
Change-Driven Consistency for Component Code,
Architectural Models, and Contracts

Max E. Kramer
Karlsruhe Institute of

Technology
Karlsruhe, Germany

max.e.kramer@kit.edu

Michael Langhammer
Karlsruhe Institute of

Technology
Karlsruhe, Germany

michael.langhammer@kit.edu
Dominik Messinger

Microsoft Canada
Development Centre
Vancouver, Canada

domessin@microsoft.com

Stephan Seifermann
FZI – Research Center for

Information Technology
Karlsruhe, Germany

seifermann@fzi.de

Erik Burger
Karlsruhe Institute of

Technology
Karlsruhe, Germany

erik.burger@kit.edu

ABSTRACT
During the development of component-based software sys-
tems, it is often impractical or even impossible to include
all development information into the source code. Instead,
specialized languages are used to describe components and
systems on different levels of abstraction or from different
viewpoints: Component-based architecture models and con-
tracts, for example, can be used to describe the system on
a high level of abstraction, and to formally specify compo-
nent constraints. Because models, contracts, and code con-
tain redundant information, inconsistencies can occur if they
are modified independently. Keeping this information con-
sistent manually can require considerable effort, and can
lead to costly errors, for example, when security-relevant
components are verified against inconsistent contracts. In
this paper, we present an approach for keeping component-
based architecture models and contracts specified in the Java
Modeling Language (JML) consistent with Java source code.
We use change-driven incremental transformations and the
Vitruvius framework to automate the consistency preser-
vation where this is possible. Using two case studies, we
demonstrate how to detect and propagate changes and refac-
toring operations to keep models and contracts consistent
with the source code.

Categories and Subject Descriptors
D.2.2 [Design Tools and Techniques]: Object-oriented
design methods; D.2.11 [Software Architectures]: Lan-
guages

Keywords
Model-Driven Engineering, Formal Specification, Co-Evolution

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CBSE’15, May 4–8, 2015, Montréal, QC, Canada.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3471-6/15/05 ...$15.00.
http://dx.doi.org/10.1145/2737166.2737177.

1. INTRODUCTION AND MOTIVATION
Component-based software systems are often designed

and realized using heterogeneous development artefacts, be-
cause it is inefficient to perform all development tasks in
general-purpose languages. Architecture Description Lan-
guages (ADLs), for example, can be used to model compo-
nents and their relationships while omitting implementation
detailsand formal languages, such as the Java Modeling Lan-
guage (JML) can be used to specify contracts. These special
languages can be helpful to design and maintain component-
based software, but they introduce redundancy. Names and
parameters of services, for example, may appear in the code,
the architecture model, and the contracts. Such redundant
information becomes inconsistent if changed in isolation. If
consistency is restored manually, modifications have to be
performed in each artefact, requiring manual effort and possi-
bly still leading to costly inconsistencies. For security-relevant
components that are verified against contracts, such inconsis-
tencies can lead to insecure systems and are thus intolerable.

In this paper, we present a semi-automated approach and a
tool to keep architecture models, formal component contracts,
and source code consistent. We describe change detection and
propagation by change-driven incremental transformations.
We have used the Vitruvius framework [10] to implement
the change detection and consistency approach in a research
prototype1. Our prototype processes architectural models
that use the Palladio Component Model (PCM) [2], contracts
defined in JML, and Java source code but it can be adapted
to other ADLs and specification languages.

With two case studies, we have evaluated whether all kinds
of code changes can be detected, and whether contracts and
models are kept consistent accordingly. Our evaluation shows
that it is possible to keep these artefacts automatically con-
sistent in most of these change and refactoring scenarios.

The remainder of this paper is structured as follows: After
foundations (section 2) and an overview (section 3), we discuss
change monitoring (section 4). Then, we present contract
consistency (section 5), followed by related work (section 6),
and a conclusion with a discussion of future work (section 7).
A full version of this paper has been published as technical
report [11] and all code and tests are freely accessible.1

1sdqweb.ipd.kit.edu/wiki/Vitruvius/Development

https://sdqweb.ipd.kit.edu/wiki/Vitruvius/Development

public class ATM {

public void withdraw(int amount, Account src) {

...

