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Abstract

Superconducting nanowires are the dual elements to Josephson junctions, with quantum phase-slip
(QPS) processes replacing the tunneling of Cooper pairs. When the QPS amplitude Eg is much smaller
than the inductive energy E;, the nanowire responds as a superconducting inductor. When the
inductive energy is small, the response is capacitive. The crossover at low temperatures as a function of
Eg/E; is discussed and compared with earlier experimental results. For one-dimensional and two-
dimensional arrays of nanowires quantum phase transitions are expected as a function of E¢/E;. They
can be tuned by a homogeneous magnetic frustration.

1. Introduction

Superconducting nanowires are much more interesting than their linear current-phase relation implies, namely
because of the phenomenon of quantum phase-slip (QPS). As a result, nanowires are nonlinear elements which
are dual to Josephson junctions, with the roles of phase and charge, and simultaneously current and voltage,
being interchanged. In this paper we consider single wires as well as one- and two-dimensional wire arrays. We
explore the consequences of QPS for the crossover or zero-temperature phase transitions from superconducting
(inductive) to insulating (capacitive) behavior when the strength of QPS is increased. The transitions can be
tuned by a magnetic frustration. Charge disorder, which washes out many of the interesting properties of the
phase diagram in the case of Josephson junction arrays, plays a different role. We compare with existing
experiments on single wires and make predictions for the arrays that can be tested in experiments.

We consider homogeneous superconducting nanowires with small cross-section and high normal-state
resistance. A current through the wire varies linearly with the gauge invariant phase difference ¢ according to
I =@ ®Dy/2nL with®, = h/2e being the flux quantum, h Planck’s constant, 2e the Cooper pair charge and L the
length-dependent kinetic inductance. In these weak wires phase-slip processes occur, as a result of which the
phase difference flips by 2z. The process can also be viewed as the crossing of a 2z fluxoid. An individual phase-
slip takes place in a region of size roughly equal to the coherence length, in a time of the order of the inverse gap
h/2A. Thereis an energy barrier Ep that is approximately equal to the loss of condensation energy in this region
where the order parameter is temporarily suppressed. At high temperatures the barrier can be overcome by
thermal activation, as has been studied extensively in theory and experiment [ 1]. In recent years it has become
clear that at low temperatures phase-slips are possible by quantum tunneling of the fluxoid [2—7]. The quantum
nature of the process implies that a superposition of the fluxoid having crossed and not having crossed the wire is
conceivable. Indeed, superposition states have been predicted and observed in phase-slip flux qubits [8, 9]. An
extensive discussion of the physics of phase-slips in superconducting nanowires is to be found in [10].

© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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(a) QPS junction (b) Josephson junction
Figure 1. Circuit representation of (a) a nanowire with quantum phase-slip element in series with inductance and (b) a capacitively
shunted Josephson junction. These objects are each other’s dual.

A superconducting nanowire with QPS can be viewed as the dual to a Josephson junction and the fluxoid as
the dual particle to the Cooper pair [11]. In the Josephson junction, the tunneling Cooper pair picks up a phase
factor e*'# leading to a coupling energyU = E; (1 — cos ). The derivative of this energy with respect to phase
gives the current I = Ij sin ¢, and the time derivative of the phase is proportional to the voltage. For the
nanowire, the analogy predicts that the fluxoid picks up a factor exp (£271Q/2e) when tunneling, where Q is the
charge that has passed through the wire. Thisleads to a QPS energyU = Eg[1 — cos(22Q/2e) ] where Egis the
amplitude of the QPS process. The derivative of U with respect to Q yields the voltage, and the time derivative of
Qis the current through the wire.

In this work we will explore the analogies, in fact the duality, between weak superconducting nanowires and
Josephson junctions and chains or arrays built of them. Our emphasis differs from earlier theoretical studies of
the superconducting transition in wires or films when the transition is driven by dissipation [12—16]. QPS can
also occur in chains of Josephson junctions [17]. Calculations on persistent currents as influenced by phase-slip
in closed rings of Josephson junctions [18] and nanowires [19, 20] were also published. But we concentrate on
homogeneous wires with a typical length of a micrometer.

