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Chapter 1

Introduction

The concept of frustration lies at the core of many emergent phenomena in condensed
matter physics. Frustrated spin systems, in particular, host many surprising low-energy
phenomena that have been uncovered over the years and that are not immediately obvious
by looking at the microscopic degrees of freedom. Instead, these effects appear through
the cooperative interplay of many degrees of freedom. Thus frustrated spin systems pro-
vide opportunities for the development of interesting models, which may turn out to have
implications for experimentally realizable systems.
An instance of this paradigm is provided by the J1-J2 Heisenberg model [12]. This is a
geometrically frustrated system of spins with nearest and next-nearest neighbor couplings
on two sublattices. A spin model is called geometrically frustrated, if the spins on the
lattice cannot simultaneously satisfy all the interactions with their neighbors. A classic
example of this is provided by the Ising model on the triangular lattice with antiferro-
magnetic nearest neighbor couplings, a problem that was first studied by Wannier in 1950
[104]. Consider three Ising spins on a triangular plaquette as shown in Figure 1.1. No
assignment of Ising variables can simultaneously satisfy all three antiferromagnetic bonds.
Two spins are bound to point in the same direction and the spin system is said to be
geometrically frustrated.
In a similar vein the spins in the J1-J2 model cannot all satisfy their antiferromagnetic
bonds, since the nearest as well as the next-nearest neighbors want to point in opposite di-
rections. The two sublattices of the J1-J2 model are coupled by an interaction of strength
J1, while the spins on the individual sublattices are coupled to each other with strength
J2. In a certain range where J2 is larger than J1 the two sublattices are fully decoupled
at zero temperature and the symmetry of the ground state manifold is described by an
element of O(3)/O(2)×O(3)/O(2).
The ground state degeneracy of the J1-J2 model is lifted for finite temperatures by the so-
called order-by-disorder mechanism, a phenomenon discovered by Villain [102] and Henley
[35] in the late 70’s and 80’s. While the usual effect of thermal fluctuations is to disorder
a system, these authors found that in cases where the classical ground state forms a con-
tinuous manifold of energetically degenerate configurations some of these states may be
entropically favored over others. This proves to be the case in the J1-J2 model, where a
parallel or anti-parallel relative orientation of the two sublattices is entropically favored.
Thus the ground state degeneracy is broken down and is now described by an element of
O(3)/O(2)× Z2, where the Z2 part describes the relative orientation of the second lattice
with respect to the first. Thus by starting with two coupled Heisenberg models, the system
generates an emergent Z2 degree of freedom. This new degree of freedom exists on every
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Figure 1.1: This figure shows Ising spins on the triangular lattice. The antiferromagnetic
bonds between neighbors cannot be simultaneously satisfied for all three links. The model
is said to be geometrically frustrated.

plaquette of the square lattice and the J1-J2 Heisenberg model may be said to give rise
to emergent Ising degrees of freedom. In a publication of 1989 by Chandra et al. [12] the
authors (CCL) showed how these degrees of freedom were capable of undergoing a phase
transition. Thus at a finite temperature TI the Ising correlation length diverges and the
spins on the two square sublattices become locked relative to each other. The analysis
of CCL relied on an approximate renormalization group treatment and was challenged in
various numerical studies, before unambiguous proof of the correctness of their picture
was provided by Weber et al. [105] in an extensive Monte Carlo study of this model.
The emergent Ising behavior found by CCL is particularly striking given the fact that
according to the Mermin-Wagner theorem the microscopic Heisenberg spins themselves
cannot order magnetically. Thus, despite the inability of the Heisenberg sublattices to
order magnetically, their relative orientation can nevertheless develop long-range order.
An application of the CCL physics was found more than ten years later in 2000 by Melzi
et al. in the compounds Li2VO(Si,Ge)O4 [57]. The authors performed NMR and mag-
netization measurements to show that these materials, which are well described by the
J1-J2 model, indeed have a phase transition into collinear order. Another application of
the CCL mechanism is found in the iron pnictides, where it provides an explanation for
the high temperature nematic phase [23, 24].
A natural question to pose at this point is whether the CCL mechanism can be generalized
to universality classes other than the Ising class. On a two-dimensional lattice the BKT
phase transition comes to mind. The theory of interacting vortices developed by Berezin-
skii, Kosterlitz and Thouless [5, 42, 43, 44] is basically a field theory of a two-component
O(2) object in the two-dimensional plane. Despite its mundanity at first sight, the model
possesses an unexpected richness of phenomena. The reason for this is the fact that the low
energy physics of this model has not only the usual spin-wave excitations, but also vortex
excitations with different winding numbers. The latter excitations are topologically stable
in two dimensions. Even in the presence of thermal fluctuations, the vortices’ stability is
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guaranteed by the simple fact that the winding number, being a discrete quantity, cannot
be changed in a continuous manner.
Of course, the physics of the BKT phase transition is not merely academic, instead, given
the ubiquity of U(1) degrees of freedom, it occurs in systems such as thin superconducting
films, liquid helium films and arrays of Josephson junctions.
For this reason an emergent BKT model in a system of Heisenberg spins would be a par-
ticularly striking effect. A Heisenberg spin system named the windmill model that might
show such behavior was introduced in [72, 73]. It is one of the tasks of this thesis to pro-
vide unambiguous evidence that emergent BKT physics is indeed possible in the windmill
model, which consists of a triangular- and a honeycomb-lattice.
Concerning experimental realizations, we remark that systems of cold bosonic atoms in
optical lattices have been used in the past [94, 95] to investigate models of prominent
frustrated magnets. These works are based on the idea that at low temperatures and for
weak interactions these systems form a superfluid and the atoms at every site of the lattice
have a well-defined local phase, which is a U(1) degree of freedom. Thus it is possible to
interpret this local phase degree of freedom as a classical planar spin. Nearest neighbor
spins are coupled via tunneling of atoms between the sites. For regular tunneling of atoms
between the sites, the associated coupling between the planar spins is ferromagnetic. By
shaking the lattice in a periodic way, however, it is possible to add a non-zero Peierls
phase to the tunneling element. In this way, it is possible to induce a change in the sign
of the tunneling element which leads to an antiferromagnetic coupling between the spins.
Within this approach, different links of the lattice can be addressed independently. Frus-
tration effects have been experimentally observed on the triangular lattice via standard
time-of-flight imaging [94]. Honeycomb optical lattice geometries have also been realized
in the past [74, 98]. It is therefore not unreasonable to assume that the windmill lattice
may be realized experimentally in the near future.

This thesis deals with frustration of two different kinds. In the first chapter we study
a very fundamental kind of frustration, where an N -component φ4 is analyzed not in
regular flat space, but in hyperbolic space with a finite curvature radius R. In the latter
setting, space itself frustrates spins: the volume of space surrounding a given spin grows
exponentially with distance from the spin. As a consequence the correlation length has an
upper bound R. Nevertheless, this system has a phase transition, that can be detected by
representing the correlation function in the eigenbasis of the Laplace operator and asking
when the correlation function has a scale-free form. Just at the phase transition the cor-
relation length becomes equal to R.
With the mathematical tools that we develop in this chapter, we study certain critical ex-
ponents of this model by using a 1/N expansion. We find that at lowest order the critical
exponents are those of three-dimensional flat space, the reason being that the saddle point
equations at lowest order in 1/N are only defined at one point in space and are therefore
oblivious to the presence of finite curvature.
The 1/N order correction is absent due to the finiteness of 1/R, thus where in flat space
one would have singular behavior in certain self-energy terms, in curved space these terms
are regulated by the existence of a finite length scale R. Thus the critical points are in
effect different from those in flat space and one can therefore conclude that an arbitrarily
small value of the curvature leads to the emergence of a new fixed-point.

The following two chapters deal with the physics of a spin model that has been named
the windmill model by the authors who introduced it [72, 73]. The name derives from the
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lattices’ semblance to windmills once the former has been decorated by spins ordered in the
120◦ pattern. The lattice essentially consists of interpenetrating triangular and honeycomb
lattices. In order to study the finite temperature phase diagram of this model, it is first
necessary to understand the T = 0 phase diagram as a function of the model’s coupling
constants. This task is undertaken for Heisenberg and planar spins in the next chapter,
where this problem is solved algorithmically by an iterative technique. This technique is
a heuristic greedy algorithm and proceeds by locally minimizing the energy of randomly
chosen spins. The resulting phase diagram shows the system to posses a large number of
ground states. This is a consequence of the fact that the model is highly frustrated. If all
couplings were ferromagnetic, the system would have a single ground state configuration,
independent of the numerical value of the coupling constants, namely a trivial uniaxial
order. The fact that the couplings are antiferromagnetic necessitates compromises in the
spin-configurations. Thus in order to achieve a minimum total energy it is necessary for
the spins to make trade-offs in nearest neighbor bonds. This leads to a large number of
ground state spin-configurations, each one of which is the optimum configuration given
certain values of the coupling constants, i.e. the chosen compromises are in general com-
plicated functions of the ratios of the couplings.
Among the many phases, two are intricate non-coplanar spin-configurations. Another one
of these phases is a decoupled ground-state, i.e. the triangular and the honeycomb lattice
spins order by themselves, but the spins on one lattice may be globally rotated with re-
spect to the other without incurring a cost in energy. This ground-state degeneracy gives
rise to interesting physics, which is the subject of the next chapter.
The purpose of chapter 4 is to demonstrate that for Heisenberg spins this freedom in the
relative orientation of the sublattices at T = 0 leads to emergent degrees of freedom that
undergo a Berezinsky-Kosterlitz-Thouless transition. Such behavior had already been
conjectured by A. M. Polyakov in a 1975 landmark paper on non-linear sigma models
[75] where he suggested that an algebraically correlated phase may occur in systems of
Heisenberg spins. As a way to settle this conjecture he proposed that one perform an
experiment in which the non-linear sigma model is simulated by a magnetic spin system.
Instead of using an experimental system, chapter 4 describes a numerical experiment that
we undertook to settle this question. There it is shown unequivocally that the emergent
degrees of freedom in the Heisenberg windmill model do indeed undergo a phase transition
into a critical phase.
The frustration in the windmill lattice is provided by arranging the interactions in the
spin system such that the spins on each triangular lattice plaquette are frustrated. In
other words the bonds cannot individually minimize their energy by pointing opposite to
each other. Instead they take on a 120◦ pattern. The order-parameter of this subsystem
is an element of the group SO(3), in other words the orientation of a tripod {t1, t2, t3} in
spin-space describes fully the spin-configuration of the three spins on a plaquette.
The interpenetrating honeycomb lattice, has a simpler order parameter. Since the lattice
is bipartite (A and B sites), the energy of this antiferromagnetically coupled system is
minimized by orienting the spins on the A site opposite to the spins on the B site. The
order parameter is simply a vector n in spin space, thus it is an element of O(3)/O(2).
The emergent degree of freedom is now the projection of the order parameter n onto the
plane perpendicular to t3. After normalizing this projection, a U(1) degree of freedom
exists for each plaquette of the lattice. This U(1) degrees of freedom are the focus of the
chapter 4.
We employ large-scale Monte Carlo simulations to study the correlations of these U(1)
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degrees of freedom. The Monte Carlo algorithm is made up of three parts, the heat-bath
algorithm, the parallel-tempering subroutine and a sublattice-rotation step. In the last
step the honeycomb spins are rotated relative to the triangular lattice spins in a direction
that is determined to be perpendicular to the plane spanned by the triangular lattice
spins. The latter are non-local moves and allow the system to explore the sixfold potential
minima, which is difficult to detect by single-spin updates, since the depth of the 6-fold
potential is extremely shallow.
The parallel-tempering moves are updates, where two entire spin-configurations are ex-
changed between neighboring temperatures. This allows the system to thermalize quickly
by proposing new spin-configurations that cannot be reached by single-spin updates.
This combination of the three algorithm steps allows us to explore systems up to the size
of 3 × 180 × 180 spins. This is particularly important given the fact that we obtain our
results by performing a finite-size scaling analysis, where large system sizes are crucial in
order to obtain data collapse.
We measure the magnetization and susceptibility of the relative U(1) degrees of freedom
for different system sizes and find a power law phase in a certain temperature range. For
temperatures below this range we find a symmetry broken phase. The exponents associ-
ated with the the critical points show the transition to belong to the BKT universality
class.
In the final chapter we summarize the main results that we obtained in this thesis.
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Chapter 2

Uniform frustration in curved
space

In this chapter we take the prototypical N -component φ4 theory, familiar from the theory
of phase transitions, and study it in the new setting of curved three-dimensional hyper-
bolic space.
The role of curved space is to frustrate the familiar uniaxial order, which arises in the sym-
metry broken state in flat space. There the ordered state corresponds to the N -component
spins aligning in a common direction in spin space. This becomes impossible for geometri-
cal reasons, since in hyperbolic space the exponentially growing volume around any given
point causes correlations to decay exponentially even at the critical point. Despite this de-
cay it is still possible to identify the critical point by representing the correlation function
in the eigenbasis of the Laplacian. The critical point is identified by determining where
the correlation function in this representation becomes scale-free.
In the symmetry broken phase, spins tend to align locally in the same direction. In this
way the spins communicate with the neighbors and cooperatively point into a common
direction. Hyperbolic space frustrates this tendency and instead the phase transition cor-
responds to the formation of patches of maximum size, set by the inverse of the spatial
curvature κ. In contrast to an r2dr increase in volume around a point, hyperbolic space
grows with 1/κ2 sinh2(κr)dr. Thus a spherical solution of the Laplace equation in hy-
perbolic space decays exponentially with distance. This has consequences for the critical
exponents of thermodynamic quantities at the phase transition, a topic that is studied in
the following. This chapter is based on work done in

Karim Mnasri, Bhilahari Jeevanesan, and Jörg Schmalian, Critical phenomena in hy-
perbolic space, Phys. Rev. B 92, 134423

that was published in October 2015.

2.1 Introduction

Field theory and statistical mechanics in geometries with negative curvature are of increas-
ing interest. While a direct application to the spacetime of our universe seems to require a
positive cosmological constant, a wide range of many-particle problems are closely tied to
problems with negative spatial curvature. For example, field theories in hyperbolic space
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are increasingly studied because of its direct relation to anti-de Sitter space. The latter is
essential for the duality between strong coupling limits of certain quantum field theories
and higher-dimensional gravity theories[54, 32, 107]. The scaling behavior near critical
points in hyperbolic space, being the Wick-rotated version of anti-de Sitter space, may
therefore be of relevance in the analysis of strong coupling theories.
On the other hand, networks like the Bethe lattice, that have been studied early on in
the statistical mechanics of phase transitions [47, 20, 100] and that have received renewed
interest in the context of the dynamical mean-field theory of correlated fermions[30, 21],
quantum spin glasses[49], or bosons[87], can be considered as a regular tiling of the hy-
perbolic plane [63]. To be precise, if one considers a regular tiling {p, q}, where p refers to
the degree of a polygon and q to the number of such polygons around each vertex, then
the Bethe lattice with coordination number q corresponds to {∞, q}. All regular tilings
of the hyperbolic plane with (p− 2) (q − 2) > 4 are possible [63]. Obviously the square
lattice {4, 4}, the triangular lattice {3, 6}, and the honeycomb lattice {6, 3}, i.e. the only
possible tilings with regular polygons of the two-dimensional flat space, are just excluded.
It was already stressed in [63] that hyperbolic tiling might be used to interpolate between
the mean-field behavior of the Bethe lattice and a lattice that might be close to the square
or honeycomb lattice. This may offer an alternative approach to study corrections beyond
dynamical mean-field theory. A tiling of three-dimensional hyperbolic space with dodec-
ahedra is shown in Figure 2.1 (see [106]).
Finally, effects of uniform frustration are often captured in terms of certain background
gauge fields or by embedding a theory in curved space [97, 83, 69, 70]. An interesting case
of tunable uniform frustration is found by studying a given flat-space problem in curved
space with inverse radius of curvature κ, an idea that was introduced in [65, 66, 81, 67].
Here, the problem of packing identical discs was studied in a hyperbolic plane. While in
flat space packing in hexagonal close-packed order is possible, in hyperbolic space this or-
der is frustrated by the fact that gaps open up between neighboring discs. This facilitated
the study of packing properties as a function of frustration, where the latter can be varied
by changing the spatial curvature κ.
The hyperbolic metric may also be viewed as emergent in studying the effects of frustra-
tion of packing or of the existence of negative disclinations [19]. One might thus realize
packings that are not allowed in flat space, as it occurs for clusters with icosahedral local
order, in terms of a non-frustrated model that is embedded in a curved geometry.
These ideas were also employed in studies of glass transitions in hyperbolic space ([86, 85]),
where the authors performed molecular dynamics simulations on the hyperbolic plane for
a Lennard-Jones liquid and found that the fragility of the resulting glass is tunable by
varying κ.
Given these applications of negatively-curved geometries, it is an interesting question to
ask how phase transitions of classical and quantum models will behave in such curved
spaces. Significant numerical work has been devoted to studies of classical spin models in
hyperbolic space. The thermodynamic properties of Ising spins placed on the vertices of
lattices in hyperbolic space were studied in [45, 46, 3, 29]. In order to perform Monte Carlo
simulations on finite two-dimensional lattices a negatively curved background is created
by tessellating the hyperbolic plane with regular n-gons.
All these works have found the phase transition to follow mean-field behaviour. In partic-
ular, various critical exponents were measured and found to numerically coincide closely
with mean-field exponents. One should, however, keep in mind that the detailed protocol
for measuring the critical exponents in these works is somewhat different from the usual
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Figure 2.1: Tessellation of three-dimensional hyperbolic space by dodecahedra (created
with [106])

flat space protocol.
The problem now arises to address the question of phase transitions in three-dimensional
hyperbolic space. In particular, it is natural to ask, whether there is scaling as in flat
d-dimensional space, or if the transition is genuinely of mean-field type. If phase transi-
tions in hyperbolic space were of mean-field nature, it would imply for systems that are
below their upper critical dimension in flat space, that an arbitrarily small curvature κ
would lead to a violation of scaling. An alternative possibility is that scaling continues
to be valid in hyperbolic space with a new fixed point characterized by new exponents.
The above numerics would in that case indicate that some exponents take their mean-field
values. Because of hyperscaling this cannot be the case for all critical exponents. In the
case of a new fixed point there are obvious questions: what is the universality class and
what are the critical exponents?

We answer these questions in this chapter by studying analytically the problem of an
N -component continuum φ4-theory in three-dimensional hyperbolic space in a large-N
expansion. In the discussion section we comment on the generalization to different dimen-
sions. Section 3.2 of this chapter contains the exposition of the φ4 model in hyperbolic
space. We find that the theory possesses a second order phase transition, that scaling is
obeyed below the upper critical dimension of the flat space and that the exponents are
given by the leading order terms of the 1/N expansion. To be specific, we find that the
leading order 1/N -corrections to the exponents vanish. In addition we give general argu-
ments that support the conjecture that all higher order 1/N -corrections should vanish as
well.
The technical steps of our calculation are as follows. Using the momentum space analysis
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of section 2.4, we locate the critical temperature of this phase transition and find the
magnetization texture of the ordered phase. In Section 2.3 we discuss the character of the
phase transition and present the results of the calculations of the exponents η, ν and γ
to lowest order in 1/N . In order to meaningfully identify the critical point of this model,
it is convenient to formulate the problems in momentum space. As this representation in
hyperbolic space does not seem to exist in the condensed matter literature, we develop
the necessary parts in section IV. With this formalism it is now possible to deal with the
order 1/N correction to the critical exponents η and γ.
We find that the exponents η, ν and γ at lowest order are those of three-dimensional
flat space and not those of a mean-field transition. However, in distinction to flat space,
the 1/N corrections vanish. The absence of higher-order corrections is found to be the
consequence of the finite curvature of hyperbolic space, which exponentially cuts off fluc-
tuations of wavelengths longer than the curvature radius. This is in agreement with the
general remarks on the regulating behavior of hyperbolic space by Callan and Wilczek in
[6].
The critical exponents satisfy scaling and we discuss in the final section how our results
can be understood from the scaling of the free energy in the presence of finite spatial
curvature. Our results are thus in contradiction to the mean-field behavior that was found
in Ref. [4]. There the mean-field behavior was supported by a Ginzburg criterion for
φ4-theories in hyperbolic space. This behavior was further rationalized by arguing that
the Hausdorff dimension of hyperbolic space is infinite. In contradiction to this, our own
results, which are obtained by performing the actual calculation, establish that the critical
exponents are not mean-field exponents.
As a further result we calculated the magnetization texture of the ordered state of this
model. We find that uniform magnetization develops in regions of size 1/κ. Due to the
exponential decay of correlations, even at the critical point, these regions will necessarily
be uncorrelated in their magnetization direction.

2.2 Model and Background Geometry

The model we are considering is an N -component φ4-theory given by the action

S =

∫
d3x
√
g

1

2

[
µ0φi · φi + gµν(∇µφi)(∇νφi) +

u

2N
(φi · φi)2

]
, (2.1)

where ∇µ is the covariant derivative, i = 1 . . . N and µ, ν = 1 . . . 3. The summation
over i, µ and ν is implied. Thus we are considering here the three-dimensional version of
φ4-theory. Generalizations to different dimensions are straightforward, as we discuss in
the final section. In the action, gµν is the metric of three-dimensional hyperbolic space,
which is a maximally symmetric space with negative curvature, characterized by a single
parameter, the curvature κ. The quantity g is the metric determinant and assures the
proper transformation property of the action.
Hyperbolic space can be defined as one of the two (equivalent) simply-connected three-
dimensional manifolds of points satisfying

x2
1 + x2

2 + x2
3 − x2

4 = − 1

κ2
(2.2)

inside four-dimensional Minkowski space. It is not possible to imbed this manifold in four-
dimensional euclidean space, the reason being that the ambient space must have the same

16



symmetries in space, which it has in common with the imbedded space. The hyperbolic
manifold has the symmetry of rotations and boosts and therefore Minkowski space is the
proper choice as ambient space.
The coordinates xi are the cartesian coordinates of Minkowski space. To derive a more
convenient formulation, the points may be parametrized by

x1 =
1

κ
sinhκr sin θ cosφ (2.3)

x2 =
1

κ
sinhκr sin θ sinφ (2.4)

x3 =
1

κ
sinhκr cos θ (2.5)

x4 =
1

κ
coshκr. (2.6)

Minkowski space has a metric that is given by

ds2 = dx2
1 + dx2

2 + dx2
3 − dx2

4. (2.7)

This induces an intrinsic metric on the hyperbolic space with line-element

ds2 = dr2 +
1

κ2
sinh2 κr

(
dθ2 + sin2 θdφ2

)
. (2.8)

In the limit κ→ 0 we regain three-dimensional flat space. With the radius of curvature 1/κ
an additional length scale is present in hyperbolic space, which is ultimately responsible
for the non-trivial magnetization texture that we derive below. Note that our results can
be straightforwardly applied to quantum phase transitions in hyperbolic space, if one of
the spatial coordinates is considered as imaginary time after the usual Wick rotation.

2.3 Phase transition and magnetization texture

In three-dimensional flat space the model that we consider is known to possess a second
order phase transition, where the ordered state corresponds to a symmetry-broken phase
with uniaxial magnetization. In contrast to flat space, it is not possible in the N = 3 case
to identify the three scalar fields (φ1, φ2, φ3) as vectors components in a global coordinate
system, since global directions are not a well-defined concept in hyperbolic space. Consider,
as shown in Fig. 2.2, three locally magnetized patches A,B,C, which are the corners of
a hyperbolic planar triangle and demonstrate via a proof by contradiction, that such a
global coordinate system cannot be introduced.

A basis vector at A may be chosen to be parallel-transported to B and C along the
geodesics AB and AC, respectively. If now we continue the parallel-transport from B to
C along BC, the two transported basis vectors will not match. Instead, there will be an
angular defect θ between the two directions that is proportional to the enclosed area A of
the hyperbolic triangle:

θ = Aκ2 (2.9)

This formula follows from the fact that the vectors are parallel-transported such that the
angle between the geodesic curve and the vector is a constant. Since hyperbolic triangles
have angles which sum to π − Aκ2 ([18]), we are left with the angular defect stated in
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A B

C

Figure 2.2: Three magnetized patches in a plane, forming a hyperbolic triangle. It is not
possible to introduce a global coordinate system in which the three components (φ1, φ2, φ3)
can be interpreted as the direction of the magnetization, since parallel-transport of a basis
vector from A to B and A to C, will not result in vectors that will match upon parallel-
transport from B to C or vice versa.

(2.9). Thus the interpretation of (φ1, φ2, φ3) as a three component vector in hyperbolic
space is not valid.
Inside the radius of curvature, where A < 1/κ2, a uniform direction may, however, be
meaningfully defined.
In order to determine the nature of the ordered state, we study the symmetry-broken
state of the action S at the lowest order in a 1/N expansion, i.e. we peform a saddle point
analysis of the partition function

Z =

∫
Dφ exp(−S), (2.10)

and then include higher-order fluctuations in a systematic fashion. Here, the action S is
given by:

S = β

∫
dV

1

2

[
φ
(
µ0 −∇2

)
φ+

u

2N
(φ · φ)2

]
, (2.11)

where ∇2φ = ∇µ∇µφ and we have defined dV = d3x
√
g. We rewrite this by performing

a Hubbard-Stratonovich decoupling of the (φ · φ)2 term, whereupon the action becomes

S =
β

2

∫
dV

[
φ
(
µ0 + iλ(x)−∇2

)
φ+

N

2u
λ2(x)

]
.

Now we integrate out all φi with the exception of the one component, along which the
spins near a chosen point order and which we will label σ(x). Moreover, we introduce a
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source field h(x) for σ(x). This leads to the action

S = β

∫
dV

1

2

[
σ(x)

(
µ0 + iλ(x)−∇2

)
σ(x) +

N

2u
λ2(x)

]
+
N − 1

2
Tr
[
log(µ0 + iλ(x)−∇2)

]
− β

∫
dV h(x)σ(x)

for the partition function Z =
∫
DσDλ exp(−S).

The saddle point solutions are determined by the conditions δS
δσ(x) = 0 and δS

δλ(x) = 0,
which result in the two equations(

µ(x)−∇2
)
σ(x) = h(x) (2.12)

µ(x)− µ0 = uT 〈x| 1

µ(x)−∇2
|x〉+

u

N
σ2(x) (2.13)

with µ(x) = µ0 + iλ(x).
We will use these equations to work out the critical exponents including higher-order cor-
rections in section IV. Here, we will only analyze equation (2.12) to find the susceptibility
G(0)(x,x′) = δσ(x)/δh(x′)|h(x′)=0, which, by virtue of (2.12), satisfies(

µ(x)−∇2
)
G(0)(x,x′) = δ(x,x′). (2.14)

As we approach the phase transition from high temperatures, µ(x) may be assumed to be
homogeneous. Using the formalism of the next section, this equation may be transformed
into momentum space whereupon it becomes

G(0)(p) =
1

µ+ κ2 + p2
, (2.15)

where p ≥ 0 determine the eigenvalues κ2 + p2 of the Laplacian. Note the presence of the
‘mass term’ κ2 in the denominator. This is a consequence of the fact that the Laplace op-
erator in hyperbolic space has a gapped eigenvalue spectrum. A criterion for the presence
of the phase transition is the condition that G(0)(p) should diverge. The highest value of
µ when this happens is µ = −κ2, where the p = 0 mode of the susceptibility diverges.
Thus the phase transition takes place at µ = −κ2 with an order that is determined by
the p = 0 Fourier mode. In contrast to flat space, the p = 0 eigenmode of the Laplace
operator cannot be one of homogeneous order, in agreement with the foregoing argument
about angular defects. Instead, it corresponds to a diminishing of the magnetization σ
along the one direction, that we chose not to integrate out. In other words, due to the lack
of a global direction of magnetization, focussing on one component of the N -component
vector, entails that one is eventually considering projections of the magnetization vector
instead of the full vector. The diminishing of this projection takes place according to the
formula

σ(r) = σ0
κr

sinhκr
, (2.16)

where r is the geodesic distance from the origin, where the unintegrated component and
local magnetization direction coincide and σ0 is the magnitude of the magnetization at the
origin. The phase transition corresponds to the formation of infinitely many patches, more
precisely three-dimensional regions, of characteristic sizes 1/κ, which have nearly uniform
magnetization. The decay of σ(r) in Eq. (2.16) does not imply a decay of the magnitude
of the order parameter, but must be interpreted as the order parameter rotating away
from the chosen direction of the vector φ.
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2.4 Momentum space representation

We come now to the technical part of this work that will allow us to analyze the saddle
point equations (2.12), (2.13) and compute critical exponents. In order to make progress
with the calculations, it is convenient to obtain the momentum space representation of
functions that are translationally invariant in hyperbolic space. Let ψ(dPQ) be a given
function of the geodesic distance between two points P and Q. The functional dependence
on the two points will not have an arbitrary form, but will rather be expressed through
the geodesic distance dPQ between these two points. This distance is the length of the
geodesic curve connecting these points. Explicit computation of this length yields the
formula

coshκdPQ = coshκr coshκr′ − sinhκr sinhκr′ cos γ

cos γ = cos θ cos θ′ + sin θ sin θ′ cos (φ− φ′). (2.17)

The fact that such a function ψ depends on the six coordinates not in an arbitrary way, but
only through the geodesic distance, allows us to expand ψ(dPQ) in terms of the eigenstates
of the Laplace operator in hyperbolic space. Since hyperbolic space may be defined as
the set of all points equidistant from the origin in Minkowski space, this Laplace operator
is identical to the one obtained by writing down the 4-dimensional Laplace operator in
angular coordinates and restricting the distance from the origin to a constant. A similar
situation was considered by Fock [27], who studied the problem on a 3-sphere embedded
in 4-dimensional euclidean space. The eigenfunctions of the Laplacian on this 3-sphere
are the generalized spherical harmonics of three angles. Their full description was given
in [27]. We find the eigenfunctions of the Laplacian in hyperbolic space by multiplying
one of the angles in Fock’s solution by the imaginary unit, a prescription sketched briefly
in an appendix of [50].
The hyperbolic Laplacian is given by

∆ =
1

sinh2 κr
∂r(sinh2 κr∂rψ) +

κ2

sinh2(κr)
∆S2

∆S2 =
1

sin θ
∂θ (sin ∂θψ) +

1

sin2 θ
∂2
φψ. (2.18)

The eigenfunctions are then given by

ψqlm(r, θ, φ) = Πql(κr)Ylm(θ, φ) (2.19)

with eigenvalues

∆ψqlm(r, θ, φ) = −(κ2 + q2)ψqlm(r, θ, φ). (2.20)

Here the Ylm are the ordinary spherical harmonics on the 2-sphere and the Πpl are special
functions that solve the radial part of the eigenvalue equation

d2

dr2
Πql + 2κ cothκr

d

dr
Πql −

l(l + 1)κ2

sinh2 κr
Πql(κr) = −(κ2 + q2)Πql(κr). (2.21)

The solutions can be expressed in a Rayleigh-type formula

Πql(x) =
sinhl x

Ml

(
dl+1

d(coshx)l+1

)
cos
( q
κ
x
)

(2.22)
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Table 2.1: Radial functions Πσl(r) for the five lowest values of l

l Πσl(r)

0 −csch(x) sin(σx)

1 csch(x)(coth(x) sin(σx)−σ cos(σx))√
σ2+1

2
csch(x)(sin(σx)(σ2−csch2(x))+3σ coth(x) cos(σx)−2 coth2(x) sin(σx))√

(σ2+1)(σ2+4)

3
csch(x)(σ cos(σx)(σ2−4csch2(x))+3 coth(x) sin(σx)(3csch2(x)−2σ2)−11σ coth2(x) cos(σx)+6 coth3(x) sin(σx))√

(σ2+1)(σ2+4)(σ2+9)

4 − csch(x)(5σ coth(x) cos(σx)(2(σ2−5)−21csch2(x))+sin(σx)(σ4−35σ2+15csch2(x)(−3σ2+7csch2(x)+8)+24))√
(σ2+1)(σ2+4)(σ2+9)(σ2+16)

where

M2
l =

( q
κ

)2
[( q
κ

)2
+ 12

]
. . .

