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Zusammenfassung

Die vorliegende Dissertation befasst sich mit der grundlegenden Untersuchung der Flam-

menstabilisierung innerhalb von porösen, inerten Materialien (PIM). Diese Verbrennungs-

art bietet im Vergleich zu konventionellen Brennern mehrere Vorteile, z.B. niedrigere

Schadstoffemissionen, einen hohen IR-Strahlungsanteil und einen breiteren Stabilitätsbereich.

In der Literatur existieren bisher nur zwei Studien zu überatmosphärischem Druck, zudem

bestehen Widersprüche zwischen den Ergebnissen von Experimenten und numerischen Si-

mulationen der Flammendicke. Die vorliegende Arbeit stellt einen Beitrag dar, um diese

Lücke zu schließen.

In Rahmen dieser Arbeit wurden theoretische Betrachtungen sowie experimentelle und

numerische Untersuchungen durchgeführt. Untersucht wurden die Einflüsse von Brenner-

leistung, Luft zu Brennstoff Verhältnis, Druck, Vormischtemperatur und Geometrie des

PIM auf Flammendicke und Brenngeschwindigkeit.

Die Durchführung der Experimente fand in einem kegelförmigen Brenner statt. Die Be-

rechnung der Brenngeschwindigkeit wurde durch die Bestimmung der Flammenstelle mit

Hilfe von Thermoelementen ermöglicht.

Darüber hinaus wurde ein eindimensionales numerisches Modell erweitert und gegen Ex-

perimente validiert. Die effektiven Transportkoeffizienten wurden aus dreidimensionalen

numerischen Simulationen in realen Schwammstrukturen gewonnen. Zusätzlich wurde ei-

ne neue Methode eingeführt, um Quellterme anhand statischer Wahrscheinlichkeitsdich-

tefunktionen der Gastemperatur zu berechnen. Diese Erweiterungen des Modells ergaben

eine gute übereinstimmung der Aufweitung der Flammendicke.

Als wichtigstes Ergebnis wird das Verhalten der Brenngeschwindigkeit als Funktion des

Drucks geschätzt, welches deutlich von dem in laminaren Flammen abweicht. Die Brenn-

geschwindigkeit in PIM kann mit dem Druck zunehmen, was mit den eindimensionalen

Modellen sowohl nummerisch wie analytisch vorhergesagt wurde.
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Abstract

The present dissertation contributes to the basic research of stabilization of lean premixed

flames in porous inert media (PIM). The presence of PIM in the combustion environment

serves to intensify the heat transfer and the mixing of reacting species, this lead to a

combustion mode that exhibits considerably different features compared to free premixed

combustion, such as considerably reduced emissions of pollutant species, i.e. nitrogen

oxides NOx and carbon monoxide CO. This kind of combustion has been mostly applied

commercially to transfer heat by means of thermal radiation, since the solid phase achieves

high temperatures and its thermal emissivity is considerably higher than that of gases.

Other interesting features such as enlargement of the flame stability range, reduction

of thermo-acoustic instabilities, gradual response to operative changes and geometric

flexibility of design, open new possibilities of premixed combustion within PIM to be

used in applications with ultra lean combustion like piloting the combustion in stationary

gas turbines and burning low-heating value gases, which otherwise cannot be burned and

must be wasted. With the motivation of studying the potential application of PIM in

gas turbine combustion, the flame stability at elevated pressure and temperature must

be studied.

During the present work experiments were conducted in order to observe the effect of

pressure, air to fuel ratio, temperature and PIM pore size on the flame stability within

PIM. Adiabatic condition was intended. A model conical shaped burner was tested. The

burner was made of reticulated open pore sponge like solid structures. The material of

this kind of PIM was silicon infiltrated silicon carbide (SiSiC). The used flame stabiliza-

tion technique is based on continuous decrease of flow velocity provided by the change of

cross sectional area of the conical shaped burner. The measurements of temperature pro-

files and flow rates were used to determine the thermal flame thickness and the burning

velocity. A definition of the burning velocity was developed in order to allow for compa-

rability with other kind of flame stabilization techniques. As main output of this work it

was observed that the pressure influence on the burning velocity can differ considerably

from that of laminar free flames, i.e. the burning velocity can increase with the increase
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of pressure, which can be explained by the mixing effect on the flow in the solid sponge,

which is proportional to the Reynolds number. Thus, for conditions exhibiting different

burning velocity, the pressure influence on the burning velocity differs as well.

A semi empirical model was developed that can be used for engineering purposes while

dimensioning porous burners for operation at different conditions or with different fuels.

This model is based on an analogy of modified Peclet numbers involving the burning

velocity of the flame stabilized in PIM related with the laminar burning velocity of a

flat free flame. Additionally, a theoretical model based on classical flame theories was

derived, which is instructive in understanding and allows also to predict the increase

of burning velocity with the increase of pressure and serve as an easy-to-use model for

practical purposes.

Additional to the experimental investigation, a numerical one dimensional model was

implemented for the simulation of premixed flame stabilization within PIM. The model

is based on macroscopically averaged quantities along the porous volume. The effec-

tive transport coefficients and correlations, which inform about the pore-level occurring

processes, were obtained from results of direct pore level simulations performed on re-

constructed real PIM samples from tomographic data. Using these coefficients in the 1D

model, premixed flame stability parameters can be fairly well predicted, even the increase

of the burning velocity with the increase with pressure and the effect of air to fuel ratio

on this dependency. Nevertheless, the results are not exact, especially the flame thickness

differs considerably. The reason of the problem was identified as the calculation of the

averaged source terms of the species and energy equations. A new method to average the

source terms was implemented considering the spatial fluctuations of temperature and

mass fractions along the cross sectional area by means of the use of presumed probability

density functions. After this modification of the model a well comparison with experi-

ments in terms of burning velocities and profiles of average temperature was achieved.
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ṁ mass flow rate [kg/s]

Ni total number of species considered

Nk total number of reactions considered



xv

Nu Nusselt number (α · dh/λ)

p probability

Pe Peclet number (u · l/D)
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Chapter 1

Introduction

1.1 Introduction and motivation

Combustion processes of fossil fuels dominate the energy and transport sectors, so envi-

ronmentally friendly, efficient and novel combustion processes and systems are a major

concern of modern technological efforts in this field [1]. As it was observed that solid ma-

terials accommodate the widest spectrum of thermal radiation, combustion in/of porous

media has became a topic of intensive research in recent decades and has been used in

numerous practical applications to great effect [2].

Combustion in porous media can be classified into three types depending on the physical

and chemical nature of the porous media: (i) inert, (ii) catalytic and (iii) combustible

[3–5]. The shapes of the porous media can also be classified into (i) consolidated and

(ii) packed discrete elements. An example of consolidated porous media is regular non-

interconnected channels (bundle of tubes or honeycombs), which have been widely used

to support catalytic reactions. Another example is highly porous solid sponges (also

called open cell foams or reticulated structures), which were used in the present work

have been a subject of extensive research in last two decades for a vast number of

applications in process engineering owing to their high volumetric surface area, high

degree of cross mixing and low pressure drop imposed on the fluid flow, compared with

porous media made of packed discrete elements [6, 7]. Fig.1.1 shows photos of some

porous inert media (PIM) commonly used to support combustion.

Porous media allow for the premixed and non-premixed combustion of gas fuels or liq-

uid fuels, but the flame stabilization within PIM of premixed gases has been identified

as the basic combustion process of applications of burner technology in energy, ther-

mal engineering and processing industries [9–11]. Combustion within PIM offers high
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Figure 1.1: Some examples of commonly used porous inert media to support combustion;
some pictures taken from [8]

power density, a high power dynamic range and very low NOx, CO and noise emissions,

compared with free laminar combustion [12]. Intensified heat feedback from the burned

zone is transferred through the solid matrix by solid-solid radiation and conduction to

preheat the unburned mixture; thus, a superadiabatic peak of temperature is achieved

in some locations. This mechanism is well known as heat recirculation [13]. Depending

on the PIM topology, cross mixing of the fluid flow (hydrodynamic dispersion) can oc-

cur, which enhances the transport of heat and intermediate species from the combustion

reactions to the incoming unburned gases. The heat recirculation locally increases the

gas temperature and reactions take place at a higher temperature; hence, reaction rates

are increased with respect to the free combustion mode. Owing to heat recirculation,

extension of the lean flammability limit is attained and the combustion of fuels with

low energy content is enabled [14]. The dispersion effect enlarges the flame thickness,

which also has a positive effect on the burning velocity [15]. Therefore, the firing rate

specific to the burner cross section is increased by an order of magnitude in relation to

a laminar free flame [15].

The basic experimental study of combustion processes in porous media faces challenges

due to the access limitations for both optical and mechanical probes by the presence of

a solid matrix. Owing to these limitations in the processes in porous media, fundamen-
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tal discussions are still ongoing, such as the debate about the effects of turbulence in

porous media, even in the absence of combustion, since the dispersion effects cannot be

separated in experiments from turbulence inside the pore [4].

Modeling is also challenging due to the still scarce knowledge of the fundamentals of

thermal, radiative and fluid mechanical processes within porous media and how these

affect and are affected by combustion, although considerable progress has been made.

Basically, there are three major classes of modeling approach: (i) macroscopic, (ii) mi-

croscopic and (iii) direct pore-level simulation (DPLS). The macroscopic approach is

rigorously mathematically correct, derived from the averaging over a representative vol-

ume (meso-scale), commonly under the assumption that the random spatial deviations

depend linearly on the gradient of average quantities. This model contains effective pa-

rameters that connect with microscale processes. Commonly, these effective parameters

must be experimentally determined for the particular porous medium being used, in

order to minimize prediction inaccuracy [16]. A schematic representation of relevant

length scales for describing processes taking place in porous media is given in Fig.1.2.

Figure 1.2: Length scales in a porous reactor. (Left) Macroscopic reactor level; (Mid)
Representative elementary volume; (Right) Characteristic length of the gas phase dp [17]

The modeling at the microscale is a recent subject of investigation not performed in

earlier times due to the insufficiency of computing resources required to model the de-

tailed geometry of porous media. Nevertheless, the modeling of a few pores is typically

insufficient due to the effects of processes taking place at a larger scale, and the assump-

tion of symmetry is commonly inaccurate. Some examples of this kind of modeling are

[18, 19]. The demands on computing resources are markedly increased in the third ap-

proach, namely, the DPLS, where the complete macro-system is modeled by performing

direct numerical simulations of microscale formulations. The performance of DPLS of
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combustion within PIM is not yet feasible without simplifications, such as neglecting

radiation effects, using global simplified reaction models or simplifying the geometry.

Some of the first models of DPLS of combustion were carried out by Bedoya et al. [20]

and Yamamoto et al. [21], who showed, as expected by most of the research community,

that the flame structure is affected by the porous media, that is, the flame is discon-

tinuous and corrugated. Due to these resource limitations, the numerical study of PIM

combustion has been typically carried out using the volume-averaged model with experi-

mentally determined effective parameters. Furthermore, if DPLS were accurately carried

out, there is the question of how one would usefully apply such information in macro-

scopic modeling; a first model to include the effect of spatial temperature variations on

the reaction sources is introduced in this dissertation.

Premixed combustion in a PIM is a technology extensively studied in the last two

decades, with active development around the world. Numerous papers have been pub-

lished, but the detailed understanding of all involved transport processes, reaction ki-

netics and their interactions is still limited and many potential applications have not

been deeply studied yet [4, 22].

The combustion processes in PIM are classified as (i) free combustion at the bounding

surface (many small free flames), (ii) surface stabilized combustion and (iii) combustion

within PIM (also called buried or submerged combustion) [4].

In surface stabilized combustion, the flame is anchored at the outflow porous interface.

It occurs when the flow rate is set such that the ignition temperature is reached inside

the porous media along most of the cross-sectional area and the mixture burns just

under the surface.

Combustion within PIM can occur in a stationary manner or transiently. In the sta-

tionary condition, that is, stabilized flame within PIM, the bulk flow velocity equals the

burning velocity, which is considerably higher in this mode than in a free-burning flame

or a surface stabilized flame. In transient conditions, the flame front travels along the

PIM (commonly called seepage or filtration combustion). When the flame front travels

in the same direction as the fluid flow, the heat feedback is higher than in the stationary

condition, and since the flame front is displaced towards the burned zone, the sensible

enthalpy of the solid is transferred to preheat the incoming mixture. This condition is

favorable for applications such as in situ combustion for petroleum extraction and burn-

ers with reciprocating flow. This condition allows for complete combustion of ultra-lean

mixtures up to an air supply that exceeds the stoichiometric air requirement by a factor

of seven (λ = 7) [23, 24].

In the opposite condition, that is, flashback, the flame front travels against the flow
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direction and the heat of combustion is being used to warm up the upstream cold

porous media; thus, subadiabatic conditions are attained. A commonly used technique

to stabilize this kind of condition in which the burning velocity exceeds the flow speed is

the use of thermal quenching by inserting a porous layer with finer pores and made of a

less conductive base material (called a flame trap or arrestor). In the flame arrestor, the

burning velocity is considerably lower, so one could consider that this kind of burner,

namely, a two-layer burner, allows for a range of burning velocities between the burning

velocity in the flame trap and the burning velocity in the combustion layer. In practice,

most researchers state that the burning velocity depends on the mass flow rate in two-

phase burners when the flame is located in the layer interface. This technique allows

for the highest power modulation or turndown ratio of up to 1:30 [3, 25]. The basic

stabilization techniques available to allow for stationary flames within PIM are presented

in Fig.1.3.

Figure 1.3: Stabilization techniques of stationary flames within PIM

Another possible stabilization technique of flames within PIM is the cooling of the

reaction zone, which can be carried out by inserting cooling pipes in the reaction zone

or stabilizing the flame near the outflow PIM interface with considerable heat transfer by

radiation to a charge (this stabilization technique is called radiation-controlled flame).

The cooling of the reaction zone decreases the preheating of the unburned mixture

and allows flame stabilization with lower flow speeds than the burning velocity under

adiabatic conditions. This compromise between heat transfer to a charge and input

power makes this stabilization technique more complicated than that based on thermal

quenching in a flame trap (two-layer burner). If a sufficiently long combustion layer is

used in a two-layer burner, the reaction zone can be quasi-adiabatic and the power can

be varied almost independently of the heat transfer by radiation at the outflow surface.

The upper stability limit of power modulation is imposed by the burning velocity of the
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porous material in the combustion zone, which is maximal under adiabatic conditions.

The lower stability limit is imposed by thermal quenching in the flame arrestor. An

accurate definition of the burning velocity in PIM is a cornerstone in the present study

in order to validate the possibility of comparing burners with different geometries and

flame stabilization techniques. The burning velocity is a measure of the fuel consumption

rate, which implies that the specific firing rate (Ẇ/Apim) of a burner can be expressed

in terms of the burning velocity S with direct proportionality, thus it has practical

relevance for direct use in engineering.

Ẇ/Apim = S · ρu
Hl

1 + AFR
(1.1)

Where Ẇ is the installed power, Apim is the area of the burner channel (solid and gas),

Hl is the lower heating value per mass unit of fuel and AFR is the air-to-fuel ratio given

in mass.

One of the potential applications of porous burners is the replacement of the diffusion

flames used in pilot burners of modern stationary gas turbines. These engines operate

with internal combustion at elevated pressure. The replacement of the diffusion pilot

flame by a porous burner requires the knowledge about the burning velocity in PIM

at elevated pressure, but there is a complete absence in literature of values of this

parameter. Additionally, there is not a unified definition of burning velocity in PIM.

These two issues mainly motivated the present work, where a test rig was developed to

allow combustion up to 20 bar in a conical sponge-like medium and numerical modeling

was used to study this process at elevated pressure as well.

The present work focuses exclusively on adiabatic flame stabilization within a homoge-

neous PIM of lean premixed air-gaseous hydrocarbons. Numerically, adiabatic condi-

tions are easy to impose at the boundaries. In contrast, in experiments, the adiabaticity

of the used system has to be validated.

Experimental determination of the burning velocity in the combustion layer of a two-

layer burner is excessively time-consuming due to the presence of the solid porous ma-

trix with high heat capacity. Therefore, the flame stabilization technique used in the

present work is based on the continuous decrease in the flow speed by the increase of

the cross-sectional area of a homogeneous solely PIM layer in the porous burner, with

the expectation that the accurate determination of the burning velocity is enabled by

acquiring the flame position with thermocouples.

The present work has been accompanied by a parallel work in our institute by Parthasarathy

et al. [26–28], who determined effective coefficients of transport in solid sponges by per-
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forming different kinds of DPLS on reconstructed real samples of ceramic sponges.

The model used in the present work to simulate the flame stabilization within PIM is

based on volume averaging, which is well known in the literature [15]. A limitation of

the model has been identified and a possible solution using observations of DPLS has

been proposed and validated.

The PIM used in the present work were solid sponge-like structures made of SiSiC with

87% porosity. Two different pore densities were studied at 10 pores per inch (PPI) and

20 PPI. Finally, the obtained experimental results were used to propose a semi-empirical

model for burner dimensioning based on modified Peclet numbers. The numerical results

have been used to propose a simplified thermal theory based on local thermal equilibrium

to determine roughly the burning velocity and the flame thickness. Relevant concluding

remarks about the importance of the basic processes are also provided.

1.2 Objectives

The present work has as its main objectives

1. the basic study of processes occurring in premixed flame stabilization of lean air-

gaseous hydrocarbon mixtures within PIM under adiabatic conditions and

2. the performing of experiments at elevated pressure.

Specifically, the global parameters such as maximum local temperature, lean flame sta-

bility limit, burning velocity and flame thickness are intended to be experimentally

determined at different pressure levels, initial temperature and air-to-fuel ratios using

porous media with different pore densities, in order to generate a database of crucial

importance for achieving the first objective.

The accuracy and further development of a one-dimensional numerical model are to

be identified in order to produce more detailed results for the basic understanding of

combustion processes within PIM. From both kinds of methods, namely, experimental

and numerical, the goals in this work are to establish optimization strategies of porous

burners and to generate dimensioning tools of porous burners as practical results for

engineering uses.
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1.3 Thesis outline

In the foregoing sections, some of the most relevant investigations available are described

systematically, ordered by the basic transport processes studied, in order to describe the

physics behind each of the processes relevant to the flame stabilization within PIM. In

Chapter 3, the used experimental set-up and the employed measuring techniques are

described. The experimental results are presented in Chapter 4. In this chapter, a vast

database of burning velocity values is presented, where clear tendencies of the effects of

mass flow rate, pressure, initial temperature and air-to-fuel ratio are identified. Some

relevant results of the macroscopic thermal flame thickness were also produced. The lean

blow-off limit of the used flame stabilization technique was observed and the results are

discussed and compared with the free combustion mode. A semi-empirical model based

on Peclet numbers is proposed to determine the burning velocity in PIM based on the

laminar burning velocity of free flames.

The numerical investigation of the flame stabilization within PIM is presented in Chapter

5, where three models are described and their results are presented, namely, the direct

chemistry model (DCM), the tabulated chemistry model (TCM) and the so-called PIM-

PDF model. The PIM PDF model includes the consideration of temperature deviations

along the cross-sectional area as a modification of the first used model, that is, the

direct chemistry model, to improve the accuracy of results. Since the PIM PDF model

required more efficient use of computer resources, the tabulation of chemistry was used

and validated. A parametric study is presented, which indicates the importance of the

transport mechanisms in the flame stabilization within PIM, and allows identification

of burner optimization strategies.

A simplified theoretical model of flame stabilization within PIM is described and vali-

dated in Chapter 6. This model enables rough estimation of the burning velocity and

flame thickness based on the laminar burning velocity and using the average ignition

temperature observed in the numerical result of the PIM PDF model. At the end of the

thesis a discussion of the main results in a kind of summary is presented in Chapter 7.



Chapter 2

Theoretical background and

literature review

In order to provide an overview of fundamental concepts related to the processes taking

place in premixed-flame stabilization of gaseous hydrocarbons within solid sponges, sev-

eral areas of knowledge are briefly reviewed, such as premixed laminar free flames and

transport processes in solid sponges. The outline of this chapter is as follows. First, some

basic definitions for combustion technology are given, with an emphasis on premixed

laminar flames, which are one focus of this work, but submerged in a three-dimensional

porous structure.

For the topic of flame stabilization within solid sponges, an overview of the processes that

occur is briefly given as an introduction to the coming sections. After explaining the most

relevant issues of morphological characterization of solid sponges, a brief description of

modeling of flow and transport processes in porous media is given as an introduction

to the topics of fluid flow (Section 2.5) and transport in sponges itself (Section 2.6). In

these sections, emphasis is placed on the effective coefficients of transport processes in

solid sponges required in volume-averaged models, such as the one used here in Chapter

5, to simulate the flame stabilization within these structures. In the present overview

of the literature, some of the few studies of transport at the pore level are stressed, as a

promising research area due to the difficulty of accessibility of experimental probes and

optical techniques and the high demand for computing resources in numerical studies.

This chapter finishes with an overview of some of the most relevant studies of flame

stabilization in PIM of premixed gaseous fuels.
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2.1 Combustion-related definitions

In this section, some basic definitions and parameters of combustion processes of pre-

mixed hydrocarbons with air excess are reviewed. For more generalized situations and

detailed understanding of any of these subjects, refer to any book on combustion, such

as [29–31].

Under the assumption that dissociation does not occur during combustion, the global

mass balance of combustion of hydrocarbons CnHm with air under air excess reads

CmHn+λ · νO2,st (O2 + 3.76 N2)→

m CO2 +
n

4
H2O + (λ− 1)νO2,st O2︸ ︷︷ ︸

O2 excess

+λ · νO2,st · 3.76 N2 (2.1)

where

νO2,st = m+
n

4
(2.2)

is defined as the oxygen mole requirement for stoichiometric combustion of a mole of

fuel. Since oxygen is taken from air, the air mole requirement per fuel mole is

lmin = νO2,st (1 + 79/21) (2.3)

The air factor λ is the ratio between the supplied air l and the required air per fuel unit

lmin (see Eq.2.4). The air factor is higher than unity for air excess operation, that is,

lean conditions.

λ =
l

lmin
(2.4)

Internationally, the use of the inverse of the air factor is also accepted, which is called

the equivalence ratio φ = 1/λ.

Consider an isobar reacting system described by Eq.(2.1), where premixed unburned

mixture flows in and combustion products flow out. The adiabatic combustion tem-

perature Tad can be determined by performing an energy balance around this reacting

system without heat losses, that is, sensible enthalpy fluxes through boundaries and the

reaction enthalpy in the system (ṁf ·∆HR). Thus, the temperature of unburned reac-

tants has a positive effect on the adiabatic combustion temperature, while the effect of

the increase of the air excess is the opposite because the reaction enthalpy is converted

to sensible enthalpy in the excess air. In contrast, pressure has an inconsiderable effect

on Tad at elevated pressure levels where dissociation of intermediate species is smaller,

thus Tad slightly increases [30].
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Most combustion systems reach temperatures appreciably higher than 1250 K and disso-

ciation of stable species occurs by several elementary reactions, such as chain-branching

reactions of O2 and H2 to produce O, H and OH, which are essential steps to sustain

the fast reaction mechanism. Since dissociation reactions are quite endothermic, little

dissociation considerably lowers the adiabatic combustion temperature [30].

A detailed chemical kinetic mechanism of realistic fuels to describe the chemical reac-

tion processes involves a large number of species and reactions (several hundred). The

solution of a chemical kinetic problem requires solution of the species balance equation

for each of the species of the mechanism. In order to reduce computational time, simpli-

fied mechanisms have been proposed derived by different approaches, which retain only

essential features [32].

The rate at which a kth reaction takes place might be expressed in terms of the rate of

decrease of concentration of any of the reactants. The mass action law states

ṙk = kk

Ni,k∏
i=1

[Xi]
ν′i (2.5)

where ν ′i is the stoichiometric coefficient of the ith reactant, [X] is mole density (mol/m3),

Ni,k is the number of reactants in the kth reaction, which signifies the overall reaction

order, and kk is the specific reaction rate coefficient, which can be described using a

modified form of the Arrhenius equation

kk = Ak · T β exp

[
−Ea
T ·R

]
(2.6)

with Ea as the activation energy, Ak the kinetic collision frequency, which limits the

reaction rate for reactions with very low activation energy, and T β accounting for pre-

exponential temperature-dependent terms.

The rate of decrease of the concentration of a reactant in a system with a single reaction

can be expressed as

ω̇i,k = (ν ′′i − ν ′i) · ṙk (2.7)

where ν ′′i is the stoichiometric coefficient of the ith species in the products.
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2.2 Premixed combustion

The case of laminar free flames is used as a relevant basis to define combustion param-

eters, which could be defined analogously to the flame stabilization within PIM.

2.2.1 Laminar free premixed flames

Consider premixed gases flowing through an adiabatic tube in a laminar regime with a

plug flow profile. With an ignition source, a flame front appears as depicted in Fig.2.1

with a planar shape. The flame is undisturbed and without heat loss and buoyancy.

The flame can be considered like a wave with propagation velocity Sl, which is called

the laminar burning velocity and is defined as Sl = uu, if the wave is fixed with respect

to the tube.

Figure 2.1: A combustion wave fixed with respect to a tube.

The flame front designated in Fig.2.1 represents the premixed gases before they enter

the luminous zone where reaction and heat release take place. The luminous zone is

less than 1 mm thick and is a portion of the reaction zone. The flame front can be

characterized by three zones: a preheating zone, a reaction zone and a recombination

zone. In the preheating zone, pyrolysis of fuel could occur, but this is not the case with

fuels with stable molecules like methane; thus, this region could be assumed as inert and

only diffusion of species and heat conduction from the reaction zone occur. The fast

oxidation steps occur in the reaction zone, which begins at an activation temperature

T 0 (methane T 0 ≈ 1300 K) [33]. Downstream, much slower recombination reactions

occur in the recombination zone, which is a more extended region.

Fig.2.2 depicts the temperature profile along the flame front with unburned gases at

Tu = 300 K. At the reaction zone, the temperature rises exponentially and approaches

the adiabatic combustion temperature just past the reaction zone. Performing an en-

thalpy balance around the preheating zone (with thickness δp), it is determined that

the enthalpy increase of the unburned gases must be equal to the heat conducted from

the reaction zone, which is the basis of the classic thermal theory of Mallard and Le

Chatelier [34], assuming a linear temperature profile with slope (Tb − T 0)/δR, where δR
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is the thickness of the reaction zone.

ρu · Sl · c̄p(T 0 − Tu) = λ(T 0)(Tb − T 0)/δR (2.8)

or

Sl =
λ(T 0)

ρu · c̄p
(Tb − T 0)

(T 0 − Tu)
· 1

δR
(2.9)

Figure 2.2: Temperature profile of a laminar planar flame of lean air-methane.

The reaction zone thickness is related to the laminar burning velocity

δR = Sl ·
T 0

Tu
· τc (2.10)

by the heat release time τc, which yields the most significant result of the thermal theory

Sl ∝
(
λ(T 0)

ρu · c̄p
1

τc

)0.5

(2.11)

and with

δR ∝
λ(T 0)

ρu · c̄p
1

Sl
(2.12)

The heat release time is affected primarily by the reaction rate τc ∝ ṙ−1, which is

dominated by the exponential of temperature, Eq.(2.6). Assuming that the heat release

occurs close to the maximum temperature, Eq.(2.11) permits establishment of the trend

of the burning velocity as the combustion temperature Tad changes (see Eq.(2.13)); that

is, an increase of temperature of unburned mixture and a decrease of the air factor will
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have a positive effect on the laminar burning velocity.

Sl ∝ (exp(−Ea/R · Tad))0.5 (2.13)

More elaborate theories were subsequently developed, which also include the diffusion

of molecules, for example, [35, 36], but all of them coincide in that the laminar flame

propagation is a diffusional mechanism, namely, dominated by the conduction of heat

and the diffusion of mass, since reaction-activating radicals must diffuse from the reac-

tion zone into the preheating zone to sustain the combustion wave [30]. These theories

give a fairly good fit of experimental results. Peters and Williams [37] calculated the

values of the activation temperature T 0 at which reactions are initiated as a function of

the air factor and pressure, and found that it is independent of the initial temperature.

Modern computational approaches allow calculation of Sl and profiles of temperature

and species concentrations, whose accuracy depends on the used database of thermo-

chemical and kinetic data. The numerical code PREMIX given by Kee et al. [38] was

used to simulate freely propagating, one-dimensional, adiabatic premixed flames. The

used data are given in [39, 40]. The used detailed reaction mechanism of methane with

air is GRI 3.0 [41]. Results of a simulation with Tu = 300 K and λ = 1.6 are presented

in Fig.2.2. Schmid [42] used this numerical set-up to generate a database of laminar

burning velocities, which fit in its modified form of Eq.(2.11) as

Sl = c

(
λ(Tu)

ρu · cp,u
1

τc

)0.5

(2.14)

defining the thermal diffusivity under unburned conditions au = (λ/(ρ · cp))u and the

heat release time as the minimum local heat release time:

τc = min(T · (∂T/∂t)−1) (2.15)

The obtained value of the factor c lies around one. For methane-air premixed flames, c

lies between 1.0 and 1.2. For other fuels, it differs by a factor of less than two [42].

The laminar burning velocity of hydrocarbons decreases with pressure. In the case of

methane-air mixtures, the relationship is approximately Sl ∝ p−0.5 [43–45]; therefore,

from Eq.(2.11), it might be inferred that τc is nearly independent of pressure.