Model

Source Code

/*@ requires amount >= 0;

requires src.balance >= amount;

ensures src.balance == \old(src.balance) - amount; @*/

public void withdraw(int amount, Account src);

Contract

«restricts »

«describes »

AccountManagerATM

Figure 1: Extracts from the contract, source code,
and model for an example banking system

2. BACKGROUND AND FOUNDATIONS
The Palladio Component Model is the Ecore-based meta-

model of the component-based ADL that is used in the Pal-
ladio Bench. It features reusable components, which provide
and require services at interfaces, which are both defined in
a system-independent component repository.

The Java Modeling Language (JML) [14] is a behavioral
interface specification language for Java. It can be used to
define contracts for interfaces and classes, which are often
just called specifications. JML contracts can be defined in
usual Java source files, or in a separate JML file that repeats
all Java declarations of the specified interface or class. The
contracts are noted inside Java comments directly before the
declaration of the corresponding Java element.

JML contracts consist of statements and modifiers. Essen-
tial JML statements are preconditions (requires), postcon-
ditions (ensures), and invariants. The pure modifier marks
a method side-effect free, which is required when using the
method inside contract specification statements. An example
for a JML contract is shown in the upper box of Figure 1:
It defines two preconditions and a postcondition for a with-
drawal operation of an Automatic Teller Machine (ATM).

3. FRAMEWORK OVERVIEW
The Vitruvius framework is based on the central idea

of Orthographic Software Modeling: all information of a
software system is represented in a single underlying model
and can be accessed solely by views. It tries to combine
the advantages of projective and synthetic approaches as
defined by the ISO 42010 standard by providing a method
for constructing and maintaining a modular, Virtual Single
Underlying Model (VSUM): The VSUM consists of individual
models for different modeling languages in order to support
existing languages and tools. The virtual model instance is
dynamically managed by the framework and restricted by
the metamodels that are added to a so-called meta repository.
Therefore, views can focus on relevant elements and relations
and do not have to consider all internal details of all modeling
languages. To make this possible, all views have to report
all changes to the framework so that it can propagate them
within the VSUM to sustain consistency.

Our prototype uses the concepts and infrastructure of
the Vitruvius framework to implement change monitoring
in external editors and internal consistency using change-
driven model transformations. The VSUM consists of models

Monitoring

Synchronization

Foundations

EMF/GMF MonitoredEditor

JML MonitoredEditor Java MonitoredEditor

Synchronization

Initializer

Infrastructure

PCMJML JaMoPP

«import» «import»

«import»

«import»

«import» «import»«import»

Figure 2: Simplified architecture of the implementa-
tion for synchronization between code and contracts
and code and architecture.

representing the Java code, architecture models of the PCM,
and JML contracts. Our prototype is based on EMF and
processes Java source code, PCM models, and JML contracts
as instances of metamodels that are defined in Ecore.

4. ARCHITECTURAL MODELS AND CODE
The goal of keeping architecture model and code consistent

during the development of a software system is to avoid
architecture drift, and to help developers to find and reduce
architecture erosion [16]. To apply the Vitruvius process to
architecture models and code, we have to specify
a) an Ecore-based architecture model, and an Ecore-based

representation of a general purpose language;
b) bidirectional mapping rules for code and architecture;
c) monitors that report atomic architecture and code changes
d) a method to clarify the intent of developers and architects

in the case that ambiguous changes are made.
In our prototype, we chose PCM as architecture model and

JaMoPP [8] to represent Java code and defined the following
mapping rules between them (cf. [12]): A PCM repository
maps to 1) a main package that represents the repository, 2) a
contracts package in the main package that will contain all
interfaces, and 3) a data types package in the main package
that contains all data types. Every PCM component maps to
a package within the main package and a public component
realization class within the component package. Every PCM
interface maps to a Java Interface in the contracts package.
PCM Signatures with its parameters and return types map
to Java Methods with corresponding parameters and return
types. A PCM Datatype maps to a class within the datatype
package that contains getters and setters for the inner types
of the datatype. A required role maps to a member typed
with the required interface and setter for required interface in
the main class of the requiring component. For every PCM
provided role the main class of the providing component
implements the provided interface.

Using Vitruvius, domain experts, e.g., architects, can
create specific mapping rules for their projects. One of our
ongoing research efforts is to complete the development of a
domain-specific language for bidirectional mapping rules.

4.1 Monitoring and Propagating Changes
Two monitors have been implemented: JavaMonitoredEdi-

tor and EMF/GMF MonitoredEditor. Their interaction with
the Synchronization components is depicted in Figure 2.

