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Abstract
Superconducting nanowires are the dual elements to Josephson junctions, with quantumphase-slip
(QPS) processes replacing the tunneling of Cooper pairs.When theQPS amplitude ES ismuch smaller
than the inductive energy EL, the nanowire responds as a superconducting inductor.When the
inductive energy is small, the response is capacitive. The crossover at low temperatures as a function of
ES/EL is discussed and comparedwith earlier experimental results. For one-dimensional and two-
dimensional arrays of nanowires quantumphase transitions are expected as a function ofES/EL. They
can be tuned by a homogeneousmagnetic frustration.

1. Introduction

Superconducting nanowires aremuchmore interesting than their linear current-phase relation implies, namely
because of the phenomenon of quantumphase-slip (QPS). As a result, nanowires are nonlinear elements which
are dual to Josephson junctions, with the roles of phase and charge, and simultaneously current and voltage,
being interchanged. In this paperwe consider single wires aswell as one- and two-dimensional wire arrays.We
explore the consequences ofQPS for the crossover or zero-temperature phase transitions from superconducting
(inductive) to insulating (capacitive) behavior when the strength ofQPS is increased. The transitions can be
tuned by amagnetic frustration. Charge disorder, whichwashes outmany of the interesting properties of the
phase diagram in the case of Josephson junction arrays, plays a different role.We comparewith existing
experiments on single wires andmake predictions for the arrays that can be tested in experiments.

We consider homogeneous superconducting nanowires with small cross-section and high normal-state
resistance. A current through thewire varies linearly with the gauge invariant phase differenceφ according to

φ Φ π=I L/20 withΦ = h e/20 being theflux quantum, hPlanck’s constant, 2e theCooper pair charge and L the
length-dependent kinetic inductance. In these weakwires phase-slip processes occur, as a result of which the
phase difference flips by 2π. The process can also be viewed as the crossing of a 2πfluxoid. An individual phase-
slip takes place in a region of size roughly equal to the coherence length, in a time of the order of the inverse gap

Δh/2 .There is an energy barrier EB that is approximately equal to the loss of condensation energy in this region
where the order parameter is temporarily suppressed. At high temperatures the barrier can be overcome by
thermal activation, as has been studied extensively in theory and experiment [1]. In recent years it has become
clear that at low temperatures phase-slips are possible by quantum tunneling of the fluxoid [2–7]. The quantum
nature of the process implies that a superposition of thefluxoid having crossed andnot having crossed thewire is
conceivable. Indeed, superposition states have been predicted and observed in phase-slip flux qubits [8, 9]. An
extensive discussion of the physics of phase-slips in superconducting nanowires is to be found in [10].
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A superconducting nanowirewithQPS can be viewed as the dual to a Josephson junction and the fluxoid as
the dual particle to theCooper pair [11]. In the Josephson junction, the tunneling Cooper pair picks up a phase
factor φ±e i leading to a coupling energy φ= −U E (1 cos ).J The derivative of this energywith respect to phase
gives the current φ=I I sin ,0 and the time derivative of the phase is proportional to the voltage. For the
nanowire, the analogy predicts that the fluxoid picks up a factor π± Q eexp ( 2 i /2 )when tunneling, whereQ is the
charge that has passed through thewire. This leads to aQPS energy π= −U E Q e[1 cos(2 /2 )]S where ES is the
amplitude of theQPS process. The derivative ofUwith respect toQ yields the voltage, and the time derivative of
Q is the current through thewire.

In this workwewill explore the analogies, in fact the duality, betweenweak superconducting nanowires and
Josephson junctions and chains or arrays built of them.Our emphasis differs from earlier theoretical studies of
the superconducting transition inwires orfilmswhen the transition is driven by dissipation [12–16].QPS can
also occur in chains of Josephson junctions [17]. Calculations on persistent currents as influenced by phase-slip
in closed rings of Josephson junctions [18] and nanowires [19, 20]were also published. Butwe concentrate on
homogeneouswires with a typical length of amicrometer.

