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Abstract 

 

The geometry dependent hybrid model proposed by M.Blann and supplied with 

models for the non-equilibrium cluster emission was implemented in the TALYS-1.74 

code. A number of subprograms of ALICE and ALICE/ASH codes after an 

appropriate modification were added to TALYS. The value of the TALYS input 

variable preeqmode equal to five is reserved for the use of new approach. The 

calculated nucleon and light cluster energy distributions are compared with measured 

data. 
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1. Introduction 

 

More than forty years the geometry dependent hybrid model (GDH) proposed by 

M.Blann [1] is used successfully for the simulation of non-equilibrium emission of 

nucleon and light clusters in nuclear reactions at intermediate energies. An advance 

of the use of the GDH model with a combination with the Hauser-Feshbach model 

was clearly demonstrated [2,3]. 

 The TALYS code [4] represents a new generation of nuclear model codes 

combining a number of well justified models and approaches for the simulation of 

particle interaction with nuclei. In practice the use of various alternative methods of 

calculations available by user’s choice gives a unique possibility to understand a real 

uncertainty of theoretical predictions of calculated cross-sections and particle 

distributions. 

 The goal of the present work is an extension of the current version of the 

TALYS code by the implementation of the GDH model and performing test 

calculations. 

 A brief description of implemented models, changes in the TALYS text, and 

results of test calculations are given below. 

 

 

2. Brief description of models implemented in TALYS  

2.1 Pre-compound nucleon emission  

In the GDH model the pre-equilibrium energy distribution of nucleons is calculated as 

follows [5]: 
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where Tl is the transmission coefficient for l-th partial wave; nXx is the number of 

nucleons of type “x” in the n-exciton state; x is the channel energy of the nucleon; 

(p,h,E) is the density of exciton states with “p” particles and “h” holes (p+h=n) at the 

excitation energy E; U is the final excitation energy, U=EQxx and Qx is the nucleon 

separation energy; Dn is the factor [6], which takes into account a “depletion” of the n-

exciton state due to the nucleon emission; n0 is the initial exciton number. 
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 The nucleon emission rate 
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where Sx and x are the spin and reduced mass of the outgoing nucleon of type “x”, 

inv

x  is the inverse reaction cross-section and gx is the single-nucleon state density.  

 The intranuclear transition rate 
 x  is defined as follows 

 0( ) x x lV    , (3) 

where V is a velocity of a nucleon inside the nucleus, 0 is the nucleon-nucleon 

scattering cross-section corrected for the Pauli principle [5], l is the average nuclear 

matter density at the distance from l  to ( 1)l . 

 For nucleon induced reactions the density of excited states with the number of 

excitons n=2 and 3 is calculated considering the finite depth of the nuclear potential 

well [7]  
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where EF is the Fermi energy, and the finite potential depth is equal to V + Q, and Q 

is the nucleon binding energy. 

 The number of nucleons of x-type in the n-exciton state nXx for incident neutrons 

is calculated as 
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and for incident proton  
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 3 32 n pX X , (12) 

where xy is the nucleon - nucleon interaction cross-section in the nucleus. 

 The ratio of the nucleon-nucleon cross-sections calculated taking into account 

the Pauli principle and the nucleon motion is parameterized in the present work as 

 pn/pp = np/nn = 1.375105 T2  8.734103 T+2.776,  (13) 

where T is the kinetic energy of the projectile outside the nucleus in MeV.  

 A correction has been made for the high energy tails of (p,xn) and (n,xp) 

reaction spectra calculated by the GDH model [8]. The details are given in Ref.[9]. 

 Fig.1 shows an example of neutron energy distribution for the p+90Zr reaction 

calculated using the GDH model implemented in TALYS and the common pre-

equilibrium exciton model of TALYS. 

 

 

 

 

 

Fig.1 Neutron energy distribution for p+90Zr reaction calculated using the GDH model and 
the “default” pre-equilibrium model of TALYS. Experimental data are discussed in the 
text. 
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2.2 Pre-compound -particle emission  

The pre-equilibrium -particle emission spectrum for nucleon induced reaction is 

calculated as a sum of components corresponding to the mechanism of pick-up and 

knock-out 

  
PU KOd d d

d d d  

  

  
 (14) 

 The contribution of the pick-up mechanism is calculated with the help of the 

coalescence pick-up model [10,11] combined with the hybrid exciton model 
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where non is the nonelastic interaction cross-section of the primary particle with a 

nucleus at kinetic energy Ep, Fk,m() is the -formation factor [10] equal to the 

probability that the -particle is composed of “k” particles above Fermi level and “m” 

particles below, the residual excitation energy U is equal to E  Qα; 
e

  is the 

emission rate of the -particle; 


  is the intranuclear transition rate corresponding to 

the absorption of the -particle in a nucleus; g is the intranuclear density of single 

particle states for the -particle. The emission rate of -particles is calculated as 
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where S and  are the spin and reduced mass of the outgoing -particle, and the 

inverse reaction cross-section for -particles, ( )inv

    is calculated by the optical 

model with parameters discussed in Ref. [6]. The absorption rate of -particles is 

defined as follows  

 2 /optW   , (17) 

where 
optW  is the imaginary part of the optical potential for -particles. 

