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Abstract

We propose and analyze a Strang splitting method for a cubic semilin-
ear Schrödinger equation with forcing and damping terms. The nonlinear
part is solved analytically, whereas the linear part – space derivatives,
damping and forcing – is approximated by the exponential trapezoidal
rule. The necessary operator exponentials and φ-functions can be com-
puted efficiently by fast Fourier transforms if space is discretized by spec-
tral collocation. We show wellposedness of the problem and H4(T) reg-
ularity of the solution for initial data in H4(T) and sufficiently smooth
forcing. Under these regularity assumptions, we prove a first-order error
bound in H1(T) and a second-order error bound in L2(T) on bounded
time-intervals. Nonlinear Schrödinger equation; Strang splitting; error
analysis; stability; wellposedness; regularity.

1 Introduction

Nonlinear Schrödinger equations (NLS) occur in many different forms and de-
scribe a multitude of different phenomena, such as Bose-Einstein condensates,
small-amplitude surface water waves, Langmuir waves in hot plasmas, or signal
processing through optical fibers, to name but a few. The intriguing properties
– for example conservation of norm, energy, and momentum, near-conservation
of actions over long times, existence of solitary waves, or possible blow-up –
have inspired and challenged mathematicians for a long time. Surveys about
these topics can be found, e.g., in the monographs of [Caz03] and [SS99].
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In most applications, the solution of the NLS has to be approximated by
a numerical scheme. For problems on the d-dimensional torus Td, splitting
methods with spectral collocation in space are particularly popular. These in-
tegrators are based on the observation that the linear and the nonlinear part of
the NLS can be solved at low computational costs in the absence of the other
part. The splitting approach can also be applied to the Gross-Pitaevskii equa-
tion, a NLS on Rd with constraining polynomial potential, by using the basis
of Hermite functions for the space discretization. The accuracy of such integra-
tors has been analyzed, e.g., by [BBD02], [DT13], [Fao12], [Gau11], [HKT14],
[KNT13], [Lub08], [ML15], and [Tha12]. The long-time behavior of numerical
solutions, in particular the (near-)conservation of invariants over long times and
the stability of plane waves, has been investigated by [Fao12], [FGL14], [GL10],
and for exponential integrators by [CG12].

In this article we consider the Lugiato-Lefever equation, a cubic, focusing
NLS which, in contrast to the “classical” NLS, contains a damping and a forcing
term; cf. [LL87]. This equation has been proposed as a model for the formation
of Kerr-frequency combs in microresonators coupled to optical waveguides and
driven by an external pump tuned to a resonance wavelength; see [CY10] and
[HHR+12]. The frequency combs generated by such a device can be used as
optical sources for high-speed data transmission. In the mathematical model,
the forcing term represents the external pump, whereas the radiation into the
waveguide is modeled by the damping term. In practice it is typically not
clear which parametrization generates a suitable frequency comb. As a conse-
quence, the Lugiato-Lefever equation has to be solved many times with different
parametrizations, which requires a reliable and efficient simulation method. So
far, however, both the properties of the exact solution and the performance of
numerical integrators for its approximation are only poorly understood.

Our contribution in this article is twofold. First, we show global wellposed-
ness of the Lugiato-Lefever equation and H4(T) regularity of the solution for
initial data in H4(T) and a forcing function in C2−j([0, T ];Hj(T)

)
for j = 0, 1, 2.

In contrast to the NLS without damping and forcing where wellposedness has
been investigated in detail (cf. [Caz03]) such an analysis has been missing for the
Lugiato-Lefever equation so far. Our result is derived by means of a modified
energy functional and regularity properties of several differentiated versions of
the equation. Second, we extend the Strang splitting approach to the Lugiato-
Lefever equation and provide an error analysis for this method. The linear
inhomogeneous part (including the space derivatives and the forcing/damping
terms) is propagated by an exponential integrator whereas the nonlinear part
is solved exactly as for the standard NLS. We prove that under the above reg-
ularity conditions on the initial data and the forcing the method converges on
bounded time-intervals with the classical order 2 in L2(T), and with order 1
in H1(T); see Theorem 2 below. The proof consists of several steps which are
formulated as self-contained results. As in [Lub08], the classical argument “con-
sistency plus stability yields convergence” must be suitably adapted, because
the stability result (Theorem 5 below) assumes the numerical solution to be
bounded in H1(T). This a-priori bound is needed to control the nonlinearity.
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In the proof of Theorem 2 this bound is verified by means of an error bound
of second order for the local error in H1(T), in addition to the local (third
order) error bound in L2(T) required for consistency (see Theorems 3 and 4,
respectively).

Following [Lub08], many authors have used the calculus of Lie derivatives
and commutator bounds in their error analysis, e.g. [DT13], [Fao12], [Gau11],
[HKT14], [KNT13], [ML15], and [Tha12]. In contrast to these works, we avoid
the notationally rather involved Lie derivatives, because in case of the Lugiato-
Lefever equation the iterated commutators between the linear and nonlinear
part are not the only source of error: An additional difficulty arising in our
situation is the fact that the forcing term is coupled to the space derivatives
and to the nonlinear part in a complicated way. Instead of Lie derivatives, our
error formulas are based on iterated variation-of-constants formulas, the calculus
of φ-functions (see Section 3) and the exponential trapezoidal rule (see formula
(15)). The resulting error formulas are quite involved, and it requires some
effort to keep track of the necessary regularity of the exact and the numerical
solutions.

In the next section, we introduce the Lugiato-Lefever equation and present
the result on wellposedness and regularity of solutions (Theorem 1). It is the
cornerstone of the numerical analysis in later chapters. Since the proof is rather
long, it is postponed to Section 8. The splitting method for the Lugiato-Lefever
equation is introduced in Section 3, and we formulate the error bounds for the
global error (Theorem 2) along with the results required for its proof (bounds of
the local error in L2(T) and H1(T) and stability of the scheme). All following
sections are devoted to the proofs of these assertions. In Section 4, we prove
stability of the numerical scheme, and we compile a number of auxiliary results.
The bounds of the local errors are shown in Sections 5 and 6, respectively, and
the proof of the global error bound follows in Section 7.

2 The Lugiato-Lefever equation

The cubic semilinear Schrödinger equation

∂tu(t, x) = −u(t, x) + i∂2xu(t, x) + i|u(t, x)|2u(t, x) + g(t, x) , t > 0 (1a)

u(0, x) = u0(x) (1b)

on the one-dimensional torus T = R/2πZ is known as the Lugiato-Lefever equa-
tion in physics and electronic engineering. The terms −u(t, x) and g(t, x) model
damping and external forcing, respectively, and do not appear in the “classical”
NLS. Clearly, these terms destroy the Hamiltonian structure, and in general the
energy, momentum and norm of the solution do not remain constant in time.
Solely the one-dimensional torus is considered, because this is the relevant set-
ting for modeling frequency comb generation; cf. [CY10] and [HHR+12].

The evolution equation (1) is considered on L2(T), i.e. on the Hilbert space
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of square integrable functions with the inner product

〈v, w〉 =

∫
T
v(x)w(x) dx , v, w ∈ L2(T)

and induced norm ‖v‖L2 =
√
〈v, v〉. The Sobolev space of all functions v : T→

C with partial derivatives up to order k ∈ N0 in L2(T) is denoted by Hk(T).
For every k, Hk(T) is a Hilbert space with norm

‖v‖2Hk =

k∑
j=0

‖∂jxv‖2L2 .

