

 Karlsruhe Reports in Informatics 2016,1
Edited by Karlsruhe Institute of Technology,
Faculty of Informatics

 ISSN 2190-4782

The Media Store 3 Case Study System

Misha Strittmatter*, Amine Kechaou

 2016

KIT – University of the State of Baden-Wuerttemberg and National

Research Center of the Helmholtz Association

*Institute for Program Structures and Data Organization (IPD)

Karlsruhe Institute of Technology (KIT)

Please note:
This Report has been published on the Internet under the following
Creative Commons License:
http://creativecommons.org/licenses/by-nc-nd/3.0/de.

http://creativecommons.org/licenses/by-nc-nd/3.0/de

Contents

1 Introduction 4
1.1 License . 4

1.2 Resources . 5

2 Architecture 6

3 Implementation 8
3.1 Setup . 8

3.1.1 Technical requirements . 8

3.1.2 Server setup . 8

3.1.3 Database setup . 8

3.1.4 File Location Con�guration . 10

3.1.5 Deployment . 10

3.2 General Information . 11

3.3 Code Structure . 16

3.3.1 Structural overview . 16

3.3.2 The frontend: A Web application . 17

3.3.3 The backend: An EJB architecture . 17

3.3.4 Mediastore.basic . 18

3.4 Recon�guration . 19

3.5 Intelligent Remote and Local EJB Calls . 22

4 PCMModel 24
4.1 Description . 24

4.2 Audio Payload . 26

4.3 Hardware Setup . 26

4.4 Model Files . 27

4.5 Launches . 29

4.6 Modeling of the Cache Component . 29

5 Data 33

Bibliography 36

1 Introduction

This document serves as technical documentation of the third implementation of the Media

Store case study system. It gives rationale behind some speci�cs within the implementation

and the PCM model. The purpose of Media Store system is to serve as a performance case

study system. Media Store is a multi-user web-based distributed �le loader application for

the sharing of audio �les. It is used as a running example in the Palladio Book [1]. For more

background information (e.g., domain requirements, rationale behind the functionality and

architecture), please consult the book. Media Store is implemented on Java EE (Enterprise

Edition). Components, which are realized by EJBs (Enterprise Java Beans), should be units of

deployment. Therefore, in the version 1.0 of the implementation, all calls are remote to ensure

free deployment. Later this behavior was improved, as using remote calls for locally deployed

EJBs is ine�cient. In version 1.2, a mechanism was implemented for an automatic dispatch

of local and remote calls. Since version 1.1 a mechanism is in-place which enables runtime

recon�guration of the architecture. The PCM model of Media Store was built to re�ect the

performance of version 1.0 of the implementation. The model should match version 1.1 at least

concerning the tendencies. However, as version 1.2 bring great performance improvement

depending on deployment, we do cannot guarantee reasonable �t.

This report is structured as follows. After the license information, a brief overview is given

about all resources available regarding Media Store and where they can be obtained online. Later,

the implementation independent component architecture of Media Store is presented in Section

2. Section 3 describes the Java EE implementation of Media Store. The PCM performance model

of Media Store and its calibration is explained in Section 4. The calibration and evaluation data

is described in Section 5.

1.1 License

Media Store V3

Copyright (C) 2015 Software Design and Quality Group (SDQ), KIT, Germany

This program is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

RESOURCES 5

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

Full version of the GNU General Public License is at:

../Implementation/gpl-3.0.txt

or

http://www.gnu.org/licenses/

1.2 Resources

All information about Media Store can be found at the following SVN repository:

https://svnserver.informatik.kit.edu/i43/svn/code/CaseStudies/MediaStore3

The structure of the repository is as follows:

MediaStore3

branches

Nightly Model

tags

Mediastore 1.0

Mediastore 1.1

Mediastore 1.2

trunk

Data

Implementation

Model

TechReport

The trunk folder contains the most up-to-date �les. Keep in mind, that this code may be

under development and may contain errors and may not be in sync with the model or the data.

The tags folder contains tagged versions of the trunk or of subfolders of the trunk. Currently

there are three versions of the implementation tagged: version 1.0 is the version which was

measured for comparison with the model prediction. Version 1.1 features a new mechanism for

runtime recon�guration. Version 1.2 automatically performs local calls instead of remote ones

where possible. The trunk contains the following subfolders:

Data Measurement and simulation data of Media Store (see Section 5).

Implementation The source code of Media Store (see Section 3).

Model The PCM model of Media Store (see Section 4).

TechReport Sources and compiled version of this document.

The branches folder features parallel development to the trunk. Currently it contains a version

of the model that was migrated to the currently nightly version of the PCM.

2 Architecture

The architecture of Media Store is component-based. It is shown in Figure 2.1. It is divided

into three layers: 1) The frontend simply consists of the GUI. 2) The business logic consists of

several components that handle user management, audio management and processing. 3) The

storage layer consists of components that handle database and �le access, a database and a data

storage for the audio �les. Media Store provides two types of functionality: audio storage and

user management. Users can register new accounts. Once registered, they can perform a log in,

to gain access to the audio functionality. This includes uploading audio �les, listing all stored

audio �les and downloading audio �les. In the following, we will explain the responsibilities of

the components of the architecture.

The GUI component is the graphical user interface of Media Store. It provides all the afore-

mentioned functionality and keeps track of sessions. It is usually implemented as a web GUI.

According to actions of the user, it creates requests which are sent into the system’s backend.

The UserManagement component provides the business logic for the management of the

information of the Media Stores users. The component serves register and login requests.

Information, which is stored in the DB in an encrypted fashion, is decrypted here. It uses the

UserDBAdapter component to get the needed information from the DB. UserDBAdapter builds

and submits the required queries to the DB and returns the acquired information.

The MediaManagement serves upload, download and list request concerning the stored audio

�les. It forwards list and upload requests directly to the MediaAccess component. Download

requests are sent via a separate download interface. At this interface, the architecture is variable.