Phase-slipsmay take place all along the length of the nanowire. Thewhole length also determines the kinetic
inductance. Both components contribute to the voltage and are effectively connected in series. Thus the
nanowire is a nonlinear device, which can be represented as shown infigure 1. The voltage and current are
determined by the chargeQ that has passed through thewire according to

π= + ̈ = ̇V V Q e LQ I Qsin (2 /2 ) , . (1)0

The voltage scaleV0 follows from theQPS amplitude ES—for which an estimatewill be provided below—
according to

π=E eV2 /2 . (2)S 0

The inductance is dominated by the high kinetic one and defines the inductive energy scale

Φ=E L/2 . (3)L 0
2

The total energy of the nanowire junction then is

π= − + ̇U E Q e LQ[1 cos (2 /2 )] /2. (4)S
2

Note the duality with the capacitively shunted Josephson junctionwith energy including the charging energy.
The dual properties are listed in figure 1.

As is well established, single Josephson junctions exhibit a crossover [21] between inductive,
superconducting behavior when ≫E EJ C to capacitive, insulating behaviorwhen ≫E E .C J For one-
dimensional serial chains or two-dimensional arrays of Josephson junctions the transition occurs as a zero-
temperature quantumphase transition. The equivalent transitions are to be expected for singleQPS junctions,
for 1Dparallel arrays and for 2D arrays ofQPS junctions. Starting from the inductive, superconducting regime
where ≫E E ,L S increasing ES induces a transition to a capacitive insulating regime.Note that the low-ES regime
of superconducting nanowires corresponds to theCoulomb blockade regime of Josephson junctions.

For Josephson junctions, an approximate duality exists between the charging and the superconducting
regimes. In the charging regime for ≫E E ,C J the relevant charge is induced by a gate voltageVg coupled via a
gate capacitor, = =Q n e C V2 .g g g g The energyE n( )gch consists of a series of shifted parabolas. The Josephson
coupling induces avoided crossings and leads tomultiple bandsE n( ).i g The energy is periodic in the induced

Figure 1.Circuit representation of (a) a nanowirewith quantumphase-slip element in series with inductance and (b) a capacitively
shunted Josephson junction. These objects are each other’s dual.
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charge, but it does not have the simple single-valued character of the potential energy φU ( ) in the inductive
regime. Similarly, theQPS junction hasmultiple periodic bandsE f( )i depending on the frustration Φ Φ=f / 0

induced by amagnetic fluxΦ through the loop. This is illustrated infigure 2.
In realistic circuits, due to uncontrolled charged defects, the charges on islands between Josephson junctions

have randomoffsets with values of the order of 2e. As a consequence,many interesting predictionsmade for the
charge state of 1D and 2D Josephson junction arrays in theweak tunneling regime (multi-lobe structure as a
function of an overall gate voltage and even super-solid phases) are washed out due to the disorder averaging. In
contrast, in an array ofmultiple closed loops themagnetic flux is experimentally well-controlled, leading to
richly structured responses as function of the applied flux. Thus theQPS junctions provide, in theweak phase-
slip regime, the opportunity to studywhat corresponds to theweak-tunneling regime of Josephson junctions
that could not be probed in experiments due to the charge disorder.

Charged defects will also be present on the surface of the nanowires. Their influence is fundamentally
different in the superconducting state from the insulating state.When thewire is superconducting, surface
charges are spread over a long distance. The relevant length is thewavelength of plasmamodes [22], which have
a propagating velocity = ′ ′ −c L C( ) ,pp

1/2 where L′ is the inductance per unit length andC′ is the surface
capacitance per unit length. This velocity has a value close to 106 m s−1 in the nanowires that have been studied in
the superconducting regime. Even at the highest frequency Δ ℏ2 / thewavelength is at least a few μm, significantly
longer than thewire length. This allows thewires to behave as a single junction. In contrast, in the insulating
regime charges are localized and lead to a randomoffset between consecutive phase-slip regions.

Figure 2.Duality of quantumphase slip junctions (QPS) and Josephson junctions. For Josephson junctions a crossover from a
superconducting (b) to an insulating behavior (d) occurs when the charging energy EC is increased beyondEJ. TheQPS junction has a
similar cross-over from insulating behavior (a) when theQPS amplitude ES is larger than the inductive energyEL, to superconducting
behavior (c) for largeEL. The inductive regime (c) forQPS and the charging regime (d) for Josephson junctions havemultiple bands,
that originate from shifted parabolas with avoided crossings. These parabolas are indicatedwith the number of fluxoids nf that have
tunneled into the loop or the number of Cooper pairs np that have crossed the oxide barrier to reach the island between capacitors and
Josephson junction. ng is the normalized charge on the gate capacitor of theCooper pair box, f themagnetic frustration in the flux
loop.
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2. Estimates ofEL and ES

