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1 Introduction

We consider semilinear wave equations 9?u = c(et)? Au + g(u) on a bounded
spatial interval, a rectangle or a rectangular box of diameter ¢ with Dirichlet
boundary conditions, with a nonlinearity g(u) that is cubic at w = 0 and with
small initial data. The wave speed c is slowly varying as c(et) with a small
parameter 0 < ¢ < 1. We show long-time near-conservation of the harmonic
energy divided by the wave speed. Multiplied with the diameter ¢, this almost-
conserved quantity is invariant under rescaling the spatial domain and has the
physical dimension of an action,

4
= o (19wlz, + IVaullZ,)-

This adiabatic invariant dominates the square of the H} x Ly norm of the
solution (u,0yu) and therefore yields long-time existence of the solution in
Hol X Lg.

We here encounter a situation with

— a time-dependent principal operator c(ct)?2A where ¢ can vary in any given
bounded interval that is bounded away from 0,

— no conserved energy,

— fully resonant frequencies jwc/f for j = 1,2,3,... in the one-dimensional
case,

— an impenetrable thicket of resonances, almost-resonances and non-resonan-
ces among the frequencies in higher dimensions.

On the one hand, our results are related to the recent literature on the
long-time behaviour of nonlinear wave equations on bounded domains [1,2,
4-12,14], but differ from those papers by the characteristics listed above.

On the other hand, our results can be viewed as an extension to a class
of nonlinear wave equations of the classical adiabatic theorem, which states
that a harmonic oscillator with a slowly varying frequency has the action (i.e.,
energy divided by the frequency) as an almost-conserved quantity over long
times; see [17].

The tool for proving the results is a modulated Fourier expansion in time
(MFE), which has previously been used in the long-term analysis of nonlinear
wave equations in [7,14]; see also [15] for a review of MFE. The version of
MFE used here is that for varying frequencies, which was developed in [16,
18].

In Section 2 we give the precise formulation of the problem and state our
main results. We obtain near-conservation of the action over times t < e~ for
arbitrary N > 1 in the one-dimensional case, and over times t < Cy gm3+1/N
for arbitrary N > 1 in the two- and three-dimensional cases. The proof of the
result for the one-dimensional wave equation is given in Sections 3 and 4, that
for two and three space dimensions in Sections 5 and 6.
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2 Problem formulation and statement of the main results

We consider the non-autonomous semilinear wave equation on a d-dimensional
rectangular domain @ = szl((),&), for d < 3, with homogeneous Dirichlet
boundary conditions: for u = u(x,t) with u = 0 on 0Q x [0, T,

Ofu = c(et)? Au + g(u, et), req, t>0, (2.1)

with a small parameter 0 < ¢ < 1. The wave speed ¢(7) is assumed to be a
smooth function of 7 such that ¢ and all its derivatives are bounded for 7 > 0,
and ¢(7) > ¢g > 0. We consider this equation with small initial data satisfying

IVau(-, 0)[| = O(e),  [[deul-, 0)]| = O(e), (2.2)

where || - || denotes the Lo(Q)? or Ly(Q) norm. For the nonlinearity we assume
that it admits an expansion

g(u, 1) = Z A (T)uP ™!

m>1

such that the series and all its partial derivatives with respect to 7 converge
uniformly in 7 for |u| < r with » > 0 independent of e. For ease of presentation,
we restrict our analysis to the case
g(u,7) = a(ry®

with a smooth coefficient function a that is bounded for 7 > 0, as are all its
derivatives. This particular nonlinearity shows all the difficulties present in the
more general case.

We will show the following long-time existence results, which rely on the
near-conservation of the harmonic energy divided by the wave speed,

1) = 5 !

etz (1000 DI + (et V(- 0)?). (2.3)

Note that for initial values satisfying (2.2), I(0) = O(?).

Theorem 2.1 (One-dimensional case) Consider the one-dimensional non-
linear wave equation (2.1) with slowly time-dependent wave speed, with ho-
mogeneous Dirichlet boundary conditions and initial values satisfying (2.2).
Fiz the integer N > 1 arbitrarily. Under the above conditions, there exists
en > 0 such that for e < ey, the problem admits a solution (u(-,t), dyu(-,t)) €
H}(Q) x La(Q) over long times t < e, and I is an adiabatic invariant:

[I(t) —I1(0)| < One®  for t<e™ N,

with Cn independent of e < ey and t < e~N,
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Theorem 2.2 (Two- and three-dimensional case) Consider the two- or
three-dimensional nonlinear wave equation (2.1) with slowly time-dependent
wave speed, with homogeneous Dirichlet boundary conditions and initial values
satisfying (2.2). Fiz N > 1 arbitrarily. Under the above conditions, there exist
ey > 0 and ky > 0 such that for ¢ < en, the problem admits a solution
(u(-, 1), 0pu(-, 1)) € HYH(Q) x Ly(Q) over times t < ke 3TN and I is an
adiabatic invariant:

1I(t) — I(0)| < One® + Ci te® YN for t < kye 3TN,

with Cn, Cly independent of ¢ < en and t < ke 3TN,

The bound of Theorem 2.2 is uniform for all rectangular domains for which
0 < lmin < ¥; < lmax. No assumptions on resonances or non-resonances among
the frequencies are made. It is the presence of almost-resonances among count-
ably many frequencies that prevents us from covering longer time scales, in
contrast to the situation of finitely many frequencies in ordinary differential
equations where almost-resonances can be dealt with over much longer time
scales; cf. [3,13].

Part I: Proof of Theorem 2.1

3 Modulated Fourier expansion for the short-time solution
approximation

3.1 Statement of result

We consider the one-dimensional case where, without loss of generality, the in-
terval is taken as (0, 7). In the course of this section we will prove the following
result.

Theorem 3.1 In the situation of Theorem 2.1, the solution u(x,t) of (2.1)
admits a modulated Fourier expansion

u(z,t) = izz,zf(st) eko(E)/e T (g 1), 0<t<e (3.1)
JEL kEL

where the phase function ¢(7) satisfies g—f(r) = ¢(1) and the modulation func-

tions Z;C(T) satisfy z]_k = g = fz:f and are bounded for 0 < 7 <1, together

with any fixed number of derivatives with respect to T, by

(20401 + 15700 < e

JEZ

(315 - w21k )I)Q)l/2 < Cyed.