Phase-slips may take place all along the length of the nanowire. The whole length also determines the kinetic
inductance. Both components contribute to the voltage and are effectively connected in series. Thus the
nanowire is a nonlinear device, which can be represented as shown in figure 1. The voltage and current are
determined by the charge Q that has passed through the wire according to

V = Vysin 272Q/2e) + LD, I1=0Q. (1)
The voltage scale V,, follows from the QPS amplitude Es—for which an estimate will be provided below—
according to

Eg = 2eVy/2x. (2)
The inductance is dominated by the high kinetic one and defines the inductive energy scale
Ep = &;/2L. (3)
The total energy of the nanowire junction then is
U= Es[l — cos (22Q/2¢)] + LQ/2. (4)

Note the duality with the capacitively shunted Josephson junction with energy including the charging energy.
The dual properties are listed in figure 1.

Asis well established, single Josephson junctions exhibit a crossover [21] between inductive,
superconducting behavior when E; > E to capacitive, insulating behavior when E¢ > E;. For one-
dimensional serial chains or two-dimensional arrays of Josephson junctions the transition occurs as a zero-
temperature quantum phase transition. The equivalent transitions are to be expected for single QPS junctions,
for 1D parallel arrays and for 2D arrays of QPS junctions. Starting from the inductive, superconducting regime
where E; > E, increasing Esinduces a transition to a capacitive insulating regime. Note that the low-Es regime
of superconducting nanowires corresponds to the Coulomb blockade regime of Josephson junctions.

For Josephson junctions, an approximate duality exists between the charging and the superconducting
regimes. In the charging regime for E¢ > Ej, the relevant charge is induced by a gate voltage V,, coupled viaa
gate capacitor, Q, = n,2e = C, V,. The energy E, (4 ) consists of a series of shifted parabolas. The Josephson
coupling induces avoided crossings and leads to multiple bands E; (1, ). The energy is periodic in the induced

2
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Figure 2. Duality of quantum phase slip junctions (QPS) and Josephson junctions. For Josephson junctions a crossover from a
superconducting (b) to an insulating behavior (d) occurs when the charging energy Ecis increased beyond E;. The QPS junction hasa
similar cross-over from insulating behavior (a) when the QPS amplitude Esis larger than the inductive energy Ez, to superconducting
behavior (c) for large E;. The inductive regime (c) for QPS and the charging regime (d) for Josephson junctions have multiple bands,
that originate from shifted parabolas with avoided crossings. These parabolas are indicated with the number of fluxoids 7;that have
tunneled into the loop or the number of Cooper pairs 1, that have crossed the oxide barrier to reach the island between capacitors and
Josephson junction. n, is the normalized charge on the gate capacitor of the Cooper pair box, fthe magnetic frustration in the flux
loop.

ng=Cng /2e

charge, but it does not have the simple single-valued character of the potential energy U (¢) in the inductive
regime. Similarly, the QPS junction has multiple periodic bands E; (f ) depending on the frustration f = @/®,
induced by a magnetic flux @ through the loop. This is illustrated in figure 2.

In realistic circuits, due to uncontrolled charged defects, the charges on islands between Josephson junctions
have random offsets with values of the order of 2e. As a consequence, many interesting predictions made for the
charge state of 1D and 2D Josephson junction arrays in the weak tunneling regime (multi-lobe structure asa
function of an overall gate voltage and even super-solid phases) are washed out due to the disorder averaging. In
contrast, in an array of multiple closed loops the magnetic flux is experimentally well-controlled, leading to
richly structured responses as function of the applied flux. Thus the QPS junctions provide, in the weak phase-
slip regime, the opportunity to study what corresponds to the weak-tunneling regime of Josephson junctions
that could not be probed in experiments due to the charge disorder.

