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Abstract— A walking bipedal robot’s energy efficiency de-
pends on its gait as well as its design, whereas design changes
affect the optimal gaits. We propose a method to take these
interdependencies into account via simultaneous optimization
of gait as well as design parameters. The method is applied to
a planar robot with hybrid zero dynamics control and a torsion
spring between its thighs. Periodic gaits are simulated by means
of the hybrid zero dynamics. The implementation of the simul-
taneous optimization of gait parameters and spring stiffness via
sequential quadratic programming is presented. Subsequently,
an error analysis is performed to gain good convergence and
short computation times of the optimization. The evaluation
of gradients is identified as crucial for the algorithm’s con-
vergence and therefore performed via complex step derivative
approximations. The resulting implementation exhibits good
convergence behavior and is provided as supplement to this
paper. At 2.3 m/s, the simultaneous optimization results in
savings in energy expenditure of up to 55%. A consecutive
optimization of first gait and then stiffness yields only 11%,
demonstrating the advantage of the presented method.

I. INTRODUCTION

Besides stable control, energy efficiency is a major objec-
tive in robotics in general and (autonomous) bipedal robots
in particular. The generation of optimal gaits is thus an
ongoing object of research [1]–[15]. The basis of optimal
gait generation is numerical optimization which is performed
either in offline simulations [6] or within real-time optimal
control [15], [16]. Different objectives have been proposed
as criterion for optimality [9], [10], many of which relate to
energy efficiency.

Among the control strategies for bipedal robots, some
of the most widely used approaches are designing walking
controllers around the zero moment point (ZMP) [17] and
the concept of capture point control [18]. These approaches,
however, focus mainly on stabilization, not on energy effi-
ciency. Another approach is hybrid zero dynamics (HZD)
based control [13], [14], [19], [20] which stabilizes the
system around predefined reference trajectories and was
successfully implemented on several platforms such as RAB-
BIT [21], ERNIE [22] and MABEL [23]. These robots
typically posses few degrees of freedom and one degree of
underactuation [13], [21]–[23], although extensions of the
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models’ complexity [14], [20] as well as the incorporation
of full and overactuated phases have been proposed [19].
The system’s natural dynamics can evolve due to the under-
actuation. Energy efficient gaits can be generated via offline
optimization of the reference trajectories [1], [2], [10], [13].

However, energy efficient locomotion does not only de-
pend on the robot’s gait but also on its parameters (e.g.
mass distribution, dimensions, stiffnesses). Changes of de-
sign parameters affect the optimal gaits and considerably
influence efficiency [1], [2], [12], [24]. While some param-
eters like stiffnesses [25] may be adjusted after assembly,
most parameters are fixed. A method which can be used
during the design of a robot to increase energy efficiency
as well as to identify the most critical parameters is si-
multaneous optimization of gait and design parameters via
numerical simulations. In [1], [2], a bilevel optimization of
the robot’s parameters (stiffnesses) via a gradient-free upper-
level method in combination with a gradient-based lower-
level for optimal gait generation is proposed. The upper-level
optimizes the average energy efficiency of several gaits in
a speed range to counteract specialization for one specific
speed. The drawbacks of this approach are long computation
times due to the gradient-free upper-level optimization. How-
ever, it is necessary since convergence could not be achieved
with a gradient-based algorithm.

The aim of this paper is to develop a gradient-based,
single-level method based on sequential quadratic program-
ming (SQP) for simultaneous gait and design parameter
optimization with good convergence and short computation
times. To achieve these objectives, we present an error
analysis for the implementation which focuses on the nu-
meric evaluation of integrals and gradients. The remainder
of this paper is structured as follows: A planar robot with
a torsion spring between its thighs and HZD control is
modeled in Sec. II. The objective, the constraints as well
as the implementation of the simultaneous optimization are
presented in Sec. III. Sec. IV shows an investigation of
the numerical evaluation and implementation with focus
on error propagation and convergence. The computation of
gradients is identified to be crucial and therefore performed
via complex step derivative approximations [26], [27]. Sec. V
presents the results for the simultaneous optimization of the
spring stiffness and one gait (2.3 m/s) as well as several gaits
(speed range: 0.3-2.3 m/s) to reduce the specialization inher-
ent to optimization. The advantage of the proposed method
is illustrated via comparisons to consecutive optimizations
where either the gait is optimized for fixed stiffness, or vice
versa. A conclusion is given in Sec. VI.