JEZ keZ
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The remainder term is bounded by
()i + 10 ()|, < Ca(1+8)eN+2, 0<t<e™' (3.2)

The constants Cq, Cs, C3 are independent of €, but depend on N, on the bound
(2.2) of the initial values and on bounds of ¢(7) and a(7) and their derivatives.

3.2 Spatial Fourier expansion

We extend the initial values u(x,0) and Od:u(z,0) to odd functions on the
interval [—m, x]. Since all terms in (2.1) are odd powers of u, the solution of
the equation remains an odd function for all ¢. We consider the Fourier series

u(z,t) = iz u;(t) e”
JEZ

with real u;, and u_; = —u;. In particular, ug = 0. The assumptions on the
initial conditions become

. d 2
> w02 =06, 3| Su0)] =06 (3.3)
jez JEL
The system of differential equations for the Fourier coefficients is given by
dQUj
de?

= —c(et)*j%u; — a(et) Z Ujy Ujp Uiy s (3.4)
Jitje+iz=j

where the sum is over all (ji, j2, j3) satisfying ji + jo + j3 = J.

3.3 Formal modulated Fourier expansion (MFE) in time

For the Fourier coefficients of u(x,t) we consider the MFE

uj(t) =Y 2 (et) ehoEn/e, (3.5)
keZ

where the coefficient functions zf and the phase function ¢ are yet to be
determined. We introduce the slow time 7 = et, and denote differentiation with
respect to 7 by a dot. We insert the ansatz (3.5) into (3.4), and compare the
. H . B . 2 2
coefficients of e*#(7)/2. The coefficient of e*?(")/ in dou;(t) = e2 L (1 /)
is given by ) B )
€255 + 2ikeps) + (iked — k2¢7)z).

Consequently, the functions zf () have to satisfy the system (j, k € Z)

258 + 2ikedil + (ikep — K2¢%) 28 + j2P2) (3.6)

_ E E k1 k2 k3
=-a Zj1 %z Fjs -

Ji+j2+iz=j kitkatks=k
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By assumption (3.3) all zjk will be bounded by O(g). The dominant term for
|k| = |j| (obtained by neglecting the cubic expression in z and by putting
¢ = 0) thus motivates the definition of the phase function ¢(7) by

o(r)=c(r),  4(0)=0. (3.7)
The initial conditions yield

=> 20), %uj(o) = Z(ikc(()) 2F(0) + szf(())).

kEZ kEZ

3.4 Construction of the coefficient functions for the MFE

We aim at constructing an approximate solution for the system (3.6) having a
small defect. For this we make an ansatz as a truncated series in powers of ¢,

N+1

= Z Elzf,l(r), (3.8)
=1

and we use the convention that z] (1) =0 for I < 0. Inserting (3.8) into (3.6),
comparing like powers of £ and using (3.7) yields

o+ 21kcz o1t 1kcz]l L+ (% = KRk 2 =gj k(Z) (3.9)
where for Z = (z1,...,2;_2) with z; = (zfl)

k k k
g(Z)=—a Y > Yo AL, (3.10)

li+la+l3=l ji+j2+js=j kitketks=k

For k # +j, the equation (3.9) represents an algebralc relation for z¥,, and

g0
for kK = +j a first order linear differential equation for zj’ ;—1- Initial values for

this differential equation are obtained from

1 uj =3k é %uj(O) = 3 (ike(0) £5,(0)) (3.11)

keZ kEZ

0=>"250), o= Z(ikc(o) 24,(0) + éf,z_l(O)), 1>2. (3.12)

kEZL keZ

The construction of the coefficient functions is done iteratively with increas-
ing [. Assume that the functions zk 1o and z 11 are already known for all j
and all k. This is true for [ = 1. Equatlon (3. 9) then yields zkl for k # +75. The
two relations of (3.11)—(3.12) are then a linear system for Zj,z(o) and z;; 7(0)
(note that the case j = 0 need not be considered, because ug(t) = 0). With
these initial values the two differential equations (3.9) for k = j and k = —j,
and [ replaced by [ + 1, finally give the remaining functions zjilj
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With this construction, zf (1) of (3.8) satisfies at 7 =0

> 28 (0) = u;(0) =0 (3.13)

kEZ
3 (ikc(O)z;f(o) + ng(())) - %uj(O) = N3k (0). (3.14)
kEeZ kEZ

3.5 Bounds for the coefficient functions of the MFE

Infinite sums are involved in the coupling term g}“’l(Z) of the system (3.9). For
a rigorous analysis we have to investigate their convergence.
To bound the coefficient functions we consider for z; = (z;C 1)j.kez the norm

. . 2
lzall* = > (720 + 127D+ (D12 = #21kl) ), (3.15)

jezx keZ
where we use the notation Z* = Z \ {0}.
Lemma 3.1 Let Z = (z1,...,2,—2) with z; = (Zf,i)j,kez and assume that
lz:ll| < B for i=1,...,1—2.

For the expression g}“’l(Z) of (3.10) there then exists a constant C' such that

( ) (Z Igf,z(Z)I)Q)l/2 < OB,

jez* kez
Proof We have
k
2.2 192
JEL* k€L
k k k
< lal Z ( Z |Zj11,11|) ( Z |Zj22,l2|) ( Z |Zj:,13‘)'
li+lo+lz=l j1E€Z* k1€Z Jo€Z* ko €L J3€Z* k3€EL

Note that the sum over (I, l2, [3) is finite. The Cauchy—Schwarz inequality and
the inequality |j] < |2 — k?| for |k| # 4] yield

DD Nl =Y 1 YLl

JEZ* kET JEL* kEZ
N1/2 ) 2\ 1/2
< (X)) T (X (X)) T < ellall:
JEL* JEL* keZ

The statement now follows, since the £2 norm is bounded by the ¢! norm. 0O
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Lemma 3.2 The coefficient functions z;(1) = (zfl(r)), constructed in Sec-
tion 3.4, are bounded in the norm (3.15): there exist constants C; such that

lze(T) < Ci for 0<7<1.
Bounds of the same type hold for any fized number of derivatives of z;(7).

