
Article

Quality Assessment of Roof Planes Extracted from
Height Data for Solar Energy Systems by the
EAGLE Platform
Simon Schuffert 1, Thomas Voegtle 1,*, Nicholas Tate 2 and Alberto Ramirez 2

Received: 8 July 2015; Accepted: 7 December 2015; Published: 17 December 2015
Academic Editors: Richard Müller and Prasad S. Thenkabail

1 Institute of Photogrammetry and Remote Sensing, Karlsruhe Institute of Technology (KIT), Englerstr. 7,
Karlsruhe 76128, Germany; simon.schuffert@kit.edu

2 Department of Geography, University of Leicester, University Road, Leicester LE1 7RH, UK;
njt9@le.ac.uk (N.T.); farc1@leicester.ac.uk (A.R.)

* Correspondence: thomas.voegtle@kit.edu; Tel.: +49-721-6084-2316; Fax: +49-721-6084-8450

Abstract: Due to the increasing scarcity of fossil fuels and the upwards trend in energy costs over
time, many countries—especially in Europe—have begun to modify their energy policies aiming to
increase that percentage obtained from renewable energies. The EAGLE (FP7 program, European
Commission) has developed a web-based platform to promote renewable energy systems (RES) in
the public and private sectors, and to deliver a comprehensive information source for all interested
users. In this paper, a comprehensive quality assessment of extracted roof planes suitable for solar
energy installations (photovoltaic, solar thermal) from height data derived automatically from both
LiDAR (Light Detection and Ranging) and aerial images will be presented. A shadow analysis
is performed regarding the daily path of the sun including the shading effects of nearby objects
(chimneys, dormers, vegetation, buildings, topography, etc.). A quality assessment was carried out
for both LiDAR and aerial images of the same test sites in UK and Germany concerning building
outline accuracy, extraction rate of roof planes and the accuracy of their geometric parameters
(inclination and aspect angle, size). The benefit is an optimized system to extract roof planes for
RES with a high level of detail, accuracy and flexibility (concerning different commonly available
data sources) including an estimation of quality of the results which is important for individual
house owners as well as for regional applications by governments or solar energy companies to
judge their usefulness.

Keywords: quality assessment; roof plane extraction; LiDAR data; aerial images; renewable
energies; urban environment; shadow analysis

1. Introduction

1.1. Background

The 21st century has so far been characterized by an increasing scarcity of fossil fuels and
an associated significant increase in energy costs. Coupled with concerns to do with nuclear
energy, many countries—especially in Europe—have begun to explore the potential of renewable
energies, and to modify energy policy accordingly. The European Commission (EC) supported
the EAGLE project “Development and demonstration of a dynamic, web-based, renewable energy
rating platform” (No. 286161) as part of the FP7 program [1]. The aim of this is the acceleration
of market penetration of Renewable Energy Systems (RES) in both industrial and domestic sectors.
RES can make use of existing built-up areas, e.g., utilizing building roofs for photovoltaic or solar
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thermal energy harvesting. However, one of the main obstacles may be the uncertainty over returns
on investment. Therefore, the objective of the research presented here was to provide accurate and
objective information about the suitability of roof areas for RES in an automatic manner. Two target
groups have been defined: at one scale regional and national government institutions and solar
energy companies for regional applications, at another finer scale individuals like RES suppliers and
installers as well as house owners who need suitability information about a locality with a higher
level of detail (e.g., regarding chimneys, dormers etc.).

In this paper, the main focus is a comprehensive quality assessment of roof planes extracted from
both LiDAR and aerial imagery. In the literature, suitable evaluation systems have been developed
for this purpose concerning different aspects like detection rates and geometric accuracy. Research
on data availability in Europe has shown that a nationwide coverage of LiDAR data is only realized
by a few countries and the update cycles are (mostly) irregular with long time intervals. Therefore,
the system must be able to alternatively derive height data automatically from aerial images which
are acquired more regularly with higher coverages (approaching 100%) over relatively short time
intervals (three to five years) by almost all European countries. Additionally, building outlines
(e.g., from cadastral data or other databases) are used to restrict the processing to built-up areas
and to accelerate the extraction of large areas (e.g., 100 km2 or more). These data are available in all
European countries and regularly updated.

1.2. Related Work

One of the main components of all systems based on remote sensing for the detection and
modelling of buildings is the extraction of roof structures. Our focus here is on the development
of such a system for the extraction of roof areas for solar energy installations, where relatively
few publications can be found. In addition, we also describe some existing approaches for quality
assessment appropriate to the context of this paper.

1.2.1. Roof Plane Extraction

Almost all approaches for roof reconstruction are based on the assumption that roof structures
can be approximated by planar faces (e.g., Dorninger and Pfeifer [2]). On the one hand, they
can be distinguished by the input data the algorithms are adapted for, on the other hand, by the
underlying methodology. In respect to input data, only a few approaches use multiple aerial images
to extract roof planes, e.g., Noronha and Nevatia [3]. The vast majority make use of airborne LiDAR
(Light Detection and Ranging) data for this purpose due to significantly fewer problems (e.g., Oude
Elberink [4]). For the approaches based on LiDAR data, a comprehensive overview is given in
Vosselman and Maas [5]. In most cases, a pre-processing is carried out to separate ground points
from above-ground points. In general, we can distinguish between model-driven and data-driven
approaches (e.g., Tarsha-Kurdi et al. [6,7]).

Model-Driven Approaches

Model-driven methods make use of pre-defined parameterized prototypes of building models
from a library, and perform a best-fit of every stored model to the point cloud to determine the values
of the building parameters (length, width, height, roof slope etc.). The model with the smallest
residuals is chosen. Although closed and topologically consistent 3D models are obtained, this is
at the expense of flexibility concerning non-standard building shapes. One of the first approaches
developed was such a model-driven procedure proposed by Weidner and Foerstner [8], restricted
to buildings with flat and gable roofs. Other approaches use invariant moments to obtain a closed
solution (Maas and Vosselman [9]). Further examples of model-driven algorithms can be found in
Tarsha-Kurdi et al. [7]. These approaches are preferable for low point densities (e.g., Jochem et al. [10]).
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Data-Driven Approaches

Data-driven methods extract object primitives (e.g., walls, roof planes etc.) and combine them to
produce a final 3D model, however this may be inaccurate due to missing or erroneous building
parts. These methods are more suitable for dense point clouds (e.g., >15 pts./m2) as these can
resolve details of roof structures (e.g., chimneys, dormers etc.). This may explain why the various
types of data-driven methods have been increasingly adopted. They can be distinguished by their
methodological strategies. For instance, Schwalbe et al. [11] created an interesting approach based
on orthogonal projections of the point cloud regarding the main orientation of the building and
the extraction of straight lines representing roof planes in 2D, while Tarsha-Kurdi et al. [12] extract
roof planes by applying the RANSAC (Random Sample Consensus) algorithm. However, numerous
researchers have used region growing algorithms for roof plane extraction, differentiated by the
kind of seed point definition and homogeneity criteria employed. The similarity of normal vectors
representing the local homogeneity of the surface is exemplified by Rottensteiner et al. [13], Dorninger
and Pfeifer [2], Jochem et al. [14]. Oude Elberink and Vosselman [15], and Xiong et al. [16] use the
3D Hough space to detect seed points and topology graphs to model the relationships among the
extracted roof planes, which can also handle incomplete data due to missing LiDAR points. A similar
approach is introduced by Perera et al. [17]. Straight ridge lines and step edges are extracted to create
a so-called roof topology graph for the reconstruction of roof structures. Awrangjeb et al. [18] perform
an eigenvalue analysis for the extraction of coplanar points to find seed points of a subsequent region
growing process. For this task, in most cases, the distance between a LiDAR point and the hitherto
extracted plane is taken as the homogeneity criterion.