[( q
κ

)2
+ l2

]
(2.23)

is a normalization constant. The differential equation being of Sturm-Liouville form, these
functions satisfy the orthogonality relation

∞∫
0

dr sinh2 (κr) Πql(κr)Πq′l(κr) =
π

2
δ(q − q′). (2.24)

2.4.1 Addition theorem

In order to make the expansion of a given function simpler, we now wish to derive several
identities. For the sake of completeness, the proof of the central identity, which was derived
by Fock [27] in 1935 will be given in some detail. He obtained identities for the spherical
harmonics of spherically curved 3d space, embedded in flat euclidean 4d space. From this
identity we will derive below the corresponding identity for 3d hyperbolic space.
We will construct a Green’s function G(r, r′) of two points r and r′ with

r =


ρ sinα sin θ cosφ
ρ sinα sin θ sinφ
ρ sinα cos θ
ρ cosα

 , r′ =


ρ′ sinα′ sin θ′ cosφ′

ρ′ sinα′ sin θ′ sinφ′

ρ′ sinα′ cos θ′

ρ′ cosα′

 .

First note that the Green’s function

G(P,Q) =
1

2R2
+

1

2R̃2
(2.25)

with

R2 = |r − r′|2 = ρ2 + ρ′2 − 2ρρ′
(
cosα cosα′ − sinα sinα′ cos γ

)
cos γ = sin θ sin θ′ cos(φ− φ′) + cos θ cos θ′

and
R̃2 = ρ′2ρ2 + 1− 2ρρ′

(
cosα cosα′ − sinα sinα′ cos γ

)
.
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satisfies the Laplace equation, since both terms satisfy the latter independently. That
this is so, is easily seen by inserting 1

ρ2
into the Laplacian of flat 4d space. Moreover,

integrating around a small sphere at the origin, we have by Gauss’ law∫
∇2(

1

ρ2
)dV =

∫
∂

∂ρ

(
1

ρ2

)
ρ3 sin2 α sin θdαdθdφ = −2

∫
1

ρ3
ρ3 sin2 α sin θdαdθdφ = −4π2,

from which we conclude that

∇2

(
1

ρ2

)
= −4π2δ(ρ).

Since the Laplacian respects translational invariance, the functions in (2.25) will satisfy
the Laplace equation as well.
Moreover, these terms satisfy (

G+
∂G

∂ρ′

)
ρ′=1

= 0.

This is useful for the following application. Consider the identity∫ (
G(r, r′)∇2ψ(ρ′, α′, θ′, φ′)− ψ(ρ′, α′, θ′, φ′)∇2G(r, r′)

)
dV ′

=

∫ (
G(r, r′)∇ψ(ρ′, α′, θ′, φ′)− ψ(ρ′, α′, θ′, φ′)∇G(r, r′)

)
dS

and choose as integration volume the unit sphere that is defined by ρ′ = 1. Then the
surface element points radially outward. Let us furthermore assume that ψ satisfies the
Laplace equation inside the unit sphere:

−4π2ψ(ρ, α, θ, φ) =

∫ (
G(r, r′)

∂ψ

∂ρ′
− ψ ∂

∂ρ′
G(r, r′)

)
ρ′=1

sin2 α sin θdrdθdφ

=

∫ ([
∂ψ

∂ρ′
+ ψ

]
G(r, r′)

)
ρ′=1

sin2 α sin θdrdθdφ.

This is an integral equation for ψ. Now we require that ψ be a harmonic polynomial.
These are homogenous polynomials of the variables x1, x2, x3, x4 that satisfy the Laplace
equation. After expressing such a polynomial in spherical coordinates it will be of the
form

ψ(ρ, α, θ, φ) = ρn−1Ψn(α, θ, φ)

and Ψn is a spherical harmonic of three angles. Inserting this ansatz into the integral
equation, we obtain

−4π2ρn−1Ψn(α, θ, φ) = n

∫
Ψn(α′, θ′, φ′)

ρ2 + 1− 2ρ cosω
sin2 α′ sin θ′dα′dθ′dφ′,

where we have followed Fock in defining the geodesic arc length ω

cosω =
(
cosα cosα′ + sinα sinα′ cos γ

)
.

From this integral equation we can now derive very useful identities. First note (ρ < 1)

1

ρ2 + 1− 2ρ cosω
=

1

2iρ sinω

(
1

ρe−iω − 1
− 1

ρeiω − 1

)
=

∞∑
k=1

sin kω

sinω
ρk−1
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then we can compare coefficients in the integral equation, to deduce:

ρn−1Ψn(α, θ, φ) = − n

4π2

∞∑
k=1

ρk−1

∫
Ψn(α, θ, φ)

sin kω

sinω
sin2 α sin θdαdθdφ

and hence∫
Ψn(α, θ, φ)

sin kω

sinω
sin2 α sin θdαdθdφ =

{
−4π2

n Ψn(α′, θ′, φ′) for k = n

0 for k 6= n
(2.26)

The seperation ansatz in the Laplace equation allows us to write

Ψn(α, θ, φ) = Π̃nl(α)Ylm(θ, φ).

Analogously to our previous calculation of Πσl in hyperbolic space, it can be shown that

Π̃nl(α) =
sinl α

M̄l

(
dl+1

d(cosα)l+1

)
cosnα

M̄2
l = n2(n2 − 12) . . . (n2 − l2).

Now
π∫

0

dθ sin θ

2π∫
0

dφ |Ylm(θ, φ)|2 = 1

and we use Fock’s convention

π∫
0

Π̃2
nl(α) sin2 αdα =

π

2

such that ∫
Ψn(α, θ, φ)Ψ∗n(α, θ, φ) sin2 α sin θ dαdθdφ =

π

2
.

With this and the orthogonality property of the Ψ, we deduce from (2.26)

sinnω

sinω
= −8π

n
Ψ∗n(α, θ, φ)Ψn(α′, θ′, φ′)

= −8π

n

∞∑
l=0

Π̃nl(α)Π̃nl(α
′)

l∑
m=−l

Y ∗lm(θ, φ)Ylm(θ′, φ′)

= − 2

n

∞∑
l=0

Π̃nl(α)Π̃nl(α
′)(2l + 1)Pl(cos γ).

This identity is correct not only for all positive integers n, but also for complex arguments.
We obtain the corresponding results in hyperbolic space by letting n = iσ and ω = idH
and introducing the Πσl function

Πσl(r) = (−i)lΠ̃iσl(ir).

This results in the Rayleigh type formula

Πσl(r) =
sinhl r

Ml

(
dl+1

d(cosh r)l+1

)
cosσr (2.27)
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Figure 2.3: Partial sum up to l = 30 of (2.28) for generic values of P ,Q. Orange: exact
expression, blue:partial sum

M2
l = σ2(σ2 + 12) . . . (σ2 + l2).

The derived identity is transformed into

sinσdH
sinh dH

=
8π

σ
Ψ∗σ(r, θ, φ)Ψσ(r′, θ′, φ′) =

8π

σ

∞∑
l=0

Πσl(r)Πσl(r
′)

l∑
m=−l

Y ∗lm(θ, φ)Ylm(θ′, φ′)

=
1

σ

∞∑
l=0

Πσl(r)Πσl(r
′)(2l + 1)Pl(cos γ) (2.28)

and
cosh dH = cosh r cosh r′ − sinh r sinh r′ cos γ.

The plot in figure 2.3 shows the convergence of the sum on the right hand side for a partial
sum of l = 30 and generic values of P and Q. As more terms are included, the region
where the partial sum (blue) does not coincide with the exact value (orange) tends to
infinity.
However, we will find it more convenient to work with special functions in which the
dimensionless variable σ has been replaced by q/κ, where now q is a momentum variable
with dimensions of inverse length. This trivial change leads to the formula

sin(qd)

sinh(κd)
=
κ

q

∞∑
l=0

(2l + 1)Πql(κr)Πql(κr
′)Pl(cos γ). (2.29)

As a demonstration of the use of this formula, let us derive the magnetization texture of
the p = 0 eigenmode given in (2.16). The eigenbasis expansion of G(0) reads

G(0)(r, r′) =

∫
dp
∑
l

(2l + 1)G(0)(p)Πpl(κr)Πpl(κr
′)Pl(cos γ). (2.30)

Insertion of G(0)(p) from (2.15) into this equation at the critical point µ = −κ2, yields the
real-space form of G(0). Now we construct the real-space form of only the p = 0 mode,
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which gives

σ(d(r, r′)) = lim
p→0

∑
l

(2l + 1)
σp
p2

Πpl(κr)Πpl(κr
′)Pl(cos γ)

= σ0
κd(r, r′)

sinhκd(r, r′)
, (2.31)

as claimed.

2.4.2 Extraction of coefficients and inversion formula

The identity (2.29) will be crucial in obtaining the expansion coefficients of a given function
ψ(d) of the geodesic distance. This distance being a non-negative quantity, the value of
ψ for negative arguments is irrelevant. In particular we may redefine ψ for negative
arguments such that it becomes an even function. This allows us to Fourier expand ψ as
follows

ψ(d) sinhκd =
κ

2π2

+∞∫
−∞

dp ψpp sin(pd), (2.32)

where we have chosen to split off a factor of κp/(2π2) in the definition of the expansion
coefficient for later convenience. Inserting (2.29) we obtain

ψ(d) =
κ

2π2 sinhκd

+∞∫
−∞

dp ψpp sin(pd)

=
κ2

2π2

+∞∫
−∞

dp
∞∑
l=0

(2l + 1)ψpΠpl(κr)Πpl(κr
′)Pl(cos γ) (2.33)

and have thereby managed to expand the arbitrary function ψ in the new basis with
coefficients

ψp =
πi

κp

+∞∫
−∞

dxψ(|x|) sinh(κx)e−ipx. (2.34)

Let us briefly comment on the structure of the expansion. Note that in (2.33) the expansion
coefficient ψp has no dependence on l. In fact, the statement of (2.33) is that any function
that depends on the set of coordinates (r, θ, φ), (r′, θ′, φ′) only through the geodesic distance
of the two points, can have no explicit l or m dependence of ψp.
Conversely, to find the real-space function ψ(d) from the knowledge of the coefficients ψp
in the expansion (2.33) we use (2.32) which results in the inversion formula

ψ(d) =
κ

2π2i sinhκd

+∞∫
−∞

dp ψppe
ipd. (2.35)
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2.4.3 Convolution theorem

Let f and g be two-point functions that depend on the geodesic distances dPQ and dQR,
respectively. When we multiply these functions and integrate Q over all of hyperbolic
space, the resulting function h can only depend on the geodesic distance between points
P and R. This convolution will in general be difficult to carry out in real-space. The
fact that the Πplm and the Ylm are orthogonal functions, however, allows us to reduce the
convolution of f and g to a multiplication in momentum-space. This is seen explicitly by
rewriting the relation ∫

dVQf(dPQ)g(dQR) = h(dPR) (2.36)

in the momentum representation (2.33) with expansion coefficients fp, gp, hp and using the
orthogonality relations for the radial functions and the spherical harmonics. Then this
convolution formula translates into

fpgp = hp. (2.37)

The solution of the Dyson equation below will require knowledge about the momentum-
space representation of the Dirac δ-function in hyperbolic space, which we denote by
either δPQ or δ(r, r′). We define this function by the condition that convolution of an
arbitrary function ψ(dPQ) with δ(dQR) must yield ψ(dPR). Translating this condition
into momentum space, we immediately read off from (2.37) the relation δp = 1 and obtain
thereby

δPQ =
κ2

2π2

+∞∫
−∞

dp
∞∑
l=0

(2l + 1)Πpl(κr)Πpl(κr
′)Pl(cos γ). (2.38)

Conversely, however, the multiplication of two functions in real-space does not translate
into a simple convolution integral in momentum-space, but rather a double-integral. Given
the product

f(dPQ)g(dPQ) = h(dPQ) (2.39)

the corresponding momentum-space equation is found by employing the representation
(2.35)

hk =
1

4π2k

∞∫
−∞

dp

∞∫
−∞

dqfpgqpq tanh

[
p+ q − k

2κ
π

]
(2.40)

i.e. instead of a single integral a double integral with kernel is obtained.
In the limit k → 0 the symmetry properties of fp and gq may be used to rewrite this kernel
as

lim
k→0

hk =
1

8πκ

∞∫
−∞

dp

∞∫
−∞

dq
pqfpgq

cosh2 π(p−q)
2κ

. (2.41)
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This formula will be used in section 2.8 in evaluating the corrections to the critical exponent
γ. As a check of the convolution theorem and to verify all the factors of π etc., let us
demonstrate the use of this identity by computing the convolution of two functions first
directly and then by using the theorem. Consider

f(d) =
1

cosh2 d

g(d) =
1

sinh2 d

and the convolution integral ∫
dV2 f(d12)g(d23) ≡ h(d13). (2.42)

The explicit formulas for the geodesic distance between these points (we set κ = 1) are

cosh d12 = cosh r1 cosh r2 − sinh r1 sinh r2 cos γ12

cos γ12 = cos θ1 cos θ2 + sin θ1 sin θ2 cos(φ1 − φ2)

and similarly for d23. The straightforward way proceeds by choosing one of the points,
say point 1, to be the origin. Then this integral becomes

h(d13) =

∞∫
0

dr2

π∫
0

dθ2

2π∫
0

dφ2 sinh2 r2 sin θ2f(r2)g(d23).

The integrand has a complicated dependence on the coordinates (r2, θ2, φ2). We therefore
solve this integral numerically.
The second way is to employ the convolution theorem. We first compute

fp =
2πi

p

+∞∫
−∞

dx
1

cosh2 x
sinhx e−ipx = 2π2sech

(πp
2

)

gp =
2πi

p

+∞∫
−∞

dx
1

cosh2 x
sinhx e−ipx =

2π2

p
tanh

(πp
2

)
and now transform back to real space via

h(d) =
1

4π2 sinh d

∞∫
−∞

dp fpgpp sin(pd) =
π2

sinh d

∞∫
−∞

dp
sinh πp

2

cosh2 πp
2

sin(pd) =
4πd

sinh d cosh d
.

This is the exact expression for h(d). The figure 2.4 confirms the convolution formula by
comparing it with the result of the numerical integration (dots).

2.5 Critical exponents

The formalism developed in the previous sections may now be employed to analyze the
saddle point equations (2.12) and (2.13). These equations describe the physics of the model
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Figure 2.4: The numerical evaluation of the integral (dots) and the claimed exact expres-
sion for h(d) coincide.

at lowest order in 1/N . In principle these are only the lowest order terms in an expansion
of the critical exponents in a power series in 1/N . In flat three-dimensional space there
are indeed further corrections. The main result of this work, derived in section 2.8, is
to establish the absence of such corrections for η and γ in three-dimensional hyperbolic
space.
We begin by computing the bare Green’s function G(0)(p) in momentum space for constant
µ in the action for σ(x). The real-space definition of the bare G(0)(r) is obtained by
inverting the quadratic part of the action, i.e.(

µ−∇2
)
G(0)(r, r′) = δ(r, r′). (2.43)

Inserting

G(0)(r, r′) =
κ2

2π2

∞∫
−∞

dp
∑
l

(2l + 1)G(0)(p)Πpl(κr)Πpl(κr
′)Pl(cos γ) (2.44)

and the representation of δ(r, r′) in (2.38), it is found that

G(0)(p) =
1

µ+ κ2 + p2
. (2.45)

At the critical point, µ = −κ2, we have a power-law dependence on p. Employing the
inversion formula, we find the real-space dependence

G(0)(r, r′) =
κ

2π2i sinhκd

∞∫
−∞

dp
peipd

µ+ κ2 + p2
=

κ

2π

e−
√
µ+κ2d

sinhκd
, (2.46)
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where d is the geodesic distance between r and r′. Evidently, even at the critical point the
Green’s function decays exponentially, in accord with the previous remarks about parallel-
transport.
In flat space the indicator of a phase transition is the divergence of the susceptibility. Thus
one expects at the critical point µ = µc the integral

χ(µ, q = 0) = 4π

∫
dr r2χ(µ, r)

to diverge. This is different in curved space, since

χq(µ) =
2πi

q

∫
dx χ(µ, x) sinhx e−iqx

=
−2π

q

∫
dx χ(µ, x) sinhx sin(qx).

Thus the divergence of χ(q = 0) translates into the divergence of

−2π lim
q→0

∫
dx χ(µ, x) sinhx

sin(qx)

q
(2.47)

and not (!) of ∫
dx χ(µ, x) sinh2 x, (2.48)

as one would obtain from replacing the flat-space volume element 4πr2dr by 4π sinh(r)2dr
(κ = 1). This is the explanation for the fact that the phase transition is not at µ = 0,
where χ(µ = 0, x) ∼ e−2x. According to the wrong criterion (2.48) there would be a
divergence, but not according to (2.47).

2.5.1 Critical Exponent η

Let us now proceed to the evaluation of the exponent η. At the critical point µ = −κ2

the power-law form of the curved-space bare Green’s function in (2.45) agrees with the
flat-space limit. The exponent η may therefore be defined through the relation

G(p) ∝ Λ−η

p2−η . (2.49)

We see that the bare G(0)(p), i.e. the lowest order form of the Green’s function in an 1/N
expansion, has η = 0.

2.5.2 Critical Exponents ν and γ

We now study the behavior of the correlation-length as the critical temperature is ap-
proached from the disordered regime by examining the saddle point equation (2.13). In

η γ

κ = 0 8
3π2

1
N + O

(
1
N2

)
2− 24

π2
1
N + O

(
1
N2

)
κ 6= 0 0 2

Table 2.2: Critical exponents in flat and hyperbolic space.
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the regime µ > −κ2, the magnetization will be zero. We may therefore set σ = 0 and
obtain

µ = µ0 +
uT

2π2

Λ∫
0

dq
q2

µ+ κ2 + q2
= µ0 +

uT

2π2
Λ− uT

2π2

√
µ+ κ2π. (2.50)

At T = Tc, where µ = −κ2, we have

−κ2 = µ0 +
uTc
2π2

Λ, (2.51)

which allows us to remove µ0 from (2.50). Now close to µ & −κ2, the quantity
√
µ+ κ2

dominates over µ+ κ2. Thus we neglect the latter and find√
µ+ κ2 =

1

π

T − Tc
Tc

Λ. (2.52)

The length ξ that diverges at the critical point is defined by

ξ =
1√

µ+ κ2
, (2.53)

which is the natural length scale of the problem. At the same time, the real-space form
of the correlation function in Eq.(2.46) shows that G(0)(d) decays exponentially beyond
the curvature 1/κ, even for ξ−1 = 0. Therefore, it seems at first glance, that there is
an arbitrariness in our definition of the correlation length, caused by the presence of the
additional length scale 1/κ in hyperbolic space. In order to seperate the geometry-induced
decay of the Green’s function from the decay due to the statistical fluctuations of the field,
one need only view the Green’s function in the momentum basis. Then it is clear that
G(0)(p) is of identical form as the Green’s function in flat space and, just as the latter, it
becomes scale invariant at Tc. Thus, our definition of the correlation length ξ is indeed
the right one. The geometrical decay of G(0)(d) is now seen to enter by means of the
1/ sinh(κd) factor of the transformation (2.35) from momentum-space into real-space.
The decay of the correlation function in real-space will, however, have an impact on the
1/N corrections of the critical exponents. Defining a critical exponent ν through ξ, we
find from (2.52) and (2.53) the exponent

ξ ∼ (T − Tc)−1 → ν = 1. (2.54)

According to (2.15) the zero-momentum susceptibility is

G(0)(q = 0) =
1

µ+ κ2
(2.55)

and by using (2.52) we find γ = 2.
We emphasize here explicitly the fact that both exponents are not mean-field exponents.
The latter are given by νMF = 1

2 and γMF = 1.

2.6 Remarks about the critical point

The question we want to answer is if the ordered state φ = const, which minimizes the
energy, can be possibly reached. We argue in the following that the correlation function
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〈φ(r)φ(r′)〉 always has an upper limit for the correlation length, which is never larger than
1/κ. In order to see this we explicitly calculate the correlation in Gaussian approximation
by solving the defining differential equation in real space. This removes any doubt that
may be associated with the question of whether the momentum space formalism may have
difficulties related to the fact that it cannot be used to represent the constant function.
Let us first recapitulate the way this calculation is done in flat space. We compute the
correlation function by inverting the inverse propagator of the action, which defines G(r)

µ0G(r)−∇2G(r) = µ0G(r)− 1

r2
∂r(r

2∂rG(r)) =
1

4πr2
δ(r) (2.56)

in real-space. We solve this for r > 0 with the ansatz G(r) = u(r)/r:

u′′ + µ0u = 0→ u = A exp(−√µ0r) +B exp(
√
µ0r) (2.57)

and hence

Ggeneral(r) =
A exp(−√µ0r) +B exp(

√
µ0r)

r
. (2.58)

Now a point source at the origin cannot lead to an exponentially increasing solution, thus
we set B = 0 and have

G(r) =
A exp(−√µ0r)

r
. (2.59)

The constant is determined to be A = 1/(4π).
Notice how by looking at the critical point µ0 = 0 only, we could not have dismissed the
positive exponential solution. We had to look at higher temperatures, in order to find
that such a solution would not decay with distance at higher values of µ.
Let us repeat this excercise for hyperbolic space. We have

µ0G(r)−∇2G(r) = µ0G(r)− 1

sinh2(κr)
∂r
[
sinh2(κr)∂rG(r)

]
=

κ2

4π sinh2(κr)
δ(r) (2.60)

and solve this again for r > 0 with the ansatz G(r) = u(r)/ sinh(κr). We find

−u′′ + (µ0 + κ2)u = 0→ u = A exp(−
√
µ0 + κ2r) +B exp(

√
µ0 + κ2r) (2.61)

and hence

Ggeneral(r) =
A exp(−

√
µ0 + κ2r) +B exp(

√
µ0 + κ2r)

sinhκr
. (2.62)

At sufficiently high µ0 the second solution will diverge with distance, thus we set B = 0
and we obtain

G(r) =
A exp(−

√
µ0 + κ2r)

sinhκr
. (2.63)

Now let us study the two candidates for the critical point µ0 = 0 and µ0 = −κ2.
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Case I: µ0 = 0
Here the correlation function is given by

G(r) =
A exp(−κr)

sinhκr
. (2.64)

Thus the correlation length is 1/(2κ).
In addition in momentum space this has the form

G((p) =
A

κ2 + p2
, (2.65)

thus fluctuations still have a mass and therefore this cannot be the critical point.

Case II: µ0 = −κ2

Here the correlation function is given by

G(r) =
A

sinhκr
, (2.66)

which has a correlation length 1/κ.
Moreover, in momentum space this has the form

G(p) =
A

p2
, (2.67)

thus fluctuations now do not have a mass. Therefore at µ0 = −κ2 we are at the critical
point. The real space correlations still decay exponentially. Therefore the ordered state
with φ = const., which requires a correlation length that is infinite, will never be reached.
Instead the real-space correlation attains its maximum possible value of 1/κ. The φ =
const. solution may have the lowest energy, but the right question to ask is not what the
lowest energy state is, but what is the lowest energy state that has a correlation length
that is equal to the one obtained from the correlation function. The correct answer to this
is the p = 0 eigenmode calculated in an earlier part of this chapter.
That this seems unusual may have to do with the fact that in flat space the real-space
correlation at the critical point reaches infinity, while in our problem we have an additional
length scale, which allows us to define a different length 1/

√
µ0 + κ2, which diverges while

the real-space correlation length can be read off from (2.63) to be 1/[
√
µ0 + κ2 + κ] and

is never larger than 1/κ.

2.7 Remarks about the lowest energy eigenfunction and the
constant solution

In the same spirit as in the last section, we want to answer the question of what happens
to the fully ordered φ = const. state of flat space, as κ is tuned from 0 to a finite value.
We rederive the magnetization formula of the ordered state without using Fock’s identity
and then consider the limit κ→ 0.
The eigenfunctions of the Laplace operator in hyperbolic space are given by

∇2 [Πp(κr)Ylm(θ, φ)] = −(κ2 + p2)Πp(κr)Ylm(θ, φ).
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Let us take a general function, expressible in terms of these eigenfunctions

f(r, θ, φ) =

∞∫
0

dp

∞∑
l=0

l∑
m=−l

fplmΠp(κr)Ylm(θ, φ)

and insert it into the gradient part of the action

Sgrad =

∫
d3x
√
g
[
−f∇2f

]
=

∫
drdθdφ sinh2 κr sin θ

[
−
∞∫

0

dp

∞∑
l=0

fplmΠp(κr)Ylm(θ, φ)

∇2

 ∞∫
0

dp′
∞∑
l′=0

l′∑
m′=−l′

fp′l′m′Πp′(κr)Yl′m′(θ, φ)

]

=

∫
drdθdφ sinh2 κr sin θ

[ ∞∫
0

dp

∞∑
l=0

l∑
m=−l

fplmΠp(κr)Ylm(θ, φ)
(
κ2 + p′2

)
 ∞∫

0

dp′
∞∑
l′=0

l′∑
m′=−l′

fp′l′m′Πp′(κr)Yl′m′(θ, φ)

]

=
π

2

∞∫
0

dp
∞∑
l=0

l∑
m=−l

f2
plm

(
κ2 + p2

)
where in the last step we used the orthonormality relations

π∫
0

dθ

2π∫
0

dφY ∗lm(θ, φ)Yl′m′(θ, φ) sin θ = δll′δmm′

∞∫
0

dr sinh2 κr Πpl(κr)Πql(κr) =
π

2
δ(q − p).

The energy is obviously minimized by the p = 0 mode. We want to consider isotropic
functions, so we only allow l = m = 0 components in the expansion of f , i.e. f(r, θ, φ)→
F (r). Then we have

F (r) =

∞∫
0

dp F (p)Πp0(κr),

where we introduced
F (p) ≡ fp00.

We have

Πp0(κr) =
sin(pr)

sinh(κr)

and only want to keep the p = 0 eigenfunction. We choose

F (p) = − F0

p/κ
δ(p),
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since otherwise in the limit p→ 0 no component would remain (the sign is for convenience
and κ is introduced since momenta are expressed in units of κ). Then we have

F (r) = F0 lim
p→0

κ sin(pr)

p sinh(κr)
= F0

κr

sinh(κr)
.

This is then the form of the lowest energy eigenfunction of the Laplacian. This formula was
also derived in a previous section from the Fock identity, as the form of the magnetization
σ(r) of the p = 0 mode.
We now ask how this is related to flat space. For κ → 0 this solution is converted into
the constant solution F (r) = F0. Or, saying this the other way around, the constant
eigenfunction of the Laplace operator in flat space gets transformed into a decaying mode
in curved space by increasing the curvature κ from 0 to a finite value.

2.8 Corrections to critical exponents

Corrections to the critical exponents η and γ are found by inspecting the self-energy. In
flat space this calculation is described in [53] and we find that the general procedure carries
over to hyperbolic space. This procedure consists in first determining how a correction
to a critical exponent would manifest itself in the self-energy and calculating the order
O(1/N) diagrams to see if such contributions are present.
We start with the action (2.11). The Dyson equation in real-space reads

G(rP , rR) = G(0)(rP , rR) +

∫
drQ

∫
drQ′ G

(0)(rP , rQ)Σ(rQ, rQ′)G(rQ′ , rR) (2.68)

and is converted to

G−1(p) = G(0)−1(p) + Σ(p) (2.69)

by application of the convolution theorem. We follow [53] in rewriting this equation as

G−1(p) =
(
G(0)−1(p) + Σ(0)

)
+ Σ(p)− Σ(0) (2.70)

and redefining the new inverse bare Green’s function G0−1(p) to be the first term, i.e.

G0−1(p) = µ0 + Σ(0) + κ2 + p2 = µ+ κ2 + p2. (2.71)

This has the advantage that at T = Tc the ‘mass’ µ+ κ2 of the bare propagator vanishes.
As a consequence of this redefinition, self-energy insertions in diagrams now take the form
Σ(p)− Σ(0) instead of Σ(p).
The large-N structure of the model allows us to restrict ourselves to a small number of
diagrams. The calculated corrections will be exact to order 1/N . The coupling constant
u in the action is multiplied by a factor 1/N . Due to the presence of N fields, there is
a summation over the field index at every (φ · φ)2 interaction vertex. We represent this
interaction term by a dashed line. On the other hand, a summation over the field index
at every vertex produces a factor N . Thus the series of bubbles connected by −u/N
interaction lines, as shown in Figure 2.5, are all of order 1/N and need to be included for
consistency. We denote this sum by a wiggly line and use the symbol D(p). It satisfies
the relation

D(p) = − u/N

1 + uΠ(p)
≈ − 1

NΠ(p)
(2.72)
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= +

Figure 2.5: Dyson equation for the screened interaction D(p)

(a)

(b)

Figure 2.6: Relevant O(1/N) diagrams. In flat space, diagram (a) contributes to η and
diagram (b) to γ.

where Π(p) is the polarization operator. The approximation comes from the large-u limit,
which we will be considering from here on. In real-space Π is given by

Π(r, r′) = G0(r, r′)2 =
κ2

4π2

e−2
√
µ+κ2d

sinh2 κd
, (2.73)

where d is the geodesic distance between r and r′. Using (2.34) we find

Πp(µ) = − 1

2πp
Im

[
ψ

(
1

2
− ip

2κ
+

√
µ+ κ2

κ

)]
, (2.74)

where ψ(z) ≡ d
dz log Γ(z) is the digamma function. With (2.72) we find

Dp(µ) =
2πp

N

1

Im

[
ψ

(
1
2 −

ip
2κ +

√
µ+κ2

κ

)] . (2.75)

We present the calculation of the correction to η in detail. The calculation of the
correction to γ is much more tedious and is only sketched. The result in both cases is the
absence of any corrections due to the regularizing character of finite curvature.