With nanowires the quantum transition between the superconducting and insulating regimes takes place for a
sufficiently high value of the ratio

α = E E/ . (5)S L

QPS processes are only relevant for veryweak nanowires, both in terms of thewire cross-section and the
normal state resistivity of themetal. The normal state resistance per unit length is typically extremely high
( Ω μ> −10 k m ),1 and themean free path of the electrons is very short.We assume that the superconducting
metal follows the BCS–Gorkov theorywith critical temperatureTc and normal state resistanceRn. In this case
the kinetic inductance of thewire is = ℏL R k T0.18 / ,n B c [1]which leads to an inductive energy

Φ
= =E

L

R

R
k T

2
17.4 , (6)L

q

n
B c

0
2

with Ω= =R h e/4 6.45 kq
2 being the quantum resistance.

It ismore difficult tofind a quantitative prediction forES. At temperatures nearTc thermally activated phase-
slip processes are well described by the time-dependent Ginzburg–Landau equations. There is no equivalent
simple set of equations for low temperatures. Giordano [2] and later Lau et al [3] used a phenomenological
extrapolation of the time-dependent Ginzburg–Landau equations to zero temperature. Arutyunov et al [6] gave
an extensivemicroscopic. discussion of the physics of the problemwhich supports the overall physical picture.
Following them,we assume that individualQPS events occur in a region of the nanowire of the size of the
coherence lengthξ ξ ℓ= ( )0

1/2 long (whereξ0 is the BCS coherence length andℓ the electronicmean free path).
The tunnel barrier EB is given by the loss of condensation energy when the order parameter goes to zero over the
volume of that region. The attempt frequency is given by the gapω Δ= ℏ = ℏk T/ 1.76 / .B c0 Inwires that are
shorter than the plasmamodewavelength at all relevant frequencies, phase-slips occur coherently and the total
phase slip amplitude simply scales with the length of thewireA in units of ξ. TheQPS amplitude then has the
form ξ ω η ω= ℏ − ℏE c A c E( / ) exp( / ),S S1 0 2 0 where c1 and c2 are constants of order one. The factor η is a prefactor
as found in all instanton-type calculations of quantum tunneling. Such prefactors depend on aspects such as the
shape of the barrier and the damping. Lau et alused a prefactor ξR R( / ) ,1/2 based on time-dependent Ginzburg–
Landau calculations at higher temperatures.We followArutyunov et al [6], who predict at low temperature a
prefactor η = ξR R/ .q The dominant factor in the expression is the exponential one, which can bewritten as

− ξbR Rexp( / )q using the BCS–Gorkov expressions for a dirty superconductor [3].Here ξ=ξR R A/n is the
resistance of the nanowire over one coherence length. Thus the result, with a and b being unknown constants of
order one, is

α
ξ

= −
ξ ξ

E
A

k T
R

R
b

R

R
exp . (7)S B c

q q⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

[6] gives the same result for the case that thewire is shorter than the relevant wavelength of the plasma oscillation
modes, which is applicable for all practical wires thatwe consider.

3. Single nanowires

For single Josephson tunnel junctions, there is no sharp valueαc of the ratio EJ/ECwhere the crossover between
the two limiting behaviors occurs, neither in theory nor in experiment. A value α⩽ ⩽0.1 1c is a reasonable
estimate.With singleQPS junctions, duality leads to an expected crossover at the same critical value of
α = E E/ .S L Whenα is small, thewire acts as a superconductor with zero dc resistance forweak currents.When
the length of thewire is increased or the cross-section reduced, the inductive energy decreases while the phase-
slip rate increases. Thewirewill eventually become an insulator for weak dc driving. Infigure 3 an example is
shownof an I–V characteristic of a nanowire in the insulating regime. The sample is aNbSi wirewith thickness
5 nm,width around 10 nm, length 1 μmandnormal state resistance 100 kΩ. Using equation (6) the inductive
energy is aboutEL/h= 26 GHz. The observed value forV0 of 200 μVcorresponds toES/h= 16 GHz. The ratio
α = E E/S L is about 0.6, which apparently is above the critical valueα .c Estimates based on equation (7)
combinedwith assumptions about the value of the coherence length and the numerical factors indicate a
considerably higher value for the amplitude. A likely reason for that reduction of the observed value is the
presence of static random surface charges that induce offset values forQ for different sections. The overall
contribution toES andV0 forN sections would not scale withN butwithN1/2 (see [19]). Thewire could easily
have a few hundred sections, resulting in a reduction ofmore than an order ofmagnitude. This reduction is only
relevant for the insulating regime.
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The response of the nanowire to aweak current or voltage drivewill be insulating (capacitive) or
superconducting (inductive), depending on the ratio ofES andEL. This ratio is determined by the normalized
length λ ξ≡ A/ and resistance =ξ ξr R R/ .q With λ= −ξ ξ