Approaches Using Additional Information

Several researchers have combined LiDAR and aerial image data due to additional
information such as spectral reflectance and texture features to stabilize the reconstruction process
(e.g., Rottensteiner and Brise [19]; Rottensteiner et al. [20]; Brenner [21]; Novacheva [22];
Awrangjeb et al. [18]). Others additionally use building outlines (e.g., from cadastral data) to support
the subsequent extraction of roof planes (e.g., Brenner and Haala [23]; Vosselman and Dijkman [24];
Schwalbe et al. [11]).

Even if there are some significant problems of reconstructing buildings and roof structures,
as discussed in Oude Elberink [4], the capability and efficiency of modern approaches could be
demonstrated by the EuroSDR comparison (Kaartinen et al. [25]) and the ISPRS benchmark tests [26].

1.2.2. Suitability of Roof Planes for RES

Compared to the considerable number of methods for 3D building and roof reconstruction, only
relatively few approaches can be found related to the specific challenge of determining the suitability
and potential of roof planes for renewable energy systems (RES), specifically photovoltaic and solar
thermal energy. Here, the main factors which have to be represented are: (i) the path of the sun;
(ii) inclination and aspect of solar radiation on the roof plane; (iii) global radiation and (iv)
the resulting shadowing effects of topography and nearby objects (Šúri and Hofierka [27]).
Wittmann et al. [28] were one of the first researchers to use aerial images for the identification of roof
areas suitable for installation of RES, although they applied manual photogrammetric measurements
to derive the necessary roof plane parameters. The first automatic approach based on LiDAR data and
building outlines was presented by Voegtle et al. [29] (cf. Section 2.1.2). Kassner et al. [30] exclusively
made use of publicly available LiDAR data and building outlines for masking LiDAR points on the
roofs. Therefore, only a limited point density of ď1 pt./m2 was achieved. This pixel-based approach
made use of GIS to determine the roof plane parameters, which were then included in a quality
assessment, reporting the percentage of correctly and falsely identified roof areas. As a reference,
CAD models of 13 buildings were measured by classical stereo photogrammetry (Analytical Plotter)
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to obtain the real shape without generalisation (in contrast to cadastral data). Jochem et al. [10,14]
have developed an approach based on high density (17 pts./m2) LiDAR point clouds and the plane
extraction method mentioned in Section 1.2.1. Here, the size of the individual roof facets is derived
from contour lines generated by means of so-called alpha shapes [31]. A refinement of shadow
analysis is carried out by including transparency values for nearby vegetation objects based on
penetration rates derived from the LiDAR returns. A sophisticated determination of energy yield
is described in detail. In context of the project SUN AREA, Ludwig et al. [32] created a method
for estimation of the solar potential of individual buildings as well as for large regions (>100 km2).
Using LiDAR data (4 pts./m2) as input and cadastral building outlines, a raster-based selection of
homogeneous areas is performed by applying multiple thresholding which leads to a segmentation
of areas with uniform inclination and aspect angles. Deviations from the optimal values (inclination:
37˝, aspect: south) are obtained by reduction factors derived from meteorological investigations.
This relatively simple approach can be applied to large regional areas, e.g., the city of Osnabrueck
(Germany) covering approx. 120 km2. In Agugiaro et al. [33,34], aerial images are also used in addition
to LiDAR data to derive digital surface models (DSM) of different resolutions (1.0 m, 0.25 m). The
raster-based analysis of inclination, aspect, size and shadowing effects of mountainous topography
and nearby buildings is based on a common GIS (GRASS) and its functions (e.g., “r.sun”). For quality
assessment, 30 reference roofs are measured manually. The results of usable solar radiation obtained
from different input raster data mentioned above are then compared. Gooding et al. [35] have created
a model-driven approach especially for low point densities by grouping similar buildings together to
increase the number of points on the roof structures. The quality evaluation delivers an identification
rate of 87% and a mean absolute error of 3.76˝ for roof slopes.

1.2.3. Quality Evaluation

There are various approaches to image-based quality evaluation. These can be distinguished by
the number and types of different quality parameters used: a good survey is provided by Foody [36]
in the general context of land cover classification. In the specific context of this paper, a very good
overview of existing quality evaluation methods is given by Zeng et al. [37] who observe that a
common approach that they describe as matched rates employs parameters originally derived from
image classification (Foody [36]), i.e., completeness, correctness and quality. These are determined
based on reference models (e.g., Rutzinger et al. [38]; Truon-Hong and Laefer [39]). These parameters
can also be applied to extracted roof planes. The second approach considered by Zeng et al. [37] is
shape similarity which describes a more complicated category of metrics which may be subjective
and poorly defined especially for complex shapes. For this, metrics like area and perimeter difference
(Song and Haithcoat [40]), tangent function or moment-derived parameters can be used. Other
researchers have compared each segment of a contour line by checking if it lies inside a buffer zone
around the corresponding segment of the reference model (Truong-Hong and Laefer [39]). The last
approach identified by Zeng et al. [37] is positional accuracy which is often determined by the root
mean square error (RMSE) for comparing any extracted information and a higher accuracy reference,
frequently employed in other areas of geospatial processing such as DEM quality assessment
(e.g., Fisher and Tate [41]). It is clear from the literature that many different parameters have to be
used, however, these may be strongly correlated and it is difficult to use many of these simultaneously.
One response exemplified by Zeng et al. [37] is to develop a multi-criteria evaluation method due to
ambiguities and errors when using simple metrics. This sophisticated evaluation system incorporates
different quality measures like geometric elements (shape, displacement) in addition to the more
common detection rates in a hierarchical structure.

The remainder of this paper is structured in the following way: in Section 2, we present the
methodology of extracting roof planes suitable for solar energy installations and the measures of
quality assessment. In Section 3, the results of a comprehensive quality assessment are described,
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whilst in Section 4, these results are discussed. In Section 5, we present some conclusions and an
outlook to future developments.

2. Methods

2.1. Extraction Approach

The extraction approach of EAGLE was designed to use both LiDAR data as well as height
data derived automatically from aerial images as an alternative data source (Figure 1). Therefore,
the system has two different pre-processing paths until height data in a suitable format (DSM) are
generated. From this point, all subsequent processing steps are identical. The first step in the data
analysis is the extraction of planar roof areas and their geometric parameters (slope, aspect, size). To
accelerate roof plane extraction, building outlines are used as complementary input data. The final
two steps comprise a shadow analysis to estimate the reduction of solar radiation on each roof plane
(e.g., by nearby objects, surrounding buildings etc.; Schuffert [42]) and the calculation of energy yield.
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Figure 1. Principle workflow of the system for extraction of suitable roof planes for solar energy
installations. LiDAR or aerial image data can be used. Building outlines are introduced to mask out
prospective roof areas.

2.1.1. Data Pre-Processing

If LiDAR data are available—preferably with a point density of >2 pts./m2—pre-processing is
limited to a rasterization of the LiDAR point cloud. This decreases noise and is computationally more
efficient, albeit with a trade-off in an associated reduction in quality through generalization or loss
of some small object details in the rasterization process. In the cases where aerial images are taken
as input data, more extensive pre-processing has to be carried out. The exterior orientation of the
images as well as the interior orientation of the camera must be known or determined by a bundle
adjustment. Country-specific interfaces have been created in EAGLE for the different input formats.