II. ROBOT MODEL

The robot model for subsequent optimization is depicted
in Fig. 1. The planar multibody system consists of a rigid
upper body (index HAT : head, arms, torso), two thighs
and two shanks which are connected by actuated, ideal
revolute joints in the hip and knees. The robot’s point
feet do not allow for any torque transmission between the
legs and the ground, thereby resulting in one degree of
underactuation. The contact between the stance leg and the
ground is therefore modeled as an unactuated revolute joint
with the constraints of unilaterality (no lift-off) and stiction
(no slipping). This model, which is frequently used for HZD
control [13], [21]–[23], is extended by coupling the robot’s
thighs via a linear torsion spring with stiffness k in the hip.

Periodic bipedal walking is modeled as an alternating
series of single support (SSP) (Sec. II-A) and instantaneous
double support phases (impacts) (Sec. II-B) resulting in a
hybrid system1. A trajectory tracking feedback controller
(Sec. II-C) is added to produce stable walking gaits. Con-
sideration of the model’s symmetry as well as the motion’s
periodicity in the design of the reference trajectories allows
for an efficient calculation of the corresponding gait. The
controlled system’s hybrid zero dynamics – the remaining,
uncontrollable dynamics with perfect trajectory tracking –
resembles a mechanical model with one degree of freedom.
A solution of this dynamics for periodic walking can be com-
puted in closed form. The corresponding actuator torques for
subsequent optimization are obtained via inverse dynamics.

A. Single support model

The SSP is described by the equation of motion[
Ms,11 Ms,12

Ms,21 Ms,22

] [
θ̈
q̈b

]
+

[
Γs,1
Γs,2

]
=

[
Bs,1

Bs,2

]
u (1)

of the stance model (index: s) in Fig. 1a with the body
coordinates qb = [θH1 θH2 θK1 θK2]T , the SSP coordinates
qs = [θ qTb ]T , the mass matrix Ms(qb), the generalized
forces Γs(qs, q̇s) (gravity and Coriolis forces), the input
matrix Bs (Bs,1 = 0: zero matrix; Bs,2 = I: identity matrix)
and the input vector u. The absolute orientation of the robot
is described by the angle θ which increases monotonically
during one step and is thus used to parameterize the con-
troller’s reference trajectories in Sec. II-C.

The system’s inputs u = uM + uS are the joint torques
in hip and knees corresponding to the body coordinates qb.
They consist of actuator (motor) torques uM and spring
torques

uS =

[
K 0
0 0

]
qb , K =

[
−k k
k −k

]
. (2)

The inverse dynamics for the joint torques result from
the solution of the first row of (1) for θ̈ and subsequent

1The time continuous SSP is described by a differential equation, the
impacts are modeled via discrete mappings.

Fig. 1. Constrained robot model (a) for single support phase and free robot
model (b) for derivation of ground contact forces.

substitution of the result into the second row

u =
(
Ms,22 −Ms,21M

−1
s,11Ms,12

)
q̈b

+
(
Γs,2 −Ms,21M

−1
s,11Γs,1

)
. (3)

The ground contact force, which is required to verify the
assumptions of unilaterality and stiction, is derived from the
free model (index: f ) in Fig. 1b. The generalized coordinates
of the free model are qf = [rT1 qTs ]T with the stance foot
position r1 = [x1 z1]T . The free model’s equation of motion
is[

Mf,00 Mf,01

Mf,10 Mf,11

] [
r̈1

q̈s

]
+

[
Γf,0
Γf,1

]
=

[
0

Bs

]
u +

(
∂r1

∂qf

)T
F1

(4)

with mass matrix Mf (qf ), generalized forces Γf (qf , q̇f ),
ground contact force F1 = [F1,x F1,z]

T and the projection
matrix (∂r1/∂qf ) which can be derived with the virtual work
principle. The swing foot is not in contact with the ground
during the SSP, therefore F2 = [F2,x F2,z]

T = 0.
Substitution of the relation (∂r1/∂qf )