Numerical results of laminar burning velocity of lean methane-air flames are presented in

Fig.2.3 as a function of pressure for different air factors. The exponent b of the pressure
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dependence of the laminar burning velocity

Sl ∝ pb (2.16)

was calculated at different pressure levels pj in [46] as

b(pj) =
logSl(pj+1)− logSl(pj−1)

log pj+1 − log pj−1

(2.17)

A fit of the obtained results is presented in Fig.2.4. It is observed that the value of

the pressure exponent in the dependence of Sl differs from -0.5; in fact, it varies con-

siderably with pressure and with the air factor. Although the used reaction mechanism

is sufficiently detailed, it cannot be validated with experimental results for lean mix-

tures because flames are not stable, due to the decrease of the flame thickness with

pressure (which can be deduced from Eq.(2.12)), which makes the flame sensible to any

disturbance [43–45, 47]. For example, Rozenchan et al. [47] have validated the GRI 3.0

reaction mechanism at a leanest λ= 1.43 for pressures up to 10 bar.

In contrast to the fairly good demonstration of the capability of the classical theories

to predict the laminar burning velocity, for example, [48], in the case of the flame

thickness, there is a complication to determine it experimentally. A commonly used

definition is based on a linear temperature profile that spans the steepest tangent to the

temperature profile between Tu and Tmax (Tmax corresponds to Tad for free flames), the

so-called thermal flame thickness Eq.(2.18).

δ = (Tmax − Tu)/max(∂T/∂x) (2.18)

From numerical simulations using the above-mentioned set-up, the following link be-

tween this definition and the classic thermal theory, see Eq.(2.12), was found as

δ = c · λ(Tad)

ρu · cp,u
1

Sl
(2.19)

with c between 1.10 and 1.23 for methane [49]. A more precise link between this thermal

flame thickness δ and the classical definition of the flame thickness was achieved by

Goettgens et al. [33] with the following relationship

δ = c · λ(T 0)

ρu · cp(T 0)

1

Sl
· Tad − Tu
T 0 − Tu

(2.20)
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Figure 2.3: Simulated burning velocity of laminar free flames of methane-air mixtures,
Tu= 300 K [46].

Figure 2.4: Fitted exponent b of pressure influence on the laminar burning velocity,
methane-air, Tu= 300 K [46].
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where the value of c ranges between 0.994 and 1.179 for hydrocarbons and for methane

c= 0.994. Note that this model requires knowledge of the activation temperature T 0;

thus, the previous definition Eq.(2.19) is simpler but less accurate. In contrast, the

link for the burning velocity with the numerically obtained τc fits better, defining the

thermal conductivity under unburned conditions (Eq.(2.14)).

Other parameters in premixed flames that are important in the present work are related

to the stability of the combustion wave: the lean flammability limit, the quenching

radius and the flame stability.

Lean flammability limit

The lean flammability limit is defined as the leanest mixture that is capable of sustaining

the flame propagation in the absence of adjacent walls. The effect of pressure and

temperature on this parameter depends of the fuel kind, but for methane and most of

hydrocarbons, it is nearly independent of pressure and is extended with the increase of

temperature of unburned mixture. For methane-air mixtures at Tu = 300 K, the lean

flammability limit lies at 5%Vol of fuel, that is, at an air factor of λ = 2.0 [50].

Quenching radius

The quenching radius L0 is the minimum radius of a tube through which the flame can

propagate. The heat loss to a wall and radical quenching at the wall reduce the reaction

rate, so that it cannot sustain the flame in a confined situation [30]. As a result, confined

spaces can serve as effective flame traps for the safety against flashback. Since the wall

material affects the destruction rate of active species, an analytical determination of

the quenching radius is not feasible. Thermal theories compare well with experimental

data, for example, the proportionality with the flame thickness L0 ≈ 0.7 · δ [51]; thus,

L0 depends on fuel type (L0
CH4 ≈ 0.65mm), pressure (∝ 1/p) and initial temperature

(∝ 1/T 0.9
u ) [52, 53]. Recent investigations show that, for a tube radius below≈ 1mm, the

radical quenching dominates above the thermal quenching; hence, the wall temperature,

wall thermal conductivity and adsorptivity of species on the wall play important roles

[54]. For example, for walls at 1300 K, combustion can take place in channels with a

minimum diameter of 0.8 mm for stainless steel, 0.3 mm for alumina and 0.05 mm for

cordierite [55].
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Flame stability

The flame stability is related to the limitations of stabilizing a flame in an actual ex-

perimental situation. A common example is the stability of a laminar premixed flame

at a tube exit, that is, the Bunsen burner, where flame stability is attained if the gas

velocity at the ignition point u(L0) (near the burner rim) equals the laminar burning

velocity, as a condition to anchore the flame at the burner rim, see Fig.2.5.

u(L0) = Sl (2.21)

Figure 2.5: Sketch of velocities at burner rim for an attached laminar premixed flame.

The velocity of unburned mixture u is higher than the laminar burning velocity at

the other points towards the tube center. At the anchoring point, the value of u(L0)

depends on the ignition location L0 and the velocity gradient near the burner rim g.

The ignition of the mixture does not occur at the burner rim due to the heat losses

through the solid material, that is, the flame is quenched near the wall. The quenching

radius L0 is proportional to the flame thickness δ, which in turn can be related to the

laminar burning velocity

L0 ∝ δ ∝ am/Sl (2.22)

The velocity gradient g in a laminar stream is linearly proportional to the mean discharge

velocity ū0 and the size of the pipe,

g ∝ ū0/l (2.23)
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assuming that the velocity gradient is constant near the wall

g = u(L0)/L0 (2.24)

From the last two relationships, it is shown that the velocity at the ignition point can

be related to the mean discharge velocity

ū0

l
∝ u(L0)

L0
(2.25)

with Eq.(2.22) and Eq.(2.21), it becomes

ū0 ∝
S2
l · l
am

(2.26)

or

Pe ∝ Pe2
lam (2.27)

where Pe = ū0 · l/am, Pelam = Sl · l/am and d is the burner diameter. This kind of Peclet

criterium of flame stabilization has been demonstrated for other burner configurations

with the form

Pe = C · Pemlam (2.28)

where C and m depend on the used burner geometry. This model is useful for scaling

of burners or for operation with another fuel or changing the air-to-fuel ratio. One of

the aims of the present work is to provide a similar tool for porous burners.

2.2.2 Premixed-flame stabilization within PIM: physics overview

Premixed combustion in PIM, in comparison with free laminar flames, features con-

siderably high burning velocities S, low pollutant emissions, high radiant heating rates

and increased heat transfer due to dispersion in the gas phase, solid conduction and

solid-solid radiation. These features strongly support the use of porous burners as a

potential alternative to conventional free flame burners. The process of understanding

the physics behind the combustion phenomenon in PIM is challenging due to problems

with optical accessibility, the complexity of the phenomena involved and the randomness

of PIM. Therefore, continuous research is necessary in the areas of fluid mechanics and

heat transfer within PIM and PIM property data [12].

The increased local reaction rate of combustion in PIM leads to extension of the lean

stability limit and to higher area-specific loads. Therefore, it is possible to increase
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Figure 2.6: Sketch of coupling heat transport mechanisms in combustion within PIM.

the input power, to burn lean mixtures or low-grade fuels and to generate directly

the products at a temperature acceptable to the machinery downstream. Additionally,

owing to the solid material properties, high rates of thermal radiation are emitted, so it

is meaningful to use this kind of burner for industrial processes utilizing radiant heating

[9, 12–14].

State-of-the-art studies on combustion in PIM [56, 57] indicate that the phenomena

occurring in PIM combustion that are responsible for the above-mentioned features are

heat recirculation and hydrodynamic dispersion. A rough coupling scheme of these

transport processes around the macroscopic flame region is proposed in Fig.2.6, which

illustrates in a quite simplified way the strong interactions of reactions with transport

processes.

Since the thermal transport properties of solid matter are several orders of magnitude

higher than those of gas under atmospheric conditions, a considerable amount of sensi-

ble heat from the hot burned gas is transferred upstream by conduction and solid-solid

radiation through the PIM, preheating the incoming unburned gas. The local tempera-

ture in unburned gases increases and the combustion temperature achieved locally may

reach higher values than without this kind of preheating.

The hydrodynamic dispersion enhances both mass and heat transport in the gas phase,

owing to transverse mixing along tortuous flow paths imposed by the random geometry

of porous media. Thus, the effective coefficient of dispersion is around two orders of

magnitude higher than the molecular diffusivity under atmospheric conditions of both

species and heat. This augments the species transport and the macroscopic heating rate

of incoming unburned gas substantially in comparison with an empty pipe flow, which

leads to a flattening of the macroscopic flame thickness and a higher total conversion
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rate.

Owing to these two transport paths, namely, heat recirculation and dispersion, the total

heat release rate, that is, the burning velocity S, is increased according to the effective

transport properties in PIM, which represents at the macroscopic scale the effects of the

microscopic interactions.

The use of ceramic sponges as a flame stabilizer has several advantages over the use of

other kinds of porous media. While the high void fraction of solid sponges enhances

the radiation heat transfer, the continuous strut network allows for enhanced heat con-

duction [58]. The interface surface area is considerably larger than that of packed beds,

so the thermal communication between phases is very effective. Additionally, these

structures impose highly tortuous flow paths, which allow for a higher degree of mixing.

2.3 Morphological characterization of solid sponges

The use of solid sponges in process engineering applications that has appeared in the

two last decades seems very interesting due to several advantages over the use of packed

particles or pebbles because of the higher porosity. Their monolithic construction allows

for higher flexibility of reactor design, as well as allowing for higher conduction of heat.

In comparison to honeycombs, solid sponges allow for flow in all directions, which offers a

high degree of mixing that is beneficial for process intensification [59, 60]. The spectrum

of applications of solid sponges is quite broad, including their use as static mixers, filters

of liquid metal, filters of flue gases, catalyst carriers, solar receivers, packing in columns,

heat exchangers and porous burners [61].

There have been few descriptions of transport phenomena in such commercially available

structures owing to the geometrical complexity and random orientation of struts, which

cannot be described with nominal macroscopic parameters such as the porosity and pore

density. Therefore, their morphology must be statistically characterized, as was carried

out by Grosse et al. [7], who modeled and measured the sponges used in the present

work, among others, with different materials and structural parameters [7].

Solid sponges are cellular structures with open cells, which consist of a continuous net-

work of solid struts. There are several manufacturing processes available that determine

the morphology of a sponge. Direct foaming, void molding and replication are the most

frequently applied manufacturing techniques [62]. The sponges used in the present work

were produced by the replication technique, which consists of a coating procedure above

a polymeric precursor, also called green body, by immersion in a ceramic suspension.
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After the excess suspension is removed, the ceramic material is dried and bounded by

sintering; thus, the green body is burned and there are hollow channels along the center

of the struts left by the green body, which negatively affect the mechanical behavior and

heat conduction properties of the sponge.

Several sponge materials have been studied to support combustion in solid sponges, typ-

ically cordierite, Al2O3, ZrO2, SiSiC and FeCrAl, listed in ascending order of thermal

conductivity [63]. Some of the combustion properties of these sponge-shaped materi-

als were experimentally determined and compared by Djordjevic et al. [15] and Gao

et al. [64]. An excellent discussion about cellular material assessment for combustion

applications based on their mechanical properties and chemical stability at elevated tem-

perature was presented by Fussel et al. [63], where SiSiC appears as the most promising

material for this application because of its outstanding resistance to thermal shock, high

thermal conductivity and good resistance to chemical attacks at high temperatures [63].

A protective silica layer is formed on this material, which is the reason for the high

temperature/corrosion resistance. For temperatures below 1700 K, passive oxidation

rates tend to zero in oxidant atmospheres [65] and its mechanical stiffness stays almost

unchanged after operation aging [66].

Solid sponge structures are commonly described as follows. The interconnecting struts

have a triangular or cylindrical cross section (triangular for SiSiC). The struts are con-

nected by nodes, where four struts frequently meet (connectivity ≈ 4). Cells are

polyhedral with 12 to 14 reticulated faces. Two adjacent cells are bounded by a win-

dow. Windows, more practically called pores, are commonly pentagons. The terms

marked in bold are the attributes commonly used to describe the sponge morphology,

as seen in Fig.2.7.

Since solid sponge morphology is difficult to determine, macroscopic parameters are

regularly used to characterize these geometries, such as base material, porosity and

pore density (for example pores per linear inch (PPI)). However, in contrast to packed

beds, where the particle size is related very precisely to the characteristic sizes in the

void using geometrical models, the structure of solid sponges is randomly oriented and

cannot be easily modeled [67].

The porosity ε is the void-to-total-volume ratio; it consists of the sum of the open and

closed porosity, where the open porosity allows for fluid flow and the closed porosity is the

material micro-porosity. In the case of replicated sponges, there are also void channels

in struts that counts as closed porosity. The porosity of ceramic sponges ranges between

75 and 90%, while in metal sponges, it ranges from 90% to 98%. Assuming isotropic

media, the porosity can be considered the same as the ratio of interstitial cross-sectional
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Figure 2.7: Sponge morphological parameters, for example: SiSiC 10 PPI 87% porosity,
photo taken from [66]

area Ag to the superficial area Apim.

The pore density is commonly referred to as PPI. However, since the concept of a pore

is not well defined in solid sponges, this parameter is insufficient. A more representative

size to characterize the sponge could be the window diameter. Grosse et al. [7] found

that these kinds of solid sponge exhibit a preferential orientation resulting in cells of

ellipsoidal rather than spherical shape and the anisotropy increasing with the pore size.

Thus, depending on the direction of the experimental cut, small, medium-sized or large

windows can be observed. A statistically averaged window diameter was reported as

representative of the characteristic length dp, which is referred to in this work as the

pore diameter. The obtained dp are approximated to 1/PPI with a deviation of 20%.

The manufacture of solid sponges is generally based on foaming processes, which consist

of gas cells in a liquid medium separated by thin films with open faces pressed together

to form polyhedra with curved faces. These structures tend to form the ideal model of

the Kelvin structure, which has the most energetically favorable shape of a single cell

in a network. However, depending on the manufacturing process, they are subjected to

forces due to viscosity and hydrodynamic pressure gradients, and in the case of replicated

structures, they are squeezed with rollers to remove excess base material. This leads to

anisotropy, numerous closed windows and connected solid areas and differences of strut

shapes [7].

The strut diameter t is defined as the thickness at the middle of the strut, which is

usually the thinnest part between nodes. For sponges with the same nominal porosity

and pore density and different base material, the strut shape can differ considerably (see
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Fig.2.8).The strut shape for Al2O3 is cylindrical and t = 0.81 mm, while for SiSiC it is

triangular and considerably thinner at the middle (t = 0.69 mm) than near the nodes.

Figure 2.8: Photograph of (Left) Al2O3 and (Right) SiSiC sponges (ε = 0.87, 10 PPI)[68].

The volumetric surface area Sv is the interface surface area per unit volume. It is not

easy to determine and the manufacturers do not usually provide it. A correlation of Sv

as a function of porosity and dp, which can be more easily measured, was found by [7]

for reproduced 3D images of micro-computer tomography µ-CT of real sponge samples

and modeled structures. The correlation based on tomographic data is presented in

Eq.(2.29), which presents the same form as found for the structure model given by

Phelan and Weaire [69] with adapted coefficients.

Sv = (4.84 · (1− ε)0.5 − 2.64(1− ε))/(dp + t) (2.29)

Numerous models have been used to analyze sponge properties, such as mechanical, fluid

dynamic and heat transfer properties. Nevertheless, they appear either complicated or

inaccurate when comparing them with experimental results or results from reproduced

sponge samples obtained by tomography. Some of those models are given in [67, 70–74].

These issues have been attributed to randomly driven parameters, such as anisotropy

[7].

To avoid inaccuracy in the investigation of commercially available solid sponges due

to the random nature of their geometry imposed by the manufacturing process, von

Rohr and coworkers have developed designed sponges manufactured by selective laser

sintering in order to study more precisely the effect of morphological parameters on flow

and heat transfer processes [75–77]. The designed sponges consist of periodic tetrahedral

overlapping spherical cells, as shown in Fig.2.9. Fig.2.9 presents, from left to right, 30-

PPI and 20-PPI solid sponges and a designed sponge with cells of 2.9 mm diameter.

The designed sponge exhibits larger strut sections, lower flow channeling and negligible

deviations of properties from sample to sample compared with the solid sponges [78].
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Figure 2.9: Sponges inserted in 7-mm-diameter pipe (Left) 30-PPI sponge (Mid) 20-PPI
sponge (Right) Designed sponge, cell diameter 2.9 mm, [78]

2.4 Modeling of flow and transport processes in porous

media

The transport phenomena in porous media have recently been modeled directly at the

pore level over a large volume including numerous cells of the porous matrix, thanks to

the development of enormous modern computing resources. Even the geometry of solid

sponges has been taken from tomographic data of scanned structures for this kind of

simulation; some examples are [20, 27, 79, 80]. These methods are still rare and very

resource-demanding; therefore, the traditional volume-averaged models will remain in

wide use for a long time, but the information obtained from direct pore-level simulations

(DPLS) is valuable to clarify the phenomena occurring at the micro-scale level and to

develop further modeling on the averaged approach.

The porous media can be considered to be hierarchical in nature or characterized by

more than one length scale. Owing to these scales being disparate, the hierarchical

structure can be analyzed using the volume-averaged approach, which allows for the

transport of information over several length scales. That is, the integrated (averaged)

quantities

ε = 1
V

∫
ε∗dV

coupled with a set of proper constitutive equations representing the effects of microscopic

interactions on the integrated quantities, provide an accurate and effective basis for
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studying transport phenomena with and without reaction in porous media.

The volume-averaged method allows macroscopic study to be performed even for 1D

domains, as the model described in Chapter 5, more simply. The volume-averaged

method is derived from classical continuum physics and uses finite volumes to approach

the whole reactor’s behavior.

The volume-averaged models have been derived by rigorous mathematics in works such

as [17, 81, 82]. In order to obtain the governing balance equations, a change in scale

must be performed, as illustrated in Fig.1.2, from the meso-scale to the macro-scale,

where the meso-scale is defined as a characteristic length associated with the averaging

operator used to sample the micro-scale. This supporting scale should be compact in

the case of the conventional volume-averaging method, where the size of the supporting

volume is large enough to provide uniform distribution of parameters such as porosity.

In solid sponges, the size of the edge of a representative elementary cube corresponds

to at least two times the pore diameter [28].

The volume-averaged method allows the spatially smoothed balance equations to be

obtained and the identification of the constraints that must be satisfied for the equations

to be valid, as well as derivation of the closure problems necessary to predict the effective

transport coefficients and, finally, performance of comparison between theoretical and

experimental values.

The relevant mechanisms in combustion within PIM are: solid-to-solid conduction, con-

vection between solid and gas, solid-to-solid radiation and dispersion [68]. These mecha-

nisms are the basis for the numerical model explained in Chapter 5 and they are further

explained in Section 2.5 and Section 2.6.

2.5 Fluid flow in solid sponges

2.5.1 Fluid flow at the pore level

Although there have been only few studies on fluid flow in solid sponges at the micro-

scale, there have been some numerical and experimental works that provide representa-

tive observations for qualitative generalizations and specific quantitative trends.

Consider a flow which carries mass-less particles. Two adjacent particles, which diverge

after impinging a solid strut, will trace random deflections in their flow paths down-

stream due to interactions with the solid sponge, and in turn, the stream paths diverge

more. As a result, a considerable amount of momentum is transferred in the transverse
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direction. The average value of the velocity component in the transverse direction is

approximately 30% of the bulk superficial velocity [83]. The flow paths are longer than

the straight flow field dimension by a factor of 1.3 on average (this ratio is referred to

as flow tortuosity τ), but this value exhibits large fluctuations from one particle to an-

other, that is, the standard deviation of the tortuosity and of the particle residence time

reaches a value of 0.3 [67]. In general, porous media with lower porosity exhibit higher

tortuosity, namely, larger dimensions of the solid struts. However, organized structures

such as the one given by Kelvin exhibit a very low tortuosity value; thus, the strut

arrangement plays a crucial role and, as is depicted in Fig.2.10, the pattern of particle

trajectories in a flow through a solid sponge Fig.2.10.c. differs considerably from that

in an organized structure (Kelvin) Fig.2.10.a. The numerical solutions of the Navier-

Stokes equations of laminar flow in a randomized model structure with a proportion of

closed windows of 40% Fig.2.10.b were comparable to the numerical flow results of the

reproduced commercially available sponge Fig.2.10.c, that is, in terms of pressure drop,

statistical distributions of tortuosity and residence time [67].

Figure 2.10: Particle trajectories of air flow through a) Kelvin structure, b) randomized
Kelvin structure plus 40% closed pores and c) reconstructed sponge sample [67].

The flow in a cell being contracted by passing through a window (pore) produces a jet

structure in the downstream cell, which interacts with other jets coming from adjacent

pores in this cell (see Fig.2.11). The jet with the smallest angle to the bulk flow direction

has the highest total momentum rate and the maximum local velocity in this jet exceeds

the bulk superficial velocity1 by a factor ranging between 2.0 and 2.5 (see Fig.2.12),

depending on the dimension of the pore with respect to the cell diameter; that is, again,

the strut dimension characterizes this quality [83, 84]. The jet coherence length is limited

by the interaction with the solid sponge downstream; hence, the jet coherence length

1The bulk superficial velocity u is the velocity of the flow in the empty channel where the sponge is
fitted. This parameter is used in the present study to characterize the flow instead of the interstitial
velocity ug, which from the Dupuit-Forchheimer relationship u = ε · ug.
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is approximately 80% of the cell diameter [83, 85]. But the existence of preferential

streams (channeling) in commercial sponges allows jets to have coherence lengths up

to 2.0 the cell diameter, depending on the arrangement of the structure and the strut

dimension.

The magnitude of each of the velocity components fluctuates considerably along the

space. Independent of the porosity and pore size, the root mean square of the axial

velocity along any channel cross section is 69.2% of the bulk superficial velocity in

sponges with rounded struts (ur,RMS/u), while for structures with triangular struts, this

value increases up to 74.0% [27]2 owing to the shape of the struts of the sponges with

triangular ligaments, which show very thin dimensions at the middle and very large sizes

close to the nodes. Additionally, the sharper the edges of the triangle ligaments, the

higher the mixing amount and the pressure drop [76].

These random recombination processes, characterized by tortuous flow paths and adja-

cent fast and slow regions with considerable velocity difference, are responsible for the

high degree of the macroscopically observed phenomenon of mixing, which is dominated

by the strut dimension and shape and the structure arrangement, while for arrangement

in a solid sponge, the key points are the avoidance of preferential streams, the existence

of partly closed pores and the random orientation of struts. One has to bear in mind

that, when the mixing degree is increased, the pressure drop also increases, so an op-

timum operation point or sponge shape could be found for each application. Although

normally, pressure drop is not an important issue for most practical applications due

to the low restrictions of flow in sponges, it could be an easy way to estimate mixing

parameters indirectly from simple experimental measurement of the pressure drop of

flow in the sponge sample [86].

It is recommended that the Reynolds number used to characterize fluid flows in solid

sponges be referred to the strut dimension, as it is in the case of fluid flow in packed

particle beds, which is based on the particle size [87, 88]. Nevertheless, commonly, it is

reported in terms of the pore diameter, which is highly related and thus valid.

Fig.2.12 presents the normalized velocity fields measured by Onstad et al. [83] (with

the sponge overlay) using a magnetic resonance velocimetry technique, which allows for

the acquisition of time-averaged velocity components in the three coordinates with a

resolution of 0.6 mm. Thus, the sponge was a four-factor up-scaled sample made by

rapid prototyping based on tomography data of a real sample. The sponge was inserted

2Obtained by Pathasarathy et al. [27] from direct pore level numerical simulations of laminar flow
through a considerably large number of reconstructed sponge samples with rounded struts Al2O3 and
several samples with triangular ligaments SiSiC with different pore density (the set-up of [67] was used)
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Figure 2.11: Normalized fluid flow in designed sponges Rep = 435 (Left) PIV measure-
ments [85], (Right) large eddy simulations [76].

Figure 2.12: Measured normalized velocity magnitude in fluid flow in (Left) flow cross
section (Right) Plane parallel to bulk flow direction [83].
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in a channel with water flow and the Reynolds number based on the pore diameter was

840 and ε= 0.92.

Fig.2.11 shows normalized velocity vectors in two planes parallel to the bulk stream

direction in a designed sponge with a pore-based Reynolds number of 435. The left

side shows experimental results obtained by particle image velocimetry in a transparent

polymeric up-scaled designed sponge sample using an index matching technique to avoid

optical distortion of the porous matrix [85]. The right side of the figure shows numerical

results from large-eddy simulations [76].

Although at the micro-scale the flow in solid sponges exhibits large spatial deviations,

the strong transverse motion is the reason that the flow averaged at a representative

volumetric scale shows high homogenization and flattening of the velocity profile along

the channel cross section (see the cross section at the left side of Fig.2.12); that is, a

very flat plug profile of volume-averaged velocity is obtained with the insertion of a solid

sponge in a channel flow.

The tendency to form a flat profile of volume-averaged velocity is so strong that it can

be sustained even in a diverging geometry like the one used in the experimental work

for the present thesis. Fig.2.13 shows the numerical results of laminar flow at the micro-

scale through a reconstructed sponge of 10-PPI SiSiC obtained by Mendes [89] in a

conical channel with a diffuser angle of 20◦ (larger than that used in the present work,

16◦). Considering the average axial velocity along a cross-sectional area at position

x, the variation of this volume-averaged velocity along this conical geometry obeys a

one-dimensional flow: u(x) ∝ x−2.

Figure 2.13: Numerical velocity magnitude in fluid flow in a reconstructed sponge of
10-PPI SiSiC, in a channel of 18-mm inlet diameter and 20◦ diffuser angle: (a) central
plane parallel to bulk flow direction, (b) central plane perpendicular to (a)-plane and (c)
flow cross section [89].

The complete discussion presented in this manuscript so far refers to time-averaged

quantities. However, temporal fluctuations appear in every point of the micro-scale
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flow. The turbulence intensity in fluid flow in solid sponges increases monotonically

with the Reynolds number. When the Reynolds number based on the pore diameter

approaches a value of 150 (Re = dp ·u/ν), the normalized turbulent fluctuations become

asymptotically independent of the Reynolds number. In 10-PPI sponges, the constant

value of turbulent fluctuations is 90% with respect to the superficial bulk velocity. For

smaller pore sizes, the turbulence intensity becomes lower, and the asymptotic behavior

is not experienced even at higher Reynolds numbers (Rep < 230). These statements are

concluding remarks on the measurements of exiting flow from sponges by Hall and Hiatt

[84] and Hutter et al. [90] and measurements in the structure by Seguin et al. [91] and

Ferrouillat et al. [88].

Fig.2.14 presents the normalized turbulence intensity in a designed sponge measured by

PIV at the pore level. The left side of the figure presents the temporal fluctuations of

the axial velocity component and the right side of the figure those of the component

perpendicular to the respective shown plane. Note that the levels of normalized turbu-

lence intensities are considerably higher than in commercially available sponges. The

reasons for this are basically the avoidance of preferable streams and the larger strut

dimension in this designed sponge in comparison to solid sponges.

Figure 2.14: Normalized turbulence intensity in a designed sponge measured by PIV.
(Left) RMS of axial velocity component. (Right) RMS of component perpendicular to
the respective shown plane [85].

Indeed, the discussion on quantification of the effects of turbulence on the macroscopic

phenomena of transport is still open due to the strong effects of spatial deviations im-

posed by the static porous matrix and the fact that the size of turbulent eddies is limited

to the pore level [3, 87, 92]. De Lemos and coworkers have proposed models to consider

the spatial and temporal fluctuations in the macroscopic calculation of flow and the heat

transport in porous media by the introduction of turbulent dispersion coefficients [92–
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94]; however, the determination of effective coefficients needs to be further developed,

so this is not covered in the scope of the present dissertation.

In addition to the methods used in the literature referenced so far, there is a newly de-

veloped numerical method to study the fluid flow at the pore level in reproduced sponges

accurately, which allows for more efficient use of the computing resources because the

Navier Stokes equations are not solved; it is called the Lattice Boltzmann method. Some

studies of flow in reconstructed solid sponges using this method are [95–97].

2.5.2 Fluid flow at the macroscopic level

The following models have been experimentally and mathematically obtained to handle

volume-averaged quantities including effective coefficients and correlations.

Pressure drop

Darcy [98] was the first to carry out recorded experiments and to formulate a relationship

pertaining to the pressure drop of a flow through a porous medium. He discovered that

the area-averaged velocity in a porous medium confined in a channel is proportional to

the pressure gradient and inversely proportional to the viscosity of the fluid µ, where the

proportionality constant is called permeability K with dimensions [L2], which represents

the Darcy flow law. For higher velocity regimes, the contribution of an inertial term to

the flow resistance along with the viscous term must be included, as Forchheimer stated

[99]:
dp

dx
= − µ

K
u− cFK−0.5ρu2 (2.30)

where cF is the form drag coefficient. A very extensive review of pressure drop corre-

lations in solid sponges is given by Dietrich [100], in which the following model based

on the Ergun approach was obtained from 2,500 data values from the literature for the

dimensionless pressure drop, referred to as the Hagen number Hg:

Hg =
dp

dx

d3
h

ρg · ν2
g

= 110 ·Re+ 1.45 ·Re2 with Re =
ug · dh
νg

(2.31)

and dh = 4 · ε/Sv, for 0.1 < Re < 105.

Hydrodynamic dispersion of gas flow

Hydrodynamic dispersion occurs when one substance (e.g. a tracer) is mixed in another

(e.g. a solvent) and variations in the local fluid velocity spread the tracer over a larger
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volume than expected by diffusion alone [101]. The dispersion of gas through a porous

medium is a consequence of the combination of molecular diffusion and convection (me-

chanical dispersion) in the free space [102]. Cross mixing and heterogeneous flow fields

enhance the transport of molecules and heat by kinetics, through splitting and rejoining

events, and by dynamics, through differences in particle velocities along the streamlines

and the possible temporal fluctuations due to turbulence [103, 104].

