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Abstract

Sources and sinks of atmospheric carbon dioxide largely control future climate. They moderate
the fraction of emitted carbon which remains in the atmosphere, the main anthropogenic
driver of global warming. However the sources and sinks are hard to measure directly.
Therefore they are estimated using inverse models which combine a prior estimate, inferred
from characteristics of biosphere and oceans, with atmospheric measurements and adjust the
sources and sinks to fit the atmospheric measurements.

Deriving a robust estimate of the global distribution of sources and sinks requires estimating
systematic errors. Previous studies investigated, among other parameters, the uncertainty
due to atmospheric transport which connects surface fluxes to atmospheric measurements.
This study is the first to investigate the uncertainty of surface fluxes due to the choice of
the inverse method and the representation of fluxes using real measurements and two well-
established inverse models. The inverse models are run with harmonized input, prior fluxes,
measurements, atmospheric transport and flux covariance. Comparing the mismatch between
the calculated atmospheric concentration and measurements which are not used to adjust
the fluxes, gives an estimate of the quality of the inversion. The difference of this mismatch
between the models is smaller than the uncertainty of the mismatch. Therefore differences
in the fluxes estimated by the different models provide an estimate for the contribution of
inter-model errors to the uncertainty of estimated sources and sinks.

For the sink in North America, where the density of measurement sites is highest, this study
finds a lower limit for the uncertainty of 0.1 Pg carbon per year, about 10% of the estimated
biospheric sink. For other continents the uncertainty is on the order of 0.25 Pg carbon per
year. Varying the number of observation sites used in the models showed that this uncertainty
is controlled by the density of measurements. Integrating additional measurements reduces
the uncertainty due to differences between the models.

To investigate the effect of complementary observations, measurements of the aggregated
vertical column of CO2 from ground-based spectrometers were implemented in one of the
models. Evaluating the calculated fluxes when using these additional measurements showed
that total column measurements correct mismatches introduced by using temporally sparse
aircraft measurements. The strength of the Eurasian biospheric sink was derived as 3.5 ± 1
Pg carbon per year, and it was shown that a robust estimate of the European sink requires
at least one additional measurement site in boreal Asia.

This study completes the assessment of different contributions to the uncertainty of inverse
source/sink estimates of CO2. It shows that adding measurements decreases the uncertainty
of the estimated fluxes due to differences between the models and that total column measure-
ments complement in-situ measurements. To this end it implements usage of ground-based
total column measurements for inverse modelling which lays the foundation for adding more
measurement sources, from ground as well as from satellite.
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Chapter 1

Introduction

Carbon dioxide (CO2) is the most important greenhouse gas which is directly influenced by
human activity. Anthropogenic emissions release roughly 10 Gt carbon into the atmosphere per
year (Peters et al., 2013), part of which gets taken up by the biosphere and the oceans. The net
sink of atmospheric CO2 in biosphere and oceans determines the fraction of emitted CO2 which
remains in the atmosphere, the largest driver of climate change (Stocker et al., 2013, chapter
8.5.1). But sources and sinks of CO2 are hard to measure directly.

Consequently there are large uncertainties about the quantity and strength of sources and sinks of
CO2 – in Europe uncertainty is on the same order of magnitude as the estimated biospheric sink
(Reuter et al., 2014). Methods for observing the fluxes directly require either eddy covariance
measurements at multiple height levels (Foken et al., 2012; Baldocchi, 2003), measurements of
concentration changes in a sealed volume of air, or biometric measurements (Davidson et al.,
2002; Curtis et al., 2002). But such bottom-up approaches are only representative for a given
collection of vegetation types in a limited geographic area, making it hard to scale their results
up to continental scale.

To address this problem, inverse flux modelling estimates regional sources and sinks by assim-
ilating atmospheric concentration measurements. A transport model connects surface fluxes
and atmospheric concentration measurements by transporting a carbon tracer on meteorological
fields (like those from ECMWF, the European Centre for Medium-Range Weather Forecasts).
An inverse method approximates an optimal flux distribution by minimizing the mismatch to
observations as well as the deviation from a prior flux model (Rodgers, 2000). Prior flux models
scale up direct flux measurements but suffer from large uncertainties.

