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Abstract 

This thesis focuses on the investigation of kinetics and adsorption equilibria in a new class of 

stationary phases for high performance liquid chromatography (HPLC), known as metal-

organic frameworks (MOFs). The studies include: (i) the fabrication of core-shell MOF 

magnetic particles (MPs) with the desired shell thickness and particle properties for packing 

into HPLC columns, (ii) the practical evaluation of the column performance by pulse and 

breakthrough experiments, and (iii) the detailed modeling of the sorption processes revealing 

a fundamental understanding of the interaction between MOF based adsorbents and dissolved 

organic molecules. The procedure described above was realized via three different MOFs 

(UiO-67, HKUST-1, and MIL-100(Fe)) representing widely different chemical compositions, 

crystalline structures and pore sizes.  

The recently introduced liquid-phase epitaxy (LPE) process can yield uniform MOFs with 

controlled orientation and thickness on the surface of functionalized substrates (SURMOFs). 

The three investigated MOFs were homogenously coated onto the outer surface of MPs with 

the LPE method in a layer-by-layer (LBL) fashion. The resulting core-shell MOF MPs were 

characterized by XRD and SEM to ensure their successful synthesis and acquire their 

structure data. With regard to UiO-67, HKUST-1, and MIL-100(Fe), approximately 0.4, 0.28 

and 0.65 µm MOF shells were deposited on the MPs after 55, 60, and 55 deposition layers, 

respectively.   

A combination of experimental data and simulations with a powerful chromatography 

modeling software, ChromX, recently developed at the KIT, was employed to study the 

column performance and gain insight into the interaction mechanism between solute 

molecules and MOF thin films. It was found that the intraparticle diffusion played a dominant 

role in the uptake kinetics while axial dispersion and film diffusion showed no significant 

influence. Regarding sorption equilibria, it showed that for the same MOF the affinities of 

different tested solutes are strongly different, while their maximum capacities remain almost 

constant.  

In particular, baseline separation of three dissolved phenol derivatives (2,6-dimethylphenol 

(DMP), benzene-1,3-diol (BZD), and 2,6-dichlorophenol (DCP)) was achieved on the UiO-

67 based stationary phase when gradient elution was applied using acetonitrile/water as 

mobile phase, due to hydrophobic and/or π-π interactions. Remarkable separations in pyridine 

and 4,4′-bipyridine due to size exclusion and in three chloroaniline (CLA) isomers due to 

polarity effects were achieved, using a HKUST-1 based stationary phase and applying 

methanol or acetonitrile as mobile phase. The MIL-100(Fe) based stationary phase shows 

good separation efficiency for two groups of mixed aromatic hydrocarbons (toluene, styrene 

and p-xylene; acetanilide, 2-nitroaniline and 1-naphthylamine) using methanol/water as 

mobile phase.  
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The pore diffusivities (Dp) of the solute molecules in UiO-67, HKUST-1 and MIL-100(Fe) 

were determined to be around 1.3×10
-13

, 2.3×10
-15

, and 5×10
-12

 m
2
 s

-1
, respectively. This 

order corresponds at least qualitatively with the pore diameter of the respective crystalline 

MOF structures being 1.2, 0.5 and 2.5 nm, respectively. Especially in case of the well-known 

MOF HKUST-1 the small size of its pores and the even smaller windows between them seem 

to result in a very small intraparticle mass transfer of solute molecules, limiting the 

usefulness of HKUST-1 for liquid chromatography. In contrast MIL-100(Fe) has pores of 2 

to 3 nm diameter, resulting in pore diffusion coefficients comparable to commercial 

chromatographic media. Among the three investigated MOFs, MIL-100(Fe) exhibited also 

the highest maximum capacity (q*MOFmax = 3.5 mol L
-1

) towards the solutes toluene, styrene 

and p-xylene, as well as (q*MOFmax = 3.1 mol L
-1

) towards different anilines. These maximum 

capacities translate into a high number of solute molecules fitting into a single unit cell of the 

MIL-100(Fe) crystalline structure (approx. 840 for toluene, styrene and p-xylene, approx. 740 

for aniline derivatives).  

Combining these high capacities and good intraparticle kinetics of certain MOFs with the 

well-defined pore structure and enormous chemical variety of this new class of materials, it 

becomes obvious that MOFs possess a huge potential as chromatography material.     
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Zusammenfassung 

Im Rahmen dieser Arbeit wurde eine neue Klasse chemischer Verbindungen, sogenannte 

metall-organische Gerüstverbindungen (engl. metal-organic frameworks, MOFs), als 

stationäre Phase in der Hochleistungsflüssigkeitschromatographie (engl. high performance 

liquid chromatography, HPLC) untersucht. Die Studie, in der insbesondere kinetische 

Experimente und Versuche zum Adsorptionsgleichgewicht an drei MOF Typen (UiO-67, 

HKUST-1 und MIL-100 (Fe)) mit unterschiedlichen Eigenschaften hinsichtlich ihrer 

chemischen Zusammensetzung, Kristallstruktur und Porengröße durchgeführt wurden, 

umfasst:  

(i) Synthese von Kern-Hülle-MOF Sorbentien mit magnetischen Partikeln (engl. 

magnetic particles, MPs) als Kern und definierten MOF Schichtdicken als Schale. 

Packen analytischer HPLC-Säulen mit diesem Material.  

(ii) Charakterisierung des chromatografischen Verhaltens  der mit MOF-MP 

gepackten HPLC Säulen mittels Puls- und Durchbruchs-Experimenten  

(iii) Detaillierte Modellierung und Identifikation der prozessbestimmenden Parameter 

bei der Sorption verschiedener organischer Moleküle an MOF-basierte 

Adsorbentien.  

Bei der vor kurzem vorgestellten Flüssigphasenepitaxie (engl. liquid phase epitaxy, LPE) 

handelt es sich um eine Synthesemethode, mit der MOFs in definierter Orientierung und in 

gewünschter Schichtdicke auf die Oberfläche funktionalisierter Substrate gebunden werden 

können (engl. surface mopunted MOFs, SURMOFs). Die drei in dieser Arbeit untersuchten 

MOFs wurden zunächst mit Hilfe der LPE im Substratschichtungsverfahren  (engl. layer-by-

layer, LBL) homogen auf die Außenfläche von Magnetpartikeln gebunden. Zur Verifizierung 

der Kern-Hülle-MOF Synthese sowie zur Strukturaufklärung und allgemeinen 

Charakterisierung wurden Röntgenbeugungsanalysen und zusätzliche 

rasterelektronenmikroskopische Untersuchungen eingesetzt. Es zeigte sich, dass die MOFs 

UiO-67, HKUST-1 und MIL-100 (Fe) nach 55, 60 bzw. 55 Substratschichtungen eine 

Schichtdicke von etwa 0,4, 0,28 bzw. 0,65 µm aufwiesen. 

ChromX, eine kürzlich am KIT entwickelte Software zur Versuchsplanung und Modellierung 

von flüssigchromatographischen Prozessen, verbindet die Verarbeitung experimenteller 

Daten mit Methoden der klassischen Modellsimulation. In dieser Arbeit wurde ChromX 

eingesetzt, um die Leistungsfähigkeit SURMOF basierterSäulen zu evaluieren sowie die 

Wechselwirkungen zwischen funktioneller MOF Schicht und Adsorptiv zu untersuchen. Die 

Modellierungen konnten zeigen, dass die intrapartikuläre Diffusion den dominierenden 

Faktor hinsichtlich der Sorptionskinetik darstellt, während der Einfluss der axialen 

Dispersion sowie der Filmdiffusion vernachlässigt werden kann.  

Bezüglich des Sorptionsgleichgewichtes zeigten sich für alle untersuchten MOF-Typen hohe 

Affinitätsunterschiede bei nahezu konstanten maximalen Kapazitäten für verschiedene 
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untersuchte Adsorptive. An auf UiO-67 basierenden stationären Phasen konnte, insbesondere 

aufgrund hydrophober und/oder π-π-Wechselwirkungen, die Basislinientrennung dreier 

gelöster Phenolderivate (2,6-Dimethylphenol (DMP), Benzol-1,3-diol (BZD) und 2,6-

Dichlorphenol (DCP)) bei Anwendung einer Gradientenelution mit einem 

Acetonitril/Wasser-Gemisch als mobile Phase erreicht werden.  

Eine auf dem MOF-Typ HKUST-1 basierende stationäre Phase erreichte durch 

Größenausschluss eine gute Trennung von Pyridin und 4,4'-Bipyridin. Zudem konnte an 

HKUST-1 gezeigt werden, dass sich drei Chloranilin Isomere vor allem aufgrund von 

Polaritätseffekten und unter Anwendung von Methanol als mobile Phase voneinander 

separieren lassen. 

Stationäre Phasen, die auf Basis von MIL-100 (Fe) synthetisiert wurden, zeigten unter 

Verwendung eines Methanol/Wasser-Gemisches als mobile Phase eine gute Trenneffizienz 

für zwei Gruppen von gemischten aromatischen Kohlenwasserstoffen (Toluol, Styrol und p-

Xylol sowie Acetanilid, 2-Nirtoaniline und 1-Naphthylamin.  

Analysen der Porendiffusionskoeffizienten verschiedener organischer Moleküle innerhalb der 

MOF Typen UiO-67, HKUST-1 und MIL-100 (Fe) ergaben Werte im Bereich 1,3 × 10
-13

, 2,3 

× 10
-15 

und 5 × 10
-12

 m
2
 s

-1
, wobei sich eine qualitative Korrelation mit dem 

Porendurchmesser der jeweiligen kristallinen MOF Struktur (1,2, 0,5 und 2,5 nm) zeigte. Im 

Falle des gut beschriebenen MOF HKUST-1 scheint die geringe Porengröße und die noch 

kleineren Fenster dazwischen zu einem stark reduzierten intrapartikulären Massentransfer zu 

führen, was die Eignung von HKUST-1 für die Flüssigchromatographie limitiert. Im 

Gegensatz dazu verfügt MIL-100 (Fe) über Poren mit einem Durchmesser von 2-3 nm und 

einen Porendiffusionskoeffizienten, der vergleichbar mit kommerziellen 

Chromatographiemedien ist. Von den drei untersuchten MOF-Typen zeigte MIL-100 (Fe) 

sowohl gegenüber Toluol, Styrol und p-Xylol (q*MOFmax = 3,5 Mol L
-1

), als auch gegenüber 

verschiedenen untersuchten Anilinen (q*MOFmax = 3,1 Mol L
-1

) die höchsten 

Maximalkapazitäten. Diese maximalen Kapazitäten korrespondieren mit einer großen Anzahl 

gespeicherter Analytmoleküle pro Einheitszelle der MIL-100 (Fe) Kristallstruktur (ca. 840 

für Toluol, Styrol und p-Xylol, ca. 740 für Anilinderivate.). 

Diese Kombination aus einer hohen Adsorptionskapazität, guten  kinetischen Eigenschaften, 

einer definierten Porenstruktur und einer hohen chemischen Variabilität machen MOFs zu 

einer Klasse von Materialien mit einem enormen Potenzial für den Einsatz als stationäre 

Phase in der Chromatographie. 
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1. Introduction and Objectives 

1.1. Introduction 

High performance liquid chromatography (HPLC) is one of the most popular techniques in 

separation and purification. It spans nearly all analytical fields in pharmaceutical and 

chemical industries due to the availability of diverse mobile and stationary phases. 

Nevertheless, new challenges in separation technologies require continuously novel porous 

materials suitable as stationary phases in HPLC. The corresponding design and development 

of novel materials is time-consuming and easily frustrating, mainly because of the 

complicated structure function relationship of porous adsorbents, combined with still 

restricted capabilities to model their interaction with varying analytes.  

Metal‒organic frameworks (MOFs), self-assembled by metal nodes and functional organic 

linkers, turned up in the field of adsorbents as an emerging type of porous crystalline 

materials two decades ago [1, 2]. Since then, MOFs have attracted considerable attention due 

to their flexible structure, tunable pore size, and promising applications in gas storage, 

separation, catalysis, sensing and luminescence, to name a few [3]. To tailor MOFs for 

certain applications, their properties, such as polarities, pores sizes and functional groups, can 

be modified by using different metals or linkers. The wide structural choices of MOFs, along 

with their salient features such as low density, high uptake capacity, and absence of dead 

volume, make MOFs attractive candidates for stationary phases in HPLC [4, 5]. 

In recent years, an increasing number of studies have reported the potential of MOFs as a 

new class of chromatographic materials. In 2007, Alaerts and co-workers [6] first reported 

the use of the MOF materials MIL-47(V) and MIL-53(Al) as liquid chromatography 

stationary phases and they showed different column performances for the separation of 

xylene isomers and ethylbenzene with hexane as the mobile phase. Yan and co-workers [7] 

made great contribution to the use of MOFs for HPLC separations. They found that columns 

packed with the MOF MIL-53(Al) provided high-resolution separations of a broad range of 

analytes using acetonitrile/water as the mobile phase.  

Up to now, MOFs are mainly synthesized in the form of large and irregular crystals, resulting 

e.g. from sol-gel processes in bulk solutions. However, the bulky MOF crystals are not 

favorable for their application in HPLC because the diffusion of molecules is much slower in 

liquids and thus, the penetration of analyte molecules into the MOF pores is a rather slow 

process. One way to overcome this problem is to reduce the particle size into the micro- or 

nano-meter range, but the small particles will result in high pressure drops of the respective 

packed beds [8]. 

Besides, the irregular shapes and wide size distributions of MOFs also cause other drawbacks 

such as suboptimal column packing, and low column efficiency [9]. Compared to completely 

porous microparticles, larger core-shell particles with a thin active shell can increase column 
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performance while showing relatively low backpressure [10, 11]. Therefore, an ideal solution 

would be to synthesize uniform MOF particles having a core-shell structure. The recently 

introduced liquid phase epitaxy (LPE) process, applying a layer-by-layer (LBL) approach to 

add metal nodes and linkers, can produce homogenous MOFs with controllable thickness and 

growth direction on functionalized surfaces (SURMOFs) [12-16]. Therefore, applying LPE 

SURMOF shells can be successfully synthesized onto the outer surface of a functionalized 

magnetic core, which is suitable for handling by magnetic separations [17].   

Most importantly, although remarkable progress in the field of MOF based HPLC columns 

has been made, the development of MOFs for HPLC applications has been hindered by the 

lack of fundamental understanding of the interactions between the MOF solid phases and the 

guest molecules. Especially, knowledge of the adsorption kinetics and mass transfer behavior, 

which would allow for an essential understanding of the performance of MOFs based 

stationary phases, remains undetermined. Furthermore, this fundamental information is a 

prerequisite for tailoring the functionality of MOF based stationary phase for challenging 

separation tasks by a rational design of chemistry, pore structure and shell-core particle 

dimensions.  

 

1.2. Objectives of This Work   

This thesis deals with the development and characterization of magnetic MOF hybrid 

materials as new adsorbents for separation tasks. Besides a thorough physico-chemical 

characterization, detailed investigations of their performances and interactions with various 

solutes by means of HPLC were conducted. The main objectives and tasks of the thesis can 

be summarized as follows:  

 (1) Target setting: Identification of organic substances representing challenging separation 

tasks and selection of applicable MOFs specifically tailored for the determined analytes. 

(2)  Synthesis and characterization of magnetic MOFs particles: Well-defined core-shell 

structures with a MOF layer grown evenly on uniform magnetic microparticles (MPs) by the 

LPE process have to be synthesized and the as-synthesized composites characterized by XRD, 

FT-IR and SEM.  

(3) Column packing and characterization: The as-synthesized core-shell structured MOF MPs 

should be packed into HPLC columns and the column characteristics have to be determined 

in order to demonstrate the effect of MOF specific properties onto chromatographic 

performance. 

(4) Mechanisms study: The transport mechanisms and interactions between the MOF core-

shell solid phase and the target analytes should be elucidated on a more fundamental level by 

means of comparison between experimental and simulated HPLC runs.  
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In this thesis, three different types of MOFs with different physical and chemical properties 

are selected. Based on their chromatographic performance as well as extracted equilibrium 

and kinetic data of these MOFs and different analytes, the influence of the MOF properties 

(e.g., structure, pore size, water-stability, and selectivity) on the suitability as 

chromatographic material will be evaluated.  
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2. Background 

2.1. High‒Performance Liquid Chromatography (HPLC) 

2.1.1. Development of Liquid Chromatography 

Chromatography is defined as a terminology to describe various separation techniques of 

sample mixtures between two phases, the stationary phase and the mobile phase. In most 

cases the stationary phase is a fixed-bed, which may be either a sheet of paper (paper 

chromatography), a thin layer of porous materials coated on the surface of a planar material 

such as paper, metallic or glass plates (thin layer chromatography, TLC), a tube filled with 

small-particles (column chromatography) or a layer in a capillary tube (capillary 

chromatography). The mobile phase can be a gas, liquid or supercritical fluid, where the 

process is known as gas chromatography (GC), liquid chromatography (LC), and 

supercritical fluid chromatography (SFC), respectively. The mobile phase carries the 

dissolved mixture moving along the stationary phase and individual analytes are separated in 

time over the length of the fixed-bed column as a result of differential retention.  

The first type of chromatography was liquid-solid chromatography, which was discovered by 

the Russian scientist Tswett in the 1890s [1]. He separated and isolated different kinds of 

plant pigments using liquid chromatography. Willstätter and Stoll [2] repeated Tswett’s 

experiment using an aggressive adsorbent in 1913, with the chlorophylls being accordingly 

decomposed. In the late 1930s and early 1940s, Martin and Synge isolated acetyl amino acids 

on silica gel [3]. They proposed a gas rather than a liquid mobile phase to accelerate the 

movement between the mobile and stationary phases. Additionally, they suggested that 

applying high pressures and small packing particles in liquid chromatography can lead to a 

better separation. That was the start of the development of high‒performance liquid 

chromatography, also called high pressure liquid chromatography (HPLC). 

Chromatography is the most important separation technique for analytical purposes, and 

within the field of chromatography HPLC is the most commonly used method [4]. The main 

advantages of HPLC over other techniques are its high selectivity, reliability, sensitivity, 

versatility and accuracy. In particular, (1) high selectivity can be achieved due to the large 

amount of various stationary and mobile phase combinations available; (2) it can separate 

components from very complex mixtures containing e.g. sugars, proteins, enantiomers, drugs, 

fine chemicals, flavorings, etc.; (3) separated components can be collected individually; (4) 

only small amounts of samples are needed for analysis; (5) analysis can be highly accurate 

and reproducible. However, chromatography also has disadvantages compared to simpler 

separation techniques, like e.g. precipitation. The main disadvantages are: (1) the equipment 

and supplies (columns, fittings, etc.) are costly; (2) well-trained person is required because of 

the complex chemistry and equipment; (3) the processes within the column are often complex 

and advanced simulation tools are required for prediction. 
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Today, chromatography has become a very versatile technique used to identify the presence 

or to quantify certain components in a mixture (analytical chromatography), as well as to 

separate individual components from a mixture for purification (preparative chromatography). 

Table 2.1 explains the analytical and preparative chromatography from the perspective of 

scales.  

Table 2.1 Scales of chromatography. 

 

2.1.2. Fundamentals of Liquid Chromatography 

2.1.2.1. The HPLC process 

A typical HPLC instrument consists of pumps, sample injection system, column, detector and 

data acquisition system (Figure 2.1). HPLC features the sample of interest being dissolved in 

the mobile phase, before being brought into the column by the injection system. Within the 

column the components of the sample undergo a series of interactions (e.g. partitioning or 

adsorption) at the mobile phase-stationary phase boundary as they move through the HPLC 

system. The pumps deliver the desired flow and, in case of gradient elution, also composition 

of the mobile phase. The detector generates a signal proportional to the amount of sample 

component emerging from the column, hence allowing for quantitative analysis of the sample 

components. A digital microprocessor and user software control the HPLC instrument and 

provide data analysis. Some models of mechanical pumps in a HPLC instrument can mix 

multiple solvents together in ratios changing over time, generating a composition gradient in 

the mobile phase. Various detectors are in common use for both qualitative and quantitative 

analysis, such as UV/Vis, photodiode array (PDA) or mass spectrometry (MS). Most HPLC 

instruments also have a column oven that allows for adjusting the temperature. 

The fundamental principle of choosing the phases is that the components of the sample have 

different affinities towards the stationary phase. A component having a high affinity towards 

the stationary phase will take longer to travel through the column than a component having a 

higher affinity towards the mobile phase rather than towards the stationary phase. The sample 

mixture will be separated while travelling through the column due to these different 

mobilities of the components in the two phases [5].  

 

 

Types Amount of components ID column [mm] 

Analytical µg ‒ mg 4 ‒ 10 

Preparative (Laboratory scale) mg ‒ g up to 25 

Preparative (Pilot scale) g ‒ kg up to 80 

Preparative (Production) kg ‒ t up to 1500 
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Figure 2.1. Schematic diagram of HPLC.  

 

 

The graphical representation of the separation process is detailed as follows [6]: 

(a) A mixture of two components A and B, represented by circles and triangles, 

respectively, is forced through the stationary phase (Figure 2.2a). 

(b) The component B has higher affinity towards the stationary phase while component A 

has higher affinity towards the mobile phase. Hence, the mean time taken by 

component B to get through the stationary phase is longer than that for component A 

(Figure 2.2b). 

(c) When fresh mobile phase comes in, a new equilibrium will be created afterwards: 

molecules of sample in the mobile phase are partly adsorbed by the unloaded 

stationary phase surface, in conformity to the distribution coefficients, while the 

molecules previously adsorbed by the stationary phase surface desorb again into the 

mobile phase (Figure 2.2c). 

(d) After repeating this process many times, components A and B are eventually isolated. 

Component B which tends to stick to the stationary phase will migrate more slowly 

than component A (Figure 2.2d).   
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Figure 2.2. Representation of a chromatographic separation. (Figure modified after ref. [6]) 

 

2.1.2.2 Elution modes 

Isocratic elution and gradient elution are two basic elution methods of liquid chromatography 

[7]. In an isocratic elution, the composition of the mobile phase keeps constant during the 

separation process. Isocratic elution is the simplest and preferred mode while developing a 

method for analytical chromatography. On the other hand, gradient elution refers to an 

operation mode in which the mobile phase composition is changed during the separation 

process.  
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In a gradient elution, applying the two components “A” and “B” of the mobile phase, A is the 

“weak” solvent which elutes the solute from the column slowly, whereas B is the “strong” 

solvent which allows the solute to elute rapidly. Gradient elution reduces the retention time of 

the later-eluting components to make them elute faster, shortening the analysis time, giving 

narrow peaks and improving the detection limit [4]. For the separation of complex mixtures 

containing many compounds with widely differing affinities, isocratic elution is often 

unsuitable because of the unacceptably long analysis time and broad peaks. In such cases a 

well-designed gradient program is very useful to achieve an optimum separation in minimum 

time. 

 

2.1.2.3. Chromatographic mechanisms 

During a chromatographic separation process one or multiple types of interactions may 

happen between the stationary phase and the analytes. Based on the dominating interactions 

HPLC separation modes can be classified as normal phase chromatography (NPC), reverse 

phase chromatography (RPC), ion-exchange chromatography (IEX), hydrophilic interaction 

chromatography (HILIC), hydrophobic interaction chromatography (HIC), size exclusion 

chromatography (SEC), and partition chromatography, etc. They are briefly introduced as 

follows.  

 

(1) Normal phase chromatography (NPC) 

The earliest liquid chromatography was conducted using polar stationary phases in 

combination with nonpolar liquids in which the sample is dissolved [8]. This method is now 

referred to as “normal phase chromatography”. In NPC, the stationary phase is more polar 

(hydrophilic), typically silica or alumina, than the mobile phase [9-11]. Therefore, the polar 

molecules in the mobile phase tend to adsorb to the stationary phase and migrate slowly 

through the column, while the nonpolar (hydrophobic) molecules elute first. Figure 2.3 

schematically shows a part of a porous silica particle with silanol groups (Si-OH) residing at 

the particle surface and inside its pores. One major disadvantage of normal phase 

chromatography is that the polar surfaces can be easily contaminated by sample components.  
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Figure 2.3 Schematic sketch depicting the surface chemistry and interactions of a stationary phase for 

normal-phase chromatography. (Figure cited from ref. [8])   

 

NPC could be applied for the separation of organic isomers, especially if the analytes are 

insoluble or not stable in water, or if the analytes being too hydrophilic for reverse phase 

separation.  

 

(2) Reverse phase chromatography (RPC) 

In contrast to NPC, RPC refers to liquid chromatography which uses a hydrophobic (non-

polar) stationary phase and a polar mobile phase. Figure 2.4 shows a scheme of reversed 

phase chromatography. In RPC, polar molecules in the mobile phase are eluted first while 

nonpolar molecules tend to bind to the column due to the strong interactions with the 

stationary phase. Hydrophobic molecules can pass through the column by reducing the 

polarity of the mobile phase using a nonpolar solvent, decreasing hydrophobic interactions. 

The mechanism of separation is primarily based on hydrophobic interaction. RPC is the most 

popular HPLC mode with more than 70% of all HPLC analyses using this method [8]. 

Reverse phase chromatography is useful in the analysis of polar (water-soluble), medium-

polar, and some nonpolar analytes [12].  
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Figure 2.4 Schematic diagram depicting the surface chemistry and interactions of a stationary phase 

for reversed-phase chromatography (Figure cited from ref [3]). 

 

 (3) Ion-exchange chromatography (IEX) 

Ion-exchange chromatography (or ion chromatography) is based on differences in ion 

exchange affinities of charged solutes towards the ionic groups attached to the solid support. 

It is often applied in the separation of ionic or ionizable compounds. Figure 2.5 shows a 

scheme of the interaction mechanism of ion-exchange chromatography. This method has 

been in use for a long time. Nowadays, reversed-phase chromatography dominates analytical 

use of HPLC while ion-exchange chromatography is mainly used for preparative and 

industrial use. However, ion-exchange chromatography is commonly used in the analysis of 

inorganic ions and biological components such as proteins/peptides, amino acids, and 

polynucleotides [8, 13].  