The quantitative treatment of dispersion at the macroscopic level is based on the assump-

tion of following an analogy to Fick’s law of molecular or turbulent species transport,

with the use of an appropriate dispersion tensor D (see Eq.(2.32)). A mathematical

derivation is given by Carbonell and Whitaker [105] using the tracer pulse example. In

other words, dispersion is analogous to the turbulent diffusion phenomenon, where the

porous matrix plays the role of turbulent eddies in dispersing the flow [27, 106].

∂c/∂t+ ug · ∇c = ∇(D · ∇c) (2.32)

D =

Deff 0 0

0 Dt,eff 0

0 0 Dt,eff

 (2.33)

where the axial dispersion coefficientDeff (also called longitudinal) describes the stream-

wise dispersion and the transverse one Dt,eff describes the cross-stream dispersion. Gen-

erally, Deff is superior to Dt,eff by a factor of five, for pore-based Reynolds numbers

larger than ten [107].

Vast experimental results of dispersion coefficients are available for packed beds and

numerous theories have been proposed for the same kind of porous medium. Since the

use of solid sponges in process engineering applications is relatively new, the dispersion

effects in solid sponges have been approached as a manner of validation of the use of

existing formulations for flow in packed beds. The experimentally obtained dispersion

coefficients cannot be separated from those of turbulence contribution, so dispersion in

porous media is not fully understood, but it is generally recognized that it depends on

the Reynolds (Peclet) number [4].

Extensive experimental data for packed beds have been reviewed by Delgado [107],

who found a consistent agreement for gas dispersion in beds of mono-sized particles of

constant voidage with considerable column length for molecular Peclet numbers varying

up to seven orders of magnitude. The molecular Peclet number describes the relative
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importance between convection3 and diffusion transport as Pem = ug · dp/Dm; for this

reason, experimental data are frequently presented in logarithmic plots of Deff/Dm (or

Dt,eff/Dm) versus Pem. Here, the relative dispersion coefficients of gaseous flow in

packed beds increase monotonically with the Pem number. To achieve better resolution

of the data, the modified Peclet number based on the dispersion coefficient is defined

as Pedis = ug · dp/Deff (or Pet,dis = ug · dp/Dt,eff ). For gas flow in packed particles,

asymptotic values of

Peeff (∞) = 2 (2.34)

and

Pet,eff (∞) = 10 (2.35)

can accurately represent the data of packed beds, as the simplified models of Wakao and

Kaguei [108] present:

Deff = Dm/τ + ug · dp/Peeff (∞) (2.36)

Dt,eff = Dm/τ + ug · dp/Pet,eff (∞) (2.37)

where τ is flow tortuosity. The terms in the equations represent the contribution of

molecular diffusion and mechanical dispersion Ddis = ug ·dp/Peeff (∞), respectively. At

high velocity regimes, Pem > 10, the contribution of the molecular diffusion is negligible

[102].

A good comparison with experimental data was provided by the theory of Koch and

Brady [102], one of the most cited works among those on a large number of theories,

namely, based on the probabilistic approach.

In terms of fluid flow in solid sponges, experimental results of dispersion coefficients

are scarce. The coefficients of transverse dispersion were quantified by experiments of

tracer injection in air flow at different regimes in [109–111], which match well together

and were also fairly well predicted by the Koch and Brady theory.

Hutter et al. [75] obtained the axial dispersion coefficients by tracer injection measure-

ments of liquid flow in solid sponges. They did not observe any curvature of the trend

of dispersion coefficients with increase of the Reynolds number in the turbulent regime.

The axial dispersion coefficients of laminar gas flow have been numerically quantified

by Djordjevic et al. [15] and Parthasarathy et al. [27] in many different reconstructed

ceramic sponges by direct pore simulations. Again, good agreement with the theory

3ug is the spatially averaged interstitial velocity, dp is the pore characteristic length and Dm is the
molecular diffusion coefficient
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of Koch and Brady was observed with an appropriate definition of the characteristic

pore length, providing sufficient accuracy. Djordjevic et al. [15] proposed defining a

dispersion characteristic length ddis that could exactly fulfill the value of Peeff (∞) = 2.

Although ddis depends on the pore size dp as frequently used, this length scale ddis varies

considerably less than dp and it depends more on the shape of sponge struts and the

porosity.

In contrast, Parthasarathy et al. [27] proposed the use of transverse mixing lengths dt

as [112] and tortuosity lengths dτ :

dt = Deff/ux,RMS (2.38)

dτ = dp(4.5 · τ − 4.4) (2.39)

which yield constant values of Peeff , also nearly two. ux,RMS is the mean root square

of axial velocity along the cross section. The values of ux,RMS/u were found to be the

same as written in Section 2.5.1. For a brief description of the used method, please see

the Appendix A and the work of Maier et al. [113]. Fig.2.15 presents the numerically

obtained results of [27] for the Peeff based on the transverse mixing length dt of gas

flow in reconstructed solid sponges compared with Eq.(2.36).

The asymptotic analysis of Koch and Brady [102] for randomly organized particles intro-

duced the following correlations for the axial and the transverse dispersion coefficients,

respectively:

Deff/D
′
m = 1 +

3

4

Pe′m
2

+
π2

6
(1− ε)Pe

′
m

2
ln(Pe′m/2) (2.40)

Dt,eff/D
′
m = 1 +

63
√

2

320

√
1− εPe′m/2 (2.41)

where D′m = Dm/τ and Pe′m = ug · dp/D′m.

2.5.3 Flow instabilities in porous media

Research about processes taking place in gas flow through a porous medium at temper-

atures above 1300 K have been developed in recent decades motivated on applications

for solar receivers [114]. Pitz-Paal et al. [115] showed theoretically the existence of

flow instabilities that had been observed in experiments for some conditions. Consider

that, for any reason, the flow through a pore is reduced in the presence of a source of
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Figure 2.15: Modified Peclet number versus molecular Peclet number, both based on
the transverse mixing length dt compared with Eq.(2.36). A magnified view is shown in
dashed box [27].

heat; the temperature around this pore increases, which also increases the flow resis-

tance. Depending on the effect of temperature on the flow resistance, the flow might be

disturbed. Fortunately there is a large range of parameters which can lead for a save

operation of solar receivers [114]. As influencing factors, the radial heat losses and the

type of effect of velocity on the pressure drop in the porous medium, that is, either a

linear or a quadratic dominated relationship, were identified.

The thermo-acoustic instabilities in combustion within PIM has been not else published

than by Vroemen et al. [116].

2.6 Heat transport in solid sponges

Although extensive studies have been carried out on heat transfer in porous media, most

of them mainly focused on packed beds and granular materials with porosities in the

range of 0.4 − 0.6. However, solid sponges have very particular features, such as high
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porosity (ε > 0.7) and unique open-celled stiff cellular structure. Consequently, most

previous studies on packed beds are not applicable to solid sponges [117]. The most

comprehensive discussion of transport and radiation characteristics of cellular materials

was probably reported by Kamiuto in 2008 [118], who reviewed previous experimental

and theoretical work and suggested correlations for all the model input data [4]. Some

other very comprehensive works and reviews of transport phenomena in solid sponges

are [117, 119, 120]. Typically, studies of heat transport are accomplished with the com-

bination of conduction, radiation and convection between phases and wall convection

because they all occur in some applications, such as heat exchangers. In the following re-

view, the discriminative basic analysis of interface convection, conduction and radiation

are presented separately, in relation to the application of the volume-averaged model

used in Chapter 5 for the study of flame stabilization within solid sponges. Studies

carried out at the pore level in solid sponges have been stressed, since they are few in

number and are proceeding to extensive study. Wall convection has been excluded from

the focus of this work since the use of adiabatic walls has been attempted. The article

of Bianchi et al. [80] refers to that topic.

2.6.1 Interface heat transport

For some applications of flow within a porous medium, such as porous burners, local

thermal equilibrium between phases (the same temperature on both phases) cannot be

assumed due to significantly different thermal properties of both phases and/or due to

a high temperature increase in the reactor.

To describe the interface heat transfer due to convection accurately, the control volume-

averaged energy equations are derived separately for the fluid and solid phases. The two

equations are coupled by introducing the interface heat transport term. The correspond-

ing heat transport coefficient α in solid sponges has been determined by experiments and

theoretical modeling in several works for a wide range of velocities, sponge structures

and materials. The results have been commonly correlated for the Nusselt number Nu

as function of the Reynolds number based on the pore-level characteristic length, which

has not been defined in a unique way. The pore diameter, strut diameter and hydraulic

diameter, among others, have been used as characteristic lengths.

The experiments can be classified in terms of a transient or steady state. A recent

review of correlations obtained by experiments is included in the work of Dietrich [121],

who measured time-dependent temperature profiles of air and solid, with air at 373 K

flowing into a cold sponge in an insulated channel. Assuming negligible heat conduction

effects compared with convective effects and knowing property data like Sv from Grosse
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et al. [7], the heat exchange coefficient α was obtained from the energy equations of gas

(Eq.(2.42)) and solid (Eq.(2.43)).

∂Tg
∂t

= −ug
∂Tg
∂x
− α

ρgcp,g

Sv
ε

(Tg − Ts) (2.42)

∂Ts
∂t

=
α · Sv

ρscp,s(1− ε)
(Ts − Tg) (2.43)

Note that the convective term is directly influenced by the volumetric surface area Sv,

which increases with the reduction of the pore diameter dp. The results have been

correlated in this form:

Nu = α · dh/λg = c1 ·Rec2 · Prc3 with Re =
ug · dh
νg

(2.44)

with dh = 4 · ε/Sv [122]. This factor c1 is directly related to the porosity and corrected

by the Re number, while the pore size does not have a considerable effect on α.

c1 ≈ 0.59 · ccorr with ccorr = ε1.5

(1−ε)5/8 ·
(

Re−1
Re−1000

)0,25

c2 = 2/3 and c3 = 1/3.

A variation of this correlation was presented by Martin [123] with the analogy between

heat and momentum transfer similar to the Léfêque equation for packed beds. This

correlation allows the prediction of α from measurements of pressure drop. Dietrich

[121] found the following correlation for his data:

Nu =
α · dh
λg

= 0.344 · ccorr ·Hg1/3 · Pr1/3 (2.45)

where Hg is the Hagen number Hg = dp
dx

d3
h

ρg ·ν2
g
.

Other experimental works of convection in solid sponges have also stated correlations of

the form of Eq.(2.44), such as [124–129].

Zarzalis et al. [28] performed direct numerical simulations detailed at the pore level in

reconstructed ceramic sponges with different pore diameters, porosities and materials.

The method is described in the Appendix A. The results have also been correlated

with the form of Eq.(2.44), with Re = ug · dh/νg. The coefficients in this correlation

were determined for each of the samples simulated, as shown in Tab.2.1. Note that the

increase of porosity has a direct effect on the correlating constant c1.

Since determination of the volumetric surface area Sv is not easy, the utilization of a

volumetric heat transfer coefficient
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Table 2.1: Nusselt number correlation for flow within solid sponges [28]

Pore density PPI Porosity(%) c1 c2 c3

10 (Al2O3) 80 3.86 0.33 0.18

20 (Al2O3)

75 2.9 0.35 0.20
80 5.0 0.22 0.08
85 5.5 0.23 0.06

30 (Al2O3)

75 4.8 0.17 0.12
80 6.17 0.22 0.08
85 6.23 0.22 0.08

45 (Al2O3) 80 3.10 0.36 0.25
20 (SiSiC) 85 5.14 0.30 0.24
10 (SiSiC) 85 3.7 0.38 0.25

αv = α · Sv

has been preferred in other studies [130–134]. Nakayama et al. [135] developed the

following correlation based on the volume-averaged theory, which was validated by com-

parison with all the empirical results of this kind.

Nuv = αv · d2
m/λg = 0.007

(
ε

1− ε

)2/3

·Re · Pr with Re =
u · dm
νg

(2.46)

where dm =
√
ε · π/PPI is the mid-average pore diameter.

It should be noted that the volumetric heat transfer coefficient αv is sensitive to the

porosity of the solid sponge, but is fairly insensitive to other factors [135].

2.6.2 Thermal conduction in solid sponges

Conduction heat transfer occurs within the solid phase as energy quantum released

or absorbed from elementary vibration of atoms in the lattice. Fouriers law of heat

conduction describes the relationship of one-dimensionally conducted heat flux:

q̇cond = λ · ∂T/∂x (2.47)

where λ is the thermal conductivity. Solids in general have a thermal conductivity that

is several orders of magnitude higher than that of gases.

In the macroscopic analysis of the heat transfer in PIM, effective coefficients of transport

are included in the closure equations (see Chapter 5) obtained by the volume-averaged

method. Therefore, Eq.(2.47) must refer to average heat flux and average temperature
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along the cross-sectional area of the domain, either solid or gas, or both, depending

on the used approach. In the case of the solid separately (in the so-called two-energy

equation model), the effective thermal conductivity of PIM λs,eff is lower than the

one proper of the material due to the longer tortuous heat flux paths through the

interconnected struts of the sponge. For the quantification of these paths, the tortuosity

τs of the heat flow through the porous matrix describes the ratio between the path length

of heat flow and the straight path length, that is, the sponge thickness in the direction

of bulk heat flow. Accordingly, the effective thermal conductivity is decreased by this

factor:

λs,eff = λs/τs (2.48)

The theory of Lemlich [136] of limiting electrical conductivity of a polyhedral structure

of high porosity yields a value of τs = 3.0 for the ratio of the bulk (volumetric) density

to the bulk electrical conductivity. This result was compared with extrapolations of

published experiments.

The tortuosity of conductive heat flow in solid phase of sponges was quantified by Zarza-

lis et al. [28] by DPLS of heat conduction in reconstructed sponges. The results are

shown in Tab.2.2. The effective thermal conductivity is found to be quasi-insensitive to

the porosity or the pore size; in contrast, it is very sensitive to the shape of the sponges,

namely, the base material. While the SiSiC sponges exhibit very thin struts at the mid-

dle, the struts of the Al2O3 sponges are more uniform and the strut diameter is greater

in the middle (see Fig.2.8). Accordingly, the reduction of the thermal conductivity in

SiSiC sponges is considerably higher than in Al2O3 sponges; the average τs among the

examined sponge samples of each material are 3.8 and 2.6, respectively.

Table 2.2: Solid phase tortuosity of conductive heat flow for ceramic solid sponges [28]

PIM Porosity(%) τs = λs/λs,eff
10 PPI Al2O3 80 2.77

20 PPI Al2O3

75 2.20
80 1.87
85 2.96

30 PPI Al2O3

75 2.86
80 2.57
85 2.57

10 PPI SiSiC 85 3.76
20 PPI SiSiC 85 3.94

Since determination of the effective solid conductivity with DPLS has been carried

out very recently and that an insufficient number of sponge samples were studied, the
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two-phase or overall thermal conductivity λeff,2−ph has been quantified in the past by

experiments, for example by Calmidi and Mahajan [137], and theoretical models, for

example Boomsma and Poulikakos [71]. This parameter is directly used in the volume-

averaged model with only one energy equation, where gas and solid phases are considered

in local thermal equilibrium as a sole continuum, that is, their temperature is the same.

The overall conductivity can be related to λs,eff . If the heat conduction in the solid and

fluid phases occurs in parallel, then the overall conductivity is the weighted arithmetic

mean of the conductivities (λs,eff +λr) and λg,eff (where λr represents the contribution

of radiative heat transfer between solid surfaces given by the Rosseland approximation):

λeff,2−ph = (1− ε)(λs,eff + λr) + ε · λg,eff (2.49)

In addition, for the gas,

λg,eff = λg + λdis (2.50)

the contribution of thermal dispersion due to convective mixing in the gas phase is

considered,

λdis = adis · ρg · cp,g (2.51)

which can be obtained in relation to the velocity Eq.(2.36) assuming that there is no

preference of mass dispersion over thermal dispersion adis = Ddis; that is, in analogy to

the micro-scale problem, the dispersion Lewis number is unity.

For still gas, there is no contribution of dispersion in the ideal stagnant case. For low

temperatures, highly conductive materials, like aluminum, and/or low porosities, the

contribution of radiation can be neglected [120]. If the conductive effects are analyzed

separated from dispersion and radiative effects, it is observed that the λs,eff and λg,eff

commonly differ by several orders of magnitude, but in high-porosity structures, the

contribution of λg is not negligible (see Eq.(2.49)).

The overall thermal conductivity of still fluids in tetrahedral structures with cubical

nodes has been modeled by Boomsma and Poulikakos [71], who validated the model

with the measurements of Calmidi and Mahajan [137]. This model states that the

overall thermal conductivity considerably depends on the porosity, while the increase

of the pore diameter slightly reduces it. The results of this model λeff,2−ph compare

well with the DPLS results of λs,eff in Tab.2.2, while using Eq.(2.49) to relate the two

parameters.

Some of the studies of stagnant overall effective conductivity of solid sponges include

[70, 119, 120, 138–140]. The results of the model of Bhattacharya et al. [119] show
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that the overall conductivity depends strongly on the porosity and the ratio of cross

sections of the strut to the node. However, no systematic dependence was found on

PPI effects. Experimentally, the conduction phenomenon cannot be separated from

other heat transport effects. For example, Zhao et al. measured the overall effective

conductivity of FeCrAlY sponges at 500-800 K at atmospheric and reduced pressure and

found that the contribution of natural convection is very significant.

The effect of thermal dispersion, due to forced flow, on the overall thermal conductivity

of sponges has been experimentally studied by [118, 125, 141, 142]. Dietrich et al.

[142] recently measured the overall effective conductivity of ceramic sponges with and

without forced flow of air. The results correlate well, with a correlation similar to

Eq.(2.49), although the contribution of radiation was not analyzed, similarly to what

Calmidi and Bahajan did [125], to correlate the experimental data of Hunt and Tien

[143] of thermal dispersion in fibrous media. The correlation coefficients of [125] fitted

well in the theoretical and experimental work of Edouard et al. [141], who studied

sponges of SiC and polyurethane.

Since the combination of different heat transport mechanisms cannot be insulated from

conduction in experiments, reliable models are needed, such as the DPLS presented by

Zarzalis et al. [28] and Bianchi et al. [120], for reconstructed real sponge samples,

and Wang and Pan [144] for randomly generated structures. Wang and Pan [144] used

the Lattice Boltzmann method to obtain the stagnant overall thermal conductivity of

polyurethane open cell foams. To model an approximately realistic porous structure,

a random generation-growth method by computer algorithms was developed. After

consideration of radiation, the numerical predictions of effective thermal conductivities

agree well with their experimental data. The importance of the contribution of radiation

decreases as the porosity increases.

2.6.3 Thermal radiation

Because of the high temperatures reached at combustion, the emission and absorption

of electromagnetic waves in the form of radiation play an important role in heat transfer

between solid surfaces that are at different temperatures. The scope of the present

work is not to discuss radiative heat transfer and/or characteristics needed to study

it in PIM. The reader is instead referred to reviews on this topic [117, 118, 145, 146].

The spectrum of methods to quantify thermal radiation effects is wide. An outline of

methods used most widely in modeling combustion in porous media from 1991 to 2003 is

given by Hayashi [147]. The Rosseland equation, for example Glicksman et al. [148], the
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Monte Carlo method, for example Hackert et al. [149], and the P-3 spheric harmonics

approximation, for example Diamantis et al. [150], are some of the best known methods.

The continuum approach is discussed here briefly, which is consistent with the volume-

averaged model used in Chapter 5 to simulate the flame stabilization within sponges.

The Rosseland equation is the simplest method to quantify the solid radiation in porous

media under the continuum approach, since an analogy with the heat conduction equa-

tion is enabled, which avoids the necessity of solving a radiation transfer equation.

q̇rad = λr · ∂T/∂x (2.52)

where λr is called the radiation conductivity:

λr = (16 · σ · T 3
s )/(3 · β) (2.53)

The Rosseland approximation is valid for optically thick media L · β > 3 [151], where

β is the extinction coefficient, L the medium thickness and σ the Stefan-Boltzmann

constant.

The extinction coefficient, which is the sum of absorption and scattering coefficients,

is the inverse of the penetration thickness of radiation [152]. Experimentally, this

coefficient could be estimated by spectrophotometric measurements, integrating the

monochromatic extinction coefficient over the whole spectrum [120]. However, this ap-

proach is quite complex and therefore empirical correlations were carried out in the liter-

ature based on geometrical assumptions of the sponge structure, for example, [138, 153–

155]. These works propose the following correlation to calculate extinction coefficients

of sponges

β = 2.656
√

1− ε/dp (2.54)

where the correlating constant and the exponent of the solid fraction (1− ε) have been

taken from Loretz et al. [155].

These models are commonly based on the geometrical optics theory. In comparison with

the experimental results, this theory predicts the extinction coefficients; thus, corrections

due to structural topology and material surface conditions are required.

The most accurate way of quantifying these coefficients is the use of the tomography

data of sponge samples to be used in ray tracing methods, as done by Parthasarathy et

al. [26], Petrasch et al. [79] and Loretz et al. [155]. A database of optical parameters

of numerous ceramic sponges generated by this method can be found in [26].
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In summary, smaller pore diameters lead to higher extinction coefficients because, in

porous media, the void structure is responsible for the pronounced heat transfer through

radiation and, with smaller pore diameters, the emitted rays are more easily obstructed

by the solid.

To close this section on heat transfer in solid sponges, one can conclude that the stiffness

of the geometry of these structures and the random orientations and shape of their struts

make determination of heat transfer coefficients in solid sponges difficult, for which

considerable uncertainties cannot be completely avoided. The most accurate method is

direct pore-level simulation in reproduced sponges using tomography data; nevertheless,

this is complicated. The simulation of numerous samples and/or larger-sized samples

is encouraged by the author as a possible way to develop more accurate database and

correlations for transport parameters.

2.7 State of the art of combustion within PIM

The purpose of this section is not a detailed review of the literature related to the

present topic, so it only includes references to relevant reviews and some of the most

cited works during the history of the development of our understanding of the processes

behind flame stabilization within PIM combustion.

The first reported experimental observations about the manifold acceleration of com-

bustion within interstices and pores were performed in the early 20th century by Bone et

al.[156, 157]. Such observations were not reported again for almost half a century until

Shaulov [158] and De Soete [159]. De Soete [159] has established a semi-empirical model

to predict the filtration flame front velocity accounting for solid conduction, convection

and radiation heat transfer. Theoretically, the physical effect was described as heat

recirculation through a solid to preheat the unburned mixture, which was referred to as

an excess enthalpy flame [13, 160]. Then, the combustion within PIM was modeled as a

planar flame using the volume-averaged method by Takeno and Sato [161]. The effects

of dispersion in porous media on the flame structure was not taken into account as a

relevant process for two decades, until it was included in the model by Henneke and

Ellzey [24]. Other kinds of model have recently been proposed, such as direct pore-level

simulations; nevertheless, this is a newly developing field that can be predicted to be a

major focus of research in the near future. The work of Viskanta [4] and Mujeebu et

al. [16] present reviews of only modeling of combustion in PIM, which are actualized at

recent time.

The general study of combustion in PIM, that is not only modeling, began to be reviewed
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in the decade of 1990. Some of the first reviews were done by Trimis and Durst [9], Howell

et al. [12] and Viskanta [162]. Subsequently, the frequency of publication of articles and

book contributions on related topics has increased considerably, although to date no

book on combustion technology has dealt with this topic. Some excellent newer reviews

are [2, 5, 10, 11, 14, 22].

One of the motivations of this study is the scarcity of studies performed at elevated

pressures. At atmospheric pressure, there is an abundance of experimental and nu-

merical (mostly volume-averaged models) data in the literature, including on pollutant

emissions and temperature distributions along PIM. However, the estimation of burning

velocity S has not been reported in many studies [15]. In contrast to the extensive stud-

ies performed under atmospheric conditions, at elevated pressure, the flame stabilization

in PIM has been studied only in [163, 164].

Noordally et al. [163] studied ignition and steady characteristics of combustion of

methane-air mixtures at lean conditions up to 11 bar in reticulated PIM made of par-

tially stabilized zirconia or yttria-stabilized alumina. For the study of flame stabilization

at elevated pressure, the velocity of unburned gases uu was kept constant at 0.49 m/s,

as well as the air-to-fuel ratio (λ=2.2) and the inlet temperature (T0 = 520 K). The

temperature along the burner axis was measured using thermocouples. The flame was

stabilized at the interface between a flame arrestor and the PIM at 5 bar. It was observed

that, at a pressure of 10 bar, the flame was stabilized within the flame arrestor, which

was interpreted as an increase of S with pressure. It was reported that the existence

of super-adiabatic conditions in PIM compensated for the negative effect of pressure on

the burning velocity in premixed methane-air laminar free flames.

Bakry et al. [164] studied the effect of mixture composition (air factor λ), initial tem-

perature and pressure on the flame stabilization in a conical PIM made of Al2O3 lamel-

lae, burning also methane-air mixtures at lean conditions up to 9 bar, using the same

methodology as [163]. The flame was stabilized in the conical PIM, but for the study

of the pressure effect, the flame was stabilized at the inlet of the PIM. The axial tem-

perature profiles along PIM for T0 = 300K showed that the flame position was shifted

upstream at 3 bar for λ = 1.4 and λ = 1.6, while for λ = 1.8 and λ = 2.0, it stayed fixed

for all pressures analyzed. The results are interpreted as an increase of S with pressure,

which is less pronounced for leaner mixtures.

The study of combustion processes in PIM has rarely been conducted at the pore scale.

Kiefer et al. [165] developed a non-intrusive technique to measure the temperature of the

gas phase with high resolution. Chen [166] reported the use of electrical capacitance to-

mography to depict the meso-scale structure of the flame, which showed different modes
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of combustion, such as unsteady combustion. The study of thermoacoustic instabilities

of combustion in PIM has been developed by Vroemen et al. [116], who used a OH∗

visualization technique to indicate the heat release rate and to generate the acoustic

transfer function of the porous burner. As any process that is accompanied by gas ex-

pansion, combustion in porous media may become acoustically unstable when a burner

is inbuilt into the acoustic system of a combustor.

Owing to such experimental difficulties, besides the restrictions imposed by PIM on

the accessibility of measuring appliances and the complexity of the physics behind the

combustion process in PIM, the development of porous burner technology must be ac-

companied by numerical models that can explain the involved relevant phenomena [12].

The majority of the models applied so far are based on 1D volume-averaged methods,

while just a few have been applied upon 2D and 3D domains [16]. Especially at the 3D

pore level, few studies about combustion have been reported [20, 167, 168].

In the 1D simulations, detailed chemical mechanisms have generally been employed and

have included examinations of thermal transport [149], material properties [56, 169, 170]

and the complexity of combustion chemistry [171, 172].

1D models assume a 1D flame front condition without radial heat losses, flame stretch-

ing and spatial temperature variations. These assumptions may become inaccurate in

porous burners with a complex geometry. In such a situation, 1D relations will no longer

be valid and multidimensional models are inevitable [16].

Computational fluid dynamics CFD software based on the volume-averaged approach

has been used to study hydrocarbon partial oxidation by Al-Hamamrea et al. [173]

and the influence of ceramic foam structures upon dispersion by Steven et al. [174]. A

volume-averaged method (2D) for the calculation of premixed methane combustion and

heat transfer in porous burners with built-in heat exchangers is presented by Malico and

Pereira [175, 176]. They also investigated the influence of the radiative properties on

some flame characteristics. Other versions of CFD software have been used by Xie et

al. [177] and Liu et al. [178] to study the pressure loss and temperature distributions

in two different systems.

2D DPLS were carried out in 2D arrays [149, 179]. Hackert et al. [149] developed

a model to analyze the influence of multidimensionality on flames within two simple

porous structures: honeycomb (no dispersion) and cross plates (solid-solid radiant heat

recirculation). Sahraoui and Kaviany [179] studied combustion within discrete or con-

nected square cylinders and found that multiple local burning velocities exist within

a pore imposed by the hydrodynamics and the solid thermal conductivity. Compared

with the volume-averaged method, the DPLS predicted lower bulk burning velocity and
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higher super-adiabatic temperature. Although 2D geometries are simpler to model than

3D complex structures, the DPLS of combustion in 2D geometries has not been further

studied. Combustion in micro-channels is a research field with high similarity to the case

of combustion within PIM, whose study has increasingly been carried out with direct

numerical simulation and detailed reaction mechanisms [19].

3D DPLS of flame stabilization within PIM has rarely been performed. Some researchers

used non-conventional modeling techniques, such as flamelet-generated manifolds by Oi-

jen et al. [180, 181], which is a combination of two approaches to simplify flame cal-

culations, namely, a flamelet and a manifold approach, to construct simplified kinetic

models that account for the pore-level processes. Others introduced the Lattice Boltz-

mann method for the simulation of processes of combustion of soot by Yamamoto et

al. [21, 167] and non-reacting flow by Zeiser et al. [182], within complex geometries,

due to the common belief that such geometries have to be simplified through various

approximations in order to be applicable in finite-volume calculations. Furthermore, a

3D mesh-based microstructure representation algorithm for the random generation of

PIM geometries under some nominal structural parameters has been developed by Liou

et al. [168] in order to provide efficient cost-effective use of computing time. To the best

of our knowledge, the real structure of a sponge like PIM has not been used for DPLS

of combustion within PIM, as presented by Bedoya et al. [20] and in the Appendix B.

A brief review of the history of modeling flame stabilization within PIM, where re-

searchers attempted to quantify the different heat transport mechanisms, is presented

in Tab.2.3. The importance and sensitivity of different physical processes of combustion

in PIM is indicated with ++, + and - for very important, important and less important,

respectively.

Table 2.3: Importance of heat transport mechanisms in PIM combustion modeling

Rad. Rad. Heat cond. Heat cond. Dispersion Heat
solid gas solid gas convec.