Charged defects will also be present on the surface of the nanowires. Their influence is fundamentally
different in the superconducting state from the insulating state. When the wire is superconducting, surface
charges are spread over along distance. The relevant length is the wavelength of plasma modes [22], which have
a propagating velocity c,, = (L'C’)""/2, where L’ is the inductance per unitlength and C’ is the surface
capacitance per unit length. This velocity has a value close to 10° m s~ in the nanowires that have been studied in
the superconducting regime. Even at the highest frequency 24/ the wavelength is at least a few ym, significantly
longer than the wire length. This allows the wires to behave as a single junction. In contrast, in the insulating
regime charges are localized and lead to a random offset between consecutive phase-slip regions.
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2. Estimates of E; and Eg

With nanowires the quantum transition between the superconducting and insulating regimes takes place for a
sufficiently high value of the ratio

a = Eg/E;. (5)

QPS processes are only relevant for very weak nanowires, both in terms of the wire cross-section and the
normal state resistivity of the metal. The normal state resistance per unit length is typically extremely high
(>10 k2 ym™"), and the mean free path of the electrons is very short. We assume that the superconducting
metal follows the BCS—Gorkov theory with critical temperature T. and normal state resistance R,,. In this case
the kinetic inductance of the wireis L = 0.18 AR, /kp T, [1] which leads to an inductive energy

@5 Ry
E = T 17.4 RnkBTC, (6)
with R, = h/4e* = 6.45 k2 being the quantum resistance.

Itis more difficult to find a quantitative prediction for Eg. At temperatures near T, thermally activated phase-
slip processes are well described by the time-dependent Ginzburg-Landau equations. There is no equivalent
simple set of equations for low temperatures. Giordano [2] and later Lau et al [3] used a phenomenological
extrapolation of the time-dependent Ginzburg—Landau equations to zero temperature. Arutyunov et al [6] gave
an extensive microscopic. discussion of the physics of the problem which supports the overall physical picture.
Following them, we assume that individual QPS events occur in a region of the nanowire of the size of the
coherence length & = (£,£)"? long (where & is the BCS coherence length and # the electronic mean free path).
The tunnel barrier Ep is given by the loss of condensation energy when the order parameter goes to zero over the
volume of that region. The attempt frequency is given by the gap wg = A/A = 1.76 kpT./h.In wires that are
shorter than the plasma mode wavelength at all relevant frequencies, phase-slips occur coherently and the total
phase slip amplitude simply scales with the length of the wire A in units of £. The QPS amplitude then has the
form Eg = ¢;(A/&) hawon exp (—cyEs/fiwy ), where ¢; and ¢, are constants of order one. The factor 7 is a prefactor
as found in all instanton-type calculations of quantum tunneling. Such prefactors depend on aspects such as the
shape of the barrier and the damping. Lau et al used a prefactor (R/R)"/?, based on time-dependent Ginzburg—
Landau calculations at higher temperatures. We follow Arutyunov et al [6], who predict at low temperature a
prefactory = R,/R;. The dominant factor in the expression is the exponential one, which can be written as
exp (—bR,/R;) using the BCS-Gorkov expressions for a dirty superconductor [3]. Here R = R,/A is the
resistance of the nanowire over one coherence length. Thus the result, with a and b being unknown constants of
order one, is

A R R

Es = a—kpT.— exp -2 (7)
& R Re

[6] gives the same result for the case that the wire is shorter than the relevant wavelength of the plasma oscillation

modes, which is applicable for all practical wires that we consider.

3. Single nanowires

For single Josephson tunnel junctions, there is no sharp value a. of the ratio E;/ E- where the crossover between
the two limiting behaviors occurs, neither in theory nor in experiment. A value 0.1 < a, < lisareasonable
estimate. With single QPS junctions, duality leads to an expected crossover at the same critical value of

a = Es/Er. When a is small, the wire acts as a superconductor with zero dc resistance for weak currents. When
the length of the wire is increased or the cross-section reduced, the inductive energy decreases while the phase-
slip rate increases. The wire will eventually become an insulator for weak dc driving. In figure 3 an example is
shown of an I-V characteristic of a nanowire in the insulating regime. The sample is a NbSi wire with thickness
5 nm, width around 10 nm, length 1 ym and normal state resistance 100 k€2. Using equation (6) the inductive
energy is about E;/h = 26 GHz. The observed value for V;, of 200 4V corresponds to Eg/h = 16 GHz. The ratio