 

Figure 2.5 Scheme of the interaction mechanism of ion-exchange chromatography (IEC), presenting 

the exchange of analyte ions p+ with sodium counter ions of the functional sulfonate groups attached 

to the surface (Figure taken from ref [8]).  
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(4) Hydrophilic interaction chromatography (HILIC) 

HILIC is based mainly on differences in the hydrophilicity of the sample components. The 

separations are carried out with a polar stationary phase such as silica or ion-exchange 

materials and a less polar mobile phase. HILIC is a variant of NPC and their major difference 

lies in the different types of mobile phase used, organic solvents without water for NPC and 

with some water for HILIC, leading to a difference in chromatographic mechanism. 

Hydrophilic interaction chromatography plays some role in analytical separations, whereas 

nowadays NPC is rarely used. Analogous to NPC, HILIC favors retention of a more polar 

substance [14]. Hence, substances elute in order of increasing polarity or decreasing 

hydrophobicity. HILIC is most commonly applied in isolating polar analytes and hydrophilic 

peptides [15].  

 

(5) Hydrophobic interaction chromatography (HIC)  

HIC is based mainly on differences in the hydrophobicity of the sample components. 

Columns used for HIC are analogous to RPC, except that the stationary phase is less 

hydrophobic due to: (a) hydrophilic groups that are incorporated into short alkyl ligands, and 

(b) a less dense coverage of the surface with ligands [14]. The mobile phase is usually an 

aqueous solution with low organic solvent content and high salt concentrations [8, 14]. HIC 

has been used to separate proteins [16], viruses [17], and (less often) nucleic acids [18]. 

 

(6) Size exclusion chromatography  

Size exclusion chromatography, previously also known as gel permeation chromatography 

and gel filtration chromatography, is a chromatographic method which separates the 

molecules of a sample by their ability to penetrate the pores of the stationary phase rather 

than interact with the surface of the stationary phase (Figure 2.6) [13]. The separation is 

based on exclusion effects resulting from differences in molecular size and/or shape and 

charge. Molecules of different sizes will migrate down the column at different rates, leading 

to their separation. Smaller molecules can penetrate into the pores and elute late, while large 

molecules are excluded from the pores and elute quickly [8].  

This method is usually used for large molecules or macromolecular complexes such as 

proteins and industrial polymers. Also, size exclusion chromatography is a widely used 

polymer characterization method due to its capacity of providing good molar mass 

distribution results for polymers.  
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Figure 2.6 Schematic diagram of the mechanism of size-exclusion chromatography (SEC), presenting 

the faster migration of large molecules. (Figure taken from ref [8]) 

 

(7) Partition chromatography 

In case of partition chromatography the stationary phase is a liquid, which is immiscible with 

the mobile phase and held as thin layer (or film) on the surface of an inert solid. Separation is 

based mainly on the different partitioning coefficients (solubilities) of the solutes between the 

mobile phase and the stationary phase. When the compounds travel through the column, the 

ones having lower solubilities within the stationary phase travel faster and arrive at the end of 

the column first. A schematic diagram of partition chromatography is illustrated in Figure 2.7.  

 

Figure 2.7 Schematic diagram of the solute interaction during partition chromatography. 
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2.1.3. Stationary Phases in Liquid Chromatography 

2.1.3.1. State-of-the-art in HPLC stationary phases 

Once the chromatographic material is packed into the column and interacts with the mobile 

phase, it becomes the stationary phase. There is no omnipotent HPLC column for all kinds of 

purposes, meaning usually columns are only for specific applications. For example, 

enantiomer columns are designed for enantiomer separations. Therefore, continuous research 

of suitable materials for HPLC columns is ongoing for various types of samples such as 

chiral chemicals or pharmaceuticals. Monolithic columns and packed columns are the two 

types of stationary phases for routine HPLC.  

Frequently used materials for monolithic columns are porous silica and cross-linked polymers. 

Due to the highly interconnected porosity, monolithic columns develop high permeability and 

subsequent low back pressure even when the flow rate is high [19]. However, the main 

disadvantages of applying monolithic columns are the reproducibility of the pore structures 

and the difficulty of fitting the monolith into a column, which affects the analysis 

performance of monolithic columns. Consequently, monolithic columns may deliver 

variations in the analysis results from batch to batch. In addition, monolithic columns 

generally feature weak mechanical stability. In addition, another issue with polymer 

monoliths is their potential swelling problems in the presence of solvents.  

For packed columns, although numerous organic polymer and ceramic microspheres have 

been used as packing materials, silica microspheres are the most modern and widely used 

stationary phase today [4, 9], due to their versatile sizes and varying degree of porosity. 

Polymeric layers could be bonded to the surface of the silica, hence extending the application 

of the silica particles [9]. Spherical particles can be packed more tightly and uniformly than 

irregular ones, hence they are generally the best choice for HPLC. The used particles can be 

either porous (like most silica gels) or nonporous (like glass beads). The porous ones are 

preferred as they have larger specific surface areas. The larger the specific surface area of a 

packing, the more sites for sorption of the analytes are available. For liquid phase separation, 

a pore size of above 7 nm is recommended for sufficient mass transport. In the case of large 

biomolecules separation, larger pores sizes of up to 100 nm may be required for efficient 

separation [20]. 

Common challenges in HPLC are highly efficient and fast separation for a wide range of 

samples from analytical to preparative scale [21]. HPLC prefers packings of small porous 

particles. However, a decrease of the particle diameter increases the efficiency as well as the 

pressure requirements (ΔP ∝ 1/d
2
, where ΔP is the column pressure drop; d is the average 

particle diameter [20]). This leads to the smallest particle sizes in routine use being around 3 

µm. In order to further decrease the diffusion length within the stationary phases, they can be 

realized in the form of thin layers of a crosslinked polymer bonded to the inner wall of a 

capillary [4]. Alternatively, stationary phases with very short diffusion length can be achieved 
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by coating a thin layer of porous solid on a nonporous core. In the early days of HPLC, 

pellicular supports were widely used. The materials in use today are microporous solids being 

created by bonding nanometer-thick layers of porous silica onto solid particles with diameters 

of 3 to 5 µm. In comparison to microporous solids, pellicular solids are less stable, are more 

expensive, and have smaller capacities, despite that they are easier to pack.  

Recent years have seen an increased use of core-shell silica particles, also known as solid 

core and porous shell or superficially porous particles, in HPLC applications due to their 

relatively low back pressure allowing fast flow rates [22]. The advantage of core-shell 

particles as packing material is that the small shell thickness decreases the diffusion path 

length within the stationary phase and therefore peak broadening because of intraparticle 

diffusion [19].  

 

 

Figure 2.8 Different types of core-shell particles. (Figure adapted from ref. [19]) 

 

Core-shell particles are made of a core and a shell which can be different materials or the 

same material having different structures. Different types of core/shell particles represented 

by different colors are schematically shown in Figure 2.8. The core can be a single sphere as 

shown in Figure. 2.8A, an aggregate of several small spheres (Figure 2.8B), or a rattle-like or 

yolk-shell structure [23] having a hollow shell and a small sphere inside (Figure 2.8C). The 

shell structure of particles in Figure 2.8A-C can be a continuous layer. The shell of Figure 

2.8D-E is made of smaller spheres on the surface of a big core and Figure 2.8F shows a 

variant usage of small spheres to build the core as well as the shell [24]. It is possible to have 
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a core-shell structure being made by embedding smaller spheres into the shell as shown in 

Figure 2.8G [25] or the particle has more than one shell as shown in Figure 2.8H [26]. In 

chromatography, the core-shell structures are usually made of the same material but with the 

core being solid and the shell being porous Figure 2.8I [27]. 

 

2.1.3.2. Characterization of column performance 

(1) Chromatograms and valuation criteria 

A chromatogram is the basic and direct expression of a chromatographic separation process. 

It is a graph that monitors the detector signal (concentration of analyte) over time. Figure 2.9 

shows a typical chromatogram of two different components with analytical amounts of 

injection.  

 

 

Figure 2.9 A typical HPLC chromatogram of one nonretained and two retained components. (Figure 

adapted from ref. [28]) 

 

Retention time tR,i indicates the time for each component to elute out of the column, taken at 

the maximum of the peak indicating the specific component in the sample. The total dead 

time ttotal is the time of an unretained substance spent from the point of injection to the point 

of detection. tplant represents the dead time of the chromatographic system without column. 

Hence, the dead time t0 of a column can be determined by Equation 2.1. Retention time  

tRi,gross represents the time a substance i needs to elute the column
1
. The net retention time 

tRi,net is the time that the substance is adsorbed onto the surface of the stationary phase, which 

                                                 
1
 If not done automatically by the HPLC system used, tplant has to be substracted from the measured retention 

time in order to determine tRi,gross 
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is determined by subtraction of  t0 from tRi,gross (Equation 2.2). The dead time is typically 

determined by tracer molecules, which are not retained on the solid phase. 

 

𝑡0 = 𝑡𝑡𝑜𝑡𝑎𝑙 − 𝑡𝑝𝑙𝑎𝑛𝑡                                                                                       (2.1) 

 

𝑡𝑅𝑖,𝑛𝑒𝑡 = 𝑡𝑅𝑖,𝑔𝑟𝑜𝑠𝑠 − 𝑡0                                                                                                         (2.2) 

 

The retention time depends not only upon the specific structure of the analyte, but also on the 

parameters of the column, as well as the nature and flowrate of the mobile phase. The 

retention factor (capacity factor) k’ is defined as the ratio of the time a component stays on 

the stationary phase to the time it remains in the mobile phase. The retention factor is an 

important dimensionless parameter for analytical applications of chromatography, because it 

is independent of the column geometry and the flow rate of the fluid phase. It can be written 

as follows:  

 

𝑘𝑖
′ =

𝑡𝑅𝑖,𝑔𝑟𝑜𝑠𝑠−𝑡0

𝑡0
=

𝑡𝑅𝑖,𝑛𝑒𝑡

𝑡0
                                                                                                (2.3) 

 

The separation factor α, also called selectivity, is another common and useful parameter for 

the evaluation of a LC sepration process. The value of α reflects the affinity difference of two 

substances towards the used stationary phase. It is defined as the ratio of the retention factors 

of two chromatographic peaks: 

 

 𝛼 =
𝑘2

′

𝑘1
′ =

𝑡𝑅2,𝑔𝑟𝑜𝑠𝑠−𝑡0

𝑡𝑅1,𝑔𝑟𝑜𝑠𝑠−𝑡0
                                                                                                 (2.4) 

 

The selectivity α is influenced by the analyte, the nature of the mobile phase and the 

stationary phase. A larger value for α indicates the potential for a better separation. An 

efficient separation typically needs α > 1.2, which is also a frequent basis for the selection of 

a suitable chromatographic column. 

Due to dispersion and diffusion effects the rectangular injection pulse transfers into a bell 

shaped peak, which in the ideal case of strictly linear isotherm behavior can be fully 

described by a Gaussian curve (Figure 2.10). In a Gaussian curve, the width can be defined in 

diferent ways, including the width at half peak height (Wh), the width at the inflection point 

(Wi), and the baseline width (Wb). For the ideal Gaussian peak, the peak-widths are a fixed 

function of the standard deviation (σ), which reflects the extent of peak broadening: 
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𝑊ℎ = 2(2 𝑙𝑛 2)0.5𝜎 = 2.355𝜎                                                              (2.5) 

 

𝑊𝑏 = 4𝜎 = 1.7𝑊ℎ                                                                               (2.6) 

 

𝑊𝑖 = 2𝜎                                                                                   (2.7) 

 

 

Figure 2.10 Measurement of peak brodening Wi, Wh and Wb for a typical Gaussian peak. (Figure 

adapted from ref. [29]) 

 

Column performance is typically described by the height equivalent H of a theoretical plate 

(HETP), as well as the corresponding theoretical plate number N. N is related to the peak 

broadending. The ideal behavior is H  0 or N  ∞. That is, the smaller the plate height or 

the larger the plate number of a column, the higher is the efficiency, the narrower the peak 

width and shape. The relationship of H and N is shown below: 

𝑁 = 𝐿𝑐 ⁄ 𝐻                                                                                                             (2.8) 

 

where Lc is the column length.  

Assuming a Gaussian peak for a uniformaly packed column, H can also be calculated from:   

 

𝐻 = (𝜎′)2 𝐿𝑐     𝑤𝑖𝑡ℎ 𝜎′ =  𝜎 ∙ 𝑢    ⁄                                                                                      (2.9) 
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σ' corresponds to the standard deviation of the peak measured in meters, which can be easily 

derived from σ by multiplication with the average flow velocity u within the column. 

Accordingly, N can be expressed by: 

 

𝑁 = 𝐿𝑐
2 (𝜎′)2⁄                                                                                                            (2.10) 

 

In practice, chromatograms of tracer substances are measured over time with the retention 

time tR and the peak width wb. Hence, plate number can be calculated from: 

 

𝑁 = (
𝑡𝑅

𝜎
)2 = 16(

𝑡𝑅

𝑊𝑏
)2 = 5.545(

𝑡𝑅

𝑊ℎ
)2                                                                         (2.11) 

 

Instead of the theoretical plate number N, the effective plate number Neff determined by using 

tR,net can also characterize the efficiency of a column. Usually, Neff is 10 to 30% smaller than 

N. Neff is simply named “efficiency”: 

 

𝑁𝑒𝑓𝑓 = (
𝑡𝑅,𝑛𝑒𝑡

𝜎
)2 = 16(

𝑡𝑅,𝑛𝑒𝑡

𝑊𝑏
)2 = 5.545(

𝑡𝑅,𝑛𝑒𝑡

𝑊ℎ
)2                 (2.12) 

 

As mentioned before, selectivity α is an important measuremnet criteria of column 

performance. However, α itself cannot describe the separation quality of two components 

even if it has a large value. That is, although the distance of the two peaks may be far, the 

peaks may be very broad, resulting in a poor separation. Here another papameter features the 

peak separation, named resolution Rs. Rs is defined as: 

 

𝑅𝑠 =
2(𝑡𝑅2,𝑛𝑒𝑡−𝑡𝑅1,𝑛𝑒𝑡)

𝑊𝑏1+𝑊𝑏2
=

1.177(𝑡𝑅2,𝑛𝑒𝑡−𝑡𝑅1,𝑛𝑒𝑡)

𝑊ℎ1+𝑊ℎ2
=

𝛼−1

𝛼

2𝑡𝑅2,𝑛𝑒𝑡

𝑊𝑏1+𝑊𝑏2
=  

1

4

𝛼−1

𝛼
(

𝑘′

1+𝑘′) 𝑁
1

2             (2.13) 

 

As can be seen from the above Equation 2.13, Rs is dependent on three parameters: α 

(selectivity), k' (retention factor), and N (column efficiency). The two peaks are separated at 

the baseline when Rs > 1.5. In reality, Rs > 1 is enough for most purposes, indicating nearly 

98% separation [6]. 
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(2) Void fraction and porosity 

The fluid flow through the packing of the stationary phase and the solute transport within the 

particles greatly impact on the design and performance of the chromatographic process 

(Figure 2.11). In this context three porosities have to be considered: (i) the column porosity εb 

(extra-particle porosity, void fraction of column, bed porosity), (ii) the intra-particle prostiy 

εp, and (iii) the total column porosity εt (total void fraction).  

 

Figure 2.11 Column porosity and intraparticle porosity in a packed chromatographic column (Figure 

adapted from  ref. [30]). 

 

The total column volume (Vc) consists of the interstitial volume of the fluid phase (Vint) and 

the volume of the stationary phase (Vpartile): 

 

𝑉𝑐 =
𝜋𝑑𝑐

2𝐿𝑐

4
= 𝑉𝑖𝑛𝑡 + 𝑉𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒                                                                        (2.14) 

 

In addition, the volume of the stationary phase (Vsta) includes the volume of the solid matrix 

(Vmatrix) and the volume of the pores of the particle (Vpore):  

 

𝑉𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 = 𝑉𝑚𝑎𝑡𝑟𝑖𝑥 + 𝑉𝑝𝑜𝑟𝑒                                                                                    (2.15) 

 

The three porosities can be derived from above volumes: 

Cloumn porosity:  𝜀𝑏 =
𝑉𝑖𝑛𝑡

𝑉𝑐
=

𝑉𝑐−𝑉𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒

𝑉𝑐
                                                                       (2.16) 
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Particle porosity: 𝜀𝑝 =
𝑉𝑝𝑜𝑟𝑒

𝑉𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒
                                                                      (2.17) 

 

Total column porosity: 𝜀𝑡 =
𝑉𝑖𝑛𝑡+𝑉𝑝𝑜𝑟𝑒

𝑉𝑐
= 𝜀𝑏 + (1 − 𝜀𝑏)𝜀𝑝                         (2.18) 

 

The accurate determination of these three porosities is very important for quantification and 

simulation of chromatographic processes. Generally, large tracer substances with a high 

molecular weight (e.g. blue dextran) which cannot penetrate the solid pores are used to 

determine the column prosity εb (Equation 2.19), while small tracer substances (e.g. acetone, 

toluene) which are able to penetrate into the pores of the solid particle are used to calculate 

the total porosity εt (Equation 2.20). Subsequently, the particle porosity can be determined by 

Equation 2.18. 

 

𝜀𝑏 =
𝑄 ∙ 𝑡𝑅,𝑙𝑎𝑟𝑔𝑒 𝑡𝑟𝑎𝑐𝑒𝑟

𝑉𝑐
                                                                          (2.19) 

 

𝜀𝑡 =
𝑄 ∙ 𝑡𝑅,𝑠𝑚𝑎𝑙𝑙 𝑡𝑟𝑎𝑐𝑒𝑟

𝑉𝑐
                                                                       (2.20) 

 

where Q represents the volumetric flow rate of the moblie phase. 

For columns randomly packed with spherical or irregular particles, bed voidage εb lies 

theoretically in a relatively narrow range (0.3 ‒ 0.5 is typical) and mean values of 0.4 can be 

applied [28, 31]. The value of particle porosities εp vary broadly from near zero for pellicular 

particles without intra-particle pores, to 0.90 or even higher for low-density gels (e.g. agarose 

or cross-linked dextran). In general, the total porosity εt varies over a range of 0.65 ‒ 0.80. 

For monilithic columns, εt will be up to 0.80 ‒ 0.90.  

 

2.1.4. Adsorption Equilibrium Thermodynamics 

Adsorption isotherms are of great importance for the prediction of chromatographic processes 

and further for the process design. An adsorption isotherm is a plot of the loading of a 

substance within a solid adsorbent as a function of its concentration in the mobile phase. 

Although more sophisticated isotherms have been developed, the Langmuir isotherm is still 

the most frequently used adsorption model in chromatography.  
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2.1.4.1. Single component Langmuir isotherms 

In practice, the parameters of multi-component isotherms are commonly determined by a 

series of single component experiments of the respective substances. Figure 2.12 shows a 

single component Langmuir isotherm. Only at the very beginning when the concentration of 

the solute in the mobile phase (ci) is low, there is a linear relationship with a steep slope 

between the solute concentration (ci) and the loading of the solid phase (qi). Within this initial 

region the retention time will remain unchanged with the injected amounts and concentrations 

of the solute. Therefore, operation conditions within this linear range are used for quantitative 

analysis in analytical chromatography. In contrast, for preparative and industrial 

chromatography in most cases the relationship between ci and qi becomes non-linear and the 

loading qi reaches a saturation level with increasing concentration ci. 

 

 

 

Figure 2.12. Single-component Langmuir isotherm. (Figure cited from ref. [28])  

 

The linear range applies to Henry’s Law, that is, the stationary phase concentration (qi) is 

proportional to the mobile phase concentration (ci): 

 

𝑞𝑖 = 𝐻𝑖𝑐𝑖                                                                                                      (2.21) 

The Henry coefficient Hi is determined by the dead time of column (t0), the retention time of 

substance i (tRi,gross), and the total porosity (εt): 

 

𝐻𝑖 = (
𝑡𝑅𝑖,𝑔𝑟𝑜𝑠𝑠

𝑡0
− 1)

ℇ𝑡

1−ℇ𝑡
                                                                                                       (2.22) 
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The Langmuir adsorption isotherm model is described by: 

 

𝑞𝑖 = 𝑞𝑚𝑎𝑥,𝑖
𝐾𝐿,𝑖𝑐𝑖

1+𝐾𝐿,𝑖𝑐𝑖
                                                                                                           (2.23) 

 

In the above equation qmax is the maximum adsorption capacity and KL is the Langmuir 

equilibrium constant (affinity coefficient). As can be seen for the case ci  0, qmax∙ KL is 

equal to the Henry coefficient H.  

 

2.1.4.2. Multi-component Langmuir isotherms 

Multi-component isotherms can be derived from their single component counterparts. In case 

of the Langmuir isotherm, the multicomponent version can be written as:  

 

𝑞𝑖 = 𝑞𝑚𝑎𝑥
𝐾𝐿,𝑖𝑐𝑖

1+∑ 𝐾𝐿,𝑗𝐶𝑖𝑗
                                                                                      (2.24) 

 

In the above Equation the maximum adsorption capacity qmax is assumed to be equal for all 

components.   

In case of different binding capacities for the individual components due to their different 

sizes, here assuming component 1 is larger than component 2 for a bi-component system, a 

modified multi-component Langmuir isotherm is defined [20]: 

 

 𝑞1 =
𝐾1𝐶1[(1+𝐾2𝑐2)𝑞𝑚𝑎𝑥,1−Ɵ1,2𝐾2𝑐2𝑞𝑚𝑎𝑥,2]

1+𝐾1𝑐1+𝐾2𝑐2+(1−Ɵ1,2)𝐾1𝐾2𝑐1𝑐2
                                           (2.25) 

 

𝑞2 =
𝐾2𝐶2[(1+𝐾1𝑐1)𝑞𝑚𝑎𝑥,2−𝐾1𝑐1𝑞𝑚𝑎𝑥,1]

1+𝐾1𝑐1+𝐾2𝑐2+(1−Ɵ1,2)𝐾1𝐾2𝑐1𝑐2
                                           (2.26) 

 

Ɵ1,2 =
𝑞𝑚𝑎𝑥,1

𝑞𝑚𝑎𝑥,2
< 1                                                                             (2.27) 

 

where Ɵ1,2 is the ratio of maximum adsorption capacities. 
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2.2. Metal‒Organic Frameworks (MOFs) 

Synthetic nanoporous solids have emerged as an own research field since about 1980s [32]. 

Emerging more or less from curiosity, they have drawn significant attention in both scientific 

and industrial community due to their capability to store and separate other molecules. Since 

more than a decade, the number of papers is strongly increasing, leading to a burst of papers 

in recent years [33-36]. In general, nanoporous solids can be grouped into two major 

categories: amorphous solids and crystalline solids. Amorphous solids are composed of 

subunits with random size and arrangement in three dimensions [37], such as gels, polymers, 

carbons, glasses, and metal foam. Amorphous solids have two unique properties: (1) cleft or 

breakage of them will lead to irregular fragments, normally with curved surfaces; (2) they 

cannot be defined by X-ray radiation due to the irregular arrangement of their components 

(e.g., atoms, ions or molecules). As a consequence of the disorderly structures, classic 

amorphous solids show the drawbacks of wide pore size distribution, poor mechanical 

stability, limited surface area to volume ratio, as well as difficulties in characterization and 

prediction of topologies. In contrast, crystalline solids are built of regular and repetitive three-

dimensional structural subunits (named “crystal lattice”), leading to defined geometrical 

shapes, relatively sharp and well-defined melting or boiling points and rigid structures. A 

well-known example is zeolites with their regular pore sizes in the nanometer range. Hence, 

new classes of crystalline solids have been extensively developed and intensively studied due 

to their advantages of simple characterization, reproducible topologies and dimensions, and 

remarkable mechanical and thermal stabilities [38, 39]. 

Metal‒organic frameworks (MOFs), also called porous coordination polymers (PCPs) [40-

42], are a new class of highly ordered and usually crystalline porous solids discovered about 

two decades ago [43]. MOFs are built from inorganic metal ions or clusters interconnected by 

functional organic linkers through strong coordination bonds to form infinite one-dimensional 

(1D) chains or ladders, two-dimensional (2D) grids, or three-dimensional (3D) frameworks 

[44-51], as shown in Figure 2.13. The first MOF material was reported by Kinoshita in 1959 

[52], but it did not receive much attention until Yaghi, Zaworotko, Kitagawa, and other 

scientists discovered the enormous potential provided by MOF materials in recent years 

[46,53]. In particular, Yaghi [54] first proposed the term of MOFs in 1995 for the fabrication 

of the highly crystalline framework [Cu(4,4′-bipyridyl)1.5 ∙ NO3(H2O)1.25]. Since then, a 

growing number of research has been conducted on MOFs materials with a wide range of 

applications from separation [55], to gas storage [56,57], catalysis [58-60], sensing [61,62], 

magnetism [63], and so on. 
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Figure 2.13 Self-assembly of metal modes and organic linkers into 1-3D MOFs structures.  

 

2.2.1. Design of MOFs  

Inorganic metal-containing nodes and organic linkers are the two building units of MOFs. In 

principle, rational design of MOFs with unique functional properties can be incorporated into 

the framework, based on the wide range of structural, adsorption, electrical, catalysis and 

sensing properties of the inorganic metal nodes and organic ligands.   

2.2.1.1. Secondary building units (SBUs) 

The construction of MOF architectures depends on the primary building blocks and one 

generally accepted concept for depicting MOF self-assembling is called secondary building 

units (SBUs) [64]. SBUs are known as the basic geometric figures (generally referred to 

inorganic clusters or coordination spheres) connected by the organic ligands for the 

assembling of MOF frameworks. The metal atoms are regarded as vertices and the organic 
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ligands as linkers or edges. The information of a SBU is important for the prediction of MOF 

topologies, although they are commonly not introduced individually. A review focused on 

SBUs for MOFs has been published by Yaghi and 131 SBUs geometries were introduced 

[65]. Different transition metal ions are coordinated with the organic ligands, which can give 

rise to different SBUs geometries, such as tetrahedral, octahedral, tetragonal paddlewheel, 

trigonal, square planar, and so on. Figure 2.14 shows several examples of commonly 

occurring SBUs in MOFs. 