In particular, we identify H0(T) = L2(T). We further define the Sobolev spaces
of negative order by duality, i.e., we set

H−k(T) := Hk(T)∗ with norm ‖ϕ‖H−k = sup{|ϕ(v)|
∣∣ ‖v‖Hk ≤ 1}

for k ∈ N. We assume the regularity

u0 ∈ H4(T) and g ∈ C2−j([0, T ];Hj(T)
)
, j = 0, 1, 2, (2)

for the initial data u0 and the forcing g, respectively, where T > 0 is fixed. It will
be shown in Theorem 1 that these assumptions guarantee the global existence
and uniqueness of a sufficiently smooth solution.

Henceforth, we will usually omit the space variable and write u(t) instead
of u(t, x), and so on. Throughout the paper, C > 0 and C(·) > 0 denote
universal constants, possibly taking different values at various appearances. The
notation C(·) means that the constant depends only on the values specified in
the brackets.

2.1 Analytic setting

For v ∈ H1(T) and w ∈ L2(T), the Sobolev embedding Hj+1(T) ↪→ Cj(T) for
j ∈ N0 implies the inequality

‖vw‖L2 ≤ ‖v‖L∞‖w‖L2 ≤ C‖v‖H1‖w‖L2 . (3)

For every k ∈ N0 we define

k∗ = max{1, k}. (4)

Then, for v ∈ Hk∗(T) and w ∈ Hk(T) the bound

‖vw‖Hk ≤ C‖v‖Hk∗ ‖w‖Hk , k ≥ 0 (5)

follows from (3). For every k ∈ Z, the operator

A := i∂2x − I with domain Hk+2(T)

generates a strongly continuous group etA in Hk(T). The level k of regularity
is not expressed in our notation since the respective operators are restrictions
of each other.
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2.2 Existence and uniqueness of solutions

In the analysis of the numerical method presented below, it is assumed that a
unique solution of (1) exists in H4(T) on [0, T ], under assumption (2). In the
next theorem we construct the desired (global) solution, and we also establish
additional results on the longtime behavior (on the time interval R+). We refer
to e.g. [Caz03] for local wellposedness in such regularity classes and for related
results on global wellposedness without forcing.

Theorem 1. Let assumption (2) hold. Then, (1) has a unique solution

u ∈ C
(
R+;H4(T)

)
∩ C1

(
R+;H2(T)

)
∩ C2

(
R+;L2(T)

)
. (6)

Under additional assumptions on g, the following bounds hold.

(a) If g ∈ L∞(R+;L2(T)), then ‖u(t)‖L2 ≤ C for t ≥ 0.
(b) If g, ∂tg ∈ L∞(R+;L2(T)), then ‖u(t)‖H1 ≤ C

√
1 + t for t ≥ 0.

(c) If g ∈ L2(R+;L2(T)), then u ∈ L2(R+;L2(T)).
(d) If g ∈ H1(R+;L2(T)), then ‖u(t)‖H1 ≤ C for t ≥ 0.

Here C only depends on ‖u0‖L2 in (a) and on ‖u0‖H1 in (b) and (d), as well
as on the respective norms of g.

The proof of this theorem is postponed to Section 8.

3 Strang splitting for the Lugiato-Lefever equa-
tion

In order to formulate a numerical method for (1), it is convenient to define the
nonlinear mapping

B : L2(T) −→ L1(T), B(w) = i|w|2.

If w ∈ H1(T), then B(w) ∈ L∞(T) due to the Sobolev embedding H1(T) ↪→
L∞(T). For a fixed w ∈ H1(T), the function x 7→ B(w)(x) = i|w(x)|2 will be
identified with the multiplication operator

B(w) : L2(T)→ L2(T), B(w)v = i|w|2v

which generates a unitary group (etB(w))t∈R on L2(T). For v ∈ Hk∗(T) and
w ∈ Hk(T) it follows from (5) that

‖B(v)w‖Hk ≤ C‖v‖2Hk∗‖w‖Hk , k ≥ 0 . (7)

As in 2.1 we let A := i∂2x − I. Then, the Lugiato-Lefever equation (1) reads

∂tu = Au+B(u)u+ g, (8a)

u(0) = u0. (8b)

The solution is supposed to be approximated on the time-interval [0, T ] for
T > 0.
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3.1 φ-functions

In the construction and analysis of the splitting method for (1) we use the
operator-valued functions φj(tA) defined by

φj(tA)v =

∫ 1

0

θj−1

(j − 1)!
e(1−θ)tAv dθ, j ∈ N, φ0(tA)v = etAv, (9)

cf. [HO10]. For every j, k ∈ N0 and t ≥ 0, the operator φj(tA) : Hk(T)→ Hk(T)
is bounded, and

‖φj(tA)v‖Hk(T) ≤
1

j!
‖v‖Hk(T) for all v ∈ Hk(T).

For every v ∈ L2(T) and t > 0, the recurrence relation

φj+1(tA)v = (tA)−1
(
φj(tA)v − 1

j!
v

)
, j ∈ N0 (10)

follows from (9) via integration by parts. This recursion yields the Taylor ex-
pansions

etAv = φ0(tA)v =

m−1∑
k=0

tk

k!
Akv + (tA)mφm(tA)v (11)

for m ∈ N and v ∈ D(Am). Similar to (9) we define for j ∈ N, w ∈ H1(T) and
v ∈ L2(T)

φj(tB(w))v =

∫ 1

0

θj−1

(j − 1)!
e(1−θ)tB(w)v dθ, φ0(tB(w))v = etB(w)v. (12)

Equation (11) still holds if A is replaced by B(w).

3.2 Time-integration scheme

Strang splitting methods for (8) are based on the observation that solving each
of the two sub-problems

∂tv(t) = Av(t) + g(t), (13)

∂tw(t) = B(w(t))w(t), (14)

is much easier than solving (8a). Let tn = nτ with step-size τ > 0. Applying
the variation-of-constants formula to (13) yields

v(tn+1) = eτAv(tn) +

∫ τ

0

e(τ−s)Ag(tn + s) ds.

After s 7→ g(tn + s) has been approximated by the linear interpolation

s 7→ g(tn) + s
g(tn+1)− g(tn)

τ
,
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the integral can be computed analytically via integration by parts, and we obtain
the exponential trapezoidal rule

vn+1 = eτAvn + τ
(
φ1(τA)g(tn) + φ2(τA)

(
g(tn+1)− g(tn)

))
(15)

which yields approximations vn ≈ v(tn) to the solution of (13); cf. [HO10].
The sub-problem (14) can even be solved exactly: Since

∂t
(
|w(t)|2

)
= 2Re (w(t)∂tw(t)) = 2Re

(
i|w(t)|4

)
= 0 ,

it follows that |w(t)| = |w(0)| is time invariant, and hence the solution of (14)
is given explicitly by

w(t) = etB(w(0))w(0) .

This is a well-known fact; see [Fao12]. Approximations un ≈ u(tn) to the
solution of the full problem (8) can now be computed recursively with the
Strang splitting

u+n = eτB(un)/2un, (16a)

u∗n = eτAu+n + τ
(
φ1(τA)g(tn) + φ2(τA)

(
g(tn+1)− g(tn)

))
, (16b)

un+1 = eτB(u∗n)/2u∗n . (16c)

Every time-step un 7→ un+1 of the Strang splitting consists of three sub-steps.
First, (14) is solved over the interval [tn, tn + τ

2 ] with initial data w(tn) = un,
which yields an update u+n = w(tn + τ

2 ). Then, one step of the exponential
trapezoidal rule (15) with step-size τ and vn = u+n is carried out, which turns
u+n into u∗n. Finally, (14) is propagated over the interval [tn + τ

2 , tn+1], which
gives the new approximation un+1 ≈ u(tn+1). Note that for A = i∆ and
g(t) ≡ 0, (16) reduces to the method considered in [Lub08] for solving the NLS
in absence of damping and forcing.