2.8.1 Order O(1/N) correction of η

As we have seen η = 0 at lowest order in 1/N . We now determine the 1/N correction to
this result. We have defined η in (2.49). Such a correction would manifest itself in the
self-energy. For large-N this critical exponent can be expanded and reads

G(p) ∝ Λ−η

p2−η =
Λ−η

p2 − η p2 log p
, (2.76)
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i.e. a correction would lead to a p2 log p term in the self-energy and could be found as the
coefficient of such a term. In flat space there is indeed such a correction. We will now
show that this p2 log p term of flat space is regularized in hyperbolic space to behave as
p2 log κ. The polarization operator (2.74) at the critical point µ = −κ2 becomes

Π(p) =
1

4p
tanh

( π
2κ
p
)
. (2.77)

In flat-space the p2 log p contribution is produced by the diagram in Figure 2.6a. To write
down this term we take the real-space form of D(p), which is obtained from (2.72) with
(2.34)

D(dPQ) =
8κ4 cosh(κdPQ)

Nπ2 sinh4(κdPQ)
. (2.78)

The self-energy in real-space is obtained by multiplying D with the bare Green’s function

Σ(dPQ) = 2D(dPQ)G(0)(dPQ) =
8κ5

Nπ3

cosh(κdPQ)

sinh5(κdPQ)
. (2.79)

Using again formula (2.34), we can write this in momentum space as

Σ(p) =
8(κ2 + p2)

3Nπ2
×
[
Reψ

(
−3

2
+ i

p

2κ

)
+

2/3 p2

9κ2 + p2
+ γ − 5

2

]
, (2.80)

where γ is the Euler-Mascheroni constant. Taking the flat-space limit κ→ 0 with fixed p,
we obtain the asymptotic relation

Σ(p) ∼ 8

3π2N
p2

(
log

p

2κ
+ γ − 11

6

)
. (2.81)

The appearance of κ in this formula is owed to the fact that we measure all momenta in
units of κ.
In the opposite regime, where p tends to 0 for fixed curvature, we have instead of a
logarithmic divergence the finite value

Σ(p) ∼ 8κ2

3π2N

(
17

6
− 4 log 2− γ

)
. (2.82)

This regularizing behavior of the finite curvature is shown in Figure 2.7, where we defined a

quantity η(p) ≡ d
d log p

[
Σ(p)−Σ(0)

p2

]
, which in flat space would yield a finite η. In hyperbolic

space at sufficiently small p, i.e. long length-scales, the log behavior of the self-energy
(2.80) is cut off and η(p) is suppressed to 0.

2.8.2 Order O(1/N) correction of γ

The exponent γ is found from the divergence of the susceptibility at p = 0. We find at
zero-momentum for the full Green’s function

G−1 (µ(T )) = µ0(T ) + κ2 + Σ (µ(T ))
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Figure 2.7: Here we have defined a function η(p) ≡ d
d log p

[
Σ(p)−Σ(0)

p2

]
. In flat space η(p) =

8
3π2N

, whereas in hyperbolic space it is always regularized by curvature and tends to 0 at
long length-scales.

= µ(T ) + κ2. (2.83)

In the following all calculations will be for zero external momenta, thus we have suppressed
the momentum arguments. Subtracting from this equation the same equation evaluated
at T = Tc, we find

µ(T ) + κ2 − Σ (µ(T )) + Σ (0) = µ0(T − Tc). (2.84)

We have found γ = 2 at lowest order in section 2.5.2. Writing 1/γ = 1/2 −∆ and using

the definition of the exponent via µ0(T − Tc) ∼
(
µ(T ) + κ2

)1/γ
for T near Tc, we obtain

−Σ (µ(T )) + Σ (0) ∼
√
µ(T ) + κ2 −∆

√
µ(T ) + κ2 log

(
µ(T ) + κ2

)
(2.85)

valid near T & Tc. The first term on the right-hand side is an O(1) term and was already
obtained in section 2.5. It is produced by a diagram, which is obtained from diagram 2.6b
by removing the internal wiggly line.
There are two O(1/N) diagrams that have to be considered in computing the correction ∆,
shown in Figures 2.6a and 2.6b. In flat space it can be shown that the diagram in Figure
2.6a only gives a ∼ µ logµ correction, whereas the diagram in Figure 2.6b in fact yields a
finite ∆. We shall see now that in hyperbolic space neither diagram yields a contribution
to ∆, as both logarithmic divergences are regularized by κ.

Diagram (a)

We begin with the diagram in Figure 2.6a. We denote this self-energy part by Σa(µ).
Using eq. (2.41) we find

Σa(µ)− Σa(0) =
1

8πκ

Λ∫
−Λ

dq

Λ∫
−Λ

dp [Gp(µ)Dq(µ)−Gp(0)Dq(0)]
pq

cosh2
(
π
2κ(p− q)

) . (2.86)
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The hyperbolic cosine effectively cuts off contributions with |p − q| � κ. Hence the
q-integral may be approximated by limiting the integration to this region. Insertion of
Gp(µ) and Dq(µ) from (2.45) and (2.75) and subsequent expansion in µ results in a large
number of elementary integrals. All logarithmic terms stemming from these integrals are
of the form log(cκ2 + µ), where c is either 1 or 4. In other words, for finite κ no terms
proportional to log µ are present.

Diagram (b)

Similarly the
√
µ logµ divergence of the diagram 2.6b in flat-space is regularized. The

self-energy expression corresponding to this diagram is obtained by noticing that diagram
2.6b is the result of attaching to the self-energy in 2.6a two legs of the interaction vertex.
It is correspondingly given by

Σb(µ) =
1

8πκ

∫
dq

∫
dq′ qq′ Gq(µ)2

[
Σa(q

′, µ)− Σa(0, µ)
] 1

cosh2 π(q−q′)
2κ

(2.87)

≈ κ2

2π2

∫
dq′

q′2

[(q′ − 2κ/π)2 + µ+ κ2][(q′ + 2κ/π)2 + µ+ κ2]

[
Σa(q

′, µ)− Σa(0, µ)
]

where the same approximation as before has been made. In the integrand the momentum-
dependent self-energy Σa(q, µ) is required. According to (2.40) this is given by

Σa(q
′, µ) =

1

4π2q′κ

Λ∫
−Λ

dp′
Λ∫
−Λ

dp
[
Gp(µ)D′p(µ)−Gp(0)D′p(0)

]
pp′ tanh

(
p+ p′ − q′

2κ
π

)
.

(2.88)
Inside the p-integral we approximate the tanh-function in the region |p+p′−q| < 2κ

π by its
argument and outside this region by the sign-function. Then the p-integral may be carried
out without a cutoff and we are left with a p′-integral. Insertion of (2.88) into (2.88) and
integration over q′ results in

Σb(µ) =
2π2

κλ

Λ∫
0

dq′
q′2

Imψ
(

1
2 −

iq′

2κ + λ
κ

) log
(q′ − 2κ)2 + 4λ2

(q′ + 2κ)2 + 4λ2
+R(κ). (2.89)

where R(κ) denotes terms that tend to 0 with κ → 0. The first term on the right-
hand side reproduces for κ = 0 fully the flat space formula for Σb. This self-energy
contains the

√
µ logµ term. For finite κ, however, the integral in (2.89) is fully regularized

and a
√
µ logµ term is avoided. Thus, we conclude that no singular correction to the µ

dependence of the self-energy emerges, i.e. the exponent γ is also unchanged compared to
the leading order 1/N expression given above.

2.9 Discussion

The aim of this work was to investigate critical phenomena in hyperbolic space. Our key
finding is that for a φ4-model embedded in hyperbolic space a new fixed point emerges at
finite curvature κ. If κ > 0 the critical exponents are governed by the strong curvature
limit. Interestingly, these exponents are given by leading order terms of the 1/N expan-
sion. Thus, while the numerical values of the exponents are now simpler, they continue to
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obey hyperscaling below the upper critical dimension.
The physical state in the symmetry-broken regime is characterized by an unusual mag-
netization texture. This texture consists of regions of size of the order of the radius of
curvature 1/κ where the vector φ has nearly uniform direction. Beyond this region the
finite value of the curvature starts to play an important role, since even at the critical
point correlations decay exponentially in hyperbolic space. It is therefore not possible to
establish a uniform direction of the magnetization vector.
The fact that the κ 6= 0 values of exponents are different from the flat space κ = 0 limit
may be understood using standard crossover arguments as we now show using the example
of magnetic susceptibility. Let f(t, h, κ) be the singular part of the free energy density,
where t ∝ (T − Tc)/Tc measures the distance to the critical point and h is the external
field. Then the following scaling transformation holds

f(t, h, κ) = b−3f
(
b1/νf t, byfh, bκ

)
, (2.90)

with exponents νf for the correlation length and scaling dimension of the conjugate field
yf = βfδf/νf that refer to the flat space (κ = 0) limit. The curvature is a relevant
perturbation with positive scaling dimension, i.e. the infrared behavior is governed by the
infinite curvature fixed point, where all scales (except of course for the inverse ultraviolet
cut-off) are larger compared to the radius of curvature. Performing the second derivative
with respect to the conjugate field, we obtain the scaling expression for the order parameter
susceptibility:

χ(t, κ) = bγf/νfχ(b1/νf t, bκ)

= t−γfΦ
( κ

tνf

)
. (2.91)

In the flat space limit κ = 0, the scaling function behaves as Φ(x → 0) → const. and we
recover the flat space results. On the other hand, our above analysis implies that for large
argument Φ(x� 1) ∝ x−φ holds with crossover exponent

φ =
γ − γf
νf

=
24

Nπ2
. (2.92)

Here γ is the susceptibility exponent of the hyperbolic space obtained above. Thus, we
find χ(t, κ) ∝ κ−φt−γ . The behavior κ−φ is, at the considered order, fully consistent with
the φ log(κ) behavior that occured in our explicit analysis.
We have calculated the critical exponents η, γ and ν at lowest order in 1/N and found
that these are identical to the exponents in flat three-dimensional space at lowest order.
For η and γ we showed that O(1/N) corrections are absent. As our calculations show, the
reason for this absence is the fact that correlations are exponentially decaying beyond the
radius of curvature even at the critical point. The lowest order values of the exponents are
computed from local quantities, which are oblivious to the finite curvature, whereas the
higher-order corrections are determined through integration over the whole of hyperbolic
space, wherein the finite curvature serves to cut off the long-wavelength fluctuations. For
this reason, we may also surmise the absence of corrections to the other critical exponents.
It is moreover plausible to assume for the same reason that higher-order corrections to
the exponents will also be absent in the 1/N -expansion. Thus we conjecture that the
critical exponents we found are correct to all orders in 1/N . We emphasize that our
results establish that mean-field behavior, which [4] argued for, does not hold.
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An interesting question is how our results are modified for dimensions d different from 3.
The Laplacian in d 6= 3 dimensions is still gapped. The only modification in our lowest
order 1/N calculations of the critical exponents would be a change of the integration
measure in (2.50), from p2 to pd−1, multiplied by a numerical factor. However, this leads
again the same saddle point equations as in flat space. Thus we can make the stronger
statement that all critical exponents in hyperbolic space are just the leading order 1/N
exponents of flat space. In particular, we have ν = 1

d−2 and γ = 2
d−2 for d ≤ 4 and

mean-field exponents for d > 4. The upper critical dimension is d = 4 even for finite κ.
In summary, we conclude that the description of many-particle systems in hyperbolic space
is a promising avenue to investigate uniform frustration and non-trivial critical behavior
within one theoretical approach.
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Chapter 3

Geometric frustration in the
ground state

In this chapter we begin the study of a particular Heisenberg spin model, the so-called
windmill model, that shows emergent critical behavior despite the fact that the lattice
is two-dimensional and the couplings are short ranged as well as isotropic. That this
emergent criticality is possible is owed to the fact that the Heisenberg windmill model is
geometrically frustrated. Geometric frustration is present as soon as spins on the lattice
are not able to simultaneously satisfy all bonds to neighboring spins, in the sense that
each bond has a minimum energy of interaction. Instead, a compromise is achieved in
which each spin minimizes its energy as much as possible.
The windmill lattice is formed out of two widely occurring lattice geometries: a trian-
gular lattice, coupled to its dual honeycomb lattice. The phase diagram shows a rich
phenomenology due to geometric frustration. One of these phases is a decoupled phase,
where at T = 0 one sublattice is energetically decoupled from the other. This is essen-
tial for the emergence of the critical behavior that we explore in the next chapter, where
we show that the relative orientation of the two sublattices allows the introduction of an
emergent U(1) degree of freedom, which can undergo phase transitions.
The source of frustration in this model stems from the fact that the intra- and inter-
sublattice couplings are all antiferromagnetic. If all couplings were ferromagnetic, the sys-
tem would have a single ground state configuration, independent of the numerical value
of the coupling constants, namely a trivial uniaxial order. The fact that the couplings
are antiferromagnetic necessitates compromises in the spin configurations. This leads to
a large number of ground state spin configurations, each one of which is the optimum
configuration given certain values of the coupling constants.
Using a combination of iterative minimization, heat-bath Monte Carlo simulations and
analytical calculations, we determine the complete ground state phase diagram of both
models and find the exact energies and spin configurations of the phases. The model has
ground states among which are, in addition to collinear and various coplanar phases, also
intricate non-coplanar phases. Different paths to experimental realizations of these spin
models are outlined. Our extensive study provides a starting point for the investigation
of quantum and thermal fluctuation effects.
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This chapter is based on work done in

Bhilahari Jeevanesan and Peter P. Orth Classical ground states of Heisenberg and XY
antiferromagnets on the windmill lattice Phys. Rev. B 90, 144435

that was published in October 2014.

3.1 Introduction

Insulating materials that host localized spin degrees of freedom can exhibit complex ground
states and fascinating low-temperature properties. This behavior frequently arises from
competing interactions that cannot be satisfied simultaneously. Prime examples are an-
tiferromagnetic nearest-neighbor spin couplings on frustrated geometries like the two-
dimensional (2D) triangular and kagome lattice or the three-dimensional (3D) pyrochlore
lattice [80, 10, 62]. These systems are characterized by a large degeneracy of classical
ground states. This often leads to complex states of matter and phase transitions if quan-
tum or thermal fluctuations are present [35, 90, 15].

A triangular lattice geometry with antiferromagnetic spin couplings is realized in a
large number of magnetic materials such as Cs2CuCl2 [17, 16, 79], NaxCoO2 [99, 28],
NaCrO2 [71, 34] and α − NaFeO2 [56]. Another frustrated triangular material is the
recently discussed cluster magnet LiZn2Mo3O8 [89, 88, 64, 26]. Here, Mo3O13 clusters
that carry a total spin S = 1/2 are arranged in two-dimensional triangular lattice planes
that are weakly coupled along the third dimension. Another lattice geometry that ex-
hibits frustration effects if further neighbor antiferromagnetic couplings are present is the
honeycomb lattice. This lattice is dual to the triangular lattice. It is realized in var-
ious solid-state compounds and can arise by replacing one third of the magnetic ions
in a triangular lattice system by a non-magnetic one. This is done, for example, in
Na2Co2TeO6 or Na3Co2SbO6 [101]. Another recently discussed interesting honeycomb
material is Na1−xNiSbO6, where magnetic Ni2+ and Ni3+ form a honeycomb lattice with
mixed spins S = 1/2 and S = 1.

Here, we study the situation where these two lattice geometries are combined and
consider spins on a honeycomb lattice that are antiferromagnetically coupled to spins
situated on a triangular lattice. It has recently been shown that such a setup shows order-
from-disorder effects in the regime of weakly coupled sublattices that leads to surprising
new phenomena. There, an emergent Z6 degree of freedom has been revealed that ex-
hibits a sequence of Berezinskii-Kosterlitz-Thouless phase transitions bracketing a critical
phase [72, 73]. Experimentally, such a situation might arise, for example, in the cluster
magnet LiZn2Mo3O8 at low temperatures [26] or in a material such as Na1−xNiSbO6 by
replacing the non-magnetic ion Sb by a magnetic one. The progress in chemical synthesis,
in particular considering the approach of using small magnetic clusters as basic units,
might bring other experimental candidates in the future as well, possibly with a large spin
S > 1/2.

Another experimental platform where classical frustrated magnetism has been inves-
tigated in recent years is based on cold bosonic atoms in optical lattices [94, 95]. At low
temperatures and for weak interactions these systems form a superfluid and the atoms at
site i in the lattice have a well-defined local phase φi. This local phase degree of freedom
can be interpreted as a classical planar (XY) spin

(
cosφi, sinφi

)
. Nearest-neighbor spins

are coupled via tunneling of atoms between the sites. For regular tunneling of atoms
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Figure 3.1: Windmill lattice. Left: The lattice may be thought of as a triangular lattice
(red vertices) together with its dual honeycomb lattice (blue vertices). The model has a
three-site basis. The Bravais lattice vectors are a1 and a2. The shaded region is a unit
cell. Right: Reciprocal lattice vectors with first Brillouin zone.

between the sites, the associated coupling between the planar spins is ferromagnetic. By
shaking the lattice in a periodic way, however, it is possible to add a non-zero Peierls
phase to the tunneling element. In this way, it is possible to induce a change in the sign
of the tunneling element which leads to an antiferromagnetic coupling between the spins.
Within this approach, different links of the lattice can be addressed independently. Frus-
tration effects have been experimentally observed on the triangular lattice via standard
time-of-flight imaging [94]. Honeycomb optical lattice geometries have also been realized
in the past [74, 98].

This serves as our motivation to extensively study the classical Heisenberg and the
classical planar (XY) spin model on a lattice that combines both a honeycomb and a
triangular lattice. We refer to this lattice, which is shown in Fig. 3.1, as the “windmill
lattice”. Considering antiferromagnetic interactions between all nearest-neighbor pairs
of spins, we determine the complete ground state phase diagram of both models. Due
to competing interactions, the models turn out to show an extremely rich ground state
phenomenology. For the Heisenberg model we find that next to phases where the spins
order in a collinear or a coplanar fashion there exist also phases where the spins exhibit an
intricate non-coplanar configuration where they arrange themselves into seperate double
cones. In the windmill XY model those non-coplanar phases are replaced by other similarly
involved configurations.

The structure of this chapter is as follows: in Sec. 3.2 we introduce the classical Heisen-
berg and planar spin models on the windmill lattice, and in Sec. 3.3 we describe the
methods that we employ to obtain the ground state phase diagram. We use an “iterative
minimization” technique to find a variational expression of the ground state whose energy
can be analytically computed, minimized and compared to the numerical result. In Sec. 3.4
we present one of our main results: the full ground state phase diagram of the Heisenberg
model on the windmill lattice as a function of exchange couplings. In Sec. 3.5, we then
discuss the various ground state phases in detail. In Sec. 3.6 we analyze the planar (XY)
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model on the windmill lattice and determine its complete ground state phase diagram. In
the appendices we provide the details on the calculation of all the ground state energies
from the variational forms.

3.2 Windmill spin model

The windmill lattice that we study consists of a triangular lattice combined with its dual,
honeycomb lattice. The windmill lattice can be described as a triangular Bravais lattice
with a three-site basis per unit cell containing triangular, honeycomb A and B sites. The
spins are positioned on the vertices of the lattice as shown in Fig. 3.1. We consider classical
spins with an antiferromagnetic exchange coupling between all nearest-neighbor pairs of
spins. The Hamiltonian of the windmill model reads

H = Jt
∑
〈ij〉

Sti · Stj + Jh
∑
〈ij〉

SAi · SBj

+Jth
∑

〈ij〉,ν=A,B

Sti · Sνj (3.1)

where 〈i, j〉 denotes summation over each nearest-neighbor pair, the index {t, A,B} refers
to the sublattices and Jt, Jh, Jth are positive, i.e., antiferromagnetic, coupling constants.
In the classical windmill model all spins are classical unit vectors. The vectors have three
components in the case of Heisenberg spins Sαi = (Sαi,x, S

α
i,y, S

α
i,z) and two components in

the case of planar (XY) spins Sαi = (Sαi,x, S
α
i,y) with α ∈ {t, A,B}.

The triangular Bravais lattice with lattice constant a is spanned by the primitive lattice
vectors a1 = a(1, 0) and a2 = a

2 (1,
√

3). The basis vectors are given by bt = (0, 0), bA =
1
3a1 + 1

3a2 and bB = 2
3a1 + 2

3a2. The reciprocal vectors take the form G1 = 2π√
3a

(
√

3,−1)

and G2 = 2π√
3a

(0, 2), and are shown in Fig. 3.1.

3.3 Methodology

All the results in this chapter were obtained by using an “iterative minimization” algorithm
that has been employed in the literature to discover ground state configurations of classical
spin models [91, 48]. Independently we verified our results by using heat-bath Monte Carlo
simulations [61] in combination with parallel tempering updates [55, 36]. We then extract
variational forms of the spin configurations and determine the variational parameters by
minimizing the corresponding ground state energies. We analytically find the configuration
of minimal energy which determines the phase diagram and the phase boundaries.

We begin with an explanation of the iterative minimization algorithm. Starting from
a randomized spin configuration, in every iteration of the algorithm a spin is chosen at
random and rotated such as to minimize the interaction energy with its neighbors. Each
step of the algorithm is an update of the form

Sti → Sti = −
Jt
∑

k S
t
k + Jth

∑
k,ν S

ν
k

‖Jt
∑

k S
t
k + Jth

∑
k,ν S

ν
k‖

(3.2)

Sαj → Sαj = −
Jh
∑

k,ν S
ν
k + Jth

∑
k S

t
k

‖Jh
∑

k,ν S
ν
k + Jth

∑
k S

t
k‖

(3.3)
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with the index α ∈ {A,B}. The sum over index ν = A,B runs over both honeycomb
sublattices and the summation over the index k ranges over the neighbors of the spin that
is being updated. This technique does not provide rigorous proofs for the correctness of
the discovered phases. One difficulty that one may imagine is that the algorithm converges
to a local minimum of the energy landscape. In this case a local update is not capable of
improving the energy. This possibility is made unlikely by the fact that for all phases we
ran the algorithm multiple times with different random initial configurations and observed
that the system always converged to the same phase.

In order to discover the groundstate configurations, the algorithm was applied to a spin
system with N = L× L = 30× 30 unit cells (i.e., N triangular spins and 2N honeycomb
spins) with periodic boundary conditions. We applied the minimization algorithm for
50,000 steps. The resulting spin configurations were all explored and a mathematical
description of their spin ordering was extracted, from which the energies were analytically
calculated.

After the numerical search, we performed systematic runs on a lattice with N = 12×12
unit cells to confirm the absence of further phases. This run was performed for the regime
of parameters Jh/Jt ∈ [0.2, . . . , 9.4] in steps of 0.1 and Jth/Jt ∈ [0.2, . . . , 9.4] in steps of
0.1. At every point within this parameter range, the minimization algorithm was applied
for 60, 000 × N iterations. Every application optimized one randomly chosen triangular
lattice spin and one randomly chosen honeycomb lattice spin. The resulting energies of
the converged configurations were compared to the analytically computed energies.

Some of the discovered phases have spin configurations that depend parametrically
on the coupling constants such as the pitch angle in a spiral phase. Here, we computed
the energy by leaving these variables, like the pitch angle, as variational parameters and
obtained their value by minimizing the energy with respect to the parameters. In most
cases, the results of the simulation were highly converged such that the energy per spin that
emerged from the simulation numerically coincided exactly with the energy computed by
minimization of the variational state. Similarly, the spin configurations (e.g. scalar prod-
ucts between neighboring spins) of all the simulated phases were to many digits identical
to those of the phases proposed. In the few cases where the convergence was not so good,
which was evidenced by the higher energy per spin value, we investigated snapshots of the
spin configurations and found that the algorithm had been trapped in a local minimum
with topological defects that could not be removed by local updates. Nevertheless, even
in the presence of these defects the snapshots still showed ordering of the spins that were
clearly those of the proposed phases.

As a final test we repeated the systematic run with Monte Carlo simulations. The simu-
lations were carried out at 40 temperature points Ti covering the interval [10−3Jt, . . . , 2.0Jt].
The temperature points are chosen to be geometrically spaced [41], i.e., Ti+1/Ti is a con-
stant ratio. The lattice has N = L× L = 30× 30 unit cells and we again employ periodic
boundary conditions. The simulations are done in parallel for all temperatures with the
spin configurations of the 40 lattices stored simultaneously. To every one of these lattices
the heat-bath algorithm is applied N times. This is followed by a parallel tempering move.
The latter kind of update consists in proposing for every pair of neighboring temperatures
(Ti, Ti+1) an exchange of the full spin configurations. The proposals are accepted/rejected
according to the standard Metropolis-Hastings rule. The parallel tempering algorithm
helps to quickly produce uncorrelated spin configurations.

The cycle of heat-bath steps followed by parallel tempering updates was repeated a
total of 10, 000 times before we finally measured the energy of the lattice with the smallest

45



temperature.
In this way the energies were determined for the coupling constants in the parameter

regime jh ≡ Jh/Jt ∈ [0.1, . . . , 10.0] and J̄ ≡ Jth/
√
JtJh ∈ [0.1, . . . , 4.0]. We found all

resulting energies to be slightly larger than the analytically calculated minimum energies.
This is further confirmation of the absence of ground state phases other than the ones we
have found.

3.4 Ground state phase diagram of Heisenberg windmill
model

The complete ground state phase diagram of the Heisenberg windmill model is shown in
Fig. 4.14 as a function of the ratios of coupling constants Jt/Jh and Jth/

√
JtJh. Note that

the vertical axis is the ratio Jt/Jh in the upper panel of the figure, while we use the inverse
ratio Jh/Jt in the lower panel. The horizontal axis is Jth/

√
JtJh. In total, the Heisenberg

model exhibits eight different ground state phases, which we describe in detail in Sec. 3.5.

The energies of the different spin configurations, measured in units of Jt, are functions
of the dimensionless coupling constant ratios

jh = Jh/Jt (3.4)

jth = Jth/Jt. (3.5)

The ground state energy E(jh, jth) is defined as the energy of the spin configuration with
the lowest energy, and the ground state phase is described by this spin configuration.

As a function of the couplings jh and jth there will eventually be level crossings where
the energies of the spin configurations with the lowest two energies switch places [31]. A
phase transition occurs at a crossing of the energies of two different spin configurations.
Exactly at the transition point, their energies match, but their (higher order) derivatives
will generally not be the same. According to the usual Ehrenfest classification of phase
transitions, the order of the phase transition is determined by the lowest order of the
derivative of the ground state energy E(jh, jth) with respect to the tuning parameter, jh
or jth, that exhibits a singularity. In the phase diagram we have indicated the order of
the phase transition by the labels 1st and 2nd for first and second order phase transitions.

Some of the discovered phases are continuously connected to each other, and exactly
at the level crossing the spin configurations are identical. We often denote those phases
in the phase diagram by the suffix a or b. In this case both the energies as well as the
first order derivatives of the energies will match at the transition point. The second order
derivatives, however, will in general not be equal. The phase transitions between phases
that are continuously deformed into each other at the transition are therefore always of
second order.

There are two special points in the phase diagram, where multiple phases become
energetically degenerate. These are the points (jh, jth/

√
jh) = (1/4, 1) and (jh, jth/

√
jh) =

(1, 2). One would not expect a large number of unrelated phases to coincide at one point.
In fact, one can prove a simple result similar to the Gibbs phase rule [22] about the number
of generically coinciding, energically degenerate phases. Let E1(jh, jth), E2(jh, jth) and
E3(jh, jth) be the energies of three minimum energy phases. The requirement that these
energies should coincide at a point (jh, jth) is expressed by the conditions

E1(jh, jth) = E2(jh, jth) (3.6)
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Figure 3.2: Ground state phase diagram of the Heisenberg model on the windmill lattice
as a function of the dimensionless ratios of coupling constants Jt/Jh and Jth/

√
JtJh. In

the upper figure we use the y-axis label Jt/Jh while in the lower figure we use the inverse
ratio Jh/Jt. The different phases are described in detail in Sec. 3.5. The order of the phase
transition between the phases is indicated above the arrows. The non-coplanar phases are
labelled (4a) and (4b). 47



E2(jh, jth) = E3(jh, jth) (3.7)

which can be expected to be a solvable system in jh and jth, since the number of vari-
ables equals the number of conditions. Equating a larger number of energy functions will
generally result in an overdetermined, unsolvable system, unless the energy functions are
related to each other in a special way. Thus the number of generically coincident points
is limited to three.

In the ground state phase diagram in Fig. 4.14 there are, however, seven phases
coinciding at the point (jh, jth/

√
jh) = (1, 2) and four phases coinciding at the point

(jh, jth/
√
jh) = (1/4, 1). This is possible because a number of these phases are related to

each other in the way described above, i.e., they continuously transform into each other
at the degeneracy point.

Let us consider the point (jh, jth/
√
jh) = (1, 2) in more detail. The detailed description

of the different phases can be found below in Sec. 3.5. Exactly at the point (jh, jth/
√
jh) =

(1, 2) there are two energetically equal ground state configurations, which are those of
phase (2b) and phase (3b) (see Secs. 3.5.2 and 3.5.3). In the limit (jh, jth/

√
jh) → (1, 2)

the spin configurations of all the surrounding phases are equal to the configuration of one
of these two phases. All these phases must, therefore, meet at this point in the phase
diagram. Obviously phase (2a) deforms into (2b) and phase (3a) into (3b). The half-
opening angles of the conical phase (4a) (see Sec. 3.5.4) go to zero in this limit, which
yields a spin configuration identical to the one of phase (2b). Similarly, the spiral angle of
phase (5) (see Sec. 3.5.5) goes to zero resulting in a spin configuration that is identical to
the one of phase (3b).

A similar line of reasoning explains the degeneracy at the point (jh, jth/
√
jh) = (1/4, 1).

Here, phases (4b) and (2a) turn into (2b). The opening angle αt of the double cone
configuration tends to zero as the border to region (2b) is approached. This border includes
the degeneracy point, as shown in the phase diagram.

3.5 Ground state phases

In the following we describe the phases that were found in a broad search of the two-
dimensional parameter space (jh = Jh/Jt, jth/

√
jh = Jth/

√
JtJh). The phases are labelled

as shown in the phase diagram in Fig. 4.14. In describing these phases we adopt the
convention of placing the spins in the coplanar phases in the Sx-Sy-plane in spin space. In
many of the following phases there is an additional degeneracy in that a certain symmetry
may be broken along different directions of lattice space. In such cases we adopt one
particular direction for the description of the phase and follow this with a discussion
about the symmetry properties. Next to the figures with the spin arrangements are shown
the positions of the ordering wave vectors in the Brillouin zone with the wave vectors of
the honeycomb lattice as blue points and triangular lattice as red points.

In some of the following ground state phases the symmetry of the lattice is broken.
This can manifest itself, for example, in stripes of equal spin orientation along a certain
direction in lattice space. In such cases, one can obtain a distinct, but energetically
degenerate ground state by means of a rotation of all spins in lattice space around an
arbitrary triangular site. The description of such a rotated state is complicated by the
fact that the windmill lattice has a three site basis. The operation of rotating the lattice
by 60◦ will in general also involve a reattribution of honeycomb spins to their respective
unit cells and a possible relabeling of A into B site spins and vice versa. In order to avoid
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such complications, our description in the following will always be of only one lattice
configuration. The other symmetry related configurations are discussed.

The differerent phases are characterized by their order parameter manifold. This mani-
fold is defined as the symmetry group, whose elements transform a given spin configuration
into a distinct, but energetically degenerate configuration. A simple (anti-)ferromagnetic
state in the Heisenberg model thus has the order parameter manifold O(3)/O(2), since it
is characterized by a normalized unit vector in the direction of magnetization n. Global
rotations around an axis that is not (anti-)parallel to a given magnetization n yield an-
other energetically degenerate ground state spin configuration. In Table 3.4 we list the
order parameters manifolds of the various ground state phases.

We measure energies in units of NJt, where N is the number of spins on the triangular
lattice. The energies of the ground state spin configurations can be analytically calculated
and are given in Table 3.2. We refer to Appendix B for the details. Finally, in Table 3.3 we
list the functional forms of the boundaries between the phases, which are calculated from
the explicit form of the energies and the conditions for the existence of phases. The same
table also contains the order of the phase transitions between two neighboring phases. For
completeness we also include in these tables the additional phases found in the planar
windmill model that is discussed in Sec. 3.6.

Phase Order Parameter Manifold (Heisenberg model)

1 SO(3)×O(3)/O(2)
2a, 2b O(3)/O(2)×O(2)× Z3

3a O(3)/O(2)×O(2)
3b O(3)/O(2)
4a SO(3)× Z3

4b SO(3)× Z3

5 SO(3)× Z3

Table 3.1: Order parameter manifold of the ground state phases of the Heisenberg windmill
model. The elements of these group manifolds transform energetically degenerate ground
state spin configurations into each other.

