exception that we have a dynamic decoder employing lookahead for
the TokenSequenceModel. By implementing a TokenSequenceModel looka-
head | ], any TokenSequenceModel information can be integrated as
soon as possible into the decoding process. A wrapper class implementing
the TokenSequenceModel interface caches frequent queries employing a least
recently used strategy and thus speeds up the search. Upon reaching the
maximum size of the cache, the component removes the least recently used
context and a new context is added in its stead.

4.2.5.1 Search network construction

The construction of the search network is split intro three stages. In the
first stage of the network building process a graph consisting of all possible
atom sequences based on the dictionary is assembled. Token Ids are added
to the last node of the body of each Atom sequence. Body is defined here
as the portion of an Atom sequence not influenced by Atoms of preceding
or succeeding Tokens (as in [ ). The atom graph is determinized and
minimized to reduce the total number of nodes as far as possible for the next
stage. Each node at this stage represents one Atom.

As an example for a search network construction, we use the dictionary
given in the list below, consisting of two different words (ZTokens) with two
pronunciations each. The examples are taken from the CMU pronunciation
dictionary [ ]:

o what's(1) - /W/ JAA/ T/ /S/
o what's(2) - /W/ /AH/ T/ /S/
o wail - /W/ /EY/ /L/
o wale - /W/ JEY/ /L/
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The pronunciations of the words "wail” and ”"wale” are identical, to visualize
how we handle Tokens with the same sequence of Atoms, i.e. homophones
in speech recognition.

Figure 4.2: Stage 1: Atom graph as created by BioKIT during search network
construction. Nodes with a double circle indicate the last node of a token.

Figure 4.2 shows the atom graph, generated from the example dictionary.
The words "wail” and "wale” share all their nodes since their pronunciations
are the same. Pronunciations for "what’s” share all but one node.

In the second stage each node in the previously created graph is expanded
based on its context of Atoms in the graph. Atoms at boundaries of Token are
also expanded. If the employed Feature VectorScorer is a context-independent
model, the graph from stage two is the same as in stage one. Each node is
expanded based on its context of Atoms in the atom graph. For all nodes
which are at the beginning or end of the graph, we take all possible Tokens
and their respective sequence of Atoms as possible successors/predecessors.
At this point initial and final nodes of the graph are still not connected to
each other.

After the expansion, each node contains an HMM for the Atom they are
modeling and a representation of its context, refer to Figure 4.3 showing the
example expanded graph of Atoms. To have a compact representation of
contexts of Atoms we use a bitmask as proposed by Stoimenov et al. | ].
The bitmask is a matrix consisting of context offsets for the columns and
all possible phonemes in the rows. Value of a field in the matrix is 1 if the
phoneme in that row is possible at the context offset of the column. Initially,
a bitmask is computed for every model in the FeatureVectorScorer based on
the corresponding ModelMapper (i.e. decision tree in speech recognition).
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Figure 4.3: Stage 2: Context expanded atom graph as created by BioKIT
during search network construction. Each node contains an HMM repre-
sented by the identifiers of each state’s emission probability density function.
Nodes with a double circle indicate the last node of a token.

The bitmask for an atom-level HMM, is then computed by combining the
bitmasks of the individual models used in each state by applying the bitwise
&-Operator. Table 4.2 shows the bitmask for the node modeling the phoneme
”/L/” in the example. In the center, in polyphone position two, only the
phoneme ”/L/” is possible and thus is the only row with a 71”7 in that
column. The left context of the phoneme are only the phonemes ” /W /” and
7JEY/”, whereas the right context are the first two phonemes of all four
words in the dictionary.

In the third stage, each expanded node is replaced by the states of their
respective HMM. Afterwards, initial and final nodes are connected based
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Table 4.2:  Ezample of a bitmask for the phoneme ”/L/” of the word "wale”
i the example shown in Figure 4.3. The acoustic model s a quintphone
model.

Polyphone position
Phoneme 0‘1‘2‘3‘ 4
JAA/ 0/0]01]0 1
JAH/ 0/0]01]0 1
/EY/ 011010 1
/L/ 010|110 0
/S/ 0/0]01]0 0
/T/ 0/0]01]0 0
JW/ 11001 0

on their respective bitmasks. If after applying the bitwise &-Operator to a
bitmask of an initial and a final node, a valid context remains in the bitmask
then the two nodes are connected to each other (i.e. context is valid if at
least one 71”7 in each column of the resulting bitmask remains).

After connecting final and initial nodes, all initial nodes with no predeces-
sors and all final nodes with no successors are removed from the network.
This process is repeated until only nodes with at least one successor and
predecessor remain.

Finally, the graph is determinized, all Token labels are pushed as far as
possible towards the initial nodes of the network, and the graph is minimized.
Figure 4.4 shows the final search network constructed for our example, the
connections between final and initial nodes have been omitted for clarity.

4.2.5.2 Pruning

Similarly to Povey et al. | |, absolute and relative pruning parameters
are applied. Additional pruning parameters governing partial hypotheses in
final states of the search network are used to limit the number of hypotheses
in initial states of the network, since language model lookahead is comparably
costly to compute. Pruning is applied after each frame:

e Hypothesis topN: only the N-best partial hypotheses are kept.

e Hypothesis beam: the score of each partial hypothesis has to be in
beam range of the best partial hypothesis.
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W(D)-e(7)

wail, wale

AH())-b(37)
what's(2)

AA(])-b(34)
what's(1)

Figure 4.4: Stage 3: Final search network as created by BioKIT. Nodes with
a double circle indicate the last state of a token.
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e Final hypothesis topN: only the N-best partial hypotheses in a final
state are kept.

e Final hypothesis beam: the score of each partial hypothesis in a final
state has to be in beam range of the best partial hypothesis.

e Lattice beam: the total number of hypotheses in the lattice are limited,
each hypothesis has to be withing beam range of the best hypothesis.

4.2.6 Lattice interface

At any-time during the decoding (in case of online decoding) or afterwards,
the decoder can create a lattice, containing all hypotheses of the current
decoder output.

Similar to Kaldi [ |, we have two different implementations of the
lattice, using different granularity. The StateLattice is a one-to-one mapping
of the internal decoding state into the lattice format. Each node in the lattice
presents a point in time and each edge, connecting the nodes, presenting a
transition and state emission in the search network/HMM. The TokenLattice
is a more compact representation, where the nodes also indicate a point in
time, but each edge between nodes contains the state sequence belonging
to a single Token. Furthermore, the TokenLattice is compressed such that
each sequence of Tokens only appears once in the TokenLattice. Figure 4.5
shows an example lattice from the German part of the GlobalPhone database

[ J

64 inzwischen
J

64 inzwischen
j

geschehen

inzwischen

Figure 4.5: TokenLattice of utterance decoded with BioKIT, taken from the
GlobalPhone database. Numbers in nodes indicate the current position in
terms of time in the corresponding observation sequence.

Both lattices can be used to generate N-best lists containing only the N se-
quences of Tokens with the best score. Furthermore, each lattice can generate
confidence scores for each Token of a given sequence of Tokens.
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4.2.7 Parallelization

Similar to other toolkits BioKIT uses a sentence-level parallelization, where
each sentence can be processed independently from the other sentences in the
set to be decoded. However, our implementation differs from the paralleliza-
tion used in for example Kaldi | ] or the JRTK | . While
the latter two use sentence-level parallelization, they spawn an independent
process for each additional computer core to be used. In contrast, BioKIT
has only one process which creates the required number of threads, sharing
memory between them. As a result, each abstract class, which is part of the
decoding process, requires its implementation to implement a copy method
for itself. Thus, thread safety is determined by each implementation individ-
ually, thereby reducing the memory overhead by sharing instances of objects
if they are thread safe.

This feature is used on the Python layer by initially creating a prototype
decoding process, loading all required models, and subsequently calling the
copy method on the prototype’s instance of the decoder class, returning a
thread safe copy of the prototype decoder, sharing thread safe components
between copies.

4.3 Experiments

We report on experimental results conducted with our decoder and compare
the results to Kaldi | ] on a subset of the languages from the Global-
Phone database. Furthermore, we investigate the real-time factor necessary
to obtain them. We chose Kaldi for our comparison since it offers state-of-
the-art acoustic modeling and performance, and is freely available.

4.3.1 System setup

We report results on the Bulgarian (BG), Czech (CZ), German (GE), and
Vietnamese (VN) part of the GlobalPhone database | |. Each system
is trained on about 22 hours of read speech with the Kaldi toolkit. We
present the results obtained on deep neural network (DNN) acoustic models
from | | using an fMLLR adaptation. The fMLLR transforms were
separately created by Kaldi and BioKIT in a first pass by using Kaldi trained
Gaussian Mixture Models. The input for the DNN is a 143 dimensional
feature vector consisting of 11 stacked 13 dimensional MFCC vectors. The
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DNN is initialized by training on a range of languages from the GlobalPhone
database and is then re-trained with a target language training data. The
neural network has 5 hidden layers with 1,500 nodes each.

Table 4.3:  Dictionary and language model information of tested GlobalPhone
systems.

‘ language ‘ #words ‘ PPL ‘ #highest N-grams ‘
Bulgarian (BGs) 99,576 | 386 743k 3-grams
Bulgarian (BGb) 99,576 | 306 36,300k 3-grams
Czech (CZs) 32,942 | 1,644 2,906k 3-grams
Czech (CZb) 32,942 | 1,469 10,640k 3-grams
German (GEs) 37,301 | 673 990k 3-grams
German (GEDb) 37,301 | 552 26,211k 3-grams
Vietnamese (VNs) | 29,820 | 247 590k 3-grams
Vietnamese (VNb) | 29,820 | 179 17,805k 5-grams

The dictionary sizes and language model (LM) information are given in Ta-
ble 4.4. The number of highest order N-grams are presented in the table
to give an estimate of the size of the model. The appended ”s” and ”b”
indicate small and big language models, respectively. The out-of-vocabulary
(OOV) rate for each system is less than 0.01% with the exception of Bulgar-
ian where we have an OOV of 2.18%. For the experiments with BioKIT, the
full language model lookahead was used for each system with an unlimited

lookahead depth.

In order to limit network size and reduce memory consumption, Kaldi inte-
grates big language models on the fly using the network build on the small
LM. To be able to use DNNs in conjunction with our big LMs in Kaldi, we
adapted the Kaldi decoder script.

4.3.2 ASR recognition performance

The error rates of our comparative experiment between BioKIT and Kaldi
are given in Table 4.4.

The results for Vietnamese are given in syllable error rate (SER), and Bul-
garian, Czech, and German in word error rate (WER). The results show
that the Kaldi and BioKIT decoder achieve comparable error rates for all
systems. Results of BioKIT and Kaldi systems were tested pair-wise for sig-
nificance. The error rate differences between BioKIT and Kaldi systems were
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Table 4.4:  Various GlobalPhone systems and their performance with Kaldi
and BioKIT. Significant improvements are marked with * if p < 0.05.

‘ system ‘ Error rate ‘ BioKIT ‘ Kaldi ‘
Bulgarian (BGs) WER 12.46%* | 12.84%
Bulgarian (BGb) | WER 11.67%* | 12.16%
Czech (CZs) WER 8.99% | 9.23%
Crech (OZDb) WER 8.66% | 8.66%
German (GEs) WER 10.88% | 10.85%
German (GEb) | WER 9.63% | 9.76%
Vietnamese (VNs) | SER 8.19% | 8.10%
Vietnamese (VNb) | SER 6.97% | 7.10%

not significant at a significance level of 0.05 except for the Bulgarian ASR
systems.

4.3.3 Real-time factor

The real-time factor of a system sets the duration of the input sequence in
relation to the time it takes the recognition system to compute the results. A
real-time factor of one indicates that the duration of the input sequence and
the required computation time are the same. In general, the real-time factor
should be as low as possible. An online-capable system however requires a
real-time factor of less than one, to avoid a backlog of unprocessed input
data.

Figure 4.6 shows BioKIT’s performance in terms of real-time factor over
syllable error rate on the Vietnamese systems. Fortunately, the decoding
speed of our decoder is not affected by the bigger language model. The
decrease in error rate levels off after a real-time factor of about 0.3. Tests
were run on an Intel Core i7-3770 with 3.4GHz and 4 cores. All tests were
run with 4 threads in parallel. Real-time factor is derived from the sum of
the decoding times of all 4 threads.

For the Vietnamese systems, the memory consumption for experiments with
a single thread is 1.1GB (VNs) and 2.4GB (VNb). Using our paralleliza-
tion with 4 threads, memory consumption increases to 3.3GB (VNs) and
4.6GB (VNb). Thus, the memory sharing between threads reduces memory
consumption by approximately 25% for the Vietnamese system VNs and by
52% for the VNb system.
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Figure 4.6: Real-time factor over SER for GlobalPhone Vietnamese system
with 3-gram LM(VNs) and 5-gram LM(VND).

4.4 Summary

We introduced our new toolkit BioKIT and gave an overview of its compo-
nents. We showed that our toolkit is suitable for automatic speech recogni-
tion. We reported on first results of our decoder using Kaldi trained deep
neural networks achieving comparable results. We showed that usage of large
language models has no negative effect on real-time factor over error rate with
BioKIT. Furthermore, by employing our parallelization strategy of sharing
modules between threads, we are able to reduce the memory requirements
significantly.



CHAPTER 5

Error Signatures

In this chapter we introduce a novel approach to analyzing HMM-based recog-
nition systems. We describe the framework we developed to first accumulate
occurrences of ASR errors, then to group these errors into similar clusters.
The resulting clusters are used to pinpoint the reason of errors, and to finally
manipulate the ASR system’s components such that the system will no longer
produce these errors. In the beginning of this chapter, the notion of error sig-
natures 1s introduced. Fach signature describes a group of errors using a set
of features extracted from them. Subsequently, the algorithm to extract error
signatures 1s outlined. Finally, we show how the obtained error signatures
can be used to help an expert to correct errors in the system.

5.1 Motivation

The metric that is used to measure the performance of automatic speech
recognition (ASR) systems is the word error rate (WER). It is the edit dis-
tance of the reference transcription to the hypothesis of the ASR system
computed on a development or an evaluation set. Improving the WER of an
ASR system usually requires input from an expert in the field, who has to
identify and fix errors in the system. In order to gain the fastest improve-
ments in terms of WER, the expert has to rank errors and their corresponding
causes in descending order of frequency, fixing the most prevalent causes of
errors first. However, determining which cause of error is the most prevalent
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and even linking ASR errors to an error cause is not an easy task, since the
WER of an ASR system only reveals the errors but not their underlying error
cause.