Proof Assume that zy(7) and its derivatives up to order N 4 1 are bounded
on the interval 0 < 7 < 1 in the ||| - |||-norm for A < — 1. This is true for [ = 1,
because z)(7) = 0 for A < 0.

a) For |k| # |j] it follows from (3.9) that

52 = K21 Ll < O (1R 1l + k] 12l + 1250l + 1950()1)-

Using |k| < |j% — k2|, the triangle inequality for the Euclidean norm, and
Lemma 3.1, the boundedness assumption on zé?’ , and on its derivatives (for
A <1 —1) implies that

2
S (Ol w) <c (3.16)
JEZ* keZ
b) Solving the linear system (3.11)—(3.12) for Z;I(O) and z;lj (0) yields
2ijc(0)2;7(0) = by — Y i(k+j)e +Zzﬂ L
5171 %

where b = (du;/dt(0) % iju;(0)) /e for I = 1, and b, = 0 for | > 2. Using
|k+3j| < |j%—k?|, the assumption on the initial values, the estimate of part (a)
for zfl(O), and the boundedness of [|z;—1(0)]||, we obtain

. j — 2
> (0] + |51 O)) < (3.17)
JEZ*
c¢) For k = +j, equation (3.9), with [ augmented by 1, yields the differential
equation for zjil]
R I i
i21jczj’lj + leZj’l] = jl 1t 95 l+1(Z,T).
By the variation of constants formula we obtain, for 0 < 7 < 1,

Y O 4+ .t
illz37 ()] < Cljllz7 )+ Co max (|574(0)] + 195744 (2(0),0) ).

Using (3.17), the boundedness of [||Z;—1(0)]|, and Lemma 3.1, the triangle
inequality for the Euclidean norm yields, for 0 <7 <1,

3R]+ |5 ) < (3.18)
JEZ*

The estimates (3.16) and (3.18) prove the boundedness of |||z;(7)]|| for 7 €
[0,1]. The bound on the derivatives of z;(7) is obtained in the same way after
differentiating the equation (3.9). O
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It follows from the triangle inequality that, for sufficiently small €,
lz()ll <Ce,  0<7<1 (3.19)

Moreover, it follows from the construction of Section 3.4 that for |k| # |j| we

have zﬁl = z]”?,Q = 0. This implies

(X (12 = w2l )|)2)1/2§063, 0<T <1, (3.20)

JEZ* kEZ

which shows that the diagonal terms zj and zj_j are dominant in the modulated
Fourier expansion (3.5). These two bounds are also valid for any finite number
of derivatives of zj’-“.

3.6 Bounds for the defect

As an approximation for the solution of (3.6) we consider the truncated se-
ries (3.8) with coefficient functions zfl( 7) constructed in Section 3.4, and

JiIJVH( ) = 0. The defect, when zj( T) is inserted into (3.6), is given by

d¥ = %5 + 2ikecs] + (ikec — k2c%) 2} + j°cP2) (3.21)

k1 ko ks
+a Z Z Zj1 Fja “hs

kitko+ks=k ji+j2+j3=J

By construction of the coefficient functions z;?_l(T) the coefficients of ! vanish
for | < N + 1. All that remains is

3N+3

db = eN+? (sz] N1 T EN 20k vy + ke +a Z b 2gfl(z))
I=N+2
(3.22)

with gﬁl(Z) defined in (3.10).

Lemma 3.3 Under the assumptions of Theorem 3.1, there exists a constant
Cn such that, for 0 < 7 <1, the defect is bounded by

(Z(Zlae)) " < oweves

JEZ* Kk€EZ

Proof The bound is obtained by applying the triangle inequality to (3.22), and
by using the bounds of Lemmas 3.2 and 3.1. a
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3.7 Remainder term of the MFE

With the obtained estimate for the defect we will bound the error between the
exact solution u(-,t) and its approximation by the MFE,

u(x,t) =i Z Z 2 (et) eikO(eD)/eglie

JEZ* keZ

with zj’.“(st) given by (3.8). For this we need first to bound the solutions of the
linear wave equation
Ofw = c(et)?*2w

on the interval s < ¢t < £~1 and initial values given at s.

Lemma 3.4 The evolution family U(t,s), 0 < s < t < &1, which maps
(w(-,8),0w(-,s)) to (w(-,t),0w(-,t)), is a bounded family of linear operators
on H}(0,7) x La(0,7).

Proof We consider

10) = oz (10 O + clet? e ).

which has the time derivative

d _ ec(et) 1 T
&I(t) = e I(t) + ) /0 Ow(x,t) Qyw(z,t) de

+ c(et) / 010w (x,t) Opw(w,t) da + eé(et)||Opw(-, t) ||
0

On using the wave equation and partial integration, the second and third term
on the right-hand side cancel. Hence we obtain

‘531@)‘§<jelu)

dt
and therefore
I(t) < Const I(s), 0<s<t<el
Since ¢(7) is bounded and bounded away from 0, this yields the result. O

Lemma 3.5 The error between the exact solution u of the nonlinear wave
equation and its MFE approximation u satisfies

”ﬂ('vt) - u('7t)HH1 + Hatﬂ(Wt) - atu('7t)|‘lz2 < C(l +t)EN+27 t< 5_1'
Proof We have

Otu = c(et)?02u + g(u, et)
02t = c(et)?0%u + g(u, et) + d
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with

d(z,t) =1 Z Z d? (et) elke(ED/ gliw,

JEZ kET

By the variation of constants formula, the remainder term of the MFE, r =
u — u, satisfies

(amion) =000 (510
+/0 Ult,) (9(“('75)758) -~ g(g(-’s)’gs) —d(-, S)> ds.

Let 0 < t* < e~ ! be maximal such that

lg(u(-,5),e5) — g(u(-, s),€)||L, < ellul-,s) —a(,s)lm for 0<s <t
(3.23)
Then the bound of U given by Lemma 3.4, the bounds for the initial error
(3.13)—(3.14), a Gronwall inequality and the bound of Lemma 3.3 for the
defect d(-, s) imply, for 0 < ¢ < t*,

IOl + 196 (B2, < C'*2 + O mase (-, ) < O(1+ )2,
Since this bound implies that (3.23) holds with strict inequality, for sufficiently

small €, the maximality of t* yields that this is possible only if t* equals the
endpoint e~ ! of the considered time interval. a

Combining the above lemmas concludes the proof of Theorem 3.1.