Phase Energies E/NJt Condition

1 −3
2 − 3jh none

2a −1− 3jh −
j2th
2jh

2jh ≥ jth
2b −1− jh − 2jth 2jh ≤ jth
3a 3− 3jh − 3

2
j2th
Jh

2jh ≥ jth
3b 3 + 3jh − 6jth 2jh ≤ jth
4a see (B.42) j2

th ≥ 4jh, σ ≤ 1 ≤ ρ
4b −3

2 − jh − 2j2
th 2jth ≤ 1

5 −3
2 −

(2jth−jh)2

2 |1 + jh − 2jth| ≤ 2

XY I −3
2 −

(2jth+jh)2

2 jth + jh/2 ≤ 1/2
XY II see Eq. (B.63)) j2

th ≥ 2jh, ρ ≤ 1 ≤ σ

Table 3.2: Energies of the different ground state spin configurations of the Heisenberg and
XY windmill model.
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3.5.1 Decoupled windmill phase (1)

In the “decoupled windmill” phase (1) the spins on the triangular lattice are arranged in
a 120◦ configuration while the honeycomb spins exhibit Néel order. This phase exists in
a large region of the phase diagram where Jth ≤

√
JtJh. The spin configuration of phase

(1) is shown in Fig. 3.3, and an analytical expression is given by

St(r) =

cos(Qt · r)
sin(Qt · r)

0

 (3.8)

SA(r) =

cos(QA · r)
sin(QA · r)

0

 (3.9)

SB(r) = −SA(r) . (3.10)

Here, r = na1 +ma2 is a Bravais lattice vector and the ordering wave vectors read in the
basis of the reciprocal lattice vectors as

Qt = ±(1/3,−1/3) (3.11)

QA,B = (0, 0) . (3.12)

The triangular ordering vectors are thus given by Qt = ±(G1/3−G2/3) = ±2π(1
3 ,−

1√
3
)

and are located, as shown in Fig. 3.3, at the corners of the first Brillouin zone. Only two of
those six corners are non-equivalent, i.e., cannot be reached by adding a reciprocal lattice
vector. We have chosen to place the honeycomb spins in the same plane as the triangular
lattice spins. This is only done for convenience, since in this configuration the spins on the
triangular lattice are decoupled from the spins on the honeycomb lattice: global rotations
of spins on either of the two sublattices do not cost any energy. The sign of the different
wave vectors Qt corresponds to different chiralities of the 120◦-order.

Phases Phase Boundary Order of transition

1 : 2a j2
th = jh 1

1 : 4b j2
th = jh 1

2a : 2b jth = 2jh 2
2b : 4b jth = 1

2 2

2b : 4a 2jh =
√

2j
3/2
th − jth 2

2a : 3a j2
th = 4jh 1

3a : 3b jth = 2jh 2
3b : 5 jth = 3

2 + 1
2jh 2

4a : 5 jh + 1 = jth 2
1: XY I 6jh = (2jth + jh)2 1
1 : 2b 2jth = 2jh + 1/2 1

XY I : 2b jh + 2jth = 1 2
2b : XY II 2j2

th = jth + jthjh + 4jh 2
5 : XY II E5 = EXY II 1

Table 3.3: Parametric location of the phase boundaries and order of the phase transition
between different phases in the ground state phase diagram of the Heisenberg and XY
windmill model (see Figs. 4.14 and 3.11).
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Figure 3.3: Decoupled windmill phase (1). In this phase the two sublattices are decoupled.
The triangular lattice spins have a 120◦ order, whereas the honeycomb spins are Néel
ordered. Left: Ordering wave vectors for honeycomb (yellow) and triangular (red) lattice

To find the order parameter manifold of this phase, we first divide the tripartite tri-
angular lattice into X,Y and Z-sites, where the different sites correspond to the three
possible directions of triangular lattice spins in the 120◦ configuration. Consider a plaque-
tte of X-, Y - and Z-site spins and let t2 be a unit vector along the spin on the X-sites SX .
Then define the unit vector t1 to be parallel to the component of the spin SY on the Y sites
that is orthogonal to SX . Finally, define the unit vector t3 = t1× t2. The triad (t1, t2, t3)
that is defined in this way is the local order parameter for the 120◦ phase. The vector t3
is essential to encapsulate the chirality of the ordering, i.e., XY Z ordering versus XZY .
The chirality on a triangular plaquette is defined to be negative (positive), if the rotation
of spins going from site X to Y to Z is (counter)clockwise. If the plane of triangular spin
order is given by the x-y-plane of real-space, as is assumed in Fig. 3.3, a positive (negative)
chirality corresponds to the unit vector t3 pointing out-of (into) the plane. The chirality
of the configuration can be changed by performing a π-rotation around an axis that lies in
the plane of the triangular spins. The order parameter manifold of the triangular lattice
spins is thus given by SO(3).

The order parameter of the honeycomb lattice spins can be defined by a unit vector
n that points along the direction of the A-site spins, and global rotations around an
axis that is not parallel (or anti-parallel) to n yield other energetically degenerate spin
configurations. The order parameter manifold of the “decoupled windmill” phase (1) is
thus given by SO(3)×O(3)/O(2).

We finally mention that at finite temperatures, it was shown in Refs. [72, 73] that
thermal (or quantum) fluctuations around this ground state lead to a finite temperature
phase diagram with Z6 order and an emergent critical phase.

3.5.2 Collinear antiferromagnetic phase/canted ferromagnetic phase (2a)
and (2b)

This is a planar phase in which the spins on the triangular sublattice are collinearly
ordered, i.e., ferromagnetically along one lattice direction and antiferromagnetically along
the others. The A/B honeycomb sublattices are each collinear canted ferromagnets with
spins on the B sites that are antiparallel to two of the neighboring spins on the A-site.
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The spin configuration is shown in Fig. 3.4. We have chosen the direction of one of the
triangular lattice spins to be along the Sx-axis of spin space. An analytical expression of
the spin configuration in this phase is given by

St(r) =

 cos(Qt · r)
0
0

 (3.13)

SA(r) = −

 cos(θ +QA · r)
sin θ

0

 (3.14)

=

 −jth/(2jh) cos(QA · r)

−[1− j2
th/(4j

2
h)]1/2

0

 (3.15)

SB(r) = −SA(r) (3.16)

with

θ = − cos−1

(
jth
2jh

)
(3.17)

Qt = QA,B ∈ {(1/2, 0), (0, 1/2), (1/2, 1/2)} . (3.18)

The form of θ was obtained by taking it as a variational parameter and minimizing the
energy found from the explicit evaluation of the Hamiltonian (we refer to Appendix B.1
for details).

Note that θ is undefined for jth > 2jh. In this latter range the minimum is instead
found at θ = 0. The region where this phase is hosted is denoted (2b) in the phase
diagram. The transition between this configuration and one of finite θ is accompanied
by a discontinuity of the second derivative of the energy as a function of the coupling
constants, i.e., the phase transition between the phases (2a) and (2b) is of second order.

The order parameter is given by defining the direction of one triangular lattice spin
and by specifying one direction in lattice space in which the spins are collinear with the
chosen spin. For the latter there are three possible choices. The honeycomb spins arrange
themselves in a plane that contains the triangular spins and enclose a certain angle θ
with the triangular spins. Global O(2) rotations of the honeycomb spins around an axis
parallel to the triangular spins yield energetically degenerate spin configurations. The
order parameter manifold of the phases (2a) and (2b) is thus given by O(3)/O(2)×O(2)×
Z3.

3.5.3 Ferromagnetic phases (3a) and (3b)

In phase (3a) all three sublattices are separately ferromagnetically ordered. The spins on
the honeycomb A and B sites enclose an angle θ with the triangular spins, but point in
mirror opposite directions with respect to the triangular spins. The spin configuration is
depicted in Fig. 3.5. Let the direction of St be the Sx-axis of spin space. An analytical
expression of the spin configuration reads

St(r) =

 1
0
0

 (3.19)
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Figure 3.4: Collinear Antiferromagnet/Canted Ferromagnet (left: (2a), right: (2b)). Phase
(2a) can exist only for jth < 2jh, when this inequality is violated, phase (2b) minimizes
the energy. In configuration (2a) the honeycomb spins can be globally rotated around the
triangular spin direction without any cost in energy. The ordering wave vectors of both
lattices are identical.

Figure 3.5: Left: (3a), right: (3b). All three sublattices are ferromagnetically ordered. In
phase (3a) the relative angles between the lattices is tunable by changing jth. However,
once jth ≥ 2jh the spins become locked in the configuration (3b).
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Figure 3.6: The Figure shows the dice lattice obtained in the limit of large Jth � Jt, Jh.
This is effectively the lattice for phase (3b). Red (blue) arrows lie on triangular (honey-
comb) lattice sites.

SA(r) =

 cos θ
sin θ

0

 =

 −jth/(2jh)

[1− j2
th/(4j

2
h)]1/2

0

 (3.20)

SB(r) =

 cos θ
− sin θ

0

 =

 −jth/(2jh)

−[1− j2
th/(4j

2
h)]1/2

0

 (3.21)

with

cos(θ) = − jth
2jh

. (3.22)

The ordering wave vectors are all identically zero, which corresponds to ferromagnetic
order.

Once again the variational parameters become undefined for jth > 2jh. The minimum
for this region is instead found at θ = π and the corresponding phase is denoted (3b) in the
phase diagram. This phase is the one that would be obtained in the limit of infinite Jth
and finite Jt, Jh. Such a limit corresponds to a lattice where there is a vanishingly small
coupling within the triangular lattice and within the honeycomb lattice, but a dominant
inter-sublattice coupling Jth. The resulting bipartite lattice is depicted in Fig. 3.6 and is
known as the dice lattice. It is the dual of the kagome lattice and has been studied in the
literature in various contexts[103].

The order parameter manifold of this phase is defined by the direction of the trian-
gular lattice spin. The energy of phase (3a) remains invariant, however, if we rotate all
honeycomb spins around an axis parallel to the triangular spin, which corresponds to
an O(2) symmetry. Therefore, the order parameter manifold of phase (3a) is given by
O(3)/O(2)×O(2), whereas that of phase (3b) is equal to O(3)/O(2).

3.5.4 Double cone phases (4a) and (4b)

Spins in the phases (4a) and (4b) exhibit a non-coplanar arrangement. In phase (4a), spins
on the triangular and the honeycomb lattice lie on separate double-cones. The phase (4a)
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is shown in Figs. 3.7 and 3.8. The double cone structure is depicted in Fig. 3.7 and the
arrangement of the spins on the lattice is clearly illustrated in Fig. 3.8. As one moves
horizontally in lattice space along a1 (a2) from one site to the next, the spins advance by
an azimuth angle of θ (2θ). In other words, the spins in the figure labelled by the same
angles share a common plane in spin space. Additionally, they alternately lie on upper
and lower cones, which is represented by blue and red in Fig. 3.8. We are showing only
one of the six symmetry-related ground states. The others are obtained by rotating the
lattice through an angle of (2π/6)n with n = 1, . . . , 5.

Non-coplanar ground states, similar to the ones we have found, have also been discov-
ered in Heisenberg models on triangular, square, pyrochlore and octahedral lattices [33, 93,
91, 48]. The interest in such phases stems from the fact that non-coplanar spin orderings
are expected to give rise to an anomalous Hall effect[96], due to the non-vanishing spin
chirality. Moreover, considering quantum fluctuations it is expected that non-coplanar
classical ground states give rise to chiral spin liquid phases [82, 91, 59].

To describe this configuration we choose the opening axis of the cones to be the Sz-axis.
Then the spins are described by

St(r) =

sin(αt) cos(Q1 · r)
sin(αt) sin(Q1 · r)
cos(αt) cos(Q2 · r)

 (3.23)

SA(r) =

− sin(αh) cos(Q1 · r + θ)
− sin(αh) sin(Q1 · r + θ)
− cos(αh) cos(Q2 · r)

 (3.24)

SB(r) = SA(r + a1) (3.25)

with ordering wave vectors

Q1 = ± 1

2π
(θ, 2θ) (3.26)

Q2 = (1/2, 0) (3.27)

The ambiguity in sign corresponds to two possible orderings that are related by a π-rotation
in lattice space. Four other orderings are possible, that correspond to the remaining
rotated states

Q1 = ± 1

2π
(θ,−θ) (3.28)

Q2 = (1/2, 1/2) (3.29)

and

Q1 = ± 1

2π
(2θ, θ) (3.30)

Q2 = (0, 1/2). (3.31)

The angles αt and αh are the half-opening angles of the respective cones. The an-
gle θ is the difference in the azimuthal angle, as shown in Fig. 3.7. These three angles
{αt, αh, θ} are functions of the coupling constants. By solving the minimization problem
(see Appendix B.3) for the set of variables {αt, αh, θ}, one finds the solution

sinαt =

√
1− σ2

ρ2 − σ2
(3.32)
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Figure 3.7: Double Cone Phase (4a). Spins on the triangular (top) and the honeycomb
lattice (bottom) lie on separate double cones with different opening angles αt and αh. In
the figures we use the notation St,A,Bn+1 = St,A,B1 (r + na1) and St,A,B2n+1 = St,A,B1 (r + na2).
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Figure 3.8: Double Cone Phase (4a). Left: Q vectors of all sublattices are identical. The
phase contains one of the three Q vectors on the boundary and one from the dashed lines.
Specifying θ determines the exact position of the Q vector on the dashed lines. Right:
Scheme of spin orientations on the lattice. Let the middle reference spin be on the upper
double cone of the triangular lattice. The blue (red) spins lie on upper (lower) cones. The
angles describe by how much a spin’s azimuthal angle differs from that of the reference
spin.

sinαh =

√
1− σ2

ρ2 − σ2
ρ (3.33)

cos θ = jth
jth −

√
j2
th − 4jh

4jh
=
jth
2
ρ (3.34)

with

ρ ≡ sinαh
sinαt

=
jth −

√
j2
th − 4jh

2jh
(3.35)

σ ≡ cosαh
cosαt

=
jth

(
jth −

√
j2
th − 4jh

)2

8j2
h

. (3.36)

Generally both angles αt, αh are nonzero.
Another solution to the minimization problem exists, for which ρ = 0. The correspond-

ing phase is denoted by (4b) and is shown in Fig. 3.9. In this configuration the honeycomb
lattice spins are aligned with the cone axis, while the triangular lattice spins lie again on
a cone with variable half-opening angle

cosαt = 2jth . (3.37)

Consecutive triangular lattice spins rotate by an angle of θ = 2π/3 around the cone axis.
The order of both phases may be described by first specifying the cone axis and one

of the triangular lattice spins. Once this choice is made, there is a further degeneracy due
to the freedom in rotating the lattice, as explained above. Thus there are six energeti-
cally degenerate configurations. These six possibilities may be further classified into two
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Figure 3.9: Double Cone Phase (4b). The spins on the honeycomb lattice align with the
cone axis, while the spins on the triangular lattice lie on a double cone with half-opening
angle cosαt = 2jth and advance by a fixed angle of θ = 2πk

3 when translated by ak.
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chiralities: three cover the configurations that describe a right handed screw around the
cone axis when advancing in the a1 direction and three describe a left handed screw. In
specifying the cone axis, we may encode the chirality of the spins via the direction of the
cone axis vector. The chirality can thus be reversed by a π-rotation around an axis that
lies in the plane orthogonal to the cone axis. The order in this phase is therefore described
by an element of SO(3)× Z3.

3.5.5 Incommensurate spiral phase (5)

In phase (5) the spins are arranged in a coplanar incommensurate spiral as shown in
Fig. 3.10. The spin configuration takes the form

St(r) =

 cos(Q · r)
sin(Q · r)

0

 (3.38)

SA(r) = −

 cos (Q · r + θ)
sin (Q · r + θ)

0

 (3.39)

SB(r) = −

 cos (Q · r + 2θ)
sin (Q · r + 2θ)

0

 , (3.40)

where the ordering wave vector is given by

Q = ± 1

2π
(θ, 2θ). (3.41)

with the angle θ defined via

cos θ = −1

2
(1 + jh − 2jth) . (3.42)

As for the double cone phase, the sign ambiguity of Q describes the chirality. Four further
symmetry related configurations exist and are described by the Q vectors

Q = ± 1

2π
(2θ, θ) (3.43)

and

Q = ± 1

2π
(θ,−θ). (3.44)

The right-hand side of Eq. (3.42) must satisfy

|(1 + jh − 2jth)| ≤ 2 . (3.45)

For parameters that violate this inequality the minimum is instead found at either θ = 0
or θ = π. The former case is identical to phase (3b) and the latter one to phase (2b).

In the spiral phase the triangular lattice spins have the same order parameter manifold
as the 120◦ ordered spins of phase (1). This is clear, since the 120◦ order is just a special
case of this incommensurate spiral phase. An incommensurate spiral phase on the windmill
lattice, however, can appear in three distinct types, as described above, three of each
chirality. The order parameter manifold of the incommensurate spiral phase is thus equal
to SO(3)× Z3.
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Figure 3.10: Phase (5). Left: Q vector is identical for all sublattices. It lies on one of
the dashed lines and is determined by θ. Right: The spins exhibit incommensurate spiral
order. The spiral can be either left-handed or right-handed.

3.6 Planar (XY) windmill model

We now discuss the XY windmill model, where planar (XY) spins Sαi = (Sαi,x, S
α
i,y), α ∈

{t, A,B}, are placed on the vertices of the windmill lattice (see Fig. 3.1). This case is
particularly interesting given the recent advances in the field of ultracold atoms, where XY
spins with nearest-neighbor antiferromagnetic interactions were successfully simulated on
a triangular lattice [94, 95]. The lattice is created by means of standing wave laser fields.
The atoms are trapped in and tunnel between the local minima of this optical lattice.
At low temperatures, the system becomes superfluid and the atoms have well-defined
local condensate phases φi at every site i of the lattice. This U(1) degree of freedom
plays the role of the XY spins Si = (cosφi, sinφi). The nearest-neighbor spin couplings
are determined by the tunneling amplitudes of atoms that move between the different
laser field minima. For normal quantum mechanical tunneling between the sites, the
corresponding spin interaction is always ferromagnetic, favoring a locking of the condensate
phases to the same value. In contrast, it was recently demonstrated that the tunneling
element acquires a non-zero Peierls phase by periodically shaking the optical lattice and an

Phase Order Parameter Manifold (planar model)

1 O(2)× SO(2)
2a, 2b SO(2)× Z6

3a SO(2)× Z2

3b SO(2)
5 O(2)× Z3

XY I O(2)× Z3

XY II O(2)× Z3

Table 3.4: Order parameter manifolds in the planar windmill model.
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Figure 3.11: Ground state phase diagram of the XY windmill model. The top figure has
as the vertical axis Jt/Jh, while in the lower panel it is Jh/Jt . The 6 planar phases of
the Heisenberg windmill model reappear, with two additional phases labelled (XY I) and
(XY II)
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antiferromagnetic coupling of local XY phases on a triangular lattice was experimentally
realized [94, 95]. As honeycomb optical lattice geometries have also been successfully
implemented in various groups [74, 98, 40], it is entirely feasible to realize the XY windmill
model using cold bosonic atoms in optical lattices.

We have determined the full phase diagram of the XY windmill model. It is shown
in Fig. 3.11. We note that a coplanar state that minimizes the energy for Heisenberg
spins has to minimize the energy for XY spins, as well. Thus, compared to the results for
the Heisenberg windmill model the only major modification in the phase diagram, apart
from a quantitative shift of the phase boundaries, takes place in the regions where the
Heisenberg model exhibits non-coplanar phases. These regions are now largely occupied
by two new planar phases, (XY I) and (XY II), which we describe below.

Of the two highly degenerate points in the phase diagram of the Heisenberg model,
only one remains in the planar model: at the point (jh, jth/

√
jh) = (1, 2) six phases meet.

Like in the case of the Heisenberg model, this high degeneracy is explained by the fact that
all six phases deform into either phase (2b) or phase (3b) in the limit (jh, jth/

√
jh)→ (1, 2).

Thus there are only two distinct phases present at this point. In particular, phase (XY
II) transforms into phase (2b), as we explain below.

3.6.1 Incommensurate alternating spiral phase (XY I)

In place of the non-coplanar phase (4b) we now find a new planar phase. We denote
this phase by (XY I). It is an incommensurate spiral phase with the directions of spins
alternating from one site to the next. It is shown in Fig. 3.12. It may be described as a
twisted Néel-ordered configuration. The spin configuration is given by

St(r) =

(
cos(Q · r)
sin(Q · r)

)
(3.46)

SA(r) =

(
cos (Q · r + θ)
sin (Q · r + θ)

)
(3.47)

SB(r) =

(
cos (Q · r + 2θ)
sin (Q · r + 2θ)

)
(3.48)

with ordering wave vectors

Q = ± 1

2π
(θ + π, 2θ) , (3.49)

and an angle θ that is defined by

cos θ =
1

2
(1 + jh + 2jth) . (3.50)

The chiralities are encoded in the sign of Q. Four further symmetry related phases are
possible with Q vectors

Q = ± 1

2π
(2θ, θ + π) (3.51)

and

Q = ± 1

2π
(θ + π, π − θ). (3.52)
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Figure 3.12: Phase (XY I). Left: Q vectors are identical for all sublattices. By specifying
θ the wave vectors come to lie either on the boundary or on the dashed lines. Right: The
spins arrange themselves in an incommensurate, alternating spiral.

Imposing the condition that the angle θ be real, yields

jh + 2jth ≤ 1. (3.53)

This phase is never an energy minimum for the Heisenberg model, since the non-coplanar
phase (4b) includes the whole range of existence of phase (XY I) and has a smaller energy.

Like in the case of the incommensurate spiral phase (5), the order parameter of phase
(XY I) is determined by giving the direction of two triangular lattice spins and by speci-
fying one of the three Q vectors. Hence, its manifold is O(2)× Z3.

3.6.2 Canted ferromagnetic phase (XY II)

The phase (XY II) is found in the former region of the non-coplanar phase (4a) in the
phase diagram. It is depicted on the left of Fig. 3.13. All spins lie symmetrically about a
line, which we choose in the following to be the x-axis.

The spin configuration is related to the double-cone state, since it can be obtained
by forcing the double-cone azimuth angle θ to be zero (see Eqs. (3.23)-(3.25)). The spin
configuration is given by

St(r) =

(
cos(αt)

sin(αt +Q · r)

)
(3.54)

SA(r) =

(
− cos(αh)

− sin (αh +Q · r)

)
(3.55)

SB(r) =

(
− cos(αh)

sin (αh +Q · r)

)
(3.56)

with

Q ∈ {(1/2, 0), (0, 1/2), (1/2, 1/2)} . (3.57)
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Figure 3.13: Left: Phase (XY II). The spins on all three sublattices alternate between two
positions. These two positions may be viewed as reflections along a mirror line that is
common to all three sublattices. Right: Shown are spins from the triangular lattice (red)
and (A-site) honeycomb lattice (blue) at neighboring lattice sites along a1. The vertical
line is a mirror line, analogous to the mirror plane of the double cone phase. The spins
are aligned ferromagnetically along a2.

The angles αh and αt are given by

sinαt =

√
1− σ2

ρ2 − σ2
(3.58)

sinαh =

√
1− σ2

ρ2 − σ2
ρ (3.59)

with

σ ≡ cosαh
cosαt

(3.60)

=
2

3jth
+
jth
3jh
−

√(
2

3jth
+
jth
3jh

)2

− 1

jh

ρ ≡ sinαh
sinαt

= 3σ − 4

jth
. (3.61)

As we approach the high degeneracy point (jh, jth/
√
jh) = (1, 2), it is straightforward to

show from (3.58)-(3.61) that αh, αt → π/2 as the degeneracy point is approached and (XY
II) becomes identical to phase (2b).

Concerning the lattice symmetry of this phase, we note that from the configuration
shown in Fig. 3.13 two further energetically degenerate phases are obtained by rotation
of the lattice by (i) 120◦ and (ii) 240◦, respectively. Hence, the order parameter manifold
in this phase is equal to O(2)× Z3.

3.7 Conclusions

We have determined the complete ground state phase diagram of both the classical Heisen-
berg and the planar (XY) spin models on the windmill lattice. Like the well-known J1-
J2-model on the square lattice, the windmill model couples a lattice to its dual lattice.
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In the windmill model this is a triangular lattice coupled to its dual honeycomb lattice.
Competing antiferromagnetic interactions between the spins lead to a rich ground state
phenomenology with collinear, coplanar, incommensurate spiral and non-coplanar phases.
We discussed different routes to an experimental realization of these spin models. Based
on our results and recent finite temperature studies of the Heisenberg windmill model
in the regime of weak sublattice coupling, the region of phase (1), we expect interesting
physics to emerge in the presence of quantum and thermal fluctuations.
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Chapter 4

Emergent critical phase in a
frustrated magnet

A fundamental result in statistical physics is the theorem proved by Mermin and Wag-
ner [58, 76, 108] according to which N -component spin systems, with N ≥ 2, in two-
dimensional space, coupled via short-range interactions are not capable of developing
long-range order. The reason for this is, roughly speaking, that the resulting Goldstone
modes of such a symmetry-broken phase would immediately destroy the order.
Despite the fact that the Mermin-Wagner theorem prohibits long-range order of the mi-
croscopic spins, it does not make any constraining statements about emergent degrees of
freedom. One may therefore imagine a scenario, where one has two sublattices of Heisen-
berg spins, which cannot develop long-range order by themselves, but where the relative
orientation of these sublattices defines new degrees of freedom. If these degrees of freedom
are discrete, the theorem does not forbid them from developing long-range order via a
finite temperature phase transition.
This is indeed what was found in the so called J1-J2 model [12], which is a frustrated
Heisenberg model on two coupled square lattices. Here the emergent degrees of freedom
are Ising variables. Thus as the temperature of the system is lowered and the correlation
length of the Heisenberg spins stays finite, there is a critical temperature Tc, where the
correlation length of the Ising variables becomes infinite. This is an instance of a 2D
Heisenberg spin system exhibiting an Ising phase transition.
In his pioneering work on this subject [75], A. M. Polyakov pointed out a similar pos-
sibility by speculating that a 2D Heisenberg magnet might develop algebraic order; he
further suggested that this possibility might be explored experimentally. Hence a natural
question to pose at this point is whether one can generalize the J1-J2 model in such a way
that the system develops emergent XY-spin degrees of freedom that can undergo phase
transitions into an algebraically ordered phase. Recently Orth, Chandra, Coleman and
Schmalian (OCCS) [72, 73] have proposed that frustration can provide a mechanism to
realize Polyakov’s conjecture; these authors constructed a frustrated model of Heisenberg
spins, in which the emerging spin system is a planar XY model with a 6-fold potential. A
pure XY model, i.e. not an emergent one, with such a potential was shown by J. V. José
et al. [39] to have a low-temperature Z6-symmetry broken region and a high-temperature
disordered region. These two regions enclose a middle regime in which the emergent XY
model has a power law phase.
In this chapter a computational experiment is performed that detects the development
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of an emergent XY order parameter with power-law correlations in the 2D Heisenberg
windmill model, confirming the OCCS mechanism and its realization of the Polyakov
conjecture. The OCCS mechanism relies on the formation of a multi-spin U(1) order
parameter describing the relative orientation of the magnetization between a honeycomb
and a triangular lattice. The development of fluctuation-induced Z2 order in the J1-J2

Heisenberg model [12] is thought to be responsible for the high temperature nematic phase
observed in the iron-pnictides [24, 23, 105, 7]. In the OCCS mechanism, the emergent U(1)
order parameter is subject to a Z6 order-by-disorder potential at short distances. At inter-
mediate temperatures this potential is irrelevant (in the renormalization group sense) and
scales to zero at long distances, leading to emergent power-law correlations. Remarkably,
the stiffness of the emergent U(1) order parameter remains finite in the infinite system,
despite the short-range correlations of the underlying Heisenberg spins. In this XY man-
ifold the binding of logarithmically interacting defect vortices leads to ordering via two
consecutive transitions that belong to the Berezinskii-Kosterlitz-Thouless (BKT) univer-
sality class [72, 73, 39].

The analysis of the emergence of the planar XY model with 6-fold potential from the
windmill Hamiltonian, which we define more precisely below, was undertaken in [72, 73]
in a renormalization group calculation. In this treatment several approximations had to
be made, which, though plausible, weaken the strength of the authors’ arguments. The
difficulties are the following:

• the calculations are performed on the continuum model in a long-wavelength ap-
proximation; thus the lattice structure of the theory is lost, which leaves open the
possibility that short-wavelength fluctuations could preempt the scenario via unan-
ticipated transitions into different phases [8, 14, 13]

• the middle regime is treated in an approximation, where coplanarity is hard coded
into the analysis, while in fact fluctuations out of the plane are always present

• the RG gives only order of magnitude values of the phase-transition and crossover
temperatures, thus a quantitative phase diagram is lacking; the latter is particularly
important in order to assess whether the power law regime is present in a broad
region or if it only appears in a narrow slice of the phase diagram

In this work we remove these difficulties by simulating the model in a Monte Carlo calcu-
lation, which allows an unbiased treatment of the problem.
This chapter is based on work done in

Bhilahari Jeevanesan, Premala Chandra, Piers Coleman, and Peter P. Orth, Emergent
Power-Law Phase in the 2D Heisenberg Windmill Antiferromagnet: A Computational Ex-
periment, Phys. Rev. Lett. 115, 177201

that was published in October 2015.

In the first section we recapitulate the essential ideas of the J1-J2 Heisenberg model.
The focus is on demonstrating the Ising phase transition computationally. This was done
first in [105] by C. Weber et al.. We reproduce some of these results.
As a preparation for the study of the windmill lattice with emergent algebraic order,
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Figure 4.1: The J1-J2 model. It consists of two interpenetrating sublattices with two
spin species (red and blue). The two species are coupled within the same sublattice by a
coupling J2 and spins from different sublattices are coupled by J1.

the next section summarizes some results from BKT theory, before the actual problem is
treated in the subsequent section.