2.1.2. Roof Plane Extraction

For the extraction of planar surfaces numerous approaches can be found in the literature
(cf. Section 1.2.1). In the EAGLE system, a method based on a region growing approach is
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implemented from work presented in Voegtle et al. [29]. For detection of a seed pixel, the heights of its
local surrounding pixels (e.g., N8 neighborhood) must fulfill the equation of a plane (Equation (1)):

z px, yq “ a0 ` a1x` a2y (1)

where z (x,y)—height at position (x,y); ai—plane parameters with only small acceptable differences:

dPi “ ẑ px, yq ´ zi px, yq (2)

where ẑ—height value of the plane; zi—height of LiDAR point i.
If Σ dPi < t (e.g., t = n¨σ; n—number of surrounding pixels, σ—noise level of input data) of the

local neighbourhood is fulfilled, this point will be accepted as a seed point. After a seed point is
found, all adjacent pixels are statistically tested to determine whether the height values zi fit to the
previous plane, i.e., their height difference dPi with respect to the points of the current plane. This test
value t is defined as:

t “
ˇ

ˇ

ˇ
d´ dPi

ˇ

ˇ

ˇ

c

n
pn` 1q s2 ă t

1´
a
2

, f
(3)

where d ´ mean distance of the current plane points to the plane
n ´ number of current plane points
s2 ´ variance of current plane points

t
1´

a
2

, f
´

quantile of Student’s t distribution of level of significance α and
degree of freedom f

The main advantage of this test (Student t test)—compared to a fixed pre-defined threshold—is
an automatic adaption of the acceptable point distance to the current plane. At the beginning of
the region growing process, when only a few points had been found, larger point distances to the
plane are accepted automatically, whereas at a later stage, when a large number of points belong to
the plane and its spatial position and orientation has been stabilized, a new point might have only
a small distance to get accepted. If no new points can be found which fulfill the defined condition,
the process stops, the area found is marked and a new seed point will be detected. To accelerate this
process and to exclude other objects like trees, the seed points are located inside the building outlines
(e.g., obtained from cadastral data). Due to the remaining inaccuracies of the input data and roof
overhangs (eaves), certain displacements may occur between the building outlines and LiDAR or
aerial image data (cf. Section 2.2). Therefore, a buffer of sufficient size is created around the outlines
to enable the region growing to cover the entire roof area.

2.1.3. Geometric Roof Plane Parameters

To determine the suitability of roof planes for solar energy installations, three geometric
parameters are essential: slope angle α and aspect angle γ as well as size. The first two parameters
can be easily determined by the coefficients a1 and a2 of the mathematical description of an extracted
plane j (cf. Equation (1)):

slope αj “

b

a2
1 ` a2

2 aspect γj “
a1

a2
(4)

The size can be derived by the number of pixels or alternatively, by a boundary polygon of a roof
area, e.g., generalised by the well-known Douglas-Peucker algorithm (Douglas and Peucker [43]) or
other suitable methods (e.g., alpha shapes, Jochem et al. [14]). In each case, the real area Aj of an
oblique plane j has to be calculated from this planimetric area Apj by means of the inclination angle
αj (Equation (4)).

Aj “
Apj

cos
`

αj
˘ (5)
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2.1.4. Further Processing

Although not within the immediate scope of this paper, we mention in passing the additional
processing steps to contextualise our work as part of the EAGLE system. Shadowing is one of the
most important influences restricting the economical use of solar energy installations. Therefore,
a comprehensive and detailed shadow analysis related to each individual roof plane is essential.
For this, it is necessary to include the DSM data beyond local objects like dormers and chimneys,
such as adjacent buildings as well as the underlying topography. The shadow analysis implemented
in the EAGLE system determines in a first step a series of date- and location-dependent incidence
angles of the sun during a day in short time intervals, e.g., 15 min according to the smooth path of
the sun (e.g., Meeus [44]). By the intersection of these incidence angles with the DSM, shadowing
effects and their duration can be determined for each pixel of a roof plane. Shadow analyses are
computationally extremely time-consuming (e.g., Agugiaro et al. [33]). Due to the smooth change of
the sun paths during a month, the shadowing effects do not need to be calculated for each single day
but only for appropriate time intervals, e.g., five days or 10 days: the effects on days in between can
be interpolated. This approach leads to significant efficiencies. The resulting shadowing effects are
regarded as a reduction factor which is determined by the ratio of the time without shading and the
maximum time of sun radiation during a given interval, e.g., one month. Due to the local impact
of disturbing objects like chimneys or dormers on their direct neighbourhood, the determination of
shadowing effects is carried out for each pixel of the roof area. In Figure 2, an example of such a
shadow analysis is presented for two different seasons (June, December) where significant differences
are recognizable.
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For the next processing step—the estimation of energy yield for each roof plane—several
alternatives can be applied. One solution is the use of a matrix of reduction factors according to
the deviation of a roof plane from the optimal spatial orientation (aspect: south, slope: 38˝), e.g., in
steps of 2˝. Values between these nodes will be interpolated. The reduction values are determined by
long-term research of solar panel experts. Other researchers have developed specific formulae where
besides the geometric parameters, also the statistical meteorological data of the given location are
input to estimate the expected energy yield.

2.2. Evaluation Strategy

A comprehensive quality evaluation has to incorporate a variety of different measures
(e.g., Zeng et al. [37], Truong-Hong and Laefer [39]). For this application of solar energy installations
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on rooftops, several commonly used measures are used: the geometric coincidence of building
outlines (e.g., cadastral data) and height data (DSM), extraction rates of roof planes (completeness,
correctness, quality) and the accuracy of the geometric plane parameters (slope, aspect, size).
In addition to these, we include the influence of data resolution and compression rate on the
extraction results.

Cadastral building outlines are used in this approach as complementary input data. Hence,
the geometric coincidence of building outlines and their borders in height data (LiDAR DSM or
automatically extracted DSM from aerial images) is an important issue in quality assessment. Certain
discrepancies may occur caused by errors in the geo-referencing of the LiDAR data, or in the exterior
orientation of the aerial images. Dependent on the data source, building outlines may also contain
positioning errors and generalization effects. Additionally, roof overhangs have to be taken into
account, which are normally not incorporated into building outlines from cadastral data. For an
automated determination of these differences, maximum gradients along building edges are extracted
from the height data (DSM) in the first step (e.g., by the well-known Laplace/Laplace of Gaussian
(LoG) operator). In the second step, the shortest (orthogonal) distances of the position of the
maximum gradient to the related polygon line of the building contour are calculated. These distances
can be used to determine the mean and the maximum value.

The quality of roof plane detection can be described by the common parameters completeness
(compl), correctness (corr) and quality (qual), e.g., Zeng et al. [37], Truong-Hong and Laefer [39]. If the
pixels of an extracted roof plane cover the corresponding reference area by more than 20% (to exclude
artefacts), the center of gravity is determined and this plane is counted as Tp. If no center of gravity
can be found inside a reference plane, this is counted as Fn according to e.g., Jochem et al. [14] and
Rutzinger et al. [38]. Fp is derived from the number of extracted planes not (entirely) usable for solar
energy installations. These correspond either to extracted planes inside the building contour line
whose center of gravity lies in none of the reference areas (e.g., yard area, atrium etc.), or extracted
planes containing undetected disturbing objects (dormers, chimneys).

compl “
ř

Tp
ř

Tp `
ř

Fn
corr “

ř

Tp
ř

Tp `
ř

Fp
qual “

ř

Tp
ř

Tp `
ř

Fn `
ř

Fp
(6)

where: Tp—True positives (correctly detected roof planes); Fn—False negatives (undetected
roof planes); Fp—False positives (planes outside reference areas and planes with undetected;
disturbing objects).