This is indicated by the big square brackets. The components in the brackets form a chain

of responsibility by providing and requiring interfaces of the same type. There are multiple

options of how to assemble this chain. The simplest option is not to have any components

in the chain. Requests are then passed from MediaManagement directly to MediaAccess. A

Watermarking component applies digital watermarks, which carrying information about the

downloading user, onto the audio �les upon download. A ReEncoder reencodes audio �les in

a speci�c quality, encoding or bit rate. A Cache stores commonly requested �les (possibly in

speci�c qualities). For requests resulting in a cache hit, this saves fetching and reencoding the

�le. In the chain, none, one or multiple of these components may be used. There are several

constraints regarding the order of components in the chain, which are in part implementation

speci�c. E.g. should Watermarking and Cache be used, Watermarking should be in front of

Cache, as it is not meaningful to cache watermarked components. Should a Watermarking
implementation require a reencoding of the audio �le, a ReEncoder component is not necessary.

After a download request for a collection of audio �les has returned to MediaManagement, it

may send it to Packaging. If the request resulted in a set of audio �les, the Packaging component

7

WebGUI

User

Management

UserDB

Adapter

Media

Management

Packaging

Watermarking

MediaAccess

DataStorage

DB

Cache

ReEncoder

Figure 2.1: Media Store’s Architecture

to create a single compressed archive.

MediaAccess is responsible for fetching information about audio �les from the DB and the

audio �les themselves from DataStorage. DB and DataStorage are no components in the strict

sense. However, they are shown in the architecture for illustrative purposes. DB is usually a

DBMS (database management system) and DataStorage could be a directory directly on a �le

system or a network share.

3 Implementation

3.1 Setup

3.1.1 Technical requirements

• Java Development Kit 1.8
1

• Eclipse IDE for Java EE Developers
2

• Glass�sh 4.1

• MySQL

3.1.2 Server setup

First, download GlassFish 4.1
3
. There is no installation required, all is needed is to unzip the �le.

After unzipping, the domain domain1 is created by default. There are several ways to manage

domains.

in Eclipse

• Start by installing Glass�sh Tools from the Eclipse marketplace.

• In the servers view, right click then click New > Server.

• Proceed by following the wizard instructions.

From the command line

The domain domain1 is located at /glassfish/domains/domain1. To start it, launch asadmin
at /glassfish/bin then type the command "start-domain domain1". The command to stop is

"stop-domain domain1". In order to created another domain, say domain2, type the command

"create-domain domain2". To delete it, use the command "delete-domain domain2". To list all

domains and there status, use the command "list-domains".

3.1.3 Database setup

There are various ways to install and manage a MySQL database. One of the easiest, is to

install XAMPP, which is a bundle of an Apache Server, a MySQL database and interpreters

1http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
2https://eclipse.org/downloads/
3http://download.java.net/glassfish/4.1/release/glassfish-4.1.zip

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://eclipse.org/downloads/
http://download.java.net/glassfish/4.1/release/glassfish-4.1.zip

SETUP 9

for PHP and Perl. It comes also with other modules, such as phpMyAdmin, which is basically

a GUI for MySQL. After installing XAMPP, launch phpMyAdmin and create a new database

named mediastore. Then, create two tables audio and user. The SQL code in Listing 1 can be

used for that purpose.

1 CREATE TABLE IF NOT EXISTS ‘audio‘ (

2 ‘ID‘ int(11) NOT NULL,

3 ‘ALBUM‘ varchar(255) DEFAULT NULL,

4 ‘ARTIST‘ varchar(255) NOT NULL,

5 ‘BITRATE‘ int(11) NOT NULL,

6 ‘GENRE‘ varchar(255) DEFAULT NULL,

7 ‘RELEASEYEAR‘ int(11) DEFAULT NULL,

8 ‘TITLE‘ varchar(255) NOT NULL,

9 ‘USERID‘ bigint(20) NOT NULL,

10 PRIMARY KEY (‘ID‘)

11) ENGINE=InnoDB DEFAULT CHARSET=latin1;

12

13 CREATE TABLE IF NOT EXISTS ‘user‘ (

14 ‘ID‘ bigint(20) NOT NULL AUTO_INCREMENT,

15 ‘EMAIL‘ varchar(255) NOT NULL,

16 ‘FIRSTNAME‘ varchar(255) NOT NULL,

17 ‘LASTNAME‘ varchar(255) NOT NULL,

18 ‘PASSWORD‘ varchar(255) NOT NULL,

19 PRIMARY KEY (‘ID‘)

20);

Listing 1: Table Creation SQL Query

The next step is to con�gure the JDBC Resource on the default domain domain1:

1. Stop domain1.
2. Download the MySQL connector

4
and place it in /glassfish/domains/domain1/lib/

3. Start domain1 and open the admin console.
5

4. Create a new JDBC connection pool. Set type to java.sql.DataSource and DataBase driver

vendor to MySQL and specify the following properties as mentioned :

Servername: localhost
6

DatabaseName: mediastore

Port: 3306

URL and url: jdbc:mysql://localhost:3306/mediastore

user and password: Use the same used to create the database

4http://central.maven.org/maven2/mysql/mysql-connector-java/5.1.36
5

Go to http://localhost:4848
6
can either point to a remote or local server

http://central.maven.org/maven2/mysql/mysql-connector-java/5.1.36
http://localhost:4848

10 IMPLEMENTATION

5. Save then create a new JDBC Resource using the JNDI Name jdbc/Mediastore and the

new connection pool.

3.1.4 File Location Configuration

Media Store has two location where it stores its audio �les. If these folders do not exist, Media

Store attempts to create them.

One of the locations is the �nal storage of the audio �les. There the MediaAccess component

stores uploaded �les and retrieves �les which are requested for download. In the Architecture

it is depicted as the DataStorage component. The other location is used for temporary storage

of �les while processing. It is used by several components.

In the version 1.2, the �le con�guration is managed through an external �le GlobalCon-
stantsContainer.properties, which can be found at the root of edu.kit.ipd.sdq.mediastore.basic.
The �le must be copied to the con�g folder of the running domain

7
. It may be then modi�ed

on the �y without having to redeploy the application. The class GlobalConstantsContainer pro-

vides the methods getTempDirPath, getFileDir and getCacheCapacity which retrieve the needed

properties from the con�guration �le by calling the private method getProperty(String prop). If

it’s the �rst time the con�guration is to be loaded, or if the �le has been modi�ed, this method

makes a call to loadProperties to load the con�guration and then returns the desired property.