There are two main classes of assimilation techniques for complex inversions: variational methods
and ensemble methods (Lahoz et al., 2007; Lahoz and Schneider, 2014). Variational methods use
algorithms inspired by the Newton method, adjusting their estimated fluxes step by step to adapt
calculated atmospheric concentrations to the atmospheric measurements (e.g. Juhász and Bölöni,
2007; Gilbert and Lemaréchal, 1989; Newton, 1669). Ensemble methods approximate fluxes
using many different realizations (an ensemble). The realizations are chosen to be distributed
following the mean value and uncertainty of the prior fluxes. Ensemble methods then adjust each
realization using atmospheric measurements. The new mean value and uncertainty for the fluxes
follow from the distribution of the adjusted realizations (e.g. Whitaker and Hamill, 2002).

This study aims at better quantifying the uncertainties involved in inverse modelling of sources
and sinks of carbon dioxide. In particular, this thesis assesses the uncertainty due to the choice
of the data assimilation system and due to the choice of the type of observational constraint.

1



2 CHAPTER 1. INTRODUCTION

It shows that these uncertainties can be reduced by combining in-situ observations and remote
sensing measurements.

Comparing different inverse methods allows estimating uncertainties which cannot be captured by
their intrinsic error propagation methods themselves. This study uses the methods implemented
in TM5-4DVar (Basu et al., 2013) and CarbonTracker (Peters et al., 2007; Peters et al., 2005;
Whitaker and Hamill, 2002) and harmonizes their input values to estimate the differences due to
their setup of the state to be optimized and the inverse method used. Both methods build on
the same transport model (TM5, Krol et al., 2005). Uncertainties due to the choice of transport
model have previously been assessed by Gurney et al. (2004).

Currently both compared inverse methods use in-situ measurements (obspack, Masarie et al.,
2014). In-situ measurements provide accurate information about fluxes at a given point with
errors around 0.1 ppm (Andrews et al., 2013) but they are not very representative for model
scales. The model operates on a grid with boxes of 6× 4 degrees or 1× 1 degrees - about 500km
or 100km side-length, therefore there are many local biosphere phenomena which affect in-situ
measurements but cannot be captured on the model scale. This error is commonly referred to as
representativeness error.

In the latter part of the thesis, assimilation of total column measurements is added to Carbon-
Tracker. Total column measurements contain information about more distant regions whose
CO2 signal is already diluted vertically. Since the spatial variability of the aggregated CO2

concentration in a vertical column is about a magnitude lower than near the ground, total column
measurements are more representative for the model grid scale than flask measurements from the
ground, so they have a smaller representativeness error.

Ground sites for total column measurements provide high frequency data of an aggregated column
of CO2 from the ground to the top of the atmosphere. The Total Carbon Column Observing
Network (TCCON, Toon et al., 2009a) provides measurement an 1σ uncertainty of 0.2% (Toon
et al., 2009b) corresponding to an absolute uncertainty between 1 ppm and 0.4 ppm CO2. There
are only few total column stations, though, 18 worldwide in 2015. Different from the in-situ
network which has the highest density in the USA, the density of TCCON sites is highest in
Europe, so they complement the in-situ network in terms of spatial coverage.

Satellite measurements provide low frequency data with higher uncertainty, but with good spatial
coverage (Butz et al., 2011; Butz et al., 2013; Basu et al., 2013). With these characteristics
they are orthogonal to ground measurements and provide information which the other methods
cannot deliver, especially for inaccessible regions. Satellites with CO2 measurements suitable
for assimilation include GOSAT and the upcoming OCO-2 (Dils et al., 2014; Hammerling et al.,
2012).

Together, flask measurements, ground-based total column measurements and satellite total column
measurements provide better constraints for the inverse methods than flask measurements alone,
which reduces the uncertainty of estimated fluxes.

In my thesis I estimate the uncertainties of the calculated distribution and strength of sources
and sinks of atmospheric carbon dioxide with two approaches: comparing results calculated by
different inversion methods (chapter 3) and comparing results from different types of measurements
(chapter 4). I evaluate the flux uncertainties from the perspective of carbon cycle investigation
such as the continental-scale distribution of the biospheric sink.