4.1.1 Code Changes
In order to keep the architecture consistent with architec-

tural relevant source code changes, we implemented a change
notification mechanism. We extended the Java code editor of
the Eclipse IDE and listen to changes of the Abstract Syntax
Tree (AST) to build semantic code changes. A semantic code
change can be a simple rename method, but we also support
more complex changes, such as move method. Based on the
semantic changes we build instances of a change metamodel
and pass them to consistency preservation transformations,
which implement the mapping rules described above.

If developers or architects make ambiguous changes, i.e.,
changes that cannot be propagated automatically, we have to
clarify their intent. The intent clarification mechanism lets
the transformations, which keep the architecture and code
consistent, interact directly with the developers or architects
and displays a dialog to clarify the intent [13]. In future
work, we plan to implement more interaction options, e.g.,
postponing decisions, which are collected in a task list.

4.1.2 Architecture Model Changes
As mentioned above, we have implemented a change moni-

tor to track changes in all EMF- or GMF-based PCM editors.
We use the change recorder mechanism of EMF to receive
change notifications. After a save all changes are propagated
in the order they were conducted using the following steps:

1. find the correct transformation for the change
2. execute the transformation
3. create/update/delete the correspondence
4. save/delete the changed models
Consider the following example: An architect adds a new

component in the PCM and changes the component from
the default name of a new component to ATM. Afterwards
he saves the editor. The change monitor records two changes.
The first change is that a new component with the (default)
name aName has been created. The second change is that
the component has been renamed to ATM. The framework
automatically executes the transformations for creating a
new component and gives it the name aName. Using the
mapping rules explained in section 4, it will create a new
package named aname in the package that corresponds to
the repository. Also a new Java class named aNameImpl will
be created. For the second change the transformation for
renaming a component will be executed. Hence, the package
as well as the class are renamed to atm respectively ATMImpl.

4.2 Code Monitoring Performance
Monitoring of code changes is a background process in the

IDE and therefore does not directly block the developer’s flow
of producing and altering source code. Ambiguous changes,
however, lead to intent clarification requests. Those requests
have to appear before a next change occurs. Therefore, it is
crucial that change monitoring is time-efficient. We measured
performance of our change monitor in terms of time consump-
tion for the creation of change objects, i.e. in-memory repre-
sentations of the detected semantic change. Our monitoring
mechanism has two stages: First, the detection and classifi-
cation of a change in the AST and, second, the conversion of

LLOC
Rename
Method

Replace
Method
Modifier

Add
or Remove

Field

28 57 (0.94) 50 (0.34) 57 (0.33)
350 292 (0.22) 278 (0.32) 324 (0.33)
1045 832 (0.09) 856 (0.16) 865 (0.10)
2050 1,776 (0.17) 1,676 (0.16) 1,954 (0.16)
15812 14,683 (0.09) 14,334 (0.09) 14,880 (0.10)

Table 1: Average total monitoring time in ms for
edit operations on different-sized HDFS source files
with standard deviation (in parentheses)

the AST change object into a description of modifications
of JaMoPP code models. Time performance evaluation was
conducted by applying three different types of changes to
source files of different LLOC sizes, ranging from small files
with limited functionality to very large auto-generated files.
We performed and observed code changes on the open-source
Java code base of the commercially used Apache Hadoop
Distributed File System (HDFS)2.

The following changes were applied to the source code: 1)
Rename a method, 2) replace a method modifier, 3) add or
remove a field. Every change was repeated 100 times on each
source file, except for the largest source file where the number
of repetitions was 25. The experiments were conducted on a
3.40 GHz quad-core desktop PC with 8 GB RAM running a
64-bit Eclipse 3.5 on a 64-bit Windows 7 system.

Table 1 shows the average total time consumption per file
and change scenario. In every experiment, the first change
observation took significantly longer than the succeeding
changes, thus we consider the first measurement value an
outlier. Consequently, the cells in Table 1 contain the average
of the second to 100th – or 25th – measurements. The average
is given as the arithmetic mean and the table’s time unit is
milliseconds. The value in parentheses gives the coefficient of
variation, i.e. the standard deviation divided by the average.