Back in versions 1.0 and 1.1 of Media Store, the two �le locations can only be recon�gured by

modifying constants in the source code. The constants are located in the projectmediastore.basic
in the class edu.kit.ipd.sdq.mediastore.basic.config.GlobalConstantsContainer. The path to the

�nal audio storage is delivered by the static function getFileDir. Depending on the operating

system, the constants FILE_DIR_WIN and FILE_DIR_LINUX hold the �le location. Their default

values are respectively C:\\audios\\ and /home/audios. The path to the temporary storage is

de�ned by the constant TEMP_DIR_PATH. Its default value is C:\\temp\\.

3.1.5 Deployment

There are two ways to deploy Media Store.

Automatic Deploy

• Stop the target domain if it is already running.

• In the server view right-click on the target domain, then select Add and Remove. (Figure

3.1)

• Click on "Add all" then "Finish". (Figure 3.2)

7
<glass�sh install dir>/glass�sh/domains/<domain>/con�g

GENERAL INFORMATION 11

Manual Deploy

• Right-click on the Enterprise Archive (EAR) (Figure 3.3) or the web project to be deployed

and choose "Export"

• To deploy an EAR choose Java EE > EAR �le (Figure 3.4). In case of a web project, choose

Web > War �le.

• Save the �le into /glassfish/domains/domain1/autodeploy.

In addition to deploying the EARs, it is required up from Media Store 1.1 to copy the �le

present at mediastore.basic to the con�g folder of the running domain. See Section 3.4 for more

information.

3.2 General Information

The purpose of Media Store implementation is not to be an application designed for use by

humans, but to possess architectural and performance features like such an application. Using

it as a subject of investigation, the capabilities of the Palladio Approach can be demonstrated.

Thus, it is designed to adhere to a set of special requirements: component-based architecture,

free individual deployment of each component, up-to-date Java EE technology, presence of

scaling resource demands.

However, the free individual deployment of components has negative implications on the

performance of the implementation, if EJBs are deployed and have to communicate within the

same application server. Thus, since version 1.2, local calls are automatically performed instead

of remote ones when possible. Using this mechanism it is possible to package multiple EJBs

into one EAR and have them communicate locally. This solution pro�ts from the �exibility

of free deployment and the performance of local calls. It is described in section 3.5. Another

feature is the runtime rewiring of EJBs. It was implemented in version 1.1 and is documented

in section 3.4. As long as EJBs are already deployed, it is possible to inject provided interfaces

into compatible provided interfaces.

The implementation adheres to a component to software artifact mapping. Figure 3.5 shows

a possible con�guration of the component-based architecture of Media Store, as speci�ed in

the PCM model. Basic components that are marked by the EJB stereotype map to stateless

session beans. Provided interfaces (roles to be exact) map to implemented business interfaces

of EJBs. Required interfaces map to business interfaces which appear as attributes of EJBs.

Connectors can be regarded as the data, which is provided for the JNDI lookup, which retrieves

the required EJB. Exceptions to this mapping are: the DB, DataStorage, WebGUI components

and their interfaces. The DB component is an arbitrary JPA compatible DBMS. The DataStorage

represents a location on a �le system, which may be local or on a remote �le share. The WebGUI

is mainly JSF but uses an empty EJB (Facade) to dispatch its calls into the backend.

For some processing Media Store sometimes swaps the content of an audio �le from memory

to a �le and vice versa. Also, the location of the �le may switch if a remotely called component

makes a local call or vice versa. To mitigate the e�ort needed to read a �le from disc or write it

to disc, a RAM disc tool can be used. The location of the temporary �les can be changed in the

12 IMPLEMENTATION

Figure 3.1: Server view

GENERAL INFORMATION 13

Figure 3.2: Add and Remove

14 IMPLEMENTATION

Figure 3.3: Exporting an EAR

GENERAL INFORMATION 15

Figure 3.4: Export window

16 IMPLEMENTATION

WebGUI

User

Management

<<EJB>>

UserDB

Adapter

<<EJB>>

Media

Management

<<EJB>>

Packaging

<<EJB>>

Tag

Watermarking

<<EJB>>

MediaAccess

<<EJB>>

IDB

IUserManagement

IMediaManagement

IPackaging

IUpload

IDownload
IDownload

IUserDB

DataStorage

IDataStorage

IWebGUI

DB

Cache

<<EJB>>

ReEncoder

<<EJB>>

IDownload

IDownload

Figure 3.5: Possible Con�guration of Media Store Architecture

source code. Thus, in the current version, this has to be done prior to deployment. The storage

location of the audio �les can also be changed in the same way. It can be located on a local

hard disc or even on a remote �le share. How the �le locations can be con�gured is explained

in subsection 3.1.4.

3.3 Code Structure

3.3.1 Structural overview

Apart from the Web Frontend, each component is realized by an Enterprise JavaBean (EJB) and

packaged inside an Enterprise Archive (EAR). For each one of those are assigned two projects:

An EJB Project and an EAR Project. However, if two or more EJBs should be deployed locally, a

new EAR Project should be created to contain them all.

CODE STRUCTURE 17

In addition to those, two more projects complete Media Store architecture: a Dynamic Web

Project for the Web Frontend, and a simple java project called mediastore.basic, which holds

common utilities and aspects shared between all other components. This will be covered more

in detail in section 3.3.

Maven dependencies

All projects possess a Maven nature and therefore the dependencies between components are

managed through Maven. For example, an EJB can be added to a EAR by simply adding the

right dependency to its pom.xml �le (See Listing 2). It is also possible to package multiple

EJBs within the same EAR, which makes these EJBs local to one another. This brings some

advantages as covered in Section 3.5.

1 <dependency>

2 <groupId>mediastore.ejb.facade</groupId>

3 <artifactId>mediastore.ejb.facade</artifactId>

4 <version>1.0</version>

5 <type>ejb</type>

6 </dependency>

Listing 2: Adding the Facade EJB to an EAR

3.3.2 The frontend: A Web application

The web frontend is implemented by mediastore.web as a Dynamic Web Project using the

framework JavaServer Faces (JSF). The Graphical User Interface (GUI) is implemented in the

HTML �les index.xhtml, login.xhtml and register.xhtml using of the PrimeFaces framework. The

business logic part of the Web component is realized by the Managed Beans in the package

edu.kit.ipd.sdq.mediastore.web.beans. Those eventually make use of the utility classes at the

package edu.kit.ipd.sdq.mediastore.web.utils
Other than that, the class MainFilter at the package edu.kit.ipd.sdq.mediastore.web.filters

serves for redirecting and URL-renaming purposes. The use of this �lter is speci�ed in the

con�guration �le mediastore.web/WebContent/WEB-INF/web.xml.