Chapter 2

Understanding, measuring and modelling
CO2 in the atmosphere

2.1 CO2 and Climate

Greenhouse gases have an important effect on climate, because they impact the energy balance
between the outgoing radiation from the Earth’s surface and incoming sunlight. They are the
base of the greenhouse effect. Human activity predominantly affects the greenhouse effect by
increasing the atmospheric concentration of CO2 and other well-mixed greenhouse gases (GHG)
such as methane, nitrous oxide (Schmidt et al., 2010).

Without any atmosphere, the temperature of the earth would be given by the equilibrium between
directed incoming light in the short wave spectral range from the sun and undirected outgoing
light in the infra-red which is emitted from the earth (IPCC, 2007). Energy radiated from a black
body scales with the fourth power of the temperature (as first shown by Štefan, 1879; Boltzmann,
1884). Without absorption of outgoing radiation within the atmosphere due the greenhouse
effect, the global mean near-surface temperature would be about −18◦ Celsius. Absorption in
the atmosphere traps radiation, raising the equilibrium temperature to the measured 15◦ Celsius
(IPCC Working Group I, 1996a; Jones et al., 1999; Rayner et al., 2006).

This effect was already identified by Arrhenius (1896). In particular Arrhenius (1896) predicted
that a doubling of the concentration of CO2 would lead to an increase in the mean temperature
by 4.9°C to 6.1°C — which is close to the 2.1°C to 4.7°C range of results calculated by modern
climate models, as summarized by Flato et al. (2013, table 9.5).

Other greenhouse gases include water vapour (the strongest GHG) and ozone (Ramanathan and
Coakley, 1978; Kiehl and Trenberth, 1997; Schmidt et al., 2010) as well as methane (Myhre et al.,
2013, p. 698), and, to a lesser degree, the very abundant oxygen and nitrogen (Höpfner et al.,
2012).

But different from many other factors, the CO2 concentration in the atmosphere is influenced
directly by human activity. The strongest contribution to the increasing CO2 concentration are
burning of fossil fuel, deforestation and cement manufacturing which introduce previously bound
carbon into the atmosphere (Worrell et al., 2001; Le Quéré et al., 2015).
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Figure 2.1: Main pathways for carbon-exchange between biosphere, oceans and atmosphere. In
autumn and winter the biosphere releases most of the carbon it captured in summer, while the
upper ocean keeps an equilibrium with the CO2 concentration in the atmospheric boundary layer.
Data from Le Quéré et al. (2012).

2.1.1 The Carbon Cycle

The carbon cycle is the flow of carbon between different reservoirs of carbon. It is split in a fast
cycle and a slow cycle. The fast cycle exchanges carbon between the atmosphere, the biosphere
and the surface ocean. It is relevant for time scales on the order of weeks to years. The slow cycle
is concerned with carbon exchanges including the deep ocean and the Earth’s crust. It is relevant
for time scales on the order of centuries to millennia. This study is only concerned with the fast
carbon cycle.

Carbon in the atmosphere mainly exists in the form of CO2. It moves to the biosphere by
photosynthesis and gets integrated by plants as sugar-compounds. Transport from the biosphere
to the atmosphere mostly happens through respiration, decay and fires, which both release the
carbon from the plants. Due to this effect, the mass of carbon in the atmosphere and in the
biosphere is in an equilibrium. Increased partial pressure of CO2 in the air increases the growth
rate of many plants (Griffin et al., 2001), so if the CO2 in the atmosphere rises, part of it gets taken
up by the biosphere. The amount of carbon exchanged between atmosphere and biosphere per
year is on the order of 120 gigatons carbon (U.S. Department of Energy Office of Science, 2008).
Transport between ocean and atmosphere on the other hand mostly happens through dissolution
of CO2 in the ocean, which then gets stored in form of several different carbon-compounds (Rhein
et al., 2013). The dissolved CO2 in the ocean (DIC: dissolved inorganic carbon) and the CO2 in
the air form an equilibrium. Increased partial pressure of CO2 in the air leads to higher uptake
of CO2 in the ocean and vice versa. The yearly exchange between atmosphere and ocean is on
the order of 90 Gt per year (Le Quéré et al., 2012). This exchange is added up over the year,
with large take-up of carbon by the biosphere during the summer growing season and net release
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of carbon from the biosphere in autumn and winter (see Figure 2.1). Without additional sources
the long term net flux between those three reservoirs would be roughly zero.