Our performance evaluation indicates a linear increase of
the monitor’s time overhead with the LLOC size of source
code files. The sample correlation coefficient between the
average time consumption in ms and LLOC size is 0.9995. In
addition, our measurements showed that the creation of AST
change objects required at maximum only 4% of the combined
time consumption for AST and Vitruvius change creation.
Therefore, the creation of JaMoPP-based change objects
determines our monitor’s time performance. The explanation
of the observed linear dependency lies in one implementation
detail: After every change, the affected compilation unit is
entirely parsed into a JaMoPP model. Although our monitor
needs less than one second for 1045 logical lines of code, a
single change may have side-effects on large, generated files
and so result in large delays. The improvement of our code
change monitor’s performance is part of our future work.
We plan to build partial JaMoPP models that only contain
change-affected code elements and so decouple the monitor’s
processing work from the compilation unit sizes.

5. COMPONENT CONTRACTS AND CODE
Our overall objective is to support component develop-

ers and system architects by keeping component contracts

2hadoop.apache.org

http://hadoop.apache.org

detect change

createfind
name

clashes
find all oc-
currences

replace

deletecheck syntax
revert

change

[identifier changed] [renamed]

[deleted]

[created]

[has JML]

[clash]
[error]

Figure 3: Reaction on an identifier change in the
direction specification to specification and code to
specification. The dashed elements are only relevant
for the latter.

written in JML and component implementations written in
Java consistent after changes. We achieve this with a con-
sistency concept in which the overlapping parts of code and
contracts as well as reactions on changes affecting them are
defined. The overlap is described by relations between rele-
vant elements and by constraints for these relations. Change
reactions restore these constraints after a change occurs. We
do not limit changes to refactorings but consider any possible
change performed by a developer. We covered identifiers,
visibility, types, pure, helper, nullable, default behaviors re-
garding null, assignable, generic and exception specifications.
The following sections focus on three elements that have
been evaluated as described in subsection 5.2. The complete
consistency concept is described in [11].

5.1 Contract Consistency Concept
We developed a consistency concept for code and contracts,

which defines the overlapping parts between these artifacts
and describes what reactions are needed for which changes.
We make the following assumptions to focus our efforts on
interesting and common situations: a) We only cover JML el-
ements of language levels 0 and 1, because they are supported
by most JML tools. b) We restrict ourselves to constructs
that are properly supported by OpenJML, which is the JML
compiler used in the evaluation. c) We do not cover change
reactions that are already realized in IDEs, such as updating
callers when renaming a method, but we update the contracts.
d) We only cover structural code element changes that are
performed in the code and not in the JML files.

We refer to directions in the description of the following
change reactions. A direction A → B means that a change
occurred in artifact A and has an effect on artifact B.

Identifiers are used in Java and JML to reference elements
within code and specifications and in between. Therefore,
identifiers and their uses have to be kept consistent across
both artifacts. Figure 3 shows the necessary change reactions
for the direction from code to specification and from spec-
ification to specification. The latter is relevant because to
our knowledge there is no refactoring support for JML. From
specification to code we only have to consider specification-
only methods and fields as all other structural changes have to
be performed in the code as mentioned above: If an identifier
clash is detected we simply revert the identifier change.

The pure modifier marks methods as free of side-effects.
Therefore, the modifier may only be added to methods that
neither contain assignments to fields nor calls to methods

detect
change

find all refer-
enced methods

find all occurrences
of element

check modifiers
of methods

add helper to
methods without

this modifier
revert change

[constraint or invariant changed]

[helper modifier removed]

[occurs in
invariant or
constraint]

Figure 4: Reaction on a helper change in the direction
specification to specification.

with side-effects. Methods used in specifications have to be
marked pure because specifications have to be evaluated
without side-effects. The reaction on a change in the body of
a pure method in direction from code to specification checks
the body for non-pure statements. If such a statement is
found, the pure modifier is removed and the specification to
specification reaction is triggered. Otherwise, no action is
taken. In direction specification to code the reaction to the
addition of a pure modifier is similar: If a non-pure statement
is found, the change is blocked. The change reaction shown
in Figure 5 handles the effects of a change in the specification
on the specification itself.

The helper modifier suppresses the invariant and constraint
check when entering and leaving the annotated method.
Otherwise, the evaluation of such specifications can lead
to infinite-loops depending on the implementation. As a pre-
caution, we add the helper modifier to a method as soon
as it is mentioned in an invariant or a constraint. Methods
used in invariants and constraints are query methods. There-
fore, they have no influence on the state and cannot break
invariants and constraints. Figure 4 illustrates the effects of
a specification change on the specification. Other directions
are not relevant for the helper modifier.