3.3.3 The backend: An EJB architecture

The business logic of the backend is realized by EJBs. More particularly, each component is

implemented by at least one stateless Session Bean.

• The Facade component serves as an intermediary between the web frontend and the

other components. Actions involving the user system, e.g. login, are redirected to

the UserManagment component and actions involving audio �les, e.g. download, are

redirected to the MediaManagement component. It contains one Session Bean FacadeImpl,
which implements the interfaces IFacadeLocal and IFacadeRemote.

18 IMPLEMENTATION

• UserManagement is the component implementing the user system. It has one Session

Bean UserManagementImpl, which implements the interfaces IUserManagementLocal and

IUserManagementRemote. It also includes the class SecurityUtil which is a utility class for

encryption purposes.

• UserDBAdapter is responsible for the interaction between the application and the user table

in the database. It contains two Session Beans : DbManager, which o�ers the primitive

functions of the interaction with the user table, and UserDBAdapterImpl wich serves as an

entry point from the UserManagement component to the database. In addition to that,

the UserDBAdapter component makes use of the Java Persistence API (JPA) and includes

an entity class User, which represents an entry in the user table inside the database.

• The MediaManagement component coordinates with the other components upon a down-

load or upload action. It is implemented in the Session Bean MediaManagementImpl,
which implements the interfaces IMediaManagementLocal and IMediaManagementRemote

• MediaAccess is the component in charge of saving �les on the storage device upon an

upload, or retrieving those on download. This is done by the class MediaAccessImpl. The

interaction with the database is done by the Session Bean DbManager. For this purpose,

the entity class Audio represents an entry in the audio table of the database.

• AudioWatermarking applies a watermark on an audio �le by adding an inaudible signal

to it. It is implemented by the Session Bean AudioWatermarkingImpl and makes use of a

Wave File API, implemented in the classes WavFile and WavFileException.

• The component Reencoder uses LAME codec to encode and decode audio �les. It is

implemented by the Session Bean ReEncoderImpl.
• TagWatermarking applies a watermark on a mp3 �le by adding a mp3 tag to it. It is

implemented in the class TagWatermarkingImpl.
• When multiple �les are at the same time downloaded, they are packaged by the Packaging

component into a single Zip �le. This is done by the Session Bean PackagingImpl.
• The Cache component is implemented in the stateless Session Bean CacheImpl, which

makes use of the singleton Session Bean CacheSingleton.

3.3.4 Mediastore.basic

Mediastore.basic is a simple java project containing diverse utilities that are needed by all

components. It is therefore always deployed along with the EJBs and packaged inside each

EAR.

• The packages edu.kit.ipd.sdq.mediastore.basic and edu.kit.ipd.sdq.mediastore.basic.config
contain classes implementing the EJB con�guration. These are presented in more detail

in Sections 3.4 and 3.5.

• The package edu.kit.ipd.sdq.mediastore.basic.data contains classes that represent data,

which is usually used in the communication between di�erent EJBs.

– The class AudioFile represents the main structure of an audio �le. It has two attributes

of the types AudioFileInfo and FileContent.

RECONFIGURATION 19

– The class AudioFileInfo holds a set of information about an audio �le such as the

artist, the genre or the ID of the original uploader.

– The abstract class FileContent is an abstraction of the content of an audio �le. It is

extended by the two concrete classes FileContentLocal and FileContentRemote and

contains two methods: the abstract boolean method isLocal, which tells whether

the FileContent object is actually a FileContentLocal or FileContentRemote object, and

the method convertIfNeeded, which converts the current FileContentLocal object to

a FileContentRemote object or vice versa when a conversion is necessary.

– The class UserRegData represents the user data upon registration.

– The class CurrentUser represents the current user being logged in.

• The package edu.kit.ipd.sdq.mediastore.basic.exceptions contains exceptions that might

be thrown by the application. The class AppException serves as a base class for other

exceptions

• The package edu.kit.ipd.sdq.mediastore.basic.interfaces contains all business interfaces

used in Media Store. IBusinessInterface is the base interface of all others. It is an empty

interface that extends the interface Serializable from java.io. A detailed convention

regarding the interfaces is presented in section 3.5.

• The package edu.kit.ipd.sdq.mediastore.basic.utils holds di�erent utility classes that are

used by almost all EJBs.

Other than the source �les, mediastore.basic contains the con�guration �les ejbconfig.xml and

GlobalConstantsContainer.properties at its root. It also contains the LAME codec as an executable

�le at the folder mediastore.basic/lame.

3.4 Reconfiguration

The main issue with Media Store 1.0 is that the connection between components is hard-coded.

This means it cannot be changed without modifying the source code and redeploying the

application. For example, suppose that a the watermarking component is deployed on multiple

servers. To determine which server to use when watermarking audio �les, it was necessary to

specify the address of the server in the source code. To avoid that, the recon�guration was

rethought for more �exibility. In fact, it became possible to modify the components’ connection

settings at runtime without the need of redeploying.

The new recon�guration system reads the XML �le ejbcon�g.xml
8
, which can be found at

the root of the project mediastore.basic and must be copied in the con�g folder of the running

domain. This �le contains all the information a component needs to communicate with other

components. Components, in our case Enterprise Java Beans, are represented through the node

<EJB name=""></EJB> where the attribute name is the name of the EJB in question. The EJB

node comprises several other sub-nodes as listed below :

8
The XML structure and its associated Java implementation were �rst developed in Media Store 1.1. They are described here in their �nal

form as in Media Store 1.2

20 IMPLEMENTATION

• <host> : IP address or hostname of the server on which the EJB is deployed

• <port> : This is the ORB Port associated to the server

• <appName> : JNDI application name

• <moduleName> : JNDI module name

• <beanName> : JNDI enterprise bean name

• <providedInterfaces> : List of the interfaces provided by this EJB

• <requiredInterfaces> : List of the interfaces required by this EJB

To illustrate this, let us take the example of the cache component (Listing 3). The cache

EJB provides two interfaces IDownloadCache and ICacheMaintenance and requires the interface

IDownload which is used to get the �les to be cached. In this example, the �les are provided di-

rectly by the component mediaaccess. To get watermarked �les instead, one can simply replace

mediaaccess with audiowatermarking and IDownloadMediaAccess with IDownloadAudioWater-
marking, provided that audiowatermarking is already deployed. Another main advantage of this

feature is to switch between servers on the �y. Suppose that cache is deployed on multiple

servers at the same time. Simply changing host and port determines which server to use to

cache �les.