4.1 Emergent Ising order in the frustrated J1-J2 model

The J1-J2 model is a short-range Heisenberg spin model, where the spins are placed on the
vertices of two interpenetrating square lattices (see Fig. 4.1). Now one can differentiate
between the two sublattices (red and blue in the Fig. 4.1) and define coupling constants
that depend on the sublattice type. We denote by J2 ≥ 0 the coupling of nearest neighbor
spins on the same sublattice, while J1 ≥ 0 denotes nearest neighbor couplings of spins on
different sublattices. The Hamiltonian of this model is given by

H = J1

∑
〈〈ij〉〉

Si · Sj + J2

∑
〈ij〉

Si · Sj . (4.1)

In the following we will consider the regime, where J2 � J1. The opposite regime,
J1 � J2, is trivial in the sense that the T = 0 ground state consists of antiferromagneti-
cally ordered spins. The diagonal bonds only serve to enhance fluctuations, but this does
not yield interesting low energy phenomena.
This is in stark contrast to the opposite regime of J2 � J1, which we want to discuss in
the following. At T = 0 the red and blue spins order antiferromagnetically. However, in
this configuration there is no preferred relative angle between the red and blue spins. In
other words, the system has a degenerate ground state and any choice of angle θ in Fig.
4.1 leads to the same energy. Thus at T = 0 the two sublattices are fully decoupled and
may be individually rotated relative to the other sublattice. However, as the temperature
is increased thermal fluctuations are present, which lift this degeneracy of the ground
state and couple the two lattices. This takes place by a mechanism that has been termed
order-by-disorder and was worked out by Villain [102] and Henley [35]. We present a full
calculation of the order-by-disorder mechanism for the windmill model in appendix E.
Here, we instead give an intuitive picture of how this mechanism works. Consider in Fig.
4.2 the action of the red spins on the middle blue spin. At low temperatures almost all
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or 

Figure 4.2: Order-by-disorder mechanism: The small fluctuations of the red spins induce
a Weiss field (dashed arrow) that is felt by the blue spin. In the figure the field acts
mostly in a horizontal direction. The blue spin will spent most of its time in the vertical
position, which offers a pocket where it is left undisturbed. There are two such preferred
orientations.

the red spins surrounding a blue spin point in the same direction, but they also fluctuate
slightly around this position, generating a mostly horizontally aligned Weiss field for the
blue spin. The latter is randomly acted on by these fluctuations and will, of course, spend
most of its time in an orientation from which these fluctuations cannot easily remove it.
In the figure such an orientation is given by a vertical alignment, so there are two possible
directions which minimize fluctuations. This is the origin of the emergent Ising degree of
freedom: the two sublattices prefer to be in one of two orientations, i.e. the two settings
θ = 0 and θ = π are entropically favored over the other possibilities.
Given the existence of such emergent Ising degrees of freedom, it is an interesting ques-

tion to ask, if these spins can undergo a phase transition. That this was in fact possible
was shown using the renormalization group in [12]. Given the approximations that be-
came necessary in these authors’ line of reasoning, this fact required a more unambiguous
demonstration. Work undertaken in [105] showed, using Monte Carlo simulations and a
finite size scaling analysis, that the picture of [12] was essentially correct, although some
minor modifications were required close to the boundary of the two regimes of J2/J1.
Since the analysis in [12] was essentially a low-energy continuum theory, this first order
transition between the two regimes of J2/J1 values and fluctuations in and out of the
neighboring phase, led to effects that are not captured in a perturbation theory around
one regime, while the Monte Carlo simulation is naturally capable of exploring such fluc-
tuations.
In order to demonstrate the Ising phase transition in this Heisenberg system, the full
Heisenberg model is treated in Monte Carlo simulations and statistical averages are cal-
culated of the emergent degrees of freedom. The emergent Ising variables are defined per
plaquette according to the rule (see Fig. 4.3)

σ =
(S1 − S3) · (S2 − S4)

|S1 − S3||S2 − S4|
.

Having defined the Ising variables, the authors of [105] went on to measure the Ising
susceptibility defined by

χIsing =
N

T

(
〈M2〉 − 〈M〉2

)
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Figure 4.3: Emergent Ising degrees of freedom

where M is the Ising magnetization given by

M =
1

N

∑
α

σα.

We have repeated these simulations and obtained full agreement with the authors (Fig.
4.4). The figure shows the finite-size scaling of the susceptibility. As the system size is
increased, it is clearly seen that the susceptibility develops a sharp peak. The position of
the peak allows us to read off a transition temperature of about Tc ≈ 0.198J1. A more
precise value is obtained by measuring the correlation length ξ and extrapolating the ξ−1

vs. T/J1 plot linearly and determining where the line intersects the temperature axis. In
this way the authors find Tc ≈ 0.196J1 (Fig. 4.5).
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Figure 4.4: Susceptibility for the emergent Ising degrees of freedom defined per plaquette.
We obtain agreement (right) with the authors of [105] (left). Reprinted with permission
from [105] (http://dx.doi.org/10.1103/PhysRevLett.91.177202), Copyright (2003) by the
American Physical Society.
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Figure 4.5: Ising correlation length as function of temperature for J1-J2 model. Reprinted
with permission from [105] (http://dx.doi.org/10.1103/PhysRevLett.91.177202), Copy-
right (2003) by the American Physical Society.

4.2 BKT transitions and the power-law phase

When we turn to the Heisenberg windmill model below, we will see that in the coplanar
regime it effectively behaves like an XY model. This is demonstrated below by performing
Monte Carlo simulations and extracting the properties of the phase transition in a finite-
size scaling analysis suited to BKT transitions and by determining the critical exponent
η at the upper and lower phase transition.
We first derive some results from the theory of BKT transitions following [1, 9, 5, 42, 44]
for the square lattice without any symmetry breaking potential. This allows us to extract
the theoretical value for η, the form of the free energy near the transition and from this
the behavior of the susceptibility close to the transition.

4.2.1 High-temperature phase

We consider an XY-Hamiltonian on the square lattice given by

H = −J
∑
〈ij〉

Si · Sj = −J
∑
〈ij〉

cos(θi − θj). (4.2)

and ask for the behavior of the correlation function

Gij = 〈SiSj〉 = 〈cos(θi − θj)〉.

In the limit of large temperatures, we can expand the partition function in a high-T
expansion. This is a representation of the partition function as a sum over configurations
that consist of closed loops on the lattice (see Fig. 4.6). To derive this representation we
expand the partition sum for small β as

Z = Tr[exp(−βH)] ≈
∏
i

(∫ 2π

0
dθi

) ∏
b

[1 + βJ cos(θb1 − θb2)],
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i

j

Figure 4.6: High-temperature expansion. Left: The partition function can be represented
as a sum over closed-loop configurations. Right: The correlation function 〈Si · Sj〉 is
obtained by summing over all configurations (appropriately weighted) that connect site i
to site j. One such configuration is shown here.

where the second product ranges over all nearest-neighbor bonds b in the lattice and b1,
b2 denote the two sites that belong to this bond. In computing Z, we obtain integrals of
the type

I =

∫ 2π

0
dθ cos(θ − θ1) cos(θ − θ2) . . . cos(θ − θn).

If the number of cosines in this product is odd, i.e. if n is odd, this integral is zero. This is
shown by noting first that the integration is over a full period. Therefore a translation of
θ by π cannot change the value of this integral. However, the cosines obtain a sign change
and we therefore obtain the relation:

I = I(−1)n

thus if n is odd we have I = 0.
Diagrammatically this means that the only contributing configurations are those where the
number of edges incident on a lattice site is even. Such configurations cannot have loose
ends (these would be vertices with an odd number of incident edges) and are therefore
closed loops.
By this logic, considering the correlation function Gij = 〈cos(θi−θj)〉 we conclude that the
only contributions to this function come from those configurations that connect site i to j
(see right lattice in Figure 4.6). The lowest order in βJ that contains such a configuration
is (βJ)dij , where dij is the distance between sites i and j (not the straight line distance,
since we have to follow the horizontal and vertical bonds of the lattice, but rather the
closely related Manhattan distance 1 between these sites). Then

〈Si · Sj〉 ∼ (βJ)dij = exp

(
− dij

1/| log(βJ)|

)
1Let u = (u1, u2) and v = (v1, v2) be the position vectors to two sites on the square lattice. The

Manhattan distance between between these points is defined as d = |u1 − v1|+ |u2 − v2|.
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and we deduce that the correlation function decays exponentially with a correlation length
given by

ξ ≡ 1

| log(βJ)|
.

4.2.2 Low-temperature phase

Now we want to consider the low-temperature phase for this Hamiltonian. We will find
that this limit suggests algebraic behavior for the correlation function. This behavior is
suggestive, but not conclusive proof, since the following arguments are based on a Gaussian
approximation, while interactions may modify this picture. To analyze interactions we will
perform an RG treatment in a later section.
In the limit of low temperatures it is permissible to rewrite the Hamiltonian in a continuum
approximation. We expand the cosines in (4.2) and drop an additive constant to obtain

H ≈ J

2

∫
d2x (∇θ)2 . (4.3)

The correlation function Gij can be written as

Gij = 〈cos(θ(r)− θ(r′))〉 = Re〈ei(θ(r)−θ(r′))〉 = e−
1
2
〈(θ(r)−θ(r′))2〉,

where in the last step we used the fact that H is Gaussian. We proceed to evaluate the
exponent. The Green’s function in Fourier space is read off from (4.3):

〈θqθq′〉 = δ(q + q′)Gq

G−1
q = βJq2

Then

〈(θ(r)− θ(r′))2〉 = 2

∫
d2q

(2π)2
(1− eiq∆r)Gq =

2

βJ

∫ 1/a

0

dq

q

∫ 2π

0

dφ

(2π)2
(1− eiq∆r cosφ)

=
1

πβJ

∫ 1/a

0
dq

1− J0(q∆r)

q
=

1

πβJ

∫ ∆r/a

0
dλ

1− J0(λ)

λ

where J0 is the zero-order Bessel function. In order to separate the logarithmic dependence
on the cutoff from the finite parts in this integral, we rewrite the integral as∫ ∆r/a

0
dλ

1− J0(λ)

λ
=

∫ 1

0
dλ

1− J0(λ)

λ
+

∫ ∆r/a

1
dλ

1− J0(λ)

λ

=

∫ 1

0
dλ

1− J0(λ)

λ
+ log

(
∆r

a

)
−
∫ ∞

1
dλ

J0(λ)

λ
+

∫ ∞
∆r/a

dλ
J0(λ)

λ

= γ − log 2 + log

(
∆r

a

)
+

∫ ∞
∆r/a

dλ
J0(λ)

λ
.

The last integral is negligible for large ∆r/a, since it vanishes asymptotically as∼ (∆r/a)−3/2.
This finishes the calculation and we obtain for large ∆r

〈(θ(r))− θ(r′))2〉 =
1

πβJ

(
γ − log 2 + log

(
∆r

a

))
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and therefore

G(∆r) = e−
1
2
〈(θ(r)−θ(r′))2〉 ∼

( a

∆r

) 1
2πβJ

. (4.4)

We see that the correlation function at low temperatures decreases algebraically. Accept-
ing this fact, we have to conclude that there must be a transition from the disordered phase
at high temperatures to the algebraically ordered phase at low temperatures, characterized
by a diverging correlation length. This result was derived in a Gaussian approximation.
The Hamiltonian, however, possesses low energy excitations, namely vortices that have
not been taken into account so far. The Figure 4.7 shows a snapshot of a Monte Carlo
simulation of ferromagnetically coupled XY spins at low temperatures. The system would
be perfectly ordered were it not for the three clearly visible vortex defects. These excita-
tions are non-perturbative in nature, since the winding number associated with a vortex
cannot be changed continuously.

4.2.3 Vortices and spin stiffness

Starting with the low-energy form of the theory in (4.3), we now consider besides the
spin-waves also vortex excitations. This is most conveniently accomplished by phrasing
the problem in a hydrodynamic language. A velocity vector u is introduced that is defined
by

u ≡ ∇θ.

Let us now consider a vortex with winding number 1. Going around the vortex in a closed
loop, the value of θ starts at 0 and will increase by a total of 2π upon a full turn. But
such a change forces θ to make a jump back to the initial value of 0, if we consider the
θ-field to be single-valued. Thus around a vortex∮

dl · u =

∮
dl · ∇θ 6= 0,

whereas if θ had been an analytic function, we would have obtained 0. The non-analytic
behavior can be subsumed into a vortex contribution to the field u in the following way.
We sepearate u into a sum of two parts u1 and u2. One part u1 represents pure potential
flow, i.e. ∇ × u1 = 0 and therefore,

∮
dl · u1 = 0. The other part u2 contains the

vortex contribution. Say we have vortices in our system and the i-th vortex is centered
at ri and has winding number ni. Then the line integral around this vortex produces∮
dl · u2 = 2πni. On the other hand we have∮

dl · u2 =

∮
d2x∇× u2 = 2πni.

This means that the vortex at ri contributes 2πẑniδ(r−ri) to ∇×u2. Then the collection
of all vortices is captured by

∇× u2(r) = 2πẑ
∑
i

niδ(r − ri). (4.5)

Note that we have introduced the third dimension for convenience into the problem.
To solve this equation we notice that according to the Helmholtz theorem in two dimensions
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a field u2 can be represented as a gradient of a smooth scalar function and the rotation
of the vector ψẑ. Inserting this ansatz into (4.5), we obtain

∇× (∇× (ψẑ)) = −∇2ψẑ = 2πẑ
∑
i

niδ(r − ri). (4.6)

This is a Poisson equation in two dimensions with point sources. The potential in this
case is known to be logarithmic and one obtains the total potential by the superposition
principle:

ψ =
∑
i

niV (|r − ri|) =
∑
i

ni log |r − ri|,

where we introduced the potential V (|r|) ≡ log |r|. The point of the decomposition
u = u1 + u2 is that insertion into the Hamiltonian (4.3) shows how the spin-wave part
u1 and the vortex contribution u2 can be seperated into non-interacting parts. Thus,
inserting the decomposition into (4.3)

H =
J

2

∫
d2x (u1 + u2)2 =

J

2

∫
d2x (∇φ)2 + 2∇φ · ∇ × (ψẑ) + (∇× (ψẑ))2 ,

where we wrote u1 = ∇φ and u2 = ∇× (ψẑ). The cross term vanishes, since upon partial
integration a gradient acts on the curl operator. With ∇× (ψẑ) = ẑ×∇ψ, the third term
becomes (ẑ ×∇ψ)2 = ẑ2(∇ψ)2 − (ẑ · ∇ψ)2 = (∇ψ)2. Thus we finally have for the action
the form

H = HS +HV =
J

2

∫
d2x (∇φ)2 + (∇ψ)2,

which shows that the spin-wave HS and vortex sectors HV are fully decoupled. In partic-
ular, the computation of the partition function can be undertaken seperately for the two
sectors. A phase transition due to vortex physics must therefore be obtainable by just
studying the part of the partition function that is due to vortices.
We begin by inserting the general form of ψ after partially integrating the (∇ψ)2 term

HV =
J

2

∮
ψ(∇ψ)dA− J

2

∫
d2x ψ∇2ψ

=
J

2

∮
ψ(∇ψ)dA+

J

2
2π
∑
i,j

ninj log V (|ri − rj |).

In order to discard the surface term, we want to send the integration surface to infinity.
At large |r|, far away from all the sources ri, ψ(r) ≈

∑
i ni log |r|. Thus in order for the

surface term to vanish,
∑

i ni must hold. All other combinations of {ni} are infinitely
costly in the thermodynamic limit.
Thus we assume

∑
i ni = 0 to hold and discard the surface term. In the remaining

Hamiltonian

HV = Jπ
∑
i,j

ninj log V (|ri − rj |)

we have a divergence, whenever i = j. This is obviously an artifact of the continuum
approximation. The singularity at the center of the vortex is regularized by the presence
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of the lattice. We remove the i = j terms and add by hand the cost En of a vortex core
with winding number n to the Hamiltonian:

HV =
∑
i

Eni + 2πJ
∑
i<j

ninj log V (|ri − rj |)

One can now argue that at low temperatures only the ni = ±1 sectors contribute. This
is due to the fact that the ratio of vortex-energy to vortex-entropy is lowest for winding
number ±1. Thus by decreasing the temperature sufficiently it is always possible to justify
the omission of the higher winding number sectors.
The partition function of the vortex part is now given by

ZV =
∞∑
N=0

1

N !2

2N∏
i=1

∫
dxi exp

−β 2NE±1 − 2πβJ
∑
i<j

ninj log V (|ri − rj |)

 ,

=
∞∑
N=0

y2N
0

N !2

2N∏
i=1

∫
dxi exp

−2πβJ
∑
i<j

ninj log V (|ri − rj |)

 ,

whereN is the number of positive and negative vortex pairs, i.e. a total of 2N vortices. The
factor N !2 accounts for over-counting the configurations in the integral over the positions
of the vortex centers. Since reattributing the labels among all the positive winding vortices
and negative winding vortices does not change the configuration, we have to divide by N !
twice. We also introduced the fugacity y0 ≡ exp(−βE±1).
The vortex partition function obviously represents a two-dimensional system of N positive
and N negative charges interacting by the Coloumb force. The BKT phase transition in
this picture is the transition from a state in which positive and negative charges are bound
together as dipoles to a high-temperature phase, where one has a plasma of free charges.
Once the dipoles unbind, the interaction between charges is screened and one obtains an
exponentially decaying correlation function.

In order to detect this transition, we introduce a renormalized stiffness, which is defined
by the response of the system to a gradient twist on the spins. The Hamiltonian so far
has the form H = J

2

∫
d2x u2 with u = u1 + u2, but now we add a constant vector V ,

such that we have

H[V ] =
J

2

∫
d2x (u1 + u2 + V )2 .

The reason we call this V a twist is that in terms of the old variable θ, we have performed
the transformation θ → θ+V · r, i.e. we are twisting the spins in the direction of V with
(linearly) increasing angle.
The stiffness of the system is now measured by how the free energy responds to such a V .
We define the renormalized stiffness Jren by

F [V ]− F [0] = −T log Tr[e−βH[V ]] + T log Tr[e−βH[0]] =
Jren

2
V 2 +O(V 4).

Calculating F [V ] straightforwardly, we obtain

F [V ] = −T log Tr[e−βH[V ]] = −T log Tr[exp(−βJ
2

∫
d2x (u+ V )2)]

=
J

2
L2V 2 − T log Tr[e−βH[0] exp(−βJ

∫
d2x uiVi)]
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Figure 4.7: Snapshot of a spin configuration obtained from our Monte Carlo simulation of
the ferromagnetic XY model on the square lattice. Three vortex defects are clearly visible
for this system of 26× 26 spins.

=
J

2
L2V 2 + F [0]− T log

〈
exp(−βJ

∫
d2x uiVi)

〉
=

J

2
L2V 2 + F [0]− J2

2T

∫
d2x

∫
d2x′

〈
ui(x)uj(x

′)
〉
ViVj +O(V 4) (4.7)

where summation over i is implied, L2 is the area of the system and the average is computed
with respect to the untwisted system, i.e. using H[0]. In the last line we expanded up
to quadratic order in V , since this is all that is required to compute the renormalized
stiffness. We have shown above that the action of the system factorizes into spin-wave
and vortex excitations. We can therefore consider both separately. In the decomposition
u = u1 + u2 the u1 term contains the spin-wave excitations. Being a gradient of an
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analytic potential function, these will not contribute. For instance
∫
d2x〈u1i(x)u1j(x

′)〉 =
〈
∫
d2x∂iφ(x)u1j(x

′)〉 = 0, since on the boundary we have φ = const.. Thus we have
shown that spin-wave contributions do not renormalize the system’s stiffness and we may
therefore restrict our attention to the vortex sector of the action.
Moreover, since the system respects translational invariance, 〈ui(x)uj(x

′)〉 is a function of
x−x′ only. Thus the double integral in eq. (4.7) obtains a volume factor once we change to
difference coordinates. The remaining integral is the q = 0 component of the expectation
value 〈u2i(q)u2j(−q)〉. First we notice that since we are averaging with respect to the
V = 0 Hamiltonian, the system is isotropic. Thus the expectation value is a tensor in i
and j and therefore has to be a linear combination of δij and qiqj . Since ∇ ·u2(x) = 0 for
the vortex part, we conclude that q ·u2(q) = 0 holds. Thus 〈u2i(q)u2j(−q)〉 ∼ (δij−qiqj).
In the q → 0 limit only the δij term is present. Using the definition of the renormalized
stiffness, we obtain

Jren = J − J2

2V 2T

∫
d2q 〈u2i(q)u2i(−q)〉V 2

i

= J − J2

2T

∫
d2x 〈u2(x)u2(0)〉 .

We recall that u2(x) = ẑ × ∇ψ(x) = ẑ × ∇
∑

i niV (|x − xi|), where V is the Green’s
function in two dimensions. It therefore satisfies∇2V (x) = −2πδ(x) and therefore V (q) =
−2π
q2

. Fourier transforming u2(x), we obtain

u2(q) = −ẑ × q
∑
i

2πni
q2

e−iqxi

and hence we obtain∫
d2x 〈u2(x)u2(0)〉 =

1

(2π)2
lim
q→0
〈u2(q)u2(−q)〉 = lim

q→0

1

L2

∑
i,j

〈ninj〉
q2

e−iq(xi−xj).

In the q → 0 limit only the q2 order term of the exponential survives. The lower order
terms are both zero, since we have the

∑
i ni = 0. Thus

Jren = J − J2

2L2T

∑
i,j

〈ninj〉(xi − xj)2.

It can be shown that the correlator 〈ninj〉 to order y2
0 is given by

〈ninj〉 = −2y2
0

(
|xi − xj |

a

)−2πJ/T

.

For the renormalized stiffness this gives

Jren = J − J2

2L2T

∑
i,j

〈ninj〉(xi − xj)2 = J − J2

2L2T

∑
i,j

〈ninj〉(xi − xj)2

= J − 4π3y2
0

J2

aT

∫ ∞
a

dr
(r
a

)3−2πJ/T
.

For J/T > 2/π this integral is convergent and yields a finite decrement in stiffness. How-
ever, for J/T ≤ 2/π the integral diverges. It is nevertheless possible to extract further
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Figure 4.8: Shown are the results from our Monte Carlo simulations that measured the spin
stiffness of a ferromagnetic XY model on a square lattice for sizes N = 4×4, 8×8, 16×16
and 32× 32 with the jump between T/J = 0.9, . . . , 1.1 clearly visible.

information about the renormalization of the stiffness by constructing a flow equation.
We carry out a small, finite part of the short-scale real-space integration, namely in the
interval [a, a · b], where b > 1, and formally keep the remaining, divergent integral. We
rescale the latter such that it formally looks identical to its previous form. Carrying out
these steps and introducing l = log b and K = J/T , we obtain the two flow equations

dK−1(l)

dl
= 4π3y2(l) (4.8)

dy(l)

dl
= [2− πK(l)] y(l). (4.9)

We see that for K > 2/π, the fugacity decreases to zero. This can be understood from the
fact that the flow equations describe the effect of coarse-graining on K(l) and y(l). In the
phase where the vortex pairs are bound one cannot tell by looking on very large scales, if
a vortex is present. Thus the fugacity is small on large scales. The first equation tells us
that in this case the coupling K flows to a constant. Thus the whole line of y = 0 with
K > 2/π consists of attractive fixed points.
In the other limit, when K < 2/π, the fugacity increases and K−1 also increases. This is
the large-temperature disordered limit. Thus the phase transition is signaled by a jump
in the renormalized stiffness from 0 in the high-temperature phase to a finite value of 2/π
in the BKT-ordered regime.

We have carried out a Monte Carlo simulation to demonstrate this jump in stiffness
and the result is shown in Figure 4.8. The simulated system consists of XY spins on a
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square lattice and the stiffness is calculated by using formulas derived according to the
scheme described in appendix C. With increasing system size the sharpness of the jump
is apparent and in the thermodynamic limit, L→∞, one would obtain a discontinuity.
We can treat the differential equations (4.8) and (4.9) analytically near the origin by
substituting ∆ = K−1 − π/2. Then

d∆(l)

dl
= 4π3y2(l)

dy(l)

dl
=

4

π
y(l)∆(l),

where we neglected terms of order ∆2 and higher in the second equation. We obtain an
invariant combination of ∆ and y by noting that ∆∆′ − π4yy′ = 0, thus

∆2 − π4y2 = c, (4.10)

with a constant c. The collection of these curves for all c form the lines of flow shown in
Figure 4.9.

We have shown in (4.4) that the correlation function decays as G(∆r) ∼ (∆r/a)1/(2πK).
Now we find that K gets renormalized and at the critical point it has the value Kren = 2/π,
i.e. G(∆r) ∼ (∆r/a)1/4. Thus the critical exponent η, which is defined in two dimensions
by G(∆r) ∼ (∆r/a)−η takes on the value η = 1/4 at the phase transition and decreases
continuously with temperature.
Finally we want to obtain the behavior of the correlation length with temperature as the
critical point is approached from above. In order to derive the formula for this, we notice
first that the constant c vanishes at the critical point. Close to, but in a region larger than
Tc we can linearize c as −b2(T − Tc), for some positive constant b. Then we can use the
equation (4.10) to eliminate y2 from the first flow equation to obtain

d∆

dl
= 4π3y2 =

4

π

(
∆2 + b2(T − Tc)

)
,

which can be integrated to yield

4

π
l =

1

b
√
T − Tc

tan−1

(
∆

b
√
T − Tc

)
The flow equations are valid only as long as ∆ and y are small, therefore the integration
can only be carried out until either ∆ or y is of the order of 1. The flow parameter l will
by then have reached a value l∗, which is defined by letting ∆ = 1 in the previous equation

l∗ =
π2

8b
√
T − Tc

,

where we used that tan−1 x→ π/2 for x→∞. The correlation length has then grown to
the value

ξ = ael
∗

= a exp

(
π2

8b
√
T − Tc

)
.

This relation will be used below in the finite-size scaling analysis.
As a last remark on this topic we point out that the singular part of the free energy density,
f , behaves as ξ−2, since we are in two dimensions. Thus we obtain

f ∼ exp

(
− π2

4b
√
T − Tc

)
,
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Figure 4.9: BKT flow lines. The left half-line of y = 0 consists of attractive fixed points
(dashed line).

which shows that the free energy and all its finite-order derivatives are analytic at T = Tc.
For this reason the BKT transition is sometimes called an infinite order phase transition.

4.2.4 Six-fold potential

In pioneering renormalization group work J. V. José et al. [39] undertook an extensive
study of planar spin models on the square lattice in the presence of external fields, where
each spin Si is exposed to a symmetry breaking potential of the type hn cos(nθi), with θi
being the XY degree of freedom of the spin.

We will only be interested in the case n = 6, which is the order-by-disorder potential
for the Heisenberg windmill lattice (see appendix E). The result of the analysis in [39] is
shown in the phase diagram in Figure 4.10. At high temperatures the effect of the presence
of a finite six-fold potential is to renormalize the transition temperature T1 between the
disordered and the algebraically correlated regime. As the temperature of the system is
lowered, one encounters another phase transition, the reason being the h6 term in the
Hamiltonian. The system possesses a fixed point where all spins fall into a common
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Figure 4.10: Finite temperature phase diagram from J.V. José et al. [39]. The authors
find that an XY spin model in a six-fold symmetry breaking potential of strength h6

develops a critical region inside a temperature interval [T2(h6), T1(h6)]. Reprinted with
permission from [39] (http://dx.doi.org/10.1103/PhysRevB.16.1217), Copyright (1977) by
the American Physical Society

minimum of the six-fold potential. As is clear from the phase diagram, the physics for
arbitrarily small symmetry breaking fields h6 is different from the h6 = 0 behavior.
In [39] it was also found that the critical exponent η, which is η> = 1

4 at the upper
temperature, decreases continuously until T = T2. There it reaches the value η< = 1

9 .
These values of the critical exponent will also be determined in the Monte Carlo simulations
below and thereby serve as evidence that the universality class of the transitions is BKT.

4.3 Heisenberg windmill magnet and emergent power-law
phase

The model treated in this section provides the answer to the question of how the J1-J2

model may be generalized to produce other types of emergent degrees of freedom. This
so-called Heisenberg windmill magnet was introduced and studied in [72, 73]. The model
is defined by the Hamiltonian

H = Jtt
∑
〈ij〉

Sti · Stj + Jhh
∑
〈ij〉

Shi · Shj + Jth
∑
〈ij〉

Sti · Shj (4.11)

with positive coupling constants. According to our results in chapter 3, we are in the
decoupled regime, as long as Jth ≤

√
JttJhh is provided, where the emergent phase we
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Figure 4.11: The relative orientation of an A-site honeycomb spin is described by giving
its spherical coordinates in a tripod system that is constructed from the triangular lattice
spins. The latter define a plane and thereby a direction perpendicular to it.

are interested in occurs. As a reminder, the T = 0 ground state is characterized by
coplanar 120◦ order of the triangular spins and Néel order of the honeycomb spins (see
Fig. 4.16) [38]. This order has SO(3)×O(3)/O(2) symmetry and is described by five Euler
angles (θ, φ, ψ)× (α, β). As shown in Fig. 4.11, the angles (α, β) describe the orientation
of the honeycomb spins relative to the coordinate system tγ (γ = 1, 2, 3) set by the
triangular spins. The Euler angles (θ, φ, ψ) relate tγ to a fixed coordinate system. While
the relative orientation can be changed without energy cost at T = 0, thermal fluctuations
induce order-by-disorder potentials [102, 90, 35]. These potentials arise due to the fact
that low-energy fluctuations around a given ground state have entropies that depend on α
and β, a dependence that is captured via the free-energy. Considering Gaussian thermal
fluctuations around the classical ground state, one finds a contribution to the free energy
equal to (see [10] for the general procedure and the appendix E in this thesis for the
derivation of the following formula)

Fpot

NT
= cos(2β)

[
0.131

J2
th

J̄2
− 10−4J

6
th

J̄6
cos2(3α)

]
. (4.12)

The first term forces the spins to become coplanar (β = π/2) below a coplanarity
crossover temperature Tcp . More precisely, long-wavelength excitations out of the plane
acquire a mass and are gapped out for T < Tcp. The second term shows that the remaining
U(1) relative angle α is subject to a Z6 potential.
In order to study this model and the emergent phases, we developed a Monte Carlo code
that is capable of demonstrating unequivocally the existence of the phase transitions, crit-
ical exponents, universality classes and the exact phase diagram.
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As a means of dealing with the feeble order-by-disorder Z6-potential and the rather large
system sizes that are required for the finite-size scaling analysis, it was necessary to im-
plement a three-step thermalization procedure. We employ large-scale parallel tempering
classical Monte-Carlo simulations to obtain the finite temperature phase diagram shown
in Fig. 4.16. As the emergent order parameter is a multi-spin object, a specific non-local
Monte-Carlo updating sequence consisting of three sub-routines had to be designed: (i) a
heat bath step [61] in which a randomly chosen spin is aligned within the local exchange
field of its neighbors according to a Boltzmann weight; (ii) a standard parallel tempering
move [55, 36] for which we run parallel simulations at 40 temperature points and switch
neighboring configurations according to the Metropolis rule; finally step (iii) is necessary
in order to include the effect of the minute Z6 order-by-disorder potential. It works by
selecting a (global) rotation axis perpendicular to the average plane of the triangular spins,
which exhibit (local) 120◦ order, and rotate all honeycomb spins around this axis by a
randomly chosen angle and accept or reject by the Metropolis rule. This series of three
algorithm steps was applied at least for 9× 105 Monte-Carlo steps of which the first half
is discarded to account for thermalization.
In the next three sections we will describe the steps of this algorithm in succession. The
pseudo-code below shows how these three steps fit together structurally.

Algorithm Three-step Monte Carlo algorithm

for (i = 1, i ≤ Thermalization Steps, i = i+ 1) do
for (l = 1, l ≤ number of lattices L, l = l + 2) do

ParallelTempering (l, l + 1)
end for
for (l = 2, l ≤ number of lattices, l = l + 2) do

ParallelTempering (l, l + 1)
end for
for (l = 1, l ≤ number of lattices, l = l + 1) do

Heatbath(l)
end for
for (l = 1, l ≤ number of lattices, l = l + 1) do

GlobalRotation(l)
end for

end for
for (i = 1, i ≤ Measurement Steps, i = i+ 1) do

for (l = 1, l ≤ number of lattices, l = l + 1) do
Measure(l)

end for
end for

The first outer for-loop is for the purpose of thermalization, i.e. we allow the L = 40
lattices to equilibrate before any measurements are undertaken. Attached to every lattice
is a unique temperature. The parallel tempering move is the only step in the algorithm
that can change the associated temperatures. All steps in the program are parallelized
and each thread handles one lattice at a time. In order to avoid collisions, i.e. instances
where two threads try to modify the same lattice in the memory, we perform the parallel
tempering in two separate for-loops by considering first only the switches between lattice
pairs (1, 2), (3, 4), (4, 5), . . . and only in the second loop do we consider the switch of pairs
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(2, 3), (4, 5), (6, 7), . . . . This is the reason for the two for-loops that carry out parallel
tempering moves.
Once thermalization is finished the measurements are carried out. Before we describe
what is measured, we first turn to the three algorithm steps in turn.