−E a k T r b rexp ( / )S B c
1 and λ= ξE k T r17.4 /( )L B c we

expect the transition to occurwhen

λ α= − =ξ( )E

E

a
b r

17.4
exp / ,S

L
c

2

i.e., when

λ
λ α λ

= =ξ
( ) ( )

r
b

a

b

c
( )

ln /17.4 ln
, (8)

c
2 2

where α=c a/(17.4 ).c For specific values of c and b the results for rξ(λ) are shown infigure 4.We assumed
α = 0.3,c i.e., the values c= 0.1, 0.05, 0.025 correspond to a= 0.52, 0.26, 0.13.

Bollinger et al [25] collected data for a large number ofMoGe nanowires. They observed that the differential
resistance at low temperatures was either very low (‘superconducting’) or very high (‘insulating’), with no data
lying in between. At the time of the publication this dichotomy could not be understood, but later it was brought
forward that the different response could be due to the dual of what is known as the Schmid–Bulgadaev
transition for a Josephson junction [12, 23, 24]. The resulting prediction is that nanowires with a normal state
resistance above the quantum resistancewould not be insulating. This is not quite in agreementwith all data of
Bollinger et al.

Figure 3.Current–voltage characteristic (voltage-biased) of a long narrownanowire ofNbSi with parameters given in themain text. A
critical voltage is observed of about 200 μV.

Figure 4.Phase boundary for a singleQPS junction according to equation (8), for several values of c and b. A is the length of thewire, ξ
the coherence length,Rξ thewire resistance over one coherence length, andRq= h/4e2 the quantum resistance. For longwires and
wires with highRξ, the response is insulating. (a) The values are c= 0.05 and b= 0.05 (blue), 0.1 (black), 0.2 (red). (b) The values are
b= 0.1 and c=0.1 (blue), 0.05 (black), and 0.025 (red).
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The transition aswe described previously provides a very natural explanation. Infigure 5, the data points of
Bollinger et al have been reproduced. A value ξ= 5 nmwas used for the conversion of wire length to λ ξ= A/ and
resistance to ξ=ξr R AR/ .n q Red squares correspond towires with insulating response, blue triangles to
superconductingwires. It is easy tofind parameters for a fit to equation (8) that separates the two sets of points.
The best values for thisfit are c= 0.040 and b= 0.115.Note that for a different choice of ξ an equally goodfit for
the phase boundary can be generatedwith adjusted values of c and b that scale with ξ2 and ξ , respectively. The
value c= 0.040 corresponds to a= 0.21when αc = 0.3 is used.

It can be concluded that the observed transition for single nanowires from superconducting behavior to
insulating behavior takes placewhen the ratio ES/EL increases beyond the critical value. This crossover transition
is the dual to the transition for single Josephson junctions when the ratio of Josephson energy to charging energy
is varied.

4.One-dimensional arrays of nanowires

Aone-dimensional nanowire system could be arranged either in a series or a parallel array. The former is of no
particular interest; withNwires in series theQPS amplitude and the inductance are bothN times larger, but
there is no newphysics. This is different for the parallel array shown infigure 6. The systemhas plaquettes
(surrounded by a closed superconducting loop) that can contain afluxoid; QPS allowsmotion offluxoids along
the length of the array. In the figure, theQPS nanowires are the vertical sections with inductance L and phase-slip
strength characterized byV0 as before. The horizontal wires are toowide to allowphase-slip. The total
‘horizontal’ inductance in a cell is L0. In thefigure all inductances L0 are pictured on the top side, but they could
also be distributed between top and bottom.

Figure 5.Cross-over of nanowiresmade from amorphousMoGe, as reported byBollinger et al [25]. Red squares represent wires that
are insulating at low temperatures, blue triangles represent wires that in the linear response regime are superconducting. The black
line follows equation (8)with b= 0.115 and c= 0.040.