As described in Section 2.1.3, the inclination and aspect angle as well as the size can be
determined for each extracted roof plane. For a quality assessment of these geometric parameters,
reference roof planes have been obtained, by manual measurement of the aerial images in a
photogrammetric workstation. A quality check based on two buildings acquired by a tachymeter
has confirmed an expected point accuracy of the planes of˘0.07 m. To obtain consistent results, these
reference planes have been verified independently by a second operator based on visual inspection.
The deviations between reference planes (of significantly higher accuracy) and extracted planes will
be used as a quality measure. To obtain the effective usable areas for solar energy installations and to
guarantee a correct comparison of the related size, disturbing objects (chimneys, dormers etc.) have
to be excluded in these reference data (Figure 3). Different building types and complexity levels of
roof structures have been selected for this purpose.
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confirmed an expected point accuracy of the planes of ±0.07 m. To obtain consistent results, these 
reference planes have been verified independently by a second operator based on visual inspection. 
The deviations between reference planes (of significantly higher accuracy) and extracted planes will 
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Figure 3. Reference roof planes of the Leicester test site created by manual measurement of aerial 
images. (a) Aerial image; (b) Reference planes. Disturbing objects have been excluded. Copyright © 
Bluesky International Ltd. (Leicestershire, UK). 

The quality of the results of automatic image matching algorithms is highly sensitive to the 
degree of image texture, and therefore to the image resolution. Homogenous parts of an image may 
produce unreliable results or possibly gross errors. Roof areas are frequently built of one single 
material (e.g., identical red roof tiles) which leads to such homogenous image areas, particularly if 
the image spatial resolution is insufficient to capture this spatial structure. Due to the availability of 

Figure 3. Reference roof planes of the Leicester test site created by manual measurement of aerial
images. (a) Aerial image; (b) Reference planes. Disturbing objects have been excluded. Copyright ©
Bluesky International Ltd. (Leicestershire, UK).

The quality of the results of automatic image matching algorithms is highly sensitive to the
degree of image texture, and therefore to the image resolution. Homogenous parts of an image
may produce unreliable results or possibly gross errors. Roof areas are frequently built of one single
material (e.g., identical red roof tiles) which leads to such homogenous image areas, particularly if
the image spatial resolution is insufficient to capture this spatial structure. Due to the availability of
two aerial image datasets with different resolutions (pixel size 0.06 m and 0.20 m) of the same test
site in Karlsruhe, a comparison of the automatically derived DSMs can be done. However, because
only one test site was able to be captured with different resolutions, a qualitative evaluation only was
carried out at this stage.

In one case of our extensive data acquisition over Europe, the aerial images had been delivered
firstly in a compressed status (jpeg format). After a request for an uncompressed dataset, we received
the data in the original (uncompressed) format (tiff). Therefore, we were able to contrast the results
of processing both the compressed und uncompressed datasets.

Lastly, since we had access to both data types (LiDAR, aerial images) for the same two test sites,
extracted on the base of the same building contours, the same reference data and the same algorithm,
we were able to do a qualitative comparison of each data type, commenting on the differences,
advantages and disadvantages.

2.3. Data Sources and Software Environment

In context of the EAGLE project an extensive database—13 different datasets from five European
countries (six LiDAR, seven aerial image data)—was sampled and processed. It can be seen that for
Leicester (UK) and Karlsruhe (GER) test sites, both LiDAR and aerial image data are available. To
enable a better comparison and a comprehensive evaluation of the extraction results of both data
types for the same test area, the quality assessment was carried out only with these two test sites
(red boxes in Table 1). The sensor types for these LiDAR datasets were an Optech ALTM Gemini
(Karlsruhe, Germany) and an Optech M300 (Leicester, UK), for the aerial images an UltraCAM X
(Karlsruhe, Germany and Leicester, UK).

For software development Python, Bash, GDAL and Numpy libraries were used. The automatic
determination of height data (DSM) from aerial images was based on an adapted version of the
MicMac algorithm (IGN, France [45]).
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Table 1. Datasets processed by the EAGLE system. For the Karlsruhe test site, two different resolutions
were available for classical aerial imagery as well as for unmanned aerial vehicles (UAV); datasets
marked in red were used for quality evaluation.

Country Location Data Type Resolution

United Kingdom

Leicester

Remote Sens. 2015, 7, page–page 

9 

two aerial image datasets with different resolutions (pixel size 0.06 m and 0.20 m) of the same test site 
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one test site was able to be captured with different resolutions, a qualitative evaluation only was 
carried out at this stage. 

In one case of our extensive data acquisition over Europe, the aerial images had been delivered 
firstly in a compressed status (jpeg format). After a request for an uncompressed dataset, we received 
the data in the original (uncompressed) format (tiff). Therefore, we were able to contrast the results 
of processing both the compressed und uncompressed datasets. 

Lastly, since we had access to both data types (LiDAR, aerial images) for the same two test sites, 
extracted on the base of the same building contours, the same reference data and the same algorithm, 
we were able to do a qualitative comparison of each data type, commenting on the differences, 
advantages and disadvantages. 

2.3. Data Sources and Software Environment 

In context of the EAGLE project an extensive database—13 different datasets from five European 
countries (six LiDAR, seven aerial image data)—was sampled and processed. It can be seen that for 
Leicester (UK) and Karlsruhe (GER) test sites, both LiDAR and aerial image data are available. To 
enable a better comparison and a comprehensive evaluation of the extraction results of both data types 
for the same test area, the quality assessment was carried out only with these two test sites (red boxes 
in Table 1). The sensor types for these LiDAR datasets were an Optech ALTM Gemini (Karlsruhe, 
Germany) and an Optech M300 (Leicester, UK), for the aerial images an UltraCAM X (Karlsruhe, 
Germany and Leicester, UK).  

For software development Python, Bash, GDAL and Numpy libraries were used. The automatic 
determination of height data (DSM) from aerial images was based on an adapted version of the 
MicMac algorithm (IGN, France [45]). 

Table 1. Datasets processed by the EAGLE system. For the Karlsruhe test site, two different resolutions 
were available for classical aerial imagery as well as for unmanned aerial vehicles (UAV); datasets 
marked in red were used for quality evaluation.  

Country Location Data Type Resolution 

United Kingdom 

Leicester LiDAR 0.25 m 
Aerial Images 0.14 m 

Bristol LiDAR 0.50 m 
The Village Aerial Images 0.12 m 

Slough (London) LiDAR 0.50 m 

Germany Karlsruhe 
LiDAR 0.50 m 

Aerial Images 0.06 m/0.20 m 
UAV Images 0.02 m/0.04 m 

Sweden Stockholm LiDAR 0.50 m 
The Netherlands The Hague Aerial Images 0.04 m 

Spain Madrid LiDAR 1.00 m 

3. Results 

3.1. Geometric Coincidence of Building Outlines and Building Borders in Height Data (DSM) 

For the evaluation of the geometric coincidence, a random sample of 30 test buildings in each 
test site—containing approx. 200–400 gradients per residential building, and more than 1000 
gradients for larger industrial buildings—were used. The results are shown in Table 2. Several 
manual measurements randomly distributed at different buildings to verify these values have 
confirmed the results of Table 2. 