For every θ ≥ 0, the result after n ∈ N0 steps of the Strang splitting (16)
with step-size τ > 0 starting at time θ with initial data z will be denoted by

Φnτ,θ(z).

If n = 1, then we simply write Φτ,θ(z) instead of Φ1
τ,θ(z). For any τ > 0 and

n ∈ N, the relations

Φ0
τ,θ(z) = z, Φnτ,0(z) = Φτ,tn−1

(
Φn−1τ,0 (z)

)
= Φn−1τ,t1 (Φτ,0(z))

follow directly from the definition. In addition to the numerical flow Φnτ,θ(z),
we also consider the exact flow given by the exact solution of (8a)

t 7→ Ψt,θ(z)

with initial data u(θ) = z at time θ.
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For the discretization of space the spectral collocation method can be used,
i.e. the solution u(t) = u(t, x) is approximated by a trigonometric polynomial
which satisfies (1a) in m ∈ N equidistant collocation points xk = 2πk/m; see
[Fao12] for details. If p is such a trigonometric polynomial, then eτAp can be
easily computed by means of the fast Fourier transform. Terms like eτB(p)/2p
are approximated with a trigonometric polynomial which interpolates the values
eiτ |p(xk)|2/2p(xk) in the collocation points. Hence, all terms in (16) can be
evaluated quickly at low computational costs. In this paper, however, only
the semidiscretization in time with the Strang splitting (16) and without any
approximation in space will be analyzed.

3.3 Error analysis: main results

Our goal is to prove that the Strang splitting converges with order 1 in H1(T)
and with order 2 in L2(T) on bounded time-intervals. In order to state our
results, we define the abbreviations

mk
u := sup

t∈[0,T ]

‖u(t)‖Hk , mk
g := sup

t∈[0,T ]

‖g(t)‖Hk ,

mk
g′ := sup

t∈[0,T ]

‖∂tg(t)‖Hk , mk
g′′ := sup

t∈[0,T ]

‖∂2t g(t)‖Hk .

Observe that for k ≤ 4 the number mk
u is finite by Theorem 1 and assumption

(2). An inspection of the proof of Theorem 1 shows that m4
u only depends on

the norms of u0 and g in the spaces involved in (2). For a solution u(t) ∈ H4(T)
of (8) we immediately obtain the estimates

sup
t∈[0,T ]

‖∂tu(t)‖Hk ≤ C
(
mk+2
u ,mk

g

)
, for 0 ≤ k ≤ 2 , (17)

sup
t∈[0,T ]

‖∂2t u(t)‖L2 ≤ C
(
m4
u ,m

2
g ,m

0
g′
)
. (18)

The following theorem is the main result of the error analysis.

Theorem 2. Let u(t) = Ψt,0(u0) be the exact solution of (8) and assume that
the initial data u0 and the forcing g have the regularity (2). Then, the global
error of the splitting method (16) is bounded by

‖Φnτ,0(u0)− u(tn)‖H1 ≤ τC
(
T,m3

u ,m
1
g ,m

1
g′
)
, (19)

‖Φnτ,0(u0)− u(tn)‖L2 ≤ τ2C
(
T,m4

u ,m
2
g ,m

1
g′ ,m

0
g′′
)

(20)

for all n ∈ N with tn = nτ ≤ T and sufficiently small τ > 0.

Theorem 2 is shown in Section 7. In (51) and (53) we give upper bounds
for the step-size τ , but we remark that this step-size restriction is typically too
pessimistic in practice. The outline of the proof is taken from [Lub08]. The first
two ingredients are bounds for the local error of (16) in H1(T) and in L2(T),
respectively. They are established in Section 5 and 6.
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Theorem 3 (Local error in H1(T)). Let n ∈ N with tn+1 = tn + τ ≤ T . If
u(tn) ∈ H3(T) and if g ∈ C1

(
[0, T ];H1(T)

)
, then the error after one step of the

splitting method (16) is bounded by∥∥Φτ,tn
(
u(tn)

)
−Ψτ,tn

(
u(tn)

)∥∥
H1 ≤ τ2C(m3

u ,m
1
g ,m

1
g′).

Theorem 4 (Local error in L2(T)). Let n ∈ N with tn+1 = tn + τ ≤ T . Under
assumption (2) the error after one step of the splitting method (16) is bounded
by ∥∥Φτ,tn

(
u(tn)

)
−Ψτ,tn

(
u(tn)

)∥∥
L2 ≤ τ3C(m4

u ,m
2
g ,m

1
g′ ,m

0
g′′).

The error bound for the global error of (16) is obtained by combining the
bounds for the local error with the following stability result, proved in Section 4.

Theorem 5 (Stability). Let n ∈ N with tn+1 = tn + τ ≤ T . For v, w ∈ H1(T)
with ‖v‖H1 ≤M and ‖w‖H1 ≤M , the splitting method (16) satisfies

‖Φτ,tn(v)− Φτ,tn(w)‖Hk ≤ eC·(M
2
∗+M

2−1)‖v − w‖Hk , k = 0, 1 (21)

with constant

M∗ = e(CM
2−1)τM + τCm1

g. (22)

4 Stability and auxiliary results

Now we state three lemmas which will be used frequently throughout the paper.
The first lemma asserts a stability result for the mapping v 7→ etB(v)v. As before
in (4), we let k∗ = max{1, k}.

Lemma 1. If v, w ∈ Hk∗(T) with ‖v‖Hk∗ ≤ M and ‖w‖Hk∗ ≤ M for some
k ∈ N0, then

‖etB(v)v − etB(w)w‖Hk ≤ eCM
2t‖v − w‖Hk , t ≥ 0 , (23a)

‖etB(v)v‖Hk ≤MeCM
2t , t ≥ 0 . (23b)

Note that for the stability in L2(T) (i.e. k = 0 and k∗ = 1) the functions v
and w have to belong to H1(T).

Proof. The proof uses ideas of [Lub08]. Let k ∈ N0 and let v, w ∈ Hk∗(T)
with ‖v‖Hk∗ ≤ M and ‖w‖Hk∗ ≤ M . Then, the functions x(t) = etB(v)v and
y(t) = etB(w)w are the solutions of the initial value problems

x′(t) = B(v)x(t) , x(0) = v , t ≥ 0,

y′(t) = B(w)y(t) , y(0) = w , t ≥ 0,
(24)
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respectively, cf. Section 3.2. The inequality (5) implies that B(v) ∈ Hk(T) and
hence etB(v) ∈ Hk(T), and applying (5) once again shows that x(t) = etB(v)v ∈
Hk(T) for every t ∈ [0, T ]. The same arguments yield that y(t) ∈ Hk(T) for
every t ∈ [0, T ].

First, we examine ‖x(t)‖Hk . From (7) we derive the estimate

‖B(v)x(t)‖Hk ≤ CM2‖x(t)‖Hk , t ≥ 0, (25)

and hence

‖x(t)‖Hk ≤ ‖x(0)‖Hk +

∫ t

0

‖B(v)x(s)‖Hk ds ≤M + CM2

∫ t

0

‖x(s)‖Hk ds .