+ - ++ - ++ +
[169, 183, 184] [161, 185] [161, 185–187] [15, 56, 57] [15, 56] [161, 187, 188]
[58, 150, 186] [188, 189]

In conclusion, it can be postulated that flow dispersion, solid conduction and solid-to-

solid radiation are the controlling heat transfer mechanisms during combustion within

PIM.

Many researchers achieved good agreement with experiments, regarding emissions and

spatially averaged temperatures. However, three-dimensionality of the flow and flame
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front in porous media has not been considered. These considerations, including the

radial and axial spatial variations of the flame front (temperature distribution) can

be predicted using DPLS, which can be applied under conditions where the capability

of prediction of models based on the volume-averaged method is limited. All of the

publications about the combustion in PIM lead to the conclusion that there is a wide

scope for future works, especially experimental and numerical studies at the pore level.



Chapter 3

Description of experimental

methodology

A conical PIM was used to stabilize the flame of lean premixed air-natural gas. Fixed

thermocouples were placed inside the PIM at the mid-radii. A closed ceramic pipe was

located through the PIM axis to allow for the displacement of a movable thermocouple

along it. The hardware involved and the procedure used are presented in this section.

3.1 Experimental set-up

The used test rig consisted of an air-flow-homogenizing segment, a mixing system, a

flame arrestor, an insulated porous burner, water-cooled housing, a gas analysis system,

a gas cooling system, a throttling valve and a silencer, see Fig.3.1.

The air was discharged perpendicularly in the bulk flow direction through four holes of

2 mm in diameter (see Fig.3.2). The air flow was homogenized using two perforated

plates with holes of 2 mm in diameter separated by 4 mm in a rhombus array. The air

and the gas were mixed through a pipe with an inner diameter of 27 mm.

The fuel injection was carried out through eight equally spaced ports in cross flow to the

air flow. The port diameter was 0.8 mm. It was dimensioned to allow for the velocity of

fuel to be greater than the air velocity by at least a factor of two, in order to penetrate

effectively in the air cross flow [190]. Downstream, a static mixer was mounted. It had

two sets of counter swirl blades, as shown in Fig.3.2, fixed in the pipe with an inner

diameter of 27 mm. The mixer was constructed by the company Lewa Hov Pumps and

Systems, Germany. For a pressure drop in the mixer of 0.5 mbar, the used static mixer



50 Description of experimental methodology

Figure 3.1: Construction drawings of the used test rig

allows for a mixing quality of 95%, as reported by the manufacturer, while in the present

experiments, the pressure drop in the mixer ranges between 5 and 60 mbar.

The mixing quality was tested by analyzing a gas sample taken at the downstream end

of the conical burner at different radial locations using flowing mixtures of 2% gas in air

without combustion. This was carried out at 1.0 and 4.0 bar for a mixer pressure drop

of 5 mbar. The obtained radial profile of the methane molar fraction was flat, without

any deviation above the measuring error (2%).

The flow-homogenizing segment and the mixing module were insulated with high-temperature-

insulating material to reduce heat loss from the preheated unburned gas to the environ-

ment.

After the unburned gases were mixed, they flowed through the flame arrestor and then

through the conical porous burner. The flame arrestor was an additional safety feature

to avoid flame propagation towards the mixing system in the case that the flow rates

drop, so that the flame wave could displace the conical burner upstream (flashback).

The flame arrestor was a perforated plate with holes placed in a rhombus array with

a diameter of 0.75 mm, which is smaller than the flame quenching distance. A gap of

2 mm was kept between the flame arrestor and the porous media to avoid conductive

heat transfer from the porous matrix to the flame arrestor in the case of flashback.
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Figure 3.2: Construction drawings of the used discharge and mixing system

Figure 3.3: Construction drawing of the used porous burner, dimensions in mm
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The convective flame stabilization technique was used, based on the continuous increase

of the cross-sectional area. The flame is stabilized in the PIM at an axial position

where the burning velocity and the fresh gas flow velocity are equal. The PIM has a

conical shape, as shown in Fig.3.3 and Fig.3.4. The flame was stabilized at locations

further than 100 mm from the PIM inlet face; hence, this PIM segment contributes to

pre-mixing of the air with the natural gas.

The dimensions of the burner in mm are presented in a scaled drawing in Fig.3.3.

Basically, it has a conical shape with a vertex angle of 16◦, with 10-mm-long cylindrical

segments at the extremes to enable its fixation in the combustor. The porous matrix

has a central hole along the axis with a diameter of 16 mm. A closed ceramic pipe was

inserted in this hole for temperature measurements. The ceramic pipe was made of 99%

alumina, with outer and inner diameters of 15 and 12 mm, respectively. The pipe was

closed with a metal lid at its bottom in order to avoid any flow of unburned mixture

through the pipe.

Fig.3.4 shows a photo of the used porous burners. They were commercially available

reticulated sponge-like structures made of SiSiC with 87% porosity. The matrix with

linear pore density of 20 pores per inch (PPI) appears on the left side of the picture,

while the 10-PPI matrix is on the right side.

The end shapes of the used porous burners were supplied by the manufacturer Erbicol

S.A. following the presented drawing. The porous medium was produced by the repli-

cation technique. The end monolithic shape was obtained by cutting machining with

high precision. Nevertheless, the dimensions of diameters and lengths of the delivered

models differed by ± 1 mm.

Fig.3.5 shows a photo of PIM samples with the same material and structural parameters

as used in the porous burners in the present work. The 20-PPI sample is on the left

side and the 10-PPI sample on the right side. The morphological parameters measured

by [7] are presented in Tab.3.1.

Table 3.1: Morphological parameters of used sponges (87% nominal ε) measured by [7]

Pores per inch Porosity Closed p. Pore dia. Strut dia. Vol. Area
PPI [1/inch] ε [%] εclosed [%] dp [mm] t [mm] Sv [1/m]

10 87.2 5.6 2.181 0.695 477
20 87.1 2.6 1.603 0.470 683

The porous burner was held by a high-temperature-insulating material made of machined

alumina firebrick to reduce the heat loss from the reaction zone to the water-cooled



Experimental set-up 53

Figure 3.4: Photo of the used porous burners: left side 20 PPI, right side 10 PPI.

combustor housing.

The combustor module was connected with the water-cooled plenum with water-cooled

flanges. An O-ring made of brass was placed between the flanges to seal the connection.

The reactor pressure was artificially increased using a throttling valve downstream. Since

this valve can withstand temperatures up to 800 K, cooling of flue gases was required.

For that, six sprays nozzles were used to inject atomized water into a cooling tower.

Remaining liquid water from the cooling tower was disposed regularly into the sewage

system using a low/high-level signal-controlled valve. The flue gases were disposed into

a gas extraction system through a silencer.
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Figure 3.5: Photo of samples of the used porous structures SiSiC ε= 87%: left side 20
PPI, right side 10 PPI.

3.2 Measurement techniques

To measure the natural gas mass flow rate, two different digital mass flow meters were

used in series with different measuring ranges in order to provide sufficient accuracy for

a wide range of power. The instruments were from the company Brooks, model S8, with

accuracy of ±1% mass. The maximum measuring range limits were 3 and 5 kg/h. They

were specially calibrated by the supplier for the chemical composition of the natural gas

used.

The composition of the natural gas used is continuously adjusted by the public utility

company of Karlsruhe to keep a constant Wobbe Index. We regularly monitored the

composition, which is almost constant and has the following components in %Vol: 90

CH4, 4.4 C2H6, 1.0 C3H8, 3.0 N2, 1.6 CO2. For this gas the lower heating value and

stoichiometric air-to-fuel ratio are respectivelyHl = 45.6 kW, AFRst = 15.65 kgair/kgf .

To measure the air flow rate, two flow meters in series were also used. One had the

maximum range limit of 120 kg/h, with the same model and accuracy as that for natural

gas. The other mass flow meter was from the company Bronkhorst, model In-Flow, with
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accuracy of ±7 kg/h and maximum limit of 1000 kg/h. All of the used flow meters were

based on the calorific working principle. The temperature of unburned mixture was

measured with K-type thermocouples. Piezoelectric transducers were used to measure

pressure in the porous burner (measuring limits 0-20 bar).

To detect the flame position and the flame thickness, two temperature measurement

configurations were used, namely, fixed thermocouples inside the PIM and a movable

thermocouple inside a central closed pipe along the PIM axis. S-type thermocouples were

used. The platinum and platinum-rhodium wires were 0.3 mm in diameter. The thermo

wires were directed and protected against catalytic reactions by a two-hole ceramic pipe

made of 99% alumina with an inner diameter of 0.6 mm and an outer diameter of 1.6

mm for the fixed thermocouples and 3 mm for the movable one. The wires were bound

together at the tip by a welding pearl of approximately 0.7 mm in diameter. This type

of thermo wire can withstand up to 1900 K.

A total of 32 S-type thermocouples were inserted into the PIM at fixed positions along it,

for which holes of 2 mm in diameter was drilled in the PIM using a special water-cooled

grip system. The location of the thermocouple pearls in the conical burner was at the

mid-radii of the local cross section. Due to restrictions of space, it was not possible to

align all the thermo wires in a unified angle, as can be seen in Fig.3.6. For the same

reason, the axial spacing between thermocouples in the zone for flame stabilization could

not have a constant value; it ranged between 4 and 9 mm at the mid-region (100-200

mm from the inlet) and up to 20 mm at the extremes. The axial, angular and radial

locations of the inserted thermocouples are presented in Tab.3.2, where the axial location

is referenced to the burner inlet (beginning of SiSiC), see Fig.3.7.

The configuration for measurement of temperature inside the ceramic pipe is shown in

Fig.3.8. A photo from the top view of the 10-PPI sponge with the ceramic pipe is dis-

played in the figure, as well as a detailed view of the thermocouple inside the pipe, with

the assumption that good centering was provided. The thermocouple can be displaced

as desired along the burner to enable higher resolution of the temperature profile, which

could not be attained with the other configuration (temperature measurement in PIM).

A water-cooled system to hold and displace the temperature sensor was employed at

the top of the combustor plenum.

The gas analysis system for the measurement of dried molar fractions of O2, CO, CO2

and NOx consisted of a stationary gas probe, a pressure reducer, a heated hose (electric

coil), a water condenser, a pump and commercial gas analyzers with their respective

flow control system.

A flue gas sample was taken from the downstream end of the PIM. The probe was
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Figure 3.6: Photo of the combustor, note the ports of thermocouples in PIM.

oil-cooled and maintained at 430 K in order to avoid it melting and to prevent the

condensation of water at elevated pressure in the probe. After the pressure was reduced

down to 1.1 bar, the transport line to the condenser was maintained at 400 K. The dried

sample was split in two branches: one for the analysis of NOx and the other for the

analysis of the other species.

The NOx analyzer was from the company Eco Physics, model CLD 700 EL h, based on

chemiluminescence. Its accuracy is ±0.1 ppm. It measures NO and NOx and has its

own flow control system. The range 0-100 ppm was used.

CO2 and CO were measured with commercial gas analyzers (Leybold-Heraeus Binos)

working on the basis of infrared absorption with accuracies of ±0.2% and ±7 ppm,

respectively. O2 was measured with a Leybold-Heraeus Oxinos gas analyzer on the

basis of paramagnetism (±0.25%). The measuring ranges used were 0-15% CO2, 0-300
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Figure 3.7: Schema of coordinated reference system used for dimensions in Tab.3.2.

Figure 3.8: Detail of temperature measurement in the ceramic pipe

ppm CO and 0-25% O2.

The flow was set to 10 liters/min at 1.1 bar using a regulating valve and a rotamer.

A pump needed to be mounted upstream for the experiments driven at atmospheric

pressure. The analyzers were calibrated every day before measurements using special

manufactured gases. Nitrogen at 99.999% was used for calibration of the zero value and,

for the end value, mixtures of 15.02% CO2 and 398 ppm CO in nitrogen, 20.5% O2 in

nitrogen and 99 ppm NO2 in nitrogen with a relative deviation of 0.5% were separately

used.

Experimental procedure: The flame was ignited at atmospheric pressure from the PIM

exit with a hydrogen diffusion flame. After ignition, the flame propagates upstream

and stabilizes within the conical PIM. For a given operating condition, the flame was

considered stable, if the axial temperature distribution was constant for more than five

minutes, that is, the maximum variation in the temperature at each location of the flame

was less than 2.0% during that time. The sample of flue gases flowed continuously and

was continuously analyzed.
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Figure 3.9: Flow diagram of the used gas analysis system
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Table 3.2: Locations of the temperature measurement in PIM, reference system shown
in Fig.3.7, error ±0.7 mm

Nr. Axial Angle Radial PIM outer
location [mm] [◦] location [mm] diameter [mm]

1 11 0 7.6 30.3
2 19 20 8.1 32.6
3 27 40 8.7 34.8
4 46 0 10.0 40.1
5 56 20 10.7 42.9
6 65 40 11.4 45.5
7 80 0 12.4 49.7
8 93 20 13.3 53.3
9 103 40 14.0 56.1
10 107 90 14.3 57.3
11 111 110 14.6 58.4
12 116 0 14.9 59.8
13 120 130 15.2 60.9
14 130 20 15.9 63.7
15 137 90 16.4 65.7
16 141 40 16.7 66.8
17 146 110 17.1 68.2
18 151 0 17.4 69.6
19 159 130 18.0 71.9
20 167 20 18.5 74.1
21 173 90 19.0 75.8
22 179 40 19.4 77.5
23 186 0 19.9 79.5
24 194 110 20.4 81.7
25 203 20 21.1 84.2
26 217 40 22.0 88.2
27 221 0 22.3 89.3
28 231 110 23.0 92.1
29 241 20 23.7 94.9
30 255 40 24.7 98.9
31 256 0 24.8 99.1
32 284 20 26.8 107.0
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Chapter 4

Experimental results and evaluation

The experiments were performed with premixed natural gas-air mixtures at lean condi-

tions (λ > 1.4) using two burner pore densities, namely, 10 and 20 PPI. The operating

pressure was varied in the range of 1− 14 bar. Pressure is reported in absolute values.

Measured data are reported as the time average of data recorded at 3 Hz over three

minutes after the steady state of the flame was ensured. Only results of flames stabi-

lized at the mid-region of the PIM (60− 200 mm axial distance from PIM inlet) under

steady conditions are reported. ft The quality of the experimental work was evaluated

by comparing the air factor obtained from flow rate measurements of air and fuel against

that obtained from a calculation based on the flue gas analysis (CO2, CO and O2), the

results for inlet temperature of Tu = 300 K are shown in Fig.4.1, where the lines rep-

resent differences of 10% with respect to the equality. Results outside this range were

dismissed. The air factor calculated from the analysis of sample gases taken downstream

of the porous burner allowed for a slightly higher accuracy that obtained from the mass

flow meters, so the air-to-fuel ratio calculated from gas analysis was reported here and

used to calculate the burning velocity.

The main reported results are burning velocity values at elevated pressure for different

air-to-fuel ratios and preheating temperatures obtained from the acquisition of the flame

location using thermocouples located at the mid-radii of the PIM (named measurements

of PIM temperature). Using these temperature measurements, some representative re-

sults of the thermal flame thickness were also obtained.

The results obtained from the flame stabilization within the 10-PPI burner are presented

first. The results obtained with the 20-PPI burner are presented only in Section 4.5, in

which the effect of the pore density on the burning velocity is presented.
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Figure 4.1: Quality of measurements: comparison of air factor obtained from mass flow
measurements against that from flue gas analysis.

4.1 Temperature measurements in PIM

In this section, temperature measurements obtained from fixed thermocouples inserted

at the mid-radii in the PIM are presented. Fig.4.2 shows an example of a measured

temperature profile along the spatial coordinate perpendicular to the idealized planar

flame surface under steady conditions and λ = 1.6, T0 = 300 K and p = 1.0 bar. The

zero position of the spatial coordinate represents the beginning of the PIM (SiSiC).

For comparison, the temperature profile of a laminar free flame of air-methane mixture

under the same conditions is also displayed, which was calculated for a planar laminar

premixed flame with the PREMIX code of the CHEMKIN package [39] using GRI mech

3.0 [41].

In all experiments, a considerably smoother temperature profile was observed in flames

stabilized within PIM with respect to the laminar free flame. Additionally, the maximum

temperature achieved was higher than the adiabatic flame temperature. From this, it

can be concluded that the heat loss from the used burner does not have a considerable

influence on the flame front, owing to the lateral isolation and that the flame location

was in the mid-region of PIM. The maximum measured temperature slightly exceeds
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the adiabatic combustion temperature due to heat recirculating through the solid porous

matrix. Since the measuring thermocouple is surrounded by the porous medium, this

measurement is influenced by the heat exchange by radiation between the thermocouple

pearl and the surrounding PIM; as a consequence, the gas temperature should locally

be slightly higher.

Figure 4.2: Axial PIM temperature profile along 10-PPI PIM, λ=1.6, 1.0 bar, T0= 300
K, u0 = 5.4 m/s.

The temperature profile shown in Fig.4.2 is an exemplary case of a commonly observed

situation where the temperature profile was not continuously increasing. One should

bear in mind that temperature was measured at few points in the reaction zone and the

locations did not correspond to the same streamline, since the location angles differed,

although the radii were nearly the same. These temperature measurements demonstrate

that both temperature distributions and the flame structure are discontinuous, as was

suggested by Viskanta [3, 4] and predicted by Bedoya et al. [20].

Measured PIM temperature profiles for different air factors are presented in Fig.4.3 at

1.0 bar and 300 K. At a higher air factor, the location of the flame front was shifted

downstream in the conical burner, which implies a decrease in the burning velocity. In

Fig.4.3, it is observed that an increase of the air factor also leads to flattening of the

temperature profiles. These effects of varying air factor on the temperature profiles and

on the burning velocity occur similarly to those known from laminar free flames.

The flame stability limit of the used 10-PPI burner was investigated at 1.0 bar and

300 K. In order to acquire the stability limit, the air factor was increased in steps of
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≈ 0.2 until the measured CO concentration began to rise or the flame was not stable.

Up to an air factor of λ= 2.2, the flame was stable and the CO molar fraction was lower

than 30 ppm. At these conditions, the adiabatic flame temperature of methane/air

mixtures is 1390 K, while the measured peak temperature was 20 K higher, owing to

heat recirculation through the porous solid matrix by conduction and radiation.

When increasing the air factor beyond the flame stability limit, the CO emissions pro-

gressively increased and the flame front displaced downstream with a very low flame

front velocity below 1 mm/s. For this condition (i.e. λ= 2.35), the CO molar fraction

acquired was increased up to 120 ppm.

Figure 4.3: Axial PIM temperature profile along 10-PPI PIM, 1.0 bar, T0 = 300 K.

Fig.4.4 presents the PIM temperature profiles for different pressure levels at λ= 1.60,

T0 = 300K and nearly constant inlet velocity u0 = 5.25 m/s. A substantial flame

displacement in the downstream direction was observed with the increase in pressure

from 5 to 8 bar; which indicates that the burning velocity should be lower at higher

pressure, as occurs in the laminar free combustion mode. Nevertheless, the flame location

did not varied significantly at lower pressure ranges, even the flame location was shifted

in opposite direction while increasing pressure from 3.0 to 4.0 bar, thus it can be inferred

that the burning velocity did not varied considerably at pressure levels below 5.0 bar,

which is different from the effect of pressure on the laminar burning velocity of free

flames Sl, where the pressure effect is more notorious at smaller pressure values.
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Figure 4.4: Axial PIM temperature profile along 10-PPI PIM at different pressure levels
u0 = 5.25 m/s, λ= 1.60, T0=300 K.

4.2 Thermal flame thickness

Most of the measured temperature profiles exhibit non-continuous increase of tempera-

ture. It was expected that the reaction could occur homogeneously and the flame was

nearly flat, but this was not the case. The observed temperature heterogeneity indicates

that the structure of flames stabilized within PIM is corrugated at the pore level, con-

forming to the PIM structure, and the complex flow patterns imposed by considerable

temperature deviations in space are presented.

Owing to this heterogeneity and the fact that it was not possible to place a larger

number of thermocouples in the reaction zone, the evaluation of the flame thickness

is complicated. A possible definition of the flame thickness is the region where the

temperature increased from (1.05 · T0) to (0.95 · Tmax). For example, in Fig.4.2, it

corresponded to the x locations of 150 and 173 mm, respectively, so the flame thickness

was 23 mm. However, this definition is too arbitrary owing to the low measurement

resolution and it neglects the observed measurements inside the flame region. The

definition of flame thickness based on the maximum temperature gradient Eq.(2.18),

that is, thermal flame thickness, yields a value of 7 mm.

A more accurate determination procedure is to perform extensive repetitions of experi-

ments and average the resulting thermal flame thicknesses.

In the present work, the flow rate was varied in order to stabilize the flame at different
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locations, while the other properties were maintained nearly constant. The thermal

flame thickness was obtained as an average of those results with the expectation that the

flow rate was not a factor influencing the flame thickness. The thermal flame thickness

was calculated using Eq.(2.18):

δ = (Tmax − Tu)/max(∂T/∂x)

The results show that the maximum measured temperature did not differ considerably

with the change of mass flow rate (less than 40 K). Neither the differences in the maxi-

mum temperature nor in the maximum acquired temperature gradient were correlated

with the variation of the flow rate, as expected, since the burner is well insulated and

the differences are in the range of error of the used measuring technique. An example

of the results of this kind of experiments, where the inlet velocity is varied and all other

parameters are kept constant is shown in Fig.4.5, which shows the temperature inside

the PIM along the axis for different inlet velocities at λ = 1.60, Tu = 300 K and 1.1 bar.

The calculated adiabatic temperature of combustion is also shown in this figure. Notice

that for all experiments the maximum temperature is considerably near the adiabatic

one.

Figure 4.5: Temperature profiles for different inlet velocities u0 in m/s 10-PPI PIM at
λ = 1.6 1.1 bar and T0 = 300 K.

Fig.4.6 shows the thermal flame thickness of different tested air factors at 1.0 bar and

T0= 300 K for several repetitions, varying the mixture flow rate. As reference, the figure

shows comparison to the thermal flame thickness of free laminar flames too (based on

the same definition of Eq.(2.18)).

The obtained averaged thickness of stable flames within PIM was considerably higher
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Figure 4.6: Thermal flame thickness 10-PPI PIM at 1.0 bar and T0= 300 K.

than in the free laminar combustion mode. It increased by a factor of seven, approx-

imately, which is also the ratio of burning velocity increase from experimental results

reported in the literature under the same conditions [15].

4.3 Temperature measurements in central pipe

The identification of the effects of pressure on the characteristics of flame stabilization

within PIM is the novelty of the present work. Measurements of temperature in PIM

did not produce representative results to draw a conclusion on the influence of pressure

on the flame thickness.

Compared with the complications encountered when determining the flame thickness

from the temperature measurements in PIM, the measurement of temperature in a

closed ceramic pipe along the PIM axis appears to have two main advantages. First,

the measurement is in the axis and is radially encapsulated; thus, it is influenced by the

whole circumference of the surrounding pipe. Second, the axial displacement enables

the desired profile resolution to obtain a clean profile of the temperature gradient in the

pipe.
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The pipe temperature was measured with a resolution of 4 mm. Two minutes had to

elapse from every sensor displacement to achieve a nearly steady record.

Figure 4.7: Axial profile of pipe temperature along 10-PPI PIM compared with the
temperature in PIM at λ= 1.6, 1.0 bar and T0=300K.

The obtained temperature profile is compared in Fig.4.7 with the temperature measure-

ments in PIM taken with the fixed sensors. The profile of pipe temperature is clearly

more homogeneous than the measured temperature in PIM; a Gaussian shape of the

temperature gradient profile could be clearly observed. Nevertheless, it is flatter. The

reason is that the sensor is influenced by heat exchange by radiation with a region inside

the ceramic pipe that is considerably bigger than the region affecting the measurement

inside the porous media, as shown in Fig.4.8.

4.3.1 Gradient of temperature in central pipe

The maximum gradient of the pipe temperature was used as an indication of the in-

verse of the flame thickness analogously to the flame thickness definition in Eq.(2.18).

Although the measurements of temperature in pipe differ considerably from measure-

ments in PIM, the obtained results enabled the formulation of qualitative statements

about the effects on the flame thickness of physical parameters such as pressure.

The gradient profiles of pipe temperature at different air factors are depicted in Fig.4.9.

In agreement with the measurements of temperature in PIM, this figure indicates that

the maximum temperature gradient decreases with increasing air-to-fuel ratio, that is,

the flame thickness is enlarged.
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Figure 4.8: Sketch of the temperature measurement with the movable thermocouple.
Dimension: mm.

Figure 4.9: Axial gradients of pipe temperature along 10-PPI PIM at 1.0 bar and T0=
300 K.

Fig.4.10 presents the effect of pressure on the maximum gradient of pipe temperature

for two different air factors: λ= 1.6 and 1.8. At λ= 1.6, a considerable increase in the

maximum pipe temperature gradient was observed with the increase of pressure from 5

to 8 bar. Consequently, the flame became considerably thinner in this pressure range.

The flame position was also shifted downstream a significant distance with this increase
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in pressure (see Fig.4.4), that is, the burning velocity value considerably decreased in

this pressure range as well.

Figure 4.10: Axial gradients of pipe temperature along 10-PPI PIM at λ= 1.6 and λ=
1.8; T0= 300 K.

At λ= 1.8, the maximum temperature gradient substantially increased with pressure in

the pressure range between 1.5 and 3 bar (see Fig.4.10), where a substantial burning

velocity decrease was also observed (see Fig.4.14).

From these measurements, it is concluded that the decrease of the flame thickness in

flames stabilized within PIM was associated with a consequent decrease of the burning

velocity, similarly to that in free laminar flames, with the difference that it occurred at

higher pressure levels. The variation of the flow rate did not present any effect on the

temperature gradient acquired in the central closed ceramic pipe.
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4.3.2 Combustion instabilities

With the use of this temperature measurement technique in a central closed pipe, com-

bustion instabilities could be detected for some operative conditions: elevated combus-

tion temperature 1700 K (T0 = 300 K and λ = 1.6) and moderately elevated pressure

3-6 bar. The temperature signal in any of the measured locations inside the macroscopic

reaction region, that is, when the sensor indicated an average temperature in the range

of 700-1300 K, showed a sinusoidal curve with time, with an amplitude of approximately

50 K and a wave period of five seconds. In contrast, the measurements of temperature

at fixed locations inside the PIM did not show any fluctuation with the used acquisition

rate.

For the other experiments, namely, lower combustion temperature, no instabilities were

detected.

In order to estimate the behavior of this combustion mode with instabilities, consider

that for any reason there is a region of the cross sectional area Apim where temperature

increased. This condition has as consequence an increase of the flow resistance in this

region. The flame front will displace upstream. In the upstream region will reach cold

solid and gas phases and therefore will loose heat. For this reason, temperature of this

region will drop and the flame front will be shifted back downstream. The downstream

region is the burned zone wehre the flame front reaches hot surrounding solid phase.

Heat will be transferred more intensively to the incoming fresh mixture, temperature of

this region will increase again and the burning velocity increases as well, originating a

cyclic operation mode.

An energy balance analysis of the solid phase in the combustion zone yields that the

heat transfer rate is equal to the enthalpy change rate of the solid phase:

λs · Apim ·
∆Ts
∆x

= ms · cp,s ·
∆Ts
∆t

(4.1)

Replace the mass of solid for its respective volume and density: ms = ρs ·∆x · Apim, it

yields for the time period of this process:

∆t = (∆x)2 · ρs · cp,s
λs

(4.2)

Consider 1000 K as the mid temperature of the combustion region ∆x for determining

property values of the solid phase, λs
ρs·cp,s (1000 K) = 0.12 cm2/s [191] and as combustion

region the thermal thickness value obtained from present experiments for an air factor

of λ = 1.6 in Fig.4.6, ∆x = δ = 0.8 cm. Then, a value of time period of ∆t = 5, 3 s
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is obtained, which is the same value of the time period of the observed phenomenon of

instabilities.

4.4 Burning velocity

The used burner was constructed with a conical shape with the expectation that, with

the acquisition of the location of a stable flame, the possibility of determining the burning

velocity could be provided, since the burning velocity is one of the most important

combustion parameters of premixed flames.

In the laminar free combustion mode, the laminar burning velocity Sl must be equal to

the velocity of unburned gas that enters the flame in a direction normal to the flame

front, to attain the flame in a stationary location uu = Sl [29].

This definition has been used in numerical studies of flame stabilization within PIM

with a constant cross-sectional shape burner using a 1D model, and has been proven

with experiments at the flame stability limit of lean blow-off in a two-layer burner at

quasi-adiabatic condition around the reaction zone [15].

In the case of PIM combustion, there are two possibilities to define S as being equal to

the superficial velocity u or the interstitial velocity ug, where u = ug · ε. The superficial

S comprises both solid and gas phase areas.

S = uu (4.3)

Although combustion takes place only in the gas phase, the superficial velocity is chosen

in this study, in order to report burning velocity values that can easily be used for

technical design purposes. These values are directly related to the superficial firing rate

(see Eq.(1.1)).

The complication of obtaining the burning velocity for combustion within a conical PIM

is the formulation of an approach that can yield comparable values to the ones obtained

in a burner with constant cross-sectional area. Therefore, a unified definition of burning

velocity is necessary to allow the comparison of results obtained from burners with

different geometries.

In the conical burner, the mean velocity of gases decreases along the burner, as shown

in Fig.4.11, where it is compared with that in a burner with constant cross-sectional

area, named a cylindrical burner. Owing to the isobar expansion, the velocity of gases

is increased at the flame front.
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A possible definition comprises the mass flow rate, the cross-sectional area of the burner

Apim at the flame location xf (must be defined as well) using continuity in Eq.(4.4), and

the density of the unburned mixture ρ0, according to the Sl definition of laminar planar

free flames.