 The knock-out contribution to the -particle energy distribution [12] is equal to 
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where the factor g/(gp) justifies the substitution of the level density 

( , , , , , , )E        for the three-component system (neutron, proton, -particle) 

[13,12] by the one-component state density (p,h,E) in Eq.(18), and  is the 

probability of interaction of the incident particle with a “pre-formed” -cluster resulting 

in its excitation in the nucleus [13].  

 The imaginary part of the optical potential for -particles is calculated as follows: 

optW = (/0)W’ at   0, 
optW = W’ at 0 <  < 72 MeV, and 

optW = W’exp(0.06  

4.32) at   72 MeV, where W’ = W0 and 0=0.228A, =0.25. The value of W0 is 

taken from Refs.[14,15] W0=10 +0.345(A2Z) MeV. The value adopted for g is equal 

to A/13 [16].  

2.3 Pre-compound deuteron emission  

It is supposed that a non-equilibrium deuteron emission in nucleon induced reactions 

results from: i) the pick-up of nucleons with energy below the Fermi energy after the 

formation of the (2p,1h) initial exciton state, ii) coalescence of two excited nucleons 

with energies above EF, iii) knock-out of a “pre-formed” deuteron, and iv) a direct 

process resulting in deuteron formation and escape. The non-equilibrium deuteron 

spectrum is calculated as a sum of different components 
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where the first term relates to pick-up and coalescence after the formation of the 

(2p,1h) exciton state, the second component describes the contribution of the 

deuteron knock-out and the last term relates to the direct process. 

 The exciton level density is calculated following Bĕták, Dobeš [17] taking into 

account the finite depth of the nuclear potential well 
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where E is the excitation energy, EF is the Fermi energy, g and g  are the single 

particle level densities for particles and holes, respectively, (x) is the Heaviside 

function,  = 0 for x < 0 and  = 1 for x > 0. 

 The exciton coalescence pick-up model [11] is used for the calculation of the 
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dσP-U,C/dεd spectrum component [18] 
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where Fk,m is the deuteron formation factor equal to the probability that the deuteron 

is composed of “k” particles above the Fermi level and “m” particles below; d is the 

channel emission energy corresponding to the deuteron emission; 
e

d  is the deuteron 

emission rate; d


 is the intranuclear transition rate for the absorption of the deuteron 

in the nucleus; gd is the density of single particle states for the deuteron.  

 The form factors for deuteron formation, Fk,m were calculated in Ref.[11] for the 

effective nuclear radius with a dR parameter value equal to 1 fm. The original values 

[11] are approximated and used as follows 

 F1,1(ε) = 

2
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 F2,0(ε) = 0.6  F1,1(ε) (26) 

 In analogy with -particle emission the knock-out component of the pre-

compound deuteron emission spectrum is written as follows 
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where the factor d describes the initial number of excited deuteron clusters in the 

nucleus  

 d = 2 Fd(E0), (28) 

where Fd is the probability of interaction of the incident particle with the “pre-formed” 

deuteron resulting in its excitation in the nucleus; and the factor of two reflects the 

normalization on the number of particles in the initial exciton state n0.  

 The general expression for Fd [19] is  
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where “x” refers to the initial proton or neutron, xd, xp and xn are the cross-sections 

of the elastic interaction of projectile with deuteron, proton and neutron, respectively, 

corrected for a Pauli principle,  is the number of “pre-formed” deuterons in the 

nucleus, Z’ and A’ are the number of protons and nucleons in the nucleus corrected 

for a number of clustered deuterons. 

 The direct pick-up process corresponds to the pick-up of a nucleon without 

formation of a (2p,1h) exciton configuration. A rigorous description of this process 

can be done only outside of pre-equilibrium models. However, mathematical 

expressions obtained formally using the pre-compound exciton model [19,20] are 

useful for the phenomenological and qualitative description of direct nucleon pick-up.  

 According to Ref.[18], the direct component of the deuteron spectrum is 
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where the final level density *(U) is approximated by (0p,1h,U)/gd [18]. See 

details in Ref.[9] or in the code text. 