4 Adiabatic invariant

We show that the system for the coefficients of the modulated Fourier expan-
sion has an almost-invariant that is close to the adiabatic invariant of the wave
equation. Throughout this section we work with the truncated series (3.8).

4.1 An almost-invariant of the MFE

We introduce the functions
() = () ROz,

For the construction of the MFE we have to work with the functions zé?,
which are smooth with derivatives bounded independently of €. Here, it is

more convenient to work with the highly oscillatory functions y;“ In terms of
yf the system (3.21) can be written as

25 () + 52e(r)?y} (7) + VEU(y)(7) = db () et/ (4.1)
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where a
kv, ko, ks, k
Uy) =5 > DTl T
Jit+...+ja=0 ki+...+ks=0

and V:? denotes differentiation with respect to y:éC . The convergence of the
infinite series in the definition of U(y) follows from the proof of Lemma 3.1
provided that |||y||| is bounded.

An almost-invariant is obtained in the spirit of Noether’s theorem from the
invariance property

U((eiikoyf)j,kez) _ Z/l((yf)j,kez)a 0 eR.

Differentiation of this relation with respect to € at 6 = 0 yields

3 (k) y=F vRu(y) = 0.

J,kEZ

Furthermore, the sum Zj7kez(ik)y:? j2c?y} vanishes, because the term for
(4, k) cancels with that for (—j, —k). Multiplying the identity (4.1) with (ik)y:éC
and summing over all j and k thus yields

e ) (k) hijE = (kyykdbe*ole = 3" (ik)zFdb. (4.2)

7 keZ 3,kEZ G keZ

Theorem 4.1 Consider the expression

I(y,y)=¢ Y (ik)y~Fy).
j,kEZ

Under the assumptions of Theorem 3.2 the functions y;?(T) = ij(’l') elke(r)/e
where zf (1) represents a truncated series (3.8) with coefficients constructed in
Section 3.4, then satisfy, for 0 < et <1,

%I(y(et), y(et)) = O(eNT?) (4.3)

and
. 2 j 2
Z(y(et),y(et)) = 2c(et) Z]2|z§ (et)|” + O(?).
JEZL
The constant symbolised by O(-) depends on the truncation index N, but it
is independent of 0 < € < e* (with €* sufficiently small) and of t as long as
0<et<l1.

Proof Differentiation of Z(y(t),y(et)) with respect to ¢ yields the lefthand
expression of (4.2), because the sum Zj’kez(ik)y:fyf vanishes due to the
cancellation of the terms for (j, k) and (—j, —k). Applying the Cauchy—Schwarz
inequality to the righthand side of (4.2), using the estimate for the defect
(Lemma 3.3) and the estimate |||z(7)|| = O(e) from (3.19) shows that the
righthand side of (4.2) is bounded by O(eV+3). This proves the estimate (4.3).
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Differentiating y} () = z§(7) e ik¢(7)/2 with respect to time t yields
eyt = (e2F + ikek)elh/e,
Consequently, we have
I(y,y) = — Z ck?z” —i—(’)( _202j2‘z§‘2+0(53)_
J,kEZ jEZ*

The last equality follows from (3.20) and from the fact that z:f = —%, which

follows from u—_; = —u; and z;k = g This proves the second statement of
the theorem. O

4.2 Connection with the action of the wave equation

We consider the harmonic energy divided by the wave speed along the MFE
approximation u(z,t) to the solution u(zx,t) as given by Theorem 3.1,
~ 1

1) = 5oy (10001 + (0?00, 1)

= 2c(lst) (;\QW\Q (et 3 2 (1))

JEL

(4.4)

Lemma 4.1 Let U;(t) = Y, cq 2¥(et) * D/ where 2F(7) is the truncated

series (3.8). In terms of these coefficients the action (4.4) satisfies
21 5 2
I(t) = 2c(et) Y _ 72|21 (et)|” + O(?).
JEZ
Proof Differentiating w;(t) with respect to ¢ yields, with 7 = et,
d_ . . i T
FTAG) (t) = Z(szf(T) + 1]{:0(7’)3}“(7))6 ke(r)/e
keZ
From the estimate (3.20) we thus obtain
d elio(r — —ijo (T
S| Gus O] = e S I 2 e BN 4 o),
JEL JEZ
Similarly, we get
. . j ijo(r —J —ijo(r 2
S PP = 3200 4 2 (e B 4 0,
JET jEL
Using the identity |a — a|? + |a + @|?> = 4]a|?, a combination of the last two
formulas gives

d
S| S0+ e X sl = 4e(r)? 0 )] + O)
JEL JjEZ JEZ

Dividing this equation by 2¢(7) proves the statement of the lemma. a
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4.3 Transitions in the almost-invariant

To be able to cover a longer time interval by patching together many intervals
of length ¢!, we need the following result.

Lemma 4.2 Under the conditions of Theorem 3.1, let zf(T) for 0 < 17 =
et < 1 be the coefficient functions of the MFE as in Theorem 3.1 for initial
data (u(-,0), 0wu(-,0)), and let yf( )= ZJ( m)ek (/e and y(1) = (yf(T)) Let
further y(7) = (ﬂf(r)) be the corresponding functions of the MFE for 1 <
7 < 2 to the initial data (u(-, e~ 1), Opu(-,e=1)), constructed as in Theorem 3.1.
Then, )

Z(y(1),5(1) = Z(3y(1), ¥(1))] < CeV2,

where C' is independent of €.

Proof First we note that z(r 4+ 1) contains the modulation functions that are
uniquely constructed (up to O(e¥+2)) by starting from (u(-,e71), dsu(-,e 1)),
where u is again the approximation by the truncated modulated Fourier ex-
pansion (3.1) without the remainder term. On the other hand, z(¢) contains
the modulation functions constructed by starting from the exact solution val-
ues at time t = e~!. By Theorem 3.1 we have u = @ + r with the remain-
der estimate (3.2). We thus need to estimate z —z at 7 = 1 in terms of
lu( e ™) —a(, e Y |lm + |0cul(-, ™) — dpu(-, e 1), We proceed similarly
to the proof of Lemma 3.2, taking differences in the recursions instead of direct
bounds. Omitting the details, we obtain

llz(r) —Z(n)|| < CeN1 o for 1< <2

and bounds of the same type hold for any fixed number of derivatives of
z(7) — z(7). Together with the definition of Z and the bounds of Lemma 3.2,
this yields the stated bound.