This XML structure is implemented in Java by the three classes EJB, ProvidedInterface, and

RequiredInterface which are located at the package edu.kit.ipd.sdq.mediastore.basic.config, and is

controlled by the class Config. In addition to that, the class BaseEJB located at edu.kit.ipd.sdq.me-
diastore.basicwas implemented to serve as a base to all EJBs

9
. In order to communicate with one

another, EJBs have to extend the class BaseEJB and call the method <T extends IBusinessInterface>
T initRequiredInterface(String requiredInterface, Class<T> type). This method makes a call to the

static method loadConfig() in the class Config, which checks whether any changes occurred

on the con�guration �le by comparing its timestamp. If so, the �le is deserialized from XML

to Java objects. This deserialization is done by the XStream API available at the package

com.thoughtworks.xstream.XStream. After deserialization, a JNDI lookup is made to the provided

interface, which is assigned to the required interface. Further, the loaded interface resulting

from the JNDI lookup is stored internally, so that it would be immediately available in the future,

and thus avoiding making an unnecessary JNDI lookup in case the interface con�guration has

not changed.

Also worth noting is that the whole process of recon�guration may eventually be turned o�

before deploying by setting the static variable reconfigurable to false. Doing so will make the

system load the con�guration only once, implying that it won’t change during runtime.

To sum it up, the described recon�guration system brings design and performance improve-

ments in comparison to Media Store 1.0. As mentioned before, it brings the possibility to

change the interface provided to an EJB on the �y. It also allows to switch the server an EJB

uses, in case this one is deployed on two or more servers. Another main improvement is the

reuse of an already loaded interface, thus lowering the number of JNDI lookups. At the same

9
In the same way, the managed beans in mediastore.web use this system through the intermediary of the class WebBeanManager located at

the package edu.kit.ipd.sdq.mediastore.web.beans.

RECONFIGURATION 21

1 <entry>

2 <string>cache</string>

3 <EJB name="cache">

4 <host>localhost</host>

5 <port>3700</port>

6 <appName>mediastore.ear.cache</appName>

7 <moduleName>mediastore.ejb.cache-1.0</moduleName>

8 <beanName>CacheImpl</beanName>

9 <providedInterfaces>

10 <entry>

11 <string>IDownloadCache</string>

12 <ProvidedInterface>

13 <providingEJBName>cache</providingEJBName>

14 <name>IDownloadCache</name>

15 </ProvidedInterface>

16 </entry>

17 <entry>

18 <string>ICacheMaintenance</string>

19 <ProvidedInterface>

20 <providingEJBName>cache</providingEJBName>

21 <name>ICacheMaintenance</name>

22 </ProvidedInterface>

23 </entry>

24 </providedInterfaces>

25 <requiredInterfaces>

26 <entry>

27 <string>IDownload</string>

28 <RequiredInterface>

29 <name>IDownload</name>

30 <providedInterface>

31 <providingEJBName>mediaaccess</providingEJBName>

32 <name>IDownloadMediaAccess</name>

33 </providedInterface>

34 </RequiredInterface>

35 </entry>

36 </requiredInterfaces>

37 </EJB>

38 </entry>

Listing 3: Example Deployment Con�guration

22 IMPLEMENTATION

time the recon�guration comes with an obvious downside, which is reading and deserializing

the XML �le, or at least checking its timestamp.

3.5 Intelligent Remote and Local EJB Calls

Media Store 1.0 and 1.1 come with the inconvenience that all EJBs implement only remote

interfaces. This adds a signi�cant overhead whenever locally deployed EJBs call each other

due to the parameter marshalling/un-marshalling. In addition to that, the content of an mp3

�le has to be loaded in main memory each time it’s passed as a parameter to an EJB, even if

both EJBs are located locally, in which case it can be done far more e�ciently.

Remote call overhead

When using only remote interfaces, the overhead caused by the parameter marshalling/un-

marshalling will always occur, even if both the caller and callee EJBs are local to one another.

That means if both are located on the same server and in the same EAR (EnterpriseARchive). To

remedy that, a remote/local switch system was implemented. The system detects automatically

whether the two EJBs are local, and if so uses the local business interface instead of the remote

one. For this purpose, from each business interface in Media Store 1.0 the annotation @Remote
was deleted, and a new remote and a local interface, that extend the original interface, were

created. A JNDI lookup to the remote or local interface would then be made, based on the

outcome of the boolean variable localCall:

1 boolean localCall = ejb.getAppName().equals(callee.getAppName()) && ejb.getHost().equals

(callee.getHost());

For example, say the required interface is IFacade. By convention, the remote interface is

IFacadeRemote and the local one is IFacadeLocal. If localCall holds true, the string "Local" would

be appended to the required interface name, and so making a JNDI lookup to the local interface.

Furthermore, the namespace java:app/ would be used instead of java:global.

Path rather than byte array

When two EJBs are remotely located to one another and an audio �le has to be transfered, it is

necessary to pass the �le content in some methods like upload or download as a byte array. In

the local case, this is no longer needed, since both EJBs are on the same server and can access

the �le in question directly on the hard drive. For this reason, a new abstract class FileContent
was created in the package edu.kit.ipd.sdq.mediastore.basic.data. This class represents the

content of a �le in general. It has a method isLocal which returns true if the �le is located

on the hard drive, and false if the �le content is an in-memory byte array. From this abstract

class inherit the two classes FileContentRemote and FileContentLocal. FileContentRemote has the

attribute bytes of the type byte[] and FileContentLocal has the attribute path of the type Path.

Besides, the class FileContent has a method convertIfNeeded, returns a FileContentRemote or

INTELLIGENT REMOTE AND LOCAL EJB CALLS 23

FileContentLocal version of the FileContent based on a boolean �ag passed as a parameter, that

indicates whether the target �le should be local or not. In addition to that, the attribute content
of the type FileContent has replaced the byte array in the AudioFile class.