a = Eg/E| isabout 0.6, which apparently is above the critical value a.. Estimates based on equation (7)
combined with assumptions about the value of the coherence length and the numerical factors indicate a
considerably higher value for the amplitude. A likely reason for that reduction of the observed value is the
presence of static random surface charges that induce offset values for Q for different sections. The overall
contribution to Esand V,, for N sections would not scale with N but with N'/? (see [19]). The wire could easily
have a few hundred sections, resulting in a reduction of more than an order of magnitude. This reduction is only
relevant for the insulating regime.
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Figure 3. Current—voltage characteristic (voltage-biased) of along narrow nanowire of NbSi with parameters given in the main text. A
critical voltage is observed of about 200 xV.
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Figure 4. Phase boundary for a single QPS junction according to equation (8), for several values of cand b. A is the length of the wire, &
the coherence length, R; the wire resistance over one coherence length, and R, = h/4¢” the quantum resistance. For long wires and
wires with high R¢, the response is insulating. (a) The values are c=0.05and b= 0.05 (blue), 0.1 (black), 0.2 (red). (b) The values are
b=0.1and c=0.1 (blue), 0.05 (black), and 0.025 (red).

The response of the nanowire to a weak current or voltage drive will be insulating (capacitive) or
superconducting (inductive), depending on the ratio of Es and E;. This ratio is determined by the normalized
length 4 = A/& and resistancer; = R:/R,. With Es = alkp Tcrg1 exp (—=b/rs)and E; = 17.4kp T,/ (Arz) we
expect the transition to occur when

Es )
E_L = 1—)« exp (—b/ré) = Q;
i.e., when
b b
() = = (8)

In (a22/17.4ac) " In (c/lz) ’

wherec = a/(17.4a.). For specific values of cand b the results for 7:(1) are shown in figure 4. We assumed
a. = 0.3,1.e., thevalues c=0.1, 0.05, 0.025 correspond to a = 0.52, 0.26, 0.13.

Bollinger et al [25] collected data for alarge number of MoGe nanowires. They observed that the differential
resistance at low temperatures was either very low (‘superconducting’) or very high (‘insulating’), with no data
lying in between. At the time of the publication this dichotomy could not be understood, but later it was brought
forward that the different response could be due to the dual of what is known as the Schmid—Bulgadaev
transition for a Josephson junction [12, 23, 24]. The resulting prediction is that nanowires with a normal state
resistance above the quantum resistance would not be insulating. This is not quite in agreement with all data of
Bollinger et al.
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Figure 5. Cross-over of nanowires made from amorphous MoGe, as reported by Bollinger et al [25]. Red squares represent wires that
are insulating at low temperatures, blue triangles represent wires that in the linear response regime are superconducting. The black
line follows equation (8) with b=0.115 and c = 0.040.

(c)
(b)

Figure 6. One-dimensional parallel array of nanowires. (a) Circuit representation. The vertical nanowires have inductance L and allow
QPS with critical voltage V. The horizontal connections, with inductance L, allow no QPS. (b) Example of an array that is cut from
one film. The narrow vertical lines allow QPS; here L>> L. (c) Examples of arrays cut from one film with Ly > L. The narrow lines have
QPS but in the wider connection lines QPS is exponentially suppressed.

The transition as we described previously provides a very natural explanation. In figure 5, the data points of
Bollinger et alhave been reproduced. A value & = 5 nm was used for the conversion of wire lengthto 1 = A/£ and
resistance tor; = &R,/AR,. Red squares correspond to wires with insulating response, blue triangles to
superconducting wires. It is easy to find parameters for a fit to equation (8) that separates the two sets of points.
The best values for this fitare ¢ = 0.040 and b = 0.115. Note that for a different choice of £ an equally good fit for
the phase boundary can be generated with adjusted values of cand b that scale with & and £ , respectively. The
value ¢ =0.040 corresponds to a=0.21 when a. = 0.3 is used.

It can be concluded that the observed transition for single nanowires from superconducting behavior to
insulating behavior takes place when the ratio Es/E} increases beyond the critical value. This crossover transition
is the dual to the transition for single Josephson junctions when the ratio of Josephson energy to charging energy
is varied.