The fourth reservoir, the Earth’s crust, is only relevant for the equilibrium between the reservoirs
on time scales on the order of thousands of years, because its interactions with the other reservoirs
are very slow. The sole exception is burning of fossil fuel, which releases about 8.3 Gt carbon per
year (Le Quéré et al., 2012) - and different from interactions between the other reservoirs, this
release is one-way: The carbon released from burning fossil fuels does not return to the crust in
the span of a human life.1

Not all of that anthropogenic carbon stays in the atmosphere, though. As shown in Figure 2.2
about half of it ends up in the biosphere and ocean (Le Quéré et al., 2012; Ciais et al., 2013), so
that only the other half of the carbon released through burning of fossil fuel actually remains in
the atmosphere and contributes to the greenhouse effect.

This fraction which remains in the atmosphere can be measured from the average yearly increase
of carbon dioxide of 2 ppm (corresponding to 4.28 Gt carbon).2 Contrasting this increase with
the 8.3 Gt carbon released from human activity provides the mean take-up from the biosphere
and the oceans. The spatial distribution of sources and sinks can be estimated roughly with
ocean and biosphere models which calculate the take-up of CO2 at the Earth’s surface by scaling
up ecological variables like the type of plants in a given region and meteorology like the amount
of sunlight which reaches the surface.

But this up-scaling is impeded by heterogeneities of the surface. So these models can only provide
uncertainties on the scale of the actual surface fluxes, and their calculation can only use knowledge
about the current behaviour of the biosphere, which may not fit the behaviour under climate
change. An example for the impact of this uncertainty is the research by Wolkovich et al. (2012)
who showed that “warming experiments underpredict advances in the timing of flowering and
leafing by 8.5-fold and 4.0-fold”

To predict the future increase of the greenhouse effect from anthropogenic emissions, given these
sources of uncertainty, and to detect changes in the sources and sinks of carbon, it is therefore
necessary to use additional information to estimate the transport between atmosphere, biosphere
and ocean – to understand the sources and sinks of carbon dioxide.

2.1.2 Understanding Sources and Sinks of Carbon Dioxide

Due to the large amount of carbon exchanged between the carbon reservoirs over the year, it is
hard to estimate the net uptake and release from the biosphere using models of the biosphere and
direct measurements of carbon fluxes. The total amount of carbon exchanged between atmosphere,
biosphere and ocean per year is on the order of 210 Gt carbon (IPCC, 2007), while the net uptake
is only on the order of 5 Gt per year, 2.5% of the total flux (Le Quéré et al., 2012; Schulze, 2006).

1The amount of carbon in the deep ocean is about 38 thousand gigatons. It is increased by approximately 1
gigaton per year, or 0.0026%. The sedimentation is on the order of 0.2 gigatons carbon per year. Assuming a
linear relationship between carbon content in the ocean and transport into the crust, the transport should only
increase by 0.0026% per year, which amounts to about 5 tons. If the deep ocean were to take up all the carbon
humans released in the last 100 years, transporting 1 gigaton back into the crust would still take time on the order
of half a millennium (IPCC, 2007). Therefore the equilibrium with the deep ocean is more relevant on shorter
time scales than the transport to the crust.

2The conversion factor from ppmv CO2 to GtC is 2.14, calculated from the molar mass of roughly MCO2 =
44g/mol for carbon dioxide, the molar mass of MC = 12g/mol for carbon, Mair = 28.9g/mol for air (Halliday
et al., 2003) and the total mass of the air mair5.15× 106Gt (Trenberth and Smith, 2005):(