By doing so, this form of abstraction allows di�erent EJBs to use the local version of FileCon-
tent to communicate locally with each other, or to switch to the remote version, if they are

located remotely.

Quick Developer Guide

For developers who want to add a new EJB to Media Store, the following steps should be taken

into consideration:

• Begin with creating the EJB.

• The implementation class must inherit from BaseEJB.

• Create a new interface in edu.kit.ipd.sdq.mediastore.basic.interfaces. This interface must

extend IBusinessInterface. The methods provided by the EJB must be declared here.

• Create two other interfaces that follow this convention :

– One must be annotated with @Remote, the other one with @Local.
– Both interfaces must extend the original interface.

– By convention, the name of the remote interface must be identical to the name of

the original interface and appended with ‘Remote’.

– By convention, the name of the local interface must be identical to the name of the

original interface and appended with ‘Local’.

• The implementation class must implement both remote and local interfaces.

• Add an entry in ejbcon�g.xml for the new EJB.

• Any calls to other EJBs must be made through the method initRequiredInterface(String
requiredInterface, Class<T> type)

4 PCMModel

The current version of Media Store PCM model is built for the Palladio 3.5 stable release
1
. There

is also a branch containing a model that is kept up-to-date with the current nightly release.

The model re�ects the performance of the implementation versions 1.0. The performance of

the implementation did slightly increase with version 1.1. The model should be still applicable

for the implementation version 1.1. Version 1.2 does not match the performance of the model,

as it is much faster when components are deployed on the same application server and in the

same EAR.

4.1 Description

The PCM model of Media Store represents an early design model. It is not a highly calibrated

model to validate the PCM. Thus, the model has high error margins (up to 97 %). However, the

tendencies for modeled and explored design alternatives are correct and a high error is to be

expected for an early design model. More calibration is, however, always possible to improve

accuracy. In the case of this PCM model, the high errors result from the really fast services

(e.g. login). During modeling they were treated with less rigor, as they are not as performance

relevant compared to other services. The download functionality is more important, as it causes

the most resource demands. The model accuracy for download is much higher (error below 9

%).

The model was built, as it would be built in the an early design stage. The implementation is

non-existent. However, third party components and prototypical code exists. It is especially

worthwhile to prototype infrastructure functionality, which is used by all components (e.g.,

JNDI lookup and remote calls). Using a load driver and a monitoring tool, resource demands

can be extracted from the existing code and fed into the model. Resource demands can also be

transferred to code, which is expected to generate a similar load.

To model the concrete CPU resource demands, the response time of a single functionality

was measured in isolation. As an approximation, we used the response times as resource

demands. This is plausible, as the use of a RAM disc removes waiting times due to storage

device access from most functionality (except for the initial retrieval from the DataStorage).

The following functionality was measured:

• Overhead of remote communication and JNDI lookups, which is easy to prototype. This

was measured once and inserted into every SEFF for components that correspond to EJBs.

This demand is constant.

1
https://sdqweb.ipd.kit.edu/wiki/PCM_3.5.0

DESCRIPTION 25

• Query building (by the EJB/JPA) and execution (by the DBMS). This was measured once

and then inserted for both database accessing components (MediaAccess and UserD-

BAdapter). This demand is constant.

• The resource demand of packaging audio �les into zip �les. We measured this function-

ality, as we consider it already available in the design phase, as it is provided by the Java

API. We measured this functionality using multiple �les with varying sizes and modeled

the resource demand using linear regression. Thus, this demand is proportional to the

overall size of requested �les.

• We measured the demand of reencoding and audio watermarking. Both use the LAME

codec, which is readily available. Further, we assume, that the audio watermarking

component is a cots (component of the shelf). Without that assumption, we would have

to estimate the performance of the component, which would lead to a worsened accuracy.

An educated guess could be to double the demand from encoding, as lame is used two

times for audio watermarking.

While we are satis�ed with the accuracy of the model as an early design model, we are aware

of much improvement potential. This could be addressed if one needs a highly �tted model for

performance evaluation.

• The overhead due to transfer of audio data between EJBs is not considered. This is

relevant for the upload and download services.

• All DB queries have the same constant resource demand. getFileList queries, however,

should depend on the amount of entries in the database.

• The storage device (e.g., HDD) access is not modeled. This could be done for the DB and

DataStorage Component. However, storage access is not easily approximated, as it does

not work as a FIFO, nor as a processor sharing resource. Quite elaborate solutions are

the use of performance curves [3], regression or queuing models [2].

• The resource demand of reencoding and audio watermarking is dependent on the re-

quested audio �les. However, a correlation which can be expressed in closed form is not

easily found due to many in�uencing factors (input size, output size, lenght, bitrates,

etc.). Thus, their resource demands are currently modeled using constant probability

density functions, which are tuned to the audio payload and a uniform disribution of

requests. The resource demands could be parametrized by using performance curves,

regression or queuing models.

• The overhead of remote EJB communication and JNDI lookups was measured under a

high parallel load. Later, this turned out to be problematic, as the expected workload

utilizes all services and thus accelerating factors from the high parallel load of one service

were no longer in e�ect (e.g., cache e�ects).

• With regard to the architecture, the model does exclude the web interface. The system is

modeled from the facade component onwards which is used by the web application to

dispatch requests into the backend. For calibration and validation, the performance was

measured directly at the facade. However, except for e�ort, nothing speaks against the

creation of a performance model of desired complexity and accuracy for the web part.

26 PCM MODEL

Resource demands are speci�ed in nano load units, as they were measured in nanoseconds.

The processing rate of the CPUs is de�ned as 1.000.000 nano load units per simulated time unit.

Thus, the time unit for the simulation corresponds to one real world millisecond.

4.2 Audio Payload

The audio payload
2

under that the model was calibrated consists of 6 �les, which were replicated

20 times each. The �les are from the artist Trash80
3
. They are released under the Creative

Commons BY-NC-ND 2.5
4
. The characteristics of the audio �les are listed in Table 4.1. The

replication was used to minimize caching e�ects that would have occurred if the size of the

payload was to small. The amount of �les per requests may be varied. However, due to the

modeling of the reencoding and audio watermarking resource demands, the �les have to be

requested with equal probability. For our purpose, which is to have an early design time model,

this modeling is su�ciently representative of a random MP3 collection. It was not our intent

to create an intricate model of a MP3 collection. However, if desired, a model of arbitrary

complexity may be created and the resource demands may be recalibrated or a more complex

modeling of these resource demands can be put in place which is parametrized.