Figure 6.One-dimensional parallel array of nanowires. (a) Circuit representation. The vertical nanowires have inductance L and allow
QPSwith critical voltageV0. The horizontal connections, with inductance L0, allow noQPS. (b) Example of an array that is cut from
onefilm. The narrow vertical lines allowQPS; here L≫ L0. (c) Examples of arrays cut fromonefilmwith L0 > L. The narrow lines have
QPS but in thewider connection linesQPS is exponentially suppressed.
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Ifφi is the phase difference over vertical nanowire i andψi is the phase difference over the adjacent horizontal
connection, the sumof the gauge-invariant phase differences around plaquette i of the array has to satisfy

φ φ ψ π− + + = −+ ( )f n2 , (9)i i i i i1

where Φ Φ=f /i i 0 is the normalizedflux and ni thefluxoid number for the plaquette. Also, the currents at each
node add up to zero. From these, the phase distribution can be calculated. In a quasi-continuous approximation
at zero frustration one finds that the nanowire phases satisfy the equation φ φ=x L Ld /d ( / ) ,2 2

0 where the
dimensionless position x replaces the cell number. Near a local disturbance such as afluxoid, the phase falls off as

λ−xexp ( / )s
f with a screening length

λ = L L/ . (10)s
f

0

Infigure 7 the phase distribution is plotted for an array of 20wires, calculated byminimizing the total
inductive energy. Results are given for zero frustration and for f= 0.05. Afluxoid is present in themiddle of the
array, creating a phase jump of 2π at that position. The ratio L0/L has been varied, demonstrating that the fluxoid
is amore localized object when the screening length is short. In practical fabrication it is possible to producewire
arrayswith such values. The key is that the phase-slip amplitude varies exponentially with the inverse cross-
sectionwhile the inductance per unit length changes linearly. Awire that is twice aswide as theQPS nanowire,
fabricated from the same film, has half the inductance per unit length. TheQPS amplitude can be negligibly
small for suitable parameters. If that wire is six times longer, L0/L= 3.

QPS processes allowfluxoids tomove through the array.With an applied field, the systemhas its lowest
energywhen the fluxoid density is equal to the frustration. Fluxoids of the same (opposite) sign repel (attract)
each other over a range λ .s

f When thefluxoid density is low ( λ≫f1/ ),s
f thefluxoids behave as independent

particles. In the opposite limit λ≪f1/ ,s
f thefluxoids form a rigid lattice. This aspect has a strong influence on

the phase transition.
The configuration of wires is the dual to a 1D chain of Josephson junctions with junction capacitanceC and

‘self-capacitance’ to the groundC0, where themotion of Cooper pairs is studied. The screening length for charge
is λ = C C/ .s

c
0 The phase transition of the Josephson junction chain has been studied extensively in theory as

well as in experiments [26–33].However, there seems to be amismatch between bothwhen it comes to a
comparison. In the one-dimensional systemsmost theoretical approaches concentrate on the situationwhen the
screening length is small, which requires the islands in the array to have a self-capacitance that is larger than the
junction capacitance. In practical samples the opposite is true, typicallyC ismore than 100 times larger thanC0.
Moreover, the unavoidable presence of randomoffset charges on the islands introduces a strong randomizing
factor in the regimewhere the charging energy dominates. In the followingwewill summarize known results for
Josephson junction chains and then discuss the consequences for the nanowire arrays. This willfirst be done
assuming there is no charge orflux frustration.

Bradley andDoniach [26] analyzed quantum tunneling of Cooper pairs in Josephson chains and concluded
thatwith only self-capacitanceC0, there should at zero temperature be a quantumBerezinskii–Kosterlitz–
Thouless (BKT) transition involving charge–anticharge pairs. Korshunov [27] and later Choi, Yi, Choi, Choi

Figure 7.Nanowire phase differences in an arraywith 20wires that contains a fluxoid in themiddle, for two values of the frustration f.
Blue: L0/L= 0, green: L0/L= 0.04, red: L0/L= 1.
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and Lee [31] gave amore extended treatment that we follow here in part (see also [18]). The schematic phase
diagram that these authors produced is represented infigure 8; part (a) being the Josephson-chain version. The
Josephson energy of the junctions isEJ, the charging energy of the junctions is =E e C4 /2 ,C