T
F1 =

[
FT1 0

]
T

and the constraints r1 = ṙ1 = r̈1 = 0 into the first row of
(4) results in the ground contact force

F1 = Mf,01 (qs) q̈s + Γf,0 (qs, q̇s) . (5)

B. Impact model
The double support phase is modeled as plastic impact (no

rebound, no slipping) of the free model’s swing foot on the
ground. The assumption of an instantaneous impact allows
for the derivation of an algebraic mapping of the robot’s state
directly before (index: −) to its state after the impact (+)
[28]. The legs’ roles are switched after the impact (the former
stance leg becomes the new swing leg and vice versa) which
is incorporated into the mapping. The absolute orientation
is described via θHAT (c.f. Fig. 1b) which is independent
of the legs’ roles and allows for a clear formulation of the
impact maps in Sec. II-C. Therefore, the transformation Ψ
from q̂s =

[
θHAT qTb

]
T to

qs = Ψ (q̂s) (6)



as well as its Jacobian
∂Ψ

∂q̂s
=: JΨ =

[
JΨ,1

JΨ,2

]
=

[
∂θ/∂q̂s
∂qb/∂q̂s

]
(7)

are defined. In order to derive the impact mapping, the
equation of motion of the free model with the coordinates
q̂f = [rT1 q̂Ts ]T is derived analogously to (4) and integrated
over the infinitesimal impact duration

M̂f (q̂+
f ) ˙̂q+

f − M̂f (q̂−f ) ˙̂q−f = lim
t−→t+

∫ t+

t−

(
∂r2

∂q̂f

)T
F2 dt

=:

(
∂r2

∂q̂f

)T
F̂2 . (8)

The stance foot is assumed to lift off without interaction,
therefore F1 = 0 subject to the condition ż+

1 > 0. The
free model’s mass matrix2 is M̂f (q̂f ) and the position
vector of the impacting foot is r2 = [x2 z2]T . The robot’s
configuration q̂f = q̂+

f = q̂−f does not change during the
impact. With the plastic impact condition

ṙ+
2 =

∂r2

∂q̂f
˙̂q+
f = 0 , (9)

a system of linear equations[
M̂f − ∂r2

∂q̂f

T

∂r2
∂q̂f

0

][
˙̂q+
f

F̂2

]
=

[
M̂f

0

]
˙̂q−f (10)

can be formulated. To account for the legs’ change of role,
an impact map (relabeling matrix) ∆q for the angles is
introduced, so that

q̂+
s = ∆q q̂−s . (11)

Equation (10) can be solved symbolically using a computer
algebra system and results in two impact maps for the
velocities and impact forces

˙̂q+
s = ∆q̇

˙̂q−s , (12)

F̂2 = ∆F
˙̂q−s . (13)

C. Control model

A trajectory tracking feedback controller which generates
stable periodic walking gaits can be designed by using input-
output linearization3 [13], [14]. Due to the underactuation,
the controlled system’s hybrid zero dynamics resembles a
mechanical model with one degree of freedom (the abso-
lute orientation). Autonomous HZD are obtained via the
introduction of state dependent, rather than time dependent,
reference trajectories. The trajectories’ parameterization is
designed to implicitly satisfy the periodicity conditions at
the beginning/end of a step which is necessary a condition
for the controller’s stability [14]. Thereby, the solution of
one step defines the gait completely. The remaining HZD
differential equation is transformed to a time-free, scalar
equation which can be solved in closed form via quadrature.

2M̂f results from a canonical transformation of Mf using Ψ.
3This section is a compressed summary of the HZD. For a detailed

derivation of the controller refer to [14].

Another quadrature yields the solution for the corresponding
time. The angular velocities and actuator torques can be
computed from algebraic equations based on those solutions.