Recent developments contribute to the difficulties in the analysis of ASR
systems: ASR technology is applied to an increasing number of domains,
Also, tasks have grown more difficult, combining resources of varying quality
and quantity, ranging from smaller corpora | | to increasingly diffi-
cult tasks | |, increasing the complexity of systems as a result and
making their analysis more difficult (e.g. systems which use several decoding
passes over an utterance to obtain the final hypothesis). Especially with the
advent of improved algorithms for neural networks and the vast amounts of
available training data [ |, identifying room for improvement for these
systems can be a tedious task. These factors drive the demand for tools to
systematically find causes of errors in ASR systems.

One of the most widespread tools that is available to analyze an ASR system
is the SCTK toolkit | |, giving sentence-by-sentence evaluations along
with word confusion tables. Other research focused on directly assigning
errors to specific components of an ASR system | , ], or investi-
gated the decoding process and the influence of pruning parameters on the
accuracy | |. All available tools mentioned above have drawbacks that
we address with our new framework: the above mentioned tools require that
reference transcriptions of the data being analyzed is available, whereas we
developed a toolkit that works without any additional data beyond the ASR
systems decoding output. The approach of Chase | | analyzes each ut-
terance on its own, therefore does not give any information on which error is
prevalent. In our framework we group errors over all available utterances in
order to rank the encountered errors by their prevalence and give additional
information on the error cause by virtue of the groups of errors found. The
SCTK toolkit [ | gives purely statistical information on each word and
their confusions and does not relate them to error causes or accounts for the
fact that an error cause might impact several words (i.e. acoustic modeling
problem of a certain phoneme). With our framework we analyze the encoun-
tered errors not only by word identity alone but also include fine-grained
attributes. For this purpose we defined error signatures.

5.2 Definition of error signatures

Each error cause exhibits particular characteristics, depending on the ASR
component the error cause originates from. For example, an error caused
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by the language model appears in similar word contexts, a pronunciation
problem appears in words sharing the same prefix or suffix phoneme sequence,
and an acoustic model problem appears in the same phoneme or phonetic
context. To identify these characteristics we use a set of attributes for which
we aggregate errors on a training or development set:

e phonemes

e acoustic model ids

e word identity

e word context

e word confidence score
e language id

e language id context

Additional attributes, such as speaker identity, recording setup, speaking
style, signal-to-noise ratio or part-of-speech tags, can be added on the fly
to the error signature framework, by either supplying attributes and their
values for a complete utterance during the collection of statistics on a given
data set or by extending the dictionary and adding additional attributes for
each word.

Each attribute can assume several different values, depending on the word, its
context, and pronunciation. For a given English word "hello”, the attribute
word identity would have the value "hello”. The pronunciation of the word
is ”/h/ Je/ /1) Jo/”, the attribute phonemes would assume four different
values.

In our novel framework, which is described in the next section, we group the
attribute-value pairs encountered on the data set with the aim of finding a
characteristic set of attribute-value pairs for a specific error. We call each
set of attribute-value pairs an error signature. An example signature is given
in Table 5.1. The signature indicates that if the combination of Mandarin
character )" and acoustic model 1333 are observed, the probability of an
error is 0.93. This signature is further discussed in the next section.

The combination of attribute-value pairs of each signature, as in Table 5.1,
can give a hint to the probable cause of the errors. Presented with error
signatures the expert can fix the problems based on their frequency and
impact, to rapidly gain improvements in WER.
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Table 5.1:  Ezample of an error signature found on the training set of the
SEAME corpus. The words on the right hand side of the word confusions
column are the words in the 1-best hypothesis. Number of occurrences of the
signature in the corpus are given along with the probability that the signature
indicates an error (ErrorRatio).

‘ Sig.# ‘ ErrorRatio ‘ #0Occ. ‘ Error signature ‘ Word confusions ‘

1 0.93 120 | AM No. 1333 auntie — 7and [)”
0 =HJ | novelty — "normal f#J”

In the case that reference transcriptions are available we follow the approach
proposed by Chase | |. The correctness of a word is not just based on
the edit distance between reference and hypothesis: a correct word has to
align to a matching word in the reference and must fall into a similar region
of the audio file. The requirement of falling into the same region in the audio
file can be relaxed by allowing for a deviation in overlap of the reference
and hypothesis region. In addition, any word that is in the case of N-grams
within N — 1 words of an erroneous word is considered a part of the same
error.

5.3 What information is available

This section presents the output of the error signature framework presented
in this chapter, to make the remaining sections more accessible.

Table 5.1 gives an example of an error signature derived from the SEAME
training set. Each signature is assigned a unique signature id to identify it
more quickly in a sentence-by-sentence overview of the analyzed data set. In
addition, the ErrorRatio, matching number of regions (#Occ.), and the sig-
nature, with its unique combination of attribute-value pairs, are displayed.
The signature in Table 5.1 consists of two attribute-value pairs: acoustic
model with id 71333 in combination with the word ”f#]”. To make sense of
what the acoustic model in question is modeling, a list, giving a mapping be-
tween acoustic model ids and modeled phonemes, is given. In the example,
acoustic model with id ”71333” is modeling the phoneme ”/d/”. Mapping
between acoustic model ids and phonemes can be retrieved from the Mod-
elMapper in BioKIT. Furthermore, a list of word confusions is given, for the
expert to spot patterns in the confusions.
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Additional information is given in a sentence-by-sentence output of the an-
alyzed data set. The output indicates the regions that where matched by a
specific error signature. An example for a sentence output is given in Ta-
ble 5.2. The example shows a segment from the SEAME corpus. In the
rows of the table is given region-by-region information on the duration and
location in number of frames, and acoustic model, language model, and total
scores. In addition, signatures matching a region are indicated in the last
row of the table for the expert to quickly find samples for a specific signature.

Table 5.2:  Segment from sentence from the training set of the SEAME
corpus. Table shows component scores for reference (R) and hypothesis (H)
of regions in the sentence. The signature id from Table 5.1 is indicated in
the last cell. Scores in table are negative log-likelihoods.

| Frames | 104-152 | 152-157 | 157-184 | 184-317 | 317-409 |
Reference WA | [particle] G 1] | <SIL> auntie
Hypothesis WA | [particle] it ] | <SIL> and )
TotalCost (R) -13.06 1.41 -6.49 -11.87 -11.00
TotalCost (H) -13.06 1.41 -6.49 -11.43 -15.15
AmScore (R) -20.59 -1.30 | -11.83 | -53.74 -28.87
AmScore (H) -20.59 -1.30 -11.83 -53.90 -33.49
LmCost (R) 7.54 2.71 5.33 41.87 17.87
LmCost (H) 7.54 2.71 5.33 42.46 18.34
Signatures Sig. #1

5.4 Error signature algorithm

The process of finding error signatures is related to concept discovery in
the field of data-mining | ]. In data-mining concepts are discovered
by finding patterns of jointly occurring attributes and deducing relationships
between them. Transferring this concept to ASR, we are interested in finding
a set of attribute-value pairs which jointly appear in erroneous words in an
ASR hypothesis and are only rarely found in correct words.

The procedure of finding error signatures on a data set is separated into two
steps. In the first step, erroneous and correct words in the hypothesis are
marked and attribute-value pairs are assigned to each word. In the second
step attribute-value pairs are clustered into error signatures for subsequent
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presentation to the ASR system’s expert. Subsection 5.4.1 describes the first
step, while 5.4.2 introduces the second step of the error signature algorithm.

5.4.1 Collecting statistics of attributes

The first step to obtain error signatures is the assignment of attribute-value
pairs to all words in the data set and the accumulation of statistics on all such
attribute-value pairs. The process is divided into three parts. In the first
part an alignment of reference and hypothesis has to be computed such that
correct and erroneous words can be identified. In the second part, attributes
are assigned to correct and erroneous words. In the third part, statistics on
words and their attribute-value pairs are accumulated for each sentence.

5.4.1.1 Reference and hypothesis alignment

For each utterance in the data set to be analyzed, we require the utterance’s
forced alignment of the reference transcription to its audio file and the 1-best
hypothesis from the decoding process. The algorithm to compute the align-
ment, as proposed by Chase | ], is described in Section 2.3.1.

Table 5.3:  Example alignment of hypothesis and reference from the SEAME
corpus. Table shows component scores for reference (R) and hypothesis (H)
of regions in the sentence. Scores in table are negative log-likelihoods.

| Frames | 0-70 | 70-83 | 83205 |
Reference <SIL> area five il total s& <SIL>
Hypothesis KN area five 1) #B At <SIL>
TotalCost (R) 2.96 1.21 -15.17
TotalCost (H) -9.02 1.21 -18.52
AmScore (R) -20.02 | -3.48 -39.58
AmScore (H) -31.03 | -3.48 -40.19
LmCost (R) 22.98 | 4.69 24.41
LmCost (H) 22.02 | 4.69 21.67
Error category | AM_LM_OVERWH. AM_LM_OVERWH.

Table 5.3 contains an example of an utterance taken from the SEAME cor-
pus | |. The alignment algorithm separates the sentence into three
regions. Each segment is referred to as a region with the first and third
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region containing an error and therefore are called ErrorRegions, see Sec-
tion 2.3.1. In the example, we used a trigram language model to decode the
sentence. Hence, the error in the first and third region affects the succeeding
two words which are therefore included in the same region. These succeeding
words are included in the same ErrorRegion even if they have been correctly
recognized.

Correctly recognized words, which are not affected by any errors in their
vicinity, are in a region of their own. Combining sequences of correctly
recognized words to one region and subsequently assign attribute-value pairs
to whole regions would be detrimental to the computation of error signatures.
An utterance, which has been correctly recognized, would therefore only
consist of one region and would contain attribute-value pairs from the whole
utterance and as a result match a multitude of error signatures, where the
attribute-value pairs might stem from unrelated words in the beginning and
end of the utterance and thus no longer be a meaningful correct example
for these signatures. In contrast, correct regions consisting of only one word
would only be assigned attribute-value pairs concerned with the word itself
and its surroundings.

5.4.1.2 Assigning attributes to aligned segments

After every sentence is separated into regions we proceed to assign attribute-
value pairs to each word in the hypothesis. Table 5.4 gives an excerpt of
the attribute-value pairs assigned to the hypothesis segment ”[J” in region
two of the example sentence in Table 5.3. The phonemes in the table are
derived from the characters pronunciation in the dictionary. Since the word
was correctly recognized the error category is "CORRECT”, to indicate no
error. All other categories, as proposed by Chase | |, are presented
in Section 2.3.2. The same definition of regions was chosen, since they do
capture both acoustic modeling errors by using a temporal alignment, as well
as language modeling errors by padding regions with neighboring words, if
they are affected.

The reason that attribute-value pairs are assigned to words and not to regions
lies with the clustering algorithm. The goal of the clustering algorithm is
to find signatures that maximize the ratio of ErrorRegions to all matched
regions. If attribute-value pairs were assigned to regions as a whole, the
biggest difference between regions with and without errors would be the
number of words in a region, since only regions with no error consist of one
word. ErrorRegions, in case of an N-gram language model, would contain
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Table 5.4:  Attributes for ] from second region of utterance in Table 5.3.
—1 and 41 refer to the preceding and succeeding word respectively. Different
attribute-values are separated by ”|”.

‘ Attributes ‘ Values ‘
Word ib]
Phonemes /d/ | /i
Acoustic models 1490 | 3081 | 2886 ...
Word context -1=five | +1=%8
Word confidence score 0.32
Language id 0=MAN
Language id context | -1=ENG | +1=MAN
Word confusion -
Error category CORRECT

at least N — 1 words. Thus, the clustering algorithm would try to construct
signatures which can only appear in regions with more than one word. For
example, an error signature consisting of Mandarin and English phonemes
could only appear if a region contains at least two words (one Mandarin,
the other English). As a result, the signature would no longer be useful in
identifying groups of errors.

Table 5.5:  Attributes for #{/& from third region of utterance in Table 5.3.
—1 and +1 refer to the preceding and succeeding word respectively. Succeeding

word is silence with no language id. Different attribute-values are separated
by 77| 77'

‘ Attributes ‘ Values ‘
Word # A
Phonemes /d/ | Jo/| Jw/
Acoustic models 2548 | 1059 | 1183 ...
Word context -1=#F | +1=<SIL>
Word confidence score 0.4
Language id 0=MAN
Language id context -1=MAN | +1=NONE
Word confusion = — R
Error category AM_LM_OVERWH.

In addition, to assigning attribute-value pairs on a word basis, the assignment
of attribute-value pairs for correct words differs from the assignment for
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erroneous words. The example given in Table 5.4 depicts the attribute-value
pairs assigned to a correctly recognized word.

Table 5.5 shows the attribute-value pairs assigned to a word which was mis-
recognized. While the correct pronunciation of the character sequence ” #f$ &
in Table 5.51s 7/d/ /o/ /w/ /S/ /i/”, only the first three phonemes
"/d/ Jo/  Jw/”, are assigned as attribute-value pairs, since they were con-
fused with other phonemes. The remaining phonemes ”/S/ /i/” are not
added as attribute-value pairs so that the clustering process has to focus on
problematic attribute-value pairs.

As a consequence, attribute-value pairs in error signatures indicate the prob-
lematic portions of the matching words. In the example in Table 5.4 and
Table 5.5, 7J&” is confused with ”#B/&”. The Mandarin characters are as-
signed the error category acoustic model and language model overwhelm
(AM_LM_OVERWHELM), since the components that dominate the score
difference between reference and hypothesis for this error are both the acous-
tic model and the language model. The attributes ”word confusion” and ”er-
ror category” are excluded from the clustering process and are only added
as an additional source of information for the expert reviewing the error
stgnatures.

5.4.2 Computing error signatures

After attribute-value pairs have been assigned to each word in each hypoth-
esis and their statistics have been collected, we employ a bottom-up greedy
clustering algorithm to find the error signatures which best explain the errors
we encounter in our data set.