4. One-dimensional arrays of nanowires

A one-dimensional nanowire system could be arranged either in a series or a parallel array. The former is of no
particular interest; with N wires in series the QPS amplitude and the inductance are both N times larger, but
there is no new physics. This is different for the parallel array shown in figure 6. The system has plaquettes
(surrounded by a closed superconducting loop) that can contain a fluxoid; QPS allows motion of fluxoids along
the length of the array. In the figure, the QPS nanowires are the vertical sections with inductance L and phase-slip
strength characterized by V, as before. The horizontal wires are too wide to allow phase-slip. The total
‘horizontal” inductance in a cell is L. In the figure all inductances L, are pictured on the top side, but they could
also be distributed between top and bottom.
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Figure 7. Nanowire phase differences in an array with 20 wires that contains a fluxoid in the middle, for two values of the frustration f.
Blue: Ly/L =0, green: Ly/L = 0.04, red: Ly/L = 1.

If @; is the phase difference over vertical nanowire i and y; is the phase difference over the adjacent horizontal
connection, the sum of the gauge-invariant phase differences around plaquette i of the array has to satisfy

_¢i+§0i+1+l//i=2”(ﬁ —1’1,‘), (9)

where f, = @;/®, is the normalized flux and #; the fluxoid number for the plaquette. Also, the currents at each
node add up to zero. From these, the phase distribution can be calculated. In a quasi-continuous approximation
at zero frustration one finds that the nanowire phases satisfy the equation d?p/dx? = (L¢/L) ¢, where the
dimensionless position x replaces the cell number. Near alocal disturbance such as a fluxoid, the phase falls off as
exp (—x/A{ ) with a screening length

2l = [LIL,. (10)

In figure 7 the phase distribution is plotted for an array of 20 wires, calculated by minimizing the total
inductive energy. Results are given for zero frustration and for f= 0.05. A fluxoid is present in the middle of the
array, creating a phase jump of 2z at that position. The ratio Ly/L has been varied, demonstrating that the fluxoid
is amore localized object when the screening length is short. In practical fabrication it is possible to produce wire
arrays with such values. The key is that the phase-slip amplitude varies exponentially with the inverse cross-
section while the inductance per unit length changes linearly. A wire that is twice as wide as the QPS nanowire,
fabricated from the same film, has half the inductance per unitlength. The QPS amplitude can be negligibly
small for suitable parameters. If that wire is six times longer, Lo/L = 3.

QPS processes allow fluxoids to move through the array. With an applied field, the system has its lowest
energy when the fluxoid density is equal to the frustration. Fluxoids of the same (opposite) sign repel (attract)
each other over arange 1/ . When the fluxoid density is low (1/f > 1/ ), the fluxoids behave as independent
particles. In the opposite limit1/f « 2, the fluxoids form a rigid lattice. This aspect has a strong influence on
the phase transition.

The configuration of wires is the dual to a 1D chain of Josephson junctions with junction capacitance Cand
‘self-capacitance’ to the ground Cy, where the motion of Cooper pairs is studied. The screening length for charge
isA{ = \/C/Cy. The phase transition of the Josephson junction chain has been studied extensively in theory as
well as in experiments [26—33]. However, there seems to be a mismatch between both when it comes to a
comparison. In the one-dimensional systems most theoretical approaches concentrate on the situation when the
screening length is small, which requires the islands in the array to have a self-capacitance that is larger than the
junction capacitance. In practical samples the opposite is true, typically Cis more than 100 times larger than Cj.
Moreover, the unavoidable presence of random offset charges on the islands introduces a strong randomizing
factor in the regime where the charging energy dominates. In the following we will summarize known results for
Josephson junction chains and then discuss the consequences for the nanowire arrays. This will first be done
assuming there is no charge or flux frustration.

Bradley and Doniach [26] analyzed quantum tunneling of Cooper pairs in Josephson chains and concluded
that with only self-capacitance Cy, there should at zero temperature be a quantum Berezinskii—Kosterlitz—
Thouless (BKT) transition involving charge—anticharge pairs. Korshunov [27] and later Choi, Yi, Choi, Choi