ṁ = ρ0 · u0 · APIM(x0)

ṁ = ρ0 · uT0
u (xf ) · APIM(xf ) (4.4)

Figure 4.11: Isothermal profile of gas velocity along the conical burner compared with
the velocity profiles in the conical and cylindrical burners: 10-PPI PIM, 1.0 bar, T0= 300
K.

where uT0 is the velocity at constant temperature T0, which is also presented in Fig.4.11

and named the isothermal velocity. From the definition of flame stability:

S = uT0
u (xf ) (4.5)

and using Eq.(4.4), the burning velocity is given as Eq.(4.6),

S = ṁ/(Apim(xf ) · ρ0) (4.6)

where xf represents the flame position that has to be defined in the case of burners with
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variable cross-sectional area, such as the conical burner used here. In the present work,

the flame location was experimentally acquired using thermocouples; thus, the flame

location is defined as the location where 50% of the total temperature rise occurs. Owing

to the low resolution of temperature profile acquisition, the flame location definition is

the cause of the highest error in the measurements, which yield a maximum error of

12% for the burning velocity.

The flow rate was determined by the measured fuel mass flow rate and the air-to-fuel

ratio AFR obtained from the flue gas sample analysis. Although the air flow rate was

also measured, higher accuracy was provide by the analysis of flue gases, while comparing

the measured flame temperatures with the adiabatic combustion temperatures.

ṁ = ṁf · (AFR + 1) (4.7)

An important factor for the flame stabilization is the preheating effect of the premixed

fuel/air mixture, which is positively influenced by heat recirculation through the solid

porous matrix and the contribution of hydrodynamic dispersion in the gas flow. In

contrast, if the reaction zone is being cooled by external heat sinks, the heat feedback

from the reaction zone to the preheating zone decreases. Therefore, for determination

of the burning velocity, the adiabatic condition around the reaction zone is mandatory,

that is, the flame must be located far enough from the exit porous matrix surface to

minimize the cooling effect on the reaction zone due to radiative heat transfer from the

porous surface to the internal walls of the plenum housing, which is water-cooled. Thus,

a minimum gap of 60 mm was kept between the flame location and the PIM exit surface

in the present work.

Nevertheless, radial heat losses through the lateral high-temperature insulation are in-

evitable. They can be minimized with respect to the input power with the increase of

the flow rate of unburned mixture. Consequently, the flame location should be displaced

downstream from the conical burner inlet. That is, the studied flames were located at

least 100 mm from the inlet. It should be borne in mind that the length of the tested

porous burner was 300 mm in total.

The increase of the sensible enthalpy of the cooling fluid circulating through the double-

walled lateral combustor housing was calculated from measured coolant temperatures

and coolant flow rate. Although this quantity is related to the heat loss from the whole

burner in the radial direction, it can be used as an indication of the heat loss from the

reaction zone.

With adiabatic boundaries, numerical studies of combustion within homogeneous PIM
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with constant cross-sectional area predict a unique condition, in which the flame is

stabilized without the use of special stabilization techniques [15, 172]. Consequently, it

is expected that the burning velocity does not vary with the change of flow rate in the

used conical burner, that is, the flame location should vary.

Experiments of variation of the flow rate were performed at T0 = 300 K and approx-

imately 1.1 bar for different air-to-fuel ratios. The results of burning velocity S are

presented in Fig.4.12 as a function of the burner inlet bulk velocity u0 (the burner inlet

had a diameter of 30 mm).

At the lowest tested air factor, namely, λ = 1.45, owing to the high burning velocity, the

variation of flow rate was limited to a ratio of two because higher flow rates increased

the combustor pressure above 15%. For leaner mixtures, the pressure did not increase

as much.

The most important feature of Fig.4.12 that merits discussion is that, with the exception

of the lowest tested air factor λ= 1.45, the burning velocity was not influenced by the

flow rate, as predicted for the adiabatic condition [15, 172].

The reason for the increase of burning velocity at λ = 1.45 with the increase of inlet

velocity is that the radial heat loss from the reaction zone is large relative to the input

power. λ= 1.45 exhibits the highest tested combustion temperature and for the lowest

tested input power, the relative radial heat loss from the burner was 35% with respect

to the input power, and for the highest tested input power, it was 22%. In contrast,

for the next highest air factor tested, λ = 1.60, the relative radial heat loss possesses a

maximum of 20%.

Therefore, the adiabaticity of the used facility was proven for the determination of the

burning velocity for combustion temperatures below 1750 K, which is the temperature

too, above which the active oxidation of the used porous material SiSiC is presented.

Fig.4.13 shows the variation of S in the PIM with the air factor λ at atmospheric con-

ditions T0= 300 K, 1.0 bar, obtained from experiments and compared with experiments

in porous burners in the literature [15, 192] using the same PIM as used here. The

laminar burning velocity of free premixed flames Sl is also shown as a reference. Sl was

calculated with PREMIX [39] using GRI mech 3.0 [41].

These experiments were carried out at constant thermal load while varying the air flow

rate. Djordjevic et al. [15] measured the burning velocity at the flame stability limit

of lean blow-off using a cylindrical burner with two porous layers: flame trap (45-PPI

partially stabilized zirconia) and combustion layer (10-PPI SiSiC).

Diezinger [192] reported temperature profiles in steady flames in a conical PIM with the
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Figure 4.12: Burning velocity at atmospheric conditions as a function of the velocity at
the burner inlet, 10-PPI PIM, T0 = 300K, 1.01.1 bar.

Figure 4.13: Burning velocity at atmospheric conditions as a function of air factor, 10-PPI
PIM, T0= 300 K, 1.0 bar.
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same structure and material as used in the present work. In order to compare these

data with the present ones, the burning velocity was extracted from the published data

by using the present evaluation procedure based on the temperature profiles.

It is important to note that, compared with Sl of free laminar flames, the measured

burning velocity S in PIM is considerably greater (from 7 to 10 times) and that the

experimental results satisfactory agree with each other even with different burner geo-

metric configurations. Since the same definition of burning velocity was used and relative

heat losses were low, the comparability of geometrically different burners is validated by

this result.

Experimental study of the influence of pressure on the flame stabilization in PIM was

carried out by keeping constant the other parameters, such as air-to-fuel ratio and

unburned gas temperature T0. Additionally, the inlet velocity u0 was kept constant,

which implies a proportional increase of the mass flow rate related to the pressure

increase.

Figure 4.14: Burning velocity at elevated pressure 10-PPI PIM, T0= 300 K.

Fig.4.14 presents the burning velocity S as a function of pressure obtained from measure-

ments in the 10-PPI burner at different air-to-fuel ratios. It is observed that pressure has

a non-monotonic effect on the burning velocity. At a constant air-to-fuel ratio, for exam-

ple, λ= 1.6, the burning velocity S increases with increasing pressure; it then reaches a
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maximum and, with further increase of pressure, S decreases. For higher air factors, the

increase in burning velocity is less considerable and the decrease in the burning velocity

begins from lower pressure values.

The augmentation of S with pressure in PIM combustion is basically the most visible

difference from the influence of pressure on the laminar burning velocity Sl in free

laminar flames (shown in Fig.2.3 and Fig.2.4).

Figure 4.15: Burning velocity at elevated pressure and temperature 10-PPI PIM, λ= 2.0.

The influence of pressure on the burning velocity was tested at elevated initial temper-

atures of 400 and 500 K. Fig.4.15 presents a comparison of the obtained results for a

mixture with air factor λ = 2.0 for different inlet temperatures. The increase of the inlet

temperature has similar effects on the burning velocity as the decrease of the air factor.

For a higher inlet temperature, the burning velocity increased. At T0 = 400 K, the

burning velocity stayed nearly constant up to 2 bar; with further increase of pressure, it

sharply decreased. In contrast, at T0 = 300 K, the burning velocity sharply decreased

at 1 bar.

At T0 = 500 K, no such steep decrease of burning velocity with pressure was observed

in the tested sponge compared with the other results at lower initial temperatures.

The understanding of the relevant phenomena occurring in the flame stabilization within

PIM is presented in the following sections, where comparisons with free flames are made

and numerical and theoretical approaches to the processes are employed.
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4.5 Effect of PIM pore density

Experiments of flame stabilization within PIM were carried out in the same porous

burner using a PIM with a higher pore density, 20 PPI, made of the same material, SiSiC,

and with the same porosity, ε = 0.87. The results of burning velocity are compared with

those in the 10-PPI sponge in Fig.4.16 and Fig.4.17.

Figure 4.16: Burning velocity at atmospheric conditions as a function of air factor 20
PPI and 10 PPI, T0 = 300 K, 1.0 bar.

Fig.4.16 shows the burning velocity as a function of the air factor at atmospheric condi-

tions T0 = 300K, 1.0 bar. The increase of pore density from 10 to 20 PPI had a slightly

negative effect on the burning velocity at air factors lower than 1.8. For leaner mixtures,

no differences were observed.

Fig.4.17 presents the burning velocity as a function of pressure for several air-to-fuel

ratios. Empty symbols represent 20 PPI and filled symbols represent 10 PPI. At λ = 2.0,

the observed absence of differences at atmospheric pressure was maintained at higher

pressure levels.

In contrast, at λ = 1.8 and a pressure between 2 and 3 bar, the burning velocity of the

20-PPI burner was lower than that of the 10-PPI burner; that is, the decrease of the

burning velocity became steeper with the increase of PPI. In spite of this, the burning

velocities were nearly the same at higher pressures.
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Figure 4.17: Burning velocity at elevated pressure: empty symbols represent 20 PPI and
filled symbols represent 10 PPI, T0 = 300 K.

At λ = 1.6, the burning velocity showed a maximum at 3 bar in the 20-PPI burner, while

the maximum of the 10-PPI burner was exhibited at a considerably higher pressure.

4.6 Discussion

The obtained results of burning velocity of flames stabilized within PIM were in agree-

ment with the results obtained at the flame stability limit of lean blow-off in the two-

phase porous burner [15]. For a quasi-adiabatic condition around the flame region, the

used technique for flame stabilization yielded burning velocity values independent of the

burner power.

Considerable increases of the burning velocity and the mean flame thickness were ob-

served with respect to the laminar free combustion mode.

Fig.4.18 shows a comparison of the observed burning velocity S within PIM with the

burning velocity of turbulent flames as a function of the turbulence intensity at λ = 1.43

and 1.50, 1.0 bar and T0 = 300 K. Since the turbulent intensity was not measured

within PIM, the value of burning velocity is depicted as a constant line along the axis.

The presented turbulent burning velocities were measured for methane air mixtures in
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[193, 194]. Weiß[194] studied spherically expanding flames in an explosion vessel. St was

measured at a radius of 60 mm using transient pressure signals and a thermodynamic

model. The flame front displacement was optically detected. Shy et al. [193] investigated

downward-propagating premixed flames through a nearly isotropic turbulent flow field

in a large cylindrical vessel. A pair of ion probes located at 200 mm from the ignition

source were used to measure St.

Figure 4.18: Burning velocity of turbulent free flames as a function of the turbulence
intensity; Burning velocity in PIM (SiSiC 10 PPI) 1.0 bar, T0 = 300 K.

The burning velocity of flames stabilized within PIM appeared to be of the same order of

magnitude as that of turbulent free flames, but with considerably lower emission of pol-

lutant species and noise. Fig.4.18 shows that a porous burner can exhibit higher burning

velocity than turbulent flames at leaner conditions. To the best of the author’s knowl-

edge, measurements of turbulent burning velocity are not available at leaner conditions

such as those studied here.

A similar comparison was made in [68]. The specific power at the flame stability limit

of a two-phase porous burner was compared against the power of a swirl flame at the

stability limit divided by the combustion chamber cross-sectional area. This comparison

also showed that the energy density in a porous burner is comparable to that of burners

with aerodynamically stabilized flames.

An easy way to compare the contribution of the phenomena in PIM against the reaction

kinetics is to use the burning velocity ratio (SR) between the flame stabilization within

PIM and the laminar free flame:

SR = S/Sl (4.8)
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which is commonly called the acceleration factor. Fig.4.19 shows the SR in the 10-PPI

burner at two different inlet temperatures: T0= 300 and 500 K, and 1.0 bar. The burning

velocity in PIM flame stabilization increased by a factor between 5 and 13 with respect

to the laminar burning velocity.

The burning velocity ratio SR was calculated for the conditions that can also be sta-

bilized in the laminar free mode. For example, at T0= 300 K, the laminar free flames

cannot be stabilized for air factors above λ = 2.0, while the flame stability within PIM

was observed up to λ= 2.2. At those ultra-lean conditions, the calculated laminar burn-

ing velocity tends to zero. This is the reason for the increase of the burning velocity

ratio with increasing air factor.

Figure 4.19: Burning velocity ratio SR, 10-PPI PIM, 1.0 bar.

The burning velocity ratio SR decreased with the increase in the initial temperature

from 300 to 500 K. The reason for this can be found calculating the heat fluxes namely

by dispersion, solid conduction, solid radiation and inter-phase convection.

The effective coefficient of dispersion and inter-phase depend on the gas velocity, since

the observed burning velocity is higher for T0= 500 K than for 300 K, the respective

coefficients increased, which is favorable for improving the flame stabilization within

PIM. The radiation conductivity λr depends on temperature to the third power. In

contrast, the thermal conductivity of the solid phase is exponentially dependent on the

inverse of temperature.

Thus, it could be inferred that the dominating mechanism at the presented ultra-lean

conditions was the thermal conduction through the solid phase, which in turn could
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be responsible for the extension of the flame stability limit. Nevertheless, it cannot be

stated yet, without the numerical and theoretical studies presented in sections below.

Fig.4.20 shows that the burning velocity ratio SR can increase up to 25 at elevated

pressure. The effect of pressure on the burning velocity in PIM differs substantially

from that in the laminar free case. It is observed that S can increase with pressure and

that the influence of pressure on S is considerably affected by the air-to-fuel ratio and

initial temperature. The shape of the curves of burning velocity ratios SR show a peak.

This peak is higher for conditions with higher laminar burning velocities (higher T0,

lower λ) and shifted towards higher pressure values. For example the peak of λ = 1.6,

300 K is located at 6 bar and has a value of 25, but for a leaner mixture λ = 1.7, 300 K

it is located at 4.5 bar and is 20.

Figure 4.20: Burning velocity ratio SR 10-PPI PIM at elevated pressure

The following analogy to free flames roughly explains these observations. According to

the thermal theory of laminar flat premixed free flames, Eq.(2.11) and Eq.(2.12)

Sl ∝ (am/τc)
0.5

δl ∝ (am · τc)0.5

express Sl and δl, respectively, as functions of the molecular thermal diffusivity am and
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the heat release timescale τc.

Similarly, in the case of PIM combustion, assuming roughly that τc is not affected by

the PIM, an effective thermal diffusivity aeff can be introduced for PIM in Eq.(4.9),

aeff = ε · adis + (1− ε)ahr (4.9)

which considers the contribution of axial dispersion adis and the heat recirculation ahr

coupled in parallel, as shown in Fig.2.6. On one side, the dispersion coefficient adis from

Eq.(2.34)

adis = 0.5 · dp · u (4.10)

is directly proportional to velocity. For gas flowing at a velocity of 1 m/s (typical S

value of combustion in solid sponges) through a 10-PPI sponge, the effective coefficient

of dispersion is two orders of magnitude higher than the molecular diffusivity of the

gas at atmospheric conditions of both species and heat. This substantially augments

the species transport and the macroscopic heating rate of incoming unburned gas, in

comparison to the case of flow through an empty straight pipe.

On the other side, the heat recirculation through the solid phase consists of three mech-

anisms: solid conduction, solid-to-solid radiation and interface convection. Since the

thermal transport properties of solid matter are around two orders of magnitude higher

than those of gas at atmospheric conditions, a considerable amount of heat from the hot

burned gas is transferred upstream by conduction and solid-solid radiation through the

PIM, preheating the incoming unburned gas. The local temperature in unburned gases

increases and the combustion temperature achieved locally may reach higher values than

without this kind of preheating.

The heat recirculation coefficient ahr depends on the heat transfer by convection between

gas and solid and the heat transfer through the solid (by conduction and radiation

(λs + λr)/(ρg · cp,g)), which are connected in series; thus, a rough approach based on a

thermal resistance network is:

a−1
hr = a−1

conv + [(λs + λr)/(ρg · cp,g)]−1 (4.11)

where (λs+λr)/(ρg · cp,g) at 800 K is two orders of magnitude higher than the molecular

thermal diffusivity of the gas am, and aconv is proportional to the heat transfer coefficient

α, the amount of superficial area involved in the reaction region and the local temper-

ature difference between phases. Therefore, it is complex to formulate an approach to

introduce a theoretical value of ahr. A simpler approach is presented in Section 6.
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In a previous investigation of this kind of burner by Djordjevic [68], it was found that,

due to the high surface area between phases in sponge-like structures, convection offers

lower thermal resistance than that in the solid phase; thus, it is not a relevant mechanism.

However, owing to the high thermal conductivity of SiSiC, this is not the case at ultra

low gas velocities.

On the basis of the contribution of the dispersion and the heat transfer through the solid,

the introduction of aeff in the results of the thermal theory Eq.(2.11) and Eq.(2.12) sim-

ply explains the increase of the burning velocity and the macroscopic flame thicknesses

with respect to the laminar free mode, which were observed in flames stabilized within

PIM.

Since the hydrodynamic dispersion coefficient adis in porous media depends on the fluid

velocity, the case of flame stability of highly turbulent flames is worthy to be compared

with flame stabilization within PIM, because the effective transport coefficient at, which

considers the turbulence effects, depends on velocity as well. In this case, highly turbu-

lent flames, the thermal theory of Mallard and Lechatelier is applied in a direct analogy

with the laminar case. The result is applied for determination of flame stability limits

or scaling of burners as explained in the laminar case in Section 2.2.1 (Bunsen burner).

Here it is briefly explain a derivation of the relation of the stability model of highly

turbulent flames, whose result is a relation of the with the Sl and the Peclet number.

The basis of the model is the result of the thermal theory in Eq.(2.11):

Sl ∝
(
am
τc

)0.5

where the molecular thermal diffusivity am of gases (free flames) is directly proportional

to the average speed of the molecules Ω and the mean free path Γ:

am ∝ Ω · Γ (4.12)

As well for the transport phenomena, the effect of turbulence are associated to the

velocity fluctuation along time u′ and the size of the vortex averaged along time lt, thus

for

at ∝ u′ · Lt (4.13)

The thermal theory applied to the turbulent effects on the burning velocity of a flame
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brush (volume and time averaged approach) yields:

St ∝
(
at
τc

)0.5

(4.14)

where τc is the time scale of heat release, assumed to have negligible effects of turbulence,

since it depends predominatly on the reaction kinetics.

The effects of velocity fluctuation along time u′ are proportional to the mean gas velocity

u and the size of the vortex averaged along time lt, on a characteristic length of the

system l, for example the diameter of discharge port of a burner, therefore

at ∝ u · l (4.15)

The ratio of burning velocities yields a direct relationship to the square root of the Peclet

number:

St/Sl ∝ (u · l/am)0.5 (4.16)

and using the definition of flame stability u = St, then

St ∝ S2
l · l/am (4.17)

or
St · l
am
∝
(
Sl · l
am

)2

(4.18)

where a modification of the Peclet number for the laminar flame based on the Sl was

proposed Pel. This correlation was validated for highly turbulent free flames (Karlovitz

number >> 1) in [195]. In the case of flame stabilization within PIM, a comparable

model is obtained from present experimental results in Section 4.7.

From Eq.(4.17), the pressure influence on the turbulent burning velocity can be deduced

using Eq.(2.16)

Sl ∝ pb

and am ∝ p−1, to yield:

St ∝ p2·b+1 (4.19)

The fitted exponent b was calculated for lean air-methane mixtures using Eq.(2.16) in

Section 2.2.1 (see Fig.2.4). b depends considerably on pressure and this dependence is

significantly affected by the air-to-fuel ratio.
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The influence of the exponent b on the turbulent burning velocity has been numerically

studied. Eq.(4.19) can be written as:

St(p)/p
2·b(p)+1 = constant (4.20)

St(p1)

St(p0)
=
p

2·b(p1)+1
1

p
2·b(p0)+1
0

(4.21)

Figure 4.21: Relative turbulent burning velocity as a function of pressure for different λ,
1.0 bar and Tu= 300 K [49]

As a reference value, St(1bar)= 1 was used, and by Eq.(4.21), the relative turbulent

burning velocity was defined as a function of pressure. The resulting values are presented

in Fig.4.21 [49].

Fig.4.21 shows that the effect of pressure on the turbulent burning velocity is similar to

that observed in flame stabilization within PIM (Fig.4.14). This similarity corresponds

to the existence of considerable temporal fluctuations in the combustion behavior of

highly turbulent free flames; while the combustion in PIM exhibits considerable spatial

variations (observed in experiments), both yield substantial enhancement of the trans-

port of mass and heat with respect to the laminar free flame case, which are proportional

to the gas velocity. Since turbulent flames do not have recirculation of heat through
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a solid phase like in PIM combustion, it is to infer that in PIM the dispersion effects

dominate on those of the heat recirculation. To obtain absolute values also including

the effect of heat recirculation through the solid phase, results of numerical simulations

of the flame stabilization within PIM are presented in Chapter 5.

4.7 Peclet similarity model

Eq.(4.17) is a result of the thermal theory presented in Section 4.6, from which the

turbulent burning velocity can be obtained for different conditions and different fuels at

high turbulence intensities with only knowledge of the laminar burning velocity and the

molecular thermal diffusivity:
St · l
am
∝
(
Sl · l
am

)2

(4.22)

or

Pet ∝ Pe2
lam (4.23)

This correlation has also been proven in other types of flames to predict the stability lim-

its with scaled geometrical size, operation with different fuels and at different conditions

of mixture, temperature and pressure.

Examples are available for laminar premixed flames in a Bunsen burner (see Eq.(2.27)),

as well as for highly turbulent flames stabilized by internal recirculation of flue gases, for

example, swirling flames with geometrical similarity [196] and flames with flame holders

for small blockage ratios [197].

In the present section, the use of this model for determination of the burning velocity

of flames stabilized within PIM was tested. The theoretical derivation of an accurate

model for flame stabilization within PIM is difficult due to the complexity of the relevant

phenomena and the uncertainty of the PIM properties. Therefore, the use of a model

with the form

Pepim = CPe · Pemlam (4.24)

was proposed to correlate the experimental results of the present work obtained at

different pressure levels. Where Pepim is the Peclet number based on the burning velocity

within the quasi-adiabatic porous burner,

Pepim = S · ddis/am,u (4.25)

ddis is the dispersion length scale (e.g. ddis= 0.324 mm for SiSiC 10 PPI) and am,u is
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the molecular thermal diffusivity of the unburned gas mixture am,u = λu/(ρu · cp,u) and

Pelam is the Peclet number based on the laminar burning velocity:

Pelam = Sl · ddis/am,u (4.26)

Since the model is based on the laminar burning velocity, it is limited to the stability

range of laminar free flames, as given in [50]. The experimentally obtained results are

presented in Fig.4.22 with logarithmic axes. These results correspond to the experiments

performed with the PIM of 10 PPI for the tested pressure levels, initial temperatures

and air-to-fuel ratios, excluding the leanest conditions that in the laminar free mode

could not produce burning (λ > 2.0 at Tu = 300 K).

The laminar burning velocity values were calculated for planar laminar premixed flames

of methane air mixtures with the PREMIX code of the CHEMKIN package [39] using

GRI mech 3.0 [41].

The symbols discriminate the air factor and the initial temperature from each other and

group all pressure levels tested. The plot legend also displays the calculated adiabatic

combustion temperature. It is noteworthy that all results together can be well correlated

with the Peclet similarity model proposed, even for different air factors up to the flame

stability limit corresponding to the laminar free flame. However, the accuracy of the

model was increased by grouping the results into certain ranges of adiabatic combustion

temperature. Tab.4.1 presents the resulting correlating parameters.

Table 4.1: Semi empirical model Eq.(4.24) for flame stabilization within PIM SiSiC 87%
porosity

PPI ddis [mm] Tad range [K] CPe m
10 3.24 1550 - 1825 1.101 1.753
10 3.24 1630 - 1825 0.771 1.857
10 3.24 1550 - 1600 1.838 1.586
20 3.02 1580 - 1710 1.485 1.638

It is notable that the exponent m tends to a value of two, as in the theory of free flames,

for the highest tested combustion temperatures.

The present proposed model represents a useful easy-to-use tool for engineering dimen-

sioning of porous burners in terms of prediction of the lean flame stability limit of

submerged flames. On the basis of the values of laminar burning velocity, the porous

burner can be scaled for different sizes, different conditions and to operate with other

fuels by using this model.
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Figure 4.22: Peclet number of burning velocity in PIM S as a function of the Peclet
number of laminar burning velocity Sl



Chapter 5

Numerical simulation of flame

stabilization within PIM

The numerical investigation of combustion within PIM plays a crucial role in the devel-

opment and optimization of porous burners and in the basic understanding of the overlap

of relevant processes of transport and the chemical kinetics of reactions in the presence

of PIM. In the present work, a well-known one-dimensional model was used based on

the method of volume-averaging [15, 24, 161, 185, 189, 198–202] for simulation of the

process at the macroscopic scale, containing effective medium coefficients that provide

the connection with the processes occurring at the microscale. These coefficients were

obtained from direct pore-level simulations (DPLS) on a reconstructed real PIM sample

scanned by micro-tomography (see Appendix A).

The used model is described in Section 5.1.1 for the direct calculation of a detailed

reaction mechanism of methane oxidation, named the direct chemistry model (DCM).

It considers adiabatic boundaries and laminar flow. Relevant results of the burning

velocity are presented in Section 5.1.2, which show the effect of the used stabilization

technique, namely, the continuous increase of the cross-sectional area of the conical

burner, as well as the effect of the air-to-fuel ratio, the initial temperature of unburned

mixture, the pore density and especially the effect of pressure on the burning velocity.

At the end of the section, the importance of the transport processes on the burning

velocity at elevated pressure is analyzed from results of the systematic change of the

transport coefficients of this model.

The temperature deviations along the cross section observed in the present experiments

were not considered in the DCM. Therefore, the calculation of non-linearly dependent

parameters such as the source terms may deviate considerably. A way of considering

this is proposed in Section 5.3 by introducing probability density functions PDF of
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gas temperature along the cross-sectional area. Since this measure markedly increased

the computational demands and the stiffness to converge on an accurate solution, the

chemical composition during the progress of combustion was looked up from tabulated

results of the DCM. This technique for the reduction of computational demands has

been commonly used in turbulent flames. Validation of its use in PIM combustion is

presented in Section 5.2.

The studied burner geometries were cylindrical and conical. The PIM structure was

made of SiSiC 87% porosity and mainly 10 PPI, although the effect of increasing the

pore density from 10 to 20 PPI was also studied.

5.1 Direct chemistry calculations

5.1.1 Direct chemistry model (DCM)

Principal assumptions:

1. Effects of spatial deviations of the dependent variables were neglected

2. Gas radiation was not included

3. The porous matrix was considered optically thick

4. There is thermal non-equilibrium between phases (heat transfer between phases)

5. Air and fuel are perfectly premixed

6. Potential catalytic effects of the solid phase are negligible

7. The pressure drop through the porous burner is not high and its effect can be

neglected

8. Dufour effects, namely, bulk viscosity and body forces, are negligible

9. The flow is one-dimensional and incompressible

10. Neither turbulence nor flame stretch is induced by the flow through the PIM

The theoretical derivation of the balance equations for porous media is beyond the scope

of the present work, but is widely available from the use of different methods [17, 81, 82].

On the basis of the above assumptions, the flame can be assumed to be one-dimensional.

Eqs.(5.1-5.4) are the balance equations of mass, energy in gas phase, energy in solid phase
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and species, respectively, using volume-averaged quantities along the cross section of the

respective phase. They account for detailed chemistry, species diffusion, gas and solid

conduction, solid-to-solid radiation, convection heat transfer between the phases, the

Soret effect and hydrodynamic dispersion.

0 = ∂(ρgugAg)/∂x (5.1)

0 = ugAg
∂Tg
∂x
− ∂2(ag,effAgTg)

∂x2
+

αAg
ρgcp,g

Sv
ε

(Tg − Ts)

+
Ag
cp,g

∑
i

YiυD,icp,i
∂Tg
∂x

+
Ag
ρgcp,g

∑
i

ω̇ihi (5.2)

0 =
α · Sv
1− ε

(Ts − Tg)− (λs,eff + λr)
∂2Ts
∂x2

(5.3)

0 = Agρgug
∂Yi
∂x

+
∂

∂x

[
ρi

(
−Deff,im

Ag
Xi

∂(Xi)

∂x

)
Yi

]
− Agω̇iMi ; i = 1 . . . Ni (5.4)

The subscripts s and g stand for solid and gas phases, respectively; therefore, Ag is the

area corresponding to the gas phase or interstitial area. Under the assumption that the

surface porosity is the same as the porosity ε, Ag is related to the burner total area

Ag = Apim · ε. Thus, the present model is capable of incorporating the axial mass flux

variations due to change of Ag along the conical burner.

The transport properties in the gas phase are given by the mixture average formulation,

where υD,i is the diffusion velocity included in the term of the Soret effect of the gas

energy conservation equation

υD,i = −Dg,eff
1

Xi

∂Xi

∂x
(5.5)

The effective mass diffusivity of the ith species Eq.(2.36)

Deff,i = Dm,i/τ +Ddis

considers the contribution of the hydrodynamic dispersion Ddis

Ddis = 0.5 · ddis · u (5.6)
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upon the molecular diffusivity of the gas phase Dm,i.