 Formal consideration of the finite depth of the nuclear potential well shows that 

Eq.(33) can contribute only in the highest energy part of the deuteron emission 

spectrum, as has been mentioned above. In this case the calculated part of the 

spectrum is a rectangular step with width equal to EF. To improve the agreement of 

calculations and the measured deuteron spectra, the direct component of the 

spectrum was rewritten in the following form [19] 
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where 1, 2, and 3 are parameters and EF is the effective value of the Fermi 

energy.  

 The values of i are obtained from analysis of experimental deuteron spectra. 

The global parameterization of i parameters is hardly possible.  

 Model parameters were obtained from the comparison of calculations with 

available experimental data. The change in values of different parameters results to 

different energetic dependencies of calculated deuteron spectrum. In most cases 

such change cannot be represented by a simple redefinition of other model 

parameters. 
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3. Changes in the program text  

 

A module providing calculations of pre-equilibrium nucleon and light cluster 

distributions using GDH was implemented in the TALYS-1.74 code. The module 

consists of a number of primary subprograms of ALICE/ASH code [9], the 

ALICE/ASH subprograms modified for an appropriate integration in TALYS, and 

subroutines written to provide an interface between TALYS and modified ALICE/ASH 

modules. 

 The value of the TALYS input variable preeqmode equal to five is reserved for 

GDH calculations. A brief description of changes of TAYLS and ALICE/ASH 

subprograms and the list of modified and new routines is given below.  

3.1 Changes in TALYS subprograms 

The following TALYS-1.74 subroutines were modified in the present work 

  checkvalue  

  exciton 

  exciton2 

  input3 

  preeq 

  preeqcomplex 

 The modification concerns an addition of a number of instructions allowing the 

calculations with the new value of the preeqmode parameter equal to five. The main 

GDH module gdh0 is called in the subroutine preeq.  

 

3.2 Changes in ALICE/ASH subprograms 

The list of modified ALICE/ASH subroutines is follows 

  gdhadist 

  gdhangel 

  gdhangl 

  gdhbinde 

  gdhex1ex2 
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  gdhgamma 

  gdhlymas 

  gdhmain 

  gdhmfp 

  gdhnucmfp 

  gdhover 

  gdhparap 

  gdhshaft 

  gdhsigi 

  gdhtlj 

  gdhtreed 

  gdhybrid 

  alph05 

  ddirec 

  deut05 

  iwamoa 

  iwamod 

 The modification of subprograms, which name begins with “gdh” and original 

name follows the abbreviation, concerns mainly their formal integration in TALYS. 

The subroutines alph05, ddirec, deut05, iwamoa, and iwamod were altered to 

provide an agreement of experimental data and GDH-TALYS calculations. 

 An increase of memory load after the implementation of the GDH model in 

TALYS is about 0.15 %.  

 

 

4. Example of the input file  

 

A typical example of the input file for calculations applying GDH is given below 

# GDH model 
projectile n 
element Fe 
mass 56 
energy  96.0 
preeqmode 5 
outspectra  y 
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 Calculated energy distributions for emitted proton, deuteron, and -particles for 

this task are shown in Figs.2-4. The experimental data are discussed in the next 

Section. 

  

 

Fig.2 Calculated and measured proton energy distribution for the n+56Fe reaction. 

 

 

Fig.3 Calculated and measured deuteron energy distribution for the n+56Fe reaction. 
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Fig.4 Calculated and measured -particle energy distribution for the n+56Fe reaction. 

 

 

 

 

 

5. Comparison of calculations with measured data  

 

Measured energy distributions for emitted neutrons, protons, deuterons, and -

particles in nucleon induced reactions [21-51] were compared with results of 

calculations using the GDH model and “default” TALYS models.  

 The figures are given in Appendices A-C. 

 When comparing the results, it should be borne in mind that “default” 

calculations use general parameterizations of pre-compound model parameters, 

while GDH calculations are performed using specific parameters for different targets. 

 For some neutron induced reactions there is a large discrepancy of calculated 

and measured values at the high energy tail of spectra. The same disagreement is 

observed for calculations using the “default” pre-compound model of TALYS. While 

the TALYS computation of reaction energies is usually correct, the discrepancy is 
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apparently due to the lack of measurements; the short discussion can be found in 

Ref.[19]. 

 

 

6. Conclusion  

 

The geometry dependent hybrid model supplemented by phenomenological models 

for the simulation of non-equilibrium emission of deuterons and -particles was 

implemented in the TALYS-1.74 code. Models discussed present an alternative to 

the pre-compound exciton model of TALYS and can be used for the prediction of 

cross-sections and secondary particle distribution in nuclear reactions induced by 

intermediate energy nucleons. 

 The results of calculations were compared with experimental energy 

distributions (Appendices A-C). 
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Calculated and experimental deuteron energy distributions 
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Calculated and experimental -particle energy distributions 
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