The reference trajectories for the body coordinates qb
during the SSP are defined via Bézier polynomials in θ of
degree M

qb(α, θ) =
∑M

k=0
αk

M !

k!(M − k)!
sk (1− s)M−k , (14)

s =

(
θ − θ+

θ− − θ+

)
with the Bézier parameters α = [α0 α1 . . .αM ] and θ+, θ−.
The reference velocities and accelerations are

q̇b(α, θ, θ̇) =
∂qb
∂θ

θ̇ , (15)

q̈b(α, θ, θ̇, θ̈) =
∂2qb
∂θ2

θ̇2 +
∂qb
∂θ

θ̈ ; (16)

the reference states before and after the impact

q+
b = α0 , q̇+

b =
M

θ− − θ+
(α1 −α0) θ̇+ , (17)

q−b = αM , q̇−b =
M

θ− − θ+
(αM −αM−1) θ̇− . (18)

To incorporate the periodicity conditions into the reference
trajectories, the parameters α0, α1, θ+ and θ− are expressed
as functions of α2M = [α2 . . .αM ] and the impact maps.
Firstly, the touch down condition of the swing foot at the
end of the step

z2(θ−,αM ) = 0 (19)

is solved for θ−(αM ). Subsequently, the configuration before
the impact q−s =

[
θ− αTM

]
T is mapped onto the one after

the impact

q+
s =

[
θ+

α0

]
= Ψ

(
∆qΨ

−1
(
q−s
))

(20)

using (6), (11) and (17). The impact map (12) for the
velocities yields(

J+
Ψ

)−1
[

1
M

θ−−θ+ (α1 −α0)

]
θ̇+

= ∆q̇

(
J−Ψ
)−1

[
1

M
θ−−θ+ (αM −αM−1)

]
θ̇− (21)

with (7), (17) and (18). Since θ̇+, θ̇− are unknown, their
relation is expressed via the first row of (21)

θ̇+ = J+
Ψ,1 ∆q̇

(
J−Ψ
)−1

[
1

M
θ−−θ+ (αM −αM−1)

]
︸ ︷︷ ︸

Υ

θ̇− (22)

and eliminated in the second row which results in

α1 = α0 +
θ− − θ+

M

(
J+

Ψ,1Υ
)−1

J+
Ψ,2Υ . (23)

Having thus defined the reference trajectories for the body
coordinates, the remaining hybrid zero dynamics must be
solved. It is derived from the Lagrangian

LHZD(θ, θ̇) = Ekin(θ, θ̇)− Epot(θ) (24)



with the kinetic energy Ekin and the potential energy Epot.
Applying the method of Lagrange yields the generalized
momentum σ and its time derivative

σ =
∂

∂θ̇
LHZD =: κ−1

1 (θ) · θ̇ , (25)

σ̇ =
d
dt

(
∂

∂θ̇
LHZD

)
= − ∂

∂θ
LHZD =: κ2(θ) . (26)

The hybrid zero dynamics is

θ̇ = κ1(θ) σ , (27)
σ̇ = κ2(θ) . (28)

Equations (27) and (28) yield the acceleration

θ̈ = κ1(θ)

(
∂κ1

∂θ
σ2 + κ2(θ)

)
(29)

as well as the time free formulation and its solution
dσ
dθ

=
κ2(θ)

κ1(θ) σ
, (30)

⇒ 1

2
σ2 =

1

2
(σ+)2 +

∫ θ

θ+

κ2(θ̄)

κ1(θ̄)
dθ̄ . (31)

The corresponding time follows from (27)

t =

∫ θ

θ+

1

κ1(θ̄) · σ
dθ̄ . (32)

An impact map for the generalized momentum is derived
from (22) and (27)

σ+ =
κ1(θ+)

κ1(θ−)

(
J+

Ψ,1Υ
)
σ− =: δ · σ− (33)

to solve (33) and (31) for

σ+ = δ ·

√
2
∫ θ−
θ+

(
κ2(θ̄)/κ1(θ̄)

)
dθ̄

1− δ2
. (34)

The derived equations allow for the calculation of a periodic
gait (Sec. III-B). The gait is stable, if 0 < δ < 1 [14].

III. OPTIMIZATION

The robot’s cost of transport – the supplied energy divided
by the product of distance and weight – is minimized via
simultaneous optimization. The objective considers either
only one gait with speed v̄ or the average cost of transport
of several gaits in a speed range v̄ ∈ [v̄min, v̄max]. The latter
reduces specialization of the design parameters for just one
specific speed. The assumptions from Sec. II and the speed
v̄ are included via constraints.