4.4 Long-time conservation of the adiabatic invariant

For n=0,1,2,..., let y,(t) contain the summands of the modulated Fourier
expansion startlng from (u(-,ne™1),0u(-,ne~1)). As long as the adiabatic in-
variant satisfies I(u(-,ne=1), dyu(-,ne=1), ne ) < I(u(+,0),dpu(-,0),0)+Coe?,

Theorem 4.1 yields for o f<1
IZ(yn(n+0),¥n(n+0)) — Z(yn(n), yn(n))| < CeN T2
By Lemma 4.2,
1Z(ya(n),3n(n)) = Z(yn-1(n), n-1(n))| < CeV*2.

Summing up these estimates over n and applying the triangle inequality yields,
for0<6<1,

Z(yn(n +6),yu(n +0)) = Z(y0(0),¥0(0))] <2(n+1)Ce™*2.



Long-term analysis of semilinear wave equations with slowly varying wave speed 15

By Theorem 4.1 and Lemma 4.1, we have at t = (n + 0)e !

I Z(yu(n+0),3u(n+06)) = I(t)] < C,

where I(t) is the action corresponding to the MFE approximation u starting
from the exact solution at time ne~!. Moreover, by the remainder estimate of
Theorem 3.1 and since the H} x Ly norm of (u(-,t),dyu(-,t)) is bounded by
O(e), we have

I(t) — I(t)] < CeNF2,
where I(t) is the action for the solution wu(-,¢) as in (2.3). Combining these
bounds at ¢t and at 0 we obtain for t < e~V

[1(t) — 1(0))| < 2C"teN T3 420" < Ce®.
This is the bound of Theorem 2.1.

Part II: Proof of Theorem 2.2

We consider only the spatially three-dimensional case, since the modifications
required for the two-dimensional case are obvious.

5 Modulated Fourier expansion for the short-time solution
approximation

5.1 Spatial Fourier expansion

We extend the initial values u(-,0) and dyu(-,0) to odd functions on the ex-
tended rectangular box [—¢1,¢1] X [—{a, 2] X [—¢3, 3] Since all terms in (2.1)
are odd powers of u, the solution of the equation remains an odd function
for all t. In this section we write x instead of x for the spatial variable and
consider the Fourier series

Jimzy + JoTT2 4 VEUEE!

u(x,t) =1 Z uj(t) e°*  with jox = 0 7 7

jezd

for j = (j1,J2,J3) and x = (21,72, 23). We obtain real uj, and u_j, j, j,) =
—U(j,,j2.j5) and similarly in the second and third component. In particular,
u; = 0 if one of the components of j is zero. The system of differential equations
for the Fourier coefficients is given by

dQUj
dt2

= —c(st)Q.QjQuj — a(et) Z Ujy Wiy Uy » (5.1)
J1+j2+is=j

where the sum is over all ji, j2,j3 € Z? satisfying j1 + j2 +js = j, and 25 > 0

is defined by 5 (N2 [Jom\2  [j3m\2
%=(0) (%) (%)
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The assumptions on the initial conditions become

> B =0, Y| Suo] =oe)

M4 jezs

5.2 Statement of result

We denote by Z*3 the subset of those j € Z? that have all components different
from zero. We consider the linear arrangement 0 < w; < ws < ... of the
different frequencies among the §2; for j € Z*3. We let m(j) be the integer
such that

Wn(j) = 1%

For a sequence of integers k = (kq, ko,...) with only finitely many nonzero
entries, we denote

K= S ol kw= 3 .

m>1 m>1

We let (j) = (0,...,0,1,0,...) be the sequence that has an entry 1 at the
m(j)-th position and zero entries else, so that (j) - w = wy,) = 2.
For the Fourier coefficients of u(-,t) we consider the MFE

ui(t) = Y 2 (et) eeIoen/e, (5.2)
kE’Cj

where the phase function ¢ is given by (3.7) and the modulation functions z¥

j
are to be determined. The summation is over the set
Ki={k=(ki,ko,...) €Z" : |[k-w|— 25| > '~ }U{£({)}, (5.3)

where we are interested in choosing a small o > 0. This set is chosen to
deal with almost-resonances: if ||k - w| — | < &', then ellkw)o(r)/e —
w}‘(T)eiQJ¢(T)/E with

wh(r) = eillew)=2)o(n/e,

where the g-th derivative of w}‘(r) is of magnitude O(712%), so that w}‘(T) is
changing more slowly than e%¢(7)/c,

Theorem 5.1 Let the integer N > 4 be arbitrary and let « = 1/N in the
definition (5.3) of the set K;. In the situation of Theorem 2.2, the solution
u(x,t) of (2.1) admits a modulated Fourier expansion

u(x,t) =1 Z Z 2 (et) el ewIP(ED/e gliox 4 (x 1), 0<t<e !,

jEZ*'s keK;
Ikl<N+1
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where the phase functz'o ( ) satisfies %(T) = ¢(7) and the modulation func-

tions ka( T) satisfy z k z:}‘ and are bounded for 0 < 1 < 1, together
with their first and second derwatwes by

. s o\ 1/2
(X (@1 +1 P N)*) T < e
jEZ*S
1/2 5
(> ( Z (2 + k-w)lm)) ) < cpere
jez=3  kEL(j
The remainder term is bounded by
Gyt mg + 10 ()L, < Cs (L +)e'™, 0<t<e™

The constants C1,Cs, Cs are independent of €, but depend on N, on the bound
(2.2) of the initial values and on bounds of ¢(7) and a(T) and their derivatives.

This result will be proved in the course of this section. Note that no reso-
nance or non-resonance conditions are imposed on the frequencies (2;.