Figure 2.14 Structural representations of several common SBUs of MOFs, including (a) the square 

paddlewheel, (b) the octahedral paddlewheel, and (c) the trigonal planar. (Figure taken from ref. [43]) 

 

2.2.1.2. Metal nodes 

Transition metal ions play a significant role as the connector node, leading to diverse 

coordination numbers and binding orientations (coordination geometries) in the construction 

of MOFs. In general, the metal elements from group 3 to 12 in the periodic table (Figure 2.15 

marked in the blue frame) are mostly chosen to comprise the SBUs in MOF structures. The 

characteristic of these transition metal elements is that their d-orbitals are partially filled, and 

therefore the lone electron pairs can be filled into these orbitals. Furthermore, the metal ions 

will provide the required charge balance for MOFs if anions are introduced. The neutral 

skeleton of MOFs is favorable for the stability of the structures.  

During the construction of MOFs, the metal atoms are usually centered in the SBUs and 

encircled by the organic linkers to form the coordinative bond. Even if the same metal and its 

oxidation state are used, it can form various coordination numbers (usually 2 to 7) which will 

lead to versatile geometries. For example, Cu
II
 ions with d

9
 configuration prefer square-planar 

and tetrahedral geometries. However, other coordination numbers and geometries can be 

realized by varying the reaction conditions, such as solvents and ligands [66]. In addition, 

lanthanide ions can generate fresh and uncommon geometries because of their large 

coordination numbers from 7 to 10 [67-69]. Moreover, removing coordinated solvent 

molecules sometimes can be used for the generation of useful vacant sites (i.e., coordinately 

unsaturated lanthanide ion centers), which can be applied in gas adsorption, sensors, and 

catalysis [70, 71].  
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Figure 2.15 The extended metal elements (marked in the blue frame) used to form the SBUs in MOFs. 

 

Obviously, different transition metal centers may generate the same MOF structures, but have 

considerable impact on the functionality of MOFs, and further dominate their application. For 

instance, M-MOF-74 (also known as M/DOBDC, DOBDC
4−

 = 2,5-dioxido-1,4-

benzenedicarboxylate), are a group of isostructural MOF crystals with diverse open metal
II
 

ions,  where M can be Zn [72], Fe [73], Mn [74], Ni [75], Mg [76], and Co [77]. Yaghi et al. 

[78] demonstrated that different metal sites of MOF-74 provide quite different behaviour with 

respect to gas adsorption. 

 

2.2.1.3. Organic linkers 

The organic linkers or ligands, as the lone electron pair donors (also denoted as Lewis base), 

play a prominent role in the flexibility and directionality of MOF structures, indicating a 

tunable functionality and topology of engineered MOFs.  
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Figure 2.16 Some examples of organic linkers used in MOFs. (Figure taken from ref. [42]) 

 

Furthermore, the linkers can be simple halides (F, Cl, Br, and I) [79] and CN
-1

 ions [80, 81], 

or neutral, anionic and cationic organic molecules [82-85] (Figure 2.16). The pyrazine [86] 
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and 4,4′-bipyridine [87, 88] are the two most commonly used neutral organic linkers to form 

3D MOFs. Additionally, carboxylic acid based molecules are the most popular anionic 

linkers due to their capacity of aggregating metal ions into clusters and giving rise to more 

stable and robust MOF networks [89-92]. Cationic organic linkers are rarely utilized, because 

they have very low affinities for cationic metal ions [93, 94]. In brief, linkers with rigid 

backbones are frequently chosen due to their rigidity allowing for a prediction of the MOF 

geometry before its synthesis, and also for their ability to preserve the open-pore structure 

after the included solvent is removed. 

The design of organic linkers determines the shape, pore size, open space and 

interpenetration of the MOF networks, which guides the application of MOFs. For example, 

size and/or shape exclusion, also known as steric separation, is one of the most frequent 

applications of MOFs. Appropriate pore size and/or geometry of MOFs can be achieved by 

using the organic linkers with different sizes or shapes [95]. Also, the desired functionalities 

of MOFs can be created through incorporating linkers with functional groups of particular 

interest into the frameworks during the MOF synthesis. 

 

2.2.2. Synthetic Routes to MOFs   

Numerous approaches for the preparation of MOFs have been developed, including 

hydro/solvothermal, microwave, electrochemical, mechanochemical, and sonochemical 

methods [96]. Based on the reaction conditions, these synthesis methods can be classified 

into two categories: solvent-free chemistry [97-99] and solvent-based chemistry [100]. The 

merit of the solvent-free method is the easiness of operation, such as e.g. in the case of the 

mechanochemical synthesis method [101]. However, often these methods have difficulties in 

separating and obtaining the required MOF crystals from the unconverted reactants. 

Therefore, the liquid-based chemistry method is more commonly used. The 

hydro/solvothermal method, adopted from zeolites synthesis [102], is the earliest and the 

most popular (about 70%) technique for the preparation of MOFs [103]. Typically, in a 

closed reactor, the metal nodes and the organic ligands are dissolved together in a solvent and 

the mixture is subjected to heating until the end of the reaction to crystallize the MOF 

products. Frequently-used solvents are water, dimethylformamide (DMF), ethanol (EtOH), 

methanol (MeOH), acetone, acetonitrile (ACN), diethylformamide, and so on. Mixed 

solvents are sometimes required to ensure that the various reactants with different solubilities 

can mix thoroughly. The crystallization reaction significantly varies with multiple parameters, 

such as temperature, pH, type of solvent, heating time, as well as concentrations and 

solubilities of reactants. The advantages of the hydro/solvothermal synthesis method include 

their large-size crystal products, easy accessibility and scale-up. However, with this method, 

it is challenging to produce nanocrystals, to control the size and orientation of the crystals, 

and to have a high yield. Therefore, persistent efforts have been made towards the 

development of new synthesis methods. 
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In the past two decades, MOFs have attracted extensive attentions and more than 20,000 

different MOF structures have been reported [104], such as the typical IR-MOFs (isoreticular 

MOFs) [95, 105, 106], MIL-n series (Materials Institute Lavoisier) [107-110], and ZMOFs 

(zeolitic MOFs) [111,112]. 

 

2.2.3. Properties and Applications of MOFs 

The advantages of MOFs over conventional zeolites are the multiple design aspects on the 

basis of the metal nodes and organic linkers [65, 113, 114]. The versatile SBUs provide 

MOFs with elastic structures, versatile framework functionalities, and tunable pore sizes. 

Generally, by controlling the length of the organic linkers, the pores of MOFs can be tuned 

from zero, to microsize (< 2 nm) and mesosize (2 nm < pore diameter < 50 nm) with open 

channels or cavities surrounded by microporous windows. The architecturally robust MOF 

structures give rise to ultrahigh porosity, mostly up to 90% free volume. MOFs have 

incredibly high surface areas typically ranging from 1000 to 10,000 m
2
 g

-1
 [115, 116], which 

surpass the conventional porous materials (e.g. zeolites, carbons). Additionally, MOFs are 

characterized by permanent porosity, excellent thermal and chemical stability and versatile 

chemistry, allowing for easy postsynthetic modification. Such properties offer this class of 

materials numerous promising applications. Here, a few of the typical applications, including 

gas storage and adsorption, separation processes, catalysis, sensing and chromatography, are 

mentioned. 

2.2.3.1. Gas storage and separation 

With the growing global energy needs and the threat of climate change, the demand for new 

energy is expanding. Gases, such as hydrogen (H2) and methane (CH4), are of great 

importance for energy production. The global warming caused by greenhouse gases (e.g. 

carbon dioxide, CO2) also becomes an urgent problem to be solved. Hence, questions about 

storage and separation of these gases are being paid intensive attention. MOF materials have 

shown good capabilities as host matrix for gas storage and separation (CH4, H2, CO2, etc.) as 

a result of their large surface areas, tunable pore sizes and low crystal densities [117-119].  

The exceptional specific surface area and high porosity of MOFs make them efficiently 

capture miscellaneous gas molecules. In brief, the gas can be either adsorbed by the MOFs 

via the strong interaction between the framework (mainly the metal nodes sites) [120] and the 

gas molecules, or be stored in the MOF cavities without gas-solid interaction [121]. Yaghi et 

al. [122] reported in 2010 that MOF-210 exhibited unprecedented uptake capacity of 2400 

mg g
-1

 (298 K and 60 bar), 176 mg g
-1

 (77 K and 70 bar) and 264 mg g
-1

 (298 K and 80 bar) 

for CO2, H2 and CH4, respectively. MOFs have also been explored for the adsorptive 

separation of hydrocarbons and hazardous gases (e.g. carbon monoxide, ammonia) [123]. 

Generally, the principal reasons behind the gas adsorption in MOF materials are the affinity 

towards the targeted gases and the size of the pores. For instance, amino-functionalized MIL-
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53(Al) showed the successful separation of CO2/CH4 binary mixtures, due to the fact that the 

amino groups have a high sorption affinity for CO2 but not for CH4 [124].  

2.2.3.2. Liquid adsorption and separation  

Adsorptive separations play a significant role in chemical and pharmaceutical industry and 

represent a huge market demand for the sorbents. The adsorptive separation in liquid phase is 

much more complex than in gas phase, because both the solute and the solvent compete for 

the solid sorbents. Due to the tunable pore sizes and shapes, large surface areas, and readily 

accessible space, MOFs have achieved promising abilities in adsorptive removal of hazardous 

materials, and separation of complex mixtures through selectively adsorption or size 

exclusion effects. In many instances, MOFs exceed their counterparts, including zeolites, 

activated carbon, and metal oxides [125]. For example, MIL-101(Cr) outperforms activated 

carbon both kinetically and in efficiency in case of the adsorption of volatile organic 

compounds (VOCs) [126]. Besides, chiral MOFs are capable of enantioselective adsorption 

and separation of enantiomers [127]. 

Adsorbents can be used in different modes. The most economic manner is to prepare 

adsorbent-supported membranes [128, 129]. More commonly, MOF adsorbents are mixed 

with the liquid and separation is caused by different adsorption (diffusion) speed or 

adsorption affinity [130]. Generally, chromatography (including GC and LC) is an effective 

method to evaluate the separation performance of an adsorbent. The unique features of low 

density, absence of dead volume, good solvent stability, and high loading capacity for solutes 

make MOFs an attractive material for preparative chromatographic separation [131, 132].  

Extensive studies have been carried out in gas chromatography (GC) since the bulk MOF-508 

was first reported as stationary phases for GC to separate alkanes in 2006 by Chen et al. [133]. 

The separation resulted from different interactions between the pore walls of the framework 

and the alkane molecules. Besides the separation of light gases, MOF based GC has also been 

applied in selective adsorptions and separations of various liquid compounds in vapor phase. 

In 2010, Gu and Yan [134] reported the first MOF-coated capillary for high-resolution GC 

separation of a mixture of xylene isomers and ethylbenzene using MIL-101(Cr) as stationary 

phase.  

In comparison to GC, LC separations using MOFs are less investigated. Although only a 

handful of MOFs have been investigated for HPLC, it was found that MOFs with good 

solvent stability used as stationary phases show high resolution, selectivity and 

reproducibility for LC separations. Therefore, since the last decade an increasing attention 

has been paid to the utility of MOFs for liquid-phase separation. The application of MOFs in 

HPLC not only opens a new possibility for superior stationary phases, but also offers new 

insights into the properties of MOFs, including pore sizes, shapes and surface functions.  

HKUST-1 (HKUST: Hong Kong University of Science and Technology), MIL-47(V) and 

MIL-53(Al) (MIL: Materials Institute Lavoisier) were the first MOF-based columns to be 
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employed for adsorption and separation in LC by Alaerts et al. [135]. These materials 

displayed strong differences in the order of selectivity regarding xylene isomers and 

ethylbenzene in a normal phase mode using hexane as the mobile phase, where MIL-47 

performed the best and HKUST-1 the worst. The separation performance heavily depends on 

the nature of analytes and MOFs. Further research from the same group reported the 

adsorption separation of alkylaromatics with different alkyl groups on MIL-47 and MIL-53 

[136]. It was found that MIL-47 showed stronger affinity for n-propylbenzene than cumene 

as a result of a preferential adsorption enthalpy owing to the presence of a branched isopropyl 

group. Moreover, the adsorption enthalpy increased with alkyl chain length of n-

alkylbenzenes. Both MOFs showed a more favorable adsorption of xylenes than EB. 

However, the competitive adsorption on MIL-47 was dominated by entropic effects, in 

contrast to the enthalpic effects on MIL-53.     

In 2010, Xu et al. [137] prepared three Cd-MOF isomers with continuously tunable pore sizes 

(non-, micro- and meso-porous) with 4,4′-bipyridine and 2-amino-1,4-benzenedicarboxylic 

acid as linkers by simply decreasing reactant concentrations and reaction time. The meso-

porous Cd-MOF with a pore dimension of 1.7×2 nm
2
 exhibited size-exclusion dominated 

LC separations for dyes, where the smaller dye Rhodamine 6G (1.3×1.6 nm
2
) was allowed 

for the incorporation, whereas the larger dye Brilliant Blue R-250 (1.8×2.2 nm
2
) was size-

excluded. However, the micro-porous Cd-MOF isomer (0.8×1.5 nm
2
) with smaller pores did 

not work in the separation of the two dyes. 

Yan and co-workers made significant progress on the development of applications of MOFs 

in chromatography. Using a binary mobile phase of hexane/dichloromethane or 

dichloromethane/methanol, high-resolution separations of ethylbenzene and xylene isomers, 

dichlorobenzene, chlorotoluene, and nitrophenol isomers were achieved on a MIL-53(Al) 

based column [138]. It was found that the mobile phase composition plays an important role 

on the retention, resolution, and selectivity. In addition, in 2012 this group reported the first 

application of MOF materials in reverse-phase HPLC [139]. A MIL-53(Al) packed column in 

combination with a CH3CN/H2O mobile phase was investigated to separate a wide range of 

mixtures, from non-polar to polar and acidic to basic substances with high selectivity, 

resolution and reproducibility. The mechanisms underlying the separation were related to 

size-exclusion, shape selectivity and hydrophobicity [139]. In 2013, Yan’s group reported the 

feasibility of MIL-100(Fe) for both normal phase separation of chloroanilines and toluidine 

isomers, and reverse phase separation of neutral and basic analytes due to the π-π, hydrogen 

bond and coordination interactions [140]. Recently, a fast and effective HPLC separation of 

four tocopherols was reached on a post-synthetic modification of MIL-101(Cr) with grafted-

pyridine and the separation performance was found to be better than the commercial amino-

bonded silica column [141]. This successful application of post-modified MOFs is of great 

significance for its expansion in separation sciences. 
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Nevertheless, often HPLC columns packed with bulk MOF particles suffer from problems of 

low resolution, high backpressure and undesirable peak shapes resulting from the irregular 

shapes and wide size distribution of pure MOFs. Uniform spherical MOF composites were 

explored to overcome these problems. To date, only few studies of core-shell MOF 

composites for HPLC separation have been reported. Tanaka et al. [142] demonstrated the 

enantioselective separation of chiral sulfoxides using a homochiral MOF-silica composite by 

simply mixing the MOFs and silica particles. Ameloot et al. [143] synthesized HKUST-1-

silica composite spheres by depositing nano-sized HKUST-1 particles inside the meso-pores 

of silica for chromatographic separation of styrene and ethylbenzene. It was found that this 

HKUST-1-silica packed column shows high resolution, whereas the mass-transfer efficiency 

was low, resulting in peak broadening. In another approach, a zeolitic imidazolate framework 

8 (ZIF-8) shell was fabricated onto the surface of carboxyl-terminated silica spheres [144]. 

Due to surface interactions between the analytes and ZIF-8, the obtained ZIF-8@SiO2 core-

shell microspheres showed fast and high-resolution separations of two groups of mixtures 

(endocrine disrupting chemicals and pesticides) with low column backpressure [144]. In the 

past two years, the MOF UiO-66 has been paid great attention for the application as HPLC 

stationary phase, owing to its permanent porosity and high stability in water. Zhang and 

coworkers [145] prepared a silica-UiO-66 composite via a hydrothermal synthesis and the 

packed column showed efficient HPLC separation for a series of substituted aromatics, such 

as chlorobenzene compounds, polycyclic aromatic hydrocarbons (PAHs) and positional 

isomers.  Ding and coworkers [146] reported a one-pot synthesis of UiO-66@SiO2 shell-core 

microspheres as HPLC stationary phase for the separation of xylenes and ethylbenzene. 

2.2.3.3. Heterogeneous catalysis 

Heterogeneous catalysis is one of the most promising applications of MOFs. As solid 

catalysts, they are easily separated. Furthermore, the tailoring of structures and pore sizes 

enables them to be of shape- and size-selectivity. Moreover, the high crystalline structure 

offers a homogeneous distribution of the active sites. Active sites within MOFs can result 

from three sources: (a) the frameworks themselves, either metal nodes [147] or functional 

ligands [148]; (b) postsynthetic modification of MOFs by introducing functional centers [149, 

150]; (c) encapsulation of dispersed metal nanoparticles into the MOF structure [151]. 

Although much effort has been made and exciting progress has been gained, there is still a 

long way left for MOFs serving as catalysts. This is mainly because MOFs are lacking the 

required stability during their repeated and long time use in practice. 

2.2.3.4. Sensing 

The sensitive detection of a target compound and the sharp differentiation from other 

compounds are essential in environment and industrial fields. The structural versatility and 

predictability of MOFs offer them another important application as luminescent sensors to 

detect the vapor-, liquid- or solution-phase target analyte. Fluorescence and phosphorescence 

are the two most common types of luminescence in case of MOF-based sensors. In general, 
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luminescence either comes from the MOF building components: metal ions or clusters and/or 

organic linkers, or from the emission of the adsorbed guest molecules. Photoluminescence 

arises from photo-excitation. Incorporation of lanthanide metal ions (particularly Eu and Tb) 

into MOF structures is widely employed to make luminescent MOFs, owing to their charge 

transfer from d to f shells, accompanied by a strongly visible luminescence in the red and 

green regions, respectively [152, 153]. Organic linkers with aromatic groups or large 

conjugated π systems are usually chosen to synthesize luminescent MOFs, such as stilbene, 

naphthalene, perylene, anthracene, to name a few [154, 155]. Contributing greatly to the π 

electrons in such linkers, the luminescence of transition-metal MOFs are initiated by various 

charge transfer processes: (a) ligand-to-ligand charge transfer (LLCT); (b) the metal-to-ligand 

charge transfer (MLCT); and (c) the ligand-to-metal charge transfer (LMCT) [156-159]. So 

far, MOF-based luminescence has been successfully applied in different fields, including the 

detection of target species [160], biosensing and imaging [161], luminescent thermometers 

[162], and so forth. 

 

2.2.4. Surface‒Mounted Metal‒Organic Frameworks (SURMOFs) 

Metal−organic framework (MOF) thin films, which are adhesive to solid substrates and 

ranging from nanometers to micrometers in thickness, are especially important in some 

applications, as for example optical coatings [163, 164], gas separation or sensor applications 

[128, 165, 166]. So far, there have been several innovative approaches developed for the 

synthesis of MOF thin films, like Langmuir-Blodgett [167], mother solution [168], seeded 

growth [169], spin-coating [170], electrochemical methods [171], assembly of preformed 

MOF nanocrystals [172, 173], stepwise dosing of reagents [174] and liquid-phase epitaxy 

[175, 176]. Among these methods, the liquid-phase epitaxy (LPE), also referred as layer-by-

layer (LBL) method, relying on the stepwise, layer-by-layer adsorption of MOF components 

from the liquid or gas phase to a surface plays an important role in the fabrication of highly 

orientated MOF coatings with controlled thickness. The resulting MOF thin films are referred 

to as surface-mounted metal-organic frameworks (SURMOFs).  

2.4.1.1. Surface functionalization 

Different from the conventional one-pot reaction of bulk MOFs, SURMOFs are prepared on 

the surface of a solid substrate in a layer-by-layer fashion, in which the substrate is 

alternatively immersed in the metal solution and then in the organic linker solution. Therefore, 

based on the LPE method, the substrate surfaces must be chemically modified with different 

groups, like carboxyl (-COOH), hydroxyl (-OH) or pyridyl, to provide active sites to bind the 

metal ions in the first step [168,177].  

The first functionalized surfaces employed for the growth of SURMOFs were self-assembled 

monolayers (SAMs) on Au substrate [168]. SAMs, exposing an organic surface, become an 

attractive interface for the MOF growth because of their easy preparation, spontaneous 
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assembly and diverse functional groups. In particular, under controlled synthesis conditions, 

organic thiols attached -SH groups, such as 16-mercaptohexadecanoic acid (MHDA) [178], 

(4-(4-pyridyl)phenyl)-methanethiol (PP1) [179] or 11-mercapto-1-undecanol (MUD) [180], 

could form a monolayer terminated with the desired functional group on suitable substrates 

for SURMOFs growth.  

Apart from SAMs, SURMOFs can also be prepared on other nonmetallic substrates, ranging 

from polymer surfaces and conductive substrates (Indium tin oxide and Fluorine-doped tin 

oxide) over quartz glass to metal-oxide membranes. In addition all sorts of shaped surfaces, 

like magnetic particles [181], soft materials (papers or textiles) [182], or even previously 

prepared multilayered SURMOF thin films [183] can be used. Generally, chemical 

modifications of the nonmetallic substrates to obtain the suitable functionalized group on the 

surfaces are required [181, 184, 185]. 

2.4.1.2. Preparation of SURMOFs 

The most common and effective method to prepare SURMOFs is the liquid-phase epitaxy 

(LPE) or layer-by-layer procedure, which was originally proposed to fabricate multilayer 

organic Langmuir Blodgett (LB) films [186]. After several decades, Decher and Hong 

employed the LPE method to fabricate coatings of oppositely charged polymers by 

immersing substrates alternatingly in a polyanion and polycation solution [187, 188]. The 

LPE method was soon used to fabricate lamellar Hofmann clathrate films by coordination 

polymers and metal complexes [189]. 

In 2007, the LPE method was demonstrated to grow MOF films on surfaces by Fisher and 

Wöll [175]. The first example is the growth of HKUST-1 ([Cu3(BTC)2]) on functionalized 

substrates (MHDA SAMs on Au). The inorganic (Cu(OAc)2) and organic (BTC) precursors 

were dissolved in ethanol in separate containers. The functionalized substrate was 

sequentially immersed into the two solutions and washing steps with ethanol were performed 

following each immersion to remove unreacted metal or organic molecules. The repetition of 

these processes was performed to obtain MOF thin films. During this procedure, the paddle-

wheel-like Cu(OAc)2 compound chemically binds to the SAM and then the BTC-linker 

molecules bind to the Cu(OAc)2, resulting in a periodic and interconnected crystalline 

structure.  
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Figure 2.17 Schematic representation of the preparation of SURMOFs. (a) The coating of a substrate 

with freshly prepared particulate MOF (above), and the growth of MOF crystals directly on a SAM-

terminated gold surface immersed in a mix with metal nodes and linkers (below). (b) Deposition of 

SURMOFs by a LPE process starting from a functionalized SAM attached to a gold coated substrate. 

The thickness of the SURMOF depends on the number of deposition cycles. (Figure taken from ref. 

[190]) 

 

The LPE method has a huge advantage with respect to its ability to control thickness and 

orientation of the MOF thin films on the surface. The thickness is controlled by adjusting the 

numbers of growth cycles and the orientation is tuned by the functional groups exposed on 

the surface [190]. Figure 2.17 illustrates the difference between the conventional way to 

(a)

(b)
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produce MOF films by immersing a substrate into a fresh mixture of the precursors (Figure 

2.17a) and the LPE method (Figure 2.17b). Figure 2.17a shows two techniques for 

conventional SURMOF growth: either (1) a coating of MOF particles is attached to an 

arbitrary substrate by simply mixing the metal ion-containing solution and the linker solution, 

followed by the immersion of the substrate directly into the freshly prepared particulate MOF 

suspension [165, 168]; or (2) a substrate functionalized with a SAM is immersed in the 

mixture after suspended MOF particles have been filtered out in advance [177]. These 

techniques always result in heterogeneous MOF coatings. Such MOF films consist of 

individual particles with often arbitrary directions and sizes, even not specifically bounded to 

the substrate, leading to numerous major drawbacks in many applications. Obliviously, the 

LPE method has overcome these defects and provides well-defined homogenous and uniform 

MOF thin films (Figure 2.17b).  

Due to the superiority of the generated SURMOFs, over the last years several techniques 

have been developed for their preparation using different LPE methods. 

 

(1) Dipping method. 

A hand-dipping procedure was the initial method to prepare SURMOFs by LPE. The 

procedure uses three containers for the three different solutions (metal ion precursor, linker 

solution and pure solvent) [175]. The scheme is shown in Figure 2.18 and an exemplary 

process of preparing HKSUT-1 is as follows: 

 The functionalized substrate is firstly dipped in the Cu(OAc)2 EtOH solution for 30 

min. 

 Then the substrate is taken out and immersed in pure EtOH in order to remove the 

unreacted metal ions. 

 Then the substrate is dipped into the BTC EtOH solution for 60 min. 

 The substrate is taken out and immersed in pure EtOH in order to remove the excess 

BTC. 

 By subsequently repeating the above steps using the same substrate, thicker  

HKUST-1 MOF films are prepared. 
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Figure 2.18 Schematic representation of the steps of the “dipping by hand” method for SURMOFs 

preparation. (Figure taken from ref. [191]) 

 

Since the hand-dipping method is very time-consuming, a robot dipping machine was 

developed, which is automatic and computer controlled. The setup is shown in Figure 2.19. 