Mair
MCO2

· MCO2
MC

· 1
mair

)−1
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Figure 2.2: Historical annual anthropogenic CO2 emissions and their partitioning among the
atmosphere, land and ocean (PgC yr–1) from 1750 to 2011. (Top) Fossil fuel and cement
CO2)emissionsbycategory.(Bottom)FossilfuelandcementCO2 emissions as above with the ad-
dition of the repository which received the emitted carbon. The residual land sink (term in
green in the figure) is computed from the residual of the other terms, and represents the sink of
anthropogenic CO2 in natural land ecosystems. From IPCC 2013, Figure 6.8, page 487, Ciais,
P., C. Sabine, G. Bala, L. Bopp, V. Brovkin, J. Canadell, A. Chhabra, R. DeFries, J. Galloway,
M. Heimann, C. Jones, C. Le Quere, R.B. Myneni, S. Piao and P. Thornton, 2013: Carbon and
Other Biogeochemical Cycles, Figure 6.1. In: Climate Change 2013: The Physical Science
Basis. Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M.
Tignor, S.K. Allen, J.Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge
University Press, Cambridge, United Kingdom and New York, NY, USA (Ciais et al., 2013).
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Figure 2.3: Biospheric and Oceanic Sources and Sinks of CO2 from April 2009 to April 2010 as
estimated by CarbonTracker. This high resolution map (1◦×1◦ latitude×longitude) is presented
for illustrative purposes. Chapter 3 and 4 detail the uncertainties of carbon flux estimates.

As such, small relative errors in the strength of the source or sink add up to large errors in the
net exchange. Also the exchange is hard to measure directly, because flux measurements are only
representative for a small region and timespan (see section 2.3). Consequently our knowledge
about sources and sinks of anthropogenic carbon is quite limited, often even calling in question
whether a given region is a source or a sink.

To improve our understanding of net sources and sinks of carbon, we can use inverse models.
Very roughly explained, they trace carbon dioxide on air currents and compare modelled CO2

concentrations at measurement sites with actual measurements of atmospheric CO2. Discrepancies
between measurements and model are then attributed to sources and sinks of carbon upstream of
the air currents (Peters et al., 2007). The resulting fluxes can yield results on fine spatial scales as
shown in Figure 2.3, though as shown in chapters 3 and 4 uncertainties due to limited observation
data require aggregation of the resulting fluxes on continental-scale regions to robustly distinguish
net sources from net sinks.

Examples for further methods to improve the understanding of sources and sinks are discrimination
between different plant types via their different isotope fractionation, as investigated for example
by van der Velde et al. (2014), and assimilation of carbon monoxide measurements to discern
biomass and fossil fuel burning from plant respiration (Gamnitzer et al., 2006).

However, these approaches show large differences, often larger than the actual estimated flux. For
example the results from Keeling et al. (2011) suggest three times more uptake in the oceans than
in the biosphere, while Peters et al. (2007) found that the biospheric sink is larger than the oceanic
sink. These discrepancies make it necessary to get a better handle on actual flux uncertainties by
using not only the results estimated using a single approach, but also uncertainties due to effects
from different aspects of these approaches.
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2.1.3 Prediction and Mitigation of Climate Change

The state of the art of the knowledge about uncertainties on climate change is available in the
IPCC reports: The publications from the Intergovernmental Panel on Climate Change (Stocker
et al., 2013). The IPCC reports are a collaborative work by scientists from all over the world and
many different disciplines to collect and advance the current understanding about climate change
and assess strategies to mitigate global warming and its adverse effects.

The reports aim at providing comprehensive information about the climate system in enough
detail that political advisors can get a sufficiently complete understanding to judge how our
current activities affect future climate and which measures can be taken to reduce unwanted
consequences of our actions.

Expected consequences from current climate change include an increase of the global mean
temperature and more and stronger tropical storms (IPCC, 2013), changes in rainfall patterns
(Chadwick et al., 2013) and shifting of climatic regions (Kuang et al., 2014). In addition to the
direct effects from the release of CO2, increased air temperature could cause permafrost thaw on
land (Khvorostyanov et al., 2008) and trigger a positive feedback which could stay active until
2300, releasing 600 to 1000 gigatons of carbon into the atmosphere – roughly 10 times the amount
projected by the IPCC’s high emission scenario (Schneider von Deimling et al., 2012). Seabed
thawing could trigger the release of large amounts of methane (Portnov et al., 2013).

The political result from the research is that 20 years after the first IPCC report (IPCC Working
Group I, 1996b) the governments of the largest carbon emitting countries committed to create a
binding agreement to keep global warming below 2◦C3 to limit the probability of changes with
high impact on economy and infrastructure. However, while this is an important step forward,
Tschakert (2015) finish their assessment of the risks due to climate change with the conclusion
“negative impacts of climate change under a 0.8°C temperature increase are already widespread,
across the globe, and that danger, risk, and harm would be utterly unacceptable in a 2°C warmer
world”.