5.3 Formal modulated Fourier expansion (MFE) in time

We denote again differentiation with respect to the slow time 7 = et by a
dot. We insert the ansatz (5.2) into (5.1), and compare the coefficients of
el(k@)d(7)/= The functions ka (7) thus have to satisfy the following system: for

j € 2*? and k € K with k # £(j),
e+ 2k wlecs + (i(k - w)ee — (k- w)? = ) )5 (5.4)

_ ki ko ks
=-a Z Z %51 iz Fis 0

Jitj2+izs=j ki +ka+ksz=k

and for +(j),

522f<j> + i05e (2 0 4 czim) (5.5)

_ k ki ko k3
i D DR D DR DR A

k:|(k-w)F2;l<el— Jiti2+is=j ki+ka+ks=k

where the innermost sums are over all k; € K, with k; + ko + ks = k. Note
that the outer sum in (5.5) is over k that are not in C; with the exception of
+£(j). The initial conditions yield

(0) = 3 2X(0), %uj(()) = 3 (i0k- w)e(0) 2K(0) + 22(0)).

kek; ke
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5.4 Construction of the coefficient functions for the MFE

We aim at constructing an approximate solution for the system (5.4)—(5.5)
having a defect of magnitude O(e*~%), which in the next section will turn out
to be the permissible magnitude that yields near-conservation of the adiabatic
invariant over times t = o(¢73t?), a time scale that we cannot improve even
with a smaller defect. We make an ansatz as a truncated series in powers of ¢,

N+1

= Z Elz}fl (1), (5.6)
=1

for a given truncation number N. It is convenient to use the convention that
z5(1) = 0 for 1 < 0 and also for k ¢ Kj. Inserting (5.6) into (5.4)~(5.5) and
comparing powers of ¢ yields, for j € Z*? and k € K; with k # +(j),

2}fl_2+21(k w)cz 0o ik w)chkl — ((k-w)? = )Pz l—ng( ) (5.7)
and for +(j),

s +
. l<"2 + 1825 (202 l<J>1 + ¢z lm ) Z w}‘g}fl(Z), (5.8)
k:|(k-w)FRj|<el—

where for Z = (z1,...,2;_2) with z; = (kaL),

k k; k- k
g.ial(z) =—a Z Z Z Zj17l12j22,l2zj337l3. (5‘9)

li+l2+l3=l ji+j2+js=]j ki+ka+ks=k

For k # =+(j), equation (5.7) represents a linear equation for z l, and (5.8)

<J>

is a first order linear differential equation for z;;~;. Initial Values for this

differential equation are obtained from

L= Y A0, 1 S0 = Y (it 0@ 2 0)  (6.10)

S
ke keK;

=S 0, 0=3 (i(k-w)c(O) 2%,(0) +z}fl_1(0)), 1> 2.
kek; kek;
(5.11)

The construction of the coefficient functions is done iteratively with in-
creasing [, as in Section 3.4. We note that zkl can differ from zero only for

[k[| < I. Moreover, the initial values 2; X(0) of (5.6) satisfy

> 2K(0) = u;(0) =0 (5.12)

ke

3 (i(k - w)e(0)2K(0) +az}‘(o)) - %uj(o) = N2 37 sk (0). (5.13)

ke ke
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5.5 Bounds for the coefficient functions of the MFE

We denote by Z the space of all z = (Z}()jeZ*»S,keICj,\|k\|§N+1 with finite norm

lell?= 3 (3 (el + 2)12H)

JEZ*B  keK;
Ikl <N+1

Lemma 5.1 For z; = (zjkl) € Z (i =1,2,3) we let, for j € Z*3 and k =
(k1 ka,...) € ZN,

k _ k1 ko _k3
hi (21,22, 23) = Z Z Z51,1%52,2%43,3°
Jit+i2+is=j ki+ka+ks=k

Then,

(2 (3 e zza)])) " <l il 21l

JEZ*3 keZN

Proof By the Parseval formula, the left-hand side of the desired inequality is
bounded by the Ly(Q) norm of the function fi(x) f2(x) f3(x), where f;(x) is
the function with j-th Fourier coefficient Y c;n [2]. We then have

[f1f2fsll, < I Alles 1f2llze | fallzs < ClAullan 2l Il f3ll e

where we have used the Holder inequality and the Sobolev embedding H'(Q) C
L5(Q), valid for dimension d < 3. We further have

I = (2 (2 @i)) " <l

jer,S keZN
which yields the result. a

We note that g}fl(Z) of (5.9) is given, for Z = (z1,...,2;_2), by the finite

sum
k Kk
gj,l(z) =-—a Z h; (21, ,215,215)-
li+l2+13=l
Since we obtain different bounds for diagonal coefficient functions zj<j> and
non-diagonal coefficient functions ka with k # £(j), we split

2
NlzllI* = |2l3iag + 1228 diag:
where

. . 2
|Z|(2:liag = Z <2QJ(‘z‘]<J>| + |ZJ7<.]>|)>

jezrs

|Z|(2)ff—diag: Z ( Z (‘k'w|+9j)|2f|)2'

JEZFB  keKjkFE()
k]| <N+1



20 L. Gauckler, E. Hairer, and Ch. Lubich

Lemma 5.2 Under the conditions of Theorem 5.1, the seminorms |zl(Q)\diag
and |Zl(q)|0ff_diag of the q-th derivative of the coefficient functions z; = (zjkl)
constructed in Section 5.4 are bounded for 0 < a < min(%7 ﬁ) as stated in
the table below, uniformly for 0 <1 < 1. For each (l,q), the entry in the first

table gives the bound for |zl(q)|diag, and that in the second table for |Z§q)|oﬂ‘_diag,
up to a constant independent of €. In particular, the coefficient functions z =
(ka) of (5.6) satisfy the bounds |z|qiag = O(€) and |z|oftdiag = O(e2T%).

| q¢=0 g=1 g=2 q>2
=1 €0 gl gl gl
=2 el ef e gm(a e
=3 E—(l—a) 5—(1—&) 5—(1—a) E—(l—a) 4 eae

1> 4 E—(Z—Q)(l—a) E—(l—2)(1—o¢) E—(l—2)(1—o¢) E—(l—2)(1—a)
_|_8—(l—4)(1—o¢)—(q+l—3)oc

Bounds for diagonal coefficient functions zjilm.

| q=0 qg=1 qg=2 q>2
=1 0 0 0 0
=2 0 0 0 0
l = 3 57(170‘) 67(170‘) Ef(lfa) 67(17‘1)

[>4 | e-(-20=a) —(-2(1-a) —(-2)(1-a) —(-2)(1-a)
Le—(=3)(1-a)=(¢+-5)a

Bounds for off-diagonal coefficient functions z}fl with k # £(j).