The procedure follows the same steps as the ‘dipping by hand’ method. After each step, there 

is an EtOH shower for rinsing in the center of the setup. Compared to the hand-dipping, there 

are more containers and the rinsing container can be in an ultrasonic bath in order to improve 

the rinsing efficiency.   

 

 

Figure 2.19 The setup of a dipping robot system: (1) containers for immersion solutions or placement 

for sample (P1~P7); (2) container lid; (3) magnetic connector; (4) sample holder; (5) sample; (6) 

position controller; (7) ultrasonic bath; (8) shower; (9) parking position of container lid; (10) Teflon 

working table; (11) solution bottle for showering; (12) pump; (13) PC. (Figure taken from ref. [191]) 

 

Cu(OAc)2 EtOH BTC EtOH

SA
M
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(2) Spray method. 

The spray method, a high-throughput technique, can reduce the time needed to prepare 

SURMOFs by more than two orders of magnitude [185]. It is based on a nozzle system, and 

the scheme is displayed in Figure 2.20. During the spraying an aerosol of the metal ion and 

organic linker solution is produced. The metal and organic linker reactants are sprayed on the 

substrates alternatively in a fashion similar to that occurring during the LPE process. When 

the droplets within the aerosol impinge on the substrate, the reactants will be deposited on the 

surface, resulting in the surface coated with a thin film of the reactant. Between the spraying 

steps with the MOF compounds, rinsing with ethanol has been shown to be a crucial step to 

remove unreacted materials. 

 

Figure 2.20 Sketch of the spray system for layer-by-layer growth of SURMOFs (1) Gas supply, (2) 

gas flow controller, (3) three-way valve gas distributor, (4) (A, B, C) solutions storage containers, (5) 

sample holder, (6) dosing valves, (7) spray chamber, (8) PC. (Figure reproduced from ref. [185]) 

There are two kinds of spraying machines in operation at the IFG: hand-spray and automatic-

spray. For the hand spray method, there are two nozzles for spraying the reactant solutions 

and the solvent used for rinsing is kept in a squeeze bottle. All the procedures are performed 

manually. For the automatic spray method, there are three nozzles, two of which are for 

spraying the reactant solutions (metal ion source, organic linkers) and the third is for the 

rinsing solvent. All the steps are executed automatically by a computer.  

 

Using again the exemplary preparation of HKUST-1, the detailed procedure of the automatic 

spray method is as follows: 
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 Cu(OAc)2, BTC ethanolic solution and pure ethanol are kept in three separate 

containers sealed with lids. 

 The parameters (i.e. spray pressure or time) of the automatic system are set, and the 

functionalized substrate is fixed on the sample holder. 

 The functionalized substrate is first sprayed with Cu(OAc)2 EtOH solution for 15 s. 

 After waiting for 30 s, the substrate is rinsed with pure EtOH for 5 s to remove 

unreacted metal ions. 

 Then the substrate is subsequently sprayed with the BTC EtOH solution for 30 s. 

 After waiting for 30 s, the substrate is rinsed again with pure EtOH for 5 s to remove 

unreacted organic ligands.  

Repetition of the above steps using the same substrate until the desired number of cycles is 

reached results in a HKUST-1 thin film of the desired thickness. 

 

(3) Pump method. 

The pump method was developed to control the temperature during the growth of MOFs [192] 

within a range of -20 ~ 150 °C (i.e. 20 ~ 70 °C for ethanol as solvent). A scheme of the pump 

system setup is shown in Figure 2.21. The procedure used by the pump method is similar to 

the one of the spray method based on the layer-by-layer fabrication concept. There are four 

pumps, three of which are used to deliver the solutions (metal ion solution, linker solution 

and pure solvent) into the container where the substrate is placed, and the forth is responsible 

to discharge the solutions from the container. The temperature of the container is controlled 

by a heating/cooling circulation system. Compared to the spray method, the pump method 

requires much longer time to reach the same thickness of the SURMOF films. Exemplarily, a 

detailed procedure of HKUST-1 synthesis by the pump method is given below: 

 A substrate is placed within the container and the temperature is set at 50 °C. 

 The freshly prepared substrate is immersed in a 1 mmol L
-1

 solution of the metal 

precursor (Cu(OAc)2) EtOH  for 15 min. 

 The substrate is rinsed with EtOH solution for 2 min. 

 The substrate is immersed in a 0.2 mmol L
-1

 solution of BTC EtOH for 30 min.   

 The substrate is rinsed with EtOH solution for 2 min.  

 The steps 2 to 5 are repeated in order to grow thicker layers. 
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Figure 2.21 Schematic diagram for the automated LBL growth of MOF thin films applying a multi- 

pump system. (Figure taken from the supporting information of ref. [192]) 

 

(4) Synthesis in a quartz crystal microbalance (QCM) cell. 

A QCM is an instrument on the basis of piezoelectricity to monitor very small mass changes. 

The growth of SURMOFs can be conducted by in-situ synthesis in a QCM cell, while the 

system monitors the changes of the resonance frequency of the quartz sensor as a function of 

the deposition and removal of material [180]. Connecting a QCM cell to a pump system as 

described in (3), the growth of MOF thin films by LPE can be followed step by step. 

 

2.4.1.3. Properties and applications of SURMOFs 

Except for possessing the advantages of MOFs, oriented SURMOFs offer a series of unique 

properties due to their defined structures: (i) precisely controlled thickness and growth 

orientation, (ii) smooth and homogenous surface coating.  

Apart from the common properties, SURMOFs may also diverge in a controlled matter their 

metal nodes or linkers between different layers. E.g., the copper precursor can be replaced by 

a zinc precursor during the epitaxial growth process [193]. Liu et al. [194] employed 

porphyrin ligands to obtain light-harvesting SURMOFs because of the intrinsic property of 

the organic linkers. The prepared SURMOF thin films also can be functionalized by post-

synthetic modification (PSM) [195]. This chemical variety of the connecting nodes and 

linkers provides versatile SURMOFs.  
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Taking into account the advantages of controlled thickness and orientation, versatile 

chemistry, as well as the choice of diverse substrates, such as metals, oxides, polymers, 

conductive substrates and textiles, SURMOFs have a wide range of applications, such as gas 

separation [196], sensing [197], electronic applications [194] and several more [198-200]. 

 

2.2.5. Introduction of MOFs Investigated in This Study 

Screened from the series of MOFs, three different micro- or meso-MOFs, i.e. UiO-67, 

HKUST-1, and MIL-100(Fe), are applied in this work. All three MOFs are named after the 

location where they were originally synthesized, namely the Hong Kong University of 

Science and Technology (HKUST), Materials Institute Lavoisier (MIL), and University of 

Oslo (UiO).  The properties of the investigated MOFs are shown in Table 2.2. 

 

Table 2.2 Investigated MOFs synthesized by LPE method and their properties.   

MOF 

material 

Surface 

area 

Langmuir  

(m
2
 g

-1
) 

Window dia-

meter/Pore 

opening (Å) 

Pore/Channel 

diameter (Å) 

Thermal 

stability 

(°C) 

Water 

stability 

Volume 

per unit 

cell (Å
3
) 

Ref. 

UiO-67, 

Zr-BPDC 
1800‒3000 8 11.5; 16 300 yes 19889 

[201,

202] 

HKUST-1, 

Cu-BTC 
1500‒2200 4.6; 9 6; 11.1  280 no 18280 

[203,

204] 

MIL-

100(Fe), 

Fe-BTC 

2500–4500 4.7‒5.5; 8.6 25; 29 270 yes 2198805 [205] 
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Abstract Carboxyl functionalized magnetic cores coated homogeneously with UiO-67 

metal‒organic frameworks (MOFs) through a liquid phase epitaxy (LPE) process are 

introduced. Using the as-synthesized core-shell microparticles as stationary phase in HPLC 

runs with different phenol derivatives, good separation efficiencies can be achieved when 

applying an acetonitrile/water mobile phase. To understand the advantages and limitations of 

such MOF based stationary phases in more detail, the experimental elution profiles are 

compared with simulations from a powerful chromatography modeling software (ChromX) 

newly developed at the KIT. The simulation results reveal that the affinities of UiO-67 to the 

tested phenol derivatives strongly differ (2,6-dimethylphenol < benzene-1,3-diol < 2,6-

dichlorophenol), while its  maximum capacity remains identical for each derivative with 0.14 

mol L
-1

. The uptake kinetics are dominated by intraparticle diffusion while axial dispersion 

and film diffusion play only minor roles. The pore diffusivities of the phenol derivatives are 

found to be around 1.3∙10
-13

 m
2
 s

-1
. Based on single component data, the successful 

simulation of multicomponent isocratic pulse experiments is demonstrated. In summary, 

HPLC runs combined with in-depth modeling are a powerful tool to investigate the 

interactions between solute molecules and thin MOF films, and to reveal data about affinities, 

capacities and uptake kinetics. 
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4.1. Introduction 

Metal-organic frameworks (MOFs) have emerged as a new class of highly ordered porous 

materials in the last two decades. They are built from inorganic units interconnected by 

functional organic linkers through strong bonds [1, 2]. Due to their particular properties, such 

as high surface area to volume ratio, tunable pore structures, high porosity, and good thermal 

stability, this novel class of hybrid inorganic-organic materials exhibits enormous potentials 

for applications in catalysis, optics, gas adsorption and storage, drug delivery, and sensing [3-

6]. The unique combination of properties such as the absence of dead volume, a good solvent 

stability, and high loading capacity for solutes also makes MOFs an attractive material for 

preparative chromatographic separation [7, 8].  

Several studies have investigated the performance of columns filled with bulk MOFs for 

liquid chromatography [9-12]. However, the results are mostly limited to validating a proof-

of-concept for the separation of analyte mixtures and to demonstrating the influence of 

different parameters onto the observed retention times. More fundamental information about 

the interaction of the analytes with the MOF structure, especially the equilibrium isotherms 

and particle diffusion parameters, is often under-investigated, through this would allow an in-

depth understanding of the performance of MOFs as stationary phases. One reason for this 

omission is that the used MOF material is often very heterogeneous with respect to particle 

size and morphology. Because of these unknown geometrical factors, it is practically 

impossible to derive quantitative kinetic data. 

The recently introduced MOF fabrication by a liquid phase epitaxy (LPE) process [13] can 

produce highly ordered, oriented, and homogenous, surface-attached metal−organic 

framework thin films (SURMOFs) on a supporting template. A suitable functionalization of 

the template surface ensures the initial SURMOF nucleation and its attachment to the surface 

[14, 15]. Here, we report the first fabrication of well-defined core-shell structures by this LPE 

process, resulting in UiO-67 SURMOFs encrusting uniform magnetic microparticles (MPs). 

While the choice of micro particles having magnetic properties as carrier material has no 

effect on the chromatographic performance of the resulting core-shell particles, it greatly 

facilitates the frequent solid-liquid separation steps required during the synthesis of the MOF 

shell using the LPE method (Figure 4.1). Among the MOF family, the zirconium based UiO 

(University of Oslo) series [16], especially the UiO-66 and UiO-67, are of special interest due 

to their excellent thermal and chemical stability [17, 18]. UiO-66 is formed by a cubic 

framework of cationic zirconium nodes and 1,4-benzene-dicarboxylate (BDC) linkers (6.8 Å),
 

leading to a three dimensional structure where each octahedral pore (11 Å) is connected to 

eight face-shared tetrahedral pores (8 Å) through accessible windows (6 Å) [19]. UiO-67 has 

the similar structure as UiO-66, but UiO-67 is obtained using zirconium nodes in 

combination with the longer 4,4′-biphenyldicarboxylate (BPDC) linkers (11.6 Å) and 

therefore, has larger pore dimensions (23 and 11.5 Å) and accessible windows (8 Å) (Figure 

4.1, inset) [20]. One UiO-67 unit cell is occupied by four octahedral pores and eight 
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tetrahedral pores. UiO-67 has been successfully applied in gas adsorption [21] and catalysis 

[22]. Recently, several studies have reported the successful use of UiO-66 as stationary 

phases in HPLC [23-25]. However, to the best of our knowledge, no case of UiO-67 MOFs 

used in HPLC has been published so far. In this work, core-shell UiO-67 magnetic 

microparticles (MPs) were synthesized and packed into HPLC columns to investigate the 

interactions between SURMOFs and a set of dissolved phenol derivatives (Figure 4.2) at a 

more fundamental level by means of experimental and simulated HPLC. 

 

 

Figure 4.1. The schematic structure of UiO-67 shell grown on carboxyl-functionalized magnetic 

microparticles: rc refers the radius of the magnetic particle and rp defines the radius of the particle 

including the MOF shell. The structure of UiO-67 (inset) contains octahedral and face-shared 

tetrahedral pores. 

 

 

 

Figure 4.2. Structures of the phenol derivatives used for HPLC experiments. Due to the increasing 

electronegativity of the side groups, the polar character of the molecules increases in the following 

order: DMP < BZD < DCP. 

 

4.2. Experimental 

4.2.1. Materials and Reagents 

Carboxyl-functionalized magnetic silica particles (MPs, Iron oxide > 15%) with narrow size 

distribution of 4.7±0.14 µm were purchased from the company microParticles GmbH, Berlin, 

Germany. Empty stainless steel HPLC column (200 mm × 1.0 mm i.d) was bought from VDS 

optilab Chromatographie Technik GmbH (order code: N1910 0000), Berlin, Germany. 

Zirconium(IV) propoxide solution (Zr(OPr)4, 70%), methacrylic acid (99%), 4,4’-biphenyl-
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dicarboxylate (BPDC, 97%), N,N-dimethylformamide (DMF, 99.8%), 2,6-dimethylphenol 

(DMP, 99%), benzene-1,3-diol (BZD, 99%), 2,6-dichlorophenol (DCP, 99%), 

dichloromethane (DCM, 99.8%), carbon tetrachloride (CCl4, 99.9%) methanol(99.9%), 

acetonitrile (ACN, 99.9%), acetone (99.9%), and blue dextran were purchased from Sigma-

Aldrich or Merck, Germany. All reagents and solvents were used as received without further 

purification. The phenol derivatives were dissolved in ACN and used as HPLC analytes. 

 

4.2.2. Preparation of Zr6(OH)4O4(OMc)12(PrOH)·3McOH 

Zirconium methacrylate oxocluster Zr6(OH)4O4(OMc)12(PrOH)·3McOH was prepared 

according to G. Kickelbick et al [26, 27]. Typically, 10 mL of a 70% solution of Zr(OPr)4 

(0.2 mM) in n-propanol was mixed with 17 mL (200 mM) of methacrylic acid (Aldrich) 

under an nitrogen atmosphere and stored in a closed Schlenk tube at room temperature. The 

zirconium methacrylate oxocluster crystallized during 13 days as a colorless solid (3.8 g, 51% 

yield).  

 

4.2.3. Synthesis of UiO-67 MPs Core‒Shell Composites 

UiO-67 was synthesized onto carboxyl-functionalized MPs with zirconium methacrylate 

oxocluster Zr6(OH)4O4(OMc)12(PrOH)·3McOH as metal source and BPDC as organic linker 

using a liquid phase epitaxy process in a layer-by-layer fashion. All the fabrication 

procedures were manually done. Briefly, 25 mg of magnetic microparticles were alternately 

immersed into 2 mL Zr6(OH)4O4(OMc)12(PrOH)·3McOH DMF solution (1.5 mM) and 2 mL 

BPDC DMF solution (1 mM) and kept on a thermoshaker (1350 rpm) at 45 °C for 7 min in 

each case. The magnetic microparticles were magnetically separated and washed thoroughly 

with 2 mL pure DMF solution between each immersion step for about 2 min. A defined 

thickness for the resulting UiO-67 layer is achieved by repeating this deposition cycle process. 

After 20 and 55 cycles, samples were magnetically separated and washed with methanol 

solution, dried in vacuum (120 °C, 12 h) for further use and characterizations.  

 

4.2.4. Characterization Techniques 

X-ray diffraction (XRD) data were recorded with a Bruker diffractometer. For the co-planar 

(out-of-plane, OP) orientation a Bruker D8-Advance equipped with a position sensitive 

detector (PSD) Lynxeye® in θ-θ geometry, a variable divergence slit, and a 2.3° Soller-slit on 

the secondary side was used. The XRD data were acquired over a 2θ range of 4 ‒ 20°, with 

126 seconds per 0.019° 2θ-step. Cu-anodes were used with the Cu Kα1,2-radiation (λ = 

0.15419 nm).   

Fourier transform infrared (FTIR) measurements were carried out with a Bruker Optics 

Tensor 27 spectrometer with a Bruker Optics Platinum® ATR (Attenuated total reflectance) 
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accessory and a deuterated tri-glycine sulfate (RT‒DTGS) detector. The FTIR ATR spectra 

were recorded at room temperature (ca. 22 °C) with a resolution of 4 cm
−1

 using air as 

background. 

Analyses of the morphology were recorded on a Philips XL30 scanning electron microscope 

(SEM) at 20.0 kV. Prior to the SEM measurement, the samples were dried at 60 °C for 12 

hours. 

 

4.2.5. Preparation of the HPLC Column and Conducted HPLC Experiments 

Before packing the column, the as-synthesized UiO-67 MPs core-shell composites were 

treated by: (i) washing three times with DCM solution; (ii) washing five times with methanol 

solution; and (iii) drying at 120 °C for 12 h under vacuum in order to remove unreacted 

species from the MOF cavities. The dried composites were added into a mixture of CCl4 and 

methanol (1:1, vol/vol) under ultrasonication for 5 min to ensure the even dispersion of UiO-

67 MPs. Thereafter, the suspension was packed with a down-flow into a stainless steel HPLC 

column (200 mm × 1.0 mm i.d, column volume 157 µL) under 40 MPa for 10 min with 

methanol as the slurry solvent to obtain the home-made UiO-67 based column.  

All chromatographic tests were performed with an Agilent 1100 series HPLC system (Agilent 

Technologies, USA) equipped with a variable wavelength UV detector and a micro (2 µL) 

flow cell at room temperature. Before the chromatographic experiments, the home-made 

MOF columns were equilibrated with ACN until a stable baseline was reached. ACN and 

H2O were used to compose the mobile phase and to prepare the liquid samples. 

 

4.2.6. Simulation of Chromatographic Runs Using the Software ChromX 

The simulation software ChromX (Version 0.1.0a) was developed at the Institute of Process 

Engineering in Life Sciences Section IV: Biomolecular Separation Engineering of the 

Karlsruhe Institute of Technology (KIT) in 2012 [http://mab.blt.kit.edu/chromx.php]. It is a 

powerful, modular simulation toolbox written in C++ that solves chromatography models by 

means of the finite element method in space and time stepping with finite differences. 

Because we expected the mass transport resistance within the MOF-based chromatography 

columns to be dominated by intraparticle diffusion phenomena, we opted for a Langmuir 

model with single or multiple component equilibrium, and for a general rate approach which 

takes into account the effect of axial dispersion as well as film and pore diffusion. The 

resulting partial differential equations (Equations 4.1 & 4.2) are given below, and the 

required set of column and mass transfer parameters are presented in Figure 4.3. 

                                            (4.1) 0)(
)1(3

,

,

2

2


















  prrpibi

pb

bifilmbibibi
ax CC

r

k

t

C

z

C
u

z

C
D







4 Insights into the Separation Performance of MOFs by HPLC and In-depth Modelling 

60 

                                                        (4.2) 

 

Figure 4.3. Column and mass transfer parameters for the simulation with ChromX. 

 

In addition, the parameters of the multicomponent Langmuir isotherm are required and given 

by:  

                                                                           (4.3) 

Here C*max,i is the maximum capacity of component i within the solid phase and KL,i is the 

Langmuir coefficient of component i, which is a measure of its affinity towards the solid 

phase. When using this equation, one has to be aware that only the particle skeleton is viewed 

as solid phase. If the more common maximum capacity with respect to the particle volume is 

needed, disregarding the amount of component i within the pore liquid, it leads to the 

following relationship: 

                                                                           (4.4) 

Finally, ChromX, like many other LC simulation tools, limits the sorbent particle model to be 

homogenous while a more appropriate model in our case would be a spherical core-shell 

design defined by two radii, a core radius rc and a total particle radius rp (see Figure 4.1). 

Therefore, the true volumetric concentration within the MOF (C*MOFmax,i) must be calculated 

by means of the volume fraction ϕs of the shell (Equation 4.5 and 4.6): 

                                                                                       (4.5) 

0
1

)1( 2

2







































r

C
r

rr
D

t

C

t

C pi

pip

pi

p

pi

p 







Ns

j

pjjL

piiL

ipi

CK

CK
CC

1

*

max

*

1

  *

max

*

max 1 ipiV CC  

3

33

p

cp

p

s
s

r

rr

V

V 




4 Insights into the Separation Performance of MOFs by HPLC and In-depth Modelling 

61 

                                                                                                     (4.6) 

Extracting an approximation of the apparent pore diffusivity in the MOF from the simulation 

results is consequently more complex. Core-shell adsorbents have received great attention in 

recent years especially in the context of fast/ultrafast analytical HPLC separation in short 

and/or narrow bore columns. A recent review highlights the reasons behind this success and 

additionally investigates the differences in intraparticle mass transport of core-shell particles 

with non-porous cores with those of fully penetrable particles composed of the same shell 

material [28]. In dependence of the ratio between the core and the full particle radius, the 

following relation between the pore diffusivity in the shell Dp,shell and the corresponding 

apparent pore diffusivity in an homogenous fully porous particle Dp can be derived (Equation 

4.7).  

                                                                         (4.7) 

 

4.3. Results and Discussion 

4.3.1. Characterization of UiO-67 Magnetic Microparticles Core-Shell Composites 

The synthesized UiO-67 MPs core-shell composites were characterized by XRD, FTIR ATR, 

and SEM (Figure 4.4). The presence and intensity of diffraction peaks characteristic of UiO-

67 at 5.6° and 9.2° after 20 and 55 deposition cycles respectively, prove the successful 

preparation of a UiO-67 shell (Figure 4.4A). Comparison shows that these peaks measured 

for our particles are identical to the simulated XRD peaks of UiO-67 at (111) and (220) 

positions. FTIR ATR spectra (Figure 4.4B) give another indication for the effective growth of 

the UiO-67 shell. The decrease of the peak intensity at 1780 ‒ 1710 cm
-1

, indicating a –

COOH stretch, and the increase or appearance of UiO-67 characteristic bands at 1585, 1532, 

1407 and 768 cm
-1

, support the conclusion of a successful fabrication yielding UiO-67 MOFs 

chemically bonded onto the carboxyl functionalized surface of the magnetic microparticles 

[18]. The SEM images also clearly reveal the formation of the UiO-67 shell on the magnetic 

particles (Figure 4.4C, D and Figure S4.1). After applying 55 deposition cycles to grow the 

UiO-67 shell on the raw magnetic cores, the diameter of the UiO-67 MPs core-shell 

microspheres increased from 4.7 µm to 5.5 µm. These numbers result from measuring the 

diameter of more than twenty particles. The diameter of each particle was determined by 

calculating the average of the diameters measured for ten different angles. This indicates that 

approximately 0.4 µm thick SURMOFs shells were grown over the magnetic microparticles, 

resulting in a volume fraction for the shell ϕs of 38%. Moreover, thanks to their uniform 
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shapes and sizes, the as-prepared UiO-67 MPs composites are appropriate sorbent candidates 

for HPLC. 

 

 

Figure 4.4. Characterization of the UiO-67 shell grown on carboxyl-functionalized magnetic micro-

particles. (A) XRD patterns of as-synthesized UiO-67 MPs core-shell composites obtained after 20 

and 55 deposition cycles. (B) FTIR-ATR spectra of raw magnetic microparticles and the as-

synthesized UiO-67 MPs (55 cycles) core-shell composites. (C) SEM images of the raw magnetic 

microparticles and (D) UiO-67 MPs (55 cycles) core-shell composites. The cracks within the MOF-

shell of the particles are probably an artifact from the previous drying procedure needed for SEM 

imaging. 

 

Based on the XRD, FTIR ATR, and SEM results, the successful preparation of UiO-67 MPs 

core-shell composites by the LPE method is demonstrated. In contrast to MOF particles 

prepared by bulk synthesis, the synthesized core-shell particles showed a uniform size and a 

homogenous MOF shell covering the whole particle surface. These unique properties make 

the composite particles suitable for chromatographic applications and offer the possibility for 

detailed investigations regarding diffusion kinetics and binding isotherms within MOFs. 
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4.3.2. Determination of Column Characteristics 

Tracer experiments with acetone and blue dextran were conducted in order to determine total 

and bed porosities of columns packed with the UiO-67 SURMOF-based composite particles, 

and estimate the resulting axial dispersion. Figure 4.5 shows the resulting chromatograms 

with the tracer peaks and the corresponding simulations using ChromX. 

 

 

Figure 4.5. ChromX simulated (red lines) and experimental chromatograms (black lines) with a 0.2 

µL injection of (A) blue dextran (0.5 µmol L
-1

) and (B) acetone (1.7∙10
4
 µmol L

-1
) dissolved in ACN, 

eluted at a flow rate of 0.14 mL min
-1

, and monitored with a UV detector at 280 nm (A) or 254 nm (B).  