0.25 m
0.14 m

Bristol LiDAR 0.50 m
The Village Aerial Images 0.12 m

Slough (London) LiDAR 0.50 m

Germany Karlsruhe
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for the same test area, the quality assessment was carried out only with these two test sites (red boxes 
in Table 1). The sensor types for these LiDAR datasets were an Optech ALTM Gemini (Karlsruhe, 
Germany) and an Optech M300 (Leicester, UK), for the aerial images an UltraCAM X (Karlsruhe, 
Germany and Leicester, UK).  

For software development Python, Bash, GDAL and Numpy libraries were used. The automatic 
determination of height data (DSM) from aerial images was based on an adapted version of the 
MicMac algorithm (IGN, France [45]). 
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were available for classical aerial imagery as well as for unmanned aerial vehicles (UAV); datasets 
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3. Results 

3.1. Geometric Coincidence of Building Outlines and Building Borders in Height Data (DSM) 

For the evaluation of the geometric coincidence, a random sample of 30 test buildings in each 
test site—containing approx. 200–400 gradients per residential building, and more than 1000 
gradients for larger industrial buildings—were used. The results are shown in Table 2. Several 
manual measurements randomly distributed at different buildings to verify these values have 
confirmed the results of Table 2. 

0.50 m
0.06 m/0.20 m

UAV Images 0.02 m/0.04 m
Sweden Stockholm LiDAR 0.50 m

The Netherlands The Hague Aerial Images 0.04 m
Spain Madrid LiDAR 1.00 m

3. Results

3.1. Geometric Coincidence of Building Outlines and Building Borders in Height Data (DSM)

For the evaluation of the geometric coincidence, a random sample of 30 test buildings in each test
site—containing approx. 200–400 gradients per residential building, and more than 1000 gradients
for larger industrial buildings—were used. The results are shown in Table 2. Several manual
measurements randomly distributed at different buildings to verify these values have confirmed the
results of Table 2.

Table 2. Mean distance, maximum and minimum distance and standard deviation between building
outlines and their borders in the height data (DSM) for the Leicester and Karlsruhe test sites.

Test Site Mean Distance Max. Distance Min. Distance Std. Dev.

Leicester (UK) 0.92 m 1.91 m 0.06 m 0.40 m
Karlsruhe (GER) 0.73 m 1.57 m 0.03 m 0.37 m

For a better visualisation of these results, an overlay of the cadastral building outlines and the
LiDAR data (DSM) is shown in Figure 4.

3.2. Roof Plane Extraction

3.2.1. Detection Rates

An example output of the roof plane extraction process can be seen in Figure 5. For each test
site, more than 500 roof planes have been selected to determine these quality parameters. The results
are sampled in Tables 3 and 4. For a visual comparison examples of extracted roof planes from both
datasets (LiDAR and aerial images) are shown in Figures 8 and 9 for the Leicester and the Karlsruhe
test site, respectively.
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Table 2. Mean distance, maximum and minimum distance and standard deviation between building 
outlines and their borders in the height data (DSM) for the Leicester and Karlsruhe test sites. 
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LiDAR data (DSM) is shown in Figure 4. 

 
Figure 4. Overlay of cadastral building outlines and height data (raster DSM derived from LiDAR 
data), Leicester test site (cf. Table 1). Building outlines: © Crown copyright and database right 2012 
Ordnance Survey licence number 100042840, LiDAR data: Copyright © Bluesky International Ltd. 
(Leicestershire, UK). 

3.2. Roof Plane Extraction 

3.2.1. Detection Rates 

An example output of the roof plane extraction process can be seen in Figure 5. For each test site, 
more than 500 roof planes have been selected to determine these quality parameters. The results are 
sampled in Tables 3 and 4. For a visual comparison examples of extracted roof planes from both 
datasets (LiDAR and aerial images) are shown in Figures 8 and 9 for the Leicester and the Karlsruhe 
test site, respectively. 

Table 3. Completeness of roof plane extraction for the Leicester and Karlsruhe test site. 

Test Site Data Type # Planes Tp Fn Completeness 

Leicester (UK) LiDAR Aerial Images 
522 485 37 92.9% 
522 456 66 87.4% 

Karlsruhe (GER) LiDAR Aerial Images 
502 483 19 96.2% 
502 484 18 96.4% 
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Figure 5. Roof planes extracted by the EAGLE approach from LiDAR data of a subset of the Leicester 
(UK) test site, DSM raster: 0.25 m, Copyright © Bluesky International Ltd. (Leicestershire, UK). 
Derived from data © Crown copyright and database right 2012 Ordnance Survey licence number 
100042840. 

Table 4. Correctness and quality of roof plane extraction for the Leicester and Karlsruhe test site.  

Test Site Data Type # Planes Tp Fp Correctness Quality 

Leicester (UK) LiDAR Aerial Img. 
522 514 8 98.5% 91.9% 
522 515 7 98.7% 87.6% 

Karlsruhe (GER) LiDAR Aerial Img. 
502 453 49 90.2% 86.9% 
502 418 84 83.3% 80.4% 

3.2.2. Quality of Roof Plane Parameters 

In Tables 5–7, the results of the determination of differences between reference and extracted 
planes are sampled. The calculated measures are based on 28 reference planes (Leicester) and 27 
reference planes (Karlsruhe) respectively derived from both data types (LiDAR, aerial images). 

Table 5. Differences between inclination angle of the extracted roof planes and their corresponding 
reference planes for both data types and test sites (Leicester = LEIC, Karlsruhe = KA). 

Test Site 
Inclination Angle (Degree)

LiDAR Aerial Image 
Mean Max Min Std. Dev. Mean Max Min Std. Dev. 

LEIC 1.5 3.9 0.02 1.0 1.7 5.6 0.08 1.1 
KA 1.6 4.8 0.06 1.4 1.4 4.2 0.06 1.1 

Table 6. Differences between the aspect angle of the extracted roof planes and their corresponding 
reference planes for both data types and test sites (Leicester = LEIC, Karlsruhe = KA). 

Test Site 
Aspect Angle (Degree)

LiDAR Aerial Image 
Mean Max Min Std. Dev. Mean Max Min Std. Dev. 

LEIC 1.1 5.3 0.10 1.3 1.4 6.3 0.05 1.4 
KA 0.8 1.9 0.02 0.6 0.6 2.0 0.01 0.6 

Figure 5. Roof planes extracted by the EAGLE approach from LiDAR data of a subset of the
Leicester (UK) test site, DSM raster: 0.25 m, Copyright © Bluesky International Ltd. (Leicestershire,
UK). Derived from data © Crown copyright and database right 2012 Ordnance Survey licence
number 100042840.

Table 3. Completeness of roof plane extraction for the Leicester and Karlsruhe test site.

Test Site Data Type # Planes Tp Fn Completeness

Leicester (UK) LiDAR Aerial Images 522 485 37 92.9%
522 456 66 87.4%

Karlsruhe (GER) LiDAR Aerial Images 502 483 19 96.2%
502 484 18 96.4%
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Table 4. Correctness and quality of roof plane extraction for the Leicester and Karlsruhe test site.

Test Site Data Type # Planes Tp Fp Correctness Quality

Leicester (UK) LiDAR Aerial Img. 522 514 8 98.5% 91.9%
522 515 7 98.7% 87.6%

Karlsruhe (GER) LiDAR Aerial Img. 502 453 49 90.2% 86.9%
502 418 84 83.3% 80.4%

3.2.2. Quality of Roof Plane Parameters

In Tables 5–7 the results of the determination of differences between reference and extracted
planes are sampled. The calculated measures are based on 28 reference planes (Leicester) and 27
reference planes (Karlsruhe) respectively derived from both data types (LiDAR, aerial images).