4.3.1 The heat bath algorithm

Arguably the simplest way to simulate a classical system of Heisenberg spins is a Monte
Carlo simulation using the standard Metropolis rule [60, 68]. The algorithm in this case
works by randomly choosing a spin and proposing a new orientation for it. The acceptance
rule for this move is to calculate the change in energy ∆E associated with this change in
spin direction. The Metropolis rule is given by{

∆E ≤ 0 always accept,

∆E ≥ 0 accept with probability e−β∆E .

Although this algorithm is always worth a try given its simplicity and straightforward
implementation, it is highly unsuited for the windmill model due to its computational
inefficiency. The acceptance ratio (i.e. the fraction of all the proposed moves that are
accepted) near the temperatures at which the interesting physics takes place can be on
the order of 10−3 or even smaller. Thus most of the proposed moves get rejected, entailing
a large averaging time for expectation values. Even with highly parallelized code, working
on multiple cores, the required statistical averages could not be computed for reasonable
system sizes after many days of computation time.

We resort, therefore, to a technique called the heat bath method [61, 68], which is also a
single spin algorithm. However, in contrast to Metropolis Monte Carlo, with this technique
every step leads to a change of the spin configuration. The stochastic element enters not
through the acceptance or rejection of a proposed step, but by means of a rotation angle
that is a function of a random number.
A single step of the algorithm consists in selecting a spin Si at random and in updating only
Si, while leaving the remaining spins untouched. The interaction with the neighbors of Si
is seen as the field with respect to which the spin can orient itself. If Si were randomly
moving in the field of the other spins, while the latter are held fixed, the probability
distribution of finding this spin oriented with spherical angles inside the intervals [θ, θ+dθ]
and [φ, φ+ dφ] is calculated by

exp (−βH ({Sj}))∫
Si

exp (−βH ({Sj}))
sin θdθdφ =

exp (−βF cos θ) sin θdθdφ
2π∫
0

π∫
0

dφdθ sin θ exp (−βF cos θ)

(4.13)

where the integration is only over the spin we are considering. In going to the second
expression, we used the fact that all terms in the Hamiltonian not containing Si will cancel.
The surviving terms are the interactions that involve Si. The sum of these interactions
has been rewritten by introducing the vector

F (i) =

{
Jtt
∑

j(i)t
Sj + Jth

∑
j(i)h

Sj , i in triangular lattice

Jhh
∑

j(i)h
Sj + Jth

∑
j(i)t

Sj , i in honeycomb lattice
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where θ is the angle between F and spin Si and we treat F as the z-axis. Noticing that
the probability distribution is independent of φ we choose the φ = 0 plane to be the one
spanned by F and Si. The notation j(i) stands for the neighbor number j of spin i. The
denominator of the probability distribution is easily calculated:

2π∫
0

dφ

π∫
0

dθ sin θ exp (−βF cos θ) =
4π

βF
sinh (βF ) .

The probability of finding the spin with an angle smaller than θ and arbitrary azimuth
angle is given by

R(θ) =

2π∫
0

dφ
θ∫
0

dθ′ sin θ′ exp (−βF cos θ′)

2π∫
0

dφ
π∫
0

dθ sin θ exp (−βF cos θ)

=
1

2 sinh (βF )

[
e−βF cos θ − e−βF

]
. (4.14)

Now R(0) = 0, R(π) = 1. Hence, for a uniform distribution of R the probability of finding
a value in the interval [R(θ), R(θ + dθ)] is equal to the probability of having a spin with
angle between θ and θ + dθ.
Therefore the algorithm will work as follows. A random number R is generated in the
interval [0, 1]. From (4.14) we can find the corresponding θ

cos θ = − 1

βF
log
[
ReβF + (1−R)e−βF

]
.

The transformation on the azimuth angle is simpler as there is no energy change associated
with an update of φ. Thus let R′ be another random number in the interval [0, 1]. Then
choose φ simply by

φ = 2πR′.

This completes the description of how the algorithm works. It is obvious that any config-
uration of spins can in principle be reached by a series of such operations, thus ergodicity
is satisfied. It is similarly easy to demonstrate [68] that detailed balance is satisfied by
virtue of the fact that a move between two configurations with angles θ and θ′ is given by
(4.13):

p(θ)p(θ → θ′) = p(θ′)p(θ′ → θ)

Concerning the runtime, the computational effort in this algorithm mostly stems from the
rotation of spins to their new configuration. Let the old spin be S and the new one be S′

and the angle these make with F̂ be θ and θ′ respectively. Let F̂ be the unit vector in the
direction of the field and n̂ the normalized component of S perpendicular to F̂ . We have
for the unit vector

n̂ =
S − (S · F̂ )F̂

N

N =

√
1− (S · F̂ )2.

The new spin vector can be straightforwardly expressed in terms of the three perpendicular
unit vectors F̂ , n̂, F̂ × n̂:

S′ = cos θ′F̂ + sin θ′ cosφ′n̂+ sin θ′ sinφ′F̂ × n̂

=
sin θ′ cosφ′

N
S +

[
cos θ′ − sin θ′ cosφ′

N
S · F̂

]
F̂ +

sin θ′ sinφ′

N
F̂ × S
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Figure 4.12: This figure illustrates the concept of the parallel tempering algorithm. Lattice
configurations with neighboring temperature values are proposed to be swapped. Using
a Metropolis-type rule this switch is either accepted or rejected. Since the code is paral-
lelized, we first propose switches of the odd-numbered lattices with their right neighbors
(black) and do the same same for even number lattices (red) in the next run (see text for
explanation).

4.3.2 Parallel tempering

In order to improve the speed of thermalization, it is useful to add a parallel tempering
step. This algorithm was discovered by [55, 36], for a pedagogical exposition see [41]. Our
simulation runs 40 independent copies of the windmill lattice in parallel, we denote these
copies by S1, S2, . . . , S40, which are all at different temperatures, expressed by the function
T (Si). The parallel tempering move consists in proposing a switch between configurations
that have neighboring temperatures (see Fig. 4.12). In practice it is computationally far
less costly to switch the temperatures instead of the spin configurations, i.e. a switch
T (Si) ↔ T (Sj) is performed, where Si and Sj are systems that are neighbors in tem-
perature space. Let the two configurations have energies Ei and Ej and let the current
temperatures of these systems be Ti and Tj , respectively. Then the joint probability for
these two systems to be in these configurations at their respective temperatures is given
by the product

Pij =
e−Ei/Ti

Z

e−Ej/Tj

Z
,

where Z is the partition function of the system. Upon switching the temperatures of the
two systems we would obtain the joint probability

P ′ij =
e−Ei/Tj

Z

e−Ej/Ti

Z
.

Detailed balance is guaranteed, if the proposed switch is accepted or rejected according
to the rulePij ≤ P

′
ij always accept

Pij ≥ P ′ij accept with probability
P ′ij
Pij

= exp
[
(Ei − Ej)( 1

Ti
− 1

Tj
)
]
.

4.3.3 The global rotation step

The effect of the Z6 order-by-disorder potential is so feeble that its effect cannot be
detected by running the previous two algorithm steps for a reasonable time. It is necessary
to allow the system to explore configurations that are of nearly equal energy, but are not
easily accessible due to the fact that these cannot be reached by the update of a single
spin. In a later section we define the temperature Tcp, below which the system is almost
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Figure 4.13: The rotation operation M(n, φ) is applied to the honeycomb spins. The
direction of the rotation axis n is selected to be a vector, that is on average perpendicular
to the plane of the triangular lattice vectors. Thus in the figure n points in the direction
perpendicular to the plane of drawing.

coplanar. Thus fluctuations out of the plane cost energy. However, the Z6 is weak enough
that a rotation of the honeycomb lattice relative to the triangular lattice costs almost
no energy. The third step in our three-step algorithm, therefore, consists in proposing a
rotation of the whole honeycomb lattice relative to the triangular lattice around a certain
axis described by the unit vector n. This axis is determined as the average direction
perpendicular to the plane of the triangular lattice spins. An angle φ is chosen randomly
in the interval [0, 2π] and a rotation of all the honeycomb spins around n by φ is proposed.
The related energy change ∆E due to such a move is calculated and the move is accepted
with probability min[1, exp(−β∆E)].
We now need to solve the following task in order to implement the algorithm. Given a
rotation axis n, what is the matrix corresponding to a rotation around this axis by angle
φ? Let s be an arbitrary vector and let p be the unit vector along the component of s
perpendicular to n. Then

p =
s− (n · s)n

sin θ
where

s · n = cos θ.

Then the rotated version of s has the same component along n, but the perpendicular
component gets rotated by

cosφ sin θ p+ sinφ sin θ n× p

thus the total transformed vector is

s′ = cosφ sin θ p+ sinφ sin θ n× p+ cos θ n

= cosφ s+ (1− cosφ) cos θ n+ sinφ n× s

rewriting this in matrix form, we obtain

s′ = Ms

with

Mij(n, φ) ≡ (1− cosφ)ninj + cosφδij − sinφεijknk

with an implicit sum over k.
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4.3.4 Extraction of critical exponents by finite-size scaling analysis

Having found means of approaching the problem numerically, we now need to demonstrate
the existence of the claimed phase transitions. We achieve this by measuring the mag-
netization and susceptibility of the emergent degrees of freedom. The latter are defined
precisely below. We use the finite-size scaling of the magnetization to demonstrate the
phase transition at T = T< and the susceptibility to demonstrate the phase transition at
T = T>.
A phase transition in a spin system described by statistical mechanics can only occur, if
it has an infinite number of degrees of freedom. This is seen most clearly by inspecting
the partition function

Z =
∑

configurations

e−βE . (4.15)

If the number of degrees of freedom is finite, then the sum over all configurations is obtained
by a finite number of integrations over angle variables, i.e. the integration intervals are all
finite. Then Z is an analytic function of β.
In order for the partition function, and hence the free energy, to show singular behavior
at a finite βc = 1/Tc, it is necessary to have a system with an infinite number of angle
variables. For this reason it will never be possible to observe an actual phase transition by
simulating a finite system of spin degrees of freedom. One is therefore faced with the task
of establishing the existence of a phase transition of a thermodynamic system by studying
finite systems. This problem is solved by the theory of finite-size scaling [11, 84, 25], which
predicts how thermodynamical variables are affected by finite system size. In particular
it predicts functional forms for thermodynamical variables in terms of the system size L.
This allows us to rescale the measured magnetization and susceptibility data in such a way
that all the measurements for different system sizes come to lie on one (L-independent)
curve.
The key observation in finite-size scaling theory is the fact that the finite system behaves
like the infinite system if the correlation length ξ is much smaller than the system size L.
The system’s behavior gets modified as soon as ξ ≈ L. This will inevitably happen close
to phase transitions, where the correlation length diverges. The singularities that occur
in the thermodynamic limit are associated with this diverging correlation length and are
regulated by L in a finite system. In particular divergences are rounded off.
In order to demonstrate how finite-size scaling relations are deduced, we will now derive
the L-dependence of the magnetization m. The scaling hypothesis for finite systems reads

m(t, L) = Lσφ̃

(
ξ

L

)
, (4.16)

where t = (T−Tc)/Tc is the reduced temperature and φ̃(x) is a universal (i.e. independent
of system size) function. The correlation length ξ is the value of the infinite system. Near
the phase transition ξ shows a power law behavior ξ ∼ t−ν . We can insert this form into
the right hand side and define a new function φ, in which the temperature enters the
argument linearly:

m(t, L) = Lσφ
(
tL1/ν

)
,

Exactly at the critical point t = 0 the magnetization has a power-law dependence on the
system size. However, if we are slightly away from the critical point and look at larger
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and larger systems, eventually L will be much larger than ξ and the system should behave
as it does in the thermodynamic limit, i.e. m ∼ t−β. This gives the condition

lim
L→∞

m(t, L) = lim
L→∞

Lσφ
(
tL1/ν

)
(4.17)

and in order to have the same functional dependence on t on both sides, we must have

lim
x→∞

φ (x) ∼ x−β.

This in turn gives an L-dependence on the right hand side of (4.17) of the form Lσ−β/ν .
Since a finite-size dependence should not occur in the limit of L � ξ, we can conclude
that σ = β/ν holds. Thus we have the finite-size scaling law for the magnetization

m(t, L) = Lβ/νφ(tL1/ν).

This is the approriate scaling-form for phase transitions with finite ν and β values.
However, the BKT phase transition is characterized by an exponential singularity in the
free energy. In particular, we have shown above that ξ ∼ exp(a/

√
t). Here we can return

to the scaling ansatz in eq. (4.16) and argue as before: for L � ξ we must get an
L-independent behavior on the right hand side, thus

φ̃(x) ∼ xσ, as x→ 0.

Furthermore, in the system of infinite size the magnetization depends on the correlation
length via the relation

m ∼ ξ−η</2,

from which we can deduce σ = −η/2. This gives a scaling ansatz, which is appropriate
for BKT transitions, of the form

m = L−η</2φ̃(L−1 exp(a</
√
t)) (4.18)

with t = T<−T
T<

. By following the same line of arguments we can deduce from the behavior
of the susceptibility in the infinite system,

χ = ξ2−η> ,

the scaling ansatz

χ = L2−η> φ̃(L−1 exp(a>/
√
t)) (4.19)

with t = T−T>
T>

.
If we now scale the data from measurements of χ and m for various values of L by these
formulas, the curves for different L will collapse onto single curves for a certain setting
of parameters {a>, η>, a<, η<}. By performing this fit and obtaining a data collapse the
phase transition is demonstrated and the universality class is furthermore confirmed by
seeing if η> and η< agree with the values η< = 1/9 and η> = 1/4, which are the exponents
of the planar spin model in a sixfold symmetry breaking field [39].
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Figure 4.14: Coplanarity κ as a function of temperature for various values of Jth/J̄ for
system size L = 60.

4.3.5 Coplanar Crossover

As remarked above, the free energy has a dependence on the chosen ground state, that is
given by

Fpot

NT
= cos(2β)

[
0.131

J2
th

J̄2
− 10−4J

6
th

J̄6
cos2(3α)

]
. (4.20)

The first term of this equation forces the system to become coplanar with β = π/2. In
other words, the honeycomb lattice spins are forced to lie in the plane spanned by the
triangular lattice spins.

This coplanarity crossover is determined in the Monte-Carlo simulations by measuring
the coplanarity

κ = 1− 3

N

N∑
j=1

〈cos2 βj〉 , (4.21)

where cosβj = SAj ·
(
Stj×Stj+δtt

)
with δtt being a nearest-neighbor vector on the triangular

lattice. The result is shown in the plot in Fig. 4.14. In order to understand this plot it
is useful to consider the two extremes. At very high temperatures, where no relative spin
configuration is preferred, a straightforward averaging over all orientations of the three
spins yields

〈
[h · (t1 × t2)]2

〉
=

1

(4π)2

π∫
0

dθ1 sin θ1

2π∫
0

dφ1

π∫
0

dθ2 sin θ2

×
2π∫
0

dφ2 (sin θ1 cosφ1 sin θ2 sinφ2 − sin θ1 sinφ1 sin θ2 cosφ2)2
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Figure 4.15: Coplanar correlations Φ(δ) for T = 0.2Jtt for a system of size L = 60. The
solid line signifies exponential decay of Φ with a typical decay length of less than 3 sites.
Since the system is satisfies periodic boundary conditions, only the region away from
δ = 30 should be explored.

where we used the fact that the quantity we are averaging is a scalar and the coordinate
system may thus be rotated in such a way that h points along the z-axis. The integrals
are straightforward to calculate and one obtains〈

[h · (t1 × t2)]2
〉

=
2

9
.

We have N such tripods and therefore the coplanarity is given by

κ = 1− 3

N

2N

9
=

1

3
.

In the opposite regime a completely coplanar state occurs and we have all βj = π/2 and
therefore κ = 1. For local triangular 120◦ and honeycomb Néel order that is uncorrelated
with each other one finds κ = 0. Our Monte-Carlo results show that coplanarity develops as
soon as T . 0.25J̄ and κ smoothly approaches unity for lower temperatures. Interestingly,
κ depends only weakly on Jth as long as Jth & J̄/10. We define the location of the coplanar
crossover Tcp shown in Fig. 4.16 to be the location of the minimum of κ. Note that down to
the lowest temperatures we observe substantial out-of-the plane fluctuations and κ < 1. In
order to assess the origin of these fluctuations, we have measured the coplanar correlation
defined by

Φ(δ) ≡

〈∑
r

φ(r)φ(r + δx̂)

〉
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where

φ(r) ≡ h(r) · (t1(r)× t2(r)).

Clearly Φ(δ) is a measure of how well the out of plane fluctuations are correlated. The
result of the measurement is shown in figure 4.15. Over a large range the correlation may
be fitted with an exponential (solid line in the figure). The decay happens on the order of
2 to 3 lattice sites. Thus we conclude that fluctuations in this temperature regime are of
a short-range nature.

4.3.6 Z6 symmetry breaking

Below the coplanar crossover temperature Tcp one may define emergent XY spins mj at
all Bravais lattice sites via projecting the honeycomb spin SAj (or SBj ≈ −SAj ) onto the
plane that is spanned by the three nearest-neighbor triangular spins. After normalizing
we obtain

mj =

(
SAj · t1,j ,SAj · t2,j

)∥∥(SAj · t1,j ,SAj · t2,j)∥∥ =
(
cosαj , sinαj

)
. (4.22)

Figure 4.16: Finite temperature phase diagram of classical windmill Heisenberg antiferro-
magnet as a function of inter-sublattice coupling Jth/J̄ , J̄ =

√
JttJhh. Below a coplanar

crossover temperature Tcp , emergent XY spins appear and undergo two BKT phase tran-
sitions: at T> from a disordered to a critical phase with algebraic order and then at T<
into a Z6 symmetry broken phase with discrete long-range order. At zero temperature the
system undergoes a first order transition at Jth = J̄ from a 120◦/Néel ordered windmill
phase to a collinear phase.
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We study the behavior of these emergent spins in the remainder of this paper. The local
triangular triad tγ,j is defined as follows: the spins on the triangular lattice are first

partitioned into three classes {St,Xj ,St,Yj ,St,Zj } as shown in Fig. 4.14. One then defines

t1,j = St,Xj and t2,j to point along the component of St,Yj that is perpendicular to t1,j .
Finally, t3,j = t1,j × t2,j completes the local triad. We show below that although the
system exhibits out-of-the plane fluctuations and κ < 1, the emergent spins mj decouple
from these fluctuations and behave as U(1) degrees of freedom.

To map out the low-temperature phase diagram we analyze the correlations of the
emergent spins mj in the following. First we define the total magnetization as

m =
1

N

N∑
j=1

mj = |m|(cosα, sinα) . (4.23)

The magnetization amplitude |m| depends on the (linear) system size L, in particular,
it vanishes in the absence of long-range order for L → ∞. Performing the Monte-Carlo
average the plots in Figures 4.22-4.25 show the behavior of the magnetization with tem-
perature for different system sizes. We also show the dependence of 〈|m|〉 with system size
L in Fig. 4.17(a). While it vanishes faster than algebraic at large temperatures, it exhibits
power-law scaling 〈|m|〉 ∝ L−η(T )/2 with 0 < η . 0.3 for intermediate temperatures, a
key signature of a critical phase. At the lowest temperatures, the exponent approaches
zero and the magnetization saturates. To directly prove that the system develops (dis-
crete) long-range order, we show the direction of the magnetization vector expressed as
〈cos(6α)〉 in Fig. 4.17(b). Clearly, 〈cos(6α)〉 approaches its saturation value of unity at
low temperatures and large system sizes. The relative phase vector m points into one of
the six directions preferred by the Z6 potential in Eq. (4.20). The honeycomb spins are
then aligned with one of the three triangular spin classes {St,X , St,Y , St,Z}, in agreement
with the general order-from-disorder mechanism that spins tend to align their fluctuation
Weiss fields to maximize their coupling [35].

To determine the universality class of the phase transition and the transition temper-
atures T> and T<, which partition the regimes of algebraic and long-range ordering, we
perform a finite-size scaling analysis of the XY susceptibility and magnetization for various
values of Jth/J̄ [11, 37, 78, 77, 51]. As shown in Fig. 4.26 we obtain perfect data collapse
using a BKT scaling ansatz. Since the susceptibility diverges when the system enters a
critical phase, we can detect the upper transition at T> by analyzing

χ(T, L) =
N

T

〈
|m|2

〉
=

1

NT

〈∣∣∑
j

mj

∣∣2〉 (4.24)

for different temperatures T and system sizes L. We employ a BKT ansatz for the corre-
lation length ξ> = exp

(
a>
√
T>/
√
T − T>

)
with a> being a non-universal constant. Since

χ(T,∞) ∼ ξ>(T )2−η> in the infinite system, it holds that χ(T, L) = L2−ηYχ(ξ>(T )/L)
with a universal function Yχ(x). For Jth = 0.6J̄ we extract the values T> = 0.200(4)J̄ ,
a> = 1.9(3) and η> = 0.25(1) from optimizing the collapse. This agrees very well with
the theoretically expected value η> = 1/4 [39].

Performing the analysis for other values of Jth yields data collapse of similar quality
with a value η> = 0.25 within error bars. This determines T>(scal.) and the upper
phase transition line in Fig. 4.16. As an independent way to determine T>, we use the
power-law scaling of the magnetization with the system size L, which is expected to be
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Figure 4.17: (a) XY magnetization amplitude 〈|m|〉 as a function of linear system size L for
various temperatures T/J̄ and fixed Jth/J̄ = 0.8. On a double logarithmic plot it exhibits
linear scaling within the critical phase with indicated floating exponent η(T ). It bends
down in the disordered phase. Due to the finite system size we cannot clearly observe a
saturation (at a finite value) at low temperatures, but η approaches zero in a linear fit. (b)
Direction of the magnetization expressed as 〈cos(6α)〉 as a function of T for Jth = 0.9J̄ .
A non-zero value signals breaking of the six-fold symmetry at low temperatures T < T<.
Inset shows L = 12.

〈|m|〉 ∝ L−η/2 with η = 1/4 at the upper transition. This yields T>(η) included in
Fig. 4.16. The two temperatures agree within error bars with T>(η) being systematically
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Figure 4.18: Susceptibility of emergent degrees of freedom as function of temperature for
Jth = 0.4J̄

slightly larger. Finally, we note that we have also tried to achieve data collapse using a
scaling ansatz corresponding to a second order phase transition, but the resulting collapse
is worse in this case, especially for data points close to the phase transition.

To determine the lower transition temperature T< we perform a finite size scaling
analysis of the magnetization amplitude 〈|m|(T, L)〉. Since it holds in the infinite system

that 〈|m|(T )〉 ∝ ξ(T )
−η</2
< with correlation length ξ< = exp

(
a<
√
T</
√
T< − T

)
and non-

universal factor a<, it follows for a finite system that 〈|m|(T, L)〉 = L−η</2Ym(ξ<(T )/L),
where Ym(x) is a universal function. In Fig. 4.26(b) we show the best data collapse for
Jth = 0.6J̄ which yields T< = 0.18(1), η< = 0.11(1) and a< = 5.0(5). This is in good
agreement with the theoretically expected value of η< = 1/9 at the lower transition [39, 8].

Two independent ways to obtain T< are (i) to investigate the power-law scaling of
〈|m|〉 with system size and (ii) to directly look for the symmetry breaking as indicated
by the quantity 〈cos(6α)〉. Using the first method, we find that our data can be fitted to

log〈|m|〉 ∝ −η(T )
2 logL with a temperature-dependent slope η(T ) that is monotonically

decreasing over the full range 0 < T < T>. At high temperatures, we find η(T>) ≈ 0.25
(as expected) and we define T<(η) as the temperature where η(T<) = 1/9. The fact that
the system appears to be critical within our simulation even for lower temperatures (with
an exponent η < 1/9) is a simple consequence of the fact that the system size is much
smaller than the correlation length [37, 51]. If we were able to reach larger system sizes
in the simulation, we would eventually see a saturation of 〈|m|〉 to a finite value.

Next we discuss the second method to detect T<, namely direct observation of symmetry-
breaking. We see in Fig. 4.17(b) that 〈cos(6α〉 approaches unity at low temperatures and
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Figure 4.19: Susceptibility of emergent degrees of freedom as function of temperature for
Jth = 0.6J̄

large system sizes. In a finite-size system, we can observe this ordering only for not
too small values of Jth ≥ 0.8J̄ because the bare value of the order-from-disorder six-
fold potential scales with (Jth/J̄)6 with an additional small numerical prefactor 10−4 [see
Eq. (4.20)]. While the lower phase transition occurs when this potential becomes relevant
at long length scales, independently of the bare value, the finite system size serves as a
cut-off of the scaling making an effect of the potential only visible at sufficiently large bare
values. To extract the transition temperature T< from 〈cos(6α)〉 we have to take into ac-
count that while at low temperatures the Gaussian order-from-disorder potential predicts
free energy minima at α = 2πn/6 (in agreement with our simulation), at intermediate tem-
peratures we observe in the finite size system a tendency of the spins to prefer a relative
direction corresponding to a negative value of 〈cos(6α)〉 [see inset in Fig. 4.17(b)]. This is
presumably a result of nonlinear spin fluctuations around the classical ground state order,
similarly to the effect of quenched disorder [35]. We thus identify the transition temper-
ature T<(Z6) as the location of the minimum of 〈cos(6α)〉(T ) which yields temperatures
that are within error bars in agreement with the ones predicted from scaling.

We note that in the critical phase that develops for T ∈ [T<, T>], the phase α behaves
as a perfect, decoupled XY order parameter. Once the vortices bind at the BKT tran-
sition T>, the ensemble of thermodynamically accessible states divides up into distinct
degenerate subspaces, each defined by a pair of winding numbers {nx, ny} with

nl =

∫ L

0

dxl
2π
∇lα(x), (l = x, y), (4.25)

where L is the linear size of the system, indicating the presence of an emergent topological
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Figure 4.20: Susceptibility of emergent degrees of freedom as function of temperature for
Jth = 0.8J̄

phase [44]. The multiple degeneracies of this state confirm the Polyakov hypothesis that
a power-law phase is possible with a degenerate vacuum.

In conclusion, employing extensive parallel-tempering Monte-Carlo simulations, we
have presented conclusive evidence for an emergent critical phase in a 2D isotropic classi-
cal Heisenberg spin model at finite temperatures. This realizes the Polyakov conjecture [75]
that Heisenberg magnets can develop algebraic order if they exhibit a vacuum degener-
acy. Using finite size scaling we have shown that the transitions are in the Berezinskii-
Kosterlitz-Thouless universality class and determined the transition temperatures. At low
temperatures, we find direct evidence of long-range order in the relative orientation of
the spins via breaking of a discrete six-fold symmetry induced by an order-from-disorder
potential.
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Figure 4.21: Susceptibility of emergent degrees of freedom as function of temperature for
Jth = 0.92J̄
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Figure 4.22: Magnetization of emergent degrees of freedom as function of temperature for
Jth = 0.4J̄
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Figure 4.23: Magnetization of emergent degrees of freedom as function of temperature for
Jth = 0.6J̄
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Figure 4.24: Magnetization of emergent degrees of freedom as function of temperature for
Jth = 0.8J̄
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Figure 4.25: Magnetization of emergent degrees of freedom as function of temperature for
Jth = 0.92J̄
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Figure 4.26: Finite size scaling of susceptibility χ(T, L) = L2−η>Yχ(ξ>/L) as a function
of ξ>/L and magnetization 〈|m|(T, L)〉 = L−η</2Ym(ξ</L) as a function of ξ</L for
Jth = 0.6J̄ , Jtt = 1.0 and J̄ = 1.22. Best data collapse is obtained with a BKT scaling
ansatz and yields T<,>, a<,> and η<,> as given in the text.
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Chapter 5

Conclusion

The central topic of this thesis is frustration and the role it plays in generating surprising
emergent phenomena in spin systems.

Thus in chapter 2 we have studied the conceivably most fundamental kind of frustra-
tion, namely the frustration felt by a spin system in the presence of finite spatial curvature.
We did this by treating a central pillar of field theoretic studies in the subject of phase
transitions, namely the N component φ4 theory, in the geometric setting of hyperbolic
space. The analytical treatment of this theory was made possible by the momentum space
techniques that we developed in chapter 2 .
The N -component φ4 theory in flat space is an unfrustrated spin system. Its ordered state
is a uniaxial ferromagnet. However, in hyperbolic space it is frustrated solely due to the
properties of space. We found that in the symmetry broken phase, in which spins want to
align in the same direction in spin-space, this ferromagnetic ordering becomes impossible
due to the fact that the available space around any given point grows exponentially with
distance from the spin. As a consequence all correlation functions show exponential decay
even at the critical point. The critical point was identified by the scale-free form of the
correlation function once it is represented in the eigenbasis of the hyperbolic Laplacian.
Yet, the exponential decay in real-space has the effect that all the familiar infrared diver-
gences of φ4 theory in flat space are regulated by the existence of the additional length
scale of hyperbolic space, namely the radius of curvature. We showed that, as a conse-
quence of this, arbitrarily small spatial curvature leads to the emergence of a new fixed
point which is characterized by new critical exponents that differ from the flat-space and
even mean-field exponents.

In chapters 3 and 4 we studied a different type of frustration in a spin model. This kind
of frustration, which goes by the name geometric frustration, arises whenever the spins
in a system are not able to satisfy all bonds to neighboring spin such as to minimize the
interaction energy between these. The quintessential example of this behavior is provided
by the triangular lattice, on which spins that couple antiferromagnetically to neighboring
spins, order, at zero temperature, in a 120◦ arrangement. Combining this model with
another antiferromagnetic model, namely the honeycomb lattice with nearest neighbor
couplings, into the so-called windmill lattice, we obtain highly non-trivial physics. In
the limit of very strong intra-sublattice coupling and very small inter-sublattice coupling,
these two systems, although coupled by a small antiferromagnetic interaction, have zero
temperature ground states that are energetically fully decoupled. They become coupled
in an order-by-disorder mechanism at arbitrarily small temperatures and a U(1) relative
degree of freedom of the two sublattices emerges.
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The prerequisite for the emergent U(1) physics is the decoupled phase of the sublattices.
Therefore the question must be answered of whether this decoupled regime exists in a
broad region of the phase diagram, or if it destroyed by the existence of phases that have
far smaller energies and are therefore preferred. Chapter 3 dealt with this problem by
employing an algorithm that extensively searches for ground states as a function of the
coupling constants. It was found that the Heisenberg and XY model on this lattice each
have eight different ground states. Moreover, the decoupled regime does in fact exist in a
rather large portion of the zero temperature phase diagram.

Having dealt with this prerequisite, it was now possible to explore the emergent phe-
nomena in the decoupled phase. This was done in chapter 4, where this was achieved by
studying the model in extensively parallelized Monte Carlo simulations that were tailored
to the characteristics of the windmill model. Subjecting the magnetization and suscepti-
bility of the emergent spin degrees of freedom to a finite size scaling analysis, we found
that the relative degrees of freedom turn out to behave effectively as an XY model in a
six-fold potential. In this way we confirmed a speculation that is historically due to A. M.
Polyakov, who conjectured that short-range Heisenberg spin systems, although forbidden
from developing long-range order may host emergent spins that are capable of developing
long-range order.