2 and the charging

energy for the self-capacitance of the islands is =E e C4 /2 .C0
2

0 The Bradley–Doniach transition takes place along
the horizontal axis where EJ/EC= 0, at the valueEJ/EC0 = 1.23. Korshunov andChoi et al extended the phase
boundary tofinite values ofC.This result holds for infinitely long chains. For small values ofC0 where thewhole
chain is shorter than the screening length, the chain should behave as a single junction. One expects a crossover
nearEJ/EC= 1, as indicated by the dashed area in thefigure. Chow,Delsing andHaviland [32] suggested that for
high values of the screening length λs

c, the effective charging energy is reduced since the charge is spread over the
screening length. This results in a phase boundary at π=E E E E( / )( / ) (2/ ) ,J C J C0

4 which is indicated infigure 8
with a dashed blue line.

Haviland and co-workers [32, 33] have observed a transition from insulating tometallic behavior. In their
samples, they replaced the junctions by SQUIDs, so that by applying amagnetic flux they could reduce the
Josephson energywithout changing the charging energies. Given the low value ofC0/C in the samples, their
observations are likely strongly influenced by the charge disorder and represent a crossover due to thefinite
sample length. Yet, the inverse dependence of the resistance on the length of the sample indicated features of the
superconducting BKTphase transition.

The results for the junction arrays can be translated to the nanowire system at zero frustration. The
transposed phase diagram is shown infigure 8(b). For high values ofES the arrays become insulating.
Interestingly, the inductance L0 can nowbemade larger than the nanowire inductance L, resulting in a screening
length smaller than 1 (as shown in the figure). One expects that a quantumphase transition occurs slightly below
ES/EL0 = 1.23. Given that in the insulating state charge disorder is hard to avoid, the transition is best approached
from the superconducting side.

We now turn to the frustrated arrays, first considering the Josephson junction chains with charge frustration
applied to the islands between the junctions. Several theoretical papers [31, 32, 34] predicted a highly structured
phase diagram as a function of the charge frustration, with different insulating phases in amulti-lobe structure
characterized by various charge ordered states. However, in actual samples, each island has a randomoffset
charge of order 1 on the scale of 2e.When a common gate is applied to all islands, the induced charge on
individual islandswill oscillate with increasing gate voltage, but the randomness remains. As a consequence,
experiments could not confirmor test the predicted results.

It turns out that the nanowire arraymay provide the experimental test ground for the above-mentioned
theories. In a one-dimensional nanowire array the phase transition is influenced by an appliedmagnetic field in
the sameway as the junction array is influenced by the gate voltage. However, it is verywell possible to apply a
uniform flux, so that themagnetic frustration is uniform. The frustration induced by themagnetic flux has
identical influence as the gate voltage would do in a defect-free Josephson junction chain. The phase diagram,

Figure 8. Schematic phase diagrams. (a) Josephson junction chain, =E e C4 /2C
2 and =E e C4 /2 .C0

2
0 Bradley–Doniach [26] predicted

the transition along the horizontal axis whereC0/C≫ 1, but in real samplesC0/C≪ 1 (dashed red line). The black curved line gives the
transition as predicted byKorshunov [27] andChoi et al [31]. The blue dashed line is the approximate transition line according to
[32]. (b)Nanowire array, Φ=E L/2 ,L 0

2 Φ=E L/2 .L0 0
2

0 The red dashed line is for L0 = 3 L, which can be fabricated in practice. High in
both plots a hashed area indicates the crossover that is likely provided byfinite size and disorder.
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when transposed to the nanowire system, looks schematically as depicted infigure 9. Since the screening
currents are small the diagram should repeat periodically with period 1 as f is increased or decreased.

Also, the symmetry around any half-integer value of f follows directly from the combination of inversion
symmetry around f= 0 and periodicity. The diagram exhibits lobes around f= 0 and other integer values, with
localized fluxoids and hence superconducting response. Around f= 1/2 and other half-integers, a ‘Neel lobe’
occurs that is based on a patternwhere the currents in consecutive plaquettes alternate their directions.When
ES/EL is high, the fluxoids fuse into a superfluid and the system’s response is insulating. Glazman and Larkin [30]
found for the junction chain an extra lobe to the right of theNeel lobe that has a 1DLuttinger character.
Nanowire arrays, which do not suffer from the strong disorder of Josephson chains, can provide the opportunity
to test this and further theoretical predictions (such as, e.g., supersolids).