Gronwall’s lemma now yields

‖x(t)‖Hk ≤MeCM
2t, (26)

which proves (23b). In order to show (23a), we consider the difference

B(v)x(t)−B(w)y(t) = i|v|2x(t)− i|w|2y(t)

= i(v − w)v̄x(t) + iw(v̄ − w̄)x(t) + iww̄
(
x(t)− y(t)

)
.

Using also (5) and (26), we derive

‖B(v)x(t)−B(w)y(t)‖Hk ≤ C
[
2M‖x(t)‖Hk∗‖v−w‖Hk +M2‖x(t)−y(t)‖Hk

]
≤ C

[
2M2eCM

2t‖v − w‖Hk +M2‖x(t)− y(t)‖Hk

]
.

The equations (24) thus imply

‖x(t)− y(t)‖Hk ≤ ‖v − w‖Hk +

∫ t

0

‖B(v)x(s)−B(w)y(s)‖Hk ds

≤
(

1 + 2CM2

∫ t

0

eCM
2s ds

)
‖v − w‖Hk

+ CM2

∫ t

0

‖x(s)− y(s)‖Hk ds

for t ≥ 0. Since 0 ≤ (eCM
2t − 1)2 yields 2eCM

2t − 1 ≤ e2CM2t, it follows that

1 + 2CM2

∫ t

0

eCM
2s ds = 1 + 2(eCM

2t − 1) ≤ e2CM
2t.

Applying Gronwall’s lemma once again, we arrive at

‖etB(v)v − etB(w)w‖Hk = ‖x(t)− y(t)‖Hk ≤ eĈM
2t‖v − w‖Hk

with Ĉ = 3C.
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The next lemma concerns technical estimates regarding the quantity u∗ in the
splitting method (16).

Lemma 2. For n ∈ N0, a given v and τ ∈ [0, T ] we define

v∗(τ) = eτAeτB(v)/2v + τ
(
φ1(τA)g(tn) + φ2(τA)

(
g(tn + τ)− g(tn)

))
. (27)

(i) If v, un ∈ H1(T) with ‖v‖H1 , ‖un‖H1 ≤M , then

‖v∗(τ)‖Hk ≤ e(CM
2−1)τM + τCmk

g for k = 0, 1 .

(ii) If k ∈ {0, 1} and v, un ∈ Hk+2(T) with ‖v‖Hk+2 , ‖un‖Hk+2 ≤M , then

‖∂τv∗(τ)‖Hk ≤ C(T,M,mk
g ,m

k
g′) .

(iii) If v, un ∈ H4(T) with ‖v‖H4 , ‖un‖H4 ≤M , then

‖∂2τv∗(τ)‖L2 ≤ C(T,M,m2
g,m

0
g′ ,m

0
g′′).

Remark. If v = un, then v∗(τ) = u∗n defined in (16b). In the error analysis
below, however, Lemma 2 will sometimes also be applied with v = u(tn).

Proof. The first assertion follows from Lemma 1 and the boundedness of the
operators φj(τA). For the proof of (ii) and (iii), it is useful to represent the
derivative ∂τφj(τA) in terms of φj−1(τA) and φj(τA): If v ∈ D(A), then (9)
yields

∂τφj(τA)v =

∫ 1

0

θj−1

(j − 1)!
(1− θ)Ae(1−θ)τAv dθ

=

∫ 1

0

θj−1

(j − 1)!
Ae(1−θ)τAv dθ − j

∫ 1

0

θj

j!
Ae(1−θ)τAv dθ

=
(
φj(τA)− jφj+1(τA)

)
Av, (28)

and with (10) we obtain

∂τφ0(τA)v = eτAAv , v ∈ D(A), τ ≥ 0,

∂τφj(τA)v =
1

τ

(
φj−1(τA)− jφj(τA)

)
v , v ∈ L2(T), j > 0, τ > 0.

Now (ii) and (iii) can be shown with straightforward calculations using (7),
Lemma 1, the boundedness of φj(τA), and the fact that τ ≤ T .

After these preparations we are ready to prove stability of the Strang splitting
scheme (16). In order to simplify notation (in particular in Sections 5 and 6),
we define

B1/2(u) =
i

2
|u|2 =

1

2
B(u). (29)

11



Proof of Theorem 5. Let v, w ∈ H1(T) with ‖v‖H1 ≤ M and ‖w‖H1 ≤ M . As
in (16), we define

v∗ = eτAeτB1/2(v)v + τ
(
φ1(τA)g(tn) + φ2(τA)

(
g(tn + τ)− g(tn)

))
,

w∗ = eτAeτB1/2(w)w + τ
(
φ1(τA)g(tn) + φ2(τA)

(
g(tn + τ)− g(tn)

))
.

According to Lemma 2, we have ‖v∗‖H1 ≤ M∗ and ‖w∗‖H1 ≤ M∗ with M∗
defined in (22). Applying Lemma 1 twice results in the estimates

‖Φτ,tn(v)− Φτ,tn(w)‖Hk = ‖eτB1/2(v
∗)v∗ − eτB1/2(w

∗)w∗‖Hk

≤ eCM
2
∗τ‖v∗ − w∗‖Hk

= eCM
2
∗τ‖eτAeτB1/2(v)v − eτAeτB1/2(w)w‖Hk

≤ e(CM
2
∗−1)τ‖eτB1/2(v)v − eτB1/2(w)w‖Hk

≤ eC·(M
2
∗+M

2−1)τ‖v − w‖Hk

for k ∈ {0, 1}.

The last lemma in this subsection will be useful in the proofs of Theorems 3
and 4.

Lemma 3. For a given n ∈ N and τ ∈ [0, T ] let

b(τ) = B
(
u(tn + τ)

)
−B

(
v∗(τ)

)
,

where v∗(τ) is defined by (27) with v = u(tn). Under the assumption (2), we
have

b(τ) =

∫ τ

0

∂τ b(s) ds =

∫ τ

0

∫ s

0

∂2τ b(r) dr ds.

Proof. The fundamental theorem of calculus gives

b(τ) = b(0) +

∫ τ

0

∂τ b(s) ds = b(0) + τ∂τ b(0) +

∫ τ

0

∫ s

0

∂2τ b(r) dr ds.

As v∗(0) = v = u(tn) by assumption, it is clear that b(0) = 0. Hence, we only
have to show that ∂τ b(0) = 0. By definition, we have

∂τ b(τ) = 2iRe (u(tn + τ)∂τu(tn + τ))− 2iRe
(
v∗(τ)∂τv

∗(τ)
)
.

Since u(tn) = v = v∗(0),

∂τu(tn + τ)
∣∣∣
τ=0

= Au(tn) +B(u(tn))u(tn) + g(tn),

∂τv
∗(τ)

∣∣∣
τ=0

= Av +B1/2(v)v + g(tn),

12



we deduce

∂τ b(0) = 2iRe (u(tn)∂τu(tn))− 2iRe (u(tn)∂τv
∗(0))

= 2iRe (u(tn)B(u(tn))u(tn))− 2iRe
(
u(tn)B1/2(u(tn))u(tn)

)
= 0

because u(tn)B(u(tn))u(tn) = i|u(tn)|4 and u(tn)B1/2(u(tn))u(tn) = i
2 |u(tn)|4

are both purely imaginary functions; cf. [CKT07].