Proof We work with (5.7) for the off-diagonal coefficients 2}, for k € K; with
k # £(j), with (5.8) for the diagonal coefficients z;,”, and with (5.10)-(5.11)
for the initial values. Factorizing

(k- w)? = 0F = (k- w|+ 2) (k- w| - 2)
and using that ||k - w| — 2| > &'~ for k € Kj, we obtain for k # +(j)

(Ik-w|+2) |24 < O (Jkew|- |2y |+ kw59 [+ 12 ol +195(2)])
(5.14)
and similar bounds for the derivatives of z}fl, where the functions on the right-
hand side are replaced by their corresponding derivatives.
Solving the linear systems (5.10)—(5.11) for zﬁ (0) yields
2550 0) = o (B = Y (k- w) £ 2)e0) 2 0)+ X 2,(0),

2ie(0) KA (j) ke,

(5.15)
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where bjj)[l<j> = (du;/dt(0) £1825u;(0))/e for I = 1, and bﬁh = 0 else. We have

i
Z |bj,l<J>|2 <C

jez=3

by the assumption (2.2) on the initial values.
The linear differential equation (5.8) with [ — 1 replaced by ! becomes

Fi625(2¢%;, RS ¢z £ >) =% l<J>1 + Z wigii1(Z),  (5.16)
K| (k-w)F | <el—o

Using the variation-of-constants formula and a partial integration yields, for
0<7<1,

1579 (1) < 13259 (0)] (5.17)
+Cy mas (|”1 O+ Y uke) g (Z0)]).

k| (k-w)F 0] <et—

and similar bounds for the derivatives of z;[J(J). Note that the ¢-th derivative
of w}‘(T) is bounded by O(g71%).

With these tools we can estimate the coefficient functions z}fl and their
derivatives for one [ after the other. For [ < 0, all z ", are zero by definition.

I = 1: The off-diagonal coefficients are zero, because 9; l( y=0forl=1
(and also for I = 2). By (5.15) we obtain |21 (7)|diag < Cfor 7 = 0, and by
(5.17) for all 0 < 7 < 1. Using (5.16) we obtain the same bound for any finite
number of derivatives of z;.

I = 2: The off-diagonal coeflicients are still zero. Using the bound for z; in
(5.15), we obtain |z2(7)|qiag < C for 7 = 0, and by (5.17) for all 0 < 7 < 1.
Using (5.16), which now contains non-vanishing gj73 with factors ka7 we find
that the ¢-th derivative of z5 contains the (¢ — 1)-th derivative of wJ which
is O(e~(@= 1), Using Lemma 5.1, we thus obtain |zgq)(7')|diag < Ce~la=De,

I = 3: By (5.14), by the bound for z; and its derivatives and by Lemma 5.1
we obtain that zs and its derivatives satisfy \z3 loff-diag = O™ (1=2)) for all
g > 0. By (5.15), the initial value for the diagonal part of zs is bounded by
|23(7)|diag = O(e~(17¥)) at 7 = 0, and (5.17) then gives the same bound for
all 7 < 1. Formula (5.16) and its differentiated versions then yield the bound
|z:())q)(7')|diag = O(e= (17 4 ¢=9%) for ¢ > 1.

[ > 4: The same arguments as before yield the bounds of the lemma. O

5.6 Bounds for the defect and the remainder

In the following we choose N > 4 arbitrarily in (5.6) and o = 1/N in (5.2)—
(5.3). Lemma 5.2 then shows that eV 225\ | and eN 22K, | for k # £(j)

are both of magnitude O(e4~%). As we will see in a moment, these terms are
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the dominating terms in the defect. For the diagonal entries Jil< >(T) only the
initial value is constructed for I = N + 1 and the function is taken to be
constant in time, because of the shifted index [ — 1 in (5.8). The defect, when
ka(T) is inserted into (3.6), is given for k # +(j) by

dk = 822’ + 2i(k - w)ecz‘}‘ + (i(k - w)eé — (k- w)zcg)z;‘ + QjQCQzJ!‘ (5.18)
Jitjz+is=j ki+ka+ks=k
and for +(j) by

+(j ==
d; 0 _ 2 Z = 40, 5(202 Rl + ¢z <J>) (5.19)
D DR D DR DI NE R
k:|(k-w)F0l<et = Jiti2+is=j ki+ka+ks=k

By construction of the coefficient functions z¥,, the coefficients of ! vanish for

I < N + 1. All that remains is, for k # £(j),

djl.‘ = gV +2 (sszH + z ‘v +2i(k - w)czkj\”rl

.]l’

3N+3

+i(k - w)ez N+1+CLZ€Z N 29Jk, ))
I=N+2
and for +(j),
_ 3N+3
dji<J> N+2( =0 40, iz N+1+a ZEZ N-2 Z w}‘g}fl(Z))
I=N+2 k| (kw)F 2l <et—

with g}fl(Z) defined in (5.9).

Lemma 5.3 Consider the approzimation (5.6) with arbitrary N > 4 and
(5.2)-(5.3) with « = 1/N. Under the assumptions of Theorem 5.1, the de-
fect is bounded, for 0 <71 <1, by

( > (Z |d}((7)|>2)1/2 < Ot N,

JEZ*3 keK
where C' is independent of € and 0 < 7 < 1, but depends on N.

Proof The bound is obtained by using the above formulas for the defect and
the bounds of Lemma 5.2, and Lemma 5.1 for bounding the nonlinearity. 0O

We remark that the choice N = 4 and o = 1/2 yields a smaller bound
O(£9/?) for the defect. Our interest here is, however, to obtain the stated
bound for arbitrarily small o > 0.

Equations (5.12)-(5.13) and Lemma 5.2 also yield that the error in the
initial values is bounded by (-, 0) — u(-,0) = 0 and ||d;u(-,0) — deu(-,0)|/ 2 =
O(e*~). By the same argument as in Section 3.7, it follows that the remainder
term (r, d;7) of the MFE is bounded in H}(Q) x L*(Q) by C(1 + t)e*~* for
t < ¢!, This completes the proof of Theorem 5.1.
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6 Adiabatic invariant

We show that the almost-invariant for the coefficients of the modulated Fourier
expansion extends from the one- to the three-dimensional case, albeit with a
larger error in the near-conservation property. Throughout this section we work
with the truncated series (5.6) with arbitrary N > 4 in the MFE (5.2)—(5.3)
with « = 1/N.