5. Two-dimensional arrays of nanowires

Two-dimensional arrays of nanowires can be fabricatedwith thin-film techniques, ormay be naturally present
in layeredmaterials (figure 10). The behavior is expected to be dual to that of 2D arrays of Josephson junctions.

Figure 9. Schematic phase diagramof the frustrated one-dimensional nanowire array, similar to the phase diagram for a Josephson
junction chain according to Bruder et al [28]. The assumption has beenmade that ⩾L L/ 1.0 The diagram is periodic with period 1
and symmetric around integer and half-integer values of f. Lobeswith a superconducting phase are positioned around integer values
of f, the fluxoids areMott-localized. Around half-integer values one finds a superconductingNeel phase based on alternating current
directions. For high values ofES/EL the system enters the superfluidfluxoid regimewith insulating response.

f f f f

f f f f

f f f f

f f f f

Figure 10.Two-dimensional nanowire array. Thewires formplaquettes throughwhichmagnetic flux can pass. The frustration f is the
flux normalized to the flux quantum. Thismagnetic frustration can bemade homogeneous.
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The array has loops around plaquettes that can be biasedwithmagneticflux, andwhich can containfluxoids. An
applied perpendicularmagnetic field leads to a homogeneousmagnetic frustration Φ Φ=f / 0 whereΦ is theflux
per plaquette. This, again, is the case because the very high inductance of the nanowires leads to a very long
screening length.One could also imagine induced charge frustration by a common gate that couples to all nodes
of the array.However, in practice the offset charges will wash out effects of that type of gate.

For the phase differences around plaquette i equation (9) still holds as in the one-dimensional array, the sum
of the gauge-invariant phase differences over thewires around plaquette i being equal to π −f n2 ( )i

f andni
f is

the number offluxoids. Thewires and the nodeswhere fourwires come together have negligible capacitance.
The two-dimensional array of nanowires as shown infigure 10 is the dual to the extensively studied array of

Josephson junctions. A review of that Josephson junctionwork can be found in the article of Fazio andVan der
Zant [35]. Note that these authors use the definition ofEC for single electronswhich is 4 times smaller than ours.
TheHamiltonian for the Josephson array is

∑ ∑ φ= + − + − −−( ) ( )( )H e n n n C n n n E
1

2
4 cos . (11)

ij

i i
d

g
ij

j j
d

g J

ij
ij

2 1

The indices i or j count the islands of the array, ni is the Cooper pair number on the island, en2 i
d is the

randomoffset charge, and 2eng the imposed homogeneous gate charge.Cij is the capacitancematrix andφij

indicates the phase difference for the junction between neighboring islands i and j. The corresponding
Hamiltonian for the nanowire array is

∑ ∑Φ= − − −−( ) ( )( )H n f L n f E q
1

2
cos . (12)

ij

i
f

ij j
f

S

ij
ij0

2 1

Here π=q Q e2 /2ij ij where ̇Qij is the currentflowing in the nanowire between plaquettes i and j., and Lij is the

inductancematrix. Here f is themagnetic frustrationwhich in the practical systems is so homogeneous that no
randomoffset flux term is needed. The inductances are fully dominated by the kinetic contribution.

In the Josephson arraywe could have taken into account an externalmagnetic flux by substitutingφij with

φ − a ,ij ij where theaij is the dimensionless vector potential. In the fabricatedwire arrays local random charges

may be induced by defects on the surface. These residual offset charges would correspond to a random ‘vector
potential’ → −q q bij ij ij.

The 2D Josephson array exhibits a clear zero-temperature quantumphase transition froman insulating to a
superconducting state as the ratio EJ/EC is increased. Both theory and experiment werewell developed, as
reviewed in [35]. At zero frustration the transition is observed in experiment atEJ/EC= 0.147. Theory predicts
that with increasing EJ/EC, coming from the charge-ordered insulating regime there occurs a BKT transition at

π= =E E/ 1/(2 ) 0.051.J C
2 Coming from the phase-ordered superconducting regime a similar BKT transition

should happen at the same value. Inmost of the theory, charge disorder is ignored, although it will strongly
influence charge–anticharge pairing.Magnetic frustration yields rich structure in the phase diagram. As the
fluxoid density increases with increasing f, one sees in transport initially an increasing effective resistance. The
fluxoids or vorticesmove as quantumparticles. At fractional values f=m/n clear dips in themobility are seen as
thefluxoids are trapped by the commensurate lattice. At f= 1/2, this effect is so strong that properties are similar
to the state around f= 0.With varying the charge frustration no significant effects are seen, as explained by the
presence of strong charge disorder.