5 Local error in H1(T): Proof of Theorem 3

Without loss of generality we assume that n = 0, i.e. u(tn) = u(0) = u0 and
Ψτ,tn(u(tn)) = Ψτ,0(u0) = u(τ).

Step 1. The variation-of-constants formula yields the representation

u(τ) = eτAu0 +

∫ τ

0

e(τ−s)A
(
B(u(s))u(s) + g(s)

)
ds

of the exact solution of (8). Substituting the formula a second time for u(s),
we obtain

u(τ) = eτAu0 + I1 + I2 +R1 , (30)

where we set

I1 =

∫ τ

0

e(τ−s)AB(u(s))esAu0 ds, (31)

I2 =

∫ τ

0

e(τ−s)Ag(s) ds, (32)

R1 =

∫ τ

0

∫ s

0

e(τ−s)AB(u(s))e(s−σ)A [B(u(σ))u(σ) + g(σ)] dσ ds.

Using (7), it can be shown that

‖R1‖H1 ≤ τ2C(m1
u ,m

1
g) . (33)

The approximation u1 = Φτ,0(u0) of the numerical method after one step reads

u1 = eτB1/2(u
∗
0)eτAeτB1/2(u0)u0

+ τeτB1/2(u
∗
0)
(
φ1(τA)g(0) + φ2(τA)

(
g(τ)− g(0)

))
(34)

with B1/2(·) defined in (29) and

u∗0 = eτAeτB1/2(u0)u0 + τ
(
φ1(τA)g(0) + φ2(τA)

(
g(τ)− g(0)

))
.

We consider u∗0 as a function of τ > 0. Using further the expansion

eτB1/2(u0)v =

m−1∑
k=0

τk

k!
Bk1/2(u0)v + τmBm1/2(u0)φm(τB1/2(u0))v

13



with m ∈ {1, 2}, see (11), we derive

u1 = eτAu0 + T1 + T2 +R2 , (35)

with

T1 = τ
(
B1/2(u∗0)eτA + eτAB1/2(u0)

)
u0, (36)

T2 = τ
(
φ1(τA)g(0) + φ2(τA)

(
g(τ)− g(0)

))
, (37)

R2 = τ2
[
eτAB2

1/2(u0)φ2
(
τB1/2(u0)

)
u0 +B1/2(u∗0)eτAB1/2(u0)φ1

(
τB1/2(u0)

)
u0

+B2
1/2(u∗0)φ2

(
τB1/2(u∗0)

)
eτAeτB1/2(u0)u0

+B1/2(u∗0)φ1
(
τB1/2(u∗0)

)(
φ1(τA)g(0) + φ2(τA)

(
g(τ)− g(0)

))]
.

Estimate (7) and Lemmas 1 and 2 imply

‖R2‖H1 ≤ τ2C(T,m1
u ,m

1
g) . (38)

Step 2. We compare the exact solution (30) with the numerical solution (35).
Using (33) and (38), we infer

‖u(τ)− u1‖H1 ≤ ‖I1 − T1‖H1 + ‖I2 − T2‖H1 + τ2C(m1
u ,m

1
g).

Our goal is now to bound the terms ‖I1 − T1‖H1 and ‖I2 − T2‖H1 . With the
abbreviations

h1(s) = e(τ−s)AB(u(s))esAu0 , (39)

b(τ) = B(u(τ))−B(u∗0(τ)) , (40)

the first term can be represented as I1 − T1 = Q1 + E1, where

Q1 =

∫ τ

0

h1(s) ds− τ

2

(
h1(0) + h1(τ)

)
(41)

is the local quadrature error of the trapezoidal rule and

E1 =
τ

2
b(τ)eτAu0 (42)

is a remainder term. The order of the trapezoidal rule is two, and hence its
local error scales like O

(
τ3
)

if the integrand is smooth enough. For the proof of
Theorem 3, however, the bound

‖Q1‖H1 ≤ τ2C sup
s∈[0,τ ]

‖∂sh1(s)‖H1 (43)

is sufficient. Applying Lemma 3 with n = 0 and tn = 0, the remainder term E1

can be bounded by

‖E1‖H1 ≤ τ2Cm1
u sup
s∈[0,τ ]

‖∂sb(s)‖H1 .

14



The difference

I2 − T2 =

∫ τ

0

e(τ−s)Ag(s) ds− τ
(
φ1(τA)g(0) + φ2(τA)

(
g(τ)− g(0)

))
is the local error of the exponential trapezoidal rule so that

‖I2 − T2‖H1 ≤ τ2Cm1
g′ ,

see Theorem 2.7 in [HO10].

Step 3. To complete the proof of Theorem 3, it remains to show that the terms

sup
s∈[0,τ ]

‖∂sh1(s)‖H1 and sup
s∈[0,τ ]

‖∂sb(s)‖H1

are bounded. The equations (7) and (17) yield

sup
s∈[0,τ ]

‖∂sh1(s)‖H1 ≤ C
(
m3
u ,m

1
g

)
.

Finally, in view of (17) and Lemma 2, the term

∂sb(s) = 2i
(
Re(u(s)∂su(s))− Re(u∗0(s)∂su

∗
0(s))

)
can be estimated

sup
s∈[0,τ ]

‖∂sb(s)‖H1 ≤ C
(
T ,m3

u ,m
1
g ,m

1
g′
)
,

which completes the proof of Theorem 3.

6 Local error in L2(T): Proof of Theorem 4

To prove the third-order local error bound in L2(T), we mimic the proof for the
second-order bound of the local error in H1(T). However, we have to expand
the analytical solution and the numerical scheme to a higher order. As before,
we assume without any loss of generality that n = 0 and let u(τ) = Ψτ,0(u0).

Step 1. We expand the exact solution further by inserting the variation-of-
constants formula for u(σ) into (30). It follows that

u(τ) = eτAu0 + I1 + I2 + I3 + I4 + R̂1,

where I1 and I2 have been defined in (31) and (32), respectively, and we intro-
duce

I3 =

∫ τ

0

∫ s

0

e(τ−s)AB(u(s))e(s−σ)AB(u(σ))eσAu0 dσ ds,

I4 =

∫ τ

0

∫ s

0

e(τ−s)AB(u(s))e(s−σ)Ag(σ) dσ ds,

R̂1 =

∫ τ

0

∫ s

0

∫ σ

0

e(τ−s)AB(u(s))e(s−σ)A

× B(u(σ))e(σ−ξ)A
[
B(u(ξ))u(ξ) + g(ξ)

]
dξ dσ ds.
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The estimate (7) yields

‖R̂1‖L2 ≤ τ3C(m1
u ,m

0
g) . (44)

Substituting the expansion

eτB1/2(·) = I + τB1/2(·) +
τ2

2
B2

1/2(·) + τ3B3
1/2(·)φ3

(
τB1/2(·)

)
into the splitting method (34), we derive

u1 = eτAu0 + T1 + T2 + T3 + T4 + R̂2

with T1, T2 from (36), (37) and

T3 =
τ2

2

(
B2

1/2(u∗0)eτA + 2B1/2(u∗0)eτAB1/2(u0) + eτAB2
1/2(u0)

)
u0

T4 = τ2B1/2(u∗0)
(
φ1(τA)g(0) + φ2(τA)

(
g(τ)− g(0)

))
R̂2 = τ3

[
eτAB3

1/2(u0)φ3
(
τB1/2(u0)

)
u0 +B1/2(u∗0)eτAB2

1/2(u0)φ2
(
τB1/2(u0)

)
u0

+
1

2
B2

1/2(u∗0)eτAB1/2(u0)φ1
(
τB1/2(u0)

)
u0

+B3
1/2(u∗0)φ3

(
τB1/2(u∗0)

)
eτAeτB1/2(u0)u0

+B2
1/2(u∗0)φ2

(
τB1/2(u∗0)

)(
φ1(τA)g(0) + φ2(τA)

(
g(τ)− g(0)

))]
.