 

From the determined retention times of the peak maxima, total, bed and apparent particle 

porosities of 81%, 72%, and 32% were determined respectively. Given that the porosity of 

the composite support derives solely from the outer MOF shell and that the shell itself 

accounts for ~38% of the particle volume, the true porosity of the MOF UiO-67 shell is 

calculated as ~84%. Regarding the bed porosity, the value is unexpectedly high and indicates 

that although a high packing pressure was applied, high packing densities of the 

microparticles within the column of only 1.0 mm inner diameter were not achieved. The 

calculated axial dispersion coefficient is in the range of 10
-6

 m
2 
s

-1
, which is about an order of 

magnitude higher than the dispersion coefficient predicted by correlations for a well packed 

column of our particles [29]. This again agrees with a particle packing having an excessively 

large voidage. However, the value of axial dispersion is still acceptable, and allows the 

further investigation of equilibrium parameters and intraparticle mass transfer limitations 

within the column. Finally, for a feed rate of 0.14 mL min
-1

 the value of the film mass 

transfer coefficient is calculated to 4∙10
-4

 m s
-1

 using the correlation of Wilson and 

Geankoplis [30]. Nevertheless, simulations show that the film mass transfer resistance is 

negligible in the present case (Figure S4.2, Supporting Information). 
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4.3.3. Chromatographic Separation of Phenol Derivatives 

To demonstrate the suitability of our UiO-67 MPs core-shell composites for liquid 

chromatography, the separation of a mixture of three phenol derivatives was tested. The 

phenol derivatives (DMP, BZD, and DCP) differ only in the type and position of one or two 

side groups (Figure 4.2). The same set of phenol derivatives has been used previously by Fu 

et al. [31] to probe the effect of the incorporation of submicron MOF UiO-66 particles into a 

porous polymer monolith made of polymethylacrylic acid-co-ethylene dimethacrylate (MAA-

co-EDMA). While the incorporation of the MOF has clearly been shown to improve the 

separation performance of the monolith column, the investigations, restricted to analytical 

operation regime, did not provide maximum capacity or mass transfer limitation data. 

In the present experiments, we applied a concentration gradient to the two component 

ACN/H2O mobile phase, while maintaining a constant flow rate. First, the column packed 

with UiO-67 MPs (20 cycles) core-shell composites were tested at a flow rate of 0.14 mL 

min
-1

 (Figure 4.6A). Following injection of the sample (0.2 µL), DMP eluted rapidly (t = 1.0 

min), immediately followed by a second peak (t ~ 1.7 min) comprising BZD and DCP. In 

stark contrast, UiO-67 MPs (55 cycles) core-shell composites resulted in baseline separation 

of DMP, BZD, and DCP (Fig 6B; Rs values for separation of the DMP and BZD, and BZD 

and DCP peaks were calculated as 1.7 and 1.5 respectively). On the one hand, the strong 

improvement of the separation which resulted from using composites with a thicker UiO-67 

layer to pack the column proves that the UiO-67 shell is responsible for the separation 

phenomena. On the other hand, the difference between the UiO-67 MPs resulting from 20 

and 55 cycles respectively is larger than expected. The most probable explanation is that at 

least in the beginning the growth of SURMOFs is not linear with the number of cycles, as 

shown in Figures 1, 2 and 6 of reference [32]. Due to the irregular arrangement of carboxyl 

groups on the initial surface, the first 5 to 10 cycles result in a SURMOF of worse 

crystallinity and lower thickness than the one calculated assuming a molecular layer per cycle. 

 

 

Figure 4.6. HPLC chromatograms resulting from the injection (0.2 µL) of a mixture of 8.19·10
3
 µmol 

L
-1

 (1.0 g L
-1

) DMP, 9.08·10
3
 µmol L

-1 
(1.0 g L

-1
) BZD and 1.27·10

4
 µmol L

-1
 (2.0 g L

-1
) DCP 

dissolved in ACN into the HPLC column (200 mm × 1.0 mm i.d.) packed with UiO-67 MPs core-

shell composites of 20 (A) and 55 (B) cycles, respectively. The gradient of the mobile phase was as 
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follows: 0.00-2.00 min, ACN/H2O (95:5  87.5:12.5); 2.01-30.00 min, ACN/H2O (87.5:12.5) at a 

flow rate of 0.14 mL min
-1

. The separations were performed at room temperature and monitored with 

a UV detector at 230 nm. 

 

A noticeable difference in order of elution of the phenol derivatives observed here (DMP – 

BZD – DCP), with that reported by Fu et al. [31], (BDZ – DMP – DCP) employing UiO-66 

incorporated within poly(MAA-co-EDMA) merits explanation. With their experimental setup, 

the elution order obtained correlates with the hydrophobicity ranking of the phenol 

derivatives. The incorporation of UiO-66 reinforces the weakly hydrophobic effect from their 

polymer matrix and enhances the separation performance. In comparison, our column system 

is highly hydrophobic with the effective sorbent being made only of UiO-67. However, DMP 

is eluted before BZD in our case. The diphenyl-4,4′-dicarboxylate linkers, compared to the 

1,4-benzene-dicarboxylate of UiO-66, probably enable different and more important π-π 

interactions with the phenol derivatives. Stronger interactions, either hydrophobic and/or of 

π–π type, also explain the higher ACN concentration needed to elute the derivatives. 

While the separation of a mixture of phenol derivatives by applying a gradient to the mobile 

phase shows the suitability of UiO-67 MPs core-shell composites for HPLC applications. In 

practice, however, it does not permit easy insight into the physical processes that dominate 

and also limit the observed performances. Therefore, a rigorous series of single and 

multicomponent chromatographic runs were conducted. The obtained data allow not only the 

extraction of a set of kinetic and equilibrium parameters which describe the interplay between 

our MOF and the phenol derivatives, but also permit in-silico predictions of the 

chromatographic performance. 

 

4.3.4. Single Component Chromatography Runs with Isocratic Elution 

The equilibrium parameters describing the adsorption isotherm between the phenol 

derivatives examined (DMP, BZD and DCP) and the UiO-67 stationary phase were 

determined by isocratic single component chromatography runs conducted in pulse injection 

and breakthrough mode modes, and the experimental and simulated chromatograms acquired 

are displayed in Figure 4.7.  
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Figure 4.7. HPLC chromatograms of isocratic pulse (0.2 µL injected) and breakthrough (1 mL 

injected) experiments applying different phenol derivatives at a concentration of 8.19·10
3
 µmol L

-1
 

DMP (A), 9.08·10
3
 µmol L

-1
 BZD (B) and 6.13·10

3
 µmol L

-1
 DCP (C) (1 g L

-1 
each) onto a column 

(200×1.0 mm i.d.) packed with UiO-67 MPs (55 cycles) core-shell composites. Isocratic pulse 

chromatograms are on the left and breakthrough traces are on the right. All runs were performed at a 

flow rate of 0.14 mL min
-1

 and monitored with a UV detector at 230 nm. Black lines represent the 

experimental results whereas red lines show the results of the simulations using the software ChromX. 

DMP (A), BZD (B), and DCP (C) elutions using the mobile phase ACN/H2O at 95:5, 90:10, and 

85:15, respectively. 

 

The retention time of the pulse experiments corresponds with the initial slope of the binding 

isotherm between the molecule and the stationary phase. In the case of a Langmuir behavior, 

this initial slope is given by the product of the saturation concentration C*MOFmax,i and the 

Langmuir coefficient KL,i of the respective molecule. Therefore, pulse experiments within the 

analytical operation regime are normally not sufficient for determining the individual values 

of these parameters and additional breakthrough experiments have to be performed. When 
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these breakthrough experiments are done with concentrations at which the MOF loading 

approaches saturation, the resulting data combined with those of the pulse experiments permit 

an appropriate parameter evaluation to describe the equilibrium binding behavior within the 

complete concentration range. To extract the affinity coefficients (KL) and the maximum 

capacities (C*MOFmax) for each phenol derivative, chromatograms were simulated by the 

software ChromX. As shown in Fig.4.7, good correlations between experimental (black line) 

and simulated data (blue line) were achieved in most cases with the equilibrium parameters 

being: 

- KL = 122 L mol
-1

 and C*MOFmax = 0.14 mol L
-1

 for DMP (Figure 4.7A); 

- KL = 99 L mol
-1

 and C*MOFmax = 0.14 mol L
-1

 for BZD (Figure 4.7B); 

- KL = 652 L mol
-1

 and C*MOFmax = 0.14 mol L
-1

 for DCP (Figure 4.7C).    

While each of the simulated peaks for the pulse experiments exhibit an expected and almost 

perfect Gaussian shape, the experimental peak curves deviate clearly from any of those. This 

may be caused partly by backmixing within the rather high bed voidage and the Diode Array 

Detector (DAD) flow cell. The same phenomenon may also explain the notable tailing 

observed for the retention peak of the large tracer blue dextran (Figure 4.5). Nevertheless, the 

simulations show that the intraparticle mass transfer resistance has also a clear influence on 

the peak height and shape. Testing different apparent pore diffusion coefficient Dp reveals 

that the best fits in most cases are obtained with a value around 1.5∙10
-12

 m
2
 s

-1
 for acetone 

and 5∙10
-13

 m
2
 s

-1
 for the phenol derivatives. With Equation 7, the ratio between the real pore 

diffusion coefficients within the MOF shell (Dp,shell) and the apparent pore diffusion 

coefficient Dp within the simulated homogenous particles is evaluated to be around 0.25. 

Thus, we estimate pore diffusion coefficients within the MOF shell of ~3.8∙10
-13

 m
2
 s

-1
 and 

~1.31∙10
-13

 m
2
 s

-1 
for acetone and the phenol derivatives respectively. Heinke et al. [33] 

determined these numbers compare well with the pore diffusivities that Heinke et al. have 

determined for cyclohexane within HKUST-1 thin films produced by a similar step-by-step 

LPE process. In case of pristine SURMOFs, a value of 6∙10
-13

 m
2
 s

-1
 is reported. However, 

defects in the MOF structure, which can be caused by detrimental environmental conditions, 

can also strongly reduce the effective mass transfer. Taking into account a lower crystalline 

quality for our UiO-67 SURMOFs, pore diffusion values between 1 ‒ 4∙10
-13

 m
2
 s

-1
 are within 

the expected range. 

Figure 4.8 shows three simulated chromatograms for the BZD pulse injection experiments 

with Dp values of 1∙10
-12

 m
2
 s

-1
, 5∙10

-13
 m

2
 s

-1
 and 2∙10

-13
 m

2
 s

-1
, respectively, and 

demonstrates the sensitivity of the simulation results with respect to the pore diffusion 

coefficient. Simulation experiments with the initial Dp value doubled or halved clearly result 

in a reduced quality of the peak fit, both in peak shape and retention time. In contrast, 

variations of the film mass transfer coefficient (Figure S4.2, Supporting Information) or the 
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axial dispersion (Figure S4.3, Supporting Information) by the same order of magnitude show 

no, or only a minor, effect on the simulation results.  

 

 

Figure 4.8. Sensitivity analysis of the simulation results with respect to the assumed intraparticle 

mass transfer. Different values of the apparent pore diffusion Dp (1∙10
-12

 m
2
 s

-1
, 5∙10

-13
 m

2
 s

-1
 and 2∙10

-

13
 m

2
 s

-1
, for A, B, and C, respectively) were tested to fit the pulse injection experiment with 9.08·10

3
 

µmol L
-1

 (1 g L
-1

) BZD (0.2 µL) using ACN/H2O (90:10) as mobile phase. Black lines represent the 

experimental results and red lines show the results of the simulations by ChromX.  

 

The chromatographic runs described above were optimized by adjusting the composition of 

the mobile phase to keep the retention times of the peaks from the pulse experiments within a 

time frame of less than 10 min. However, to compare the affinities of the different phenol 

derivatives towards the MOF UiO-67, it is necessary to run all samples under the same 

conditions. Therefore, a second set of single component chromatographic runs with isocratic 

elution was conducted with a mobile phase ACN/H2O of constant composition (95:5). In this 

case, a good agreement between the measured black trace and simulated blue trace in Figure 

4.9 data could be achieved with the following set of equilibrium parameters KL and C
*
MOFmax: 

- KL = 122 L mol
-1

and C
*
MOFmax = 0.14 mol L

-1
 for DMP (Figure 4.9A), 

- KL = 551 L mol
-1

 and C
*
MOFmax = 0.14 mol L

-1
 for BZD (Figure 4.9B), 

- KL = 2771 L mol
-1

 and C
*
MOFmax = 0.14 mol L

-1
 for DCP (Figure 4.9C). 

From Figure 4.9B and C, it can be seen that using a mobile phase composition with a higher 

ACN concentration (ACN/H2O at 95:5) results in stronger affinities for BZD and DCP, and 

therefore, longer retention times than those depicted by Figure 4.7. Nevertheless, the 

computer model is able to satisfactorily simulate the experimental results by simply changing 

the Langmuir coefficient KL according to the increased affinities, while the maximum 

capacities remain unchanged. From this observation, it was interesting to realize the extent to 

which the sample molecules occupy the MOF pores when this maximum capacity is reached. 

Therefore, the theoretical capacity was calculated provided that each pore would be filled 

with one sample molecule. 
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Figure 4.9. HPLC chromatograms of isocratic pulse (0.2 µL injected) and breakthrough (1 mL 

injected) experiments applying different phenol derivatives onto a column packed with UiO-67 MPs 

(55 cycles) core-shell composites. Isocratic pulse chromatograms are on the left and breakthrough 

traces are on the right. All runs were performed at a flow rate of 0.14 mL min
-1

 at a mobile phase 

composition ACN/H2O (95:5) and monitored with a UV detector at 230 nm. Black lines represent the 

experimental results while red lines show the results of simulations using the software ChromX. Pulse 

experiments, column length 200 mm: (A) 4.09·10
3
 µmol L

-1
 (0.5 g L

-1
) DMP; (B) 4.54·10

3
 µmol L

-1
 

(0.5 g L
-1

) BZD; (C) 6.13·10
3
 µmol L

-1
 (1 g L

-1
) DCP; breakthrough experiments, column length 140 

mm: (A) 1.64·10
3
 µmol L

-1
 (0.2 g L

-1
) DMP; (B) 1.82 ·10

3
 µmol L

-1
 (0.2 g L

-1
) BZD; (C) 1.23 ·10

3
 

µmol L
-1

 (0.2 g L
-1

) DCP. 

 

The UiO-67 unit cell length and unit cell volume being 2.7∙10
-9

 m and 2∙10
-26

 m
3
, 

respectively, the number of unit cells per 1 L that can be obtained is 5∙10
22

, equivalent to 83 

mmol. In the case of the investigated phenol derivatives and the UiO-67 MOF, the condition 

of maximum capacity is characterized by a situation in which statistically approximately 1.7 

phenol derivative molecules are incorporated per unit cell. This value is low in comparison to 

molecular loadings already reported, e.g. 4.0 pyridine and 2.5 chloroaniline isomers per 
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HKUST-1 unit cell [34]. A possible explanation for the discrepancy may again originate from 

imperfections in the crystallinity of our UiO-67 MOF shells.  

 

4.3.5. Affinity Modulation through Mobile Phase Variation 

Based on the observed effect that the mobile phase composition influences the binding 

affinity but not the maximum capacity of the UiO-67 MOF, a more detailed investigation of 

this relationship was performed as follows. Pulse experiments for the three phenol derivatives 

and ACN/H2O mixtures containing between 2.5% and 20% of water were conducted. From 

the resulting retention times, KL values were calculated using Equation 4.8 assuming a 

constant maximum capacity C
*
MOFmax of 0.14 mol L

-1
. This C

*
MOFmax value corresponds to a 

maximum capacity per volume of particle skeleton of C
*
max = 0.33 mol L

-1
.  

                                                                                                                 (4.8) 

Figure 4.10 shows the resulting retention factors (k′) and affinity parameters (KL) for DMP, 

BZD and DCP. As observed there exists a critical point in each case beyond which k' and KL 

rise steeply, i.e. ca. 3%, 5% and 10% for DMP, BZD and DCP respectively. 

 

 

Figure 4.10. Variation of the retention factors (k′) and the Langmuir constants KL with respect to the 

H2O fraction in the ACN/H2O mobile phase. All runs were performed at a flow rate of 0.14 mL min
-1

 

injecting a pulse (0.2 µL) of either DMP (black curve), BZD (red curve), or DCP (blue curve). 

 

4.3.6. Multicomponent Isocratic Pulse Experiments 

Multicomponent isocratic pulse experiments were carried out with mobile phases of different 

compositions (Figure 4.11). The retention times of the phenol derivatives followed the order 

DMP < BZD < DCP for all eluent compositions used, indicating that the retention mechanism 

is in accordance with solute polarity. In the case of the mobile phase comprising 3% water, 

more than 100 min are needed to elute all analytes (Figure 4.11A). Applying a mobile phase 
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with 5% H2O shortened the elution time of DMP and BZD to about 3 and 10 min, 

respectively, while DCP still needed about 38 min to pass the column (Figure 4.11B). 

Increasing the water content to 10% resulted in the three phenol derivatives eluting too fast, 

leading to overlapping poorly separated peaks (Figure 4.11C). The equilibrium and kinetic 

parameters determined for the individual phenol derivatives were integrated into a 

multicomponent simulation, in order to investigate whether the resulting ChromX model is 

able to predict the optimum performance of an isocratic separation at 5% water content. With 

the Langmuir coefficients data obtained from the single component chromatography runs 

conducted in pulse injection (Table S4.1, Supporting Information) and a constant maximum 

capacity of C
*
MOFmax of 0.14 mol L

-1
, multicomponent isocratic runs were modeled by 

ChromX with ACN/H2O ratios for the mobile phase composition at 97:3, 95:5, and 90:10 

(Figure 4.11). Comparing the simulation results of the corresponding multicomponent 

isocratic pulse experiments against the experimental data demonstrated that the simulation 

achieved a good prediction of both peak maxima retention time and peak shape for both the 

retention times of the peak maxima and the overall peak shapes. The only noticeable 

deviation observed, i.e. in peak height, could not be modeled owing to baseline drift in some 

cases resulting in growing mismatch between the measured and simulated curves with 

increasing time. The successful transfer of single component equilibrium data into 

multicomponent simulations offers a valuable tool for optimizing the application of MOF 

based sorbents not only in the field of chromatography, but also in others such as sensor 

technology, where fast kinetics of solutes within MOF thin films are critical. 
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Figure 4.11. Experimental data (black line) and modeling results (red line) of multicomponent 

isocratic runs with a pulse injection (0.2 µL) of (A) 4.09·10
3
 µmol L

-1
 (0.5 g L

-1
) DMP, 4.54·10

3
 µmol 

L
-1

 (0.5 g L
-1

) BZD and 1.27·10
4
 µmol L

-1
 (2 g L

-1
) DCP, ACN/H2O (97:3); (B) 4.09·10

3
 µmol L

-1
 (0.5 

g L
-1

) DMP, 4.54·10
3
 µmol L

-1
 BZD (0.5 g L

-1
) and 6.13·10

3
 µmol L

-1
 (1 g L

-1
) DCP, ACN/H2O 

(95:5); and (C) 4.09·10
3
 µmol L

-1
 (0.5 g L

-1
) DMP, 4.54·10

3
 µmol L

-1
 (0.5 g L

-1
) BZD and 1.27·10

4
 

µmol L
-1

 (2 g L
-1

) DCP, ACN/H2O (90:10). All runs were performed at a flow rate of 0.14 mL min
-1

 

and monitored at 230 nm.  
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4.4. Conclusions 

Shells of UiO-67 SURMOFs were synthesized by a LPE process on magnetic microparticle 

cores having carboxylic functional groups on the surface to nucleate and bind the first MOF 

layer. The obtained UiO-67 MPs core-shell composites were physically characterized and 

packed as a novel stationary phase in HPLC columns in order to investigate the binding 

properties and kinetics of the MOF sorbents for chromatographic applications. Detailed 

modeling of experimental data derived from pulse injection and breakthrough experiments 

conducted with three closely related phenol analytes permitted the extraction of binding 

equilibrium and pore diffusivity parameters. We found that in the case of these different 

phenol derivatives, the maximum molar loading capacities remained constant for different 

mobile phase compositions. In contrast, the affinities of the examined molecules varied and 

showed a strong dependence on the ACN/H2O ratio employed. With values of 1 – 4∙10
-13

 m
2
 

s
-1

, the determined pore diffusivities are around two to three orders of magnitude smaller than 

the reported pore diffusivities of phenol derivatives in e.g. activated carbon [35]. The MOF 

sorbent’s slow intraparticle mass transfer kinetics and moderate binding capacities render it 

unsuitable for preparative chromatography where particle sizes of 30 – 90 µm are typically 

used.’ However, the core-shell design affords acceptable kinetics at practicable operating 

pressures. Although a common pore diffusion model was applied in our simulations, our 

results suggest that within the MOFs, the mass transfer mechanism seems to be more 

elaborate, with significant surface diffusion and size exclusion effects occurring. Therefore, 

future work will be carried out with SURMOFs of pristine quality and improved models of 

the mass transfer to explore more comprehensively unique features offered by this highly 

porous but crystalline chromatographic material. 
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4.5. Support Information 

 

Figure S4.1. Collage of SEM images of UiO-67 MPs (55 cycles) using a lower magnification of 500x.  

 

 

Figure S4.2. Sensitivity analysis of the simulation results with respect to the film mass transfer 

coefficient. Different values of the film mass transfer coefficient (8∙10
-4

 m s
-1

, 4∙10
-4

 m s
-1 

and 1.6∙10
-4
 

m s
-1

) were tested to fit the pulse injection experiment with 9.08·10
3
 µmol L

-1
 (1 g L

-1
) BZD (0.2 µL) 

using a ACN/H2O (90:10) mobile phase. The experimental curves are depicted with black line while 

the simulated ones obtained using ChromX are colored. Due to perfect overlapping only one 

simulated curve seems visible. 
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Figure S4.3. Sensitivity analysis of the simulation results with respect to the axial dispersion. 

Different values of the axial dispersion (2∙10
-6

 m
2
 s

-1
, 1∙10

-6
 m

2
 s

-1
 and 4∙10

-7
 m

2
 s

-1
) were tested to fit 

the pulse injection experiment with 9.08·10
3
 µmol L

-1
 (1 g L

-1
) BZD (0.2 µL) using a ACN/H2O 

(90:10) mobile phase. Black lines represent the experimental results while the colored lines depict the 

results of the simulations with ChromX.  

 

Table S4.1. Langmuir coefficients (KL,i) for modeling multicomponent isocratic runs using ChromX 

with the ACN/H2O mobile phase composition at 97:3, 95:5, and 90:10. 

Parameters ACN/H2O (97:3) ACN/H2O (95:5) ACN/H2O (90:10) 

KL,DMP 244 122 73 

KL,BZD 1321 551 99 

KL,DCP 3830 2771 685 
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Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-

Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany 

*Corresponding author: matthias.franzreb@kit.edu 

 

 

Abstract Porous metal–organic frameworks (MOFs) [Cu3(BTC)2(H2O)3]n (also known as 

HKUST-1; BTC, benzene-1,3,5-tricarboxylic acid) were synthesized as homogeneous shell 

onto carboxyl functionalized magnetic microparticles through a liquid phase epitaxy (LPE) 

process. The as-synthesized core-shell HKUST-1 magnetic microparticles composites were 

characterized by XRD and SEM, and used as stationary phase in high performance liquid 

chromatography (HPLC). The effects of the unique properties of MOFs onto the 

chromatographic performance are demonstrated by the experiments. First, remarkable 

separation of pyridine and bipyridine is achieved, although both molecules show a strong 

interaction between the Cu-ions in HKUST-1 and the nitrogen atoms in their heterocycles.  

The difference can be explained due to size exclusion of bipyridine from the well-defined 

pore structure of crystalline HKUST-1. Second, the enormous variety of possible interactions 

of sample molecules with the metal ions and linkers within MOFs allows for specifically 

tailored solid phases for challenging separation tasks. For example, baseline separation of 

three chloroaniline (CLA) isomers tested can be achieved without the need for gradient 

elution modes. Along with the experimental HPLC runs, in-depth modeling with a recently 

developed chromatography modelling software (ChromX) was applied and proofs the 

software to be a powerful tool for exploring the separation potential of thin MOF films. The 

pore diffusivity of pyridine and CLA isomers within HKUST-1 are found to be around 

2.3∙10
‒15

 m
2
 s

‒1
. While the affinity of HKUST-1 to the tested molecules strongly differs, the 

maximum capacities are in the same range, with 0.37 mol L
‒1

 for pyridine and 0.23 mol L
‒1

 

for CLA isomers, corresponding to 4.0 and 2.5 molecules per MOF unit cell, respectively.  

 

Published in Journal of Chromatography A, 1411 (2015) 77-83 
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5.1. Introduction 

The separation of aromatic mixtures of isomers, but also of compounds with relatively close 

structures, has always been a challenging task in the chemical industry due to similar 

physicochemical properties, and especially a similar boiling point. High performance liquid 

chromatography (HPLC) is one of the most commonly used techniques to separate similar 

synthetic chemicals owing to powerful adsorption columns (stationary phase) [1]. Being the 

heart of a HPLC system, a large number of stationary phases are already commercially 

available [2]. However, there is a growing demand for new materials to face the requisites 

and challenges of ever evolving analytical and industrial applications [3, 4].  

As a new generation of stationary phases, metal-organic frameworks (MOFs) have recently 

exhibited a great feasibility in chromatography application [5, 6], due to their salient features 

of low density, high uptake capacity, and absence of dead volume. MOFs are highly ordered 

microporous and crystalline materials constructed by assembling metal ions or clusters with 

functional organic linkers via strong coordination bonds that have emerged in the past two 

decades [7, 8]. These materials are characterized by high specific surface area, inherent 

porosity, tunable pore size and chemical functionality. These features provide them a great 

potential for diverse applications [9, 10], ranging from gas storage and separation, to catalysis, 

sensor, and compound delivery.  

Extensive studies have been carried out in gas chromatography (GC) since the bulk MOF-508 

was first reported as stationary phases for GC in 2006 [11]. However, HPLC applications of 

MOFs are more complex due to the additional influence of the solvent and the sensitivity of 

many MOFs against e.g. water. Another major limitation for MOFs based phases in HPLC 

lies in the irregular shapes and wide size distributions of MOFs usually obtained by 

traditional solvothermal synthesis. These morphological variations result in suboptimal 

column packing, low column efficiency, and high column back pressure [12]. The recently 

established liquid phase epitaxy (LPE) process [13] with a step-by-step fashion is a promising 

method to produce homogenous MOF films with high (crystalline) quality, as well as well-

controlled orientation and thickness on a suitably functionalized surface as a nucleation 

template [14]. Using nonporous, monodisperse spheres as a template (see Figure 5.1) the 

above mentioned problems of polydispersity can be solved while keeping the beneficial 

properties of MOFs as stationary phase [15-17].  
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Figure 5.1. Schematic representation of the core‒shell HKUST-1 magnetic microparticles. rc refers to 

the radius of the magnetic particle and rp to the radius of the particle including the MOF shell. 