A prerequisite for the clustering process is the ability to compare two error
signatures and decide if one signature is a better fit for the observed errors
than the other. In data mining two measures are used to compare two con-
cepts with each other. They are a concept’s support and confidence. The
concept’s support is the number of hypothesis regions matching the error
signature, which will be referred to as the number of occurrences of an error
signature. The confidence in an error signature is derived from the ratio of
ErrorRegions, to all regions matching that signature:

ErrorRatio(S) = P(Error|S)
_ |{errorRegion|S € error Region}| (5.1)

[{region|S € region}|
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where S defines a set of attribute-value pairs and corresponds to a single error
signature, error Region denotes an ErrorRegion and region is any region in
the data set being profiled. We refer to the confidence in an error signature
as the ErrorRatio. It can be interpreted as the probability that a hypothesis
word with that signature was misrecognized.

The greedy clustering algorithm starts with one error signature for every
attribute-value pair whose number of occurrences exceeds a threshold. New
error signatures are created by taking the list of attribute-value pairs from
previous error signatures and add an additional attribute-value pair to each
list. Criteria for these newly created error signatures are:

1. An error signature must cover a minimum number of ErrorRegions
(min. number of occurrences)

2. ErrorRatio has to exceed a certain threshold (min. ErrorRatio)

3. There is no error signature which consists of a subset of attribute-value
pairs of the error signature in question and has a higher ErrorRatio
(removal of generic error signatures)

4. There is no error signature which represents the same group of Er-
rorRegions and has a higher ErrorRatio (removal of dominated error
signatures)

The clustering process stops if no new error signature can be created without
violating one of the previously mentioned criteria. To speed up the cluster-
ing, all attribute-value pairs are processed in ascending order of occurrences.
Processed in such a way attribute-value pairs with low occurrence count can
be processed quickly since their error signatures quickly fall below the re-
quired minimum number of occurrences.

The greedy recursive algorithm is presented in Algorithm 1. The algorithm
starts with the procedure computeSignatures, which calls the recursive func-
tion expandSignature. Initially, a signature S is created for each attribute-
value pair, which is then recursively used to create new signatures by expand-
ing S until one of the above criteria is violated. The removal of dominated
error signatures and signatures with an FErrorRatio below the threshold is
performed at the end of the computeSignatures procedure. The function
computeErrorRatio calculates and returns the result of Equation 5.1.

The algorithm to obtain the error signatures is integrated into our BioKIT
toolkit | |. The benefit of integrating the algorithm with BioKIT is
that it can be easily integrated into any existing experimental BioKIT setup.
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A

stand-alone tool however would require the user to conform to a specific

input format.

Algorithm 1 Error signature clustering algorithm

1

=

10:
11:

12

: procedure COMPUTESIGNATURES(minOcc, minErrorRatio,
attrValuePairs, regions)
signatures = ||
for attrValuePair in attrValuePairs do
S = createErrorSignature (attrValuePair)
regionsg = computeMatches(S, regions)
occurrencess = |regionsg|

if occurrencesg > minOcc then
addToSignatures(S, signatures)
expandSignature(S,minOcc,attr Value Pairs,regions, signatures)

removeSignatures ViolatingCriteria(minErrorRatio, signatures)
return signatures

: procedure EXPANDSIGNATURE(S, minOcc, attrValuePairs,
regions, signatures)

13: regionsg = computeMatches(S, regions)

14: ratio = computeErrorRatio(S, regionsg)

15: for attrValuePair in attrValuePairs do

16: Sexp = createErrorSignature(S, attrValuePair)

17: TegionSeyy = computeMatches(Seyp, regions)

18: OCCUTTENCESezp = |TEGIONSerp]

19: Tatioey, = computeErrorRatio(Seyp, T€gionsSeyy)

20: if occurrencese,, > minOcc and ratioe,, > ratio then
21: addToSignatures(Sesp, signatures)

22: expandSignature(Seqy, minOcc,attr Value Pairs,regions, signatures)
23: return

5.4.3 Discussion of the clustering algorithm

The choice of clustering algorithm crucially impacts the results of any clus-
tering task. Several requirements have to be met by a clustering algorithm

to

be useful in the context of error signatures:
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e The clusters derived from the algorithm need to be interpretable: clus-
ters should indicate an error and by themselves contain information on
the error.

e The clustering algorithm needs to handle discrete features: each
attribute-value pair is either present or absent in a word.

e The algorithm needs to handle high dimensionality: the number of
attribute-value pairs on the SEAME corpus is 8,973 and 24, 810 on the
ILSE corpus.

e The vectors characterizing the error signatures are sparse: only a few
attribute-value pairs are used to describe an error.

In general, the complexity of the problem is such that not all possible error
signatures can be analyzed. Given a set of N attribute-value pairs, the
total number of possible error signatures amounts to 2V — 1. Therefore, the
evaluation of all error signatures is not feasible and suitable heuristics have
to be employed.

The goal in data-mining applications is to find meaningful clusters of data
points which are closer to each other with regards to a distance measure
than to other data points not belonging to a particular cluster. Standard
algorithms use for example the Jaccard coefficient to determine the similarity
between two data points consisting of attribute-value pairs similar to our case.
The Jaccard coefficient between two data points 177 and 75 is defined as:

TN

JCLCCCLTd(Tl, Tz) = W
1 2

(5.2)

where |17 N 75| is the number of common attribute-value pairs and |77 U 75|
is the total number of attribute-value pairs of 77 and T,. Several other algo-
rithms based on a similarity measure on data points exist that are introduced
in a comprehensive overview of clustering algorithms used in data-mining by
Berkhin [ ]. These algorithms are unsuitable for our problem since, the
created clusters are not necessarily interpretable and the quality of the cre-
ated clusters is hampered by the high dimensionality of our feature space.
Furthermore, these algorithms do not account for our actual optimization
criterion for clustering to find clusters with a high ErrorRatio.

Co-clustering algorithms which do not only cluster data points but also clus-
ter attribute-value pairs are more adequate | ]. A related algorithm used
to cluster text documents is quite similar to our problem | |. Given a
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set of documents and class labels the goal is to increase the classification
accuracy of new documents to their corresponding class using a naive Bayes
approach. The attribute-value pairs (in this case words) are chosen such that
the probability of the correct class label is maximized.

Due to the employed greedy algorithm, we are potentially not able to detect
the best error signatures with regards to the ErrorRatio on a data set. This
is true for any error signature which consists of M + 2 attribute-value pairs
and of which any subset of attribute-value pairs of size M + 1 has a worse
ErrorRatio than any possible subset of attribute-value pairs of size M. It
would be possible that for example only a combination of three or more
phoneme attribute-value pairs are indicative of an error but any subset of
two phonemes would not. The problem is mitigated by the usage of context-
dependent acoustic models, since they depend on several preceding and/or
succeeding phonemes.

5.4.4 Discretization of continuous attributes

The clustering algorithm we employ to find the error signatures uses only dis-
crete features, testing for the presence or absence of an attribute-value pair.
In order to make use of continuous-valued attributes, such as word confidence
scores, the value range has to be discretized before clustering. We chose to
use the minimum entropy partitioning algorithm introduced by Fayyad et al.
[ |. This greedy algorithm recursively chooses the partition of the value
range with the biggest decrease in entropy. The algorithm starts with one
partition containing the complete value range and proceeds to partition the
value range until either the information gain of an additional partition or
the occupancy count of the resulting partitions fall below a threshold. The
above described algorithm was chosen since it performed best against several
other partitioning algorithms on a range of partitioning tasks | ].

5.5 Error correction

After error signatures have been computed it is up to the expert to scan
the list of signatures, and deduce which component of the system could be
responsible for producing the observed errors in the hypotheses. Further-
more, the expert has to conclude if the problem can be fixed by modifying
a component of the ASR system and, if that is the case, which changes are
most likely to fix the encountered problem. An approach which an expert
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might follow to improve an ASR system using error signatures is presented
in Section 5.5.4.

To keep the required amount of manual work to a minimum, the error sig-
natures presented to the expert have to be limited to a meaningful selection.
Therefore, we employ heuristics to filter the computed error signatures. The
data for the figures in this section are derived from the training set of the
SEAME corpus using the baseline system trained on the same set, which
is presented in Section 6.1. The total number of error signatures without
filtering, with the exception of a minimum number of matching regions per
signature (min. support) as defined in the error signature algorithm in Sec-
tion 5.4, is 27,615.

5.5.1 Error ratio filter

Figure 5.1 depicts all error signatures and their corresponding ErrorRatio, as
they were found in the training set of the SEAME corpus. It shows that only
a relative small group of error signatures exceed a threshold of 0.5. Since the
signatures need to be handled by an expert, they need to be significant, i.e.
each signature should have a high ErrorRatio. By applying a threshold of
0.5 to the ErrorRatio of each error signature, the number of error signatures
which are of interest to an expert for error correction are reduced from 27,615
to 717.

A more detailed overview of different ErrorRatio thresholds is given in Fig-
ure 5.2. Increasing the threshold to 0.7 further decreases the number of
selected signatures to 316. Higher ErrorRatio thresholds in conjunction with
the frequency filter, introduced in the next section, would leave too little
signatures to present to the expert. As a result a threshold of 0.7 was chosen
in the following experiments on error signatures.

5.5.2 Frequency filter

Since the number of error signatures that can be viewed by an expert should
be limited to a select meaningful few, the potential impact of each error
signature on the error rate of the system should be as big as possible. Thus,
any error signature selected for further investigation has to represent a high
number of errors of the data set being analyzed. Figure 5.3 shows all error
signatures sorted by their number of matching errors in the training set. A
suitable filter threshold can be derived from the amount of data the error
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Figure 5.1: Error signatures on the training set of the SEAME corpus sorted
by their ErrorRatio.

signatures are estimated on, requiring error signatures with a high impact to
match a percentage of the data. The total number of words in the training
set amounts to 681, 348 distributed over 48,040 utterances. Since a change
to a word will also impact its surrounding words in an utterance, we require
error signatures to have an impact on a minimum number of utterances from
the chosen data set.

Figure 5.4 shows different filter thresholds applied to the error signatures
extracted on the SEAME training set. Each threshold is given as a percentage
of affected utterances in the training set. For example, limiting the minimum
number of affected utterances to at least 0.2% would reduce the 27,615 error
signatures to 4,456.

Choosing a higher threshold would result in signatures which affect a higher
number of utterances. However, an increase in affected utterances leads
to less specific error signatures, potentially representing more than one error
cause or no error cause at all. Figure 5.5 depicts the combination of frequency
filter and chosen ErrorRatio filter of 0.7. The figure shows that selecting error
signatures with matching errors exceeding 1% of training data would result
in four signatures whereas a lower threshold of 0.2% of affected utterances
still leads to 23 signatures. As a result, a threshold of 0.2% was chosen.
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Figure 5.2: Different thresholds for the ErrorRatio and the number of error
signatures which exceed the threshold based on the signatures depicted in
Figure 5.1. Y-axis is in logarithmic scale.

5.5.3 Cluster similar error signatures

The algorithm to compute error signatures checks for ”dominated” error sig-
natures. An error signature el is dominated if there exists another signature
e2 whose matching regions are a super-set of the regions matching el with
e2 having a lower ErrorRatio. If the matching regions of two error signatures
are neither subset nor super-set, the algorithm will keep both signatures even
though their underlying error cause might be the same. As a remedy, we use
a heuristic to detect similar error signatures and bundle them together to
present them as a group to the expert.

To find similar error signatures we use a hierarchical agglomerative cluster-
ing, where at each step of the algorithm the two most similar error signatures
are merged, until no pair of signatures with a similarity exceeding the cho-
sen similarity threshold remain. We define similarity as the ratio of regions
which match both signatures to all regions matched by any of the two signa-
tures. An example of an error signature bundle consisting of two signatures
is shown in Table 5.6. In the example signature #1 is more specific than
signature #2, requiring an additional character (#X) in the previous token
compared to it being a Mandarin character sequence (-1=MAN). Nonethe-
less, both signatures point to the same errors, which can been seen in the
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Figure 5.3: Error signatures on the training set of the SEAME corpus sorted
by the number of matching ErrorRegions. Y-axis is in logarithmic scale.

column ”"word confusions” of the table.

Table 5.6:  Ezample of bundled error signatures found on the training set of
the SEAME corpus. The words on the right hand side of the word confusions
column are the words in the 1-best hypothesis.

‘ Sig.# ‘ ErrorRatio ‘ #Occ. ‘ ErrorSig. ‘ Word confusions ‘
1 0.82 125 -1=8% e — 7RJE [particle]”
1=/ [noise] — "#RJ5 [particle]”
O=|particle] | <SIL> — ”<SIL> [particle]”
2 0.71 169 -1=MAN WE — "5 [particle]”
-1=J5 [noise] — "#RJ5 [particle]”
O=|particle] | <SIL> — ”<SIL> [particle]”

Figure 5.6 shows the number of error signature bundles after applying varying
thresholds for the similarity measure. The lower the required treshold for
signatures to be considered similar the more signatures are bundled together.

Applying varying similarity thresholds to signatures computed on the
SEAME corpus further reduces the 23 signatures to 16 at a similarity thresh-
old of 0.8, see Figure 5.7. The choice of threshold was conservatively high,
since the example only contains few examples and clustering results did not
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Figure 5.4: Different thresholds for minimum number of matching Error-
Regions as a percentage of affected training set utterances based on the
signatures depicted in Figure 5.3. Y-axis is in logarithmic scale.

change between a threshold of 0.8 and 0.7.

5.5.4 Identifying underlying causes

After applying the filter steps, as described in the preceding sections, the
remaining error signatures and error signature bundles are sorted by their
ErrorRatio and number of matching ErrorRegions and are presented to an
expert. This section will give a recipe on how the information from the error
signatures can be exploited.

Due to the multitude of possible error causes, any recipe to arrive at an
error fix from an error signature is of a general nature and requires an ex-
pert in the field of speech recognition to review the signatures. Typically,
errors encountered with a speech recognizer can be blamed to one of three
components: the acoustic model, the language model, and the pronunciation
dictionary. Errors which are caused by environmental noise or errors in the
preprocessing were not found or fixed with the proposed approach. Types
of errors are described in the sections of Chapter 6. To identify errors con-
cerning the acoustic model, language model, and pronunciation dictionary
we found that the following steps lead to the identification of the underlying
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Figure 5.5: Different thresholds for minimum number of matching ErrorRe-
gions as a percentage of affected training set utterances based on the signa-
tures depicted in Figure 5.3. Additionally, enforcing a threshold of 0.7 on
the ErrorRatio.

cause of an error signature:
1. Listen to examples matching the error signature being analyzed.

2. Compare Viterbi path of 1-best hypothesis and spectrogram of audio
file to look for systematic mismatches in the given examples: A tool
which we used for this purpose is Wavesurfer by Sjolander et al. [SB00].