7
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Figure 8. Schematic phase diagrams. (a) Josephson junction chain, Ec = 4e?/2C and Ecy = 4¢?/2C,. Bradley—Doniach [26] predicted
the transition along the horizontal axis where Cy/C>> 1, but in real samples C/C < 1 (dashed red line). The black curved line gives the
transition as predicted by Korshunov [27] and Choi et al [31]. The blue dashed line is the approximate transition line according to
[32]. (b) Nanowire array, E; = 4502 [2L,Epy = @(,2 /2Ly. The red dashed line is for Ly = 3 L, which can be fabricated in practice. High in
both plots a hashed area indicates the crossover that is likely provided by finite size and disorder.

and Lee [31] gave a more extended treatment that we follow here in part (see also [18]). The schematic phase
diagram that these authors produced is represented in figure 8; part (a) being the Josephson-chain version. The
Josephson energy of the junctions is E, the charging energy of the junctions is Ec = 4¢?/2C, and the charging
energy for the self-capacitance of the islands is Ecy = 4¢/2C,. The Bradley—Doniach transition takes place along
the horizontal axis where E;/E- = 0, at the value Ej/E, = 1.23. Korshunov and Choi et al extended the phase
boundary to finite values of C. This result holds for infinitely long chains. For small values of C, where the whole
chain is shorter than the screening length, the chain should behave as a single junction. One expects a crossover
near E;/Ec =1, as indicated by the dashed area in the figure. Chow, Delsing and Haviland [32] suggested that for
high values of the screening length A, the effective charging energy is reduced since the charge is spread over the
screening length. This results in a phase boundary at (E;/E¢) (E;/Ecy) = (2/x)*, which is indicated in figure 8
with a dashed blue line.

Haviland and co-workers [32, 33] have observed a transition from insulating to metallic behavior. In their
samples, they replaced the junctions by SQUIDs, so that by applying a magnetic flux they could reduce the
Josephson energy without changing the charging energies. Given the low value of Cy/Cin the samples, their
observations are likely strongly influenced by the charge disorder and represent a crossover due to the finite
sample length. Yet, the inverse dependence of the resistance on the length of the sample indicated features of the
superconducting BKT phase transition.

The results for the junction arrays can be translated to the nanowire system at zero frustration. The
transposed phase diagram is shown in figure 8(b). For high values of Eg the arrays become insulating.
Interestingly, the inductance Ly can now be made larger than the nanowire inductance L, resulting in a screening
length smaller than 1 (as shown in the figure). One expects that a quantum phase transition occurs slightly below
Eg/E;o = 1.23. Given that in the insulating state charge disorder is hard to avoid, the transition is best approached
from the superconducting side.

We now turn to the frustrated arrays, first considering the Josephson junction chains with charge frustration
applied to the islands between the junctions. Several theoretical papers [31, 32, 34] predicted a highly structured
phase diagram as a function of the charge frustration, with different insulating phases in a multi-lobe structure
characterized by various charge ordered states. However, in actual samples, each island has a random offset
charge of order 1 on the scale of 2e. When a common gate is applied to all islands, the induced charge on
individual islands will oscillate with increasing gate voltage, but the randomness remains. As a consequence,
experiments could not confirm or test the predicted results.

It turns out that the nanowire array may provide the experimental test ground for the above-mentioned
theories. In a one-dimensional nanowire array the phase transition is influenced by an applied magnetic field in
the same way as the junction array is influenced by the gate voltage. However, it is very well possible to apply a
uniform flux, so that the magnetic frustration is uniform. The frustration induced by the magnetic flux has
identical influence as the gate voltage would do in a defect-free Josephson junction chain. The phase diagram,
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Figure 9. Schematic phase diagram of the frustrated one-dimensional nanowire array, similar to the phase diagram for a Josephson
junction chain according to Bruder et al [28]. The assumption has been made that Ly/L > 1. The diagram is periodic with period 1
and symmetric around integer and half-integer values of f. Lobes with a superconducting phase are positioned around integer values
of f, the fluxoids are Mott-localized. Around half-integer values one finds a superconducting Neel phase based on alternating current
directions. For high values of Eg/E; the system enters the superfluid fluxoid regime with insulating response.

Figure 10. Two-dimensional nanowire array. The wires form plaquettes through which magnetic flux can pass. The frustration fis the
flux normalized to the flux quantum. This magnetic frustration can be made homogeneous.

when transposed to the nanowire system, looks schematically as depicted in figure 9. Since the screening
currents are small the diagram should repeat periodically with period 1 as fis increased or decreased.