 

Since around ten years an increasing number of studies reporting about MOFs used as HPLC 

stationary phase have been published. Excellent overviews can be found, e.g. in the recent 

reviews of Yu and Yusuf, respectively [6, 18]. Most papers show the effective separation of 

analyte mixtures and demonstrate soundly the influence of several parameters on the 

observed retention times [19, 20]. Many classes of molecules have been separated, starting 

from relatively small alkylaromatic compounds using e.g. columns packed with MOFs of the 

MIL type [21-23], as well as substituted benzenes and polycyclic aromatic hydrocarbons on 

UiO-66 packed columns [24], up to the high-resolution separation of C60 and C70 achieved on 

a MIL-101(Cr) packed column (5 cm long × 4.6 mm i.d.) with dichloromethane/acetonitrile 

(98:2) as mobile phase [25]. Among the less frequently used MOFs in chromatography is the 

above mentioned HKUST-1, mainly because of its low stability against water. Nevertheless, 

effective separation of substituted aromatic hydrocarbons could be demonstrated using 

hexane as mobile phase [26]. However, fundamental information about the adsorption 

interaction between the analytes and the MOFs structure, and especially, the equilibrium 

isotherms and particle diffusion parameters, remain mostly undetermined, even though they 

would allow for an essential understanding of the performance of MOFs based stationary 

phases. The principal obstacles to this come from the geometrical factors that are unknown: 

the used MOF material is often very heterogeneous with respect to particle size and 

morphology, making it practically impossible to derive quantitative kinetic data. Several 

examples of core–shell MOF particles used as adsorbents have been reported, such as MOF–

silica composites [12], or MOF–Fe3O4 microspheres [27]. However, also in these cases the 

MOF coating consists of an agglomeration of irregular shaped nanoparticles and the coverage 

of the base material is not homogenous.      

In this work, we report on the synthesis of well-defined core–shell structures with a HKUST-

1 layer grown evenly on uniform magnetic microparticles by the LPE process (Figure 5.1). 

HKUST-1 is a well-known functional MOF-material having a three-dimensional framework 

and a fairly large pore size of 0.9 nm (Figure 5.1, inset) [28]. The obtained core–shell 
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structured HKUST-1 magnetic microparticles were packed as stationary phase in HPLC 

columns, with the aim to demonstrate the effect of MOF specific properties onto 

chromatographic performance. Exemplarily, mixtures of aromatic compounds with similar 

chemical interaction with HKUST-1 (pyridine and 4,4′-bipyridine) or isomeric structures 

(chloroaniline isomers) were tested (Figure 5.2). Additionally, the interaction between the 

HKUST-1 core–shell solid phase and the analytes is investigated on a more fundamental 

level via simulation of the HPLC experiments. 

 

 

Figure 5.2. Structures of pyridine, 4,4’-bipyridine and chloroaniline isomers used for the HPLC 

experiments. 

 

5.2. Experimental 

5.2.1. Materials and Chemicals  

Hydroxyl-functionalized magnetic silica microparticles (MPs, SiO2-MAG-S1975-OH) with 

narrow size distribution of 3.55 ± 0.17 µm were purchased from microParticles GmbH, 

Berlin, Germany. The empty HPLC stainless steel column (50 mm long × 2.0 mm i.d.) was 

bought from VDS optilab Chromatographie Technik GmbH, Berlin, Germany. All chemicals 

were at least of analytical grade and purchased from Sigma‒Aldrich or Merck KGaA, 

Germany. (3-Aminopropyl)triethoxysilane (APTES), ammonia aqueous, sodium hydroxide 

(NaOH), glutaraldehyde solution (GA) and potassium permanganate (KMnO4) were used for 

particle treatments. Benzene-1,3,5-tricarboxylic acid (BTC, 98%), copper(II) acetate hydrate 

(Cu(CH3COO)2·H2O), ethanol (CHROMASOLV
®
 absolute for HPLC, 99.8%), carbon 

tetrachloride (CCl4, 99.9%) and dichloromethane (DCM, 99.8%) were used to synthesize 

MOFs and prepare the column. The HPLC grade methanol (MeOH, 99.9%), ethanol (EtOH, 

99.9%) and acetonitrile (ACN, 99.9%) were deoxygenated by bubbling through purified 
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nitrogen gas for at least 20 min prior to be used as HPLC mobile phase. Acetone (99.9%), 

toluene (anhydrous, 99.8%), pyridine (anhydrous, 99.8%), 4,4′-bipyridine (98%), 2-

chloroaniline (2-CLA, 99.5%), 3-chloroaniline (3-CLA, 99%), 4-chloroaniline (4-CLA, 98%), 

2,6-dimethylphenol (DMP, 99%), benzene-1,3-diol (BZD, 99%), 2,6-dichlorophenol (DCP, 

99%) were dissolved in mobile phase aliquots used as HPLC samples. The molecular 

structures of pyridine, 4,4′-bypyridine and chloroaniline isomers (2-CLA, 3-CLA, 4-CLA) 

are shown in Figure 5.2.  

 

5.2.2. Preparation of COOH-terminated MPs 

Magnetic microparticles (MPs) were used as precursor for the synthesis of the solid phase. 

Due to their magnetic properties these particles are easy to separate from the liquid 

suspensions used during the following surface modification and LPE processes. To serve as a 

nucleation template, the hydroxyl surface functionalization of the MPs needed to be 

converted to a terminal carboxyl. This was achieved by a modified Stöber method [29]. 25 

mg MPs were immersed into 2.5 mL EtOH, 4 mL deionized water and 0.1 mL 25% (v/v) 

ammonia. 0.4 mL APTES (0.1 mL per 20 min) was added into the MPs solution with a 

continuous shaking at 250 rpm for 1 h at room temperature. This resulted in an amino group 

(‒NH2) coating of the MPs. The NH2-terminated MPs were washed with deionized water 5 

times, and then, magnetically extracted. Thereafter, the freshly reacted MPs were dispersed 

into 4 mL 2% (v/v) GA aqueous solution. The pH was adjusted with 0.5 mol L
‒1

 NaOH 

solution to pH 11 and the solution was then shaked for 1 h at room temperature to 

functionalize the surface with formyl groups (‒CHO) by a derivatization reaction. 

Subsequently, the MPs were washed with deionized water 5 times and put into 4 mL 0.1 mol 

L
‒1

 KMnO4 solution with 1 h shaking at 40°C to oxidize the ‒CHO groups to ‒COOH groups. 

Finally, the obtained ‒COOH terminated MPs were washed with deionized water and ethanol, 

5 and 2 times, respectively, and stored until further use. 

 

5.2.3. Fabrication of HKUST-1 on MPs  

HKUST-1 was synthesized onto the ‒COOH surface functionalized MPs using the liquid 

phase epitaxy process with Cu(CH3COO)2·H2O, as metal source, and BTC, as organic linkers, 

deposited in a layer-by-layer fashion. Briefly, 25 mg of the obtained ‒COOH functionalized 

MPs were alternately immersed into 2 mL Cu(CH3COO)2·H2O in EtOH solution (5 mmol L
‒1

) 

and 2 mL BTC in EtOH solution (2 mmol L
‒1

) and kept on a shaker (1350 rpm) for 5 min. 

The MPs were magnetically separated and washed thoroughly with 2 mL pure EtOH solution 

between each immersion step for about 2 min. A desired thickness for the built HKUST-1 

film was achieved by repeating the deposition process. All the solutions were kept at room 

temperature during the MOF thin film preparation. After 60 cycles the MOFs coated MPs 
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were magnetically separated, washed with EtOH solution, dried in vacuum, and stored until 

further use and characterizations.  

 

5.2.4. Material Characterization 

For X-ray diffraction (XRD) with co-planar (out-of-plane, OP) orientation acquisition, a 

Bruker D8 Advance equipped with a position sensitive detector (PSD) Lynxeye
®
 in θ-θ 

geometry, variable divergence slit, and 2.3° Soller-slit on the secondary side was used. The 

data were acquired over a 2θ range of 5 ‒ 20°, with 126 s per 0.019° 2θ-step. Cu-anodes were 

used with the Cu Kα1,2 radiation (λ  = 0.15419 nm).   

Scanning electron microscope (SEM) images were recorded using a Zeiss SUPRA60 VP 

(variable pressure, Carl Zeiss NTS GmbH Germany) at the Karlsruhe Nano Micro Facility, a 

Helmholtz Research Infrastructure at Karlsruhe Institute of Technology (KIT). Images were 

recorded at a beam voltage of 5.0 kV and varying magnifications (see scale bars for 

reference). 

 

5.2.5. Preparation of the HPLC Column and HPLC Experiments  

Before packing the column, the as-synthesized HKUST-1 MPs were washed five times with 

EtOH solution and dried at 120 °C for 12 h under vacuum in order to remove unreacted 

species in the MOF cavities. The dried composites were added into a mixture of CCl4 and 

EtOH (1:1, by volume) under ultrasonication for 5 min. The suspension was then packed with 

down-flow into a stainless steel column (50 mm × 2.0 mm i.d., column volume 157 µL) 

under 40 MPa for 10 min with EtOH to obtain the home-made HKUST-1 column.  

All chromatographic tests were performed with an Agilent 1100 series HPLC system (Agilent 

Technologies, USA) equipped with a variable wavelength UV detector and a micro (2 µL) 

flow cell at room temperature. All the signals were monitored at 254 nm. Before running the 

chromatographic experiments, the home-made MOF column was equilibrated with the 

mobile phase until the baseline was stabilized.  

 

5.2.6. Simulation of Chromatographic Runs by the Software ChromX 

The software ChromX (Version 0.1.0a) is a powerful tool for simulation of liquid 

chromatography experiments, developed at the Institute of Process Engineering in Life 

Sciences ‒ Biomolecular Separation Engineering of the Karlsruhe Institute of Technology 

(KIT) [http://mab.blt.kit.edu/chromx.php]. Even in case of the freely available academic 

version, ChromX allows the application of different isotherm and kinetic models, including a 

so-called general rate model taking into account dispersion, film diffusion and pore diffusion 

mass transfer limitations. The methodology and equations employed with ChromX are 
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described previously [30, 31]. Applying a chromatography column model to our case 

encounters the problem, that the model assumes homogenous spherical particles instead of 

core‒shell adsorbents. Therefore, the maximum loading capacities and pore diffusion 

coefficients resulting from the simulations have to be corrected by a factor taking into 

account the geometrical differences (see Supporting information). Although in case of the 

pore diffusion coefficients this approach is only an approximation, it is justified by the fact 

that the resulting error is smaller than the uncertainties given in experimental measurements 

or theoretical estimations of this parameter. Typically, a multicomponent Langmuir isotherm 

was selected in combination with a general rate kinetic model. Bed voidage εb was fixed to 

0.4, as a typical value for column packings using monodisperse particles [32]. A particle 

porosity of εp = 0.75 was calculated from crystallographic data on HKUST-1 [33] and film 

mass transport coefficients were estimated by well-known correlations [34] for packed beds 

of spherical beads. Afterwards, equilibrium coefficients as well as axial dispersion and pore 

diffusion coefficients were extracted from single component experimental data by manual or 

automated fitting procedures included in ChromX. Simulation of multicomponent 

experiments was conducted on the basis of these parameters without further changes. 

 

5.3. Results and Discussion 

5.3.1. XRD and SEM Data 

The HKUST-1 MPs (60 cycles), synthesized with the LPE method, were characterized by 

XRD and SEM experiments. The good agreement of XRD patterns of the as-synthesized 

HKUST-1 MPs with that of simulated bulk HKUST-1 confirmed the successful fabrication of 

a MOF shell grown on the MPs (Figure 5.3a). The SEM images obtained (Figure 5.3b and c) 

present a smooth, homogenous HKUST-1 shell on the magnetic particles. After applying 60 

layers of HKUST-1 growth, the diameter of HKUST-1 MPs core-shell composites increased 

from 3.55 µm for raw MPs to 4.11 µm, indicating that a MOF shell of around 0.28 µm was 

grown over the MPs. The resulting volume fraction ϕs of the shell is 36%. Moreover, the 

uniform shapes and sizes observed for the as-prepared HKUST-1 MPs materials make them 

ideal candidates for applications as stationary phase in an HPLC system.  

Based on the XRD and SEM results, it was concluded that MOF HKUST-1 shells were 

successfully fabricated onto the MPs by the LPE method. In contrast to MOF particles 

prepared by bulk synthesis [35], the synthesized HKUST-1 coated MPs present a uniform 

size distribution with each bead completely covered by a homogenous MOF shell. These 

unique properties make them specially suitable for chromatographic applications and offer 

the possibility for detailed investigations of diffusion kinetics within MOFs.  
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Figure 5.3. (a) Comparison of XRD patterns of as-synthesized HKUST-1 (60 cycles) MPs with the 

simulated bulk HKUST-1; (b) SEM image of a raw MP before MOFs nucleation; (c) SEM image of 

the HKUST-1 shell (60 cycles) deposited onto MPs with LPE. The cracks within the MOF‒shell of 

the particles are artefacts from the drying procedure necessary for SEM imaging. 

 

5.3.2. Determination of Column Characteristics 

After packing the column, pulse experiments with toluene, and acetone samples were 

conducted using MeOH as mobile phase. It was expected that these analytes will show only 

weak or no interaction with the stationary phase and therefore are suitable for the 

determination of a first approximation of the axial dispersion and pore diffusivities within the 

column. Figure 5.4 shows the resulting peaks and the corresponding simulations assuming a 

neglectable interaction with the solid phase, an axial dispersion coefficient of 10
‒6

 m
2
 s

‒1 
and 

pore diffusion coefficients within the MOF shell of approximately 2.3∙10
‒13

 m
2
 s

‒1
. 

Comparing the experimental results with the ChromX simulations revealed that the chosen 

kinetic parameters are able to give a good description of the peak shape. However both, 

toluene and acetone, show a weak interaction with HKUST-1, resulting in a short delay of the 
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peak maximum. The delay of the peaks cannot be explained by higher values of bed voidage 

or MOF shell porosities, because within a reasonable range of bed voidage (0.4 ‒ 0.55) the 

required MOF shell porosities calculate to more than 100%. Another indication for a weak 

interaction of acetone with the HKUST-1 structure is the fact that its retention time differs 

from that of toluene. It should be mentioned, that for a feed rate of 0.3 mL min
-1

 the value of 

the film mass transfer coefficient is calculated to 5∙10
‒4

 m s
‒1

 using the correlation of Wilson 

and Geankoplis [34]. However, as shown by in silico experiments with varying film mass 

transfer coefficients, the influence of this parameter on column performance can be neglected 

in good approximation (see Figure S5.1).  

 

 

Figure 5.4. HPLC chromatograms of experimental  (black lines) and simulated  data (red lines) for 

various tracers on the HKUST-1 MPs packed column (50 mm long ×2.0 mm i.d.). (a) Toluene (9.44 

mmol L
‒1

); (b) acetone (136.19 mmol L
‒1

). Conditions: Mobile phase, MeOH; injection volume, 0.2 

µL each; flow rate, 0.3 mL min
‒1

.  

 

5.3.3. Separation of Pyridine and 4,4′-bipyridine Using a HKUST-1 MPs Packed 

Column 

Pyridine (kinetic diameter 0.6 nm) and 4,4′-bipyrdine (kinetic diameter 1.1 nm) were used as 

analytes to test the influence of molecule size onto chromatographic behavior within our 

column packed with HKUST-1 (pore size of 0.9 nm) core‒shell beads. Both substances 

contain aromatic nitrogen heterocycles, which are known to strongly interact with the Cu-

ions of HKUST-1 via both σ-donating nitrogen atoms and π-accepting molecular orbitals [36]. 

From Figure 5.5 it can be seen that the chromatographic response of pyridine follows this 

expectation of strong interaction with the HKUST-1 solid phase, corresponding with a 

retention time of almost 10 min. In contrast, 4,4′-bipyridne elutes immediately after around 

15s without any noticeable interaction with HKUST-1 spheres. Therefore, 4,4′-bipyridine 

(1.1 nm) behaves like a large tracer molecule which is completely excluded from the MOF 

pores (0.9 nm) due to size exclusion. In our simulation this complete exclusion is realized in 

good approximation by setting the pore diffusions coefficient of bipyridine to a very small 

value of 10
‒26 

m
2
 s

‒1
, thus preventing the molecules from diffusing into the MOF pores. 
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Assuming bipyridine to be a large tracer, a bed voidage of 45% for the column can be 

calculated, which corresponds well with the assumption of 40% originally used. 

 

 

Figure 5.5. Chromatograms of pyridine (12.41 mmol L
‒1

) and 4,4′-bipyridine (6.40 mmol L
‒1

) on the 

HKUST-1 MPs packed column (50 mm long × 2.0 mm i.d.). Conditions: mobile phase, MeOH; 

injection volume, 0.2 µL each; flow rate, 0.3 mL min
‒1

. 

 

While size exclusion effects are also known from conventional polymer-based 

chromatography media, the pore size distribution of these materials results in relatively broad 

transitions, resulting in only moderate ratios around 1.5 in the retention time of molecules 

with a ratio of two in their molecular weight. In contrast, our MOF material shows a ratio of 

the retention times of around 40 between pyridine and bipyridine.  

In order to determine the equilibrium parameters of the interaction between pyridine and 

HKUST-1, pulse experiments with different concentrations (12.41 mmol L
‒1

 and 124.1 mmol 

L
‒1

) were tested. The results show that a tenfold higher concentration leads to a clear 

shortening of the retention time, making it obvious that concentrations above 100 mmol L
‒1

 

are outside the linear range of the isotherm (Figure 5.6). From the simulation results, the 

values of the parameters KL and C*MOFmax were determined to be 1187 L mol
‒1

 and 0.37 mol 

L
‒1

, respectively. The pore diffusion coefficient Dp,shell was determined to be 2.3·10
‒15

 m
2
 s

‒1
, 

which is the same value as that in the case of acetone or toluene. Therefore, the Dp,shell values 

we found for small organic molecules within HKUST-1 are remarkably smaller than the 

value of 6∙10
‒13

 m
2
 s

‒1
 that Heinke et al. have determined for cyclohexane within pristine 

HKUST-1 SURMOF thin films produced by a similar step-by-step LPE process [37]. A 



5 Insights into Chromatographic Separation Using Core‒Shell MOFs: Size Exclusion and 

Polarity Effects 

88 

possible explanation could be the so-called surface barrier, that is, defects in the outermost 

MOF layers which can be caused by detrimental environmental conditions, and strongly 

reduce the effective mass transfer. As it has been shown by Heinke et al. using a Quartz 

Crystal Microbalance, such defects can reduce the mass transport into the MOF structure by 

several orders of magnitude. 

 

 

Figure 5.6. HPLC chromatograms of experimental results (black lines) and simulation data (red lines) 

for pyridine samples at different concentrations passed through the HKUST-1 MPs packed column 

(50 mm long × 2.0 mm i.d.). (a) 12.41 mmol L
‒1 

pyridine; (b) 124.1 mmol L
‒1

 pyridine (10 fold of 

sample concentration). Conditions: Mobile phase, MeOH; injection volume, 0.2 µL each; flow rate, 

0.3 mL min
‒1

. 

 

5.3.4. Separation of Chloroaniline Isomers Using a HKUST-1 MPs Packed Column 

Three different chloroanilines were used as analytes to investigate the performance of our 

HKUST-1 MPs packed column with regard to the challenging separation of isomers. When 

MeOH was used as the mobile phase (Figure 5.7a), a poor separation of chloroaniline isomers 

was obtained with 2-choloraniline eluting first, followed by 3-, and then 4-chloroaniline. 

Both, the amino (‒NH2) and the chlorine (‒Cl) groups, are electron-withdrawing substitutes; 

however the electronegativity of chlorine is clearly stronger. Consequently, the electronic 

cloud density of the nitrogen atom increased in the order as 2- < 3- < 4-chloroaniline, 

corresponding to an increasing distance of the chlorine atom. Thus, the interaction between 

the nitrogen atom in the analyte and the Cu active sites in HKUST-1 increases in the same 

order, resulting in the observed increasing retention time of the 2-, 3-, 4-chloroaniline. 

Ethanol was also tested as mobile phase and identical chromatograms were obtained. The 

separation performance can be improved by decreasing the analyte concentration (Figure 

S5.2a) or decreasing the flowrate (Figure S5.2b), but the former only provides a minor 

improvement and the latter comes with long sample run times.  

 



5 Insights into Chromatographic Separation Using Core‒Shell MOFs: Size Exclusion and 

Polarity Effects 

89 

 

Figure 5.7. HPLC chromatograms of chloroaniline isomers (1.12 mmol L
‒1 

in case of
 
2-CLA and 3-

CLA, and 7.84 mmol L
‒1

 4-CLA) on the HKUST-1 MPs packed column (50 mm long × 2.0 mm i.d.). 

(a) Mobile phase, MeOH; (b) mobile phase, ACN. Conditions: flow rate, 0.3 mL min
‒1

.  

 

In contrast, an excellent baseline separation within less than 8 min sample run time can be 

achieved when acetonitrile was used as the mobile phase (Figure 5.7b). Interestingly, the 

elution order was changed to 4- < 2- < 3-chloroaniline, which seems to follow the analyte 

hydrophobicity measured by means of solubility in water, while we assume that the influence 

of the specific interaction between the amine group of chloroanilines and Cu-ions in the MOF 

structure is weakened by the nitrile groups of the solvent. This switch of the dominant 

retention mechanism from a specific interaction between nitrogen and the metal ions of the 

MOF structure towards a more general hydrophobic interaction between the analytes and the 

BTC linkers shows the versatility of possible interactions of MOFs, mobile phase and the 

analytes. In this respect MOFs can be looked as a special type of mixed mode stationary 

phases, combining electrostatic and coordination interactions between the solute and the 

MOF metal ions, with the attractive forces resulting from hydrophobicities of the solute and 

MOF linker molecules, which usually contain an aromatic backbone. 

The above observations show that the mobile phase has a great influence not only on the 

strength of the retention of chloroaniline isomers, but also on the selectivity of the HKUST-1 

MPs packed column towards these molecules. The importance of the MOF type used 

becomes obvious, when we compare the separation performance of our HKUST-1 based 

column towards a mixture of phenol derivatives (2,6-dimethylphenol, benzene-1,3-diol and 

2,6-dichlorophenol) with the performance of a comparable column based on the MOF UiO-

67 reported earlier [20]. The HKUST-1 column showed very poor or no separation of phenol 

derivatives using ACN or MeOH as mobile phases (Figure S5.3), while the Zr-based MOF 

UiO-67 showed a good separation and distinctive affinity. A possible explanation could be, 

that on the one hand the phenol derivatives do not show a specific interaction with the metal 

ions of both MOFs, and on the other hand the hydrophobic interaction with the 4,4'-

biphenyldicarboxylate (BPDC) linker of UiO-67 is stronger than with the BTC linker of 

HKUST-1 containing only one phenyl ring. In addition, UiO-67 has larger pores, enabling a 
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better penetration of the relatively large phenol derivatives.  Although, these examples of 

screening different MOFs for the separation of structurally similar or isomeric molecules are 

rather limited in the moment, they show the potential of the high chemical variety in which 

MOFs exist for their application in chromatography. Up to today more than 20,000 different 

MOF structures [38] have been synthesized worldwide and it is easy to imagine that in future 

MOF based solid phases will be specially tailored for certain separation tasks. 

In addition it should be emphasized that the chromatographic behavior of MOF based 

columns is highly predictable, applying state of the art simulation software. For the 

simulation of the separations shown in Figure 5.7, we first extracted the affinity coefficients 

(KL) and the maximum capacities (C*MOFmax) for each analyte from simple, single component 

pulse experiments. Solely based on these single component data, the experimental 

multicomponent chromatograms were simulated with the software ChromX. As shown in 

Figure 5.7, a good correlation between the experimental (black line) and simulated data (red 

line) was achieved with the assumption of Dp,shell = 2.3·10
-15 

m
2
 s

‒1
, and C*MOFmax = 0.23 mol 

L
‒1

 for all CLA isomers, while the different interactions with the solid phase only reflect 

themselves in considerably different KL values (Table 5.1).  

 

Table 5.1 Langmuir coefficients (KL,i) for chloroaniline isomers  with  MeOH and ACN as mobile 

phase. 

Mobile Phase KL, 2-CLA (L mol
‒1

) KL, 3-CLA (L mol
‒1

) KL, 4-CLA (L mol
‒1

) 

MeOH 7.02 25.5 65.1 

ACN 140 644 <5 

 

 

5.3.5. Theoretical Capacity of HKUST-1 

To comprehend further to which extent the analyte molecules occupy the HKUST-1 pores 

when the maximum capacity is reached, the theoretical capacity was calculated assuming that 

each pore would be filled with one analyte molecule.  