5.2 Evaluation
The objective of our evaluation was to show that our devel-

oped concept can be realized to keep component specifications
and implementations consistent after changes. So far, we im-
plemented and evaluated all parts of our concept that have to
do with identifiers, pure and helper methods. We performed
32 manual tests and 1085 automated tests using a real world
case study to check the semantic and syntactic correctness
of our implementation and the concept behind it.

We embedded our concept in the Vitruvius framework
using the layers of Figure 2. In the monitoring layer, the
change detection mechanism for Java (section 4) reports
code changes. Currently, JML changes are not detected au-
tomatically but injected. The synchronization layer contains
the model-specific parts of the synchronization logic. Model
transformations that realize our consistency concept are the
most important part of Synchronization, which provides the
initialization data for Vitruvius. To support all identifier
modifications, we implemented transformations for the cre-
ate, delete, and rename operations on fields, parameters and
methods. To support pure and helper, we implemented trans-
formations for adding and removing these modifiers and for
changing method bodies and invariants. Vitruvius Initializer
starts the framework. Together with Vitruvius Infrastructure,
e.g., for storing and retrieving model correspondences, it is

detect
changes

look for references
to method

collect calling
methods

perform C2S
handling for each

block change

[pure removed]

[referenced in spec]

[any failed]

Figure 5: Reaction on a pure change in the direction
specification to specification.

located in the synchronization layer. The model printers and
parsers for Java and JML and the PCM metamodel are lo-
cated in the foundations layer. We use the Java Model Printer
and Parser (JaMoPP) to obtain models from Java source
code and to serialize them again. For JML we developed a
model-based printer and parser using Xtext.

With our evaluation we answered the following research
question: Is our implemented consistency concept capable of
keeping specifications consistent after changes in the code or
specifications for a specific case study? As evaluation case
study we used a verified implementation of the JavaCard
API [15], which can be used to program smart cards with
Java. The project is often used as a case study for research
on JML. Our implementation does not support all language
features of JML that are used in the JavaCard API project.
Therefore, we had to modify the original specification in
the following way: We removed all specifications that con-
tained assignable, signals, signals_only, interface constants,
bit operations, casts and nested \forall statements. These
modifications changed the semantics of the specifications. For
our evaluation this is, however, no problem because we only
examined differences between an initial code and specification
state with the state after the synchronization. Only these dif-
ferences and not the question whether the complete program
fulfills the specification is relevant for us. Additionally, we
replaced some syntactic sugar that we do not support in our
prototype without modifying the specifications semantics.

We created two test suites to evaluate our prototype and
concept based on the case study. A short overview of them
is given in Table 2. Both suites are implemented as auto-
matic system tests, which makes the tests reproducible and
evaluates the whole process reaching from change detection
to change processing. The two test suites are checked using
two test oracles: The first oracle is a semantic check that
compares the delta obtained after change detection and trans-
formation with a manually checked reference delta. It is only
used for the first test suite. The second oracle is a syntactic
check of the specification after transformation using a JML
compiler. It is used both for the first and the second test
suite. For the first test suite, we manually created 32 tests
to improve path coverage. For the second test suite, we used
a selection algorithm to cover all possible contexts for the
implemented rename operations. This led to 1085 tests for all
fields, methods, and parameters. We only checked the syntax
because manually creating and checking reference deltas for
all tests would have required too much effort.

All tests of the first test suite succeeded: The syntax and
semantics were correct after each transformation. We missed,
however, some paths in the transformations because not all
JML constructs that we support in our implementation are
used in the case study. For instance, we could not test name

Property Test Suite 1 Test Suite 2

Coverage path context
Type system system
Selection manual automatic
Syntax Check yes yes
Semantics Check yes no
Validation Data JavaCard API JavaCard API
Tests 32 1085

Table 2: Overview of test suits used for evaluating
the synchronization between code and contracts.

clashes of Java methods with JML model methods because
there are no such methods in the case study.

In the second test suite, 95 % of the 1085 tests succeeded
with a correct syntax after the transformations. Additionally,
we ensured that the delta between the original and changed
state was not empty. 4.7 % of all tests in the second suite
failed because of limitations of our current implementation.
Contracts for interfaces, for example, are not yet implemented.
Only 0.3 % of all tests in the second suite failed because of im-
plementation errors. These errors, however, do not stem from
our concept or the transformations but revealed an error in
the static code analysis, which resolves references. Therefore,
we consider the transformations and the underlying concept
for rename operations correct in the tested contexts.