Inequality (7) and Lemma 1 imply

‖R̂2‖L2 ≤ τ3C(m1
u ,m

0
g) . (45)

Step 2. Comparing the exact solution with the numerical solution and using
(44) and (45), we estimate

‖u(τ)− u1‖L2 ≤‖I1 − T1‖L2 + ‖I2 − T2‖L2 + ‖I3 − T3‖L2

+ ‖I4 − T4‖L2 + τ3C(m1
u ,m

0
g).

As before, the terms of the numerical solution are splitted into a suitable quadra-
ture formula and a remainder term. In addition to h1(s) defined in (39) and
b(τ) defined in (40), we employ the abbreviations

h2(s, σ) = e(τ−s)AB(u(s))e(s−σ)AB(u(σ))eσAu0 ,

h3(s) = e(τ−s)AB(u(s))φ1(sA)g(0).

We still use the decomposition I1−T1 = Q1 +E1 with the quadrature error Q1

from (41) and the remainder E1 from (42). Since now we aim at a local error
in L2(T) of third order, we replace the error bound (43) by

‖Q1‖L2 ≤ τ3C sup
s∈[0,τ ]

‖∂2sh1(s)‖L2 ,
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see [KI66]. Lemma 3 implies

‖E1‖L2 ≤ τ3Cm1
u sup
s∈[0,τ ]

‖∂2sb(s)‖L2 .

The difference

I2 − T2 =

∫ τ

0

e(τ−s)Ag(s) ds− τ
(
φ1(τA)g(0) + φ2(τA)

(
g(τ)− g(0)

))
is the local error of the exponential trapezoidal rule. We thus acquire

‖I2 − T2‖L2 ≤ τ3Cm0
g′′ ,

see [HO10]. For the third error term we use the partition I3 − T3 = Q3 + E3

with

Q3 =

∫ τ

0

∫ s

0

h2(s, σ) dσ ds− τ2

8

(
h2(0, 0) + 2h2(τ, 0) + h2(τ, τ)

)
,

E3 =
τ2

8
b(τ)

(
2eτAB(u0) +

[
B(u(τ)) +B(u∗0(τ))

]
eτA
)
u0,

and b(τ) defined in (40). We identify Q3 as the error of a cubature formula
which integrates constant functions exactly. It follows

‖Q3‖L2 ≤ Cτ3
(

sup
4
‖∂sh2(s, σ)‖L2 + sup

4
‖∂σh2(s, σ)‖L2

)
,

where 4 is the triangle 0 ≤ s ≤ τ , 0 ≤ σ ≤ s, see p. 362 in [KI66]. From
Lemma 3 we infer

‖E3‖L2 ≤ τ3Cm1
u sup
s∈[0,τ ]

‖∂sb(s)‖L2 .

The fourth term is decomposed into three parts

I4 − T4 = E1
4 + E2

4 + E3
4

given by

E1
4 =

∫ τ

0

e(τ−s)AB(u(s))F (s) ds,

F (s) =

∫ s

0

e(s−σ)Ag(σ) dσ − sφ1(sA)g(0),

E2
4 =

∫ τ

0

sh3(s) ds− τ2B1/2(u∗0)φ1(τA)g(0),

E3
4 = −τ2B1/2(u∗0)φ2(τA)

(
g(τ)− g(0)

)
.
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Since F (s) is the local error of the exponential Euler rule, we can estimate

sup
s∈[0,τ ]

‖F (s)‖L2 ≤ τ2Cm0
g′ ,

see [HO10]. This inequality and (7) lead to

‖E1
4‖L2 ≤ τ3C(m1

u ,m
0
g′) .

Integrating by parts, we calculate∫ τ

0

sh3(s) ds =
τ2

2
h3(τ)− 1

2

∫ τ

0

s2∂sh3(s) ds,

so that

E2
4 =

τ2

2
b(τ)φ1(τA)g(0)− 1

2

∫ τ

0

s2∂sh3(s) ds.

Lemma 3 then yields

‖E2
4‖L2 ≤ Cτ3

(
m0
g sup
s∈[0,τ ]

‖∂sb(s)‖L2 + sup
s∈[0,τ ]

‖∂sh3(s)‖L2

)
.

Exploiting the regularity of g, we obtain

‖g(τ)− g(0)‖L2 ≤ τm0
g′ .

Estimate (7), Lemma 2 and the boundedness of φj(τA) finally imply

‖E3
4‖L2 ≤ τ3C(m1

u ,m
0
g ,m

0
g′) .

Step 3. To complete the proof of Theorem 4, it remains to show that the terms

sup
s∈[0,τ ]

‖∂2sh1(s)‖L2 , sup
4
‖∂sh2(s, σ)‖L2 , sup

4
‖∂σh2(s, σ)‖L2 ,

sup
s∈[0,τ ]

‖∂sh3(s)‖L2 and sup
s∈[0,τ ]

‖∂2sb(s)‖L2

are bounded. Formulas (7), (2) and (28) yield

sup
s∈[0,τ ]

‖∂2sh1(s)‖L2 ≤ C(m4
u ,m

2
g ,m

0
g′),

sup
4
‖∂sh2(s, σ)‖L2 ≤ C(m2

u ,m
0
g),

sup
4
‖∂σh2(s, σ)‖L2 ≤ C(m2

u ,m
0
g),

sup
s∈[0,τ ]

‖∂sh3(s)‖L2 ≤ C(m2
u ,m

2
g).

We then apply (17), (18) and Lemma 2 to

∂2sb(s) = 2i
(
|∂su(s)|2 + Re(u(s)∂2su(s))− |∂su∗0(s)|2 − Re(u∗0(s)∂2su

∗
0(s))

)
,

and conclude the last bound

sup
s∈[0,τ ]

‖∂2sb(s)‖L2 ≤ C
(
T ,m4

u ,m
2
g ,m

1
g′ ,m

0
g′′
)
.
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7 Global error: Proof of Theorem 2

In order to prove the global error estimates in Theorem 2, the local error bounds
from Theorems 3 and 4 are combined with the stability result from Theorem 5
in the classical construction known as Lady Windermere’s fan, see [HNW08].
However, the stability result (21) can only be applied if the numerical solution
Φnτ,0(u0) stays bounded in H1(T) for all n ∈ N with τn ≤ T . This condition can
be shown by the following induction argument. Let u0 ∈ H3(T) and assume

that there is a constant M̂ > m1
u such that

‖Φkτ,t`
(
u(t`)

)
‖H1 ≤ M̂ for all ` ∈ N0, k = 0, . . . , n− 1, t`+k ≤ T. (46)

We will prove that

‖Φnτ,t`
(
u(t`)

)
‖H1 ≤ M̂ for all ` ∈ N0, t`+n ≤ T (47)

provided that the step-size τ is sufficiently small. Since the argument is the
same for all `, we assume that ` = 0 with no loss of generality. Representing
Φnτ,0(u0) by the telescoping sum

Φnτ,0(u0) = u(tn) +

n−1∑
j=0

Φn−jτ,tj

(
u(tj)

)
− Φn−j−1τ,tj+1

(
u(tj+1)

