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Abstract 

Different types of test specimens were applied in the past for the measure-
ment of subcritical crack growth in silica. The rather large scatter of crack-
growth curves calls for re-analysis of stress intensity factors. In the present 
note semi-elliptical surface cracks in long cylinders are addressed. In 
addition the first regular stress term (T-stress) is considered.  
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1. Introduction  

Different types of test specimens were applied in the past for the measurement of 
subcritical crack growth in silica. Figure 1 shows some crack growth results in water at 
room temperature obtained from literature. The crack-growth data by Wiederhorn and 
Bolz [1] were measured with the Double-Cantilever Beam (DCB) method. Michalske 
et al. [ 2 ] used the Double cleavage drilled compression (DCDC) specimen and 
Muraoka and Abe [3] carried out static tensile tests on silica fibres with small semi-
elliptical surface cracks.  

The data scatter is at a crack-growth rate of 10-7 m/s about 13% as indicated by the 
arrows in Fig. 1. In order to assess the results from [3] we performed Finite Element 
computations on semi-elliptical surface cracks in infinitely long cylinders. The results 
are given in this note. 

 
Fig. 1 Subcritical crack growth measurements on silica by Wiederhorn and Bolz [1] (DCB), Michalske 

et al. [2] (DCDC), , and Muraoka and Abe [3] (semi-elliptical surface cracks).  

2. Stress intensity factors from literature 

Literature results on the semi-elliptical crack in an infinitely long cylinder (see Fig. 2a) 
are available from Nisitani and Chen [4] and Shiratori et al. [5]. First, we compared the 
polynomial fit by Muraoka and Abe [3] with the literature data by Nisitani/Chen since 
both are using the Body-force method. The results are given in Fig. 2b in terms of the 
geometric function F, defined by   
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The polynomial approximation (curves) fits excellently to the open circles for =0.3 at 
a/c=0.5 and 1. Use of the value =0.3 (mostly used for handbook solutions of cracks in 
metals) was confirmed by Muraoka [6]. 
On the other hand, the Nisitani-data clearly show a considerable influence of the 
Poisson’s ratio. This has to be considered for the computation of stress intensity 
factors for cracks in silica, showing a Poisson’s ratio of =0.17. 
 

          
Fig. 2 a) Semi-elliptical surface crack in a cylinder, b) Geometric function F, symbols: results by 
Nisitani and Chen [4] for =0.3, solid lines: Fitting equation to results by Muraoka and Abe [3]. 

Maximum deviations between Nisitani and Chen and Muraoka and Abe for =0.3 are less than 0.5%. 

In Fig. 3a the ratio of the Nisitani-data for =0 and 0.3 at a/c=1 is plotted against a/R. 
From this plot we see that the solution is about 4-5% smaller for =0. The values for 
the Poisson number of silica, =0.17, must be between =0 and 0.3. For our purpose 
the ratio of the stress intensity factors K=0.17/K=0.3 was of special interest because it 
allows a transformation of the crack-growth data by Muraoka et al. [3] using the 
correct stress intensity factors K=0.17. 
Figure 3b shows the deviations between the Nisitani-solution and the equation from 
[3]. Best agreement is visible. The small deviations of less than 0.5% do nor show a 
trend with respect to a/R. 
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Fig. 3 a) Effect of Poisson’s ratio on the geometric function for a/c=1, deviations up to 5%, b) 

deviations between Nisitani and Chen [4] for =0.3 and the fitting curve by Muraoka and Abe [3] for 
a/c=0.5 and a/c=1. Maximum deviations are less than 0.5%. 

3. FE results 

We computed stress intensity factors and T-stresses for semi-elliptical cracks by using 
Finite Elements. Since the cracks in [3] were within the geometric limits 

0.3a/R0.8 ,   0.55a/c0.75 

we restricted the computations on this area. For the computations we used ABAQUS 
Version 6.9 on a mesh of 3100 elements and 14800 nodes. The cylinder length was 
chosen 2H=20 R and 1/4th of the whole specimen was modelled.  
FE-results are shown in Fig. 4a for a few geometries and =0.3. They are in suitable 
agreement with the fitting equation provided in [3]. In this context, it should be 
mentioned that the Body Force Method shows a higher accuracy than FE-compu-
tations. The variation of stress intensity factor along the coordinate x (Fig. 2a) is 
shown in Fig. 4b for a/c=0.3 via the geometric function F. Only negligible variation is 
visible. In contrast to this finding, the deep crack shows increasing stress intensity to 
the surface. Figure 4c shows a comparison of geometric functions normalized on their 
value at point (A). Note that in this case the abscissa is changed. 
Figure 5 shows the effect of the Poisson’s ratio on the stress intensity factor for two 
crack geometries by plotting the geometric functions for several values of , 
normalized on the geometric function at =0.3. At point (A) the stress intensity factor 
for =0.17 is 3% smaller than for =0.3. In contrast a variation on  is negligible at 
point (C). 
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Fig. 4 a) FE-results compared with the equation in [3] for =0.3, b) variation of F along the crack 

front for =0.17, c) geometric functions normalized on the value at point (A). 

The relation between energy release rate, G, and stress intensity factor, K, yields for 
plane strain conditions  
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This dependency is represented in Fig. 5 by the dashed curve. It should be noted that 
the case =0 reflects plane stress conditions. The variation of stress intensity factor 
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with  indicates that plane strain conditions are predominantly fulfilled at point (A). At 
the surface point (C) we nearly have plane stress conditions already due to the 
geometry. 

 

 
Fig. 5 Effect of Poisson’s ratio on stress intensity factors, dashed line: trend by eq.(2).  

Due to eq.(2) the stress intensity factor for 0.150.3 can be approximated by 
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showing deviations less than 0.2%.  

4. T-stress 

The first higher-order stress term of the crack-tip stress field is the so-called T-stress. 
It is defined as the only existing component of the stress tensor  
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According to the suggestion by Leevers and Radon [7] we use the dimensionless 
representation of T by the stress biaxiality ratio , defined as 
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The variation of  along the crack front is shown in Fig. 6 for differently deep cracks. 
Figure 7 shows the effect of  on T-stress and biaxiality ratio . 

 
Fig. 6 Variation of  along the crack front. 

 

 
Fig. 7 Effect of Poisson’s ratio on a) T-stress and b) biaxiality ratio. 
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5. Correction of subcritical crack growth data 

Finally, the subcritical crack growth curve from Muraoka and Abe [3] is re-plotted by 
using the stress intensity factors for =0.17. Figure 8 shows the result. In the region 
10-9m/sv10-6 m/s, the re-evaluated data from Muraoka and Abe [3] are in best 
agreement with the data by Wiederhorn and Bolz [1]. 

 

Fig. 8 Re-evaluated data by Muraoka and Abe [3] compared with data from straight cracks. 
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