Table 5. Differences between inclination angle of the extracted roof planes and their corresponding
reference planes for both data types and test sites (Leicester = LEIC, Karlsruhe = KA).

Test Site
Inclination Angle (Degree)

LiDAR Aerial Image
Mean Max Min Std. Dev. Mean Max Min Std. Dev.

LEIC 1.5 3.9 0.02 1.0 1.7 5.6 0.08 1.1
KA 1.6 4.8 0.06 1.4 1.4 4.2 0.06 1.1

Table 6. Differences between the aspect angle of the extracted roof planes and their corresponding
reference planes for both data types and test sites (Leicester = LEIC, Karlsruhe = KA).

Test Site
Aspect Angle (Degree)

LiDAR Aerial Image
Mean Max Min Std. Dev. Mean Max Min Std. Dev.

LEIC 1.1 5.3 0.10 1.3 1.4 6.3 0.05 1.4
KA 0.8 1.9 0.02 0.6 0.6 2.0 0.01 0.6

Table 7. Differences between the size of the extracted roof planes and their corresponding reference
planes for both data types and test sites (Leicester = LEIC, Karlsruhe = KA).

Test Site
Size (%)

LiDAR Aerial Image
Mean Max Min Std. Dev. Mean Max Min Std. Dev.

LEIC 11.6 34.7 0.3 10.3 12.3 29.9 0.7 9.1
KA 18.4 34.9 0.4 11.2 13.3 30.4 0.4 8.5

Due to the fact that the reference data also possess a degree of inaccuracy (approx. ˘0.05 m
in positioning, ˘0.15 m in height), the mean and maximum differences should be determined, e.g.,
to recognize gross errors. Since differences in the plane sizes occur mainly at the borders of the
roof planes, they depend highly on the size itself, i.e., larger areas understandably cause larger
absolute differences in (m2) than smaller areas. Therefore, the differences of plane sizes are given
as a percentage (%) of overlap.

3.2.3. Additional Influences on the Quality of the Extracted Roof Planes

The results of DSM generation derived from different image resolutions are depicted in Figure 6.
As can clearly be seen, the resolution of 0.20 m pixel size causes significant irregularities even in
areas of planar roofs. These undulations in height are of an order of magnitude of 0.3–0.4 m while
they are below 0.15 m in the case of 0.06 m pixel size. In the first case, these large deviations from

17027



Remote Sens. 2015, 7, 17016–17034

the related roof planes lead to gaps in the extracted areas and larger differences of the geometric
plane parameters. From the scientific point of view, more investigations have to be carried out with
several resolutions and a minimum of two independent test sites in Europe before reliable results can
be presented.

To get a better impression of the influence of image resolution, an example of a DSM derived
from an UAV flight with a very high image resolution of 0.02 m pixel size is shown in Figure 7 (but
from a different test site in Karlsruhe without ground truth and reference data).

In one case of data acquisition, digital aerial images had been delivered in a compressed data
format (jpeg). In a first stage, this dataset was processed in the same manner as all other ones.
The resulting DSM showed a significantly worse quality than could be expected from that image
resolution. Noticeable undulations inside the roof planes and a higher noise level could be observed.
Therefore, a new dataset without compression was ordered which led to the results presented in
Sections 3.2.1 and 3.2.2.
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below 0.15 m in the case of 0.06 m pixel size. In the first case, these large deviations from the related 
roof planes lead to gaps in the extracted areas and larger differences of the geometric plane 
parameters. From the scientific point of view, more investigations have to be carried out with several 
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be presented. 

 
Figure 6. DSMs derived from aerial images of different resolutions (Karlsruhe test site). (a) DSM 
derived from resolution of 0.20 m; (b) DSM derived from resolution of 0.06 m. 

To get a better impression of the influence of image resolution, an example of a DSM derived 
from an UAV flight with a very high image resolution of 0.02 m pixel size is shown in Figure 7 (but 
from a different test site in Karlsruhe without ground truth and reference data). 

In one case of data acquisition, digital aerial images had been delivered in a compressed data 
format (jpeg). In a first stage, this dataset was processed in the same manner as all other ones. The 
resulting DSM showed a significantly worse quality than could be expected from that image 
resolution. Noticeable undulations inside the roof planes and a higher noise level could be observed. 
Therefore, a new dataset without compression was ordered which led to the results presented in 
Sections 3.2.1 and 3.2.2. 
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Figure 7. DSM derived from high resolution UAV images: pixel size 0.02 m, flying height approx.  
50 m (Karlsruhe test site). 

4. Discussion 

4.1. Geometric Coincidence of Building Outlines and Building Borders in Height Data (DSM) 

The results of this investigation have shown that the displacements between ground truth 
building outlines and the related building borders in the height datasets are the in the expected range 
of <1 m (mean difference) and 1.5 m–2 m (max. difference), respectively. These results are in good 
accordance with other recent publications, e.g., Zeng et al. [37], Troung-Hong and Laefer [39]. These 
results represent the roof overhangs as well as displacements caused by remaining errors in the 
navigation data (LiDAR) and exterior orientations (aerial images). Due to the larger roof overhangs 
in the Karlsruhe test site in comparison to Leicester, it can be observed that almost all maximum 
gradients lie outside the building polygons. As a consequence for all test sites, a buffer of sufficient 
size (e.g., 1.5 m or 2.0 m) was placed around the building outlines to extend the processing area for 
the roof plane extraction. Therefore, the real usable roof areas including overhangs and regarding the 
mismatches between building outlines and their borders in the DSM data can be determined. 

4.2. Roof Plane Extraction 

For both test sites, the results derived from LiDAR data concerning detection rates are of the same 
order of magnitude as other approaches, e.g., Jochem et al. [14], Awrangjeb and Fraser [46],  
Zeng et al. [37], Truong-Hong and Laefer [39], even if no direct comparison can be made due to 
different input datasets (data types, resolution, accuracy) and processing methods. All image 
matching algorithms depend on sufficient image textures, therefore, uniform roof materials or dark 
shadow areas may lead to errors or gaps in the resulting height data. As a consequence, the extraction 
quality is worse for aerial images from Leicester. This can be explained by the hard shadow areas 
occurring in these images which mask image texture and make both point detection and point 
matching in these areas impossible, causing gaps in the derived height data and the extracted roof 
planes (cf. Figure 8c, marked red circle). In addition, nearby trees partly covering the roof planes may 
not be penetrated by LiDAR and, therefore, those roof areas may be incomplete or remain undetected 
(cf. Figure 5, lower right). Due to the extremely high resolution of the aerial images (pixel size = 6 cm) 
and significantly less shadowing, the quality is improved for the Karlsruhe test site. As a consequence 
of the permanent updates of cadastral data in most European countries, missing building outlines of 
new houses are infrequent. The results of this quality assessment confirm that the detection rates of 
the extracted roof planes are only marginally affected by rasterization (cf. Section 2.1.1.). 