The central result of chapter 4 is the detailed finite temperature phase diagram of the
Heisenberg windmill lattice, which shows the region of the emergent critical phase. The
main conclusion is the fact that this isotropic short-range Heisenberg system on a two-
dimensional lattice is capable of developing emergent degrees of freedom that are capable
of showing, in a large region of the phase diagram, power law correlations. In particular
we found the existence of the phase transitions, their critical exponents and universality
classes.
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Appendix A

Normalization of radial functions

In this appendix to chapter 2 we compute the normalization of the Πσl(r). Since the differ-
ential equation for Πσl is of Sturm-Liouville type, we already know that the orthogonality
property holds. The normalization constant is defined by

Nσ,lδ(σ − ρ) =

∞∫
0

dr sinh2 r Πσl(r)Πρl(r).

We will compute Nσ,l by establishing a relation between Nσl and Nσl+1. Starting with the
explicit representation (2.22) and defining uσl(r) ≡ sinh(r)Πσl(r) we have

uσ,l+1 =
1√

σ2 + (l + 1)2

(
u′σl − (l + 1) coth r uσl

)
.

The uσl satisfy
d2

dr2
uσl =

(
−σ2 +

l(l + 1)

sinh2 r

)
uσl.

Then

Nσ,l+1δ(σ − ρ) =

∞∫
0

dr uσl+1(r)uρl+1(r)

=
1√

σ2 + (l + 1)2

1√
ρ2 + (l + 1)2

∞∫
0

dr
(
u′σlu

′
ρl + (l + 1)2 coth2 r uσluρl − (l + 1) coth r (uρluσl)

′)
and partially integrating the first and third term we have

Nσ,l+1δ(σ − ρ) =
1√

σ2 + (l + 1)2

1√
ρ2 + (l + 1)2

×
∞∫

0

dr

(
−uσlu′′ρl + (l + 1)2 coth2 r uσluρl − (l + 1)

1

sinh2 r
uρluσl

)

=
1√

σ2 + (l + 1)2

1√
ρ2 + (l + 1)2
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×
∞∫

0

dr [−uσl(−ρ2 +
l(l + 1)

sinh2 r
)uρl + (l + 1)2 coth2 r uσluρl

− (l + 1)

sinh2 r
uρluσl]

=
1√

σ2 + (l + 1)2

1√
ρ2 + (l + 1)2

∞∫
0

dr (ρ2 + (l + 1)2)uσluρl

= Nσ,lδ(σ − ρ)

thus all Nσ,l are identical and it suffices to compute a particular one, say, Nσ,0. The latter
is easily obtained, since uσ0 = sinh(r)Πσ0(r) = − sin(σr) and therefore

∞∫
0

dr uσ0(r)uρ0(r) =
π

2
δ(σ − ρ).

Thus we find
Nσl =

π

2

to be the proper normalization factor.
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Appendix B

Analytic calculation of the T = 0
ground state energies

In this appendix to chapter 3 we compute analytically the energy for every T = 0 ground
state in this model. For all the phases that we have found, the spin-configurations are
such that the interaction energy of a spin with its neighbors is translationally invariant,
i.e., the nearest neighbor sums∑

j

Sti · Stj ,
∑
j

SAi · SBj ,
∑
j

Sti · S
A/B
j (B.1)

are all independent of i. As a consequence, the computation of the total energy is rather
straightforward. One merely needs to consider the energy of a spin and its neighbors and
multiply the result by N/2 (for spins on the triangular lattice) or N (for spins on the
honeycomb lattice). In some of the phases, however, there are configuration parameters
that change continuously with the coupling constants. We introduce these as variational
parameters that have to be chosen appropriately in order to minimize the total energy.

B.1 Collinear antiferromagnetic phase/canted ferromagnetic
phase (2a) and (2b)

To calculate the energy of these phases, consider the left configuration in Fig. 3.4. Out of
the neighboring 6 honeycomb spins of a triangular spin there are always two spins that
have the same orientation (positive scalar product) as the triangular spin. One is an A-site
spin, the other a B-site spin. All remaining honeycomb spins are either equal or opposite
to one of the two. We introduce as the variational parameters θ1 and θ2, the angles that
the A- and B-site honeycomb spins make with the triangular lattice spin. For the energy
we find

E2 = Et + Eh + Eth (B.2)

= −NJt − 2NJh +NJh cos(θ1 + θ2) (B.3)

−NJth (cos θ1 + cos θ2) (B.4)

which is minimized by

θ ≡ θ1 = θ2 = cos−1
( Jth

2Jh

)
(B.5)
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with energy

E2a = −NJt − 3NJh −N
J2
th

2Jh
. (B.6)

In order for Eq. (B.5) to be meaningful, it is required that Jth ≤ 2Jh. In the opposite
regime Jth ≥ 2Jh, we instead have the minimum at θ1 = θ2 = 0. The energy for this
locked phase is

E2b = −NJt −NJh − 2NJth. (B.7)

B.2 Ferromagnetic phases (3a) and (3b)

To compute the energy of this phase, we note from Fig. 3.5 that the A and B sublattices
are each ferromagnetically ordered. Let θ1 and θ2 denote the angles between A and trian-
gular sublattice magnetizations and between B and the triangular lattice magnetization,
respectively. The total energy in this phase is

E = 3NJt + 3NJh cos(θ1 + θ2)

+ 3NJth (cos θ1 + cos θ2) . (B.8)

Minimization yields the angles

cos θ ≡ cos θ1 = cos θ2 = − jth
2jh

(B.9)

and energy

E3a = 3NJt − 3NJh −N
3J2

th

2Jh
. (B.10)

The coupling constants have to satisfy

Jth
2Jh
≤ 1 (B.11)

in order for θ to be real.
When this condition is violated, the minimum of the energy function is instead found

at

θ = θ1 = θ2 = π (B.12)

with

E3b = 3NJt + 3NJh − 6NJth. (B.13)

This is phase (3b) in the phase diagram.
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B.3 Double Cone Configuration (4a) and (4b)

We parametrize the energy of this phase in terms of the cone opening angles αh and αt
as well as the advance angle θ. Let the z axis be parallel to the cone axis. Then we can
write the total energy as

E4 = −NJt −NJh + 2NJt sin2 αt
(
cos2 θ + cos θ

)
+ 2NJh sin2 αh

(
cos θ + 1

)
− 2NJth

(
cos
(
αh − αt

)
+ 2 sinαt sinαh cos θ

)
. (B.14)

Minimizing with respect to {αt, αh, θ} yields the three equations

2 sinαt cosαt(cos2 θ + cos θ)− jth [sin(αh − αt) + 2 cosαt sinαh cos θ] = 0 (B.15)

2jh sinαh cosαh(cos θ + 1)− jth [sin(αt − αh) + 2 sinαt cosαh cos θ] = 0 (B.16)

(1 + 2 cos θ) sin2 αt + jh sin2 αh − 2jth sinαt sinαh = 0. (B.17)

This system of equations can be tremendously simplified by noting that all dependences
on αt and αh can be expressed in terms of the combinations

ρ =
sinαh
sinαt

(B.18)

σ =
cosαh
cosαt

. (B.19)

With this the minimization conditions are transformed into

2(cos2 θ + cos θ) + jth(σ − ρ− 2ρ cos θ) = 0 (B.20)

2jh(cos θ + 1)σρ+ jth(ρ− σ − 2σ cos θ) = 0 (B.21)

2 cos θ + 1 + jhρ
2 − 2jthρ = 0 . (B.22)

In order to find the solutions of this set of equations, we solve Eq. (B.22) for cos θ and
substitute this solution into the other two equations (B.20) and (B.21)

−1− 2jhjthρ
3 + j2

hρ
4 + 2jthσ = 0 (B.23)

ρ
(
jth − 2jth2σ + 3jhjthρσ + jh(1− jhρ2)σ

)
= 0 (B.24)

One obvious solution comes from the second equation with ρ = 0. We will treat this
case later. We assume ρ 6= 0, then the two resulting equations contain σ linearly and
eliminating it results in a 6th order equation for ρ that happens to be solvable and has
the roots

ρ1 =
jth −

√
j2
th − 4jh

2jh
(B.25)

ρ2 =
jth +

√
j2
th − 4jh

2jh
(B.26)

ρ3 =
jth −

√
jh + j2

th

jh
(B.27)
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ρ4 =
jth +

√
jh + j2

th

jh
. (B.28)

The last two solutions ρ3 and ρ4 are both doubly degenerate. From these solutions the
resulting values for σ and θ are found to be

σ1 =
jth(jth −

√
j2
th − 4jh)2

8j2
h

(B.29)

σ2 =
jth(jth +

√
j2
th − 4jh)2

8j2
h

(B.30)

σ3 =
−jth +

√
jh + j2

th

jh
(B.31)

σ4 = −
jth +

√
jh + j2

th

jh
(B.32)

and

cos θ1 = jth
jth −

√
j2
th − 4jh

4jh
(B.33)

cos θ2 = jth
jth +

√
j2
th − 4jh

4jh
(B.34)

cos θ3 = −1 (B.35)

cos θ4 = −1. (B.36)

Note that cos θ2 ≥ 1, thus the solution θ2 is not admissible. The solution θ3 may also
be discarded, because it has a negative value of ρ, whereas ρ ≥ 0 from the definition and
0 ≤ αh, αt ≤ π.

The solution θ4 has ρ4 = −σ4. Inserting into this relation the definitions in terms of
αt and αh we have

sinαh = ρ4 sinαt (B.37)

cosαh = −ρ4 cosαt (B.38)

and by taking squares and adding, ρ4 = 1 is deduced and as a consequence αt = π − αh.
Such a phase, however, has energy E = −NJt − NJh + 2NJth. This energy is always
larger than that of phase (1). We can therefore discard this solution as well.

To summarize, the only solution that needs to be considered is (ρ1, σ1, θ1) and we
therefore drop the subscript in the following. We can express the angles in terms of ρ and
σ as

sinαt =

√
1− σ2

ρ2 − σ2
(B.39)

sinαh =

√
1− σ2

ρ2 − σ2
ρ. (B.40)
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By inserting these parameters back into the expression for the energy, we find the energy
in explicit form as a function of the coupling constants:

E4a

NJt
= −1 +

j2
th

2jh
− 5

3
j2
th −

j4
th

4j2
h

+
j3
th

√
j2
th − 4jh

4j2
h

+
12j2

h + j2
th (5jh − 12)

12jh + 9j2
th

(B.41)

+
8jh(2jh − 1) + 2j2

th(4jh + 1)− 5j4
th√

j2
th − 4jh

(
4jh + 3j2

th

) jth +
2jth√
j2
th − 4jh

−
4
√

2j2
th

√
ε(1)ε(2)

jth −
√
j2
th − 4jh

where

ε(1) ≡
j2
th − jth

√
j2
th − 4jh − 2jh(jh + 1)

−j4
th + j3

th

√
j2
th − 4jh + 2j2

thjh + 8j2
h

ε(2) ≡
3j4
th − 3j3

th

√
j2
th − 4jh + 8j2

h(1 + jh) + 4jthjh(jh + 2)
√
j2
th − 4jh − 2j2

thjh(jh + 7)

−3j4
th + 8j2

thjh + 16j2
h

.

The necessary condition for the existence of this phase is that the coupling constants are
such that all three quantities αt, αh, θ are real. As a first condition we have

j2
th ≥ 4jh (B.42)

in order to make the square root expression in ρ, σ and θ real.
The requirement that αt be real translates into

0 ≤ 1− σ2

ρ2 − σ2
≤ 1. (B.43)

From the form of ρ and σ in terms of the coupling constants it is straightforward to show
that σ ≤ ρ. With this the inequality (B.43) results in the final requirement

σ ≤ 1 ≤ ρ. (B.44)

There are no further conditions, since αh is guaranteed to be real if αt is.
We return to the case ρ = 0, which is also one of the solutions of Eqs. (B.20)-(B.22)

with

ρ = 0→ αh = 0 (B.45)

σ =
1

2jth
→ cosαt = 2jth (B.46)

θ =
2π

3
. (B.47)

The energy in terms of the coupling constants has a simpler form

E4b = −3

2
NJt −NJh − 2N

J2
th

Jt
(B.48)

This is the other double cone phase that we have denoted (4b) in the phase diagram. The
necessary condition for this phase to exist, which follows from the requirement that αt
must be real, is

jth ≤
1

2
. (B.49)
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B.4 Incommensurate spiral phase (5)

We calculate the energy with the spiral angle θ as a variational parameter. The variational
expression for the energy is

E(θ) = −NJt +NJh − 2NJth + 2NJt cos2 θ

+ (2NJt + 2NJh − 4NJth) cos θ. (B.50)

We minimize with respect to θ and obtain

cos θ = −1

2

(
1 +

Jh
Jt
− 2

Jth
Jt

)
E5 = −3

2
NJt −

N

2Jt
(Jh − 2Jth)2

as minimizing angle and energy. Since θ must be real, it follows that

|1 + jh − 2jth| ≤ 2

must hold for the existence of the spiral phase.

B.5 Incommensurate alternating spiral phase (XY I)

The total variational energy is given by

E(θ) = −NJt + 2NJth +NJh + 2NJt(cos2 θ − cos θ)

− 4NJth cos θ − 2Jh cos θ . (B.51)

The energy is minimized for

cos θ =
1

2
+
Jth
Jt

+
Jh
2Jt

(B.52)

which yields the energy of phase XY I:

EXY I = −3

2
NJt −N

(Jh + 2Jth)2

2Jt
. (B.53)

B.6 Canted ferromagnetic phase (XY II)

This phase is related to phase (4a) and the minimization problem may be solved in close
analogy with it. The energy is given in terms of the parameters αt and αh:

E = NJt +NJh + 2NJt cos 2αt + 2NJh cos 2αh

− 2NJth [cos(αt + αh) + 2 cos(αt − αh)] . (B.54)

The minimization conditions are given by

2jhρσ = jth(σ + ρ) (B.55)

3σ − ρ =
4

jth
. (B.56)
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These equations are solved by

σ± ≡
cosαh
cosαt

(B.57)

=
2

3jth
+
jth
3jh
±

√(
2

3jth
+
jth
3jh

)2

− 1

jh

ρ ≡ sinαh
sinαt

= 3σ − 4

jth
. (B.58)

The positive sign of σ leads to a solution with an energy that is always larger than that of
the other planar phases. Hence we will disregard this configuration and only focus on the
negative sign solution σ− (and drop the subscript on σ). As a first condition we require
that the expression under the square root in the formula for σ must not be negative. This
is easily shown to be satisfied in exactly two disjoint regions of parameter space

j2
th ≤ jh (B.59)

jh ≤ j2
th/4 . (B.60)

Furthermore, we require, as we did for phase (4a), that αt is real. If αt is real, so will be
αh. This condition will hold if either one of the two inequalities

σ < 1 < ρ (B.61)

ρ < 1 < σ . (B.62)

is satisfied. From the form of σ and ρ in terms of the coupling constants we can show that
the first case does not exist for any choice of coupling constants. Thus we require only the
second inequality (B.62).

Finally, we compute the energy from the values of the angles αt and αh, which are
known in terms of σ and ρ, and find

EXY II

NJt
=

9j2
th

4

√
ε(1) + ε(2) (B.63)

where

ε(1) ≡

2(j2h+1)j4th
j2h

+ 8j2
h −

9j2h+2jh+9
jh

j2
th + 8 +

[
2(j2h−1)j3th

jh
− 4(j2

h − 1)jth

]√
j2th−5jh
j2h

+ 4
j2th

j4
th − 5jhj

2
th + 4j2

h

ε(2) ≡ −
(jh − 1)(8jh − 5j2

th)(2jh + j2
th)

4jh

√
j4
th − 5jhj

2
th + 4j2

h

+
5(jh + 1)j2

th

4jh
+ jh + 1.
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Appendix C

Stiffness measurements

The critical phase of the windmill model is enclosed on both sides by a BKT transition.
The characteristic of such a phase transition is a jump in the spin stiffness ρ of the sys-
tem at T = Tc by the universal value ρ/Tc = 2/π. Thus measuring this quantity would
arguably provide the most direct proof of the existence of a power law phase. While the
stiffness of either spin system, i.e. the triangular and honeycomb lattice spin systems,
should flow to zero in a plot of stiffness versus the logarithm of system size, the same plot
for the stiffness of the emergent degrees of freedom, the ‘relative spin stiffness’ of the two
sublattice systems, should remain constant inside the power law phase.
The three stiffness components of the triangular lattice with Heisenberg spins were cal-
culated in Monte Carlo simulations by [92]. An analogous Monte Carlo treatment of the
stiffness components of Heisenberg spins on the honeycomb lattice does not seem to exist
in the literature. Below we show the results of our own simulations.
We begin this appendix by first deriving the formulas by which the stiffnesses for the
honeycomb and triangular lattice can be measured. Using these formulas we carried out
Monte Carlo simulations and obtained the spin stiffnesses as a function of temperature for
different system sizes. The spin stiffness of an infinitely large system of Heisenberg spins
on a two-dimensional lattice is zero. However, any finite system possesses a finite stiffness
and the scaling behavior has been calculated in the literature.
In the case of the triangular lattice we compare our numerical results with those obtained
by Southern and Young in [92]. In the case of the honeycomb lattice we compare our
numerical results with RG flow equations obtained to 1-loop order and 2-loop order by
Orth et al. in [72, 73]. We obtain in both cases excellent agreement with the results of
these authors.
The crucial quantity to calculate in a Monte Carlo simulation of the windmill model is the
‘relative spin stiffness’. We were, however, not able to determine sampling formulas for
this. We wish to point out that the loose expression ‘relative stiffness’ is somewhat mis-
leading and it would be more appropriate to consider it as a coupling constant between
the two sublattices. The reason for this lies in the interpretation of the spin stiffness.
Therefore we first explain how the spin stiffness may be defined.
An operational definition of the spin stiffness is the following: consider a finite system
and hold the spins on one end of it fixed, then ρ is defined as the response of the free
energy, d2F

dθ2
|θ=0, of the system to an infinitesimal twist by an angle dθ at the other end.

This twist on one end will distribute itself over the entire length of the system in order
to minimize the free energy cost. In the presence of a system with two sublattices, we
may define the stiffness of the individual lattices, by carrying out the twisting operation
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only on one lattice and not twisting the other lattice. However, twisting only the relative
degree of freedom of the spins, without also applying a twist to the individual lattices can
obviously not be achieved and this is the primary difficulty in introducing the relative spin
stiffness.
In the following we will recast the definition in a somewhat different form that makes it
possible to detect the couplings. Then we will derive formulas for the stiffnesses of the
honeycomb lattice and triangular lattice, respectively.
Consider the Hamiltonian

H = J
∑
〈ij〉

Si · Sj

of Heisenberg spins on a arbitrary lattice. The spin stiffness (cf. definitions in [92]) is
defined by introducing a twist unit-vector n and a direction u along the lattice. A spin Sj
is twisted with respect to its neighbor Si by an amount θ

Leij ·u around the axis described
by n, where eij is the vector connecting site i to site j. The Hamiltonian is rotationally
invariant term by term. In particular the relative twist of Sj versus Si can be implemented
by just twisting Sj by the difference between the twist angles of spins Si and Sj . This
twisting can be expressed by the substitution

Sj → exp

(
θ

L
(eij · u)n×

)
Sj

transforming the Hamiltonian into

H = J
∑
〈ij〉

Si · exp

(
θ

L
(eij · u)n×

)
Sj .

Introducing this twist into the Hamiltonian, we may now ask how the free energy behaves
as a function of θ. Because of global O(3) symmetry it is clear that the free energy should
not depend on the sign of θ, i.e. the modification of the free energy F (θ) due to twist
is reflected by the second derivative of F , but not at any lower order in θ. The second
derivative measures the cost of twisting the system at the boundary by a small angle θ.
This quantity we define to be the spin stiffness:

ρs(u,n) ≡
(
∂2F

∂θ2

)
θ=0

We proceed to derive an expression for ρs in terms of correlation functions that can be
sampled by Monte Carlo methods. The free energy is found from the partition function

Z =

∫
cfg

exp(−βH)

F = −T logZ

which produces the following expression for ρs

∂F

∂θ
= −T 1

Z
Z ′

∂2F

∂θ2
= −T Z

′′

Z
+ T

(
Z ′

Z

)2

= −T Z
′′

Z
+ β

(
∂F

∂θ

)2

.
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As pointed out above, the first derivative of F has to vanish. This can be seen formally
as follows: (

∂Z

∂θ

)
θ=0

= −β
∫

cfg
exp(−βH)

(
∂H

∂θ

)
θ=0

= −β
L

∫
cfg

exp(−βH)
∑
〈ij〉

(eij · u)Si · (n× Sj)

=
β

L
n ·
∫

cfg
exp(−βH)

∑
〈ij〉

(eij · u) (Si × Sj) .

The configurational integral performed over Si × Sj is zero by virtue of the fact that by
integrating first with constant angle between Si and Sj , the term Si · Sj in H does not
change but Si × Sj points in all possible directions and therefore integrates to 0.
Using this fact the stiffness is found to be

ρs(u,n) =
∂2F

∂θ2
=

〈(
∂2H

∂θ2

)
θ=0

〉
− β

〈(
∂H

∂θ

)2

θ=0

〉
.

For the averages we have〈(
∂H

∂θ

)2

θ=0

〉
=

J2

N

〈∑
〈ij〉

(eij · u)n · (Si × Sj)

2〉
〈(

∂2H

∂θ2

)
θ=0

〉
=

J

N

〈∑
〈ij〉

(eij · u)2Si · n× (u× Sj)

〉

=
J

N

〈∑
〈ij〉

(eij · u)2 [(Si · n)(Sj · n)− Si · Sj ]

〉

By choosing an orthogonal system of unit vectors k̂i we can compute the stiffnesses in
three different directions:

ρs(u, k̂α) =

〈(
∂2H

∂θ2

)
θ=0

〉
− β

〈(
∂H

∂θ

)2

θ=0

〉
(C.1)

= − J
N

〈∑
〈ij〉

(eij · u)2
[
Sβi · S

β
j + Sγi · S

γ
j

]〉

−βJ
2

N

〈∑
〈ij〉

(eij · u)
(
Sβi · S

γ
j − S

γ
i · S

β
j

)2〉
(C.2)

where the indices α, β, γ have to be understood in a cyclic sense.

We now specialize to the triangular lattice. Picking the x-direction for u and the
z-direction for n, we have for ρx:

ρx = − J
N

〈∑
〈ij〉h

[
Sxi · Sxj + Syi · S

y
j

]〉
− J

4N

〈∑
〈ij〉d1

[
Sxi · Sxj + Syi · S

y
j

]〉
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Figure C.1: Labeling of bonds

− J

4N

〈∑
〈ij〉d2

[
Sxi · Sxj + Syi · S

y
j

]〉

−βJ
2

N

〈
J 2
〉

J ≡
∑
〈ij〉h

(
Sxi · S

y
j − S

y
i · S

x
j

)
+

1

2

∑
〈ij〉d1

(
Sxi · S

y
j − S

y
i · S

x
j

)
−1

2

∑
〈ij〉d2

(
Sxi · S

y
j − S

y
i · S

x
j

)
Here 〈ij〉h means horizontal neighbors, 〈ij〉d1 denotes diagonal neighbors from lower

left to upper right and 〈ij〉d2 are the diagonal neighbors from lower right to upper left. As
we can see, they contribute differently to the stiffness components.

For the honeycomb lattice the direction vectors are different for odd and even sites
(〈ij〉odd and 〈ij〉even refer to i being odd and even, respectively). To avoid double counting
the sum has to be either over the even or the odd sites, not both:

ρs(u, k̂α) = − J
N

〈∑
〈ij〉

(eij · u)2
[
Sβi · S

β
j + Sγi · S

γ
j

]〉

−βJ
2

N

〈∑
〈ij〉

(eij · u)
(
Sβi · S

γ
j − S

γ
i · S

β
j

)2〉

= − J
N

〈 ∑
〈ij〉odd

(eij · u)2
[
Sβi · S

β
j + Sγi · S

γ
j

]〉

−βJ
2

N

〈 ∑
〈ij〉odd

(eij · u)
(
Sβi · S

γ
j − S

γ
i · S

β
j

)2〉

= − J

4N

〈∑
〈ij〉d1

[
Sxi · Sxj + Syi · S

y
j

]
+
∑
〈ij〉d2

[
Sxi · Sxj + Syi · S

y
j

]〉
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−β J
2

4N

〈∑
〈ij〉d1

(
Sxi · S

y
j − S

y
i · S

x
j

)
−
∑
〈ij〉d2

(
Sxi · S

y
j − S

y
i · S

x
j

)2〉

Here the sum has been extended over the odd sites. In the last line the directions of u
and k̂α were chosen along the x-axis, as before.
The stiffness in the y-direction is determined by:

ρs(ŷ, ẑ) = − J
N

〈 ∑
〈ij〉odd

(eij · ŷ)2
[
Sxi · Sxj + Syi · S

y
j

]〉

−βJ
2

N

〈 ∑
〈ij〉odd

(eij · ŷ)
(
Sxi · S

y
j − S

y
i · S

x
j

)2〉

= − J
N

〈∑
i odd

Si ·
(
(eiu(i) · ŷ)2Su(i) + (eil(i) · ŷ)2Sl(i) + (eir(i) · ŷ)2Sr(i)

)〉

−βJ
2

N

〈(∑
i odd

Si ×
(
(eiu(i) · ŷ)Su(i) + (eil(i) · ŷ)Sl(i) + (eir(i) · ŷ)Sr(i)

))2〉

= − J
N

〈∑
i odd

Si ·
(

1

3
Su(i) +

1

12
Sl(i) +

1

12
Sr(i)

)〉

−βJ
2

N

〈(∑
i odd

Si ×
(

1√
3
Su(i) −

1

2
√

3
Sl(i) −

1

2
√

3
Sr(i)

))2〉
where the letters u, l, r refer to the upper, left and right neighbors, respectively.
The stiffness of the triangular lattice was measured by Monte Carlo simulation on lattices
with L = 12, 24, 48, 96, 120, 180 at the temperature T = 0.2Jt. The stiffness formula
above was used in the Monte Carlo simulation to find the behavior of ρ as a function
of logL. We thereby repeat work that was done by Southern and Young in [92]. The
figure shows an overlay of our Monte Carlo data with theirs (the Monte Carlo data are
the dots) and shows excellent agreement. The solid curve was obtained by these authors
after numerically solving the RG flow equations obtained by Azaria et al. [2] and using
the stiffnesses of the L = 12 system as the initial value of the flow.

The flow equations are given by

dρ1

d logL
= −t

(
1− 1

2
λ

)
− t2

ρ1

(
5

8
λ2 − 3

2
λ+ 1

)
dρ3

d logL
= −tλ

2

2
− t2

ρ1

1

8
λ3

where t = T/2π and λ = ρ3/ρ1 and the equality ρ2 = ρ1 provides the remaining stiffness
component.
Next we take up the honeycomb lattice and calculate the stiffnesses in a Monte Carlo
simulation of the honeycomb lattice. We compare the resulting data with the RG flow
equation obtained in [72, 73]. The flow equation, which is obtained using 2-loop RG, is
given by

dρ

d logL
= − 1

2π
− 1

2π2

1

ρ2
,
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Figure C.2: Stiffness of Triangular Lattice at T = 0.2Jt generated by our Monte
Carlo code (dots). The overlaid plot is from [92]. Reprinted with permission from
[92] (http://dx.doi.org/10.1103/PhysRevB.48.13170), Copyright (1993) by the American
Physical Society.
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Figure C.3: Stiffness for the Honeycomb lattice. Comparison with 1-loop RG flow equa-
tions

where the first term alone is the 1-loop result.
In the Figures C.3 and C.4 we compare the data with both, the 1-loop and 2-loop result,

respectively. As one can see the Monte Carlo value of the stiffness is systematically lower
than the 1-loop RG results. However, the match becomes much better when compared
with the 2-loop RG result.
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Figure C.4: Stiffness for the Honeycomb lattice. Comparison 2-loop RG flow equations
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Appendix D

Luttinger-Tisza Matrix of the
windmill lattice

In 1946 J. M. Luttinger and L. Tisza published a work [52], where the problem of mini-
mizing the total energy of interacting dipole moments on a cubic lattice was considered.
The form for the interaction between the dipole moments was assumed to be a quadratic
form in the components of the dipole moment vectors. In their method developed for this
problem, the condition that all dipole vectors must be normalized to unity is softened into
the weak constraint that only the sum

∑
i S

2
i has to equal N , the number of spins on the

lattice. This weak constraint allows the minimization problem to be solved easily. The
authors then verify that the solution of this minimization problem also satisfies the strong
constraint that S2

i = 1 for all i of the lattice.
Their procedure has found ample application in the determination of ground states of
many other spin models. However, in cases where the lattice is not so simple the ‘solution’
obtained from the minimization problem does not satisfy the strong constraint. In this
case the ground states show much more diversity and need to be obtained in other ways,
for instance algorithmically, as we did in chapter 3.
In this appendix we derive the Luttinger-Tisza matrix for the windmill lattice and point
out the difficulty that impedes a straightforward solution along the lines followed by Lut-
tinger and Tisza for cubic lattices.
We start this analysis by dividing the windmill-lattice into the sublattices triangular, hon-
eycomb A and honeycomb B. Then all lattices become identical triangular lattices that
are shifted with respect to each other by the same displacement vector. In terms of spins
on these three sublattices we can write the Hamiltonian as

H = Jt
∑
〈ij〉

Si · Sj + Jth
∑
〈ij〉

Si · SAj + Jth
∑
〈ij〉

Si · SBj + Jh
∑
〈ij〉

SAi · SBj

where S are the spins on the triangular lattice and SA/B are the spins on the honeycomb
A/B-sites. Thus we have three identical copies of lattices interacting with each other
and with themselves. The windmill lattice can be considered as a special case where the
coupling constants for interaction within the A and B lattices are zero and the interactions
of these lattices with the third lattice happens with equal strength. A triangular lattices
can be described by the basis vectors

a1 =

(
1
0

)
a
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a2 =

(
1/2√
3/2

)
a.

We define the reciprocal basis vectors

b1 =
2π

a

(
1

−1/
√

3

)
b2 =

2π

a

(
0

2/
√

3

)
.

Then the Fourier transform of the spins is

S(q) =
∑
r

S(r) exp (iq · r) .

Since the lattice has the period as described by the bravais vectors, it is sufficient to let
the components qi in the b-basis run from −1/2 to 1/2. Thus in order to obtain S(r) from
the last equation, we integrate the qi precisely in this range:

S(r′) =

1/2∫
−1/2

dq1

1/2∫
−1/2

dq2S(q) exp
(
−iq · r′

)
=

∫
d2qS(q) exp

(
−iq · r′

)
and similarly for the other spins.
We begin with the term describing the interactions between two triangular spins. Inserting
the Fourier transform yields

Htt = Jt
∑
〈ij〉

Si · Sj =
Jt
2

∑
r,n

S(r) · S(r + δrn)

=
Jt
2

∫
d2q

∫
d2q′S(q)S(q′)

∑
r

exp

(
−i2π

a

(
q + q′

)
· r
)∑

n

exp

(
−i2π

a
q′ · δrn

)
.

The sum over r represents a Dirac-comb with period 1 in the qi variables. Since the
integration range is (−1/2, 1/2), however, only the tooth at 0 is important and yields a
delta function:

Htt =
Jt
2

∫
d2q

∫
d2q′S(q)S(−q)

∑
n

exp

(
i
2π

a
q · δrn

)
.