3. Review the pronunciations of both hypothesis and reference words from
the word confusions, to find systematic mispronunciations: especially
in the case of automatically generated pronunciation dictionaries, using
a grapheme-to-phoneme model. A list of word confusions with phonet-
ically similar prefixes or suffixes is a strong indicator of a pronunciation
problem.

4. Review N-grams of hypothesis and reference examples to look for irreg-
ularities: While word context attributes are an indicator for a language
model problem, knowledge of the language being analyzed is necessary
to be able to identify and fix problems in the language model.

In general, not all of these steps have to be looked at in order to derive the
error and its error fix. For one, the error signature itself can be a strong in-



66 Error Signatures

25000

3 20,914

S 20000

3 17,546

o

= 14,998

£ 15000

5 12,763

@ 10,684

© 10000 8,723

= ,

IS 6,416

9]

L 5000

g 3,146

>

Z I 439
O | |

0.9 0.8 0.7 0.6 05 0.4 0.3 0.2 0.1

Similarity threshold

Figure 5.6: Number of error signature bundles after clustering with different
similarity thresholds.

dicator for the error cause, since word identity, phoneme, and acoustic model
attributes are only assigned to erroneous words if the concerned word /phone-
me/acoustic model has been confused. Thus, with regard to the example
signature given in Table 5.1, the combination of acoustic model with id 1333,
modeling phoneme /d/, and the phonetically similar sounding word confu-
sions indicate either an acoustic model or pronunciation dictionary problem.

Once the cause of the error has been identified, fixing the problem relies on
the knowledge of the expert, but a few general points can be given:

e Acoustic model problem: Fixing the alignments in the problematic
segments and retraining the acoustic model can help to alleviate the
problem. For example, in case of erroneous boundaries between speech
and non-speech segments, the application of a voice activity detection
component can result in a better Viterbi alignment.

e Pronunciation dictionary: In case of systematic errors with the
grapheme-to-phoneme model, rules can be derived to fix the problem-
atic pronunciations in the dictionary or other approaches such as the
pronunciation extraction from internet sources, such as Wiktionary can
be used to help fix problematic word pronunciations [SOS10].

e Language model problem: Excluding problematic sentences from
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Figure 5.7: Number of error signature bundles after clustering with differ-
ent similarity thresholds. Additionally, an ErrorRatio filter of 0.7 and a
frequency filter of 0.2% of affected training set utterances are used.

language model training or searching for additional text resources
[SGVS13] and subsequently re-estimating the language model can help
to reduce the impact of the problem.

5.6 Summary

In this chapter we introduced a novel framework to group errors made by
an ASR system on a specific data set. We defined the term error signatures
and showed how they can be extracted from the decoding results of an ASR
system. Furthermore, the algorithm to extract error signatures was described
in detail.

We presented methods to filter the extracted error signatures and as a re-
sult reduced the effort asked of an expert viewing the signatures. As an
example, we used the error signatures obtained from the training set of the
SEAME corpus and were able to reduce the signatures from 27,615 to 19.
Experiments on the remaining signatures are shown in Section 6.1. Finally,
we showed what information is available to the expert as a result from our
approach and how the information can be used to derive error cause and
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fix from an error signature. The impact of error signature extraction and
subsequent error fixing is described in the next chapter.



CHAPTER 6

ASR System improvements with
Error Signatures

In this chapter we present the experiments we conducted using our error
signature framework introduced in the previous chapter. First, we present
an initial experiment applying the error signature framework to the SEAME
corpus using the reference transcriptions, to show the feasibility of our ap-
proach. Second, we extend our algorithm to obtain error signatures without
relying on reference transcriptions. And third, we show that we are able to
improve ASR systems on the SEAME and ILSE corpus without any refer-
ence transcriptions. For this purpose we used error signatures derived from
unsupervised training. Finally, we discuss the overall usefulness of our ap-
proach with regards to the manual work that is needed to make use of the
error signature framework.

6.1 Supervised system improvements

To show that improving an ASR system using error signatures is feasible, we
chose to conduct an initial experiment on the SEAME code-switching corpus
presented in Section 3.2. For this purpose we first train a baseline system
whose setup is described in Section 6.1.1. Afterwards, we extract error sig-
natures on the training and development set of the SEAME corpus. Finally,
we derive error causes from the computed error signatures, implement fixes
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for the error causes, and compare the resulting system to our baseline.

6.1.1 System setup

The baseline system we aim to improve is a multi-pass system trained with
the Kaldi toolkit | |. The last pass is a deep neural network (DNN)
acoustic model using a feature-space maximum likelihood linear regression
transformation (fMLLR) | | estimated on the decoding results of the pre-
vious pass. The fMLLR transformations were created in a first pass by using
Kaldi trained Gaussian Mixture Models. The input for the DNN are stacked
MFCC feature vectors, which have been transformed with an LDA transform
and stacked again after the transform has been applied to receive the final
440-dimensional feature vector. The preprocessing from audio input to the
acoustic model state posterior probabilities is summarized in Figure 6.1.

MFCC

computation
a
[m]
a

Further preprocessing for feature vector at frame t;

MFCC
Frames |13 dim.

MFCC
13 dim.
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Figure 6.1: Preprocessing used for the last pass of the SEAME multi-pass
system. Splice function is stacking 4 /- = frames of the preceding preprocess-
ing step.

The DNN is trained by first performing pre-training, followed by 13 iterations
optimizing cross-entropy and finally four iterations of state-level minimum
Bayes risk (sMBR) sequence training as described by Vesely et al.| ].
The neural network consists of 6 hidden layers with 2,048 nodes each and an
output layer with 3,194 nodes.
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The employed language model is a Kneser-Ney 3-gram estimated on the tran-
scriptions of the SEAME training text and interpolated with language models
built on monolingual texts. Perplexity on the development and evaluation
set are 268.39 and 282.86 respectively. Decoding results were obtained using
BioKIT | ]. We used the mixed error rate (MER) as an evaluation
measure | |. In this measure English words are treated the same as
in the word error rate calculation, but Mandarin character segments are split
into their individual characters. Thus, enabling us to potentially compare
error rates across different segmentations of Mandarin.

The baseline system achieves a mixed error rate of 30.61% on the development
set and a mixed error rate of 24.50% on the evaluation set. This system is a
strong baseline as it improves by 18.3% relative the MER on the evaluation
set compared to the former best system reported using the same language
model and by 16.1% relative compared to our former best overall system as
reported in | ]

6.1.2 Discovered error signatures

Due to the limited size of the development set we computed the error signa-
tures on both training and development set. Since the language model was
estimated on the training set transcriptions, the ASR system is expected to
produce different errors on the training set compared to the development
set. Therefore, the computation of the signatures is conducted separately for
training and development set.

Table 6.1 gives a summary of the error categories assigned to the regions
in the training and development set, showing that, as expected, the relative
amount of errors on the training set is lower compared to the development set.
The small amount of search errors on the development set of 0.9% indicates
that gains by increasing the pruning parameters will be marginal. Therefore,
sizable gains in recognition accuracy will only be achieved by fixing problems
in the ASR models.

A selection of error signatures as a result of our clustering process are pre-
sented in Table 6.2 and Table 6.3. Each row in the tables corresponds to a
single error signature. Signatures #1 and #2 are taken from the training set
and signatures #3-5 from the development set. The structure of the tables
is the same as in the example given in Table 5.1.

The following list describes the causes for each error signature presented in
Table 6.2 and Table 6.3 and the steps we took to fix them. In Section 6.1.3
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Table 6.1:  Error categories of regions in the training and development set.

‘ Category ‘ Dev set ‘ Train set ‘
Acoustic model | 16.5%  (1,705) | 5.9%  (23,862)
Language model | 9.8%  (1,013) | 3.6%  (14,346)
Homophone 2.5% (254) | 1.5% (5,982)
Search error 0.9% (92) | 0.4% (1,574)
Correct 70.4%  (7,288) | 88.7% (358,226

Total 100% (10,352) | 100% (403,990)

Table 6.2:  Examples for error signatures found in the training set of the
SEAME corpus.

‘ Sig.# ‘ ErrorRatio ‘ #0Occ. ‘ Error signature ‘ Word confusions ‘
1 0.93 120 |  AM No. 1333 auntie — “and []”
0= | novelty — “normal []”
2 0.78 | 1398 -1=<SIL> <SIL> — [particle]
O=|particle] | <NOISE> — [particle]

we then describe the impact on the MER.

e Signature #1: Character “ff]” (pronunciation: /d/ /i/) is hypothe-
sized. In addition, acoustic model with id “1333”, modeling phoneme
/d/, is being confused with another acoustic model based on the align-
ment with the reference. Confusions show that phoneme /t/ of the
pronunciations for words such as “auntie” and “novelty” is being con-
fused.

Solution: To alleviate this problem additional pronunciation varia-
tions for English words with pronunciations ending in “/t/ /i/” were
added. The resulting pronunciations for the word “auntie” are now:
the already existing pronunciation of “/ao/ /n/ /t/ /i/”, and the new

Table 6.3:  Ezxamples for error signatures found in the development set of
the SEAME corpus.

‘ Sig.# ‘ ErrorRatio ‘ #0Occ. ‘ Error signature ‘ Word confusions ‘

3 1.0 20 0=so P — so
4 0.97 73 O=mtin | ml2u — wlin
5 0.95 38 O=okay ok — okay

k. — okay




6.1 Supervised system improvements 73

pronunciation “/ao/ /n/ /d/ /i/”.

e Signature #2: Frequently “[particle]” (“O=|[particle]”) was recog-
nized after silence (“-1=<SIL>"). By inspecting the training dictio-
nary we discovered that one of the noise tokens was erroneously mapped
to the same acoustic model as “[particle]”.

Solution: To solve the problem we changed the pronunciation for the
noise token and retrained the acoustic model.

e Signature #3: A specific pronunciation variation of the word “so”
was wrongly recognized.
Solution: The problematic pronunciation variation of “so” (“/s/
/ao/”) was removed from the dictionary, leaving only the pronunci-

ation “/s/ Jo/”.

e Signature #4: Investigating the confusion of the segment “Hfiiji”
we found that in audio examples which fit the signature the middle
character of “§l & is not pronounced.

Solution: To fix the error we added a pronunciation for “Hfi & ii”
omitting the phoneme sequence of “/S/ /i/” for the middle character

A=RY
rxE .

e Signature #5: This signature indicates a normalization problem of
the word “okay”. The word appears in several versions in the develop-
ment set: “okay”, “ok”, and “o. k.”.

Solution: We fixed this problem by normalizing the word “okay” in
the reference transcriptions and re-estimated the language model.

6.1.3 Impact on error rate

In order to verify the usefulness of the applied fixes we retrained and tested
the updated system. Results are given in Table 6.4. We present separate
results for the retrained model just fixing signature #2 from Table 6.2 and
for all signatures fixed. An individual system just fixing signature #2 was
trained due to its possible high impact on the error rate. In all cases the
correction of errors lead to MER gains. While the error rate differences
are significant between all systems on the development set with a value of
p < 0.001, error rate gains on the evaluation set are not significant (p = 0.15)
using the matched pair sentence segment test | |, implemented in the
SCTK toolkit | ]. The reason is that the discovered error signatures
are found and sorted based on their impact on the respective set which they
are extracted on. Thus, they are not guaranteed to generalize to other sets.
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Table 6.4:  Mixed error rates of baseline system and systems after fizved
derived from error signatures have been applied. In addition, relative im-
provements for each set to the baseline (SO_sup) are given. Significant im-
provements are marked with * if p < 0.05 and ** if p < 0.01.

| System | Devset (Rel. gain) | Eval set (Rel. gain)
Baseline (S0_sup) 30.35% (0%) | 24.25% (0%)
Signature #2 fix (S1sup) | 29.62%** (2.4%) | 24.10% (0.6%)
All signatures fix (S2_sup) | 29.24%** (3.7%) | 23.98% (1.1%)

6.1.4 Summary

We showed in an initial experiment that we can find useful error signatures
and derive error fixes from them. We were able to improve the performance
of our state-of-the-art baseline system by 3.66% and 1.11% relative on the
development and evaluation set respectively. Furthermore, we found that
error signatures do not generalize well, if the underlying data being analyzed
contains only small amounts of data, in the case of the development set, or
only few errors, as is the case for the training set. Our experiment with
supervision was conducted as a first test if ASR systems can be improved
using error signatures. As a result, only a few error signatures on the baseline
system were investigated.

6.2 Unsupervised training scenario

Much of the related work on the topic of system analysis and error assignment
need supervision in form of reference transcriptions. Our first implementation
of the error signature algorithm relies on the availability of reference tran-
scriptions as well. However, large-scale ASR systems trained today are based
on thousands of hours of speech without reference transcriptions | ].
Usually, new data is transcribed by an already existing ASR system and the
resulting automatic transcriptions are used for training a new ASR system
as described in | ]. Confidence models are employed to exclude poten-
tially erroneous segments from the training data [ ]. In order to be able
to analyze ASR systems without reference transcriptions, we have to extend
our error signature algorithm.

In this section we will explain how we extended our framework. We present
the results from unsupervised model training in combination with the knowl-
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edge derived from the signatures on the SEAME corpus. Furthermore, we
describe what the shortcomings of our implementation are and propose how
to fix them. Finally, we give the results of the latest error signature algo-
rithm in relation to our first implementation and point out their differences.
Further experiments applying our improved algorithm to the SEAME and
ILSE corpus are shown in the next section.

6.2.1 Computing error signatures without references

The algorithm to obtain error signatures, which was introduced in Sec-
tion 5.4, requires a forced alignment of an ASR system’s hypothesis with the
corresponding reference transcriptions. To accommodate the more frequent
scenario of a large data corpus with no reference transcription, the algorithm
has to be modified. The two following sections explain the changes we made
to our framework.

6.2.1.1 Assigning attribute-value pairs

We used the definition of ErrorRegions as introduced by Chase | ] in
our work. Since no reference transcriptions are available, the computation
of ErrorRegions is no longer possible. Therefore, in the modified framework
we chose that each word in the hypothesis becomes a region of its own. An
example segmentation of a hypothesis for the unsupervised case is given in

Table 6.5.