Starting with the HKUST-1 unit cell volume of 1.8∙10
‒26

 m
3
, obtained by the software 

Crystalmaker 2.5 using the HKUST-1 CIF file from Cambridge Crystallographic Data Centre 

(CCDC), the number of unit cells per 1 L that can be calculated to 5.6×10
22

, or equivalent to 

0.092 mol. Comparing the measured maximum capacities (C*MOFmax,pyridine = 0.37 mol L
‒1

, 

C*MOFmax,CLA = 0.23 mol L
‒1

) with this number, it shows that approximately 4.0 (pyridine) 

and 2.5 (CLA) analyte molecules fitted into a single HKUST-1 unit cell. These values show 

compare well with e.g. a maximum molecular loading of 1.7 phenol derivatives per unit cell 

we found for UiO-67 MOF, and the molecular loadings in MIL-47 already reported, e.g. by 

Alaerts et al. [21]. 
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5.4. Conclusions 

Crystalline HKUST-1 MOF thin films were coated onto magnetic microparticles having a 

COOH-terminated surface using the process of liquid-phase epitaxy (LPE). Chromatographic 

column packed with the as-synthesized HKUST-1 magnetic particles offered unusually sharp 

separation performance for the aromatic nitrogen heterocycles pyridine and 4,4′-bipyridine, 

due to size exclusion effects of the crystalline MOF material. In addition, the separation of 

chloroaniline isomers showed, that in combination with suitable mobile phases, the versatile 

chemistry of MOF-based solid phases offers a chance to identify sorbent materials well suited 

for challenging separation tasks. With assistance from the modern simulation software, the 

interactions and mass transfer mechanisms between dissolved molecules and MOF solid 

phases are easily revealed and will help to further rationalize the screening for optimum 

separation conditions in future. 
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5.5 Support Information 

Correction factors between shell‒core and homogenous sphere geometries 

ChromX calculates maximum particle loadings in form of mass or mol per particle skeleton 

volume (C*max,i). In order to calculate maximum loadings with respect to the entire particle 

volume (C*V max,i) this number has to be multiplied by the solid phase fraction of the particle, 

which depends on the particle porosity (εp): 

 

𝐶𝑉 𝑚𝑎𝑥,𝑖
∗ = (1 − 𝜀𝑝) ∙ 𝐶𝑚𝑎𝑥,𝑖

∗                                                                                                            (S5.1) 

 

In case of shell-core particles where only the MOF shell contributes to the loading capacity, 

the true maximum volumetric concentration within the MOF (C*MOFmax,i) must be calculated 

by means of the volume fraction ϕs of the shell (Equation S5.2 and S5.3).  

 

𝜑𝑠 =
𝑉𝑠

𝑉𝑝
=

𝑟𝑝
3 − 𝑟𝑐

3

𝑟𝑝
3                                                                                                                            (S5.2) 

 

𝐶𝑀𝑂𝐹 𝑚𝑎𝑥,𝑖
∗       =

𝐶𝑉 𝑚𝑎𝑥,𝑖
∗

𝜑𝑠
                                                                                                                (S5.3) 

 

In dependence of the ratio between the core and the full particle radius, the relation between 

the pore diffusivity in the shell (Dp,shell) and the corresponding apparent pore diffusivity in an 

homogenous fully porous particle (Dp) can be derived from Equation S5.4 [1].  

 

𝐷𝑝,𝑠ℎ𝑒𝑙𝑙

𝐷𝑝
=

𝑟𝑝
4 + 2𝑟𝑝

3𝑟𝑐 + 3𝑟𝑝
2𝑟𝑐

2 − 𝑟𝑝𝑟𝑐
3 − 5𝑟𝑐

4

(𝑟𝑝
2 + 𝑟𝑝𝑟𝑐 + 𝑟𝑐

2)
2                                                                            (S5.4) 
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Effect of the variation of the film mass transfer coefficient onto the chromatographic 

behavior 

 

 

Figure S5.1. Sensitivity analysis of the simulation results with respect to the film mass transfer 

coefficient. Different values of the film mass transfer coefficient (1×10
-4

 m s
−1

, 5×10
-4

 m s
−1 

and 

2.5×10
-5

 m s
−1

) were tested to fit the pulse injection experiment with (a) toluene (9.44 mmol L
−1

); (b) 

acetone (136.19 mmol L
−1

). The experimental curves are depicted with black line while the simulated 

ones obtained using ChromX are colored. Due to perfect overlapping only one simulated curve seems 

visible. Conditions: Mobile phase, MeOH; injection volume, 0.2 µL each; flow rate, 0.3 mL min
−1

. 

 

 

Separation performance of chloroaniline isomers using HKUST-1 as solid phase and 

MeOH as mobile phase 

 

 

Figure S5.2. Separation improvement by decreasing: (a) sample concentration (0.11 mmol L
−1

 2-CLA 

and 3-CLA, and 0.78 mmol L
−1

 4-CLA); and (b) flowrate (0.02 mL min
−1

).  Conditions: Mobile phase, 

methanol.  

 

 

Separation performance of phenol derivatives using HKUST-1 as solid phase  
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Figure S5.3. Separation performance of phenol derivatives of 2,6-dimethylphenol (4.09 mmol L
−1

),  

benzene-1,3-diol (4.54 mmol L
−1

), and 2,6-dichlorophenol (3.07 mmol L
−1

): (a) using acetonitrile as 

the mobile phase at a flow rate of 0.3 mL min
−1

; (b) using methanol as the mobile phase at a flow rate 

of 0.1 mL min
−1

. 

 

Additional References 

[1] S. Fekete, E. Olah, J. Fekete, Fast liquid chromatography: The domination of core‒shell and very 

fine particles, J. Chromatogr. A 1228 (2012) 57-71. 
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Abstract Metal−organic framework (MOF) MIL-100(Fe) with well-defined thickness was 

homogenously coated onto the outer surface of magnetic microparticles via a liquid-phase 

epitaxy method. The as-synthesized MIL-100(Fe) was used as stationary phase for high-

performance liquid chromatography (HPLC) and separations of two groups of mixed 

aromatic hydrocarbons (toluene, styrene and p-xylene; acetanilide, 2-nirtoaniline and 1-

naphthylamine) using methanol/water as mobile phase were performed to evaluate its 

performance. Increasing water content of the mobile phase composition can greatly improve 

the separations on the expense of a longer elution time. Stepwise elution significantly 

shortens the elution time of acetanilide, 2-nirtoaniline and 1-naphthylamine mixtures, while 

still achieving a baseline separation. Combining the experimental results and in-depth 

modeling using a recently developed chromatographic software (ChromX), adsorption 

equilibrium parameters, including the affinities and maximum capacities, for each analyte 

towards the MIL-100(Fe) are obtained. In addition, the pore diffusivity of aromatic 

hydrocarbons within MIL-100(Fe) was determined to be 5×10
-12

 m
2
 s

-1
. While the affinities 

of MIL-100(Fe) toward the analyte molecules differs much, the maximum capacities of the 

analytes are in a narrow range with q*MOFmax,toluene = 3.55 mol L
-1

, q*MOFmax,styrene or p-xylene = 

3.53 mol L
-1

, and q*MOFmax,anilines = 3.12 mol L
-1

 corresponding to  approximately 842 toluene 

and  838 styrene or p-xylene, and 740 aniline molecules per MIL-100(Fe) unit cell, 

respectively. 

 

Published in Journal of Chromatography A, 1432 (2016) 84-91  
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6.1. Introduction 

Metal‒organic frameworks (MOFs), also called porous coordination polymers (PCPs), are an 

emerging class of crystalline porous materials constructed with inorganic metals ions and 

organic functional linkers [1, 2]. A key fascinating feature of MOFs is that their structures 

(pore sizes, geometrics and chemical properties) can be rationally designed for specific 

targets [3], a possibility which does not exist in other porous materials to the same degree. 

The versatility of different MOFs leads to a wide range of promising applications in gas 

storage [4], separation [5, 6], catalysis [7], biomedicine [8], and so on [9]. Besides their 

tunable structures, the absence of dead volume, high specific surface area, high loading 

capacity of guest species and inherent porosity make MOFs promising materials as 

chromatographic stationary phases [10, 11]. Recently, several MOFs have been successfully 

employed as high-performance liquid chromatography (HPLC) stationary phases to separate 

dissolves molecules, such as MIL-101(Cr) [12, 13], HKUST-1 [14, 15], UiO-66 [16] and 

UiO-67 [17]. However, most of the previous studies are focused on MOF synthesis and 

present the chromatographic performance as ‘proof-of-concept’. What is often missing is the 

fundamental information about the adsorption interaction between the dissolved solutes and 

the MOF-based stationary phase, especially the equilibrium isotherms and diffusion 

parameters. However, for practical applications and model based optimization of the use of 

MOF based columns in HPLC systems these parameters are of great importance and must be 

known for in-depth understanding. Instead of the broad size and shape distribution of MOF 

powders fabricated by traditional solvothermal methods, the recently developed layer-by 

layer liquid-phase epitaxy (LPE) process [18, 19] is a promising method to prepare 

homogenous MOF coatings, so-called surface-mounted MOFs (SURMOFs), with 

controllable thickness on the surface of a suitable functionalized substrate [20, 21].  

In present work, MIL-100(Fe) was selected from the wide range of possible MOFs due to its 

suitability to generate SURMOFs and its stability in the presence of water. The reaction of 

iron(III) chloride (FeCl3) and 1,3,5-tricarboxylic acid (BTC) leads to a rigid 3D crystal 

structure with large pores, named MOF-100(Fe) by Serre et al. in 2007 [22]. Compared to 

other metal ions, Fe(III) is an ideal candidate to be used as the metal nodes in the assembling 

of MOFs, because of its low toxicity, easily accessible, and most importantly, its robust 

Lewis acidity, which gives rise to strong coordinate covalent bonds with the organic linkers 

to form more stable MOFs. The MIL-100(Fe) structure (Figure 6.1, inset) consists of 2.5 nm 

and 2.9 nm mesoporous pores with window diameters of ca. 0.47 ‒ 0.55 nm and 0.86 nm, 

respectively. Moreover, MIL-100(Fe) possesses large accessible and permanent pores, and 

exhibits a remarkable thermal (> 270 °C) and chemical stability (organic solvents or water). 

Additionally, the presence of the accessible coordinately unsaturated metal sites in the walls 

of MIL-100(Fe) structure allows the strong coordination of guest molecules. MIL-100(Fe) 

has been intensively studied for applications in separation [23], catalysis [24], and drug 

delivery [25].  
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In this work, we present the synthesis of homogenous MIL-100(Fe) coatings onto the surface 

of magnetic microparticles (MPs) by a LPE process in order to yield a core-shell architecture 

(Figure 6.1). The core-shell structured MIL-100(Fe) MPs were used as HPLC stationary 

phase to illustrate the MOF separation performance and mechanism of mixed aromatic 

hydrocarbons. The interaction between the organic linkers of the inner surface of the MOF 

shell and aromatic compounds results in their different affinities towards the stationary phase. 

First, these affinities were determined independently by single component HPLC experiments. 

Afterwards, the separation of mixtures of three different aromatic compounds was 

demonstrated using isocratic and stepwise elution modes. In this context, the capability of a 

recently published chromatographic software ChromX [http://mab.blt.kit.edu/chromx.php] to 

predict the chromatographic behavior of mixtures on the basis of single component 

equilibrium and kinetic data is shown. This allows an in-silico optimization of the separation 

as well as an in-depth understanding of the limiting parameters, pointing the way for future 

developments of MOF based stationary phases.  

 

 

Figure 6.1. Schematic illustration of the structure of the synthesized core-shell MIL-100(Fe) 

magnetic microparticles. rc refers to the radius of the magnetic particle and rp refers to the radius of 

the particle including the MOF-shell.  

 

6.2. Materials and Methods 

6.2.1. Chemicals and Reagents 

Carboxyl-functionalized magnetic silica particles (SiO2-MAG-S1964-COOH), with narrow 

size distribution of 4.7 ± 0.14 µm were purchased from microParticles GmbH, Berlin, 

Germany. Empty stainless steel HPLC columns (200 mm long × 1.0 mm i.d., column volume 

180 µL, order code: N1910 0000) were bought from VDS optilab Chromatographie Technik 

GmbH, Berlin, Germany. 
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All reagents were at least analytical grade and used without further purification. Iron(III) 

chloride hexahydrate (FeCl3·6H2O, 99%), benzene-1,3,5-tricarboxylic acid (BTC), carbon 

tetrachloride (CCl4, 99.9%), methanol (MeOH, 99.9%), dichloromethane (DCM, 99.8%), 

acetone (99.9%), toluene (anhydrous, 99.8%), styrene (99.9%), p-xylene (99%), acetanilide 

(99%), 2-nitroaniline (98%), 1-naphthylamine (99%) were purchased from Sigma-Aldrich, 

WVR or Merck, Germany. MeOH and deionized water (H2O) were deoxygenated by 

bubbling through purified nitrogen gas for at least 20 min prior to be used as HPLC mobile 

phase. The chemical structures of the HPLC analytes used in this study are shown in Figure 

6.2.  

 

 

Figure 6.2. Chemical structures of the used HPLC analytes.  

 

6.2.2. Fabrication and Activation of MIL-100(Fe) Magnetic Microparticles 

MIL-100(Fe) was deposited onto carboxyl-functionalized MPs (SiO2-MAG-S1964-COOH, 

4.7±0.14 µm) using the LPE process with FeCl3·6H2O as metal source and BTC as organic 

linker according to Chen et al. [26]. Briefly, 25 mg MPs were alternately immersed into 2 mL 

FeCl3·6H2O ethanol solution (10 mmol L
-1

) for 15 min and 2 mL BTC ethanol solution (10 

mmol L
-1

) for 30 min and kept on a thermostated shaker (1350 rpm, 70 °C) in each case. The 

MPs were magnetically separated and washed thoroughly with 2 mL pure ethanol solution 

between each immersion step for about 2 min. A defined thickness for the built MIL-100(Fe) 
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film was achieved by repeating the deposition process. After 55 cycles, the MIL-100(Fe) 

coated MPs were magnetically separated, washed with ethanol solution, dried in vacuum, and 

stored until further use and characterizations. 

 

6.2.3. Characterization Techniques 

X-ray diffraction (XRD) patterns were recorded with Bruker diffractometer. For the co-planar 

(out-of-plane, OP) orientation a Bruker D8 Advance equipped with a position sensitive 

detector (PSD) Lynxeye® in θ-θ geometry, variable divergence slit of V12, and 2.3° Soller-

slit on the secondary side was used. The XRD data were acquired over a 2θ range of 3 ‒ 20°, 

with 84 s per 0.019° 2θ-step. Cu-anodes were used with the Cu Kα1,2 radiation (λ = 0.15419 

nm).   

Analyses of the morphology were recorded using a Philips XL 30 Field Emission Gun 

Environmental Scanning Electron Microscope (FEG-ESEM) at 20.0 kV at the Institute of 

Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT). The diameters of MPs 

and MIL-100(Fe) MPs were respectively measured and averaged by software ImageJ based 

on a representative sample of twenty particles in ten different angles. 

 

6.2.4. Preparation of the HPLC Column and Conducted HPLC Experiments 

The column was packed according to the previous reports of our group [15, 17]. Typically, 

the as-synthesized MIL-100(Fe) MPs were first treated by washing three times with DCM 

solution and washing five times with methanol solution. The composites were then dried at 

120 °C for 12 h under vacuum to remove unreacted substances from the MOF cavities. The 

dried MIL-100(Fe) MPs were added into a mixture of CCl4 and methanol (1:1, vol/vol) and 

ultra-sonicated for 5 min. Afterwards, the suspension was packed with a down-flow into the 

stainless steel HPLC column (200 mm × 1.0 mm i.d.) under 40 MPa for 10 min with 

methanol to obtain the home-made MIL-100(Fe) based column.  

All HPLC tests were carried out on an Agilent 1100 series chromatographic system (Agilent 

Technologies, USA) equipped with a variable wavelength UV detector at room temperature. 

All the signals were monitored at 254 nm. Before running the chromatographic experiments, 

the home-made MOF column was equilibrated with methanol until a stable baseline was 

reached. The mobile phase was used to prepare the liquid samples containing different 

aromatic analytes. The samples were injected with a manual injector (Rheodyne LabPro 

PR700-100-01 switcher valve, USA). 
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6.2.5. Simulation of Chromatographic Runs Using the Software ChromX 

The software ChromX is a powerful tool for liquid chromatography simulation, exploited by 

the Institute of Process Engineering in Life Sciences ‒ Biomolecular Separation Engineering 

of the Karlsruhe Institute of Technology (KIT). ChromX offers different isotherm and kinetic 

models, including a so-called general rate model taking into account dispersion, film 

diffusion and pore diffusion mass transfer limitations. The methodology and equations 

employed with ChromX were described previously [27, 28].  

The freely available academic version of ChromX (Version 0.1.0a) used in our earlier work is 

limited to the assumption that the stationary phase consists of homogenous spherical particles. 

In this work, we use for the first time an updated version (ChromX_shell_core) specifically 

adapted to our case. The equations used in this model take into account the shell-core 

structure of the adsorbents, eliminating the need for an artificial approximation of such a case 

using reduced capacities and lumbed-rate diffusivities. This reduces the work-load of the 

simulation considerably and improves the quality of the simulations. Typically, a 

multicomponent Langmuir isotherm was selected in combination with a general rate kinetic 

model and the column parameters were determined by fitting the simulations to the 

experiments. Thus, equilibrium coefficients as well as axial dispersion and pore diffusion 

coefficients were extracted from single component experimental data by manual or 

automated fitting procedures included in ChromX. Simulation of multicomponent 

experiments was conducted on the basis of these parameters without further changes. 

 

6.3. Results and Discussion 

6.3.1. Characterization of Synthesized MIL-100(Fe) MPs  

The as-synthesized MIL-100(Fe) MPs were characterized by XRD and SEM experiments. 

The successful growth of a MIL-100(Fe) shell onto the MPs is validated by the good 

agreement between the XRD pattern of the obtained MIL-100(Fe) MPs and the simulated one 

(Figure 6.3a). The SEM images of the raw MPs and the prepared MIL-100(Fe) MPs are 

shown in Figure 6.3b and 3c, respectively. Figure S6.1 shows the images of these uniform 

uncoated and coated MPs with more numbers under a lower magnification. Figure 6.3c 

displays a smooth, homogenous MIL-100(Fe) shell on the MPs. After applying 55 layers of 

MIL-100(Fe) deposition with the LPE method, the diameter of composites increases from 4.7 

µm for raw MPs to 6.0 µm, indicating that a MOF shell of 0.65 µm is assembled on the MPs. 

The resulting volume fraction ϕs of the shell is 52%. In addition, the uniform shapes and sizes 

observed for the obtained MIL-100(Fe) MPs materials make them well-suited for use as 

stationary phase in chromatography. 
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Figure 6.3. (a) XRD patterns of the simulated MIL-100(Fe) and the prepared MIL-100(Fe) MPs; 

SEM images of (b) the raw MPs and (c) the synthesized MIL-100(Fe) MPs. 

 

The XRD and SEM results confirm the successful formation of MOF MIL-100(Fe) shells 

onto the MPs via the LPE method. Different from MOF powders produced via bulk synthesis 

[29,30], the MIL-100(Fe) coated MPs features a uniform size distribution and each bead 

being completely covered by a homogenous MOF shell, which make them ideal materials for 

chromatographic applications and provide the possibility of investigating in detail diffusion 

kinetics within MOFs.  
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6.3.2. Determination of Column Characteristics 

After packing the column, pulse experiments with blue dextran and acetone samples were 

conducted using MeOH as mobile phase. These two analytes show only weak or no 

interaction with the stationary phase and therefore are suitable for the determination of 

column void fraction, particle porosity and a first approximation of the axial dispersion 

coefficient within the column.  

 

Figure 6.4. HPLC chromatograms of experimental for blue dextran (5×10
-7

 mol L
-1

) and acetone 

(0.04mol L
-1

) on the MIL-100(Fe) MPs packed column (2 cm long ×1.0 mm i.d.). Conditions: Mobile 

phase, MeOH; injection volume, 1 µL each; flow rate, 0.07 mL min
-1

.  

 

Figure 6.4 shows the resulting chromatographic peaks of blue dextran and acetone and their 

corresponding simulations. Compared to the simulated curves, the experimental curves show 

considerable tailing, probably caused by imperfect column packing and backmixing within 

UV and conductivity detectors. Assuming a neglectable interaction with the solid phase, the 

bed porosity (εb) and the total porosity (εt) are calculated to be 46.3% and 70.0%, respectively, 

from the retention of the large tracer blue dextran and the small tracer acetone, resulting in 

the calculated values of the average particle porosity (εp) to be 44.2% and MOF shell porosity 

(εp,MOF) to be 85.0%, which is in the realistic range.  

With ChromX, an axial dispersion coefficient of 10
-6

 m
2
 s

-1 
was determined. Besides, the pore 

diffusion coefficient for acetone within the MOF shell was approximated to be 5×10
-12

 m
2
 s

-1
. 

Comparing the experimental results with the ChromX simulations reveals that the determined 

parameters are able to give a good description of the hydrodynamic column behavior. For the 

feed rate of 0.07 mL min
-1

 a film mass transfer coefficient of 4×10
-4

 m s
-1

 can be estimated 

from the known correlations [31]. However, as we showed previously for UiO-67 and 

HKUST-1 columns [15,32], film mass transfer can be neglected in case of MOF based 

chromatographic material of a few micrometers in size.  
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6.3.3. Determination of Equilibrium Parameters  

To determine the equilibrium parameters of the adsorption isotherm between the analytes 

(neutral analytes: toluene, styrene and p-xylene; basic analytes: acetanilide, 2-nitroaniline and 

1-naphthylamine) and the MIL-100(Fe) MPs stationary phase, isocratic elution of single 

component runs was conducted in pulse injection and breakthrough mode with MeOH/H2O 

as mobile phase. The experimental (black lines) as well as the simulated HPLC 

chromatograms (red lines) of  isocratic runs using pulse injection are shown in Figure 6.5 for 

the neutral analytes and Figure 6.6 for the basic analytes, respectively. 

 

 

Figure 6.5. Isocratic elution chromatograms (experiment and simulation) of single components 

(neutral analytes) on the MIL-100(Fe) MPs packed column (2 cm long ×1.0 mm i.d.): (a) toluene 

(14.16 mmol L
-1

); (b) styrene (0.26 mmol L
-1

); (c) p-xylene (24.30 mmol L
-1

). Conditions: Mobile 

phase: MeOH/H2O (60:40) and (50:50), respectively; injection volume, 1 µL each; flow rate, 0.07 mL 

min
-1

. 

 

MIL-100(Fe) exhibits hydrophobic properties resulting from the aromatic ring within the 

linkers of the framework. Comparing the chromatograms of Figure 6.5 within a fixed row, it 

can be seen that the retention time increases with the following order: toluene < styrene < p-

xylene in the case of both mobile phase compositions MeOH/H2O 60:40 and 50:50. These 

three neutral analytes are all very weak polar substances with the polarity order: toluene > 

styrene > p-xylene. Taking into account their weak polarities, higher methanol fractions 

within the mobile phase should increase the tendency of all three analytes to stay in solution; 

therefore, shortening their retention time (comparing chromatograms within the same 

column). The measured retention time is in accordance with both described dependencies 

showing that the polarity of the analytes determines their interaction with the stationary and 

mobile phase.  

The equilibrium parameters of KL and q
*
MOF,max derived from the simulations using ChromX 

are shown in Table 6.1. Here it should be noted that the value of the maximum capacity 
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q
*
MOF,max remains the same for the individual components in different mobile phase 

compositions of MeOH/H2O (60:40, 50:50 and 40:60).  In addition there is only a tiny 

difference in the maximum capacity q
*
MOF,max for toluene (3.55 mol L

-1
), styrene (3.53 mol L

-

1
) and p-xylene (3.53 mol L

-1
), which is within the experimental error.  However, the affinity 

increases strongly with increasing water content of the mobile phase and also shows clear 

differences between the different analytes. The values of the affinity coefficients (KL) are 

increasing in the order:  toluene, styrene, and p-xylene when the mobile phase is kept 

constant. This indicates that, on the one hand, for isocratic elution the components of a 

mixture will elute in accordance with their affinities. And on the other hand, the separation 

efficiency and times can be optimized by adjusting the mobile phase composition.     

 

Table 6.1 Equilibrium parameters KL and q
*
MOF,max of benzene derivatives obtained from experimental 

and simulation results of single components (Figure 6.5).  

Sample Toluene  Styrene  P-xylene 

MeOH/H2O 60:40 50:50 40:60  60:40 50:50 40:60  60:40 50:50 40:60 

q*MOF, max 

(mol L
-1

) 
3.55 3.55 3.55 

 
3.53 3.53 3.53 

 
3.53 3.53 3.53 

KL (L mol
-1

) 7.19 21.2 50.7  9.17 29.2 78.1  11.9 38.2 111 

 

Isocratic elution of the single components of the basic analytes (acetanilide, 2-nitroaniline, 

and 1-napthyamine) was carried out to further demonstrate the utilization of MIL-100(Fe) 

MPs as stationary phase in combination with three different mobile phase compositions of 

MeOH/H2O (60:40, 50:50 and 40:60) (Figure 6.6). The retention time increases in the order 

of acetanilide < 2-nitroaniline < 1-napthyamine applying the same mobile phase composition. 

Again, the results can be simulated assuming increasing affinities, but the same maximum 

capacity of 3.12 mol L
-1

 (Table 6.2). The fast elution of acetanilide can be explained by the 

weak interaction between the methyl group (‒CH3) of acetanilide and the carboxyl group (‒

COOH) of MIL-100(Fe) [33,34].  The higher retention of 2-nitroaniline than that of 

acetanilide indicates a stronger interaction caused by an additional hydrogen bond between 

the nitro group (‒NO2) of 2-nitroaniline and the hydroxyl group (‒OH) of MIL-100(Fe) [35]. 

The highest affinity of the MIL-100(Fe) towards the 1-naphthylamine attributes to the π‒π 

interaction between the naphthalene substituent of 1-naphthylamine and the aromatic ring 

walls of MIL-100(Fe) [36]. For each analyte, an increase of the water content of the mobile 

phase results in longer retention times and broader peaks, notably for 1-naphthylamine 

(Figure 6.6c) which has stronger interactions with the MIL-100(Fe) framework.  
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Figure 6.6. Isocratic elution chromatograms (experiment and simulation) of single components (basic 

analytes) on the MIL-100(Fe) MPs packed column (2 cm long ×1.0 mm i.d.): (a) Acetanilide (0.07 

mmol L
-1

); (b) 2-nitroaniline (0.72 mmol L
-1

); (c) 1-naphthylamine (0.35 mmol L
-1

). Conditions: 

mobile phase, MeOH/H2O (60:40), (50:50) and (40:60), respectively; injection volume, 1 µL each; 

flow rate, 0.07 mL min
-1

. 