Dm,i = (1− Yi)/

(
Ni∑
ii 6=i

Xii/Di−ii

)
(5.7)

In the same way, the effective thermal diffusivity of the gas phase

ag,eff = ag,m/τ + adis (5.8)

was increased by the cross-mixing effects of hydrodynamic dispersion adis with the as-

sumption that the magnitude is the same as in the transport of mass

adis = Ddis (5.9)

The code PREMIX [38, 39] was modified to solve the above conservation equations

by the method of finite differences. For the numerical solution to the problem, the

TWOPNT solver [203] was used.

The reaction source terms were calculated as the net production from the elementary

reactions k = 1 to Nk. The general form of the calculation of the production rate of the

ith species is given by the equation

ω̇i =

Nk∑
k=1

(ν ′ik − ν ′′ik) · ṙk (5.10)

where ṙk is the specific reaction progress rate of the kth reaction, which is the reaction

rate difference between the forward and backward directions of the reaction Eq.(2.5):

ṙk = kf,k

Ni∏
i=1

[Xi]
ν′ik − kb,k

Ni∏
i=1

[Xi]
ν′′ik

The reaction rate coefficients kk were calculated using a modified Arrhenius equation

Eq.(2.6). The used reaction mechanism is given by Egolfopoulos, which is validated for

laminar free flames up to 3 bar and involves Ni= 17 species and Nk= 58 reactions [43].

The thermodynamic properties for the gas mixture averaged over a cross-sectional plane

were obtained from the database CHEMKIN II [39] as a function of the average gas

temperature, pressure and concentration, as well as the molecular transport properties,

which were determined using the TRANFIT subroutine [40].
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The energy conservation equations of the two phases are connected by the source/sink

term of convective heat transfer between phases, which consists of the local tempera-

ture difference between phases, the effective convection coefficient α and the volumetric

surface area.

The effective thermal conductivity of the solid phase considers the contribution of solid-

to-solid radiation by a radiation conductivity λr and the reduction of the thermal con-

ductivity due to the tortuous paths imposed by the geometry of the solid matrix on the

heat flow λs,eff = λs/τ .

Boundary conditions, domain and computational grid

The values of molar fractions, temperature and pressure were specified at the cold bound-

ary. At the outlet boundary, all gradients were set to zero, since the adiabatic case is

the focus of the present work.

The domain length L was 300 mm and the flame location was specified by fixing a

temperature value of 500 K. The flame location was selected as in experiments to be

in the central region of PIM. The domain cross-sectional area was taken to be constant

and equal to unity for a first domain called a cylindrical burner. A second domain called

a conical burner was used for calculations of flame stabilization; in this case, the cross-

sectional area was set as a quadratic function of the axial coordinate x, which conforms

to the geometry of the burner used for the experimental study (see Fig.3.3).

An adaptive mesh refinement method [38] was used to enhance the convergence of par-

tial solutions. The starting step was a coarse grid density of 1.8 nodes/mm of uniformly

distributed nodes at the flame region. Then, adaptive nodes were added to ensure rela-

tive values of gradients and curvatures lower than 0.10. Finer grids did not considerably

increase the accuracy of the results.

Effective coefficients of transport

The effective coefficients of dispersion of both heat adis and mass Ddis were defined using

the asymptotic value of two for the modified Peclet number Eq.(2.34); it yields:

Ddis = adis = 0.5 · u · ddis; for Pem = (u · ddis)/am > 10

The effective thermal conductivity of the solid phase λs,eff must be considerably lower

than that in the material used due to enlargement of the heat flux paths at the pore

level. The material was considered continuous, in contrast to discrete porous media such
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as packed beds, where the contact resistance imposes a more considerable decrease in

this effective property. Thus, Eq.(2.48)

λs,eff = λs/τs

was used, where τs is the tortuosity of conductive heat flow through the solid phase.

The solid conductivity λs of sintered SiSiC was evaluated as a function of the solid

temperature using a correlation given in Eq.(6.15) from [191]. Since the conductivity

depends on the inverse of the exponential of the material temperature, this consideration

should be included to improve the accuracy of the results.

Solid-to-solid radiation was accounted for by using the Rosseland equation, Eq.(2.53).

The use of the Rosseland approximation is justified as the domain is optically thick

(L · β = 49 >> 1) [151] due to a large extinction coefficient of the solid sponge and a

large domain length.

The effective convection coefficient α was calculated with the correlation of the Nusselt

number, Eq.(2.44):

Nu = α · dh/λg = c1 ·Rec2 · Prc3 with Re =
ug · dh
νg

The property data of the PIM used in the 1D model for flame stability in SiSiC sponge

are listed in Tab.5.1. They were obtained by DPLS performed on a real sample of the

used PIM scanned using micro-tomography. Some details of the DPLS are presented in

the Appendix A.

Table 5.1: Property data used for the SiSiC PIM with 87% porosity.

Tortuo- disp.char. solid cond. ext. volumetric Eq.(2.44)
PPI sity length tortuosity coef. surface

τ ddis τs β Sv c1 c2 c3

[mm] [m−1] [m−1]
10 1.30 3.24 3.85 149 473 3.70 0.38 0.25
20 1.30 3.02 3.85 211 685 5.14 0.30 0.24

Source [67] [15, 27, 49] [28] [26] [7, 28] [28]

5.1.2 Results

Fig.5.1 shows the profiles of average temperatures of the gas and solid phases and the

production rates of some selected species along the cylindrical porous burner made of
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10-PPI SiSiC at λ= 1.7, Tu= 300 K, 1.0 bar.

Figure 5.1: Simulated profiles of average temperature and production rate of selected
species, cylindrical 10-PPI burner λ=1.7, Tu= 300 K, 1.0 bar

It should be noted that the flame structure does not differ considerably from that of

laminar free flames, while analyzing the ratio between the thicknesses of the reaction

zone and the inert zone; that is, the reaction zone is considerably thinner than the inert

zone. The predicted temperature profile did not show a considerable super-adiabatic

temperature peak due to heat recirculation, in agreement with previous numerical results

of the simulation of the same case [56]. The temperature difference between phases is

less than 40 K.

Since the present experiments were carried out in a conical porous burner, 1D simulations

were carried out for flame stabilization in such geometry in order to identify any possible

effect of the diverging channel on combustion parameters like the burning velocity and

the combustion temperature.

Flame stretch in the conical burner

1D calculations were performed using the DCM model in the conical geometry of the

burner used for the present experiments with the 10-PPI sponge-like PIM made of

SiSiC. The conical geometry may influence the flame stabilization due to the change in
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cross-sectional area Apim, since the reaction takes place in a region with larger cross-

sectional areas than that where the unburned mixture is preheated, and this effect results

in macroscopic flame stretch. The flame stretch obtained from the volume-averaged

approach is therefore defined in macroscopic terms; that is, it is not related to the effect

of the porous structure at the pore level.

In a diverging geometry, both heat flux and species flux from the reaction zone to the

preheating zone (burned to unburned zone) are increased, see Fig.5.2. The increase of

heat flux accelerates the wave flame. However, in lean premixed flames of air-methane

mixtures, the increase of molecular flux makes the unburned mixture leaner; thus, the

effect of the heat flux increase is compensated for and the overall result on the burning

velocity depends on the Lewis number, the amount of flame stretch, the air-to-fuel ratio

(AFR) and the thermodynamic conditions [204].

Figure 5.2: Sketch of upstream flux of heat and species in a diverging flow

The definition of the burning velocity in the conical burner was selected to be the same

as that used in the experiments in order to validate the experimental results and to

allow for comparability of the burning velocity results from numerical and experimental

methods. The burning velocity is defined as the isothermal velocity at the flame location

(see Fig.4.11 and Eq.(4.6)). The flame location is defined as the location where maximum

oxygen consumption occurs.

xf = max(−ω̇O2) (5.11)

This flame location definition allows for higher burning velocity accuracy over other

definitions, like that used in the experiments, namely, the location of 50% temperature

rise. This definition was selected in the experimental study because of the low resolution

of measurements.

Fig.4.11 presents the velocity profile of numerical results obtained with the 1D DCM in

the cylindrical and conical domains and the corresponding isothermal velocity uT0 profile

in the conical domain. The gas velocity at constant temperature does not vary along
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the cylindrical burner; thus, S = ug,u · ε. For the conical burner, Fig.4.11 shows the

velocity profile for a flame front located 59 mm away from the cone inlet (xf = 59 mm).

The definition of stretch is:

κ(x) =
1

Ag(x)
· dAg(x)

dt
=

1

Ag(x)

(
∂Ag(x)

∂t
+ u(x) · ∂Ag(x)

∂x

)
(5.12)

The change of the area along time is neglected (steady state problem), thus in the

present study, the macroscopic stretch κ is calculated using Eq.(5.12).

κ(x) =
1

Ag(x)
· ∂Ag(x)

∂t
=

u(x)

Ag(x)
· ∂Ag(x)

∂x
(5.13)

In the conical configuration, the following relationships along the burner axial coordinate

apply:

Ag ∝ x2 (5.14)

u ∝ A−1
g ρ−1 (5.15)

Then, Eq.(5.12) yields

κ ∝ x−3ρ−1 (5.16)

Fig.5.3 presents the results of stretch profile κ along the conical PIM from the present

1D model for a flame stabilized at xf = 59 mm. The air factor was λ= 1.7 and the

inlet thermodynamic conditions were 1.0 bar and 300 K. The figure shows that stretch

is always positive for this geometry. It depends on the inverse of the axial coordinate at

the power of three and, at the flame front, the stretch exhibits a maximum due to the

isobar increase of temperature, which accelerates the gas velocity.

The macroscopic flame stretch is defined as the macroscopic stretch κ at the flame

location xf ,

κf = κ(xf ) (5.17)

for which, in the exemplary case of Fig.5.3, where xf= 59 mm, the macroscopic flame

stretch was found to be κf= 60 s−1. This value of stretch is one order of magnitude

lower than those in other kinds of stretched free flames, such as spherical outwards

propagating flames.

Fig.5.4 presents the differences in the temperature distribution along the burner pre-

dicted for the cylindrical and conical burners. In the case of the conical burner, the

flame location is xf= 59 mm; in the case of the cylindrical burner, the flame location

does not affect the flame stabilization. A difference in the temperature of burned gases
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Figure 5.3: Stretch distribution along the conical 10-PPI PIM for a flame stabilized at
xf= 59 mm, λ= 1.7, Tu= 300 K, 1.0 bar

Figure 5.4: Temperature distribution calculated along the cylindrical and conical burners,
10 PPI, λ= 1.7, Tu= 300 K, 1.0 bar
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between the predictions for the geometrically different domains was observed, namely,

17 K lower for the stretched flame.

This simulation was repeated at many other flame locations in the conical burner, rang-

ing from 59 to 180 mm from the burner inlet; that is, higher inlet velocities were required

in order to stabilize the flame in a downstream location. Results of the stretch at each

corresponding flame location κf are presented in Fig.5.5 as a function of the location

where the flame was stabilized xf , at λ = 1.7 T0 = 300 K 1.0 bar. It shows clearly that

the flame stretch is lower if the flame location is further away from the cone’s vertex,

where the change of area with respect to the axial distance tends to zero (increasingly

resembling a cylindrical geometry).

The flame stabilization in PIM was calculated for different air factors and pressures,

keeping each of those parameters constant; the flame was stabilized at different axial

locations along the conical burner inside the same range, namely, 59 to 180 mm.

Fig.5.6 shows the results of burning velocity S for the present calculations in the conical

burner (empty symbols) with respect to the flame stretch κf at Tu= 300 K, λ = 1.45 and

1.7 and at pressures of 1 and 5 bar. It is observed that, in this case, the flame stretch has

a negative effect on the burning velocity. The burning velocity values obtained from the

simulation in the cylindrical burner are also shown in the figure with filled symbols at

κf = 0, assuming that there is no flame stretch in this geometry. These flame conditions

were selected because all of them exhibit different burning velocity, which, as shown in

Eq.(5.13), together with the flame location, determines the flame stretch.

The results show that the stretched burning velocity Ss is linearly proportional to κf for

combustion of methane premixed with air in PIM, similarly to the effect of flame stretch

on the premixed combustion of the same mixtures in laminar free condition, where the

negative of the slope Eq.(5.18) is known as the Markstein length L, which depends on

the fuel type, the burning temperature and the pressure.

Ss = −L · κf + S (5.18)

The non-stretched burning velocity S can be obtained by extrapolating the function

to κf = 0. Actually, Fig.5.6 shows a good match between the burning velocities S

obtained from calculations under the same conditions using the cylindrical burner and

the extrapolation of the straight curve obtained using the conical burner at κf = 0.

The negative values of the obtained curve slopes Lpim are compared in Tab.5.2 with the

Markstein lengths of laminar free flames L obtained from calculations of freely prop-

agating laminar planar flames using GRI 3.0. Tab.5.2 also presents the non-stretched
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Figure 5.5: Flame stretch κf of different flames stabilized in the conical burner as a
function of the flame location with respect to the burner inlet λ = 1.7 T0 = 300 K 1.0
bar

Figure 5.6: Burning velocity with respect to the flame stretch: Conical burner: Empty
dots. Cylindrical burner: Filled dots. Tu= 300 K
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burning velocity in PIM and in laminar free flames Sl. The results show that the air-

to-fuel ratio dominates the PIM stretch length Lpim and, in contrast, pressure does not

affect it considerably.

Table 5.2: Comparison of L and S between PIM combustion and free laminar flames Tu=
300 K

p [bar] λ Lpim [mm] L [mm] Lpim/L S [m/s] Sl [m/s] S/Sl
1 1.45 0.936 0.1130 8.3 1.409 0.195 7.23
5 1.45 0.852 0.0273 31.2 0.745 0.055 11.4
1 1.7 1.634 0.1314 12.4 0.837 0.102 8.21
5 1.7 1.892 0.0406 46.6 0.252 0.020 12.6

The present results show that the experimentally tested flames confined in the conical

burner could exhibit macroscopic flame stretch, which could yield stretched burning

velocity values of at most 7% below the burning velocity values without macroscopic

flame stretch. In addition, the maximum achieved temperature could be around 20

K lower. The reason for this is the change of the cross-sectional area along the flow

direction, which imposes stretch on the flame. The macroscopic flame stretch in the

conical burner depends on the flame location and velocity. These predicted effects on

the burning velocity are not as considerable to be experimentally observed since the error

range of the measurements is higher and one should bear in mind that this model is an

approximation based on average volumes and does not consider in detail the temperature

distributions along the cross-sectional area; additionally, the PIM presents uncertainties

in the structural parameters, from which errors of this magnitude arise [205].

Thus, in the present work, further numerical investigations of flame stabilization within

PIM are performed using the cylindrical burner, where there are no macroscopic flame

stretch effects.

Effects of air-to-fuel ratio, pressure and temperature on the flame stabiliza-

tion in PIM

In the previous section, the effects of the change of the cross-sectional area along the

conical burner on the 1D numerical results were analyzed using the DCM. The effect of

other factors influencing the flame stabilization in PIM, such as air-to-fuel ratio, pressure

and initial temperature, were numerically studied with the same 1D model using the

cylindrical porous burner domain made of 10-PPI SiSiC.

Fig.5.7 presents the predicted burning velocity results of the 1D calculations under atmo-

spheric conditions, compared with those of the present experiments and simulated pla-

nar laminar free flames of methane-air mixtures using the detailed chemistry mechanism
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GRI 3.0 [41]. The burning velocity values and tendencies agree with the experimental

ones, apart from small discrepancies. The burning velocity was underestimated for less

lean mixtures (λ < 1.45). Nevertheless, the prediction of the slope was better than in

previous works [15, 169], since the effective coefficients of transport were determined by

DPLS on a reproduced sample of the used PIM.

Figure 5.7: Burning velocity under atmospheric conditions as a function of air factor,
10-PPI PIM, Tu = 300 K, 1.0 bar.

The burning velocity results at elevated pressure are presented in Fig.5.8 for some of

the air-to-fuel ratios experimentally investigated. As a result, it is stated that the 1D

results yield the same pressure influence on the burning velocity as that observed in the

measurements (see Fig.4.14).

At a constant air-to-fuel ratio, the burning velocity increases with increasing pressure

until it reaches a maximum. With further increase in pressure, the burning velocity

decreases. The slope of the decrease in the burning velocity is attenuated at higher

pressures. Comparing one curve with another, that is, different air-to-fuel ratios, the

augmentation of burning velocity with pressure decreases as the air-to-fuel ratio increases

(larger λ) and the maximum of burning velocity is shifted towards lower pressure values.

The influence of pressure on the burning velocity at the same air factor λ = 1.6 is shown

in Fig.5.9 at an elevated preheating temperature Tu = 400 K, in comparison to the
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Figure 5.8: 1D results of burning velocity at elevated pressure, 10 PPI, Tu= 300 K.

Figure 5.9: 1D and experimental results of burning velocity at elevated pressure and
temperature, 10 PPI, λ= 1.60.



106 Numerical simulation of flame stabilization within PIM

results at ambient unburned mixture temperature (300 K). The effect of increasing the

temperature of the unburned mixture is similar to that of decreasing the air excess ratio;

that is, the burning velocity is higher, the increase of the burning velocity with pressure

is more considerable and the maximum of the burning velocity is shifted to a higher

pressure value.

The obtained trends of effect of initial temperature on the pressure influence on the

burning velocity are explained from results from present numerical simulations in Sec-

tion 5.1.4 and theoretical analysis in Chapter 6. Modifications of parameters were per-

formed with both models to quantify the effects of dispersion in comparison of heat

recirculation through the solid phase. It was shown that pressure can have a positive

effect on the burning velocities for conditions were the effects of dispersion dominate

over heat recirculation, it implies conditions which exhibit a higher laminar burning

velocity, namely, higher initial temperature, air to fuel ratios near the stoichiometry and

pressure near 1 bar.

Although these numerical results of effects of pressure on the burning velocity qualita-

tively describe the experimental observations, the burning velocity values at elevated

pressure appear to be underestimated, that is, the maximum S was exhibited at lower

pressures and the decrease of S was considerably steeper. See a comparison between

present experimental results and simulations in Fig.5.9.

Besides the burning velocity, the flame thickness is a very important combustion param-

eter to describe global characteristics of the flame, for example, to indicate the global

volumetric reaction rate. The thermal definition of the flame thickness (see Eq.(2.18) )

δ = (Tmax − Tu)/max(∂T/∂x)

has been used in order to compare it with the experimental results obtained at atmo-

spheric pressure.

In the case of simulation of combustion submerged in PIM, the temperature profiles

of the solid and gas phases are available, while in the experiments, every temperature

measurement is affected by both phases. Therefore, the thermal flame thickness ob-

tained from measurements must be compared with the numerical results of both solid

and gas temperatures, as presented in Fig.5.10. A better agreement with the thermal

flame thickness based on the solid-phase temperature was obtained. Nevertheless, the

predicted flame thicknesses are considerably underestimated by this model, as was also

observed by Voss et al. [57] in the validation of the same model against experiments.

Although the predicted thermal flame thickness is ≈ 5 times larger than that of the
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Figure 5.10: Thermal flame thickness as function of air factor, 10-PPI PIM, Tu=300 K,
1.0 bar.

laminar free case, the 1D model fails while predicting the considerably larger macroscopic

flame thickness observed in experiments. These conditions were presented for the two

burner geometries, cylindrical and conical, calculated with the 1D model. The limitation

observed in the results of the 1D calculations is attributed to the lack of consideration

of temperature deviations along the cross-sectional area.

It seems reasonable to conjecture that the presence of the PIM itself imposes considerable

spatial deviations of properties such as velocity, temperature and species concentrations,

as observed in the present measurements and in [20, 67, 77, 165]. The calculation of non-

linearly dependent terms such as the source terms differ considerably while formulating

the model based on volumetric averages dismissing the deviations in space. As the most

important example is the calculation of the averaged conversion rate of fuel, as expressed

in the following inequality statement:

ω̇f (Xf , Xa, Tg) 6=
∫ ∫ ∫

ω̇∗f (X
∗
f , X

∗
a , T

∗
g ) dX∗f dX

∗
a dT

∗
g (5.19)

where the superscript ∗ stays for local properties. Properties without this superscript

represent volume averaged quantities. The calculation of the averaged conversion rate

of species using the averaged molar fractions and averaged temperature (as performed
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so far) is not equal to the weighted average of local conversion rates ω̇∗i .

A new model is proposed in Section 5.3 as an approximation to consider the temperature

deviations to calculate the average production rates. The temperature deviations were

modeled using a suggested correlation based on the dispersion length scale and the

gradient of average gas temperature.

Finally, Fig.5.11 shows that the effect of pressure on the predicted thermal flame thick-

ness is, for both definitions, based on the solid-phase and gas-phase temperatures, com-

parable to that in the laminar free combustion mode: the flame thickness decreases with

increasing pressure.

Figure 5.11: Thermal flame thickness as function of pressure, 10-PPI PIM, Tu = 300 K,
λ = 1.45.

5.1.3 Effect of the pore density

Simulations of the flame stabilization within a PIM with a higher pore density were per-

formed. The pore density selected was 20 PPI, the same as that used in the experiments

to study the effect of pore density.

The material and porosity were kept constant: SiSiC and 87%, respectively. The pre-

dictions of burning velocity are compared with that for the 10-PPI PIM in Fig.5.12 at
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Tu= 300 K, 1.0 bar, where it can be observed that the increase of the pore density, that

is, the decrease of the pore size, has a slightly negative effect on the burning velocity.

The reason for this is that the dispersion length scale ddis and the inverse of the extinction

coefficient β−1 of the 20-PPI PIM are slightly lower than those of the 10-PPI sponge,

which has negative effects on the preheating of the unburned mixture. Since dispersion

depends on velocity and the radiation conductivity depends on the temperature, it was

to be expected that the effect of the increase of pore density from 10 to 20 PPI on

the burning velocity was more evident for flames with high burning velocity and high

combustion temperature (e.g. lower air-to-fuel ratio). This observations compare well

with those from experimental results observed in Fig.4.16 and Fig.4.17.

Figure 5.12: Predicted burning velocity as function of air factor, PIM at 20 PPI compared
with 10 PPI, under atmospheric conditions Tu= 300 K, 1.0 bar.

The increase of pore density actually has a positive effect on the volumetric surface area

of the PIM; hence, convection heat transfer could be higher. As no positive effect was

observed, one could infer that the contribution of convection is not important under

the conditions tested. This is supported by the parametric study described in the next

section.
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5.1.4 Parametric study of transport mechanisms

In order to acquire an understanding of the transport phenomena relevant to flame

stabilization within PIM, parametric calculations were carried out using the 1D DCM.

The transport parameters were separately varied at the same ratio (1/10) and the effect

on the burning velocity was analyzed. The reference case is the 1D model presented

in Section 5.1.1, namely, the PIM case, to be compared with the following cases: less

dispersion, less heat recirculation, less conduction (of solid phase), less radiation and

less convection. The respective variations of the transport coefficients are presented in

Tab.5.3.

Table 5.3: Manipulation of transport coefficients respect the PIM reference case

Case adis Ddis λs λr Nu
Less dispersion 0.1 · adis 0.1 ·Ddis λs λr Nu
Less heat recirculation adis Ddis 0.1 · λs 0.1 · λr 0.1 ·Nu
Less conduction adis Ddis 0.1 · λs λr Nu
Less radiation adis Ddis λs 0.1 · λr Nu
Less convection adis Ddis λs λr 0.1 ·Nu

The first two cases consisted separately of reduction of the transport parameters of the

main two heat transport paths, as shown in Fig.2.6: 1) the contribution of hydrody-

namic dispersion to transport heat and species through the gas phase and 2) the heat

recirculation through the solid phase.

In the less dispersion case, the dispersion coefficients of diffusion of both heat and species

were reduced down to 10% of that in the real case (PIM case), while the coefficients of

the mechanisms involved in the heat recirculation through the solid phase stayed at full

scale.

In the less heat recirculation case, all three coefficients of the mechanisms involved in

the heat transfer though the solid phase were reduced, namely, conduction through the

solid phase, solid-to-solid radiation and interface convection heat transfer. Dispersion

was kept at full scale.

The other three cases consisted of the separate reduction of each of the coefficients of

the processes involved in recirculating heat through the solid phase.

The burning velocities obtained at different pressure levels are used to compare the

modified models with the reference case PIM in Fig.5.13 and Fig.5.14. Fig.5.13 shows

that a reduction of one order of magnitude in each of the transport mechanisms has an
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important effect on the value of burning velocity S at Tu= 300 K, 1.0 bar and different

air-to-fuel ratios.

The first two cases, namely, less dispersion and less heat recirculation, show the most

significant reductions of the burning velocity; thus, these two transport paths are the

basic phenomena occurring in combustion within PIM.

Fig.5.13 shows that the contribution of dispersion appears to be the most important

mechanism at λ < 1.7, that is, for the mixtures that exhibit the highest burning veloc-

ities, owing to the fact that the amount of cross-mixing directly depends on the bulk

velocity.

Figure 5.13: Effect of transport coefficients on S predicted with DCM model at Tu= 300
K and 1.0 bar

In the schematics of the coupling of heat transport (Fig.2.6), the sub-mechanisms in-

volved in heat recirculation are connected in series, that is, the interface convection and

the heat transport through the solid phase. Therefore, the dominating mechanism will

be that which exhibits the highest thermal resistance from among these. In contrast,

from the mechanisms involved in transport through the solid phase, namely, conduc-

tion and radiation, the dominating mechanism will be that with the smallest thermal

resistance.

Fig.5.13 shows that the most important mechanism in the heat recirculation is solid
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conduction, since the modeled material (SiSiC) exhibits high thermal conductivity that

is one order of magnitude higher than those of other ceramic materials commonly used

in porous burners. The interface convection is the least important transport process

due to the large interface area between gas and solid that solid sponges exhibit, which

results in lower transport resistance than those offered by the heat transport processes

in the solid phase (radiation and conduction).

Nevertheless, at λ > 1.5, radiation appears to be less important than convection, since

these mixtures exhibit lower combustion temperature and the radiation conductivity

depends on the temperature at the power of three. Additionally, since the Nusselt num-

ber depends on velocity (see Eq.(A.8)), the trend is that convection gains in importance

when the air factor increases.

Fig.5.14 shows the burning velocity S as a function of pressure for λ = 1.45 and Tu =

300 K calculated with the models described in Tab.5.3 in comparison with the PIM

reference case and the laminar free flames. The following observations are made:

1. convection is the least important mechanism in the process at pressures higher

than 1.0 bar because, with the increase of density due to pressure, the Reynolds

number linearly increases and the thermal resistance decreases below that of the

solid phase;

2. at elevated pressure, the contribution of dispersion is considerably more important

than that of heat recirculation; and

3. dispersion represents the mechanism responsible for the increase of the burning

velocity with pressure. That is, only the case of less dispersion did not show

augmentation of the burning velocity, or at least the effect of pressure was not

resolved sufficiently at very low pressures (p < 0.5bar) to observe the curve peak.

However, at the studied pressure range, the influence of pressure on the burning

velocity S seemed to be similar to that in laminar free flames; namely, S was

not augmented with increasing pressure. The reason for this is that the only

mechanism involved in heat recirculation that is affected by pressure is convection,

the contribution of which is not important, as stated above. Therefore, the increase

of the burning velocity in PIM with pressure is attributed to the contribution of

dispersion.

The case of less heat recirculation exhibits a maximum burning velocity that is slightly

shifted to a higher pressure value with respect to the reference case PIM. The simulations

showed that the maximum burning velocity is presented at 1.7 bar and 1.2 bar for the less
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Figure 5.14: Effect of transport coefficients on S predicted with 1D model λ= 1.45 and
Tu= 300 K

recirculation case and the PIM case, respectively. Consequently, the effect of pressure

on the burning velocity depends not only on the contribution of dispersion, but on the

interaction of dispersion with the heat recirculation through the solid phase.

From the sub-mechanisms involved in the heat recirculation through the solid phase,

conduction appeared to be the most important, since the modeled material is highly

conductive.

In conclusion, at elevated pressure, the contribution of dispersion to transport heat and

species is the most relevant transport process in the flame stabilization within open cell

sponges, and in turn, dispersion is responsible for the increase of the burning velocity

with the increase of pressure.

In the present work, the dispersion coefficients were obtained from DPLS on a repro-

duced sample of the sponge used in experiments in order to minimize the uncertainty.

The simulations were performed for tracer diffusion and a nearly constant Peclet number

was observed. If better agreement with experiments is required, the performance of more

detailed studies of the determination of mass and thermal dispersion coefficients is en-

couraged for combustion-like conditions, such as high temperature gradients, transport

of highly diffusive species and combined effects of temperature and mass gradients.
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5.2 Tabulated chemistry model (TCM)

This 1D model is proposed with the aim of providing considerably easier convergence

than that of the detailed computation of direct chemistry, since the main objective is

to include the consideration of temperature deviations along the burner cross-sectional

area for the calculation of the average production rate of each species ω̇i in Section 5.3.

Therefore, the scope of the present section is to demonstrate the validity of a new model

with tabulated chemistry to predict the stabilization of premixed flames.

The tabulated chemistry model (TCM) is basically the same as the DCM but, instead

of the solution of a conservation equation for each of the species considered, this model

solves only a conservation equation of a reaction progress variable, which is related to the

chemical composition from tabulated results of the same kind of flame obtained from a

detailed pre-processor. In this case, the DCM was used to generate the chemistry table.

In this model (TCM), Eqs.(5.1-5.3) are also solved, for the balance of mass, the balance

of energy in the gas phase and energy in the solid phase, respectively. The transport

equation of a progress variable is

0 = A · ρgug
∂Yζ
∂x
− A · ω̇ζMO2 +

∂

∂x

[
ρζ

(
−Ddis

A

Xζ

∂Xζ

∂x

)
Yζ

]
(5.20)

where the mass fraction of chemically bound oxygen Yζ has been selected as a progress

variable defined as:

Yζ = MO2 · ci
∑ Yi

Mi

(5.21)

where Mi and Yi are the molecular mass and the mass fraction of the ith species and

ci is the number of oxygen molecules chemically bound to the ith species, for example:

cCO = 0.5, cCO2 = 1 ...