Table 6.5:  Ezample of segmentation of hypothesis into regions from the
SEAME corpus.

| Frames | 0-21 | 21-48 | 48-70 | 70-83 | 83-103 | 103-197 | 197205 |
| Hypothesis | B4 | area | five | i | #| #E | <SIL> |

Table 6.6 contains attribute-value pairs assigned to a word from the hypothe-
sis presented in Table 6.5. All the information is derived from the hypothesis
not from the reference. Since we no longer know which word was misrec-
ognized and as a result which attribute-value pairs are being confused, we
simply add all possible attribute-value pairs to each word. Thus, instead of
adding three phonemes “/d/, /o/, /w/” asin Table 5.5, for the character
sequence “#BJ2”, we add all five phonemes “/d/, /o/, /w/, /S/, /i/".
The segment is preceded by a Mandarin word (-1=MAN) and specifically
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preceded by the character “#{” (-1=#F). Furthermore, the word is assigned
the language id “MAN” for Mandarin.

Table 6.6:  Attributes for character sequence “BS7&” from segment in Ta-
ble 6.5. —1 and +1 refer to the preceding and succeeding word respectively.
Succeeding word is silence with no language id. Different attribute-values are
separated by “1”7. Information is derived from the hypothesis only, since no

reference is available.

‘ Attributes ‘ Values ‘
Word confidence score 0.4
Phonemes fd/ 1o/ Vw/ [ /S) 1 /3]
Acoustic model id 2548 | 1059 | 1183 | ...
Word H
Word context -1=# | +1=SIL
Language id 0=MAN
Language id context -1=MAN | +1=NONE

6.2.1.2 Adapting the error signature algorithm

To determine the quality of an error signature in our original framework we
used the ErrorRatio, defined in Equation 5.1, as the probability that the
signature indicates an error. However, without reference transcriptions the
distinction between regions with and without errors is no longer possible.
Thus, we can no longer compute the ErrorRatio in its original form. We
adapt the equation to estimate the ErrorRatio based on the probability that
each matching region is erroneous. To estimate erroneousness we use the
word confidence score, derived from the word lattice of an ASR system. We
assume that a low word confidence score indicates an error. Thus, we extend
our ErrorRatio as follows:

ErrorRatio(S) = P(Error|S)
S (1 — Confidence(region)) (6.1)

region|S€region

{region|S € region}|

where S is an error signature and region denotes any region/word in the data
set being analyzed. Confidence refers to the word confidence score, which
is extracted from the word lattice of an ASR system for every hypothesis



6.2 Unsupervised training scenario 77

as described by Wessel et al. | . The computeErrorRatio function
used in lines 14 and 19 of the algorithm described in Algorithm 1 has to
be adapted to use the modified equation presented in Equation 6.1. The
remainder of the error signature algorithm can be used in the same way as
if reference transcriptions were available.

Since no reference transcriptions are available, the attribute ”word confu-
sion”, comparing reference and hypothesis can no longer be extracted as in
the original framework. Thus, the expert can no longer rely on the word
confusions as a source of information to derive the error cause from. As a
remedy we compute probable word confusions, derived from the lattice. We
compute possible word confusions by comparing the best hypothesis word
confidence scores to word confidence scores of other, less likely, hypotheses.
Possible word confusions are with those words which have a higher word
confidence score than the corresponding word in the best hypothesis.

6.2.2 Experiments on SEAME

To verify if our approach generates useful error signatures without reference
transcriptions, we performed experiments on the SEAME corpus. For this
purpose we trained a new ASR system on a subset of the training data and
used the remaining data as an unsupervised training set on which we could
compute the error signatures. To determine if the improvements derived
from our signatures are significant, we trained three new systems.

The first is the new baseline system SO_unsup which is only trained on the
19 hours of transcribed training data. The second system SI_unsup_noES
uses the 19 hours of transcribed data and in addition uses a subset of the
data from the 39 hours of automatically transcribed data. The subset was
selected by computing the confidence score of each utterance and only select
utterances for training whose confidence exceed a threshold, as described
by Laurent et al. | ]. The third system SI_unsup_ES uses the same
training data as S1_unsup_noES, but also is improved by applying error fixes
derived from our error signatures.

If our error signatures are useful, we expect that the error rate of system
S1_unsup_ES is lower than the error rate of system S7_unsup_noES. The
following sections explain the experiment in more detail and report on our
results.
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6.2.2.1 System setup

The setup of the baseline system SO_unsup is the same as in Section 6.1.1.
The system is trained only on the 19 hours of the supervised training set
as opposed to the previous system in Section 6.1, which is trained on the
complete 60 hour training set. The training set was split as described in Sec-
tion 3.2.1. The baseline language model is a Kneser-Ney trigram estimated
on the supervised training set’s text and is interpolated with monolingual En-
glish and Mandarin texts using the SRILM toolkit | |. The perplexity is
349.6 and 356.6 on the SEAME development set and evaluation set respec-
tively. The perplexity on the unsupervised training set is 413.9. Decoding
results were obtained using BioKIT | -

6.2.2.2 Baseline

In a first step, the baseline system SO_unsup trained on 19 hours of speech
is used to decode the unsupervised training set of 39 hours. The mixed
error rate (MER) on that unsupervised training set is 37.85%. The MER
on the development and evaluation set is 35.74% and 29.60% respectively.
This is deterioration of 23.4% relative compared to the best system trained
on all data in the previous experiment in Section 6.1. The degradation in
performance is caused by the smaller amount of training data, which both
impacts the acoustic model and the language model. Perplexity of the lan-
guage model in SO_unsup rose by 30% on the development set compared to
the language model of S0_sup, which is estimated on all transcriptions of the
full 60 hour training set. The MER deterioration on the unsupervised train-
ing set compared to the development set and evaluation set is also caused by
the language model, which has a 18% higher perplexity on the unsupervised
training set compared to the development set.

Figure 6.2 shows the confidence distribution in deciles over the unsupervised
training set. The confidence of each utterance in the unsupervised training
set is computed based on the geometric mean of the confidence of each word
in the utterance’s hypothesis | ]. Tt shows that only 7.8 hours of the
39 hours of data exceed a confidence threshold of 0.8, increasing the amount
of data of both SI_unsup_noES and SI1_unsup_ES to almost 27 hours. A
threshold of 0.8 was chosen since Laurent et al. | | achieved good
results for both GMM and DNN based acoustic models.



6.2 Unsupervised training scenario 79

10
9 8.76  8.78
8
" 7 6.57
5
6
s 5.62
C
= 5
z
(&)
é)_ 4 3.73
%)
3
, 1.94 216
. 0.91
015 041
0 || .

0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1
Confidence

Figure 6.2: Unsupervised training data split into decile confidence bins after
decoding and utterance-level confidence estimation.

6.2.2.3 Finding error signatures

After decoding the unsupervised training set, we apply the error signature
algorithm and filter the resulting error signatures according to the steps
described in Section 5.5. Only 4 signatures remain by applying the same
thresholds for filtering as described in Section 5.5. The lack of signatures
is a major drawback of the implementation of the modified error signature
algorithm and will be addressed in Section 6.2.3.

From the 4 error signatures we picked the three error signatures with the
highest error ratios for further analysis. The selected error signatures are
shown in Table 6.7 and the following list describes the steps we took to
improve the model, based on these error signatures:

e Signature #1: Investigating the dictionary, we found that pronunci-
ations for “like” and “kite” where “/1/ /ay/” and “/k/ /ay/” respec-
tively. The cause for these faulty pronunciations was due to an error in
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Table 6.7:  Ezamples for error signatures found on the unsupervised training
set of the SEAME corpus. Word on the right hand side of word confusion’s
column is the word in the 1-best hypothesis. Attribute “min. dur.” refers to
manimum duration of the specific token.

‘ Sig.# ‘ ErrorRatio ‘ #0Occ. ‘ Error signature ‘ Word confusion ‘

1 0.79 124 +l=</s> 1) — kite
AM no. 274 direct — like

2 0.76 147 +2=</s> yen — “Ifj L7
0="Me” | “KT7 — “me”

3 0.75 382 | min. dur. [noise] | “BLE” — [noise]
center — [noise]

the automatic generation of pronunciations which also affected other
words in the vocabulary, which ended in plosives such as /t/, /k/, and
/p/-

Solution: Faulty pronunciations, such as “/1/ /ay/” and “/k/ /ay/”
for “like” and “kite”, were only present in the decoding dictionary and
not found in the training dictionary. Therefore, in a first step, we
only kept pronunciations of English words in the decoding dictionary
which are already present in the training dictionary. Since not all faulty
pronunciations could be removed this way, we counted frequencies of
all words that appeared during decoding of the 39 hour unsupervised
training set in a second step. Afterwards, we applied a threshold to
how often each pronunciation of each word had to appear relative to
the total number of appearances of the respective word. After scan-
ning the list of word appearance counts, we set a threshold of 15% of
how frequently each pronunciation had to appear to remain in the final
decoding dictionary. The number of entries in the decoding dictionary
was reduced from 52,225 to 35,645 while keeping the vocabulary size
fixed.

e Signature #2-#3: No specific cause could be identified for signa-
tures #2 and #3 by following the approach described in Section 5.5.4,
possibly due to a lack of knowledge of the Mandarin language.
Solution: Utterances matching #3 were excluded from unsupervised
acoustic model training. Utterances matching signature #2 were trun-
cated to exclude the last two words. The remainder of each utterance
is added to the training data, if the utterance-level confidence exceeds
the threshold of 0.8.
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6.2.2.4 Results

To estimate the impact of our fixes we compare SI_unsup_noES and
S1_unsup_ES. Mixed error rates of the systems are presented in Table 6.8
and Table 6.9 for the development and evaluation set, respectively.

Table 6.8: Mized error rates on the development set, comparing
S1_unsup_noES and S1_unsup_ES on the SEAME corpus. Significant im-
provements are marked with * if p < 0.05 and ** if p < 0.01.

‘ System ‘ S1_unsup_noES ‘ S1_unsup_ES (Rel. gain) ‘
AM retrained 34.65% 34.65% (0%)
AM & LM retrained 34.21% 34.51% (-0.9%)
AM & LM retrained, dict fix - 33.95% (0.76%)

Table 6.9:  Mized error rates on the evaluation set, comparing baseline sys-
tem with system using error signatures on the SEAME corpus. Significant
improvements are marked with * iof p < 0.05 and ** f p < 0.01.

‘ System ‘ S1_unsup_noES ‘ S1_unsup_ES (Rel. gain) ‘
AM retrained 28.22% 28.52% (-1.1%)
AM & LM retrained 28.24% 28.06% (0.6%)
AM & LM retrained, dict fix - 27.44%** (2.8%)

The impact of selecting different amounts of data for unsupervised acoustic
modeling and language modeling adaptation based on signatures #2-#3 led
to differences in performance on the development set. These differences were
not significant on the development set at a significance level of 0.05. Only
changing the decoding dictionary had a noticeable impact on system per-
formance. By applying the fixes to the dictionary we achieved a significant
reduction in MER (p = 0.009) from 28.24% on the adapted baseline system
to 27.44% when using error signatures.

6.2.3 Shortcomings of implementation

A major drawback of the current implementation is the limited number of
error signatures that are presented to the expert. Even though some of the
signatures could be used to derive fixes from them to significantly improve
the ASR system’s performance, changes have to be made to the algorithm
to obtain more signatures, as described in this section.
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Compared to the supervised computation of error signatures, the current
unsupervised algorithm cannot differentiate between correct and erroneous
words, due to the lack of reference transcriptions. As a result, all possible
attribute-value pairs of a word are assigned to it regardless if the word was
misrecognized or not, leading to a less focused clustering.

6.2.4 Improving error signature algorithm without ref-
erences

We want the error signatures and their attribute-value pairs to be as informa-
tive as possible, to not only indicate commonalities between errors, but also
help to deduce the error cause. For this purpose we assigned attribute-value
pairs in the supervised case depending on whether the region in question
contained any errors or was correctly recognized. Since this information is
not available in the unsupervised case we chose to assign confidence scores to
each attribute-value pair instead, indicating how likely they are to be correct.

Table 6.10: Phoneme-level confidence for character sequence “#hs&” of ut-
terance in Table 6.5.

Phoneme | Confidence
/d/ 0.80
Jo/ 0.45
/w/ 0.45
/S/ 1.0
/i/ 1.0

Table 6.10 shows phoneme-level confidence scores of the character sequence
“FZRAZ” from the utterance given in Table 6.5. The reference of the sentence
states that the last character “;&”, with pronunciation “/S/ /i/”, are cor-
rectly recognized. However, in the current implementation, a signature only
containing the phoneme attribute-value pair “/S/” or “/i/” would attribute a
confidence score of 0.4 to this word, since all confidence scores are computed
on the word-level. Table 6.10 indicates that the phoneme-level confidence
score would assign a higher confidence to the correctly recognized phonemes

“/S/” and “/i/” than to the erroneous phonemes.

Therefore, we change the algorithm to compute error signatures such that
attribute-value pairs can have individual confidence scores assigned to them.
Therefore, the computation of the ErrorRatio is not dependent on the word-
level confidence score, but rather on the confidence scores assigned to each
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attribute-value pair of a matching region/word. Thus, the equation for the
ErrorRatio from Equation 6.1 is adapted to:

ErrorRatio(S) = P(Error|S)
3 (1 — Confidence(region, S)) (6.2)

region|S€region

[{region|S € region}|

where the confidence computation is now depending on the region/word and
the specific error signature, instead of on the region/word alone as in Equa-
tion 6.1. The computeErrorRatio function used in lines 14 and 19 of the
algorithm described in Algorithm 1 has to be adapted to use the improved
equation presented in Equation 6.2. In order to compute the confidence score
we employ the generalized mean as defined, here:

B =

My(zy,...,xn) = (%me) (6.3)

=0

where M), is the generalized mean depending on the parameter p, which can
be freely chosen, and z; is the confidence score of the i-th attribute-value
pair of the error signature for a specific region/word. In our experiments
we chose p to be —oo. By choosing p in such a manner the equation of the
generalized mean simplifies to:

M_oo(z1,...,2y) = min(zy,...,zN) (6.4)

Other choices for p would have been feasible as well, for example choos-
ing p = 0 would result in the geometric mean. The geometric mean would
have resulted in higher confidence scores for Con fidence(region, S) in Equa-
tion 6.2 compared to the minimum. However, we chose p = —oo, based on
work conducted by Souvignier et al. who compared several methods to derive
utterance-level confidence scores and showed that the minimum performed
best in their experiments [ ).