 

Table 6.2 Equilibrium parameters KL and q
*
MOF,max of anilines obtained from experimental and 

simulation results of single components (Figure 6.6).  

Sample Acetanilide  2-nitroaniline  1-naphthylamine 

MeOH/H2O 60:40 50:50 40:60  60:40 50:50 40:60  60:40 50:50 40:60 

q*MOF, max 

(mol L
-1

) 
3.12 3.12 3.12 

 
3.12 3.12 3.12 

 
3.12 3.12 3.12 

KL (L mol
-1

) 2.05 2.91 5.13  4.38 7.24 15.31  7.50 13.3 81.4 

 

Applying the obtained q*MOF,max and KL values from single component pulse experiments, 

ChromX was used to simulate experimental breakthrough curves (Figure 6.7 and S6.2). 

Although the applied analyte amounts and the resulting concentrations within the column are 

orders of magnitude higher in these experiments, the determined equilibrium and kinetic 

parameters allowed good simulations of the breakthrough curves. The only exception is 1-

napthyamine, where the experimental breakthrough time is substantially higher than the 

simulated one. A possible explanation is that the low effluent concentrations and long 

retention time of this analytes in the pulse experiments limit the accuracy of the calculated 

equilibrium parameters.     

0 2 4 6 8 10 12

0
5

10
15

0 2 4 6 8 10 12

0
5

10
15

0 2 4 6 8 10 12

0
5

10
15

 Experiment

 Simulation

Acetanilide

60:40

(a)

50:50m
A

U

40:60

Time (min)

0 5 10 15 20 25 30

0
6

12
18

0 5 10 15 20 25 30

0
6

12
18

0 5 10 15 20 25 30

0
6

12
18

 Experiment

 Simulation

2-nitroaniline

60:40

50:50m
A

U

40:60

Time (min)

(b)

0 30 60 90 120 150

0
6

12
18

0 30 60 90 120 150

0
6

12
18

0 30 60 90 120 150

0
6

12
18

60:40

 Experiment

 Simualtion

1-naphthylamine
(c)

m
A

U

50:50

40:60

Time (min)



6 High Performance Liquid Chromatography of Substituted Aromatics with the Metal-

Organic Framework MIL-100(Fe): Mechanism Analysis and Model-based Prediction  

107 

 

Figure 6.7. Chromatograms of breakthrough experiments of different analytes using a MIL-100(Fe) 

MPs packed column (2 cm long ×1.0 mm i.d.): (a) toluene (47.2 mmol L
-1

); (b) styrene (43.6 mmol L
-

1
); (c) p-xylene (40.5 mmol L

-1
); (d) (0.148 mmol L

-1
) acetanilide; (e) 2-nitoaniline (0.724 mmol L

-1
); 

(f) 1-naphthylamine (0.349 mmol L
-1

). Conditions: mobile phase, (a-c) MeOH/H2O (60:40) and (d-f) 

MeOH/H2O (50:50); flow rate, 0.07 mL min
-1

. 

 

6.3.4. Mixture Separation on MIL-100(Fe) MPs Column with Isocratic and Stepwise 

Elution 

With the guidance of the mass transfer and equilibrium parameters from single component 

experiments, the separation of mixtures of the analytes were predicted and experimentally 

verified. The separation of a mixture of toluene, styrene, and p-xylene is illustrated in Figure 

6.8a and the separation of anilines is shown in Figure 6.8b. For both group of analytes the 

simulated chromatograms (red lines) fit very well the experimental ones (black lines). As 

expected, increasing the water content improves the separation performance but strongly 

extends elution time. For the neutral analytes using MeOH/H2O (40:60) as mobile phase it 

needs 200 min to achieve a satisfying separation. Applying MeOH/H2O (50:50) as mobile 

phase the separation run requires less than 30 min, but the peaks show a clear overlap, which 

was also predicted by the simulation. Regarding the separation of anilines, an excellent 
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baseline separation can be achieved when using MeOH/H2O (40:60) as mobile phase within 

an elution time of about 180 min. However, looking at the chromatogram (Figure 6.8b) it 

shows that the time lag between the second peak (2-nirtoaniline) and the third peak (1-

naphthylamine) is unnecessarily large. Therefore, a stepwise elution method was tested and 

simulated shortening the duration of the baseline separation drastically to 60 min. In detail, 

from 0 min to 25min the mobile phase MeOH/H2O (40:60) is used to elute the first two peaks 

(acetanilide and 2-nitroaniline). Afterwards the elution of 1-naphthyamine is accelerated by 

stepwise changing the mobile phase composition from MeOH/H2O (40:60) to (100:0).  

 

 

Figure 6.8. (a) Chromatographic separation of a mixture of toluene (14.2 mmol L
-1

), styrene (0.260 

mmol L
-1

) and p-xylene (24.3 mmol L
-1

) with isocratic elution applying MeOH/H2O (60:40, 50:50, 

40:60) as mobile phase, respectively; (b) Chromatographic separation of a mixture of acetanilide 

(0.070 mmol L
-1

), 2-nitroaniline (0.720 mmol L
-1

) and 1-naphthylamine (0.350 mmol L
-1

) with 

isocratic elution applying MeOH/H2O (60:40), (50:50) and (40:60) as mobile phase, respectively, as 

well as stepwise elution applying a constant composition of MeOH/H2O (40:60) in 0-25 min followed 

by a step to (100:0) after 25 min. Conditions: injection volume, 1 µL each; flow rate, 0.07 mL min
-1

. 

Peak identity: 1, toluene; 2, styrene; 3, p-xylene; 4, acetanilide; 5, 2-nirtroaniline; 6, 1-naphthylamine.  

 

6.3.5. Capacity of MIL-100(Fe) 

To comprehend further to which extent the analyte molecules occupy the MIL-100(Fe) pores 

when the maximum capacity is reached, the number of molecules per MIL-100(Fe) unit cell 

is calculated.  

Starting with the large MIL-100(Fe) unit cell volume of 3.94×10
-25

 m
3
 [37], the number of 

unit cells per liter that can be calculated to 2.56×10
21

, equivalent to 4.26 mmol. If this number 

is compared with the measured maximum capacities (q*MOFmax,toluene = 3.55 mol L
-1

, 

q*MOFmax,styrene or p-xylenne = 3.53 mol L
-1

,
 
q*MOFmax,anilines = 3.12 mol L

-1
), it shows that 

approximately 842 (toluene),  838 (styrene or p-xylene) and 740 (aniline derivatives) analyte 
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molecules fit into a single MIL-100(Fe) unit cell. These values show promising solute 

adsorption of MIL-100(Fe) and are more than two orders of magnitude higher than the 

numbers of analyte molecules per unit cell found for phenol derivatives (1.7) loaded in UiO-

67 [32], or pyridine and chloroaniline isomer molecules loaded in HKUST-1 [15] (4.0 and 

2.5, respectively) measured in our previous studies, or the ones reported for MIL-53 in 

combination with ethyltoluene (2.4), o-cymene (0.6) [38], o-xylene (4.0), styrene and 

ethylbenzene (2.0, respectively) [39].  In order to get a clearer picture of the properties of 

different MOFs with respect to their use as liquid chromatographic media, we summarized 

them in Table 6.3.  

 

Table 6.3 Different characteristics of UiO-67, HKUST-1 and MIL-100(Fe).  

MOF 

name 

Meta

l  

node

s 

Linker 

pore 

diamete

r (Å) 

Window

s 

(Å) 

Unit 

cell 

volum

e  

[nm
3
] 

Molecule 

number density 

[nm
-3

] 

Maximum 

capacity  

(mol L
-1

) 

Pore 

diffusivit

y (m
2
 s

-1
) 

UiO-67 

[32, 40] 
Zr 

 

(BPDC)
a

) 

11.5; 23 8 19.9 0.085 (phenols) 0.14 (phenols) 1.3×10
-13 

HKUST

-1 

[15, 41] 

Cu BTC 5, 9 3.5 18.3 

0.14 (pyridine); 

0.22 

(chloroanilines

) 

0.23 (pyridine); 

0.37 

(chloroanilines

) 

2.3×10
-15 

MIL-

100(Fe) 

[42] 

Fe BTC 25; 29 
4.7-5.5; 

8.6 
394.5 

1.88  (anilines); 

2.13 (benzene 

hydrocarbon) 

3.1 (anilines); 

3.55 (benzene 

hydrocarbon) 

5×10
-12 

a)
4,4'-biphenyl-dicarboxylate 

 

Table 6.3 shows that MIL-100(Fe) not only has the largest pores but also by far the largest 

unit cell volume, simply because of the complex structure of the unit cell. Therefore, a big 

part of the high number of molecules per unit cell is simply a consequence of the size of the 

unit cell. Nevertheless, if the number of molecules is divided by the unit cell volume, the 

packing density in MIL-100(Fe) is still clearly higher than in the other MOFs. At least a part 

of this observation can be related to the known fluctuations in packing density if e.g. spheres 

of a certain diameter should be packed into cylinders. If the diameter of the cylinder is less 

than twice the sphere diameter, low packing densities can result. In addition adsorbed 

molecules may block small pores and therefore prevent the loading of free volume deeper 

inside the MOF. The influence of the pore diameter can also be seen in the pore diffusivities 

we approximated for the different MOFs. While UiO-67 and MIL-100(Fe) result in pore 

diffusivities in the range of 10
-12

 m
2
 s

-1
, for HKUST-1 we found a value in the range of 10

-14
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‒ 10
-15

 m
2
 s

-1
. Therefore, besides its higher chemical stability it shows that MIL-100(Fe) has 

superior capacity and kinetic properties, making it the most suitable MOF for 

chromatographic purposes we studied so far. 

 

6.4. Conclusions 

Crystalline MIL-100 (Fe) SURMOF thin films were coated onto magnetic microparticles 

having a COOH-terminated surface using the process of liquid-phase epitaxy (LPE). 

Chromatographic columns packed with the as-synthesized MIL-100(Fe) magnetic particles 

offer improved separation performance for aromatic hydrocarbons with increasing water 

content of the mobile phases (MeOH/H2O), due to the change of the affinity strength between 

the analytes and the crystalline MOF-based solid phase. Additionally, the equilibrium 

parameters and mass transfer mechanisms between the MIL-100(Fe) and analytes are 

obtained from the experiments and the simulation using modern chromatographic modeling 

software. Notably, MIL-100(Fe) exhibits high adsorption capacities for aromatic molecules 

compared to the previous reported MOFs used in chromatography. This important finding 

should have a significant impact on applying MOFs as adsorbents in industrial separation and 

purification processes. 
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6.5. Supporting Information 

 

Figure S6.1. SEM images of uniform raw MPs (left) and MIL-100(Fe) MPs (right, 55 cycles) using a 

low magnification (500×). 

 

    

 

Figure S6.2. Break through chromatograms with high concentrations of analytes on the MIL-100(Fe) 

packed column (2 cm long ×1.0 mm i.d.): (a) 0.1 and 0.2 mol L
-1

 acetanilide; (b) 0.1 and 0.2 mol L
-1

 

1-naphthylamine. Conditions: mobile phase, MeOH/H2O (50:50); flow rate, 0.07 mL min
-1
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Abstract Metal−organic framework UiO-67 was explored as a novel stationary phase for 

high performance liquid chromatography (HPLC). UiO-67 was, for the first time, 

homogeneously coated on carboxyl functionalized magnetic silica microparticles at low 

temperature (45 °C) by using a recently introduced liquid phase epitaxy (LPE) process. 

HPLC runs using the synthesized core-shell microparticles as stationary phase showed 

baseline separation for three phenol derivatives, applying gradient elution using acetonitrile 

and water as mobile phase. It also showed that UiO-67 has the largest affinity for 2,6-

dichlorophenol among the phenol derivatives tested. The comparison of core-shell 

microparticles with 20 and 55 layers, respectively, of UiO-67 grown on the magnetic silica 

core proof that the UiO-67 shell determines separation behavior. Therefore, the use of UiO-

67 core-shell microparticles as a stationary phase combines the advantages of a thin, 

homogenous MOF shell showing fast kinetics and good separation efficiency with the 

advantages of spherical silica microparticle cores offering high mechanical robustness and 

moderate pressure drop.  
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7.1. Introduction 

Metal-organic frameworks (MOFs) emerged as a new class of highly ordered porous 

coordination polymers about twenty years ago [1]. This novel class of hybrid material 

consists of two building units: metal centers or clusters and functionalized organic linkers. 

MOFs have drawn special interest due to their potential applications in gas storage, catalysis, 

drug delivery and sensors [2]. The unique properties of large surface to volume ratios, diverse 

structures and high porosity also make MOFs an interesting candidate for high-performance 

liquid chromatography (HPLC) [3]. However, a major limitation of the application of MOFs 

in the field of HPLC lies in the irregular shapes and wide size distributions of MOF particles 

synthesized by traditional solvothermal processes, resulting in bad column packing, low 

column efficiency and high column back pressure. In contrast, the recently proposed liquid 

phase epitaxy (LPE) process [4] can produce high quality, oriented and homogenous surface-

attached metal−organic framework thin films (SURMOFs) on a suitable functionalized 

surface as a nucleation template. 

Here we report the first fabrication of well-defined core-shell UiO-67 SURMOFs coated on 

uniform magnetic microparticles by LPE process.  Among the MOF family UiO-67 is 

especially suited for HPLC applications due to its high stability and large pore dimensions [5]. 

However, to the best of our knowledge, no UiO-67 MOFs used in HPLC have been reported 

so far. In this work, UiO-67 core-shell magnetic microparticles were synthesized and 

assembled into HPLC columns to investigate their chromatographic performance. 

 

7.2. Experimental 

7.2.1. Chemicals and Reagents 

Carboxyl-functionalized magnetic silica particles (SiO2-MAG-COOH) with narrow size 

distribution of 4.7±0.14 µm were purchased from microParticles GmbH, Berlin, Germany. 

Zirconium(IV) propoxide solution (Zr(OPr)4, 70%), methacrylic acid (99%), 4,4’-biphenyl-

dicarboxylate (BPDC, 97%), N,N-Dimethylformamide (DMF, 99.8%), 2,6-dimethylphenol 

(DMP, 99%), resorcinol (RSC, 99%), 2,6-dichlorophenol (DCP, 99%), acetone (99.9%), 

dichloromethane (DCM, 99.8%), carbon tetrachloride (CCl4, 99.9%) methanol(99.9%), 2-

propanol (99.5%) and acetonitrile (ACN, 99.9%) were purchased from Sigma-Aldrich or 

Merck , Germany. All reagents and solvents were used as received without further 

purification. The HPLC grade ACN and ultrapure water (H2O) were adopted for HPLC tests. 

The phenol derivatives (Figure 7.1) were dissolved in ACN and used as HPLC analytes. 
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    2, 6-dimethylphenol                    resorcinol                            2, 6-dichlorophenol 

Figure 7.1. Structures of the phenol derivatives used for HPLC experiments. 

 

7.2.2. Instrumentation 

X-ray diffraction (XRD) data was recorded with a Bruker diffractometer using Cu Kα1,2-

radiation (λ = 0.15419 nm). Fourier transform infrared (FTIR) measurements were carried out 

with a Bruker Optics Tensor 27 spectrometer with a Bruker Optics Platinum
®
 ATR 

(Attenuated total reflectance) accessory and a deuterated tri glycine sulfate (RT‒DTGS) 

detector.  The FTIR ATR spectra were recorded with a resolution of 4 cm
−1

 using air as 

background. Analyses of the morphology were recorded on a Philips XL30 scanning electron 

microscope (SEM) at 20.0 kV.  

All chromatographic tests were performed with an Agilent 1100 series HPLC system (Agilent 

Technologies, USA) equipped with a variable wavelength UV detector and a micro (2 µL) 

flow cell at room temperature (ca. 22 °C). 

7.2.3. Synthesis of Magnetic Microparticles@UiO-67 Core‒shell Composites 

UiO-67 was synthesized onto SiO2-MAG-COOH magnetic microparticles using zirconium 

methacrylate oxocluster Zr(OH)4O4(OMc)12 as metal source [6], and 4,4'-

biphenyldicarboxylate (BPDC) as organic linker using a liquid phase epitaxy process in a 

layer-by-layer fashion. 25 mg of magnetic microparticles were  dispersed in  2 mL of 

Zr(OH)4O4(OMc)12 DMF solution (1.5 mM) for 7 min and then in 2 ml BPDC DMF solution 

(1 mM) for 7 min at 45 °C. Between each step, the magnetic microparticles were 

magnetically separated and washed with 2 ml DMF once. A desired thickness of the resulting 

UiO-67 thin film can be achieved by repeating the deposition steps. After 20 and 55 cycles, 

respectively, the samples were washed with methanol and dried in vacuum for further use and 

characterizations.  

7.2.4. Preparation of the HPLC Column 

Before packing the column, the as-synthesized magnetic microparticles@UiO-67 core-shell 

composites were treated by: (i) washing three times with DCM; (ii) washing five times with 

methanol; and (iii) drying at 120 °C for 12 h under vacuum, in order to remove unreacted 

species in the MOF cavities. The dried composites were added into a mixture of CCl4 and 

methanol (1:1, vol) under ultrasonication for 5 min, and then the suspension was packed with 

down-flow into a stainless steel column (200 mm × 1.0 mm i.d) under 40 MPa for 10 min 

with methanol as the slurry solvent to obtain the home-made UiO-67 column.  
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7.3. Results and Discussion 

7.3.1. Characterization of the Synthesized UiO-67 

The synthesized microparticles@UiO-67 core-shell composites were characterized by XRD, 

FTIR ATR and SEM experiments. The existence and increase of the characteristic diffraction 

peak of UiO-67 at 2Ɵ = 5.4-6.7° in the XRD patterns of the particles obtained after 20 and 55 

layers respectively proof the successful preparation of a UiO-67 shell (Figure 7.2A). FTIR 

ATR spectra (Figure 7.2B) give another indication for the growth of the UiO-67 shell. The 

decrease of the peak intensity at 1780-1710 cm
-1

, characteristic for –COOH stretch, and the 

increase of the appearance of the characteristic bands of UiO-67 at 1585, 1532, 1407 and 768 

cm
-1

 support the conclusion of a successful fabrication of UiO-67 MOF chemically bound on 

the surface of the magnetic microparticles. Finally, the SEM results clearly reveal the 

formation of a UiO-67 shell on the magnetic particles (Figure 7.2C). After applying fifty five 

layers of UiO-67 growth, the diameter of microparticles@UiO-67 core-shell composites 

increased from 4.7 µm for raw magnetic microparticles to 5.5 µm, indicating that a 

SURMOFs shell of around 0.4 µm thickness has grown on the magnetic microparticles. 

Moreover, the uniform shapes and sizes of the as-prepared microparticles@UiO-67 core-shell 

composites make them suitable for HPLC.  

 

Figure 7.2. Characterization of the UiO-67 shell grown on COOH-functionalized magnetic micro 

particles. (A) XRD pattern of microparticles@UiO-67 core-shell composites (20 and 55 layers 
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respectively). (B) FTIR ATR spectra of raw magnetic microparticles and the as-synthesized 

microparticles@UiO-67 core-shell composites (55 layers). (C) SEM images of the raw magnetic 

microparticles and microparticles@UiO-67 core-shell composites (55 layers). 

 

7.3.2. HPLC Separation of Dissolved Phenol Derivatives on Microparticles@UiO-67 

Core‒Shell Composites 

We tested the column packed with microparticles@UiO-67 core-shell composites for the 

separation of phenol derivatives using solvent gradient elution at a flow rate of 0.14 ml min
-1 

(Figure 7.3).  With the composites synthesized applying 20 layers of UiO-67 LPE, the 

retention of all phenol derivatives is weak, resulting in the elution of RSC and DCP as a 

single peak (Figure 7.3A). However, a good separation of DMP, RSC and DCP can be 

achieved by the application of composites synthesized with 55 layers of UiO-67 LPE (Figure 

7.3B), reaching resolutions of 1.7 (DMP/RSC) and 1.5 (RSC/DCP) respectively. The strong 

improvement of the separation performance resulting from a column packed with composites 

with a higher number of UiO-67-LPE layers applied, demonstrates that the UiO-67 shell 

indeed dominates the separation process.  

The elution of phenol derivatives followed the sequence DMP < RSC < DCP, indicating that 

the retention mechanism is in accordance with the polarity of the analytes. With the increase 

of the polarity of phenol derivatives, the hydrophilic interaction between the analyte and the 

UiO-67 increases, resulting in a stronger retention.  

 

 

Figure 7.3. HPLC chromatograms resulting from the injection (0.2 µl) of a mixture of DMP, RSC and 

DCP (1.6 nmol, 1.8 nmol and 2.6 nmol, respectively)  dissolved in ACN into HPLC columns (200 

mm ×1.0 mm i.d.) packed with microparticles@UiO-67 core-shell composites synthesized with 20 (A) 

and 55 (B) layers UiO-67 LPE respectively. The gradient program was as follows: 0.00-2.00 min, 

ACN-H2O (95:5  87.5:12.5); 2.01-30.00 min, ACN-H2O (87.5:12.5) at a flow rate of 0.14 ml min
-1

. 

The separations were performed at room temperature and monitored with a UV detector at 254 nm.  
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7.4 Conclusions 

The authors have synthesized microparticles@UiO-67 core-shell composites having a UiO-

67 MOF shell of around 0.4 µm thickness attached to magnetic silica microparticles of ca. 5 

µm in diameter.  The as-prepared uniform and homogenous UiO-67 shells are shown to be 

feasible as novel stationary phase in HPLC.  The hydrophilic interactions between analytes 

and the UiO-67 shells provide the composites a unique chromatographic performance 

compared to other MOF-based stationary phases showing classical reversed phase 

characteristics [7].  
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8 Conclusions & Outlook 

This work has brought to light a better understanding of the relationship between the 

properties of different MOFs and their abilities to serve as stationary phase in HPLC setups in 

order to separate small aromatic molecules. Three different MOFs, UiO-67 (chapter 4 and 7), 

HKUST-1 (chapter 5), and MIL-100(Fe) (chapter 6), have been screened for selected analytes 

using pulse as well as breakthrough experiments. With the assistance of the newly developed 

chromatographic software ChromX, adsorption equilibrium data and mass transfer 

parameters have been derived from the experiments and simulations. The theoretical 

capacities of different MOFs were also discussed.  

In order to get efficient MOF based stationary phases, shells of UiO-67, HKUST-1 and MIL-

100(Fe) SURMOFs were successfully fabricated by a LPE process onto magnetic 

microparticle cores having functional groups on the surfaces to nucleate and bind the first 

MOF layer. The resulting homogenous MOF MPs core-shell composites were physically 

characterized and packed into columns with the same column volume. It is remarkable that 

all these MOF based columns showed good separation performance towards analytes with 

closely related properties if the mobile phases were appropriately chosen. Detailed modeling 

of experimental data allowed us to extract the mass transfer kinetics, binding equilibrium and 

pore diffusivity parameters. MIL-100(Fe) sorbents exhibit clearly the highest molecular 

loadings and fastest kinetics compared to UiO-67 and HKUST-1. As the main reason for this 

superior chromatographic behavior the comparable large cages and connecting windows of 

the crystal structure of this MOF could be identified. Another interesting fact is that for the 

same MOF the maximum molar loading capacities remained constant or in a narrow range for 

different analytes and mobile phase compositions. This shows that the achievable maximum 

molar loadings are closely related to the structure and the pore size of the MOF, and less to 

the nature of the aromatic analytes as long they are of approximately the same molecular 

weight.  In contrast, the affinities of the examined analytes varied strongly and showed also a 

clear dependence on the mobile phase composition. Nevertheless, for each group of aromatic 

molecules examined a combination of MOF and mobile phase could be identified, which 

allowed good separation of the mixture. Therefore, our results suggest that the versatile 

chemistry of MOF based solid phases offer an interesting opportunity to screen and find 

optimum adsorbents for difficult separation tasks in HPLC. In addition, the well-defined 

crystalline structure of MOFs allows sharp size exclusion effects, even for analytes with a 

size ratio of two or less. 

In future, these unique features of MOFs should be systematically studied and simulated in 

even more detail using molecular dynamics models. For this, a series of MOFs having the 

same metal atom and crystal type but linkers of different length should be synthesized and 

their chromatographic behavior compared. Next, MOFs with the same linker but different 

metal atoms should be synthesized and investigated. Finally, MOFs with identical metal atom 

and linker type could be realized, however, with varying side groups of the linker. Having 
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such a library of MOF sorbents and data about their chromatographic properties a rational 

design of tailored chromatographic media for difficult separation tasks comes into reach. 

Using even more sophisticated, multifunctional MOFs, such as homochiral MOFs, improved 

sorbents for enantioselective separations have also been reported and should be further 

investigated.  Regarding mass transfer within MOF sorbents our studies reveal that it is 

limited by intra particle diffusion. Future work should further investigate the underlying 

mechanisms. E.g. will small pores be blocked by bound analyte molecules or are bound 

molecules able to further migrate into the MOF by surface diffusion? What is the role of 

solvent molecules regarding the overall mass transfer? Do we have to switch to a Stefan 

Maxwell description of fluxes instead of Fick’s law?  

Besides these more fundamental questions, a practical hurdle for the commercial use of well-

defined shell-core MOF sorbents is the laborious way they are synthesized. Currently the 

layer-by-layer procedure is conducted by hand, requiring at least a weak for sorbents with a 

shell of 55 layers. In future the procedure should be automated and simplified if possible. If 

such an automatization and scale-up of shell-core MOF sorbent production is successful, 

there are good reasons to assume that due to their shown advantages they will become a 

serious alternative for today’s sorbents used in analytical HPLC. 