A. Objective and constraints

The objective and constraints for the simultaneous opti-
mization considering one gait as well as several gaits in
a speed range are defined for the model from Sec. II.
The optimization parameters are the stiffness k and the
independent gait parameters α2M which are merged into the
optimization vector x =

[
k,αT2 . . .α

T
M

]
T . The actuators are

modeled as geared electric servos with resistance R, torque

constant kT and gear transmission ratio iT . The electric
power input of the i-th motor is approximated by

Pi,el(t, x) = cstatu
2
M ,i(t, x) + uM ,i(t, x)q̇b,i(t, x) (35)

with the coefficient cstat = R/(kT iT )2 [2], [10]. It consists
of the motor’s heat losses cstatu2

M ,i(t, x) and the mechanical
work uM ,i(t, x)q̇b,i(t, x). With the additional assumption
that energy cannot be recuperated when the motors are driven
in generator mode, the supplied power is

Pi(t, x) = max(Pi,el(t, x), 0)

≈ 1

2

(
Pi,el(t, x) +

√
P 2
i,el(t, x) + ε

)
, (36)

where 0 < ε� 1. The max function is regularized to comply
with the requirement of holomorphicity in Sec. IV-B. The
energy efficiency of one gait is quantified by the cost of
transport

f(x) =

∑4
i=1

∫ t−
0

Pi(t, x) dt
`Step(x)mg

, (37)

the supplied energy of all actuators during one step divided
by the step length `Step = x2(q−s ) and the robot’s weight
mg.

The assumptions from Sec. II as well as the gait’s target
speed v̄ are formulated as constraints. The target speed is an
equality constraint

g(x) = v̄ − `Step
t−

= 0 . (38)

The inequality constraints

h(x) = [h1(x) . . . h7(x)]T ≤ 0 (39)

are

h1(x) = −F1,z , h2(x) = −F̂2,z , (40)

h3(x) = |F1,x|−µ0|F1,z| , h4(x) = |F̂2,x|−µ0|F̂2,z| , (41)
h5(x) = −z2 , (42)
h6(x) = −θK1 , h7(x) = −θK2 (43)

and represent unilateral ground contact (40), static friction
with coefficient µ0 (41), no scuffing of swing foot (42) and
no hyperextension of the knees (43).

The average cost of transport f̄ =
∫ v̄max

v̄min
f(v̄) dv̄ is

chosen as objective for the optimization with several gaits.
The speed range v̄ ∈ [v̄min, v̄max] is discretized into P
equidistant intervals which are evaluated at their midpoints
v̄p = v̄min+ 2p−1

2P (v̄max − v̄min) to approximate the integral
by a step function which results in

f̄(x̄) =
1

P

∑P

p=1
f(xp) . (44)

The vector x̄ =
[
k αT2,1 . . .α

T
M,1 . . .α

T
2,P . . .α

T
M,P

]
T

contains the parameters xp =
[
k αT2,p . . .α

T
M,p

]
T for every

gait. Furthermore, (38) – (43) must hold for all gaits, yielding
the constraints

ḡ(x̄) = [g(x1), . . . , g(xP )]
T , (45)

h̄(x̄) = [h(x1), . . . , h(xP )]
T . (46)



The objective and constraints of the simultaneous opti-
mization with one gait result from the special case P = 1,
v̄ = v̄min = v̄max.

B. Numerical evaluation and implementation

The simultaneous optimization is implemented using the
computer algebra system Maple and the Software Matlab.
The implementation in Maple and Matlab is available as
supplementary material, cf. [29]. Equations (1) – (34) are
derived as symbolic expressions in Maple and exported
to Matlab functions via automatic code generation. The
numerical evaluation is performed in Matlab using the SQP
algorithm in fmincon.

The implementation is presented in detail to allow for
the error analysis in Sec. IV. Firstly, the evaluation of (37),
(38) and (39) is discussed since f̄(x̄), ḡ(x̄) and h̄(x̄) are
composed of f(xp), g(xp) and h(xp) (p ∈ {1, . . . ,P})
respectively. Subsequently, the gradient approximations and
the iterative optimization sequence are presented.