6.1 An almost-invariant of the MFE

For j € Z*3 and k € K;j we introduce the functions

ka(T) — Z}((T) elkw)o(r)/e
In terms of y¥, for k # +(j) (5.18) can be rewritten as
J

X () + e(1)? (1) + VS U(y) (1) = dif () i)/ (6.1)

where

a ki, ko ks k
Uy)=73 > D U

Ji+...4+ja=0 ki+...+ks=0

and V:Jl.‘ denotes differentiation with respect to y:}‘. The convergence of the
infinite series in the definition of U(y) follows from Lemma 5.1 provided that
Iyl is bounded. Equation (5.19) can be written

(G j +(j +(j i25¢(7)/e
€2yji(J)( )+t ) (22 i(J)( )+VTJ§J>U(y)(T) _ (dj <J>(T)+6j <J)(T)) ot QJ¢(( )/ 5
6.2

where

eji(j) — 4 Z Z Z yjkll yfyis.

k#+(j) : |[(k-w)F 25| <el= ji+ja+iz=]j kitka+ks=
The invariance property
—i(k-w)f, k Kk
u((e i(lew) Y; )jeZ*vi",keICj) = U((yj )jGZ*»S,kEICj)v 0 R,

yields, like in Section 4,

> ik w)yTFVIEU(y) = 0. (6.3)

JEZ*3 kEK;

Moreover, the sum 3 i ;.. Zke,cj i(k - w)y:;‘_(zj?@yj‘ vanishes, because the
term for (j,k) cancels with that for (—j, —k). We have the following bounds
for the terms on the right-hand sides of (6.1) and (6.2).
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Lemma 6.1 We have, for 0 <71 <1,

‘ Z Z (k- w) y:}‘(T) d¥(r)| < CeSUN,

JEZ*3 kEK;
where C' is independent of € and 0 < 7 < 1, but depends on N.

Proof This bound follows immediately with the Cauchy—Schwarz inequality
and using the bounds of Lemmas 5.2 and 5.3. O

Lemma 6.2 We have, for 0 <71 <1,

Z Z N y_s(J) )e;(J')(,r) < 05571/N,

se{-1,1} jez*:3

where C' is independent of € and 0 < 7 < 1, but depends on N.

Proof Consider first those terms in the sum defining e=9 Where one of the
k; (i = 1,2,3) is different from =+(j;). These terms yield a contribution of
magnitude O(e°**) (with a = 1/N) by the bounds of Lemma 5.2. Hence it

remains to bound }° oo 1y D ieze 80 y_;m( )é}sm(T), where

~s{) _ s1(j1), s2{j2), s3(js)
&G =-a Z Z Yo Y Y
J1ti2+is=j (s1,82,53)

\slﬂj1+52!2j2+s3ﬂj37sﬂj\<£17u
where the sum is over s; € {—1,1} with the stated property. We then have,

on formally setting j, = —j and s4 = —s, and on using the symmetry of the
expression in the second line,

O WL
se{—1,1} jez*3
—a Z Z 84.QJ4 yJSII (.]1)y;22<.12>y;:<.]3>y;j<.14>

J1+i2+is+ja=0 (s1:52,53,54)
|51Qj1+329j2+539j3+549j4 |<el—e

-5 ¥ S () e

J1ti2+is+ja=0 (s1,52,53,54)
ls1 25, +s225, +5325, +s425, |<el—a

Since ’E?:l 5825, < &7 and |y|agiag = O(e), it follows with the Cauchy-
Schwarz inequality and Lemma 5.1 that this expression is O(e!'~%¢*), which
yields the result. a

Theorem 6.1 Consider the expression

Iy, y)=¢ »_ > i(k-w)y Fik

jEZ 3 keK;
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In the situation of Theorem 5.1, the functions ka(T) = z}‘(T) ellkew)d()/e then
satisfy, for 0 < et <1,
L), ¥(et) = O~ N) (6.4)
and ) )
I(y(et),y(et)) = 2c(et) Y 22|z (et)]” + OE?). (6.5)
jezs
The constant symbolised by O(-) depends on the truncation index N, but it

is independent of 0 < € < e* (with €* sufficiently small) and of t as long as
0<et<1.

Proof The bound (6.4) is obtained by differentiation of Z(y(et),y(et)) with
respect to t and using (6.3) and Lemmas 6.1 and 6.2. The relation (6.5) is
proved in the same way as the analogous relation in Theorem 4.1, using the
bounds of Lemma 5.2. O

6.2 Connection with the action of the wave equation

We consider the harmonic energy divided by the wave speed along the MFE
u(x,t) of Theorem 5.1,

10 = 5o (1001 + et 0))
- QC(L)( > \%ﬂj(t)|2+c(€t)2 > o).

jGZ*’S jEZ**s
The following result is proved in the same way as Lemma 4.1.

Lemma 6.3 Let u(x,t) be the MFE of Theorem 5.1. Then,
I(t) = 2c(et) Z Qj2|zj<j>(at)|2 +0(e?).

jez=s

6.3 Transitions in the almost-invariant

The following result is obtained by the same arguments as in the proof of
Lemma 4.2, using the construction of the MFE in Section 5.

Lemma 6.4 Under the conditions of Theorem 5.1, let ka(T) for0<rT=cet<
1 be the coefficient functions of the MFE as in Theorem 5.1 for initial data
(u(+,0), 0ru(-,0)), and let ka(T) = ZJ}‘(T)ei(k""W(T)/E and y(1) = (ka(T)) Let
further y(1) = (ﬂjk(r)) be the corresponding functions of the MFE for 1 <
7 < 2 to the initial data (u(-,e~ 1), Opu(-,e=1)), constructed as in Theorem 5.1.
Then, )

Z(y(1),5(1)) = Z(3(1),¥(1))| < C* VN,

where C' is independent of €.
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6.4 Long-time conservation of the adiabatic invariant

In the same way as in Section 4.4 we obtain from Theorem 6.1 and Lemmas 6.3
and 6.4 that for t < kye 3t/N with a sufficiently small xy,

[I(t) — I(0)] < C1&® + Cote® N < &%,

This yields the bound of Theorem 2.2.
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