Furthermore, the sum over the vectors to the neighboring spins δrn is easily evaluated:∑
n

exp

(
i
2π

a
q · δrn

)
= exp

(
i
2π

a
q · a1

)
+ exp

(
−i2π

a
q · a1

)
+ exp

(
i
2π

a
q · a2

)
+ exp

(
−i2π

a
q · a2

)
+ exp

(
i
2π

a
q · (a1 − a2)

)
+ exp

(
i
2π

a
q · (a2 − a1)

)
= 2 cos 2πq1 + 2 cos 2πq2 + 2 cos 2π (q1 − q2) .

Finally

Htt = Jt

∫
d2qS(−q) [cos 2πq1 + cos 2πq2 + cos 2π (q1 − q2)]S(q).
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With the other lattices we proceed in a similar fashion. Let SA(r) and SB(r) stand for
the A- and B-site honeycomb-lattice spins that are located in the unit cell spanned by a1

and a2 at r.
First we compute the interaction between the triangular and honeycomb lattice A:

HthA = Jth
∑
r,n

S(r) · SA(r + δrn)

= Jth

∫
d2q

∫
d2q′S(q) · SA(q′) exp

(
−i2π

a

(
q + q′

)
r

)∑
n

exp

(
−i2π

a
q′δrn

)
= Jth

∫
d2qS(q) · SA(−q)

∑
n

exp

(
i
2π

a
qδrn

)
.

The sum is performed over the three A-site neighbors of S(r) :

δri = {−a1 − a2,−a1,−a2}∑
n

exp

(
i
2π

a
qδrn

)
= exp (−i2π(q1 + q2)) + exp (−i2πq1) + exp (−i2πq2)

HthA = Jth

∫
d2qS(q) · (exp (−i2π(q1 + q2)) + exp (−i2πq1) + exp (−i2πq2))SA(−q).

For HthB we have

HthB = Jth
∑
r,n

S(r) · SB(r + δrn)

= Jth

∫
d2qS(q) · SB(−q)

∑
n

exp

(
i
2π

a
qδrn

)

δri = {0,−a1,−a2}∑
n

exp

(
i
2π

a
qδrn

)
= 1 + exp (−i2πq1) + exp (−i2πq2)

and finally

HthB = Jth

∫
d2qS(q) · SB(−q) (1 + exp (−i2πq1) + exp (−i2πq2)) .

The last case to consider is the interaction between lattices A and B:

HhAhB = Jh
∑
r,n

SA(r) · SB(r + δrn)

= Jh

∫
d2qSA(q) · SB(−q)

∑
n

exp

(
i
2π

a
qδrn

)
Using the conventions explained above for the positions vectors, we have

δr = {0,a1,a2}
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and therefore ∑
n

exp

(
i
2π

a
qδrn

)
= 1 + exp 2πiq1 + exp 2πiq2

and obtain the final result:

HhAhB = Jh

∫
d2qSA(q) · SB(−q) (1 + exp 2πiq1 + exp 2πiq2)

In order to write this as a quadratic form, we introduce the vector

S =

 S (q)
SA (q)
SB (q)


and its Hermitian conjugate

S† (q) =
(
S (−q) , SA (−q) , SB (−q)

)
then the total Hamiltonian can be symmetrized by adding complex conjugates and taking
one-half, as

H =

∫
d2q S† (q)M (q)S (q) (D.1)

with

M =

 Jtf(q1, q2) Jthg
∗(q1, q2) Jthh

∗(q1, q2)
Jthg(q1, q2) 0 Jhh

∗(q1, q2)
Jthh(q1, q2) Jhh(q1, q2) 0

 , (D.2)

where

f(q1, q2) ≡ cos 2πq1 + cos 2πq2 + cos 2π(q1 − q2)

(a) (b) (c)

Figure D.1: The vectors δr, defining the sites of neighboring spins, are found by considering
to which unit-cell the spins belong. (a) The three A-site neighbors of a triangular spin.
(b) The three B-site neighbors of a triangular spin. (c) The three B-site neighbors of an
A-site spin.

130



g(q1, q2) ≡ 1

2
(1 + e2πiq1 + e2πiq2 + e2πi(q1+q2))

h(q1, q2) ≡ 1

2
(1 + e2πiq1 + e2πiq2).

This matrix M is known as the Luttinger-Tisza matrix. In order to minimize the energy
H, we Fourier-transform the sum of the real-space constraints∑

i

[
|Si|2 +

∣∣SAi ∣∣2 +
∣∣SBi ∣∣2] = 3N (D.3)

into ∫
d2q |S (q)|2 =

∫
d2q

[
|S (q)|2 +

∣∣SA (q)
∣∣2 +

∣∣SB (q)
∣∣2] = 3N.

The Luttinger-Tisza procedure now consists in diagonalizing the matrix in eq. (D.2) and
thereby rewriting eq. (D.1). The matrix M being Hermitian, we can diagonalize it with
a unitary matrix U by introducing

S ′ = US =

 S1 (q)
S2 (q)
S3 (q)


which transforms eq. (D.1) into

H =

∫
d2q S ′† (q)D (q)S ′ (q) =

∫
d2q

[
D1|S1|2 +D2|S2|2 +D3|S3|2

]
(D.4)

where

D(q) ≡ U †(q)M(q)U(q) ≡

 D1(q) 0 0
0 D2(q) 0
0 0 D3(q)

 .

Let us furthermore assume that the eigenvalues are sorted in ascending order D1(q) ≤
D2(q) ≤ D3(q) for each q. Most importantly, the weak constraint eq. (D.4) is transformed
into ∫

d2q |US (q)|2 =

∫
d2q

[
|S1|2 + |S2|2 + |S3|2

]
= 3N (D.5)

According to the prescription of Luttinger and Tisza we must now minimize the energy in
(D.4) under the constraint (D.5). This is obviously accomplished by distributing all the
weight |S1(q)|2 into the values of q, say certain {Qi}, that yield the lowest D1 and set
|S1(q)| = 0 for all q /∈ {Qi} as well as |S2(q)|2 = |S3(q)|2 = 0 for all q. Since the spins
in real-space are real-valued the condition S1(q) = S∗1(−q) has to be satisfied. In other
words, with Q we also have to include −Q as a minimizing wave-vector.
It is easy to demonstrate that the eigenvalues ofM(q) andM(−q) are identical, thus with
Q the vector −Q is also in the minimizing set {Qi} . First notice that upon switching
q → −q in (D.2), we obtain, by virtue of f → f , g ↔ g∗ and h ↔ h∗, the fact that
M→MT. Since M is a Hermitian matrix, M and MT have the same eigenvalues and
the claim follows.
The minimum energy is then given by

Hmin = 3ND1(Q).
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Of course, the spectrum of M may be degenerate and there may be different values of
q with D1(q) = D1(Q). In this case one has more freedom in distributing the weak-
constraint weight 3N to the S1(q).
The characteristic equation of M is

0 = E3(q) +A(q)E2(q) +B(q)E(q) + C(q)

A(q) = −f(q1, q2)Jt

B(q) =

[
f(q1, q2) +

1

2
f(q1,−q2) +

7

4

]
J2
th + [3 + 2f(q1, q2)]

J2
h

4

C(q) =
J2
thJh
4

(3 + 2f(q1, q2))(1 + f(q1,−q2))−
JtJ

2
h

4
f(q1, q2)(3 + 2f(q1, q2))

f(q1, q2) = cos 2πq1 + cos 2πq2 + cos 2π(q1 − q2)

and the lowest eigenvalue D1 with the corresponding value of q is defined by

D1 = min
q
E(q)

Q = argmin
q

E(q).

In order to demonstrate how the Luttinger-Tisza method fails, let us assume now that we
have found a minimizing wave-vector ±Q. This means that we have found a vector S of
the form

S ′ = US =

 S
(0)
1 δ(q −Q) + S

(0)
1 δ(q +Q)

0
0


with |S(0)

1 |2 = 3N
2 , which is necessary in order to satisfy the condition of weak constraint.

Now we transform back, in order to obtain the weights for the individual lattices:

S = U †S ′

S(q) = U∗11

(
S

(0)
1 δ(q −Q) + S

(0)
1 δ(q +Q)

)
SA(q) = U∗21

(
S

(0)
1 δ(q −Q) + S

(0)
1 δ(q +Q)

)
SB(q) = U∗31

(
S

(0)
1 δ(q −Q) + S

(0)
1 δ(q +Q)

)
In order to satisfy the weak-constraint equation for the individual lattices, we have to
demand |U11|2 = |U21|2 = |U31|2 = 1

3 . This is equivalent to saying that the normal-
ized eigenvector belonging to the lowest eigenvalue should have components with absolute
square equal to 1/3. This will in general not be the case. One then has to conclude that
the assumption of a single minimizing mode ±Q is not valid. Indeed, reviewing the phases
that we found algorithmically, one sees that only one phase, namely the spiral phase, is
described by a single ordering wave-vector. The other phases are characterized by having
more ordering vectors. If there is more than one wave-vector, it means that a compro-
mise was achieved in that energetically less favorable ordering wave-vectors were included
in the ground state in order to satisfy the strong constraint, which is the reason why
the Luttinger-Tisza analysis does not yield a straightforward answer to the minimization
problem.
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Appendix E

Analytic calculation of the
order-by-disorder potential

In this appendix to chapter 4 we summarize our calculation of the order-by-disorder poten-
tial terms. The aim of this calculation is to determine the dependence of the free-energy
on the manifold of ground-state configurations (the calculation follows [102, 90, 35, 10]).
In order to carry out the calculation we parametrize the spins as small fluctuations around
one of the ground states. We choose the plane of spins of the triangular lattice spins in
their groundstate to lie in the xy plane. The honeycomb spins have an order parameter,
that is described by angles β and α. The fluctuations of the triangular sublattice spins are
called (ρ, σ, τ) and those of the honeycomb spins are called (µ, ν). We choose the following
parametrization of the fluctuations

nA =

 1− ρ2y+ρ2z
2

ρy
ρz


nB = R

 1− σ2
y+σ2

z

2
σy
σz

 =

 −1
2 −

√
3

2 σy +
σ2
y+σ2

z

4√
3

2 −
1
2σy −

√
3

4 (σ2
y + σ2

z)

σz


nC = R2

 1− τ2y+τ2z
2

τy
τz

 =

 −1
2 +

√
3

2 τy +
τ2y+τ2z

4

−
√

3
2 −

1
2τy +

√
3

4 (τ2
y + τ2

z )

τz



hA =

(
1− µ2

1 + µ2
2

2

)
h0 + µ1β + µ2α

hB = −
[(

1− ν2
1 + ν2

2

2

)
h0 + ν1β + ν2α

]
with unit vectors

h0 =

 sinβ cosα
sinβ sinα

cosβ

 , β =

 cosβ cosα
cosβ sinα

sinβ

 , α =

 − sinα
cosα

0


and where R = Rz(2π/3) is the rotation matrix that rotates spins around the z-axis by
2π/3. With this parametrization it is a straightforward task to rewrite the Hamiltonian
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in the following form. The triangular spin Hamiltonian becomes

Ht = Jtt
∑
i

nAi ·

∑
j(i)

nBj +
∑
j(i)

nCj

+ Jtt
∑
i

nBi ·
∑
j(i)

nCj

here the notation j(i) denotes summation over the neighbors j of the spin with index i.
This is

Ht = −3

2
NJtt + δHt

with

δHt = Jtt
∑
〈i,j〉

[
1

4

(
ρ2
iy + ρ2

iz + σ2
jy + σ2

jz

)
− 1

2
ρiyσjy + ρizσjz

]

+Jtt
∑
〈i,j〉

[
1

4

(
ρ2
iy + ρ2

iz + τ2
jy + τ2

jz

)
− 1

2
ρiyτjy + ρizτjz

]

+Jtt
∑
〈i,j〉

[
1

4

(
σ2
iy + σ2

iz + τ2
jy + τ2

jz

)
− 1

2
σiyτjy + σizτjz

]
,

Figure E.1: Labeling of sites inside the enlarged magnetic unit-cell.
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where all the linear terms have canceled out. Similarly we have

δHh = Jhh
∑
i

3

2

[(
µAi1
)2

+
(
µAi2
)2

+
(
νAi1
)2

+
(
νAi2
)2

+
(
µBi1
)2

+
(
µBi2
)2

+
(
νBi1
)2

+
(
νBi2
)2]

Jhh
∑
i

3

2

[(
µCi1
)2

+
(
µCi2
)2

+
(
νCi1
)2

+
(
νCi2
)2]

−Jhh
∑
i

µAi1

[
νA
i+1̂+2̂,1

+ νBi1 + νCi1

]
+ µBi1

[
νA
i+1̂+2̂,1

+ νB
i+1̂+2̂,1

+ νC
i+1̂,1

]
−Jhh

∑
i

µCi1

[
νA
i+1̂+2̂,1

+ νB
i+2̂,1

+ νC
i+1̂+2̂,1

]
−Jhh

∑
i

µAi2

[
νA
i+1̂+2̂,2

+ νBi2 + νCi2

]
+ µBi2

[
νA
i+1̂+2̂,2

+ νB
i+1̂+2̂,2

+ νC
i+1̂,2

]
−Jhh

∑
i

µCi2

[
νA
i+1̂+2̂,2

+ νB
i+2̂,2

+ νC
i+1̂+2̂,2

]
and finally

H
th

= Jth
∑
i

cosαρiy(µ
A
i2 + µB

i−1̂−2̂,2
+ µC

i−1̂−2̂,2
)

+ cosβ sinαρiy(µ
A
i1 + µB

i−1̂−2̂,1
+ µC

i−1̂−2̂,1
)

− sinβρiz(µ
A
i1 + µB

i−1̂−2̂,1
+ µC

i−1̂−2̂,1
)− cosαρiy(ν

A
i2 + νBi2 + νCi2)

− cosβ sinαρiy(ν
A
i1 + νBi1 + νCi1) + sinβρiz(ν

A
i1 + νBi1 + νCi1)

+Jth
∑
i

√
3 sinα− cosα

2
σiy(µ

A
i2 + µBi2 + µC

i−2̂,2
)

−
√

3 cosα+ sinα

2
cosβσiy(µ

A
i1 + µBi1 + µC

i−2̂,1
)− sinβσiz(µ

B
i1 + µAi1 + µC

i−2̂,1
)

−
√

3 sinα− cosα

2
σiy(ν

A
i+1̂+2̂,2

+ νBi2 + νC
i+1̂,2

)

+

√
3 cosα+ sinα

2
cosβσiy(ν

A
i+1̂+2̂,1

+ νBi1 + νC
i+1̂,1

)

+ sinβσiz(ν
A
i+1̂+2̂,1

+ νBi1 + νC
i+1̂,1

)

−Jth
∑
i

√
3 sinα+ cosα

2
τiy(µ

A
i2 + µB

i−1̂,2
+ µCi2)

+

√
3 cosα− sinα

2
cosβτiy(µ

A
i1 + µB

i−1̂,1
+ µCi1)− sinβτiz(µ

A
i1 + µB

i−1̂,1
+ µCi1)

+

√
3 sinα+ cosα

2
τiy(ν

A
i+1̂+2̂,2

+ νB
i+2̂,2

+ νCi2)

−
√

3 cosα− sinα

2
cosβτiy(ν

A
i+1̂+2̂,1

+ νB
i+2̂,1

+ νCi1)

+ sinβτiz(ν
A
i+1̂+2̂,1

+ νB
i+2̂,1

+ νCi1).

We transform this into Fourier space with

ρi = ρ (ri) =
1

(2π)2

∫
d2qeiqriρ(q)
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and rewrite the resulting total Hamiltonian in matrix form. This matrix has dimensions
18× 18. It may, however, be written in extremely compact block form. This will facilitate
the calculation of the free energy below. The full Hamiltonian is

δH =
N

6(2π)2

∫
d2qψ†

(
JttMt JthM

†
th

JthMth JhhMh

)
ψ.

with

Mt =

(
15
2 I− j0j

†
0

2 0

0 3I + j0j
†
0

)

Mh =


3I −ei(q1+q2)j†0 0 0

−e−i(q1+q2)j0 3I 0 0

0 0 3I −ei(q1+q2)j†0
0 0 −e−i(q1+q2)j0 3I


and

Mth =


j0u j0v

−j†0u −j†0v
j0w 0

−j†0w 0

 .

The entries are themselves matrices:

j0 =

 1 1 1

ei(q1+q2) 1 eiq1

ei(q1+q2) eiq2 1



u = cosβ

 sinα 0 0
0 sin(α+ 4π

3 ) 0
0 0 sin(α+ 2π

3 )



v = − sinβ

 1 0 0
0 1 0
0 0 1



w =

 cosα 0 0
0 cos(α+ 4π

3 ) 0
0 0 cos(α+ 2π

3 )

 .

The quantity ψ describing the fluctuation amplitudes is given by

ψ(Q1, Q2) =
(
ρy, σy, τy, ρz, σz, τz, µ

A
1 , µ

B
1 , µ

C
1 , ν

A
1 , ν

B
1 , ν

C
1 , µ

A
2 , µ

B
2 , µ

C
2 , ν

A
2 , ν

B
2 , ν

C
2

)
.

Finally, the correction to the free energy due to the fluctuations in a given ground state,
characterized by β and α, is computed by the formula

δF = T

∫
d2q log ∆
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with determinant

∆ = det

(
JttMt JthM

†
th

JthMth JhhMh

)
.

A straightforward analytical evaluation of this determinant is complicated by the large
dimension of the matrices. However, we may still carry out this computation by making
repeated use of the block structure of δH. We use the following block matrix decomposi-
tion:(

A B
C D

)
=

(
1 0
0 D

)(
A B

D−1C 1

)
=

(
1 0
0 D

)(
1 B
0 1

)(
A−BD−1C 0

D−1C 1

)
.

Since all three matrices are triangular, the determinant is just

det

(
A B
C D

)
= detD det

(
A−BD−1C

)
,

an equality known as the Schur identity. Iterative application of this identity to the block
matrices breaks the block structure down, until we are left with a determinant of a 3× 3
matrix. We start with the calculation of the determinant for the special case β = π

2 . Here
the determinant (after discarding α-independent factors) can be written as

3∑
n=0

∆n

(
Jth
J̄

)2n

with J̄ =
√
JttJhh and q-dependent ∆n. Computation of the ∆n shows that only n =

3 yields an α-dependence. The two other determinants are independent of α and are
therefore not responsible for the selection of the groundstate. Integration over q yields the
sought free energy dependence on α. Numerical evaluation of this last integral yields

δF ≡
(
Jth
J̄

)6 NT

3

∫
d2q

(2π)2

∆3

∆0
= −10−4NT cos2(3α)

(
Jth
J̄

)6

.

Next we compute to lowest-order in
(
Jth
J̄

)
the dependence on β. In computing the deter-

minant by Schur’s identity, one is left with a determinant of the form

log det

[
I +

(
Jth
J̄

)2

A−1B +

(
Jth
J̄

)4

A−1C

]
,

where A,B,C are 3 × 3 matrices. We are only interested in the lowest-order correction,

which will obviously be proportional to
(
Jth
J̄

)2
. We find this most conveniently by rewrit-

ing the logarithm as a trace:

log det

[
I +

(
Jth
J̄

)2

A−1B +

(
Jth
J̄

)4

A−1C

]
= Tr[log(I +

(
Jth
J̄

)2

A−1B +

(
Jth
J̄

)4

A−1C)]

≡
∑

Tn

(
Jth
J̄

)2n

(E.1)
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Once the Tn are known, the free energy can be expressed as

δF ≡
6∑

n=1

δFn

(
Jth
J̄

)2n

=
NT

3

6∑
n=1

(
Jth
J̄

)2n ∫ d2q

(2π)2
Tn

Next we compute the Tn by expanding the logarithm in
(
Jth
J̄

)2

Tr[log(I+
(
Jth
J̄

)2

A−1B+

(
Jth
J̄

)4

A−1C)] =
∞∑
1

(−)n−1

(
Jth
J̄

)2n
Tr

[
(A−1B +

(
Jth
J̄

)2
A−1C)n

]
n

with

T1 = Tr
[
A−1B

]
T2 = Tr

[
A−1C

]
− 1

2
Tr
[
(A−1B)2

]
T3 = −Tr

[
A−1BA−1C

]
+

1

3
Tr
[
(A−1B)3

]
.

Here we will only require T1. Using the stated formula, it is straightforward to calculate
the lowest-order dependence of the free energy on β. We find

δF = 0.131274 cos(2β)NT

(
Jth
J̄

)2

.
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[40] Gregor Jotzu, Michael Messer, Rémi Desbuquois, Martin Lebrat, Thomas Uehlinger,
Daniel Greif, and Tilman Esslinger. Experimental realisation of the topological
Haldane model. arXiv:1406.7874, 2014.

[41] Helmut G Katzgraber. Introduction to Monte Carlo Methods. arXiv preprint
arXiv:0905.1629, 2009.

[42] J. M. Kosterlitz. The critical properties of the two-dimensional xy model. J. Phys.
C: Solid St. Phys., 7:1046, 1974.

[43] J. M. Kosterlitz. Phase Transitions in Long-Range Ferromagnetic Chains. Phys.
Rev. Lett., 37(23):1577–1580, Dec 1976.

143



[44] J. M. Kosterlitz and D. J. Thouless. Ordering, metastability and phase transitions
in two-dimensional systems. J. Phys. C: Solid St. Phys., 6:1181, 1973.

[45] R Krcmar, A Gendiar, K Ueda, and T Nishino. Ising model on a hyperbolic lattice
studied by the corner transfer matrix renormalization group method. Journal of
Physics A: Mathematical and Theoretical, 41(12):125001, 2008.

[46] R. Krcmar, T. Iharagi, A. Gendiar, and T. Nishino. Tricritical point of the J1-J2

Ising model on a hyperbolic lattice. Phys. Rev. E, 78:061119, Dec 2008.

[47] M. Kurata, R. Kikuchi, and T. Watari. A Theory of Cooperative Phenomena. III.
Detailed Discussions of the Cluster Variation Method. The Journal of Chemical
Physics, 1953.

[48] M. F. Lapa and C. L. Henley. Ground States of the Classical Antiferromagnet on
the Pyrochlore Lattice. arXiv:1210.6810, 2012.

[49] C. Laumann, A. Scardicchio, and S. L. Sondhi. Cavity method for quantum spin
glasses on the Bethe lattice. Phys. Rev. B, 78:134424, Oct 2008.

[50] E. Lifshitz and I. Khalatnikov. Investigations in relativistic cosmology. Advances in
Physics 12(46), 185–249, 1963.

[51] Shi-Zeng Lin, Yoshitomo Kamiya, Gia-Wei Chern, and Cristian D. Batista. Stiffness
from Disorder in Triangular-Lattice Ising Thin Films. Phys. Rev. Lett., 112:155702,
Apr 2014.

[52] J. M. Luttinger and L. Tisza. Theory of Dipole Interaction in Crystals. Phys. Rev.,
70:954–964, Dec 1946.

[53] S.-K. Ma. Critical Exponents above Tc to O( 1
n). Phys. Rev. A 7, 2172–2187, Jun

1973.

[54] J. M. Maldacena. The Large N limit of superconformal field theories and supergrav-
ity. Adv.Theor.Math.Phys. 2, 231–252, 1998.

[55] E. Marinari and G. Parisi. Simulated Tempering: A New Monte Carlo Scheme.
EPL, 19(6):451, 1992.

[56] T. McQueen, Q. Huang, J. W. Lynn, R. F. Berger, T. Klimczuk, B. G. Ueland,
P. Schiffer, and R. J. Cava. Magnetic structure and properties of the s = 5/2
triangular antiferromagnet α-NaFeO2. Phys. Rev. B, 76:024420, Jul 2007.

[57] R. Melzi, P. Carretta, A. Lascialfari, M. Mambrini, M. Troyer, P. Millet, and F. Mila.
Li2VO(Si,Ge)O4, a Prototype of a Two-Dimensional Frustrated Quantum Heisen-
berg Antiferromagnet. Phys. Rev. Lett., 85:1318–1321, Aug 2000.

[58] N. D. Mermin and H. Wagner. Absence of Ferromagnetism or Antiferromagnetism in
One- or Two-Dimensional Isotropic Heisenberg Models. Phys. Rev. Lett., 17:1307–
1307, Dec 1966.

[59] Laura Messio, Bernard Bernu, and Claire Lhuillier. Kagome antiferromagnet: A
chiral topological spin liquid? Phys. Rev. Lett., 108:207204, May 2012.

144



[60] Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Augusta H
Teller, and Edward Teller. Equation of state calculations by fast computing ma-
chines. The journal of chemical physics, 21(6):1087–1092, 1953.

[61] Y Miyatake, M Yamamoto, J J Kim, M Toyonaga, and O Nagai. On the imple-
mentation of the ’heat bath’ algorithms for Monte Carlo simulations of classical
Heisenberg spin systems. J. Phys. C, 19(14):2539, 1986.

[62] R. Moessner and J. T. Chalker. Properties of a Classical Spin Liquid: The Heisenberg
Pyrochlore Antiferromagnet. Phys. Rev. Lett., 80:2929–2932, Mar 1998.

[63] R. Mosseri and J. Sadoc. The Bethe lattice: a regular tiling of the hyperbolic plane.
Journal de Physique Lettres 43(8), 249–252, 1982.

[64] M. Mourigal, W. T. Fuhrman, J. P. Sheckelton, A. Wartelle, J. A. Rodriguez-Rivera,
D. L. Abernathy, T. M. McQueen, and C. L. Broholm. Molecular Quantum Mag-
netism in LiZn2Mo3O8. Phys. Rev. Lett., 112:027202, Jan 2014.

[65] D. R. Nelson. Defects and geometry in condensed matter physics. Cambridge Uni-
versity Press, 2002.

[66] David R. Nelson. Liquids and Glasses in Spaces of Incommensurate Curvature. Phys.
Rev. Lett., 50:982–985, Mar 1983.

[67] David R. Nelson. Order, frustration, and defects in liquids and glasses. Phys. Rev.
B, 28:5515–5535, Nov 1983.

[68] MEJ Newman and GT Barkema. Monte Carlo Methods in Statistical Physics. Oxford
University Press: New York, USA, 1999.

[69] Zohar Nussinov. Avoided phase transitions and glassy dynamics in geometrically
frustrated systems and non-Abelian theories. Phys. Rev. B, 69:014208, Jan 2004.

[70] Zohar Nussinov, Joseph Rudnick, Steven A. Kivelson, and L. N. Chayes. Avoided
critical behavior in O(n) systems. Phys. Rev. Lett., 83:472–475, Jul 1999.

[71] A. Olariu, P. Mendels, F. Bert, B. G. Ueland, P. Schiffer, R. F. Berger, and R. J.
Cava. Unconventional Dynamics in Triangular Heisenberg Antiferromagnet NaCrO2.
Phys. Rev. Lett., 97:167203, Oct 2006.

[72] Peter P. Orth, Premala Chandra, Piers Coleman, and Jörg Schmalian. Emergent
Critical Phase and Ricci Flow in a 2D Frustrated Heisenberg Model. Phys. Rev.
Lett., 109:237205, Dec 2012.

[73] Peter P. Orth, Premala Chandra, Piers Coleman, and Jörg Schmalian. Emergent
criticality and Friedan scaling in a two-dimensional frustrated Heisenberg antiferro-
magnet. Phys. Rev. B, 89:094417, Mar 2014.

[74] P. P. Soltan-Panahi, J. Struck, P. Hauke, A. Bick, W. Plenkers, G. Meineke,
C. Becker, P. Windpassinger, M. Lewenstein, and K. Sengstock. Multi-component
quantum gases in spin-dependent hexagonal lattices. Nat. Phys., 7:434, 2011.

145



[75] A. M. Polyakov. Interaction of Goldstone particles in two dimensions. Applications
to ferromagnets and massive Yang-Mills fields. Phys. Lett. B, 59(1):79, October
1975.

[76] A. M. Polyakov. Gauge fields and strings, volume 3 of Contemporary concepts in
physics. Harwood Academic Publishers, Chur, Switzerland, 1987.

[77] Craig Price and Natalia B. Perkins. Finite-temperature phase diagram of the clas-
sical Kitaev-Heisenberg model. Phys. Rev. B, 88:024410, Jul 2013.

[78] Craig C. Price and Natalia B. Perkins. Critical Properties of the Kitaev-Heisenberg
Model. Phys. Rev. Lett., 109:187201, Nov 2012.

[79] T. Radu, H. Wilhelm, V. Yushankhai, D. Kovrizhin, R. Coldea, Z. Tylczynski,
T. Lühmann, and F. Steglich. Bose-Einstein Condensation of Magnons in Cs2CuCl4.
Phys. Rev. Lett., 95:127202, Sep 2005.

[80] A. P. Ramirez. Strongly geometrically frustrated magnets. Annu. Rev. Mater. Sci.,
24:453, 1994.

[81] Michael Rubinstein and David R. Nelson. Dense-packed arrays on surfaces of con-
stant negative curvature. Phys. Rev. B, 28:6377–6386, Dec 1983.

[82] S. Sachdev. Quantum Phase Transitions. Cambridge University Press, Cambridge,
U.K., 1999.

[83] Subir Sachdev and David R. Nelson. Theory of the structure factor of metallic
glasses. Phys. Rev. Lett., 53:1947–1950, Nov 1984.

[84] Anders W Sandvik. Computational studies of quantum spin systems. arXiv preprint
arXiv:1101.3281, 2011.

[85] François Sausset, Gilles Tarjus, and Pascal Viot. Tuning the Fragility of a Glass-
Forming Liquid by Curving Space. Phys. Rev. Lett., 101:155701, Oct 2008.

[86] François Sausset and Gilles Tarjus. Growing Static and Dynamic Length Scales in
a Glass-Forming Liquid. Phys. Rev. Lett., 104:065701, Feb 2010.

[87] Guilhem Semerjian, Marco Tarzia, and Francesco Zamponi. Exact solution of the
Bose-Hubbard model on the Bethe lattice. Phys. Rev. B, 80:014524, Jul 2009.

[88] J. P. Sheckelton, F. R. Foronda, LiDong Pan, C. Moir, R. D. McDonald, T. Lan-
caster, P. J. Baker, N. P. Armitage, T. Imai, S. J. Blundell, and T. M. McQueen.
Local magnetism and spin correlations in the geometrically frustrated cluster magnet
LiZn2Mo3O8. Phys. Rev. B, 89:064407, Feb 2014.

[89] J. P. Sheckelton, J. R. Neilson, D. G. Soltan, and T. M. McQueen. Possible valence-
bond condensation in the frustrated cluster magnet LiZn2Mo3O8. Nat. Mat., 11:493,
2012.

[90] E. Shender. Antiferromagnetic garnets with fluctuationally interacting sublattices.
Sov. Phys. JETP, 56:178, 1982.

146



[91] Sophia R. Sklan and Christopher L. Henley. Nonplanar ground states of frustrated
antiferromagnets on an octahedral lattice. Phys. Rev. B, 88:024407, Jul 2013.

[92] B. W. Southern and A. P. Young. Spin stiffness in frustrated antiferromagnets. Phys.
Rev. B, 48:13170–13173, Nov 1993.

[93] Oleg A. Starykh, Wen Jin, and Andrey V. Chubukov. Phases of a Triangular-Lattice
Antiferromagnet Near Saturation. Phys. Rev. Lett., 113:087204, Aug 2014.
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