The workflow for the computation of the cost of transport
f(x) and constraints g(x), h(x) for one gait is as follows:
Firstly the complete set of gait parameters α, θ+ and θ− is
computed. The SSP is then discretized at N grid points

θ = [θ1, . . . , θN ] ,

θn = θ+ +
n− 1

N − 1

(
θ−− θ+

)
, n ∈ {1, . . . ,N} (47)

qb,n = qb(α, θn) (48)

to approximate the occurring integrals in the further course
of the evaluation via quadrature. Subsequently, the first
(34), (31) and second integral (32) are approximated via
trapezoidal rule TN at the N grid points. With the solution
of the HZD, the velocities (27), (15), accelerations (29),
(16) and actuator torques (3), (2) are computed. The cost
of transport f(x) is approximated by a third application
of the trapezoidal rule. The constraints g(x) and h(x) are
evaluated for all grid points. Furthermore, the gradients
∂f/∂x, ∂g/∂x and ∂h/∂x are computed via complex step
derivative approximation (CSD) [26], [27] of f(x), g(x) and
h(x). An error analysis for the implementation’s numerical
approximations is performed in Sec. IV.

Fig. 2 depicts the implementation of the simultaneous
optimization

min
x̄
f̄(x̄) subject to ḡ(x̄) = 0 , h̄(x̄) ≤ 0 . (49)

In the j-th iteration step, the optimization vector x̄j is first
separated into the parameters xjp for every gait. The cost
of transport, the constraints and the respective gradients
are then computed for all gaits and subsequently combined
into f̄(x̄), ḡ(x̄), h̄(x̄), ∂f̄/∂x̄, ∂ḡ/∂x̄ and ∂h̄/∂x̄. Finally,
fmincon checks the optimality criterion [30] and terminates
the iteration with x̄∗ if it holds. If not, x̄j+1 is computed and
the iteration continues.

The parameters in Tab. I are used unless stated otherwise.
The dimensions and mass distributions resemble an average
adult human [31]. M = 6 is arbitrarily chosen as in [13]. A

Fig. 2. Algorithm to solve optimization problem (49) for several speed
simultaneously.

small value restricts the solution space of possible gaits, a
large value increases the number of optimization parameters
and thus computation time. The grid size N and the complex
step size hCSD are investigated in Sec. IV.

IV. ERROR ANALYSIS

The convergence of the implementation for several gaits
with gradient approximations via finite differences (FD)
is found to be insufficient which is resolved via bilevel
optimization in [1], [2]. Therefore, an error analysis which
investigates sources of numerical errors is performed to
improve convergence of the presented single-level approach.
The analysis focuses on the numerical approximation of the
integrals in (34), (31), (32) and (37) in Sec. IV-A as well as
the numerical differentiation for the gradient approximations
in Sec. IV-B. All investigations are performed for the optimal
gaits with speeds v̄i ∈ {0.3, 0.4 . . . 2.3} m/s and k =
0 Nm/rad unless stated otherwise.

TABLE I
MODEL PARAMETERS

Parameter Value Unit

` total body height 1.80 m
m total body mass 80.0 kg
mHAT upper body mass 48.2 kg
mt thigh mass 4.56 kg
ms shank mass 11.3 kg
`HAT upper body length 0.533 m
`t thigh length 0.446 m
`s shank length 0.446 m
rHAT center of mass position upper body 0.289 m
rt center of mass position thigh 0.267 m
rs center of mass position shank 0.183 m
JHAT moment of inertia upper body 3.09 kg m2

Jt moment of inertia thigh 0.126 kg m2

Js moment of inertia shank 0.244 kg m2

g gravity 9.81 m/s
µ0 coefficient of static friction 0.6 -
cstat coefficient of static power 1.81e−3 W/ (Nm)2

M degree of Bézier polynomials 6 -
N grid size (SSP) 201 -
P grid size (speed range) 10 -
hCSD step size (CSD) 1e−100 -



A. Numerical integration

The three consecutive quadratures are considered in the
error analysis to validate the code generated by Maple and
to eliminate error propagation as possible cause of bad
convergence. Validation of the generated code is performed
via comparison of an estimate for the experimental order
of convergence (EOC) to the theoretical order. Deviations
indicate errors due to cancellation in the evaluated code. The
theoretical model error of the composite trapezoidal rule TN

is of second order [32]. The approximation error of the i-
th (i ∈ {1, 2, 3}) integral Ii is estimated via Ei(T

N
i ) =∣∣TNi − Ii∣∣ ≈ ∣∣TNi − T 5e3

i

∣∣. The EOC is then computed via

qi ≈
ln
(
Ei(T

5e2
i )/Ei(T

5e1
i )

)
ln (50/500)

(50)

The choice of T 5e3
i , T 5e2

i and T 5e1
i for this estimation is

arbitrary. The results in Fig. 3 are in good agreement with the
theoretical order q = 2. Only three values differ by more than
3%, the greatest deviation being 15% for the third quadrature
at v̄ = 1.1 m/s.