Filename Title Size (Bytes) Bitrate Length (Seconds)

a.mp3 Excuses 8.319.845 192 346

b.mp3 Pain Fade Down 5.192.682 192 216

c.mp3 Impact of Silence 5.316.819 192 221

d.mp3 Lazerscale 2010 - 01 4.901.973 192 204

e.mp3 Missing You 6.178.906 192 257

f.mp3 Within Time 11.290.941 320 280

Table 4.1: Audio Payload

4.3 Hardware Setup

The hardware setup, which is re�ected by the model, is illustrated in Figure 4.1. It consists

of two servers which are connected by gigabit ethernet. However, most of the architecture

con�gurations only use one server. The database and �le storage are located on the �rst server.

The specs of the two servers are shown in Table 4.2. Everything is identical except for the cache

architecture con�guration for which the main memory of server one was doubled to make

room for the in-memory cache. This did not accelerate the system substantially, as without the

software cache the memory was no bottleneck in the 3 GB setup. The load driver is located on

2
https://svnserver.informatik.kit.edu/i43/svn/code/CaseStudies/MediaStore3/trunk/Data/Audio%20Payload

3
http://trash80.com/#/music

4
https://creativecommons.org/licenses/by-nc-nd/2.5/

MODEL FILES 27

an additional machine. Latency between the load driver and the application server is irrelevant,

as the measurements are taken directly on the application server.

App Server 1 App Server 2

File Storage

DB

Load Driver

Gigabit

Switch

Figure 4.1: Deployment

Server CPU Memory Bitrate

1 Intel DualCore E2180, 2GHz 3 GB / 6 GB Windows 8.1 Update

2 Intel DualCore E2180, 2GHz 3 GB Windows 8.1 Update

Table 4.2: Hardware Speci�cation

4.4 Model Files

Figure 4.2 shows the current list of �les of Media Store PCM model. In the Palladio book [1],

four di�erent con�gurations of the architecture are investigated. These con�gurations are:

base The basic con�guration of the architecture. It features TagWatermarking and Reencoding.

Every other con�guration is a modi�cation of base.

audio wm The audio watermarking con�guration replaces TagWatermarking and Reencoding

of the base con�guration with the heavy weight AudioWatermarking. AudioWatermark-

ing alters the audio signal of mp3s by inserting a inaudible watermark. This requires

prior decryption and encryption after the watermark has been applied.

cache The cache con�guration adds a software in-memory cache component between TagWa-

termarking and Reencoding. The cache stores a limited amount of reencoded audio �les

in memory.

distr reenc The distributed reencoding con�guration sources the Reencoding component out

to another server.

28 PCM MODEL

Figure 4.2: Files of Media Store PCM model

LAUNCHES 29

There is also a further con�guration, parallel audio watermarking, which was not covered by

the book. It runs the watermarking of �les of one request on two CPU cores

The �les belonging to the con�gurations are indicated by the corresponding pre�x. The

repository and resource environment are shared among all con�gurations. That is why they

have no pre�x. As the distributed reencoding con�guration does only di�er in its allocation

from the base con�guration, the two con�gurations share system and usage models.

There are two types of usage models provided for the con�gurations. The ones that are

called “all” are quite simple. They feature a closed workload. A pass through the scenario

behavior executes each service exactly once. These usage models were used for calibration

and veri�cation, as they induce no extra randomness. The other type of usage model is called

“realistic”. It was used to produce the results for the comparison of the design alternatives in

the Palladio book [1]. It displays a more realistic �ow of service calls with a probabilistic arrival

time of the open workload, probabilistic branches and delays. To keep variance in check, the

number of requested audio �les to download is limited to one or two. The number is chosen

randomly by a probabilistic branch. However, the model would even provide valid prediction

results for an arbitrary number of �les.

4.5 Launches

For each architecture con�guration and each usage model, the launches have been persisted

and provided within the modeling project. The are shown in Figure 4.3. They are named

�rstly after their architecture con�guration, secondly after the usage model and lastly after the

amount of measurements, which is to be taken. The simulation time stop condition is disabled

in every launch. The launches which only take 1000 measurements should only be used for

testing and not for retrieving prediction data.

4.6 Modeling of the Cache Component

The cache architecture con�guration features a software cache component. The modeling of

the hit rate is not straightforward, because it is dependent on the amount of �les in the data

storage, on the cache size and the way they are requested. There are two ways to model the hit

rate, with regard to the distribution of which requested �les. When an uniform distribution is

assumed, it is possible to calculate the hit rate dependent on the cache size and amount of �les

in the data storage.

hit rate =

cache size
number of songs

This does not apply until the cache has been �lled. When doing performance measurements,

this can be achieved by a warmup phase, which is not recorded. Other distributions may also

be used. E.g., using a PMF (probability mass function) it is possible to categorize songs into

categories of di�erent popularity.

30 PCM MODEL

Figure 4.3: Run Con�gurations

MODELING OF THE CACHE COMPONENT 31

The information needed for the determination of the hit rate should be modeled in the model

for which the respective role is responsible. I.e., the amount of data and the request probabilities

(or distribution) should be modeled in the usage model. This is, because the amount of �les

is also a result of the usage. Further, the size of the cache should be speci�ed in the cache

component.

For our experiment we chose to model and measure using the uniform distribution of

requested �les. Despite it not being the most realistic solution, we chose it because of pragmatic

reasons. Modeling distributions of hit rates is easy. However, programming the load driver

so that the hit rate is matched is not trivial. Inaccuracies caused by not achieving the hit rate

will increase the prediction error, even though the problem is not caused by the model but

the load driver. Decisive for our decision was the fact, that the purpose of the model is not

an elaborate engineering of hit rates but early performance evaluation. One could, of course,

model an arbitrary distribution. However, this will not be re�ected in the resource demands,

which are not parametrized with regards to �le characteristics. These have to be re measured

under the new distribution, or a more elaborate modeling has to be put in place, which takes

�le characteristics in account.