The production rate of bound oxygen ζ is the negative value of that of oxygen:

ω̇ζ = −ω̇O2 (5.22)

For the use of this model, a look-up table of the chemical gas composition as a function of

the progress variable is required. This chemistry table was generated previously from the

solution of the DCM, for the same combustion case, namely, the same thermodynamic

conditions, air-to-fuel ratio and environment (e.g. PIM-structural and thermo-physical

properties). A general sketch of the TCM is presented in Fig.5.15.
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Figure 5.15: Block diagram of the tabulated chemistry model (TCM)

The chemistry table could be generated from a laminar free flame pre-processor or from

the present DCM of combustion within PIM, but only the latter case makes sense for

the prediction of combustion in PIM. Nevertheless, both cases were tested.

To validate the TCM, the predictions of temperature distribution, species production

rates and burning velocity of reaction embedded in PIM were compared with those

results from the detailed computation for combustion in the same PIM under the same

conditions.

Actually, the TCM should also be able to simulate a steady planar laminar free flame

with the use of the chemistry table of the corresponding flame case and the appropriate

modification of the transport coefficients. In order to simulate a free laminar flame, the

molecular species and thermal diffusion coefficients Dm and am must be included instead

of the dispersion coefficients Ddis and adis. Additionally, the term of heat transfer with

the solid phase in the energy balance of the gas phase must be set to zero.

The predicted temperature distributions, species production rates and burning velocities

of laminar free flames were compared with those results from the detailed computations

of laminar free flames.

Another kind of flame that was used for testing the tabulated chemistry model is the

combustion in honeycombs. In this kind of porous burner, cross-mixing is avoided,

that is, there is no hydrodynamic dispersion, but there is heat recirculation through the

solid phase, mainly by conduction and slightly less by radiation, since the reflection angle

between phases is perpendicular to the gas flow direction. Combustion in a hypothetical

honeycomb burner was simulated in the present work using modified versions of the

models DCM and TCM, where dispersion was not accounted for; that is, the molecular

diffusion coefficients were used instead of those of dispersion.

The combinations of models used in this section are listed in Tab.5.4 by the kind of

combustion and the method of access for the chemistry. Additionally, the TCM presents
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other variables for which there is the possibility of using a chemistry table from other

kinds of flame. For example, combustion in PIM could be simulated with the TCM using

a table from a laminar free flame, from a honeycomb burner or from a PIM burner;

however, only the latter table makes physical sense. The results of the simulations

exploring the possibility of using tables from different kinds of flame demonstrated it.

Only the use of a table generated from the simulation of combustion within PIM allowed

reproduction of the DCM results of combustion within PIM; in contrast, the use of the

laminar free flame table yielded a burning velocity 50% lower than it should have been,

while the burning velocity using the table from the honeycomb burner was overestimated

by a factor of approximately 3.5, since the heat recirculation through the solid phase and

dispersion considerably influence the thermodynamic conditions at which the reaction

takes place.

Table 5.4: Models used

Kind of flame Direct chemistry Tabulated chemistry
model DCM model TCM

Laminar free flame ? ?
Solid heat recirculation HR ? ?
(Honey-comb burner)
PIM burner (10 PPI) ? ?

The three kinds of flame presented in Tab.5.4 were simulated with the DCM. The results

were used to generate the chemistry table for the corresponding kind of flame to be

simulated with the TCM.

A comparison between the two models, direct chemistry (solid lines) and tabulated

chemistry (dashed lines), for the three kinds of flame simulated is shown in Fig.5.16.

The predicted gas temperature profiles match the reference solution for all of the three

flame cases. Tab.5.5 also presents satisfactory agreement for the flame thickness based

on the maximum gas temperature gradient.

Table 5.5: Thermal flame thickness [mm] of simulated flames Tu = 300 K, λ = 1.7, 1.0
bar

Kind of flame Detailed chemistry Tabulated chemistry
model DCM model TCM

Laminar free flame 1.00 1.00
Honey-comb burner 0.59 0.60
PIM burner 3.96 3.98

The simulated temperature profile of the honeycomb burner (heat recirculation) presents
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Figure 5.16: Temperature profile of gas phase of the three kinds of flame (see plot legend)
from simulations using DCM and TCM: solid and dashed lines, respectively, λ=1.7,
Tu=300 K, 1.0 bar.

a considerably larger preheating zone with respect to the laminar free flame. The pre-

heating zone shows a nearly constant temperature gradient. Since the reactions take

place at higher temperature, the temperature gradient in the reaction zone is consider-

ably increased. A temperature peak is observed over the adiabatic combustion tempera-

ture. Downstream of the reaction zone, the temperature decreases down to the adiabatic

combustion temperature due to the heat recirculation.

In the case of the flame stabilized within PIM, the preheating zone is also larger than

in the laminar free flame, but not as large as in the honeycomb burner, that is, the

flame with heat recirculation and without dispersion. The temperature gradient in the

preheating zone predicted with the PIM model rises continuously due to the gradual

increase of velocity, which the dispersion coefficients depend on. Since the PIM case has

higher effective gas thermal conductivity and species diffusivity than in the honeycomb

case, the heat and the species from the reaction zone are transported more rapidly to

the preheating zone; thus, the resulting temperature gradient near the reaction zone is

lower than that in the honeycomb burner and a considerable peak of average temperature

is not observed; that is, there is no considerable super-adiabatic condition in the gas

temperature.
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Fig.5.17 presents good agreement of the burning velocity S as a function of the air factor

λ for the three kinds of flame used in this validation procedure for the TCM (symbols),

with respect to those results from the model with direct chemistry (DCM) (lines).

Figure 5.17: Burning velocity of different kinds of flame calculated with both models:
tabulated chemistry (TCM) (symbols) and detailed chemistry models (DCM) (lines),
Tu = 300 K, 1.0 bar.

The honeycomb burner exhibits a burning velocity approximately 0.23 m/s higher than

the laminar burning velocity. This absolute increase is nearly constant for all the flames

calculated with different air factors.

With the inclusion of the dispersion effect in the PIM flame, the burning velocity ap-

proaches an increase of 10 times the laminar burning velocity and the slope of the curve

is also considerably affected.

Fig.5.18 shows the gas temperature and the volumetric oxygen production rate as func-

tions of the reaction progress variable for the three selected kinds of flame simulated

with the models DCM and TCM, shown with solid and dashed lines, respectively. Good

prediction of the tabulated method with respect to the detailed computation was ob-

tained.

The volumetric reaction rate in the honeycomb burner is considerably higher than that

in the other kinds of flame, since the reaction takes place at higher temperature due to



Tabulated chemistry model (TCM) 119

Figure 5.18: Gas temperature (top) and volumetric oxygen production rate ω̇O2 (bottom)
as functions of the mass fraction of bound oxygen of the three kinds of flame (see plot
legend) from simulations using DCM and TCM: solid and dashed lines, respectively,
λ=1.7, Tu = 300 K, 1.0 bar.
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heat recirculation through the solid phase. Meanwhile, in the model of combustion in

PIM, higher amounts of bound species from the reaction zone are transported to the

inert zone; thus, the reaction zone is considerably enlarged and the volumetric reaction

rate is lower, although the resulting burning velocity is substantially higher than that

without the consideration of dispersion effects.

As a conclusion of this sub-section, it is stated that the model with tabulated chemistry

has been successfully validated to reproduce the results with direct computation of

chemistry for laminar free flames, honeycomb burners and PIM modeled flames.

5.3 Model of temperature spatial deviations in PIM

combustion

In the present measurements, it was shown that the structure of embedded flames within

PIM is corrugated and discontinuous due to the random geometry of the PIM itself, as

some authors have previously inferred [3, 20, 206]. The existence of spatial fluctuations

of temperature along the cross-sectional area in the macroscopic region of the flame

was evidenced in the present measurements. To the best of the author’s knowledge, the

spatial fluctuations of properties are not considered in any of the commonly used models

based on the volume-averaged approach for the simulation of combustion within PIM.

The possible error from the lack of this consideration may become considerable when

calculating terms that are non-linearly dependent, such as the reaction rates, the thermal

conductivity of the solid phase and the solid-to-solid radiation.

In the present work, a 1D volume-averaged model of combustion within PIM called PIM

PDF is formulated to consider statistical variations of the gas temperature along the

burner cross-sectional area for the calculation of source terms, with the expectation of

achieving better prediction of the widening of the flame brush thickness. Simulations in

porous cones and cylinders at different air-to-fuel ratios were carried out for the 10-PPI

burner.

5.3.1 Numerical set-up: PIM PDF model

Some examples of the consideration of statistical variation in the modeling of premixed

flames are cited here for turbulent combustion [207, 208]. In the present model, the

spatial distributions of temperature were modeled with probability density functions
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(PDF) to calculate the source terms. The variations of species concentrations were

coupled with those of temperature.

The present model uses tabulated chemistry in order to reduce the computational cost

and to enhance the convergence, as a commonly used approach to address fluid/chemistry

interactions in heterogeneous systems [209]. The chemistry tables were previously ob-

tained using the DCM (see Section 5.1.1) under the same boundary conditions and for

the same PIM properties. The spatial fluctuations of the local temperature T ∗g along the

cross-sectional area (root mean square values RMS) were modeled using the gradient of

averaged temperature Tg, which avoids the need to solve an additional differential equa-

tion to balance the fluctuations of temperature. With the variance of temperature, PDF

functions were constructed. Their shape was selected as a clipped Gaussian distribution.

The local production rates ω̇∗i (∗ stays for locally defined quantities) were weighted with

the corresponding spatial probability density for the calculation of the average value of

species production rates:

ω̇i =

∫ 1

0

ω̇∗i (θ
∗) · p(θ∗) · dθ∗ (5.23)

where θ∗ is the normalized local gas temperature

θ∗ = (T ∗g − Tu)/(Tg,max − Tu) (5.24)

and p(θ∗) · dθ∗ is the probability of temperature being in the range between θ∗ and

θ∗ + dθ∗.

Therefore,
∫ 1

0
p(θ∗)dθ∗ = 1.0 must be fulfilled.

The local production rates ω̇∗i were calculated with the local temperature T ∗ and the

local chemical composition [Y ∗i ]
1−Ni

using the same approach as explained in Section

5.1.1.

The local mass fractions Y ∗i were coupled with the local gas temperature T ∗g under the

assumption that

Y ∗i (T ∗g ) = Yi(T
∗
g ) (5.25)

that is, Y ∗i were taken from the volume-averaged values at the domain position x, where

Tg = T ∗g .

The presumed PDF can be constructed with the knowledge of at least the gas temper-

ature average and its RMS values. The RMS values of gas temperature were calculated

as a function of the gradient of the temperature average using a correlation obtained
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from an assumption of analogy to the Boussinesq hypothesis:

Tg,RMS · uRMS ≈ adis ·
∂Tg
∂x

(5.26)

In the DPLS of flame stabilization in PIM [20], it was found that the spatial RMS value

of the bulk velocity is 90% normalized with respect to the average bulk velocity value.

uRMS = 0.9 · u (5.27)

then Eq.(5.26) becomes

Tg,RMS =
adis

0.9 · u
∂Tg
∂x

(5.28)

This correlation offers the possibility of using an algebraic calculation of the RMS of

the average gas temperature instead of the solution of an additional transport balance

equation. The substitution of adis from Eq.(5.6) in Eq.(5.28) states in this case that

the Tg,RMS depends only on the axial gradient of the average gas temperature ∂Tg/∂x.

The results of DPLS of modeled combustion within PIM showed good agreement with

this semi-theoretical correlation for all conditions simulated in the work of Bedoya et al.

[20]; therefore, the generation of reality-nearer predictions with this model is expected.

An overview of the PIM PDF model is presented in Fig.5.19.

Probability density function (PDF): clipped Gaussian distribution

It is assumed that the probability density of gas temperature in a cross section in

the reaction front exhibits a shape comparable to a Gaussian distribution [20]. For a

considerably small width of the Gaussian distribution, this distribution turns into a Dirac

delta function, which is used at the inlet (outlet) of the burner where the probability of

having Tu (Tmax) is one.

The physical limits Tu and Tmax were used to restrict the distribution. All values of

Gaussian distribution below Tu (above Tmax) were accumulated on this point. The

Dirac peak at Tu (Tmax) represents the area below the Gaussian curve for all values

between −∞ and Tu (Tmax and∞). Fig.5.20 shows an example of the clipped Gaussian

distribution corresponding to θ = 0.45 and θRMS = 0.19.

A database of clipped Gaussian distributions was generated by P. Habisreuther [49]

varying the average µ and the standard deviation σ of the Gaussian distribution (not

clipped). The values outside the physical range 0 < θ∗ < 1 correspond to the factors α
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Figure 5.19: Block diagram of model PIM PDF

Figure 5.20: Clipped Gaussian distribution with θ = 0.45, θRMS = 0.19
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and β of the Dirac delta functions δ.

p(θ∗) = αδ(θ∗) + βδ(1− θ∗) + γe−((θ∗−µ)2/(2σ2)) (5.29)

where γ is the normalization factor:

γ =
1− α− β

σ
√
π/2

[
erf
(

1−µ
σ
√

2

)
+ erf

(
µ

σ
√

2

)] (5.30)

and erf is the error function:

erf(z) =
2√
π

∫ z

0

e−t
2dt (5.31)

5.3.2 Results

In order to appreciate the sensitivity of the present model to the inclusion of the tem-

perature deviations, modification of this model was carried out:

ω̇i = (1−R) · ω̇∗i (θg) +R ·
∫ 1

0

ω̇∗i (θ
∗) · p(θ∗) · dθ∗ (5.32)

where R is called the PDF contribution coefficient, which was systematically varied from

0 to 1. For R= 0, the reaction rates are calculated with the average gas temperature

and mass fractions; that is, the model is the same as that presented in Section 5.2, PIM

without PDF. In contrast, for R= 1, the reaction rates are calculated with the proposed

model PIM PDF, which considers the spatial deviations in temperature.

The results of burning velocity and thermal flame thickness in the cylindrical 10-PPI

burner are presented in Fig.5.21 for different values of R at λ=1.7, Tu = 300 K and

1.0 bar. It is noted that the consideration of temperature deviations produced a con-

siderable increase in the flame thickness; that is, the maximum temperature gradient

decreased down to almost 50% at full inclusion of the PIM PDF model (R = 1).

For low values of R, the temperature gradient is the highest; then, the temperature

variations are the highest due to the use of the correlation to obtain Tg,RMS in Eq.(5.28).

At elevated Tg,RMS, the probability density values of intermediate temperatures vanish

and the PDFs all adopt the two-Dirac delta function shape, with peaks at the extremes

of the temperature range of the process (Tu, Tmax), where the reactions rates tend to be

zero. Therefore, the second term on the right side of Eq.(5.32) yields so low values that

the increase of R produces a decrease in the burning velocity.
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Figure 5.21: Effect of the consideration of temperature deviations on the burning velocity
S and the thermal flame thickness δ at Tu= 300 K, λ= 1.7, 1.0 bar

For R > 0.6, the temperature gradient was low enough to allow for lower temperature

variations, and then the increase of the PDF contribution R produces an increase in S.

For R=1, the burning velocity compared with that obtained without PDF under the

same conditions is around 7% lower. Further results are presented and analyzed below

for the model with R= 1, that is, for the proposed model PIM PDF.

In order to visualize the distribution of species conversion rates along the cross-sectional

area, Fig.5.22 presents the local conversion rate ω∗ of molecular oxygen weighted by

its probability density p · dθ∗ as a function of the local normalized temperature θ∗ at

different selected locations x at λ=1.7, Tu=300 K and 1.0 bar. The corresponding

average normalized temperature θ and its RMS are also displayed in the plot legend.

At the normalized average temperature of θ = 0.26, there is no net conversion of oxygen,

while at θ = 0.39, namely, Tg= 836 K, considerable values are obtained. The maximum

weighted local reaction rate does not occur at a local normalized temperature θ∗ equal

to the average one (0.39), but at a higher value of θ∗ = 0.8. The reason for this is that

the used modified Arrhenius equation depends exponentially on temperature; that is,

the local conversion rate tends to zero for θ∗ < 0.5.

In contrast, in a cross section near the burned side of the flame, that is, at a high θ of
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Figure 5.22: Weighted oxygen conversion rates along the cross-sectional area at different
x locations as a function of the normalized local temperature θ∗, λ=1.7, Tu=300 K, 1.0
bar.

0.94, the maximum of the distribution of the weighted conversion rate is located at a

lower θ∗ of 0.88 because, at high θ∗, the educts possesses lower concentrations.

Fig.5.23 presents the axial profiles of average temperatures of the gas and solid phases,

as well as the average production rates of some selected species: O2, H2O and CO at

λ=1.7, Tu=300 K and 1.0 bar. The conversion of species was initiated at an average

temperature of approximately 720 K, normalized to θ = 0.29. The size of the region

where the conversion of species takes place is clearly considerable with respect to the

domain where temperature increases; that is, the reaction thickness ranges between 6

and 11 mm depending on the definition used: 5% of the maximum production rate of

oxygen or that of water, respectively. In contrast, the whole thermal flame thickness

(defined in Eq.(2.18) is 7.4 mm. The obtained preheating zone is also considerably

thicker than that of a laminar free flame.

A comparison with the model without consideration of temperature deviations (PIM

without PDF) and the laminar free flame is displayed in Fig.5.24 and Fig.5.25 for the

same conditions λ=1.7, Tu= 300 K, 1.0 bar. The temperature profile obtained con-

sidering PDF is considerably smoother than in the other cases and there is neither a

considerable gas temperature peak observed nor considerable super-adiabatic condition
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Figure 5.23: 1D model PIM PDF profiles of average temperature and production rate of
selected species, λ=1.7, Tu= 300 K, 1.0 bar

(see Fig.5.24).

The average conversion rate of oxygen as a function of the average gas temperature

presents a completely different shape than that calculated with merely the average

temperature (see Fig.5.25); that is, the simulation of combustion within PIM with-

out considering spatial deviations of temperature results in a reaction zone with similar

dependence on temperature as that in a laminar free flame, which cannot predict the

average flame brush thickness observed in experiments.

Simulations with this model (PIM PDF) were carried out in the conical porous burner,

while also varying the flame stabilization location. The observed effect of the diverg-

ing geometry on the burning velocity and the temperature profiles did not differ from

that observed with the detailed computations, which were carried out while neglecting

temperature variations.

The flame stabilization within PIM was simulated for other air-to-fuel ratios under lean

conditions with the model PIM PDF. Fig.5.26 shows the thermal flame thickness based

on the maximum gradient of average temperature of both gas and solid phases for

different air factors at 300 K and 1.0 bar, in comparison with experiments and the PIM

model without PDF. It is notable that the predicted thermal flame thickness δ based
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Figure 5.24: Comparison of the gas temperature profile obtained from the models with
and without PDF, λ=1.7, T0=300 K, 1 bar.

Figure 5.25: Average production rates of oxygen in a flame in PIM simulated with and
without consideration of temperature deviations in comparison to that in the laminar
free flame, λ=1.7, Tu= 300 K, 1.0 bar
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on the solid temperature compares well with the experiments. δgas is almost twice that

predicted by the model without PDF.

Fig.5.27 presents the results of burning velocity. It is observed that the good agreement

with experiments predicted with the other model was maintained. The burning velocity

obtained with the PIM PDF model shows a nearly constant difference with the other

model of 7 cm/s

In summary, the model considering the effect of temperature variations on the species

production rates yields substantially flattened temperature profiles at the reaction zone,

which compare well with the experiments. Study of the effect of the temperature RMS is

encouraged, with the possibility of considering statistical variations of other parameters

by using joint PDF models, such as mass fractions and velocity, as well as the use of

other PDF shapes such as the β distribution, in order to consider the locally super-

adiabatic regions in the PDF. The species production rates show considerable values at

very low average gas temperatures (≈ 710 K) compared with those in the continuum

models used so far (≈ 1300 K). An average temperature of activation of reactions T 0

was defined as the gas temperature at which 5% of the maximum oxygen consumption

occurs. Fig.5.28 shows that T 0 is a function of the air factor. Nevertheless, T 0 does not

vary considerably, that is, T 0 = 690 K ± 40 K.
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Figure 5.26: Thermal flame thickness with the 1D model PIM PDF compared with
experiments, PIM model without PDF and laminar free flames, Tu= 300 K, 1.0 bar

Figure 5.27: Comparison of burning velocity in PIM obtained from the 1D model with
and without PDF; Tu = 300K, 1.0 bar
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Figure 5.28: Temperature of reaction activation T 0 as a function of the air factor obtained
with the PIM PDF model; Tu = 300K, 1.0 bar
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Chapter 6

Theoretical study of flame

stabilization within PIM

The classic thermal theory of Mallard and Le Chatelier [34] for laminar free flames is

applied in the present section analogously to the case of premixed stationary combus-

tion within PIM for the analytical and simple prediction of the burning velocity and

flame thickness in porous burners as functions of the laminar burning velocity, with the

objective of developing a simple model for practical use in the dimensioning of porous

burners and to promote understanding of the physics behind the process.

6.1 Theoretical model

The following assumptions are made:

1. Local thermal equilibrium between phases

2. The heat release timescale τc is not affected by the presence of the PIM

The first assumption is the adoption of local thermal equilibrium between phases,

namely, Tg = Ts = T . This assumption is justified for a rough approach because con-

vection between phases in this kind of sponge-like structure exhibits considerably lower

heat transfer resistance than the other involved mechanisms, that is, solid conduction

and solid-to-solid radiation. Thus, in the present analytical model, it is assumed that

heat conduction processes in the solid and gas phases take place in parallel, so there is

no net heat transfer from one phase to the other.
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Analogously to laminar free flames (see Section 2.2.1), the existence of two main layers

was observed, an inert zone and a reaction zone. Thus, an enthalpy balance around the

inert zone and the assumption of a linear temperature profile yield:

ṁ · cp,g,u(T 0 − Tu) = λeff,2−ph · Apim(Tb − T 0)/δ (6.1)

where λeff,2−ph is the overall effective thermal diffusivity of the medium at temperature

T 0, Apim is the burner cross-sectional area taken to be a constant at unity and cp,g,u is

the specific heat capacity of the unburned gas phase, which are assumed to be constant.

The bulk flow can be considered as one-dimensional:

ṁ = ρ · Apim · u = ρu · Apim · uu (6.2)

where u is the bulk superficial velocity (u = ε · ug). For the flame stabilization in a

stationary location:

S = uu (6.3)

Eq.(6.1) becomes

ρu · S · cp,g,u(T 0 − Tu) = λeff,2−ph(Tb − T 0)/δ (6.4)

or

S =
λeff,2−ph
ρu · cp,g,u

(Tb − T 0)

(T 0 − Tu)
· 1

δ
(6.5)

The reaction zone thickness is related to the burning velocity

δ = S · T
0

Tu
· τc,pim (6.6)

by the heat release time in this kind of burner τc,pim. The second basic assumption for

this analytical model is that the timescale of heat release is not affected by the presence

of the PIM,

τc,pim = τc (6.7)

Therefore, the same result as in the classic theory is yielded as expected,

S2 =
λeff,2−ph
ρu · cp,g,u

(Tb − T 0)

(T 0 − Tu)
· 1

τc
· Tu
T 0

(6.8)
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where τc is related to the laminar burning velocity Sl from the approximation of the

thermal theory of laminar freely propagating flames from Eq.(2.9) and Eq.(2.10):

S2
l =

λg,b
ρu · cp,g,u

(Tb − T 0)

(T 0 − Tu)
· 1

τc
· Tu
T 0

(6.9)

Then, dividing Eq.(6.8) by Eq.(6.9) it yields

S =

(
λeff,2−ph
λg,b

)1/2

· Sl (6.10)

the expression for obtaining the burning velocity in PIM. After evaluating the S, the

flame thickness is obtained from Eq.(6.5).

This adaptation of the thermal theory to the combustion within PIM could be evaluated

as a very rough approximation. It was performed in this way because special care must

be taken for calculation of the overall effective thermal conductivity of the medium

λeff,2−ph, since the contribution of dispersion to heat transport depends on the gas

velocity, namely, λeff,2−ph also depends on the burning velocity.

6.2 Effective transport parameter

From the first assumption, that the heat conduction in the solid and gases phases occurs

in parallel, then the overall conductivity is the weighted arithmetic mean of the effective

conductivities, Eq.(2.49) becomes:

λeff,2−ph = ε · (λg/τ + λdis) + (1− ε) · (λs/τs + λr) (6.11)

The effective conductivity of gas phase considers the contribution due to dispersion λdis

and the reduction of the molecular conductivity λg due to flow tortuosity τ . λm,g is

negligible compared to λdis.

λdis from Eq.(2.51):

λdis = ρu · cp,g,u · adis

With the substitution of the dispersion coefficient adis from Eq.(5.6)

λdis = ρu · cp,g,u · 0.5 · ddis · u(T 0) (6.12)

the superficial velocity at temperature T 0 can be related to the velocity of unburned
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gas, that is, the burning velocity using Eq.(6.2) [u(T 0)/T 0 = S/Tu]; then,

λdis = ρu · cp,g,u · 0.5 · ddis ·
T 0

Tu
· S (6.13)

In the case of the solid phase, the effective thermal conductivity of the solid phase

considers the reduction due to the tortuous heat conduction paths through the sponge-

like structure τs and the contribution of radiation λr(T
0) (see Eq.(2.53)).

λr = (16 · σ · T 3
s )/(3 · β)

Finally, the overall effective thermal conductivity of the medium can be substituted in

Eq.(6.10),

λg,b
S2
l

· S2 − 0.5 · ε · ρu · cp,g,u · ddis
T 0

Tu
· S − (1− ε) · (λs/τs + λr) = 0 (6.14)

This algebraic equation has the form: a · S2 + b · S + c = 0, which can be analytically

solved for S. The inclusion of the second term of the equation, namely, the dispersion

term, involves the density, which is directly proportional to pressure. Since the laminar

burning velocity of methane approximately decreases with the inverse of the square root

of pressure, identification of the effect of pressure on the burning velocity in PIM is not

trivial as shown by this model. Thus, an evaluation of the model was carried out for

the PIM used in the present work. Since the increase of the pore density from 10 to 20

PPI is not associated with a representative decrease in either the dispersion coefficient

or the effective thermal conductivity, these parameters were artificially varied in order

to observe their importance in the flame stabilization mechanism.

6.3 Evaluation and discussion

The results of burning velocity from the evaluation of Eq.(6.14) are presented in Figures

6.1, 6.2, 6.3 and 6.4 for a sponge-like PIM with 10 PPI made of SiSiC. The gas prop-

erties and the laminar burning velocities were calculated with the CHEMKIN package

using GRI mech 3.0. The used properties of the PIM are listed in Tab.5.1. The solid

conductivity λs of sintered SiSiC was estimated at the temperature Ts = T 0 using a

correlation from [191].

λs =
[
(52000 · exp(−1.24 · 105(Ts − 273))

]
/(Ts + 164) (6.15)
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Figure 6.1: Theoretical burning velocity calculated with different models in comparison
to the experiments, PIM 10 PPI, Tu=300 K, 1.0 bar.

The temperature T 0 value used was 690 K. This value of average temperature of igni-

tion was observed in the 1D numerical simulations, with consideration of temperature

deviations (PIM-PDF model) to be in the range of 650 to 750 K. The arbitrary selection

of this value is justified below.

The values of the effective solid conductivities at this temperature value are (1 −
ε)λs/τs = 3.51W/mK and (1 − ε)λr = 0.08W/mK, while the value of dispersion

conductivity at a bulk velocity of gases of u = 1.42 · (670 K/300 K) m/s is (ε · λdis) =

5.46W/mK.

Fig.6.1 shows that the burning velocity results at 1.0 bar and 300 K obtained from the

present theoretical model agree well with experimental values obtained at different air

factors λ. It appears to provide good prediction of the burning velocity at air factors

lower than 1.9.

In order to appreciate the influence of the involved parameters, the main terms in the

present model Eq.(6.14) were separately reduced, as presented in Tab.6.1, to generate

two hypothetical cases: less dispersion and less solid conduction. The resulting burning

velocities from these model cases are also shown in Fig.6.1, which indicates that disper-

sion is more important than solid conduction for air factors lower than 1.5, while for

leaner mixtures, the stabilization mechanism is dominated by the heat transfer through
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the solid phase; since the burning velocity is lower, the dispersion contribution is not as

important.

Table 6.1: Modification of transport coefficients respect the PIM reference case

Case λdis λs
Less dispersion 0.1 · λdis λs
Less solid conduction λdis 0.1 · λs

As mentioned above, the effect of pressure on the burning velocity in PIM was not clear

from the model proposed in the present section, without a detailed evaluation of an

example case. Fig.6.2 shows the resulting burning velocities from the reference PIM

case as a function of pressure for different air-to-fuel ratios at Tu= 300 K. It is clear

that the effect of pressure differs considerably from that in laminar free flames, where

its effect is always negative. In contrast, in the PIM case, it was observed that pressure

can have a positive effect for a stoichiometric mixture until the burning velocity reaches

a maximum value and, upon a further increase of pressure, the burning velocity can

decrease to achieve a nearly constant value.

The reason why the pressure can positively affect the burning velocity is based on the

second term of Eq.(6.14), namely, the dispersion contribution, which is considerably

more important at higher velocities, that is, in burnable mixtures that can exhibit

higher laminar burning velocities (i.e. with air-to-fuel ratios near the stoichiometric

proportion, higher initial temperatures and lower pressures).

Fig.6.3 presents the obtained results of burning velocity in the PIM reference case at

λ = 1.2 as a function of pressure compared with the other two cases, low dispersion and

low solid conduction. The results from the exemplary case of the present theoretical

model show that the burning velocity seems to be nearly pressure-independent.