Figure 7. DSM derived from high resolution UAV images: pixel size 0.02 m, flying height approx.
50 m (Karlsruhe test site).
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4. Discussion

4.1. Geometric Coincidence of Building Outlines and Building Borders in Height Data (DSM)

The results of this investigation have shown that the displacements between ground truth
building outlines and the related building borders in the height datasets are the in the expected
range of <1 m (mean difference) and 1.5 m–2 m (max. difference), respectively. These results are
in good accordance with other recent publications, e.g., Zeng et al. [37], Troung-Hong and Laefer [39].
These results represent the roof overhangs as well as displacements caused by remaining errors in the
navigation data (LiDAR) and exterior orientations (aerial images). Due to the larger roof overhangs
in the Karlsruhe test site in comparison to Leicester, it can be observed that almost all maximum
gradients lie outside the building polygons. As a consequence for all test sites, a buffer of sufficient
size (e.g., 1.5 m or 2.0 m) was placed around the building outlines to extend the processing area for
the roof plane extraction. Therefore, the real usable roof areas including overhangs and regarding the
mismatches between building outlines and their borders in the DSM data can be determined.

4.2. Roof Plane Extraction

For both test sites, the results derived from LiDAR data concerning detection rates are of the
same order of magnitude as other approaches, e.g., Jochem et al. [14], Awrangjeb and Fraser [46],
Zeng et al. [37], Truong-Hong and Laefer [39], even if no direct comparison can be made due
to different input datasets (data types, resolution, accuracy) and processing methods. All image
matching algorithms depend on sufficient image textures, therefore, uniform roof materials or dark
shadow areas may lead to errors or gaps in the resulting height data. As a consequence, the extraction
quality is worse for aerial images from Leicester. This can be explained by the hard shadow areas
occurring in these images which mask image texture and make both point detection and point
matching in these areas impossible, causing gaps in the derived height data and the extracted roof
planes (cf. Figure 8c, marked red circle). In addition, nearby trees partly covering the roof planes may
not be penetrated by LiDAR and, therefore, those roof areas may be incomplete or remain undetected
(cf. Figure 5, lower right). Due to the extremely high resolution of the aerial images (pixel size = 6 cm)
and significantly less shadowing, the quality is improved for the Karlsruhe test site. As a consequence
of the permanent updates of cadastral data in most European countries, missing building outlines of
new houses are infrequent. The results of this quality assessment confirm that the detection rates of
the extracted roof planes are only marginally affected by rasterization (cf. Section 2.1.1).

Inclination and aspect angles show only small mean differences of about 1˝–2˝, independent of
the data type and test site. This is sufficient for this application because the influence of these small
differences on the resulting energy yield is only marginal compared to the uncertainties caused by the
(statistical) meteorological data (sun radiation per year) or errors in the determination of the sizes of
roof planes. Nevertheless, very few outliers with significantly large differences (up to 6˝) occur. The
latter observation is also reported by other research groups (e.g., Gooding et al. [35], Truong-Hong and
Laefer [39]). The differences of the plane sizes are larger for all data types, approximately 12%–13%
with the exception of the results for LiDAR at the test site Karlsruhe (18.4%) which affect the resulting
energy yield significantly. The main reason for these larger differences can be ascribed to undetected
disturbing roof objects, e.g., dormers, chimneys and especially roof windows which are integrated
into the surface of the roofs (cf. Figure 8, center). Dependent on the number and sizes of these roof
windows and other undetected objects, the extracted plane size may be up to 30% larger than the
reference data, in exceptional cases even more. Therefore, the maximum errors (Table 7) are caused
by these error sources. In the Karlsruhe test site, the relatively low resolution of the LiDAR DSM
(0.5 m raster size, according to approx. 2 pts./m2) makes this problem more significant, because
even medium sized chimneys and dormers may be undetectable and lead to those larger differences
of 18.4% (cf. Figure 9). Additionally, in aerial images, hard shadow areas and trees partly covering
roof areas induce gaps or missing roof parts which directly affect the determination of the plane size
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(cf. Figure 8c). Therefore, an improved, detailed extraction of disturbing objects, e.g., based on the
image information, is one of the main tasks for future development of the system. Again, an influence
of rasterization cannot be recognized in the geometric roof plane parameters.Remote Sens. 2015, 7, page–page 
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Figure 8. Extracted roof planes of the Leicester test site. (a) Aerial image; (b) Roof planes extracted 
from LiDAR DSM; (c) Roof planes extracted from DSM derived from aerial images. Aerial image: 
copyright © Bluesky International Ltd. (Leicestershire, UK). Derived from data © Crown copyright 
and database right 2012 Ordnance Survey licence number 100042840. 
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disturbing objects, e.g., based on the image information, is one of the main tasks for future 
development of the system. Again, an influence of rasterization cannot be recognized in the geometric 
roof plane parameters. 

As shown in Figure 6, the available image resolution has an enormous influence on the 
automatically derived DSM and, therefore, on the quality of the extracted roof areas. The resolution 
of 0.20 m pixel size causes significant irregularities and undulations of about 0.3 m–0.4 m even in 
planar roof areas. The same effect can be seen in the examples of Agugiaro et al. [33]. In contrast, the 
pixel size of 0.06 m is smaller than the tile size (approx. 0.10 m) which leads to a significant image 
texture and, therefore, to the extraction of relatively smooth roof surfaces (deviations of <0.15 m) 
where smaller objects can be detected and excluded. A jump in quality can be observed at an image 
resolution according approximately to the size of the roof elements (e.g., roof tiles). This observation 
can be confirmed by additional UAV flights. Figure 7 shows the resulting DSM derived from UAV 
images of 0.02 m pixel size (flying height approx. 50 m). Even smaller details like vent tubes, roof 
hatches etc. are recognizable. In conclusion, it can be stated that the generation of DSMs adequate for 
detailed solar energy applications based on aerial images needs sufficiently high resolution data, i.e., 
pixel sizes smaller than the roof elements (e.g., <0.1 m). In contrast, for LiDAR data, only moderate 

Figure 8. Extracted roof planes of the Leicester test site. (a) Aerial image; (b) Roof planes extracted
from LiDAR DSM; (c) Roof planes extracted from DSM derived from aerial images. Aerial image:
copyright © Bluesky International Ltd. (Leicestershire, UK). Derived from data © Crown copyright
and database right 2012 Ordnance Survey licence number 100042840.
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resolutions of approx. 0.25 m–0.30 m (equivalent to 10–16 pts./m2) are needed to obtain comparable 
results. Therefore, higher data resolution of aerial images in the future will lead to an increasing usage 
of automatic image analysis to generate high quality DSM data, an important aspect due to 
significantly shorter up-date cycles and nationwide coverage. Also, the compression rate of aerial 
image data leads to an impairment of the derived DSM data. However, due to the fact that only one 
case occurred, no validated results can be given here. More investigations with a larger number of 
datasets of different compression rates for the same test site and the same processing conditions have 
to be carried out first, not least to clarify possible certain effects caused by the matching algorithm itself. 

 
Figure 9. Extracted roof planes of the Karlsruhe test site. (a) Aerial image; (b) Roof planes extracted 
form LiDAR DSM; (c) Roof planes extracted from DSM derived from aerial images. Copyright: 
Datengrundlage © Stadt Karlsruhe, Liegenschaftsamt. 

4.3. Qualitative Comparison of Results Derived from LiDAR and Aerial Imagery 

The final stage of this quality assessment involves a comparison of the results obtained from the 
two alternative data types: LiDAR and aerial imagery. As Oude Elberink [4] has stated, although 
there are several problems analyzing LiDAR data for modeling of buildings, the potential of 
automatic reconstruction in complex scenes is lower when using aerial images. Our investigations for 
the most part confirm this statement. The automatic generation of a DSM for extracting roof planes 
from images has a number of disadvantages when compared to LiDAR data. 