6.2.4.1 Experiments on SEAME with improved algorithm

To verify if the changes to the signature computation had a positive impact,
we re-computed the error signatures on the unsupervised training set of the
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SEAME corpus to compare the resulting signatures to the experiment in
Section 6.2.2.

Table 6.11:  Exzamples for error signatures found on the unsupervised training
set of the SEAME corpus with the improved error signature algorithm. Word
on the right hand side of word confusion’s column is the word in the 1-best

hypothesis.

‘ Sig.# ‘ ErrorRatio ‘ #0Occ. ‘ Error signature ‘ Word confusion

1 0.96 118 | +2=</s>, /R/ | comply — I
AM no. 1905 AH - e

2 0.96 1077 +l=</s> M — just
AM no. 797 | place — release

3 0.94 548 +1=</s> slides — it
AM no. 1341 lend — event

4 0.94 124 +1=</s> 1] — kite
AM no. 274 direct — like

A selection of the error signatures that were found with the improved al-
gorithm are shown in Table 6.11. The ErrorRatios of the computed error
signatures are higher than in the previous implementation, as expected. The
total number of error signatures and error signature bundles after applying
our filter and similarity methods amount to 1,456. The following list contains

the steps we took to improve the model based on the signatures presented in
Table 6.11.

e Signature #1: This signature is the same as signature #2 in Ta-
ble 6.7.
Solution: Utterances matching the signature were truncated to ex-
clude the last two words. The remainder of the utterance is added to

the training data, if the utterance-level confidence exceeds the thresh-
old of 0.8.

e Signature #2: Words ending with the phoneme “/s/” on inspection

of Viterbi path and spectrogram matched to silence frames at the end
of utterances.
Solution: We used a voice activity detection (VAD) model to deter-
mine silence segments at the beginning and end of each training utter-
ance. The VAD model consists of just two GMMs which were trained
on speech and non-speech segments respectively. The detected silence
segments at sentence beginning and end were mapped to the silence
acoustic model and the acoustic model was retrained.
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e Signature #3: The phoneme “/t/” is often confused with the
phoneme “/d/” at word ends of English words.
Solution: We added additional pronunciations to the dictionary for
English words where phoneme “/t/” at the word end is replaced with

the phoneme “/d/”.

e Signature #4: This signature is the same as signature #1 in Ta-
ble 6.7.
Solution: The dictionary was filtered in the same manner as described
in the solution to the signature in Table 6.7, page 80.

6.2.4.2 Results

Table 6.12 compares the MER results of system SI1_unsup_ES to the system
S1_unsup_ES_impr, which is using the fixes derived from signatures from the
improved algorithm. While the first approach yields a system with nominal
lower MER the difference in MER is not significant at a significance level of
0.05. The marginal difference in error rate is explained by the similarity of
the top signatures found with both approaches. In addition, the proposed fix
to signature #2 for the improved algorithm did not seem to have an impact
on the error rate. However, since the top signatures were similar to the first
implementation and due to the higher number of signatures generated by
the improved algorithm, experiments in succeeding sections will use the new
implementation.

Table 6.12:  Mized error rates on the evaluation (development) set, com-
paring the system using the improved error signature algorithm to the initial
implementation.

‘ System ‘ S1_unsup_ES ‘ S1_unsup_ES_impr ‘
AM retrained 28.52% (34.65%) | 28.28% (35.10%)
AM & LM retrained 28.06% (34.51%) 28.31% (34.68%)
AM & LM retrained, dict fix | 27.44% (33.95%) 27.77% (34.06%)

6.2.5 Summary

We adapted our algorithm to compute error signatures without the avail-
ability of reference transcriptions. We showed the shortcomings of our initial
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implementation for the unsupervised case and updated our algorithm accord-
ingly. Finally, we compared the two implementations to each other and could
show that we could still find the same errors as with the initial implementa-
tion and achieve similar MER results with the fixed systems. In addition, the
improved algorithm yields 1,456 signatures compared to only 4 signatures
using the signature filters described in Section 5.5.

6.3 Unsupervised iterative system improve-
ments

The approach described in Section 6.2 to add training data by automatically
transcribing an untranscribed data set and select data based on utterance-
level confidence, can be integrated into an unsupervised iterative training
scheme. The framework we use in this section is depicted in Figure 6.3. We
want to investigate if adding our error signature algorithm to this training
scheme has a positive impact on the ASR system’s performance.

As a baseline system for our experiments we use the ASR systems which
are generated by performing unsupervised model training as described by
Laurent et al. [ ] and shown in Figure 6.3 part “(a)”. We extend the
iterative training process with our algorithm for error signature computation
as presented in Figure 6.3 part “(b)” and integrate the fixes derived at each
iteration into the ASR model training.

While investigating only one error signature at each iteration would be ideal
to show the impact of each error fix, we chose to investigate several signa-
tures in each iteration due to the high computational cost of each iteration.
However, since the error correction process is reliant on an expert to derive a
fix and implement it, we capped the total number of investigated signatures
in each iteration to get feedback on the impact of the implemented fixes. As
a result, we decided to investigate four to five signatures in each iteration.

We perform experiments on both the SEAME corpus and the ILSE corpus.
The initial transcribed data as shown in Figure 6.3 is the 19 hour training
set for SEAME, and a 44 hour training set for ILSE containing small audio
segments from the training data.
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Figure 6.3: Iterative unsupervised training process as employed in the ex-
periments in this section. Baseline iterative process is indicated in “(a)”,
additional steps for error signatures are shown in “(b)”. Input is an initial
set of training data and output is the trained ASR system.

6.3.1 Iterative unsupervised system improvements on
SEAME

This section extends the experiments we already conducted in Section 6.2 on
the SEAME corpus. The baseline system is SO_unsup already presented in
the unsupervised training results in Section 6.2.2.2.

6.3.1.1 Iteration one

The first iteration system in the iterative training framework is the system
S1_unsup_ES impr, which was created by adding automatically transcribed
data to the 19 hours of transcribed data and applying the fixes derived from
the found error signatures in Section 6.2.4.1. The first iteration baseline
system is S1_unsup_noES, which was created by adding automatically tran-
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scribed data to the 19 hours of transcribed data in, as explained in Sec-
tion 6.2.2.2.

6.3.1.2 Iteration two

In the beginning of iteration two the 39 hour unsupervised training set
is re-decoded with both systems from iteration one (SI_unsup_noES and
S1_unsup_ES_impr). The baseline S2_unsup_noES is trained based on the 19
hours of transcribed data and the automatically transcribed utterances by
S1_unsup_noES, which exceed an utterance-level confidence threshold of 0.8.

For S2_unsup_ES_impr new signatures are extracted. The signatures are
computed on the automatically transcribed data of the unsupervised training
set by S1_unsup_ES_impr. We extract a set of 918 new error signatures and
error signature bundles after filtering. Notably, the number of signatures
after filtering is greatly reduced from the 1,456 signatures in iteration one.
After filtering the signatures with the highest ErrorRatio are reviewed. The
investigated signatures are listed in Table 6.13.

Table 6.13:  FExzamples for error signatures found on the unsupervised training
set of the SEAME corpus in iteration two. The words on the right hand side
of word confusion’s column are the words in the 1-best hypothesis.

‘ Sig.# ‘ ErrorRatio ‘ #0Occ. ‘ Error signature ‘ Word confusion ‘

1 0.93 297 | AM no. 1189 [noise] — him
AM no. 2296 four — them

2 0.92 106 +2=</s> M — after
AM no. 445 enough — hour

3 0.92 202 +2=</s> B — xR
AM no. 1369 what — area

4 0.92 124 AM no. 141 | [particle] — B~
AM no. 256 k. — B

min. dur. /n/ words — KN

5 0.91| 557 AM no. 141 K — BA
min. dur. /e/ s — BR

min. dur. /n/ | futures — KN

The following list shows the errors we associated with the found signatures
and what steps we took to remedy the problems:
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e Signature #1: Both acoustic models in the signature model the

phoneme “/m/” for different states of the phoneme. By looking at
the alignment of spectrogram and 1-best decoding path, we found that
the models in the signature do not model the phoneme “/m/”, but
rather silence at the investigated segments.
Solution: Based on the path of the 1-best hypothesis we used a thresh-
old on the power to find silence segments between words in order to
reduce the number of silence frames that are modeled by speech models
such as models for phoneme “/m/”.

e Signature #2: The acoustic model in the given signature is model-

ing the phoneme “/er/”. Investigating examples for the signature, we
found that the “schwa” is being confused with the phoneme “/er/”.
The confusions mainly appear at the word end preceding the token for
a discourse particle “[particle]”. The problem could stem from both a
lack of acoustic modeling and language modeling data.
Solution: By removing the matching utterances from the unsuper-
vised training set and creating a new language model using the filtered
unsupervised data, the combination of English word followed by a dis-
course particle becomes less likely and we avoid training the acoustic
model on erroneous data.

e Signature #3: Phoneme “/a/” is modeled by the acoustic model
given in the signature. By inspecting several examples, we found that
the words are mostly correctly recognized. However, some frames at
the end of words are falsely assigned to the phoneme “/a/” and should
be silence.

Solution: Silence and speech boundaries are already fixed by the solu-
tion to signature #1. Therefore, the examples with the given signature
are just excluded from training.

e Signature #4-#5: Both acoustic models in the signature model the
phoneme “/y/” for different states of the phoneme in signatures #4
and #5. The character sequence of “[A’N” can be translated to the
English word “because” and has a high probability of appearing at the
start of utterances in our language model. In the investigated examples,
we found that the segment is often wrongly inserted in the beginning
of utterances in partial segments of silence. The minimum duration
of the phonemes indicates that the acoustic model does not ascribe a
high probability to observing these phonemes at this point. Hence, the
language model is forcing the word into this position.

Solution: Ideally, additional training data for the language model is
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necessary to better estimate the probability of N-grams at the start of
utterances. However, since no additional data is available, we chose
to mitigate this problem by excluding the utterances matching these
signatures from the unsupervised training data for language modeling,
reducing the probability of the 2-gram “<s> K.

6.3.1.3 Iteration three

Using the systems from iteration two (S2.unsup_-noES  and
S2_unsup_ES_impr), we re-decoded the unsupervised training data.
Error signatures were extracted on the automatic transcriptions produced
by S2_unsup_ES_impr. The number of error signatures in the third iteration
after bundling and filtering is further reduced to 785 compared to iteration
two with 918. The signatures with the highest ErrorRatio were investigated
and are listed in Table 6.14.

Table 6.14:  Ezamples for error signatures found on the unsupervised training
set of the SEAME corpus in iteration three. Word on the right hand side of
word confusion’s column is the word in the 1-best hypothesis.

‘ Sig.# ‘ ErrorRatio ‘ #0Occ. ‘ Error signature Word confusion ‘

1 0.95 350 | AM no. 2290 Hi5 — ARa
min. dur. /h/ because — )5

min. dur. /o/ B — R

2 0.94 191 +1=</s> | spread — australia
AM no. 1827 self - —F

3 0.93 | 1,036 +1=</s> till — students
AM no. 817 us — shoes

4 0.91 152 |  AM no. 1854 -7
AM no. 196 N -V

min. dur. /y/ ANF — TR

The analysis and identified error causes of the investigated error signatures
in iteration three are listed below:

e Signature #1: Acoustic model with id 2290 is modeling the phoneme
/r/. By investigating examples of the signature, we found that some
speakers would omit some phonemes in the standard pronunciation of
the two characters in the hypothesis (“AJ5").

Solution: We added an additional pronunciation omitting these
phonemes to the dictionary.
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e Signature #2: An acoustic model for phoneme /ah/ has very low con-
fidence score at the end of utterances. No direct cause of error could
be identified, most of the reviewed examples were correctly recognized.
Solution: While no error cause could be identified, utterances match-
ing the signature were excluded from the unsupervised training data.

e Signature #3: In this signature the acoustic model for phoneme /s/
has a low confidence score at word ends. Reviewing the pronunciations
in the dictionary, we found that pronunciations of English words ending
in “/s/” and “/z/” are not consistent and do not match the pronunci-
ations found in the CMU English dictionary | |-

Solution: To fix the dictionary entries, English words ending with
phoneme “/s/” or “/z/” were replaced with the matching pronunciation
in the CMU English dictionary.

e Signature #4: The acoustic models in the signature model the
phonemes /1/ and /a/ respectively. Inspection of the dictionary led
to the discovery that pronunciations of tokens with the character |
did not have the correct tone assigned to their phonemes. While the
phonemes should be assigned tone three, the dictionary contained ad-
ditional pronunciations with tone four and five.

Solution: As a remedy, pronunciation variations containing tones four
and five where removed from the dictionary.

6.3.1.4 Results

The MER results for all iterations are presented in Table 6.15. While
the improvements on the systems of iteration one and two are not sig-
nificant, the third iteration system S3_unsup_ES_impr is significantly bet-
ter than S3_ unsup_noES. Notably, the performance of S3_unsup_noES de-
teriorates compared to S2_unsup_noES. Comparing S3_unsup_ES_impr and
S2_unsup_noES, the difference in error rate is not significant.

Table 6.16 depicts the training data of each ASR system for each itera-
tion, showing that the amount of data is similar for SX unsup_noES and
SX_unsup_ES_impr systems. Therefore, the difference in error rate is not due
to an increased amount of training data, to the contrary amount of training
data of SX unsup_ES impr systems is lower than for SX unsup_noES sys-
tems.

Based on the signatures #2, #4, and #5 from Table 6.13, we found that
the language model requires additional data to not lead the search astray.
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Table 6.15:  Mixzed error rates of evaluation (development) set of three iter-
ations of unsupervised training of the baseline system and systems after fizes
derived from all investigated error signatures have been applied. In addition,
relative improvements of SX_unsup_ES_impr to SX_unsup_noES are given.
Significant improvements are marked with * if p < 0.05 and ** if p < 0.01.

‘ Iter.# ‘ SX_unsup_noES ‘ SX_unsup_ES_impr ‘ Rel. gain ‘
0 29.60% (35.74%) 0% (0%)
1 28.24%  (34.21%) 27.77% (34.06%) | 1.7%  (0.4%)
2 27.84% (33.75%) 27.64% (33.61%) | 0.7%  (0.4%)
3 28.18% (34.14%) | 27.39%* (33.57%*) | 2.8% (1.7%)

Table 6.16:  Training data in hours of speech ([hh:mm]) for the SEAME
ASR systems trained in each iteration.