The computation time for one evaluation of the cost of
transport, the constraints and the gradients is proportional to
the grid size N . The grid N = 201 is a good compromise
between accuracy and computation time. The absolute and
relative error compared to N = 5e3 for v̄ = 2.3 m/s are
7e−5 and 4e−4 respectively.

The integrals are built on one another, thus error propaga-
tion is regarded via the integrals’ conditions [33]

ζi =
Ii(|fi|)
|Ii(fi)|

≈ TNi (|fi|)
|TNi (fi)|

. (51)

The second and third integral are of relative condition
ζ2 = ζ3 = 1, since the integrands are strictly positive.
The relative condition of the first integral is displayed in
Fig. 4. ζ1 increases with decreasing average speed v̄ and is
at maximum for ζ1 = 23.8 at v̄ = 0.3. This means that the
achievable precision decreases by less than two digits due to
the condition. Therefore, we conclude that the quadratures
are not critical for the optimization algorithm.

Fig. 3. Experimental order of convergence (qi) for the three quadratures
(i ∈ {1, 2, 3}) compared to theoretical order q = 2.

B. Numerical differentiation

The gradients of the objective (44) and constraints (45),
(46) have to be approximated since an analytical solution is
not available. The accuracy of the gradient approximation
might be crucial for convergence of the SQP algorithm be-
cause the gradients enter into the evaluation of the optimality
conditions as well as the update of the optimization vector.
Three numerical methods are considered: finite differences,
automatic differentiation [35] and complex step derivative
approximation.

Forward (FFD) and central finite differences (CFD) both
converge to the exact value for vanishing step size hFFD,
hCFD. Due to finite accuracy of ε ≈ e−16 for floating-
point double-precision variables, small step sizes are ac-
companied by increasing cancellation. The best trade-off
between method and cancellation error is hFFD ≈ xj

√
ε and

hCFD ≈ xj 3
√
ε respectively [34]. The achievable precision

decreases from about e−16 to e−8 for FFD and e−11 for
CFD respectively.

Automatic differentiation (AD) is one method to compute
derivatives with machine precision. Several toolboxes [36]
are available for Matlab from which ADIMAT [37] was
tested due to its free availability and high functionality.
However, this implementation increases computation times
significantly which is why AD is discarded.

Another method with machine precision is complex step
derivative approximation (CSD) [26], [27] which can be
implemented analogously to FFD without additional tool-
boxes. If f is a real function with a real argument and also
holomorphic, its CSD is

∂f(x)

∂xj
=

Im{f(x + ihCSDej)}
hCSD

(52)

with the j-th unit vector ej and step size hCSD. CSD
converges second order. Contrary to FD, however, no sub-
tractions are required which means there is no lower limit on
step size due to cancellation. hCSD = 1e−100 is arbitrarily
chosen to compute gradients with machine precision. For
v̄ = 2.3 m/s, Fig. 5 depicts a comparison between FFD,
CFD and CSD for ∂f(x)/∂x5, the entry in the gradient of

Fig. 4. Relative condition of first integral (equations (34), (31)) via (51).



Fig. 5. Forward (FFD) and central finite differences (CFD) compared
to complex step derivative approximation (CSD). Labels FFD and CFD at
hFFD = xj

√
ε and hCFD = xj 3

√
ε respectively.

the cost of transport with the largest deviations. Large step
sizes result in a method error caused by neglect of higher
order terms. FFD and CFD suffer from considerable roundoff
errors due to cancellation at step sizes below about 1e−9
resulting in useless approximations. CSD, on the other hand,
converge for arbitrarily small step sizes which emphasizes
their superiority.