)
(48)

with u(tn) = Ψtn,0(u0) and u(t0) = u0 gives

‖Φnτ,0(u0)‖H1 ≤ ‖u(tn)‖H1 +

n−1∑
j=0

‖Φn−jτ,tj

(
u(tj)

)
− Φn−j−1τ,tj+1

(
u(tj+1)

)
‖H1 . (49)

According to (46), Theorem 5 can be applied and yields for n− j − 1 ≥ 1 that∥∥∥Φn−jτ,tj

(
u(tj)

)
− Φn−j−1τ,tj+1

(
u(tj+1)

)∥∥∥
H1

(50)

=
∥∥∥Φτ,tn−1

(
Φn−j−1τ,tj

(
u(tj)

))
− Φτ,tn−1

(
Φn−j−2τ,tj+1

(
u(tj+1)

))∥∥∥
H1

≤ eC·(M̂
2
∗+M̂

2−1)‖Φn−j−1τ,tj

(
u(tj)

)
− Φn−j−2τ,tj+1

(
u(tj+1)

)
‖H1

with constant

M̂∗ = e(CM̂
2−1)τM̂ + τCm1

g ,

cf. (22). If τ is sufficiently small, then M̂∗ ≤ CM̂ so that eC·(M̂
2
∗+M̂

2−1) ≤ eCM̂2

.
Applying (50) recursively, we then obtain

‖Φn−jτ,tj (u(tj))−Φn−j−1τ,tj+1
(u(tj+1))‖H1 ≤ eCM̂

2(n−j−1)τ‖Φτ,tj (u(tj))−u(tj+1)‖H1

≤ eCTM̂
2

Clocτ
2
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due to Theorem 3, with the constant Cloc from the local error bound. So (49)
yields

‖Φnτ,0(u0)‖H1 ≤ ‖u(tn)‖H1 + neCTM̂
2

Clocτ
2 ≤ m1

u + eCTM̂
2

ClocTτ.

If τ is so small that

τ ≤ M̂ −m1
u

ClocT
e−CTM̂

2

, (51)

then ‖Φnτ,0(u0)‖H1 ≤ M̂ , as required.
It is now easy to show the bound for the global error in L2(T). The tele-

scoping sum (48) yields

‖Φnτ,0(u0)− u(tn)‖L2 ≤
n−1∑
j=0

‖Φn−jτ,tj

(
u(tj)

)
− Φn−j−1τ,tj

(
u(tj+1)

)
‖L2 ,

and with Theorem 5 and Theorem 4 we obtain similar as before

‖Φnτ,0(u0)− u(tn)‖L2 ≤ neCTM̂
2

C̃locτ
3 ≤ eCTM̂

2

C̃locTτ
2 (52)

with C̃loc denoting the constant from the local error bound in Theorem 4. The
bound for the global error in H1(T) is obtained upon replacing ‖·‖L2 by ‖·‖H1 ,
τp by τp−1, and C̃loc by Cloc.

Remark. According to (52) the global error is small if

τ2 � 1

C̃locT
e−CTM̂

2

. (53)

Hence, even if one could avoid the step-size restriction (51) imposed by stability,
there is still a similar step-size restriction imposed by accuracy. Of course, both
(51) and (53) are usually too pessimistic in practice. These step-size restrictions
are not a characteristic property of the equation (1) nor of the splitting method
(16). For example, the error bound for the global error of Runge-Kutta methods
for solving ordinary differential equations is similar to (52); cf. Theorem 3.6 in
chapter II in [HNW08].

8 Wellposedness and regularity: Proof of Theo-
rem 1

Before we start with the proof of Theorem 1, we make a few preparations. First,
we set

F (t, v) = i |v|2v + g(t)

for t ∈ R and v ∈ H1(T) and define for a ∈ (0,∞] and k ∈ Z the space

Ek := C
(
[0, a);Hk(T)

)
∩ C1

(
[0, a);Hk−2(T)

)
.
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Second, we state and prove the following lemma which leads to the existence of
solutions to (1) with values in H1(T).

Lemma 4. a) Let g ∈ C1(R+;H1(T)). Then the map F : R+×H1(T)→ H1(T)
is continuously differentiable. Its derivative with respect to v ∈ H1(T) is given
by

∂vF (t, v)w = i |v|2w + 2i Re(vw)v

for t ∈ R and v, w ∈ H1(T). Moreover, F is Lipschitz on bounded subsets.
b) Let u ∈ E1 and f(t) = |u(t)|2u(t) for t ∈ [0, a). Then f ∈ E1 and

f ′ = |u|2∂tu+ 2 Re(u∂tu)u =: h.

Proof of Lemma 4. We omit the well known and straightforward proof of part
a). For a given v ∈ H1(T) the map φ 7→ vφ is bounded in H−1(T) by duality and
(5). In view of (5), we obtain f ∈ C([0, a);H1(T)) and h ∈ C([0, a);H−1(T)).
Observe that

f(t+ s)− f(t) = (u(t+ s)− u(t))|u(t+ s)|2 + (u(t+ s)− u(t))u(t+ s)u(t)

+ (u(t+ s)− u(t))u(t)2.

Using u ∈ E1 and (5), one can differentiate f in H−1(T) with f ′ = h.

We are now in a position to prove Theorem 1.

Proof of Theorem 1. Step 1. We first look for a local solution of (1) in E1,
starting with the integral equation

u(t) = etAu0 +

∫ t

0

e(t−s)AF (s, u(s)) ds. (54)

Theorem 6.1.4 in [Paz83] and Lemma 4 yield a unique maximal solution u in
C([0, a);H1(T)) of (54) for some a > 0. Moreover, if a is finite, then ‖u(t)‖H1

becomes unbounded as t → a. Differentiating (54) in H−1(T), one obtains a
solution u ∈ E1 of (1). It is unique since every solution of (1) in E1 satisfies
(54). In the following steps we improve the regularity of u iteratively.

Step 2. Lemma 4 allows us to differentiate the right hand side of (1) in
H−3(T) with respect to t, and so there exists ∂2t u in C([0, a);H−3(T)). We set
v = ∂tu ∈ E−1 and v0 := i∂2xu0 − u0 + i |u0|2u0 + g(0). Note that v0 ∈ H2(T)
by assumption (2). These functions then satisfy

∂tv = i∂2xv − v + i |u|2v + 2i Re(uv)u+ ∂tg, (55)

v(0) = v0.
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Since u is bounded on [0, a−δ]×T for each δ ∈ (0, a), there is a unique function
w in C([0, a);L2(T)) solving

w(t) = etAv0+

∫ t

0

e(t−s)A
(

i |u(s)|2w(s)+2i Re(u(s)w(s))u(s)+∂tg(s)
)

ds, (56)

see Theorem 6.1.2 in [Paz83]. Because v ∈ E−1 solves (55), it also satisfies (56).
As noted above, the multiplication by u or u is a bounded operator on H−1(T).
If we now subtract the two integral equations for v and w, we derive

‖v(t)− w(t)‖H−1 ≤ C(δ)

∫ t

0

‖v(s)− w(s)‖H−1 ds for 0 ≤ t ≤ a− δ.

Gronwall’s inequality implies that v = w ∈ C([0, a);L2(T)); i.e., u is con-
tained in C1([0, a);L2(T)). Equation (1) then yields u ∈ C([0, a);H2(T)) since
(i∂2x − I)−1 maps L2(T) continuously into H2(T). Moreover, u belongs to
C2([0, a);H−2(T)) by (55).