For nanowire arrays, one expects very similar behavior as for the junction arrays. No experiments in theQPS
regime have been performed yet, butmeasurements at higher temperatures with strongerwires yield results that
verymuch resemble the data on Josephson arrays [36, 37]. From the duality, the quantumphase transition at
zero temperature should be expected atES/EL= 0.051.

With the Josephson arrays that have a phase-ordered regime and a charge-ordered regime on the one hand
and the nanowire arrayswith their phase-ordered and charge-ordered regimes on the other, a remarkable
situation occurs. Ignoring charge disorder, for Josephson arrays the physics for phase excitationswhen EJ is high
and the physics for charge excitationswhen EC dominates are very similar. Although the corresponding terms in
theHamiltonian are not identical, one expects a high degree of duality between the two types of Josephson
junction arrays. This is in particular true for small driving as is used to explore phase transitions. Similarly, the
two types of nanowire arrayswith either ES orEL dominating are each other’s dual system. Yet, the nanowire
systems are themore exact duals to the corresponding Josephson systems. Clearly, there is every reason to expect
that the nanowire 2D arraywith ES/EL≫ 1 behaves as the Josephson junction arraywithEJ/EC≪ 1. For both
these systems, charge disorder spoils the picture andmakes experiments impossible. Also, we expect that the
nanowire arraywith EL/ES≫ 1 is almost the same as the Josephson array withEJ/EC≫ 1. Charge disorder is not
so important here and one studies themotion offluxoids as driven by currents. The subtle difference between
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the exact cosine potential as a function of phase for the Josephson junction and the only approximate cosine-like
potential for nanowires could be looked for in the experiments.

6. Conclusions

Nanowires and nanowire arrays that exhibit QPS can be fabricated and studied. So far, few experimental results
are available for arrays. The expectations are discussed in this paper.

For single nanowires, a crossover from an inductive superconductor to a capacitive insulator is expected and
has been observedwhen the ratio of the phase-slip amplitude Es to the inductive energyEL is increased. The data
onmany nanowires that are reported on in [25] are consistent with the expected dependence ofES on length and
resistance per unit length. The current–voltage characteristic of a nanowire in the highES/EL regime is the dual to
the I–V characteristic of a classical Josephson junction.

One-dimensional arrays of parallel nanowires are the dual system to chains with Josephson junctions in
series. Josephson chains exhibit a transition from superconducting to insulating behavior whenEJ is reduced,
but this transition appears to be dominated by finite size effects and charge disorder. No theory is available for a
phase transition in the parameter regime of the actual Josephson samples. In contrast, one can design and
fabricate 1Dnanowire arrays with a screening length that is smaller than one element and one should be able to
access the quantumphase transition as predicted for Josephson chains in the limit where the self-capacitance
dominates over that between neighboring islands. Frustration for Josephson chains can be tuned by a gate
voltage; but given the strong charge disorder this is completely ineffective. For nanowire arrays, frustration
comes from amagnetic flux that is homogeneous over the array. The combination of short screening length and
disorder-free frustration opens up the possibility to study in experiment what the extensive theoretical literature
on Josephson junction arrays has provided in the past.

Two-dimensional arrays of nanowires withQPSwill exhibit a quantumphase transition as a function ofES/
EL. This transitionwill be closely related to the phase transition as predicted and observed for two-dimensional
Josephson arrays. The regimewith strong phase-slip is formally the dual of the Josephson arraywith strong
Josephson coupling. Arrays in that regimewill exhibit insulating behavior that is similar to the response of
Josephson arrayswith high charging energy. In fabricated arrays, charge disorder will inhibit detailed analysis.
Nanowire arrayswithweak phase-slip are the dual of Josephson arrays in the charging regime. They are expected
to behave very similarly to Josephson junction arrayswith strong Josephson coupling.QPS allows themotion of
fluxoids (vortices); these objects have a logarithmic interaction potential.Withmagnetic frustration the density
offluxoids can be controlled; for specific values of the frustration the lattice of interacting vortices is
commensurate with the nanowire lattice and themobility is decreased. In crystals of layeredmaterials, two-
dimensional (sub)nanowire arrayswithQPSmay occurwithout charge disorder.
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