To obtain DSM of sufficient quality, a high degree of image overlap is necessary. The commonly 
used overlaps of 60% along-track and 20%–25% across-track are not sufficient in most cases. Our 
experience has shown that the degree of overlap should be ≥80% along-track and ≥50% across-track. 
Even if aerial images with such a high degree of overlap are available, vegetation is still impenetrable. 
In contrast to LiDAR data, roof parts covered by nearby trees are—in most cases—excluded by plane 
extraction algorithms and roof planes remain incomplete or missed. 

Another significant drawback is that automatic image matching methods depend to a large 
degree on sufficient image texture (significant gradients in different directions) to perform image 
correlation. There are two sources of homogenous, unstructured areas. First, there are those areas 
with the same uniform material, e.g., building roofs. Second, there are those hard shadow areas where 
often no significant points and their point correspondences in the other images can be found, 
resulting in gaps in the DSM. This may also lead to undesirable inhomogeneous, irregular point 
distributions and gaps in the extracted object surfaces (Figure 8c). 

In contrast to LiDAR data, a further challenge for image matching approaches are the sharp 3D 
object edges at building borders and roof ridges which appear relatively smooth in the resulting DSM 
data derived automatically from aerial images. Therefore, the extraction of roof plane borders 
contains uncertainties largely affecting the determination of their size. As stated in Section 4.2., to 

Figure 9. Extracted roof planes of the Karlsruhe test site. (a) Aerial image; (b) Roof planes extracted
form LiDAR DSM; (c) Roof planes extracted from DSM derived from aerial images. Copyright:
Datengrundlage © Stadt Karlsruhe, Liegenschaftsamt.

As shown in Figure 6, the available image resolution has an enormous influence on the
automatically derived DSM and, therefore, on the quality of the extracted roof areas. The resolution of
0.20 m pixel size causes significant irregularities and undulations of about 0.3 m–0.4 m even in planar
roof areas. The same effect can be seen in the examples of Agugiaro et al. [33]. In contrast, the pixel size
of 0.06 m is smaller than the tile size (approx. 0.10 m) which leads to a significant image texture and,
therefore, to the extraction of relatively smooth roof surfaces (deviations of <0.15 m) where smaller
objects can be detected and excluded. A jump in quality can be observed at an image resolution
according approximately to the size of the roof elements (e.g., roof tiles). This observation can be
confirmed by additional UAV flights. Figure 7 shows the resulting DSM derived from UAV images of
0.02 m pixel size (flying height approx. 50 m). Even smaller details like vent tubes, roof hatches etc. are
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recognizable. In conclusion, it can be stated that the generation of DSMs adequate for detailed solar
energy applications based on aerial images needs sufficiently high resolution data, i.e., pixel sizes
smaller than the roof elements (e.g., <0.1 m). In contrast, for LiDAR data, only moderate resolutions
of approx. 0.25 m–0.30 m (equivalent to 10–16 pts./m2) are needed to obtain comparable results.
Therefore, higher data resolution of aerial images in the future will lead to an increasing usage of
automatic image analysis to generate high quality DSM data, an important aspect due to significantly
shorter up-date cycles and nationwide coverage. Also, the compression rate of aerial image data leads
to an impairment of the derived DSM data. However, due to the fact that only one case occurred, no
validated results can be given here. More investigations with a larger number of datasets of different
compression rates for the same test site and the same processing conditions have to be carried out
first, not least to clarify possible certain effects caused by the matching algorithm itself.

4.3. Qualitative Comparison of Results Derived from LiDAR and Aerial Imagery

The final stage of this quality assessment involves a comparison of the results obtained from
the two alternative data types: LiDAR and aerial imagery. As Oude Elberink [4] has stated,
although there are several problems analyzing LiDAR data for modeling of buildings, the potential of
automatic reconstruction in complex scenes is lower when using aerial images. Our investigations for
the most part confirm this statement. The automatic generation of a DSM for extracting roof planes
from images has a number of disadvantages when compared to LiDAR data.

To obtain DSM of sufficient quality, a high degree of image overlap is necessary. The commonly
used overlaps of 60% along-track and 20%–25% across-track are not sufficient in most cases. Our
experience has shown that the degree of overlap should beě80% along-track andě50% across-track.
Even if aerial images with such a high degree of overlap are available, vegetation is still impenetrable.
In contrast to LiDAR data, roof parts covered by nearby trees are—in most cases—excluded by plane
extraction algorithms and roof planes remain incomplete or missed.

Another significant drawback is that automatic image matching methods depend to a large
degree on sufficient image texture (significant gradients in different directions) to perform image
correlation. There are two sources of homogenous, unstructured areas. First, there are those areas
with the same uniform material, e.g., building roofs. Second, there are those hard shadow areas
where often no significant points and their point correspondences in the other images can be found,
resulting in gaps in the DSM. This may also lead to undesirable inhomogeneous, irregular point
distributions and gaps in the extracted object surfaces (Figure 8c).

In contrast to LiDAR data, a further challenge for image matching approaches are the sharp
3D object edges at building borders and roof ridges which appear relatively smooth in the resulting
DSM data derived automatically from aerial images. Therefore, the extraction of roof plane borders
contains uncertainties largely affecting the determination of their size. As stated in Section 4.2, to
achieve reliable results, a very high image resolution is indispensable which may be realized at a
nationwide level in the near future.

The disadvantages of LiDAR data—especially for large area datasets—may be the low or
medium point densities of 1–4 pts./m2 of commonly available large-area datasets while an acceptable
quality of roof plane extraction (including the detection of disturbing roof objects) can be obtained
from a value of approximately 10–16 pts./m2. Another drawback is the lack of multi-spectral
information which can be used for an improved detection of building areas. However, the most
important disadvantages are the long or undefined up-date cycles as well as an incomplete coverage
in most European countries. Therefore, in future, the use of very high resolution aerial imagery for
automatic generation of DSM will be significant.

5. Conclusions

A comprehensive quality evaluation of a system for extraction of suitable roof planes for solar
energy installations based on the significant factors such as positional displacements, inclination
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angle, aspect angle, size and additional effects (data resolution, compression rate) was presented.
Due to the variable data availability in Europe, we explored the use of alternative input data types
in the system workflow (LiDAR data, aerial images). The system is targeted towards two main
user groups: on the one hand, individual users like house owners, installers etc., and, on the other
hand, governments or solar energy companies interested in large regional areas which must be
manageable. The extended quality assessment has proved the benefit of the results obtained based on
commonly available datasets: completeness values of about 87%–96%, correctness of about 83%–99%
and quality of 80%–92%, mean differences of incidence angles of approximately 1.5˝, aspect angles
of approximately 1˝ and a plane size of 14% on average. Additionally, the influence of new quality
parameters (image resolution, data compression rate) on the results has been discussed.

Based on higher resolution data, future developments should aim towards a robust process of
detection of disturbing roof objects, one of the main error sources in the determination of usable roof
areas for solar energy systems. Additional research has to be carried out concerning the influences
of image resolution and compression rate on the extracted roof planes as well as the potential of
full waveform and multispectral laser sensors (e.g., Slota [47], Yan et al. [48]). An over-detailed
calculation algorithm of the subsequent energy yield seems to be questionable due to the fact
that such solar potential systems are oriented towards the estimation of energy yield in the future
where the enormous variability of annual solar radiation will affect the results much more than the
consideration of some details in the calculation algorithm. Another more user-orientated aspect is
an easy to use and intuitive web portal for widespread utilization of such a system. In this context,
the EAGLE platform [1] will contribute to the increasing dissemination of renewable energy systems
in Europe.
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