‘ Iter.# ‘ SX_unsup_noES ‘ SX _unsup_ES_impr ‘

0 [19:04]

1 [26:49] [26:32]
2 [31:54] [31:31]
3 [33:06] [32:18]

It seems that the language model is currently the biggest problem in both
SX_unsup_noES and SX_unsup_ES_impr ASR systems. In order to show
that the fixes we made to the SX_unsup_ES_impr ASR systems, we de-
code the development and evaluation set with the best baseline ASR system
(S2_unsup_noES) and S3_unsup_ES_impr using the baseline language model
from the supervised ASR system (S0_sup) trained on all 60 hours of the
SEAME training data. The MER results are shown in Table 6.17. While the
differences between the two systems are significant on the development set
with p = 0.011, the differences on the evaluation set are not, even though

Table 6.17: Mixed error rates of evaluation and development set of
S2_unsup_noES and S3_unsup_ES_impr using the baseline language model of
the supervised system SO_sup of Section 6.1.1, page 70. Significant improve-
ments are marked with * if p < 0.05 and ** if p < 0.01.

‘ Test set # ‘ S2_unsup_nokES ‘ S3_unsup_ES_impr (Rel. gain) ‘

Dev set 32.82% 32.21%* (1.9%)
Eval set 26.80% 26.22%  (2.2%)




6.3 Unsupervised iterative system improvements 93

they have relatively increased compared to the results in Table 6.15.

6.3.1.5 Introducing improvements to the supervised system

To further investigate if the fixes derived from the computed error signatures
during unsupervised training were beneficial, we introduce the fixes to our
best system trained on the complete training set of the SEAME corpus and
train a new system (S3_sup).

Fixes that were included here beyond the ones already depicted in Section 6.1
are predominantly changes to the dictionary (such as removal of wrong and
infrequent pronunciations, correction of the pronunciation of English words
ending in phonemes /s/ and /z/), and the application of the voice activity
detection model and power thresholding resulting in better initial alignments
for acoustic model training.

Table 6.18:  Mized error rates of baseline system and systems after fixes
derived from all error signatures have been applied. Significant improvements
are marked with * if p < 0.05 and ** if p < 0.01.

| System | Devset (Rel. gain) | Evalset (Rel. gain) |
S0_sup 30.35% 0%) | 24.25% (0%)
S2_sup 29.24%* (3.7%) | 23.98% (1.1%)
S3_sup 28.66%" (5.6%) | 22.82%" (5.9%)
S3_sup & improved LM | 27.94%** (8.0%) | 22.22%** (8.4%)

The MER results of the supervised systems are given in Table 6.18. S0_sup
and S2_sup are the baseline system and improved system from the supervised
signature experiment in Section 6.1.

It shows that the total improvements achieved by using error signatures
amount to 5.90% relative improvement on the evaluation set. A majority of
the performance gain on the evaluation set stems from the fixes we derived
from the error signatures computed in an unsupervised fashion. The result-
ing differences are significant with p < 0.001 between SO0_sup and S3_sup,
and S2_sup to S3_sup. Additionally, by using the improved language model
by Adel et al. | ] we achieve the best MER results to date on the
SEAME corpus of 22.22%. We conclude that the fixes derived from the error
signatures, found during the unsupervised model training, have a significant
impact on the ASR system’s performance, but due to an overall lack of train-
ing data were not able to impact the unsupervised system’s performance in
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the same degree.

6.3.1.6 Analysis

While we were able to achieve additional improvements compared to the
baseline system when using knowledge gained from our error signatures, it
is unclear how many errors where fixed as indicated by the signatures and
which errors remain and were either not covered by our fixes or did not even
match an error signature after the signature filters haven been applied.

Table 6.19:  Error categories of regions in the unsupervised SEAME training
set on the latest system (S3-unsup_ES_impr).

Regions with Regions without
Category signatures (Rel. %) signatures (Rel. %)
AM overwhelm 24,185  (27.0%) 7,317 (10.4%)
LM overwhelm 12,790 (14.3%) 5,085  (7.2%)
Homophone 699  (0.8%) 763 (1.1%)
Search error 1,441 (1.6%) 958  (1.4%)
Correct 50,438 (56.3%) 56,080 (79.9%)
| Total regions | 89,553  (100%) | 70,212 (100%) |

To investigate which types of errors are covered by our signatures after fil-
tering, we computed error signatures as before on our latest unsupervised
system on the unsupervised SEAME training set (S3_unsup_ES_impr). Af-
terwards, we used the reference transcriptions of the unsupervised training
set, to compute supervised regions and deduced their error categories. Subse-
quently, we iterate over all signatures which were previously computed in an
unsupervised fashion and assign them to all the matching supervised regions
to validate our approach. Finally, we count the error categories for regions
which had been assigned an unsupervised error signature and regions without
signatures. The distribution over error categories is depicted in Table 6.19.

It is evident that we are not able to cover “Homophone” errors and “Search
errors” to the same degree as errors supposedly caused by the language model
or acoustic model. However, we observe that the proportion of erroneous to
all regions is higher for regions with error signatures than for regions without,
indicating that the clustering process is working correctly.

To further analyze the ErrorRatio, we investigated signatures and their
matching regions for different ErrorRatio thresholds. Figure 6.4 lists the per-
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centage of erroneous regions covered by the found signatures. We find that
the ErrorRatio and percentage of matched erroneous regions to all matched
regions is positively correlated with a correlation coefficient of 0.95.
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Figure 6.4: Percentage of erroneous regions among all matching regions of
the unsupervised training set, using reference transcriptions and different
ErrorRatio thresholds for selecting signatures.

Although the absolute number of matched errors dwindles with a higher
ErrorRatio threshold in Figure 6.5, some of the fixes, such as the removal
of wrong and infrequent word pronunciations from the decoding dictionary
and the application of the power threshold and VAD model to obtain better
initial ASR training alignments, have an impact beyond the regions that
match the specific signature.

Thus, even though we achieved a reduction in error rate on the SEAME
system using the knowledge gained from the error signatures, the low ratio
of matched errors in Figure 6.4 begs the question if the ErrorRatio or the
confidence score used for the ErrorRatio’s computation is at fault. For this
purpose we investigated the average confidence score and standard deviation
of the supervised regions, as depicted in Table 6.20. Even though the average
confidence score of errors is considerably lower than for regions associated
with the category “CORRECT”, the average confidence score for each cate-
gory is within one standard deviation of each category. Therefore, confusions
between regions belonging to the category “CORRECT” and other categories
have to at least partly stem from the confidence score.
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Figure 6.5: Absolute number of errors of the development set matched by

the computed error signatures using different ErrorRatio thresholds.
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With regards to the errors that were fixed using the knowledge from the
computed error signatures, we compare the two systems S2_unsup_noFES and
S8 unsup_ES impr of the unsupervised training scheme with each other in
the following analysis. In addition, due to the small difference in performance
of the two systems, we compare the systems trained on the complete 60 hour
training set presented in Section 6.3.1.5 as well. We compare the system
S2_sup with an MER of 23.98% to the S3_supnatures fixed” with an MER
of 22.82%:

e We removed wrong and infrequent pronunciations of English and Man-
darin words from the decoding dictionary, thereby reducing the ab-
solute number of errors concerning these words from 3,255 to 3,137,
which amounts to 3.6%. The number of errors for this group of words
in the supervised systems is reduced from 2, 772 to 2, 540, which is 8.4%
relative.

e By using a VAD model and a power threshold to produce better initial
alignments for model training, we expect words ending in fricatives and
nasals to be less often misrecognized. While there is no difference in
performance for these group of words in the unsupervised systems, the
errors in the supervised system decrease from 2,266 to 2,191, or 3.3%
relative.
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Table 6.20:  Error categories of regions in the unsupervised training set and
the average word confidence and standard deviation of regions associated with
the error category.

‘ Category ‘ Average confidence ‘ Standard deviation ‘
Acoustic model 0.66 0.26
Language model 0.65 0.28
Homophone 0.76 0.23
Search error 0.77 0.25
Correct 0.88 0.24

Al | 0.83 | 0.26 |

e Pronunciation of English words ending with either phoneme “/s/” and
“/z/” were inconsistent with the pronunciation found in the CMU dic-
tionary. Errors concerning these words was reduced from 630 to 571 or
9.4% relative. The errors in the supervised system decrease from 572
to 504 or 11.9% relative.

In conclusion, we found that error signatures derived in an unsupervised
fashion have a significant impact on the error rate of both unsupervised and
supervised SEAME ASR systems. Furthermore, we found that improve-
ments were achieved for words matching our signatures. With regards to the
computation of the ErrorRatio and the confidence score, a confidence model
specifically trained to detect errors on the SEAME corpus could potentially
improve the quality of the found signatures. However, this would require
additional data to train the confidence model on.

6.3.2 Iterative unsupervised system improvements on
ILSE

In this section we present the experiments conducted on the ILSE corpus and
the improvements we achieved by applying fixes to errors found with error
signatures. Since the condition of the manual transcriptions of the training
set is such that they only loosely match the actual content, we chose to
conduct our experiments on the complete 265 hour training set. Due to the
extensive size of both development and evaluation set we only report word
error rates on a subset of both development and evaluation set. From the
original development and evaluation sets, we selected the first 45 minutes of
each interview as development and evaluation set.
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6.3.2.1 System setup

The acoustic model is a deep neural network with a preprocessing similar to
the SEAME ASR systems presented in this chapter. Since no speaker infor-
mation is available in the interview files, the fMLLR transform is omitted,
resulting in a one pass system. The vocabulary is chosen based on the tran-
scriptions in the training data and contains 71,889 words. The dictionary
stems from the German GlobalPhone dictionary. Words not contained in the
dictionary were automatically generated. The dictionary contains 74,423
entries. The language model is build on the reference transcriptions of the
complete training set. While the transcriptions contain no timestamps, they
contain some punctuations and speaker turns, which were used to extract
sentences from the transcriptions to estimate the language model on. The
language model is a 3-gram Kneser-Ney language model with a perplexity of
199.38 and 179.69 on the development and evaluation set respectively.

6.3.2.2 Baseline

Due to the long audio files of up to 45 minutes and their accompanying
transcriptions being erroneous and not verbatim with no timestamps, the
forced alignment cannot be applied successfully to train an initial system.
Therefore, to extract training data for an initial ASR system, Weiner et
al. [ ] used a long audio alignment approach to extract short seg-
ments. In this approach each 45 min. interview is decoded with a vocab-
ulary restricted to the words found in the corresponding transcriptions. In
a post-processing step each decoded segment that matches a portion in the
transcriptions is added to the training data. Ultimately, the baseline system
10_unsup we employ is trained on 44 hours of training data.

6.3.2.3 Iteration one

Similar to our experiments on the SEAME corpus we trained two sys-
tems based on the utterance-level confidence scores depicted in Figure 6.6
(11_unsup_noES and I1_unsup_ES_impr). The total amount of training data
for the new models is 47 hours in the first iteration. Only a few segments
exceed our threshold of 0.8, since each segment was a complete interview of
up to 45 minutes in length.

Table 6.21 shows the error signatures we found and implemented fixes for.
The total number of error signatures is 2,601. The investigated error signa-
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Figure 6.6: Training data split into decile confidence bins after decoding and
confidence estimation for iteration one.

tures were among the 32 most promising signatures in terms of ErrorRatio.

14 of the omitted signatures were also concerned with the noise acoustic

model. The remaining signatures were similar to the investigated signatures,

were however not bundled together. The following list shows the fixes we

implemented to remedy the problems identified by the error signatures:

e Signature #1: The acoustic model with id 140 models the phoneme

/n/. Frequent potential confusions of signature #1 are with the word

“und” which should only rarely appear at the end of utterances. Inves-

tigating the language model probabilities for the bigram “und </s>",

turned out that this bigram is far more likely than most other 2-grams
with the word “und”. By further looking into the training text used
for estimating the language model probabilities, we found that the text
contains a sizable number of partial sentences ending with the word

Ltund” .

Solution: To remedy this situation we removed sentence end tags from
all utterances ending in the word “und”. The language model was then

99
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Table 6.21:  FExamples for error signatures found on the training set of the
ILSE corpus in iteration one. The words on the right hand side of word
confusion’s column are the words in the 1-best hypothesis.

‘ Sig. # ‘ ErrorRatio ‘ #0Occ. ‘ Error signature

Word confusion

1 0.99 | 1,251 +l=</s> die — und

AM no. 140 mobeln — und

2 0.98 | 1,149 AM no. 2542 SIL — [noise]

3 0.98 773 AM no. 2673 [redacted] — [noise]
AM no. 850

4 0.98 | 10,038 AM no. 349 beste — [noise]

AM no. 4531 bleibe — [noise]

5 0.97 | 2,381 AM no. 4458 [redacted] — [noise]

6 0.96 | 1,240 0=/h/ [unk] — haben

AM no. 277 daheim — haben

min. dur. /etu/ oben — haben

min. dur. /n/ feilen — haben

7 0.94 634 O=oder [redacted] — oder

AM no. 2805 tatigkeit — oder

8 0.94 763 AM no. 1244 drin — besonderen

AM no. 3098 | marschiert — marschieren

AM no. 4360 iberall — waren

min. dur. /r/ das — verfiigbaren

9 0.94 | 1,902 AM no. 1334 hatten — werden

AM no. 3098 freunden — geworden

AM no. 697 gut — wurden

min. dur. /etu/ zum — worden

re-estimated.

Signature #2-#5: The noise token frequently appears in areas of
low confidence. We noticed that signatures regarding the noise token
contained more than the expected five acoustic models for the five state
noise HMM. Further investigation of the acoustic model turned out that
the noise model had erroneously been trained as a context-dependent
model.

Solution: In the new model we retrained noise as a context-
independent acoustic model.

Signature #6: This signature mostly concerns the word “haben”
with only one pronunciation in the dictionary: “/h/ /a/ /b/ /etu/
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/n/”. The last two phonemes are minimum duration only (duration of
three frames), which indicates that the actual pronunciation contains
less phonemes.

Solution: As a solution we added another colloquial pronunciation of
“haben” (“/h/ /a/ /m/”) to the dictionary.

e Signature #7: The acoustic model with id 2805 in the error sig-
nature models the phoneme /r/. The signature shows that the word
“oder”, which is quite frequent in the German language, is often con-
fused with other words. The dictionary contained two pronunciations
for this word, the first one being “/ol/ /d/ /atu/” and the second one
“/fol/ /df [etu/ [r/7.