Altogether, the JavaCard API case study showed that the
implemented and tested parts of our consistency concept are
correct. We tested all paths of the implemented transforma-
tions that were reachable given the limitations of the case
study. For rename operations, we tested all possible contexts
within the case study. The representative case study covers
most contexts, but not all of them, and the tests did not reveal
errors of the concept for those contexts. Whether our concept
and implementation also works in the remaining possible
contexts has to be investigated in further case studies.

6. RELATED WORK
De Silva and Balasubranamiam [4] classify approaches

for controlling architecture erosion in a survey. The cate-
gory Architecture to implementation linkage is closest to the
Vitruvius approach. Many linkage concepts merge archi-
tecture and implementation information into a single entity,
which contradicts our notion of separation of concerns. Arch-
Java [1] is an example of linkage through information merging.
It introduces new language constructs to Java to include ar-
chitectural information directly into the source code.

There are also commercial solutions that support model
and code synchronization. IBM Rational Rhapsody3, for
example, supports round-trip engineering of code and UML
as well as other languages, e.g., SysML. Borland Together4

and UML Lab4 support the round-trip engineering of UML
class diagrams and source code. Both of the approaches use
information in the source code to generate the class diagram.
Hence, information that is not included in the source code
cannot be displayed using these approaches.

Feldman [5] gives a high-level overview of code changes
and their effects on contracts. 68 Fowler refactorings [6] are
inspected and grouped into three categories: Refactorings

3ibm.com/software/products/ratirhapfami
4borland.com/products/together and uml-lab.com

http://ibm.com/software/products/ratirhapfami
http://borland.com/products/together
http://uml-lab.com

that a) have only syntactic effects on contracts, b) require
additional contracts, and c) may violate existing contracts.
The specification effects of code refactorings are described
and three specification refactorings are introduced. The full
analysis and the change handling code are not made public.

Crepe is a tool based on these findings [7], which uses the
Eclipse refactoring engine for Java to adjust contracts. It
parses contracts defined in JavaDoc comments as Java code
to respond to syntactical refactorings, such as renamings.
JML contracts cannot be processed because they are defined
in regular comments. Crepe simplifies existing contracts, e.g.,
for superclasses, and creates new contracts, for example, when
a new method is added. There is no implementation available.

A proof-preserving approach for the Extract Method refac-
toring was presented by Cousot et al. [3]. It can be used if
the old and the extracted method have to be verified.

The specification refactorings Pull Up Specification and
Push Down Specification were implemented by Hull [9]. The
goal is to move specifications before code refactorings to
simplify those. A trial-and-error heuristic is used and adjust-
ments for callers of changed methods are still an open issue.
The implementation is available as open source.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented a solution for the problem

that redundant information in code, contracts, and models
can become inconsistent during the development of com-
ponent-based systems. We have explained how we monitor
changes in the Java source code editor of the Eclipse work-
bench to trigger incremental model transformations on archi-
tectural models, which are based on these changes. We have
evaluated the approach in a case study and have shown that
this is an efficient way to keep component models consistent
in the case of source code changes. For contracts, we have
discussed what is necessary and possible to maintain them if
the source code or contract is modified. We have presented
a prototypical implementation, which we applied success-
fully to the realistic JavaCard API case study. Altogether,
we have demonstrated that semi-automated consistency can
be achieved for redundant information in the implementa-
tion, contracts, and architecture of component-based software
systems. In the future, we will finish our work on transfor-
mations that keep the component implementation consistent
after model changes. We will implement and test the remain-
ing contract change scenarios with additional case studies.
Finally, we will improve the performance of our research
prototype by employing incremental parsing techniques.

Acknowledgments
This work was partially funded by the German Federal
Ministry of Education and Research under grant BMBF
01BY1172 (KASTEL) and by the German Research Founda-
tion in the Priority Programme SPP1593 Design For Future.

References
[1] J. Aldrich, C. Chambers, and D. Notkin. “ArchJava:

connecting software architecture to implementation.”
In: Software Engineering, 2002. ICSE 2002.
Proceedings of the 24rd International Conference on.
IEEE. 2002, pp. 187–197.

[2] S. Becker, H. Koziolek, and R. Reussner. “The
Palladio component model for model-driven
performance prediction.” In: Journal of Systems and
Software 82 (2009), pp. 3–22.