Also, the symmetry around any half-integer value of ffollows directly from the combination of inversion
symmetry around f= 0 and periodicity. The diagram exhibits lobes around f= 0 and other integer values, with
localized fluxoids and hence superconducting response. Around f= 1/2 and other half-integers, a ‘Neel lobe’
occurs thatis based on a pattern where the currents in consecutive plaquettes alternate their directions. When
Eg/E; is high, the fluxoids fuse into a superfluid and the system’s response is insulating. Glazman and Larkin [30]
found for the junction chain an extra lobe to the right of the Neel lobe that has a 1D Luttinger character.
Nanowire arrays, which do not suffer from the strong disorder of Josephson chains, can provide the opportunity
to test this and further theoretical predictions (such as, e.g., supersolids).

5. Two-dimensional arrays of nanowires

Two-dimensional arrays of nanowires can be fabricated with thin-film techniques, or may be naturally present
in layered materials (figure 10). The behavior is expected to be dual to that of 2D arrays of Josephson junctions.

9
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The array has loops around plaquettes that can be biased with magnetic flux, and which can contain fluxoids. An
applied perpendicular magnetic field leads to a homogeneous magnetic frustration f = @/@, where @ is the flux
per plaquette. This, again, is the case because the very high inductance of the nanowires leads to a very long
screening length. One could also imagine induced charge frustration by a common gate that couples to all nodes
of the array. However, in practice the offset charges will wash out effects of that type of gate.

For the phase differences around plaquette i equation (9) still holds as in the one-dimensional array, the sum
of the gauge-invariant phase differences over the wires around plaquette i being equal to 27 (f — 1/ ) andn/ is
the number of fluxoids. The wires and the nodes where four wires come together have negligible capacitance.

The two-dimensional array of nanowires as shown in figure 10 is the dual to the extensively studied array of
Josephson junctions. A review of that Josephson junction work can be found in the article of Fazio and Van der
Zant [35]. Note that these authors use the definition of E for single electrons which is 4 times smaller than ours.
The Hamiltonian for the Josephson array is

= S ) (67), (o ) = 5y Do an
p (if)

The indices i or j count the islands of the array, ; is the Cooper pair number on the island, 2en;? is the
random offset charge, and 2en, the imposed homogeneous gate charge. C;;is the capacitance matrixand ¢;;
indicates the phase difference for the junction between neighboring islands i and j. The corresponding
Hamiltonian for the nanowire array is

H= %Z@é(nlf—f)(L_l)ij(n]f—f) —ESZ €os g;;. (12)
ij (i)
Here q; = 27Qj;/2e where Qij is the current flowing in the nanowire between plaquettes i and j., and L;; is the
inductance matrix. Here fis the magnetic frustration which in the practical systems is so homogeneous that no
random offset flux term is needed. The inductances are fully dominated by the kinetic contribution.

In the Josephson array we could have taken into account an external magnetic flux by substituting ¢;; with
®; — aij where the a;; is the dimensionless vector potential. In the fabricated wire arrays local random charges
may be induced by defects on the surface. These residual offset charges would correspond to a random ‘vector
potential’g; — g; — bj;.

The 2D Josephson array exhibits a clear zero-temperature quantum phase transition from an insulating to a
superconducting state as the ratio E;/Eis increased. Both theory and experiment were well developed, as
reviewed in [35]. At zero frustration the transition is observed in experiment at E;/Ec = 0.147. Theory predicts
that with increasing E;/E, coming from the charge-ordered insulating regime there occurs a BKT transition at
E;/Ec = 1/(2x)* = 0.051. Coming from the phase-ordered superconducting regime a similar BKT transition
should happen at the same value. In most of the theory, charge disorder is ignored, although it will strongly
influence charge—anticharge pairing. Magnetic frustration yields rich structure in the phase diagram. As the
fluxoid density increases with increasing f, one sees in transport initially an increasing effective resistance. The
fluxoids or vortices move as quantum particles. At fractional values f= m/n clear dips in the mobility are seen as
the fluxoids are trapped by the commensurate lattice. At f= 1/2, this effect is so strong that properties are similar
to the state around f= 0. With varying the charge frustration no significant effects are seen, as explained by the
presence of strong charge disorder.