Solution: Since the second pronunciation is rather unlikely of being
correct it was removed from the dictionary.

e Signature #8-#9: The last two signatures are words whose pronun-
ciations either end in “/r/ /etu/ /n/” or “/d/ /etu/ /n/”.
Solution: As a fix to this problem we added additional pronunciations
to the dictionary which more closely match the actual pronunciation
by omitting the phoneme /etu/.

The results are explained in Section 6.3.2.6.

6.3.2.4 Iteration two

Since the selected audio data was very little for both I7_unsup_noES and
I1_unsup_ES_impr, caused by the length of the training segments, we decided
to cut training segments at silence boundaries starting with iteration two.
We chose to cut a training segment at silence segments which are at least
0.2 seconds long. The threshold of 0.2 seconds has already been used to cut
the audio files of the development and evaluation set into smaller parts. In
addition, we required each new training segment to be of a certain length to
be accepted. Figure 6.7 shows the amount of speech attributed to confidence
bins depending on varying thresholds on minimum segment length. As a
compromise between selecting as much data as possible and selecting data of
high quality we chose a threshold of 3 seconds to be the minimal length of a
segment.

Table 6.22 presents the signature we investigated for the second iteration.
The total number of error signatures is 3,103. Due to the possible high
impact of the fix derived from the signature we chose to only work on one
signature in this iteration:
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Figure 6.7: Training data split into decile confidence bins after decoding and
confidence estimation, using three thresholds for minimum length of training
segments for segmentation.

Table 6.22:  The error signature investigated in iteration two of the ILSE
corpus. Word on the right hand side of word confusion’s column is the word
in the 1-best hypothesis.

Sig.# ‘ ErrorRatio ‘ #Occ. ‘ Error signature ‘ Word confusion ‘

1 0.99 | 3,933 AM no. 575 | [redacted] — und
AM no. 798 das — und

e Signature #1: The acoustic models of the signature presented in

Table 6.22 model the phonemes “/n/” and “/u/”. Listening to the ex-
amples of the signatures, we found that the word “und” is recognized
instead of filler words, such as “4hm” and “aha”. We found that “4hm”
and “aha” are already part of the dictionary, but are modeled with the
language model. Since filler words can be inserted at any point in an
utterance they should not be modeled by the language model, but dis-
regarded as filler, similar to noise and silence tokens. In addition, since
filler words are mostly not transcribed, the probability in the language
model is comparably low. Thus, filler words were never recognized.

Solution: We removed the words from the language model and des-
ignated them as filler words such that they do not affect the language
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model context during decoding and are handled like noise and silence
tokens.

Results are explained in Section 6.3.2.6.

6.3.2.

Table

5 TIteration three

6.23:  FExamples for error signatures found on the training set in

iteration three of the ILSE corpus. The words on the right hand side of word
confuston’s column are the words in the 1-best hypothesis.

‘ Sig.# ‘ ErrorRatio ‘ #0Occ. ‘ Error signature ‘ Word confusion ‘

1 099 | 1,888 | AM no. 2323 eine — [emhm)]
AM no. 838 ums — [emhm]

2 0.99 | 2,591 | AM no. 2483 man — [ehm]
AM no. 838 irgenwie — [ehm)]

3 0.99 661 | AM no. 2712 dann — [emhm]
AM no. 2956 | hingehen — [emhm]

AM no. 838 | drinnen — [emhm)]

4 0.99 606 |  AM no. 2675 | [redacted] — [dhé]
AM no. 3243 spéter — [ahé]

AM no. 4591 steg — [dh4]

The process for data selection in the third iteration is the same as for iteration
two. The total number of error signatures is 3,367. The error signatures that
we investigated in the third iteration are presented in Table 6.23:

Signature #1-#4: The error signatures for the third iteration mostly
concern the filler words introduced in the last iteration. The acoustic
models of the signatures presented in Table 6.23 model phonemes of the
filler words. Upon inspection of examples matching the signatures, we
found that filler words are often recognized in segments of uncertainty,
since they do not affect the language model context and have only a
filler penalty assigned to them.

Solution: To reduce the number of filler words that are recognized,
we require each filler word to either have a preceding or succeeding
segment of silence. We base our decision on work by Stouten et al.,
who found that 80% of filler words appeared in the context of silence
in their experiments | -
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6.3.2.6 Results

Word error rates of the systems trained iteration one, two, and three are
shown in Table 6.24.

Table 6.24:  Mizxed error rates of the evaluation (development) set of three
iterations of unsupervised training of the baseline system and systems after
fixes derived from all error signatures have been applied. In addition, relative
improvements of IX unsup_ES impr to IX_unsup_noES are given. Significant
improvements are marked with * if p < 0.05 and ** if p < 0.01.

‘ Iter.# ‘ IX_unsup_noES ‘ I[X_unsup_ES_impr ‘ Rel. gain ‘
0 64.76% (66.98%) 0% (0%)
1 64.04% (66.42%) 63.66%*  (65.54%*) | 0.6% (1.3%)
2 62.16% (64.56%) 62.06%  (63.80%) | 0.2% (1.2%)
3 62.33% (64.84%) | 61.90%* (63.79%")  0.7% (1.6%)

While we achieved a significant (p = 0.005) word error rate reduc-
tion of 0.69% relative on the evaluation set comparing I3 unsup_ES_impr
to  I3_unsup_noES, the difference between the I3 _unsup_ES_impr to
I2_unsup_noES is not significant at a significance level of 0.05.

6.3.2.7 Analysis

The consistently high error rates and the amount of speech data selected for
unsupervised training in Table 6.25 point to fundamental problems within
the ILSE corpus, namely the reduced amount of training data between the
third and second iteration of both systems. The expectation is that the
amount of training data increases in each iteration as is the case for the
SEAME unsupervised training, refer to Table 6.16 on page 92. Among the
problems in the ILSE corpus are erroneous transcriptions, dialectal speech,
changing recording setup, and missing annotations of speaker turns in the
transcriptions. We already alluded to these problems in the description of
the database in Chapter 3.

The setup of the recordings is such that two speakers, the interviewer and
interviewee, speak to each other in turns. The interviewer however is often
interjecting filler words, such as “aha” and “emhm” into the interviewees
turns. Since the interviews are spontaneous, the interviewee is often in-
terrupted with additional questions by the interviewer in an effort to focus
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Table 6.25:  Total training data in hours of speech ([hh:mm]) for the ILSE
ASR systems trained in each iteration.

‘ Iter.# ‘ [X_unsup_noES ‘ [X_unsup_ES_impr ‘

0 [44:17]

1 [47:27] [47:28]
2 [89:48] [76:22]
3 [75:22] [70:07]

the interviewee’s answers. Therefore, a system first segmenting the data
into speaker turns would be very beneficial and would add the possibility of
speaker normalization.

With regards to the errors that were fixed using the knowledge from
the computed error signatures, we compare the best baseline system
(I2_unsup_noES) with 13 _unsup_ES_impr in the following analysis:

e The word “und” was mistakenly recognized at the end of utterances, as
well as falsely substituted for filler words. The baseline system counts a
total of 4,339 errors with the word “und”, the system using signatures
only 3,672, a reduction of 15.4%.

e An unlikely pronunciation for the word “oder” was removed from the
dictionary, reducing errors with the word by 11.1%.

e We added an additional pronunciation for the word “haben” to the
dictionary, reducing the errors concerning the word by 5.5%.

e Added additional pronunciations for words ending in “-den” to the
dictionary, reducing errors in that group by 2.3%.

e Additional pronunciations for words ending in “-ren” were added to
the dictionary, reducing errors among the group by 2%.

The absolute reduction in errors by the items given in the above list amounts
to 912 errors, corresponding to 0.8% of words in the evaluation set. However,
judging by the signatures in iteration three, filler words cause additional
deletion errors in the system, thereby reducing the performance lead of our
best system to the baseline.
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6.3.3 Summary

Using the SEAME and ILSE corpus, we integrated our error signature frame-
work into an unsupervised training scheme. While the signature improved
systems all produced lower error rates on the evaluation sets compared to the
baseline systems, only some of the improvements were found to be significant.
The ILSE corpus lacks speaker segmentation and high quality reference tran-
scriptions and as such produces overall poor results. Upon closer inspection
of the SEAME corpus we found that a general lack of data for acoustic mod-
eling and language modeling were the major cause for the poor performance.
Integrating the fixes found during the SEAME corpus unsupervised train-
ing into the supervised system trained on the complete 60 hour training set
reduced the MER by 1.16% absolute to the supervised signature improved
system or 4.84% relative.

6.4 Summary and impact of the human fac-
tor

We could show in our experiments that we are able to extract useful in-
formation from the error signatures. However, the actual feasibility of our
approach undoubtedly depends on the amount of effort required from the
expert reviewing the computed signatures.

While it would be an option to use the signatures as a way of automatically
filtering the training data selected for unsupervised model training, the ben-
efit of the signatures is caused by the expert using them to fix issues in the
ASR system. Since a user study comparing the progress of experts with and
without signatures is beyond this work, we can point to the development
history of ASR systems concerning the two investigated SEAME and ILSE
corpora.

The start of the project for the SEAME corpus was in the year 2012 with
initially only a subset of the acoustic modeling data | ]. The corpus
was extended in the year 2013 to its current size. For two years since then,
researchers have tried to improve the performance of the system. Yet, even
after training a new state-of-the-art system based on the previous research
we were still able to find significant room for improvement using our error
signature framework.

The ILSE corpus | , | is a more recent project ailing from a
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multitude of problems as indicated in Section 3.3, requiring a lot of manual
effort to fix. While we started at the end of 2014 to improve the system,
improvements were only marginal. By using the unsupervised model training
we were able to decrease the error rate compared to the baseline system by
4% relative. Using the error signatures to fix errors in the system we were
able to reduce the WER by 4.4% relative to the baseline.
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CHAPTER 7

Conclusion and Future Directions

This chapter summarizes the results of this thesis. The contributions of this
work are concluded and possible future research directions are outlined.

7.1 Summary of results

This thesis has two major contributions. The first one is the implementation
and introduction of a new HMM-based sequence recognition toolkit BioKIT,
the second is the creation of an error signature framework to accumulate,
group, and analyze errors made by HMM-based sequence recognition sys-
tems.

7.1.1 BioKIT

We implemented a new easy to use toolkit for HMM-based sequence recog-
nition | |. By omitting the focus on automatic speech recognition,
the toolkit is appealing to a wider group of researchers, such as research
in speech recognition using Electrocorticography | |, Electromyogra-
phy, or gesture recognition | |, using Electromyography and an Inertial
Measurement Unit.

Due to its modular design, the C++ core library is easy to extend with new
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algorithms concerning HMM-based sequence recognition. By using a two-
layer structure of the C++ core library and Python scripting layer, the need
for recompilation only arises if new modules need to implemented, but is
not required for experimental setups. By enabling threads to share memory
between them, the memory requirements especially for tasks with big lan-
guage models of several gigabyte in size is greatly reduced, and allows the
user to fully exploit multi-core computers. BioKIT was applied throughout
this thesis and advanced by error signatures.

7.1.2 Error signatures

We developed a novel framework to analyze decoding output of HMM-based
sequence recognition systems using the example of automatic speech recogni-
tion. While previous research relied on the availability of reference transcrip-
tions to conduct their analysis, we could show that our approach is feasible
even if no reference transcriptions are available.

We introduced the notion of error signatures grouping errors together by
a set of interpretable attribute-value pairs. Based on the error signatures
we deduced the underlying cause of the errors. In addition, the framework
allows the user to add additional attributes, such as speaker id or part-of-
speech tags, to the clustering process to obtain the error signatures.

The algorithm to obtain error signatures is the same for supervised and un-
supervised data with the exception of the ErrorRatio computation. However,
despite different computations the resulting measure for the supervised and
the unsupervised case is the same. Thus, both decoding output with refer-
ence transcriptions and without reference transcriptions can be used at the
same time for error signature computation.

We observed that the baseline systems for both the SEAME and the
ILSE corpus deteriorated with the third iteration (S3-unsup_-noES and
I3_unsup_noES), whereas the systems improved by fixes derived from
error signatures have a decreasing error rate. In conclusion, both
S3_unsup_ES impr and [3_unsup_ES_impr are significantly better than the
comparable baseline S3_unsup_noES and I3_unsup_noES. Furthermore, the
fixes from the SEAME corpus, which were derived in an unsupervised fash-
ion, were helpful in significantly reducing the MER of the supervised SEAME
system by 4.84% relative.
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7.2 Potential future research

Several avenues of research and additional interesting features can be pursued
based on the results of this thesis. The following section will explore these
for both the BioKIT toolkit, as well as the error signature framework.

7.2.1 BioKIT

While toolkits can always be extended to use state-of-the-art algorithms
and models, the task of decoding spontaneous speech, especially from the
ILSE corpus, is a demanding application. The detection of word repetitions
and false starts requires attention. Additionally, as is the case in German,
handling of multi-words needs to be addressed. Added flexibility in combin-
ing class-based N-gram language models with grammars would be beneficial
to recognizing spontaneous speech. These potential research directions apply
to both the ILSE corpus and BioKIT.

Furthermore, to increase the portability of BioKIT to other platforms, such
as hand-held devices, the usage of external libraries needs to be reduced as far
as possible. In addition, possible restrictions in terms of memory, processing
power, e.g. reduction of floating point operations, have to be investigated.
Possible extension of BioKIT to work as a static decoder should be pursued
to increase the performance on for example hand-held devices by avoiding
language model lookahead.

7.2.2 Error signatures

While the BioKIT tool is already used for research beyond automatic speech
recognition, error signatures have not yet been applied to systems using other
modalities, such as motion (e.g. Airwriting | 1), Electromyography, or
Electrocorticography.

Beyond different input modalities, the investigation of different attributes,
which might also enable the recognition of preprocessing related problems,
are of interest. Furthermore, combined usage of decoding output with avail-
able reference transcriptions and without reference transcriptions might yield
better error signatures. Weighting schemes for the different utterances de-
pending on the availability and the quality of their reference transcriptions
could be explored.
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Another avenue of research would be to change the error signature algo-
rithm, such that it no longer focuses on errors as a whole, but rather detects
idiosyncrasies between different corpora of speech. For example, an ASR sys-
tem trained on native speakers is expected to perform worse for non-native
speakers of the language. Instead of investigating the errors the ASR system
produces in general, the algorithm could be used to identify signatures for
non-native speakers to identify problematic words or phonemes appearing in
non-native speech and not in native speech.
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