In the case in which dispersion is not reduced, that is, the less solid conduction case, the

burning velocity increases considerably with pressure up to approximately 5 bar, but

for further increases of pressure, it stays nearly constant.

For the other case, where dispersion is reduced (i.e. less dispersion), the influence of

pressure on the burning velocity is like that of free laminar flames, where its effect is

merely negative. Thus, the hydrodynamic dispersion is more important than the heat

transfer through the solid phase in a wide pressure range starting at 0.5 bar.

Fig.6.4 presents the obtained results of burning velocity in the PIM reference case at λ =

1.8 as a function of pressure compared with the other two cases: less dispersion and less
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Figure 6.2: Theoretical burning velocity as a function of pressure, 10-PPI PIM, Tu=300
K.

Figure 6.3: Theoretical burning velocity calculated with different models, PIM 10 PPI,
Tu=300 K, λ= 1.2.
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Figure 6.4: Theoretical burning velocity calculated with different models in comparison
to the experiments, PIM 10 PPI, Tu=300 K, λ= 1.8.

solid conduction, and compared with the present experimental results. It is observed

that the burning velocity agrees well with the experiments, although the predicted values

are lower and decrease more steeply with pressure than in the experiments.

From the other two manipulated case models, it can be observed in Fig.6.4 that disper-

sion is more important than solid heat transfer at pressures above 5 bar. The model case

in which the solid conduction term was reduced, namely, less solid conduction, nearly

exhibits independence from pressure in this pressure range. It is important to note that

in none of the studied cases did pressure have a positive effect on the burning velocity

for this air-to-fuel ratio.

Compare the shape of the S(p) curves obtained with the model with reduced solid

thermal conductivity for the air factor of λ = 1.2 with that of the air factor λ = 1.8,

that is, the dashed curves of Less solid cond. in Fig.6.3 versus that in Fig.6.4. It is

observed that, for a less lean mixture λ = 1.2 (Fig.6.3), this curve has a positive slope in

the pressure range p < 3 bar, but at higher pressure, the slope tends to zero; however,

for the leaner mixture λ = 1.8 (Fig.6.4), the slope of the curve for this model is negative

in the whole studied pressure range of 0.3 bar − 15 bar.

From these exemplary cases, it is concluded that the pressure can have a positive effect
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Figure 6.5: Theoretical flame thickness in comparison to experiments, PIM 10 PPI,
Tu=300 K, 1.0 bar.

on the burning velocity for conditions in which the contribution of dispersion is more

important than that of heat transfer through the solid phase, that is, for burnable

mixtures with a high laminar burning velocity or for porous inert media with low effective

heat transfer coefficients of conduction or radiation.

One of the assumptions of the present model is that the reaction zone thickness is the

same as the inert zone thickness:

δ =
λeff,2−ph
ρu · cp,g,u

· 1

S
(6.16)

The resulting burning velocity S from the reference PIM example using the present

theoretical model was used to evaluate the flame thickness δ in Eq.(6.16). The results

are shown in Fig.6.5 at 1.0 bar as a function of the air factor in comparison with the

thermal flame thickness obtained from experiments and the thermal flame thickness of

laminar free flames. Good agreement of the prediction of burning velocity, as shown in

Fig.6.1, is also observed with the predictions of the flame thickness using this simple

model.

Eq.(6.16) was also used to analyze the effect of pressure on the flame thickness, as

presented in Fig.6.6, where the results show that the flame thickness of the stoichiometric

mixture decreases with the increase of pressure until an asymptotic value is reached (at

approximately 1.5 bar). For leaner mixtures, the minimum value of thermal thickness

is reached at higher pressures.
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Figure 6.6: Theoretical flame thickness as a function of pressure, PIM 10 PPI, Tu=300
K.

The proposed model has yielded interesting results that do not differ considerably from

the values and trends observed in experiments and simulations of flame stability within

PIM. Therefore, it is recommended for engineering use during the dimensioning of porous

burners when numerical tools are not available. The main inaccuracy of the model at

elevated pressure is the uncertainty of the values of laminar burning velocities, which

have yet to be validated at elevated pressure for lean mixtures, to the best of the author’s

knowledge.

The accuracy of the presented model fails for lean mixtures λ > 1.9, see Fig.6.1. The

accuracy can be enhanced with the inclusion of results from numerical models such as

the one presented in Section 5.3 with consideration of temperature fluctuations in space.

A heat release timescale τpim for the results of the model PIM-PDF was calculated with

Eq.(2.15) using the gas temperature:

τc = min(Tg · (∂Tg/∂x)−1/ug(x))

The results are compared with those of laminar free flames in Fig.6.7. The ratio between

PIM PDF and the laminar case ranges between 0.6 and 2.5.

A correction factor as a function of the air factor taken from the results of Fig.6.7 is
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Figure 6.7: Heat release timescale τpim obtained from the 1D model PIM PDF compared
with laminar free flames; Tu = 300K, 1.0 bar

introduced:
τpim
τc

= 4.381 · λ2 − 14.669 · λ+ 13.108 (6.17)

which can be used in the model proposed here:

τpim
τc
· λg,b
S2
l

· S2 − 0.5 · ε · ρucp,g,uddis
T 0

Tu
· S − (1− ε) · λs,eff (T 0) = 0 (6.18)

The results are presented in Fig.6.8. A clear better agreement with experiments for

λ > 1.9. For lower air factors more experimental results are required for judging the

presented correction.

The value of the ignition temperature T 0 was taken from the 1D numerical simulations

under consideration of spatial fluctuations of temperature, as the temperature where the

average production rate of oxygen achieved 0.5% of the maximum value observed. It

was found to be in the range of 650 to 750 K from λ= 1.05 to λ= 1.80, respectively. In

this range, the selection of this temperature has a considerable effect on the dispersion

conductivity and solid conductivity, while the radiation conductivity is not markedly

affected.

Nevertheless, the effects of temperature on the solid and dispersion conductivities are op-
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Figure 6.8: Corrected S by the τpim from simulations with PIM-PDF model; Tu = 300K,
1.0 bar

posite, since the solid conductivity depends exponentially on the inverse of temperature

(see Eq.(6.15)), and the velocity increases linearly with temperature due to the isobar

expansion in a straight pipe. This fact in addition to the small size of the temperature

range of T 0 are the reasons why the exact selection of this temperature is not relevant

to determine the effects of air-to-fuel ratio and pressure on the resulting burning veloc-

ities. However, the temperature T 0 was systematically varied in order to obtain better

results, such as changing it to the initial temperature or to the combustion temperature

for the separate definition of each of the involved conductivities; however, none of their

combinations gave better results than the theoretical model presented here.
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Conclusions

Porous burners appear to be a feasible alternative to conventional burners (based on

combustion in free spaces, such as laminar and turbulent flames). Commercially, porous

burners, with recognized higher efficiency in terms of heat transfer by radiation to a

charge, have been increasingly widely used due to the advantage exhibited by the solid

porous surface to accommodate a high proportion of the infrared spectrum in comparison

to gases. Some common applications of this kind of burner are industrial drying and

household grills.

Combustion in porous inert media (PIM) can take place at the porous surface or within

the porous media. When the flame is stabilized at the porous surface, some of the heat

released by the combustion reactions is transferred to the solid phase. The temperature

of solid may increase under determined conditions, so that the burner adopts a radiative

mode. Heat from the solid phase is transferred in turn to the incoming gases, which

accelerates the combustion wave so it can propagate within the PIM. Combustion within

the PIM can occur as a propagating flame front along the PIM or as a stationary flame

stabilized by an applied technique, such as the convective technique (where the flow

velocity is higher at the unburned zone to avoid flashback) or the thermal quenching

technique (where the porous layer with a pore size smaller than the thermal quenching

distance is used in the unburned zone).

For the practical use of porous burners, the temperature at which active oxidation of

the porous material takes place (e.g. for SiSiC, this corresponds to 1750 K for an

atmosphere with 15% vol. oxygen) and the resistance to thermal shock during burner

start-up and turn-down are parameters to be taken into account when designing the

combustor housing and when setting process conditions.

The higher thermal emissivity and thermal conductivity of the solid material compared

with those of gases yield higher heat feedback from burned gases to preheat the incoming
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unburned gas mixture at a higher rate through radiation between solid surfaces and

conduction through the solid phase. This phenomenon is known as heat recirculation or

excess enthalpy, which leads to certain characteristics for this kind of combustion, with

considerable differences compared with combustion in free mode. These characteristics

include minimal emission of pollutant species, namely, NOx and CO, even at elevated

combustion temperatures, and the achievement of superadiabatic temperatures in some

locations. Another notorious characteristic is the enlargement of the flame stability

range, which allows for special applications, such as partial oxidation of hydrocarbons

to produce synthetic gas or the combustion of ultra-lean mixtures, which is of interest

for utilization or inertization of fuels with low heating values or the production of hot

gases at a sufficiently low temperature that can be withstood by materials in machinery

downstream, as in the case of combustion in gas turbines. For example, in the present

study, the lower stability limit of a stationary flame for mixtures at ambient temperature

T0 = 300 K was observed at 4.5% vol. methane mixed in air (when the CO emissions

were below 30 ppm vol.), which corresponds to an adiabatic combustion temperature of

1390 K. In contrast, the flammability limit of this fuel in air is 5% vol. Other studies

have shown that, for stable flame front propagation through a PIM, where the flame

front propagates in the same direction as the flow, the lower stability limit is extended

to 1.5% vol. [24].

The acceleration of the combustion wave, namely, the increase of the burning velocity

S, is another important characteristic that allows for the increase of the installed power

specific to the burner cross-sectional area. It represents the possibility of constructing

firing rooms with smaller sizes with the same installed power. This phenomenon of

increased burning velocity is not only a result of the heat recirculation through the

solid phase, but also a result of cross-mixing of the gas stream due to the tortuous flow

paths imposed by the PIM. It macroscopically leads to intensified transport of mass

and heat in the gas phase. This phenomenon is known as hydrodynamic dispersion,

which in PIM combustion yields flattened profiles of average temperature and average

concentration along the bulk flow direction. The hydrodynamic dispersion coefficients

of a PIM with fixed geometry depend merely on the fluid velocity (for Pe > 10, i.e. for

the typical conditions of PIM combustion). The importance of these two phenomena,

heat recirculation and dispersion, in the modeling of stationary flames in PIM has been

discussed in the present work.

One of the motivations of the present study was the possibility of applying this technol-

ogy to combustion in stationary gas turbines and the fact that burning velocity values

were not available at elevated pressure, which is an inherent condition in this kind of

engine. In addition, the lack of a complete understanding of the processes relevant to



147

combustion processes in PIM prompted this work. The study of combustion within PIM

faces some challenges, such as the access of optical and mechanical probes due to the

presence of the PIM itself and the stiffness of the PIM structure.

The present study focused exclusively on the flame stabilization in a stationary location

within the PIM of lean premixed methane-air mixtures under adiabatic conditions and at

elevated pressure. Experimental, numerical and theoretical investigations were carried

out, with the main objective of producing a substantial database of burning velocity

values and acquiring a basic understanding of the physics behind the processes relevant

to combustion within PIM and of the flame structure itself. The PIM studied in this

work was a sponge-like structure made of SiSiC with 87% porosity and 10 (and 20) PPI.

This material was selected, since it appears to have the best ratio between temperature

shock resistance and the highest operable temperature, in addition to the very high

thermal conductivity in comparison to other ceramic materials. The main obtained

results were on the burning velocity and the macroscopic thickness region, as well as the

identification of temperature deviations in space.

One of the most important results of the present study is a definition of the burning

velocity that can be validated by reproducibility in burners with different geometric

shapes and different flame stabilization techniques. A massive database of burning

velocity values was generated at different pressure levels. The effects of the air factor and

pressure on the burning velocity were studied and tendencies were clearly identified. The

experimental results of burning velocities were well correlated with a model of modified

Peclet numbers based on the burning velocity in PIM S and the burning velocity of

laminar free flames Sl:

Pepim = CPe · Pemlam

which represents an easy-to-use tool for engineering while dimensioning or scaling burn-

ers with different geometries, using different fuels or operating at different conditions of

temperature, pressure and air-to-fuel ratio.

The obtained results were satisfactorily predicted with the 1D numerical model used

here, as well as with the theoretical model proposed in the present study. The numerical

model is based on finite differences of volume-averaged quantities with the use of effective

coefficients that provide information about the processes occurring at the microscopic

scale. The observed temperature fluctuations in the experiments were considered to

calculate the average of non-linearly dependent terms such as the species production

rates ω̇i, with the use of presumed statistical distributions along the cross-sectional area

of the burner.

In a parallel study by Parthasarathy et al. [26–28], the effective coefficients of transport
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in the used PIM were determined by direct pore-level simulations (DPLS) on a repro-

duced sample of PIM scanned by micro-computer tomography. The velocity fluctuations

in space were also identified. In another parallel work by Dinkov et al. [210] and Bedoya

et al. [20], DPLS of combustion in the reproduced sample of PIM were carried out, in

which a heterogeneous shape of the flame was observed and the temperature fluctuations

were correlated with the gradient of the average temperature.

With the measurements of the present study, it was possible to demonstrate the existence

of temperature fluctuations in space during combustion within PIM; this confirms that

the flame structure in a porous burner is corrugated and discontinuous, as Dinkov et al.

[210] predicted in their DPLS.

In this study, the burning velocity in PIM was compared with that in free flames,

namely, laminar and turbulent. At low air excess ratios, the burning velocity in PIM

combustion exceeds the laminar burning velocity by a factor of seven, which is lower

than the turbulent burning velocity. In contrast, under leaner conditions, this factor

increases up to 13, which is considerably higher than that of turbulent flames (without

recirculation of hot gases). This effect of the air factor on the burning velocity was

fairly well predicted by the numerical and theoretical models. Additionally, the effective

parameters of transport in these models were systematically varied in order to quantify

the relative importance of the transport mechanisms involved in PIM combustion. It

was found that the heat recirculation through the solid phase becomes dominant over the

hydrodynamic dispersion for a very lean mixture, that is, where lower burning velocities

are exhibited. In contrast, at lower air excess ratios, the contribution of dispersion to

transport mass and heat becomes dominant in the combustion processes in stationary

flames within PIM.

Owing to the high volumetric surface area, which is typical of solid sponges, interfacial

convection was identified as a non-limiting process in the combustion within this kind

of PIM, since the heat transfer through the solid phase offers higher thermal resistance

(which is in series connected with the convective thermal resistance).

This is the first study reporting burning velocity values at elevated pressure. The iden-

tified behavior of the burning velocity against pressure variation is considerably non-

monotonic, which substantially differs from that in laminar free flames. It was observed

that, under conditions that exhibit a high laminar burning velocity, namely, low air

excess and/or high initial temperature, the burning velocity in PIM increases with the

increase of pressure until it reaches a maximum. For further increase of pressure, the

burning velocity decreases. In contrast, for mixtures that have a low laminar burning

velocity, the positive effect of the pressure increase on the burning velocity in PIM was
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not observed or it was less considerable and occurred in a shorter pressure range. This

behavior was well predicted by both models used here, and the reason for the increase

of the burning velocity in PIM with pressure was identified as the contribution of dis-

persion, since the dispersion coefficients depend on the gas velocity. This statement was

confirmed upon the systematic variation of the model parameters in the numerical and

theoretical models.

Some representative results of the macroscopic thermal flame thickness in PIM (based

on the maximum temperature gradient) were produced by the repetition of experiments

varying the thermal power, namely, the flow rate. It was found that the thermal flame

thickness in PIM exceeds that of laminar free flames by a factor of approximately seven.

The effect of the air factor was found to be similar to that in laminar free flames: that

is, the flame thickness increases with the increase of the air factor.

The flame thickness in PIM was not predicted to be as large by the 1D model when

neglecting the temperature fluctuations in space while calculating the source terms, as

was the case in state-of-the-art studies using the same model [15, 57]. In the present

study, a model to consider the temperature variations was proposed and validated, which

consisted of the use of presumed probability functions (PDF) of local temperature to

obtain the average of the species production rates:

ω̇i =

∫ 1

0

ω̇∗i (θ
∗) · p(θ∗) · dθ∗

The local gas chemical composition was coupled with the local temperature θ∗. The PDF

shape was a clipped Gaussian distribution, which was constructed with the average gas

temperature and the temperature variance. The temperature variance was determined

using an algebraic equation function of the gradient of average temperature. This corre-

lation was produced analogously to the Boussinesq hypothesis. With this model, namely,

the PIM-PDF model, it was possible to compare the measurements well. It was found

that the macroscopic reaction zone is considerably large and constitutes a representative

part of the complete (macroscopic) flame region.

The activation of reactions was observed at a very low average temperature (670 K)

in comparison to that for laminar free flames (≈ 1300K). The identification of this

temperature value was crucial for the accuracy of the theoretical model proposed here,

which is based on the division of the flame into two layers: inert and reaction zones, as

carried out by Mallard and Lechatellier for laminar free flames. This theoretical model

is based on the assumption of local thermal equilibrium of the two phases, that is, the

thermal resistance imposed by interfacial convection tends to zero. Theoretical results
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compared well with the experiments, that is, the burning velocity and thermal flame

thickness values were well predicted, as well as the effect of pressure on the burning

velocity. Thus, this theoretical model is presented as a simple tool for understanding

and rough dimensioning of burners:

S =

(
λeff,2−ph
λg,b

)1/2

· Sl

where λeff,2−ph(T
0) = ε · λdis + (1− ε) · (λs/τs + λr),

and λdis = ρu · cp,g,u · 0.5 · ddis · uu · (T 0/Tu)

Another relevant observation from the present experiments and model results is the

relationship between the burning velocity and the flame thickness as it occurs in laminar

free flames; for example, when pressure increases and has a considerable effect on the

burning velocity, it also affects the flame thickness considerably:

δ =
λeff,2−ph
ρu · cp,g,u

· 1

S

After this intensive study of the flame stabilization within PIM, there are still further

fields of research to be undertaken. In particular, the experimental detailed determi-

nation of temperature deviations in space requires the development of new measuring

techniques, such as detailed pore-level measurements. The modeling of these temper-

ature fluctuations in the method presented here for the volume-averaged model was

limited by the tabulated chemistry, which was generated with a model that neglects

those fluctuations. In fact the reaction path varies as well, there are locations in the

PIM where the cross-mixing is not as considerable and considerable superadiabatic tem-

peratures are achieved, while there are locations with cosiderably higher cross mixing,

as the case modeled in the present work.

In addition to the modification of chemistry modeling, the use of other PDF shapes,

such as the β-distribution, has not been evaluated. The stiffness of the used model

avoided the convergence of accurate solutions at numerous pressure levels; thus, the

results obtained were insufficient to draw conclusions on the effect of pressure by the

use of the PIM-PDF model.

Combustion instabilities were observed in a certain pressure range under conditions with

high combustion temperature. Further work needs to be carried out to establish physical

models in order to explain and predict this operation mode, as well as the development

and use of a more detailed measurement technique to describe it better.
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In a near future, it is expected that substantial results of DPLS of combustion within

PIM can be identified from the work of Dinkov et al., which is the first work in this

field using reproduced solid sponge samples. The exploration of this research area is

encouraged in order to acquire a better understanding of the processes taking place at

the microscopic scale and to find possible approaches to enhance simplified models, such

as those presented here.
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Appendix A

Determination of effective transport

properties in PIM

The effective parameters of transport in the PIM used in the present work in the volume

averaged model were obtained by different kind of direct pore level simulations DPLS

in our institute by Pandy Parthasarathy for his Dissertation. Since some of the results

were not jet elsewhere published than in [28], the procedures are roughly described and

some results are presented in this section with his permission.

For the generation of the computational grid comprising two domains representing the

solid part of the sponge and the fluid domain the 3D images of the sponges were acquired

by micro-computer-tomography consisting of gray values for the 3072 x 1024 x 1024

voxels of the investigated SiSiC sponge sample. Details of the PIM structure and of

the technique for acquiring this data are given in [7]. Using the 3D volume data of the

sponge, a model of the interface from solid to fluid could be extracted with digital filter

routines for noise reduction and a threshold value to separate solid from void.

The whole procedure yields the discretized interface comprising 5 million connected

triangles. In order to construct the 3D computational grid from this surface a standard

meshing tool (ANSYS ICEM CFD) was used. The specific sponge sample of 10 PPI

applied in the current work span a straight geometry with 43 mm length and cross

section of 9x9 mm2. The resulting numerical grid was locally refined near the solid

phase walls. It comprised approx. 20 Mio. elements for the fluid part (4 Mio. nodes)

and 9 Mio. elements for the solid part (2 Mio. nodes). Fig.A.1 shows the solid part of

the computational grid.

The determination of the extinction coefficient β was evaluated using an in house ray

tracing code. The results are well documented in [26] with other relevant radiative pa-
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Figure A.1: Computational domain/Surface of the solid domain for DPLS, 10 PPI

rameters such as absorption coefficient and scattering phase function for a large number

of samples with different materials and structural specifications.

As well the longitudinal dispersion was numerically examined in [15, 27] with tracer

molecules. Parthasarathy et al.[27] presents a larger data basis than Djordjevic et al.

[15]. The earlier also analyzed the radial gradients of velocity, i.e. the spacial deviations

of velocity and the effects on the dispersion coefficient by introducing a mixing length

scale. Some of their results for the sponges used in the present work are presented in

this section.

A.1 Axial dispersion coefficients

The coefficients of axial dispersion of mass and heat were numerically obtained by tran-

sient CFD at DPLS by the method of moments [15, 27]. Basically, the fluid composition

of the one dimensional bulk flow was suddenly changed from 100% air to 100% NO (try-

ing to avoid considerable changes in the molecular weight). The starting point was the

steady state solution of flow of air through the sponge calculated with the Navier-Stockes

equations. Then the transient simulation of the flow of the tracer was conducted, whose

results of concentration of the tracer were used to determine Deff in the following way:

NO concentration was mass-flow averaged along the cross sectional area of the fluid at

every position x and time t, that is Y (x, t). Since the axial gradient of any instantaneous

curve can fit as a Gauss distribution (∂Y (x, t)/∂x), Eq.(A.1) can be used to determine
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Deff .

Deff (t) = 0.5 · (σ2(t1)− σ2(t2))/(t1 − t2) (A.1)

Where σ2(t) is the variance of the gradient of averaged concentration along x. The

resulting Deff (t) was plot along time, concluding from there, that Deff (t) reaches a

constant value after some delay time, i.e. 1 ms or 3 pores approximately. This value

was taken as Deff .

The asymptotic value of the modified dispersion Peclet number equal two obtained for

packed beds [211] in Eq.(2.34)

Pedis = (u · ddis)/Ddis = 2; Pem = (u · ddis)/Dm > 10

was used to determine the value of a characteristic length of dispersion ddis.

where the subscripts dis and m refer to axial dispersion and molecular, respectively.

Figure A.2: An instantaneous contour of tracer mass fraction in a 10 PPI SiSiC open cell
matrix, at Rep = 1000, red: 100% YNO, blue: 0% YNO.

Djordjevic et al. [15] performed the simulation for flow through the 10 PPI sponge

with a bulk velocity of u = 4.0 m/s and 1.0 bar. An instantaneous contour of tracer

mass fraction along the mid plane parallel to flow is shown in Fig.A.2. The procedure

described above was conducted. The obtained Ddis was 4.68 · 10−3, which is two orders

of magnitude larger than the molecular diffusion coefficient Dm as well as the molecular

thermal diffusivity of the gas phase ag,m. By using Eq.(5.6) the dispersion length scale

was obtained as ddis = 3.24 mm. DPLS were carried out for other reticulated structures

and materials, it was found that ddis is not related to neither geometrical, nor structural

nor hydraulic parameters, reasons were discussed in [7].

In further simulations performed by Parthasarathy et al. [27] varying velocity and

pressure as desired conditions for the present work of combustion within PIM. It was

observed that the value of the Peclet number based on dispersion stayed constant around

two as in Eq.(5.6) using that value of ddis. The results are presented in Fig.A.3 with

comparison to the empirical results of [108, 113, 211–214].
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Figure A.3: Peclet numbers based on dispersion as function of molecular Peclet, correla-
tion Pedis = 2

A.2 Effective thermal conductivity of the sponge

The steady-state one dimensional heat flux due to conduction in any media can be

calculated using Fourier’s law of heat conduction:

q̇ = −λs · dT/dx (A.2)

where λs is the material thermal conductivity. For a constant thermal conductivity λs

and for a temperature difference of ∆T , the Fourier’s heat equation can be written in

terms of resistance to heat flow:

q̇ = −∆T/R (A.3)

where R = ∆x/λs is the thermal resistance. The thermal resistance is proportional to

the length parallel to the path taken by the heat flow and is inversely proportional to

the thermal conductivity of the material.

In case of porous structures the effective conductivity of the solid structure is less than

that of the material conductivity due to the increase in the path taken by the heat to

flow for a given distance. The increase in the path taken by the heat to flow from plane

1 to plane 2 (lets in Fig.A.1) can be accounted into the resistance by use of the term
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conduction tortuosity τs:

τs =
actual distance taken by heat to flow

distance between plane 1 and plane 2
(A.4)

The heat resistance R can be expressed in terms of tortuosity τs, distance ∆x and

thermal conductivity λs as:

R = τs ·∆x/λs (A.5)

With the use of Eq.(A.5), the effective conductivity λs,eff of the sponge in Fig.A.1.a can

now be used in Eq.(A.2):

q̇ = −λs,eff ·∆T/∆x (A.6)

where the effective conductivity λs,eff = λs/τs depends on the material conductivity

and the structural profile of the sponge.

DPLS were performed to determine the effective conductivity of solid phase of the SiSiC

sponge as shown in Fig.A.1. Details of the computational grid are given in a section

below. The temperature at plane 1 and 2 were fixed and adiabatic boundary condition is

imposed on all other Cartesian planes, the average heat flux value was obtained from the

simulation. For a fixed conductivity λs, the effective conductivity was obtained using

Eq.(A.6).

A.3 Convection heat transfer coefficient

DPLS of non reacting and steady flow within the porous matrix were carried out. The

boundary conditions at the inlet and outlet, i.e. plane 1 and plane two in Fig.A.1 re-

spectively, were specified using constant velocity and temperature at the inlet and static

pressure together with zero gradient condition for the velocity at the outlet. The domain

surfaces parallel to the flow direction were given with translational periodic boundary

conditions. The structure surfaces were modeled as wall with fixed temperature (1000

K) and no slip boundary conditions. Viscous dissipation was neglected.

The simulations were carried out at Reynolds numbers 10, 100 and 500, and for Prandtl

numbers 0.7, 2 and 6. The Reynolds numbers were calculated using the hydraulic

diameter dh = 4ε/Sv as the characteristic length. The local heat transfer coefficient

between the axial locations x and x+ ∆x is given as:

α(x) =

∫ x+∆x

x
q̇ · dAsg

Asg ·∆Tlm
(A.7)
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where ∆Tlm = ∆Tx−∆Tx+∆x

ln(∆Tx/∆Tx+∆x)
is the log mean temperature difference. The local Nusselt

number Nu(x) = α(x) · dh/λg values were nearly constant along the axial direction, the

arithmetic average of the Nusselt numbers along axial locations was taken as the average

Nusselt number Nu of the porous media. The convection heat transfer coefficients were

reported in terms of the correlation obtained by lest square fit method:

Nu = c1 ·Rec2 · Prc3 (A.8)



Appendix B

Direct pore level simulations of

combustion within PIM

The same technique of generation of computational grids based on reproduced solid

sponge samples was used by Bedoya et al. [20] and Dinkov et al. [210] to generate com-

putational domains and directly simulate combustion of premixed Methane-air within

PIM at the microscopic scale. Different reaction mechanisms were used the global reac-

tion scheme and that given by Egolfopoulos et al. [43].

In this section some results of the simulations carried out with the global reaction with

finite rate chemistry modeled with a modified Arrhenius equation given by Westbrook

and Dryer [32].

The flow was assumed as laminar. The thermal conductivity of the solid domain was

defined as function of temperature Eq.(6.15). It is to be beard in mind, that since

the simulation is carried out directly at the microscopic scale, coefficients of transport

should not be altered as it is required in volume averaged methods. Radiation effects

were not considered.

The complete domain consist on an idealized piece of a burner with radial flow. This

burner configuration bases the stabilization of the flame on the convective concept, since

the flow is being decelerated downstream due to the proportional increase of the cross

sectional area with the radius. The simulated domain is shown in Fig.B.1 with the

respective boundary conditions.

Since velocity varies along the radius, the same definition of burning velocity used in

the present study was used, where the flame location was defined as it was done in

the present numerical investigation. Fig.B.2 presents the results of burning velocity at

atmospheric conditions as function of the air to fuel ratio in comparison with the present
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Figure B.1: Computational domain/Surface of the solid domain for DPLS, 10 PPI

results (experiments and 1D calculations). A well agreement with the experiments is

observed.

Fig.B.3 presents a distribution of local temperature along a middle plane of the domain,

where a section of the flame structure can be appreciated. It is to be remarked that the

obtained flame structure is corrugated and considerably discontinuous. Fig.B.4 presents

the local gas temperature along 80 streamlines. The root mean square values of average

temperature of the gas phase was calculated weighted by the area of the cell. The

results of TRMS from DPLS and those calculated with the correlation of the gradient of

averaged temperature are shown in Fig.B.5 where a good comparison is observed.

DPLS of combustion have been also preformed at elevated pressure. The resulting

burning velocities are shown in Fig.B.6 compared with the present experiments. These

results are better presented and deeply discussed in [20].
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Figure B.2: Burning velocity versus air factor

Figure B.3: Local temperature distribution
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Figure B.4: Local temperature along 80 streamlines

Figure B.5: Local temperature distribution
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Figure B.6: Burning velocity as function of pressure
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