In our model, the hit rate is modeled by the content of the SEFF for the download operation

of the Cache component. This is illustrated in Figure 4.4. In the PCM, probabilistic branches

cannot be parametrized. I.e., the branch probabilities are static. Thus, the hit rate is not

determined during simulation depending on cache size and amount of requested audio �les. It

is speci�ed by a constant. Of course, this constant is calculated beforehand using the hit rate

formula for uniform distribution.

JNDI and RMI
Overhead

Access
Cache

count = 1 count > 1

count = 1

External Call:
Downlaod

P = miss rateP = 1 – miss rate

count = count * miss rate

External Call: Downlaod

Figure 4.4: Cache: Download SEFF

32 PCM MODEL

In the case of multiple �les being requested for download, the call should be kept as one and

not split up into multiple calls. This can be achieved by multiplying the amount of requested

audio �les with the miss rate. Calls which request only one �le for download should not be

treated this way, as this would result in calls which request only a fragment of an audio �le.

This would not be realistic. That is why the SEFF �rst makes a distinction between the call

requesting one or multiple audio �les. In the case of one �le being requested, a probabilistic

branch is used.

5 Data

The data folder
1

contains: MP3 �les of the audio payload, R scripts for error calculation, and

calibration and evaluation data. Its content is shown in Figure 5.1.

Figure 5.1: Data

The audio �les used for the performance measurement, which are also modeled in the model’s

workload, are in the folder Audio Payload. They are from the artist trash80
2

and are licensed

under Creative Commons BY-NC-ND 2.5
3
. Their characteristics are shown in Table 4.1.

Measurements from the implementation as well as prediction results of the simulation are

stored in the form of data �le sources. These can be opened using the experiments view in PCM

stable 3.5
4
. It may still be possible to open the data sources with newer PCM versions. The

simulation data is taken from Media Store model 1.0. The implementation data was measured

from implementation 1.0.

There is one ZIP �le containing a data source with calibration measurements. Table 5.1

shows the content. The �rst data source with calibration measurements was lost due to a data

source corruption. However, the results are still re�ected in resource demands of the model.

Some rows are marked as invalid, that means that they were just tests, the measurement was

disrupted, an exception occurred or the experiment was set up wrongly.

Table 5.2 shows content of the evaluation measurements from the implementation. There

are two versions each. The original one contains measures in nanoseconds, the transformed

1
https://svnserver.informatik.kit.edu/i43/svn/code/CaseStudies/MediaStore3/trunk/Data/

2
http://trash80.com/#/music

3
https://creativecommons.org/licenses/by-nc-nd/2.5/

4
https://sdqweb.ipd.kit.edu/wiki/PCM_3.5.0

34 DATA

Index Description

invalid

2 TagWatermarking and Reencoding, uniform distribution of audio

payload, single user, 100 minutes

invalid

5 End-to-end measurement, full service coverage, 2 users, 2 hours

invalid

10 getFileList, 30 min

invalid

12 getFileList, 30 min, including Facade and MediaAccess

invalid

14 getFileList, 30 min, including Facade, MediaManager and MediaAc-

cess

invalid

Table 5.1: Calibration Measurements

one contains measures in milliseconds for comparison with the simulation results, which are

also in milliseconds. For all measurements, a load was applied, which matches the “all” usage

model. It features a full service coverage an low degree of randomness.

Index Description

Evaluation Measurements 1
0 base, 1 user

1 base, 2 user

2 distributed reencoding, 1 user

3 distributed reencoding, 2 user

4 audio watermarking, 1 user

5 audio watermarking, 1 user

invalid

Evaluation Measurements 2
0 cache, 1 user

1 cache, 2 user

Table 5.2: Evaluation Measurements

Table 5.3 shows content of the simulation results. All measures are represented in millisec-

onds. Each simulation run terminated at 10.000 measurements taken. The “all” usage model

was used for full service coverage and low randomness.

The evaluation comparison archive contains for each architecture con�guration for one and

two users: exported CSV �les with measurements and the output of the error calculation script.

35

Index Description

0 base, 1 user

1 base, 2 user

2 distributed reencoding, 1 user

3 distributed reencoding, 2 user

4 audio watermarking, 1 user

5 audio watermarking, 1 user

invalid

8 cache, 1 user

9 cache, 2 user

Table 5.3: Evaluation Simulation Results

Bibliography

[1] Ste�en Becker et al. Modeling and Simulating Software Architectures - The Palladio Ap-
proach. Ed. by Ralf H. Reussner et al. to appear. Cambridge, MA: MIT Press, 2016.

[2] Qais Noorshams. “Modeling and Prediction of I/O Performance in Virtualized En-

vironments”. PhD thesis. Karlsruhe Institute of Technology (KIT), 2015. url: http :

//digbib.ubka.uni-karlsruhe.de/volltexte/1000046750.

[3] Alexander Wert, Jens Happe, and DennisWestermann. “Integrating software performance

curves with the palladio component model”. In: Proceedings of the third joint WOSP/SIPEW
international conference on Performance Engineering. ACM. 2012, pp. 283–286. url: http:

//dl.acm.org/citation.cfm?id=2188339.

http://digbib.ubka.uni-karlsruhe.de/volltexte/1000046750
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000046750
http://dl.acm.org/citation.cfm?id=2188339
http://dl.acm.org/citation.cfm?id=2188339

	2016,1_Titelbl
	techrep
	1 Introduction
	1.1 License
	1.2 Resources

	2 Architecture
	3 Implementation
	3.1 Setup
	3.1.1 Technical requirements
	3.1.2 Server setup
	3.1.3 Database setup
	3.1.4 File Location Configuration
	3.1.5 Deployment

	3.2 General Information
	3.3 Code Structure
	3.3.1 Structural overview
	3.3.2 The frontend: A Web application
	3.3.3 The backend: An EJB architecture
	3.3.4 Mediastore.basic

	3.4 Reconfiguration
	3.5 Intelligent Remote and Local EJB Calls

	4 PCM Model
	4.1 Description
	4.2 Audio Payload
	4.3 Hardware Setup
	4.4 Model Files
	4.5 Launches
	4.6 Modeling of the Cache Component

	5 Data
	Bibliography