Step 3. We next differentiate (55) in H−3(T) with respect to x. For instance,
we have ∂x(|u|2v) = |u|2∂xv + 2 Re(u∂xu)v since

〈∂x(|u|2v), ϕ〉 = −〈v, |u|2∂xϕ〉 = −〈v, ∂x(|u|2ϕ)〉+ 〈v, 2 Re(u∂xu)ϕ〉
= 〈|u|2∂xv, ϕ〉+ 〈2 Re(u∂xu)v, ϕ〉

for u, ϕ ∈ H1(T), v ∈ L2(T), and the duality between H−1(T) and H1(T). The
function w := ∂xv = ∂t∂xu then fulfills

∂tw = i∂2xw − w + i|u|2w + 2i Re(uw)u+ ∂t∂xg + h, (57)

w(0) = ∂xv0 ∈ H1(T),

where h := 2i(Re(u∂xu)v + Re(v∂xu)u + Re(vu)∂xu) and ∂t∂xg belong to
C([0, a);L2(T)) by step 2) and assumption (2). As in step 2), we see that the
integrated version of (57) has a solution ϕ ∈ C([0, a);L2(T)) and that w = ϕ.
Hence, u ∈ C1([0, a);H1(T)).

Step 4. In (55) we have a non-autonomous perturbation given by

P (t)ψ = i |u(t)|2ψ + 2i Re(u(t)ψ)u(t), ψ ∈ L2(T).

Thanks to step 3), the linear maps P (t) are strongly continuously differentiable
with respect to t ∈ [0, a) as bounded operators on L2(T). Also, v0 is contained in
H2(T) and ∂tg in C1(R+;L2(T)) by assumption (2). So (55) possesses a unique
solution ϕ in C1([0, a);L2(T)) ∩ C([0, a);H2(T)) by Theorem 6.3 in [Paz83].
The uniqueness of the corresponding integral equation (56) then shows that
ϕ = v = ∂tu, and so u belongs to C2([0, a);L2(T)) ∩ C1([0, a);H2(T)).

Step 5. We finally differentiate (1) twice with respect to x and obtain

∂t∂
2
xu = i∂4xu− ∂2xu+ P (t)∂2xu+ 4i Re(u∂xu)∂xu+ 2i |∂xu|2u+ ∂2xg
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at first in H−2(T). This equation, assumption (2) and the previous steps imply
that (i∂2x − I)∂2xu is contained in C([0, a);L2(T)); i.e., u ∈ C([0, a);H4(T)).

Step 6. It remains to show global existence, where we employ the regularity of
u established above. Using (1) and integrating by parts, we first compute

∂t‖u(t)‖2L2 = 2 Re

∫
T
u(t)∂tu(t) dx

= 2 Re

∫
T
u(t)

(
i∂2xu(t)− u(t) + i|u(t)|2u(t) + g(t)

)
dx

= −2 ‖u(t)‖2L2 + 2 Re

∫
T
u(t)g(t) dx

≤ −2 ‖u(t)‖2L2 + 2 ‖u(t)‖L2 ‖g(t)‖L2

≤ −‖u(t)‖2L2 + ‖g(t)‖2L2 (58)

for t ∈ [0, a). Hence, ∂t(e
t‖u(t)‖2L2) ≤ et‖g(t)‖2L2 and integration yields

‖u(t)‖2L2 ≤ e−t ‖u0‖2L2 +

∫ t

0

es−t ‖g(s)‖2L2 ds

≤ ‖u0‖2L2 + sup
0≤s≤b

‖g(s)‖2L2 =: C0(b) (59)

for 0 ≤ t ≤ b < a. We further need a modified energy of (1) given by

E(t, v) = 1
2 ‖∂xv‖

2
L2 − 1

4 ‖v‖
4
L4 + Re

∫
T

ig(t)v dx (60)

for v ∈ H1(T) and t ≥ 0. Proceeding as above, we obtain

∂tE(t, u(t))=Re

∫
T

[
∂xu(t)∂txu(t)− (|u(t)|2u(t)− ig(t))∂tu(t) + iu(t)∂tg(t)

]
dx

= Re

∫
T

[
(−∂2xu(t)− |u(t)|2u(t) + ig(t))∂tu(t) + iu(t)∂tg(t)

]
dx

= Re

∫
T

i
[
(∂tu(t) + u(t))∂tu(t) + u(t)∂tg(t)

]
dx

= Re

∫
T

i
[
u(t)(g(t)− i∂2xu(t)− u(t)− i|u(t)|2u(t)) + u(t)∂tg(t)

]
dx

= Re

∫
T

[
i (u(t)g(t) + u(t)∂tg(t)) + |u(t)|4 − |∂xu(t)|2

]
dx (61)

for 0 ≤ t ≤ b < a. On the other hand, Sobelev’s embedding theorem and
complex interpolation (see Sect. 7.4.2 and 7.4.5 in [Tri92]) yield

‖v‖L4 ≤ C ‖v‖H1/4 ≤ C ‖v‖
3
4

L2 ‖v‖
1
4

H1 ,

‖v‖4L4 ≤ ‖∂xv‖2L2 + ‖v‖2L2 + C ‖v‖6L2 . (62)
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We thus deduce

∂tE(t, u(t)) ≤ Re

∫
T

i(u(t)g(t) + u(t)∂tg(t)) dx+ ‖u(t)‖2L2 + C ‖u(t)‖6L2

≤ 2 ‖u(t)‖2L2 + 1
2 ‖g(t)‖2L2 + 1

2 ‖∂tg(t)‖2L2 + C ‖u(t)‖6L2

≤ 2C0(b) + CC0(b)3 + C1(b) (63)

with C1(b) := 1
2 sup0≤t≤b(‖g(t)‖2L2 + ‖∂tg(t)‖2L2), where we also used (59). The

estimate (62) further leads to the lower bound

E(t, u(t)) ≥ 1
4 ‖∂xu(t)‖2L2 − 3

4C0(b)− CC0(b)3 − 1
2 ‖g(t)‖2L2 . (64)

Combining (59), (63) and (64), we arrive at

‖u(t)‖2H1 ≤ 4E(0, u0) + C(1 + b)(C0(b) + C0(b)3 + C1(b)) (65)

for 0 ≤ t ≤ b < a. If a was finite, we could take here b = a and obtain a
contradiction to the blow-up condition stated in Step 1). Hence, a =∞.

Step 7. If g is bounded in L2(T), then (59) shows that u(t) is bounded in
L2(T) for t ≥ 0. In particular, we can replace C0(b) by C in this case.

If also ∂tg is bounded in L2(T), then (65) implies that u(t) grows at most
as
√

1 + t in H1(T).
Next, if g is contained in L2(R+;L2(T)), then we infer from the line before

(59) and Young’s convolution inequality that u ∈ L2(R+;L2(T)).
If even g ∈ H1(R+;L2(T)), then g is also bounded in L2(T). Thus u belongs

L6(R+;L2(T)). Integrating in t, we now deduce from the line before (63) that
E(t, u(t)) is uniformly bounded. Hence, the boundedness of u(t) inH1(T) follows
from (64).

Acknowledgements. The authors thank Sina Busch, Johannes Eilinghoff,
Marlis Hochbruck, Christian Koos, Christian Lubich, Jörg Pfeifle, Wolfgang
Reichel, and Katharina Schratz for helpful discussions on various topics related
to this work.

References

[BBD02] Christophe Besse, Brigitte Bidégaray, and Stéphane Descombes.
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