For nanowire arrays, one expects very similar behavior as for the junction arrays. No experiments in the QPS
regime have been performed yet, but measurements at higher temperatures with stronger wires yield results that
very much resemble the data on Josephson arrays [36, 37]. From the duality, the quantum phase transition at
zero temperature should be expected at Eg/E; = 0.051.

With the Josephson arrays that have a phase-ordered regime and a charge-ordered regime on the one hand
and the nanowire arrays with their phase-ordered and charge-ordered regimes on the other, a remarkable
situation occurs. Ignoring charge disorder, for Josephson arrays the physics for phase excitations when E; is high
and the physics for charge excitations when Ec dominates are very similar. Although the corresponding terms in
the Hamiltonian are not identical, one expects a high degree of duality between the two types of Josephson
junction arrays. This is in particular true for small driving as is used to explore phase transitions. Similarly, the
two types of nanowire arrays with either Eg or E; dominating are each other’s dual system. Yet, the nanowire
systems are the more exact duals to the corresponding Josephson systems. Clearly, there is every reason to expect
that the nanowire 2D array with Eg/E; >> 1 behaves as the Josephson junction array with Ej/Ec < 1. For both
these systems, charge disorder spoils the picture and makes experiments impossible. Also, we expect that the
nanowire array with E;/Eg>> 1 is almost the same as the Josephson array with E;/Ec>> 1. Charge disorder is not
so important here and one studies the motion of fluxoids as driven by currents. The subtle difference between

10
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the exact cosine potential as a function of phase for the Josephson junction and the only approximate cosine-like
potential for nanowires could be looked for in the experiments.

6. Conclusions

Nanowires and nanowire arrays that exhibit QPS can be fabricated and studied. So far, few experimental results
are available for arrays. The expectations are discussed in this paper.

For single nanowires, a crossover from an inductive superconductor to a capacitive insulator is expected and
has been observed when the ratio of the phase-slip amplitude E; to the inductive energy E is increased. The data
on many nanowires that are reported on in [25] are consistent with the expected dependence of Es on length and
resistance per unit length. The current—voltage characteristic of a nanowire in the high Eg/E; regime is the dual to
the I-V characteristic of a classical Josephson junction.

One-dimensional arrays of parallel nanowires are the dual system to chains with Josephson junctions in
series. Josephson chains exhibit a transition from superconducting to insulating behavior when E;is reduced,
but this transition appears to be dominated by finite size effects and charge disorder. No theory is available for a
phase transition in the parameter regime of the actual Josephson samples. In contrast, one can design and
fabricate 1D nanowire arrays with a screening length that is smaller than one element and one should be able to
access the quantum phase transition as predicted for Josephson chains in the limit where the self-capacitance
dominates over that between neighboring islands. Frustration for Josephson chains can be tuned by a gate
voltage; but given the strong charge disorder this is completely ineffective. For nanowire arrays, frustration
comes from a magnetic flux that is homogeneous over the array. The combination of short screening length and
disorder-free frustration opens up the possibility to study in experiment what the extensive theoretical literature
on Josephson junction arrays has provided in the past.

Two-dimensional arrays of nanowires with QPS will exhibit a quantum phase transition as a function of Es/
E;. This transition will be closely related to the phase transition as predicted and observed for two-dimensional
Josephson arrays. The regime with strong phase-slip is formally the dual of the Josephson array with strong
Josephson coupling. Arrays in that regime will exhibit insulating behavior that is similar to the response of
Josephson arrays with high charging energy. In fabricated arrays, charge disorder will inhibit detailed analysis.
Nanowire arrays with weak phase-slip are the dual of Josephson arrays in the charging regime. They are expected
to behave very similarly to Josephson junction arrays with strong Josephson coupling. QPS allows the motion of
fluxoids (vortices); these objects have a logarithmic interaction potential. With magnetic frustration the density
of fluxoids can be controlled; for specific values of the frustration the lattice of interacting vortices is
commensurate with the nanowire lattice and the mobility is decreased. In crystals of layered materials, two-
dimensional (sub)nanowire arrays with QPS may occur without charge disorder.
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