[3] P. M. Cousot et al. “An Abstract Interpretation
Framework for Refactoring with Application to
Extract Methods with Contracts.” In: Proceedings of
the 27th ACM International Conference on Object
Oriented Programming Systems Languages and
Applications (OOPSLA’12). ACM SIGPLAN, 2012,
pp. 213–232.

[4] L. De Silva and D. Balasubramaniam. “Controlling
software architecture erosion: A survey.” In: Journal
of Systems and Software 85.1 (2012), pp. 132–151.

[5] Y. A. Feldman. “Extreme Design by Contract.” In:
Proceedings of the 4th International Conference on
Extreme Programming and Agile Processes in Software
Engineering. Springer-Verlag, 2003, pp. 261–270.

[6] M. Fowler. Refactoring: Improving the Design of
Existing Code. 4th ed. Addison-Wesley, 1999, p. 431.

[7] M. Goldstein, Y. A. Feldman, and S. Tyszberowicz.
“Refactoring with Contracts.” In: Proceedings of
AGILE Conference (2006). 1011. 2006, pp. 53–64.

[8] F. Heidenreich et al. “Closing the Gap between
Modelling and Java.” In: Software Language
Engineering. Vol. 5969. LNCS. Springer Berlin
Heidelberg, 2010, pp. 374–383.

[9] I. Hull. “Automated Refactoring of Java Contracts.”
Master’s Thesis. University College Dublin, 2010,
p. 61.

[10] M. E. Kramer, E. Burger, and M. Langhammer.
“View-centric engineering with synchronized
heterogeneous models.” In: VAO ’13. ACM, 2013,
5:1–5:6.

[11] M. E. Kramer et al. Realizing Change-Driven
Consistency for Component Code, Architectural
Models, and Contracts in Vitruvius. Tech. rep. 2015.

[12] M. Langhammer. “Co-evolution of component-based
architecture-model and object-oriented source code.”
In: Proceedings of the 18th international doctoral
symposium on Components and architecture. ACM.
2013, pp. 37–42.

[13] M. Langhammer and M. E. Kramer. “Determining the
Intent of Code Changes to Sustain Attached Model
Information During Code Evolution.” In: vol. 34 (2).
Softwaretechnik-Trends. GI e.V., 2014.

[14] G. T. Leavens, A. L. Baker, and C. Ruby. “JML: A
Notation for Detailed Design.” In: Behavioral
Specifications of Businesses and Systems. Vol. 523.
The Springer International Series in Engineering and
Computer Science. Springer US, 1999, pp. 175–188.

[15] W. Mostowski. “Fully Verified Java Card API
Reference Implementation.” In: Proceedings of the 4th
International Verification Workshop (VERIFY 07),
Workshop at CADE-21. 2007.

[16] D. E. Perry and A. L. Wolf. “Foundations for the
Study of Software Architecture.” In: ACM SIGSOFT
Software Engineering Notes 17.4 (1992), pp. 40–52.

http://www.kastel.kit.edu/
http://dx.doi.org/10.1016/j.jss.2008.03.066
http://dx.doi.org/10.1016/j.jss.2008.03.066
http://dx.doi.org/10.1016/j.jss.2008.03.066
http://books.google.com/books?vid=ISBN0-201-48567-2
http://books.google.com/books?vid=ISBN0-201-48567-2
http://dx.doi.org/10.1007/978-3-642-12107-4_25
http://dx.doi.org/10.1007/978-3-642-12107-4_25
http://nbn-resolving.org/urn:nbn:de:swb:90-456541
http://nbn-resolving.org/urn:nbn:de:swb:90-456541
http://nbn-resolving.org/urn:nbn:de:swb:90-456541
http://pi.informatik.uni-siegen.de/stt/34_2
http://pi.informatik.uni-siegen.de/stt/34_2
http://pi.informatik.uni-siegen.de/stt/34_2
http://dx.doi.org/10.1007/978-1-4615-5229-1_12
http://dx.doi.org/10.1007/978-1-4615-5229-1_12

	Introduction and Motivation
	Background and Foundations
	Framework Overview
	Architectural Models and Code
	Monitoring and Propagating Changes
	Code Changes
	Architecture Model Changes

	Code Monitoring Performance

	Component Contracts and Code
	Contract Consistency Concept
	Evaluation

	Related Work
	Conclusions and Future Work