V. RESULTS

The implementation presented for the simultaneous op-
timization of gait and design parameters is applied to the
exemplary model in Sec. II. Two cases are considered: one
gait with speed v̄ = 2.3 m/s and the speed range v̄ ∈
[0.3, 2.3] m/s which is discretized by P = 10 gaits. Optimal
gaits for k = 0 N m/rad are used as initial conditions
x̄0 unless stated otherwise. The simultaneous optimization
is compared to consecutive optimizations where either the
gait is optimized for fixed stiffness, or vice versa. The
convergence of the implementation with CSD is compared to
FD in terms of achievable accuracy as well as computation
times. All computations were performed on a HP Z600
workstation with two Intel Xeon X5650 processors.

The result of the simultaneous optimization considering
one gait with v̄ = 2.3 m/s is displayed in Fig. 6. The
convergence to the optimum k = 886 N m/rad, f̄(x̄∗) =
0.0793 is independent of the derivative approximation (CSD
and FD). However, the achievable termination tolerance of
the SQP algorithm is only 3e−2 for FFD compared to 1e−6
for CSD. The computation times are 45 s for CFD and 120 s
for CSD. The longer computation time of CSD is due to
the improved accuracy. The energy expenditure f̄(x̄∗) at the
optimum is 54.9% lower than the initial value of f̄(x̄∗) =
0.175. A consecutive optimization of the stiffness k for the
initial gait results in k = 173 N m/rad, f̄(x̄∗con) = 0.156
(11.3%) which emphasizes the advantage of the presented
method.

The results for the speed range v̄ ∈ [0.3, 2.3] m/s are
displayed in Fig. 7. The speed range is subdivided into
P = 10 intervals which are evaluated at their midpoints

Fig. 6. Results for simultaneous (sim. opt.) and consecutive optimization
(con. opt.) of gait parameters and stiffness for one gait (v̄ = 2.3 m/s).

(c.f. Sec. III-A) yielding v̄i ∈ {0.4, 0.6 . . . 2.2} m/s. The
optimization does not converge at all with FD gradient
approximation which motivated the error analysis Sec. IV.
In contrast, the optimization with CSD converges to the
optimum k = 769 N m/rad, f̄(x̄∗) = 0.0312 which is
60.6% lower than the initial value of f̄(x̄0) = 0.0791. The
achievable accuracy is 1e−3 and the computation time is
175 min. A consecutive optimization of the gaits (v̄i ∈
{0.4, 0.6 . . . 2.2} m/s) for k = 886 N m/rad, the results for
one gait, yields f̄(x̄∗con) = 0.0313. This is almost identical
to the simultaneous optimization because the difference
between the stiffnesses and the curvature of the optimal curve
in Fig. 7 is small. The optimization of the stiffness for the
initial gaits yields a similarly bad result as the consecutive
optimization for one gait (not displayed). In general, the
quality of a consecutive optimization cannot be predicted
a priori whereas the simultaneously optimization converges
to the corresponding optimum.

VI. CONCLUSION

A method for simultaneous optimization of gait and design
parameters was presented for an exemplary model of a robot

Fig. 7. Results for simultaneous (sim. opt.) and consecutive optimiza-
tion (con. opt.) of gait parameters and stiffness for ten gaits (v̄i ∈
{0.4, 0.6 . . . 2.2}m/s). Comparison of finite differences (FD) and complex
step derivative approximation (CSD).



with hybrid zero dynamics control. The stiffness of a torsion
spring which couples the robot’s thighs was optimized with
as much as ten gaits simultaneously. An error analysis
was performed for the implementation which identified the
approximation of gradients as critical for convergence. The
implementation of complex step derivative approximation
yields good convergence for the considered model.

The simultaneous optimization of stiffness and one gait
(v̄ = 2.3 m/s) results in savings of 55% (computation
time: 120 s) compared to a consecutive optimization of
firstly gait and subsequently stiffness which yields only 11%.
The optimization of the average energy efficiency in the
speed range v̄ ∈ [0.3, 2.3] m/s yields as much as 61%
(computation time: 175 min) in savings. These examples
demonstrate the advantage of the presented method which
can easily be transfered to a more complex model or optimize
other design parameters (e.g. mass distribution, dimensions).
The expansion to a model with feet and the simultaneous
optimization of gait and foot shape parameters is intended
in future work.
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