But despite broad scientific consensus about the information contained in the IPCC reports, these
results have seen sustained attacks in the media and other non-scientific channels. Even the most
fundamental result – the warming due to increased CO2 concentrations in the atmosphere – is
widely questioned.4

To improve communication between science and society, J. A. Curry (2011) argue for providing,
among other dimensions, a likelihood estimate, representing “a probabilistic assessment of some
well-defined outcome having occurred or occurring in the future.”

This leads to the need for robust estimates of the accuracy of model results, uncertainties which
take missing knowledge into account, to the need of providing actionable data by estimating
the likelihood of specified scenarios from effects outside the knowledge of a single model, and
the need to reduce the uncertainty of regional flux estimates. To this end, this thesis quantifies
previously untested aspects of the uncertainties in flux estimation, and increases the amount of
measurements which can be used together to reduce these uncertainties.

3The Guardian provides an overview of political action around climate change from the Kyoto protocol in
1997 which went in effect in 2004 over the targets created in Copenhagen 2009 to the Paris summit in 2015 where
these plans are expected to become legally binding goals: http://gu.com/p/49b3b/stw

4For example the Guardian reported in the Article Propaganda trumps journalism in conservative media
climate reporting (15 October 2015) about mischaracterization of an article by Ciuraru et al. (2015) in major
newspapers as proof against global warning.

http://www.theguardian.com/environment/2015/jun/02/everything-you-need-to-know-about-the-paris-climate-summit-and-un-talks
http://gu.com/p/49b3b/stw
http://gu.com/p/4d8mv/stw
http://gu.com/p/4d8mv/stw
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If the uncertainty of estimated fluxes can be sufficiently reduced, this should allow taking the
biosphere into account for global regulation (like trading CO2 certificates) to mitigate climate
change.

2.2 Measuring greenhouse gases

The basic requirement for estimating sources and sinks of carbon from atmospheric concentrations
are accurate concentration measurements of CO2. For source-sink estimation there are several
types of measurements. In-situ measurements, sampled with flasks or continuous methods, provide
direct observations at a single location, while remote sensing from ground and remote sensing
from satellite measure the total column of a trace gas in the atmosphere, either at a fixed location
or – in the case of satellite measurements – at locations which vary with time.

This section describes the different measurement methods and their characteristics relevant to
this work: in-situ measurements and their calibration against a common standard, ground based
total column measurements, and total column measurements from satellites described.

2.2.1 In-situ measurements

The fundamental measurements – and the easiest to validate – are in-situ measurements. Air is
either sampled in flasks and brought to a laboratory for analysis or directly pumped through a
gas analyser.

The method employed throughout the "obspack" network used in this study (Masarie et al., 2014)
is infra red absorption. The air is cooled to freeze out water, then a non-Dispersive Infra-red
Analyser (NDIR) measures the absorption of infra-red light at 4.255 µm.5

Gas analysers are calibrated against reference air with known CO2 concentration. This reference
air is measured by freezing out CO2 and N2 from the air and measuring their temperature,
expansion and pressure under heating to calculate the absolute concentration using physical
expansion coefficients as described by Zhao et al. (1997). The uncertainty of the working
standards used for this calibration is estimated at 0.071 µmol mol−1 with comparison against the
five gravimetric standards from the National Institute for the Environmental Studies (NIES) in
Tsukuba, Japan, showing an average and standard deviation of the differences of 0.004 ± 0.03
µmol mol−1 (Zhao and Tans, 2006).

In-situ measurements are conducted from many different platforms which define spatial and
temporal coverage. The obspack distribution contains four main classes of platforms: weekly
flasks at a fixed location, weekly flasks on ships, semi-continuous measurements (from several per
day to several per hour) at a fixed location and semi-continuous measurements on aircrafts.

The aircraft measurements contain data from several specialized projects: The HIAPER Pole-to-
Pole Observations (HIPPO, see Wofsy, 2011), Infrastructure for Measurements of the European
Carbon Cycle (IMECC, see Feist et al., 2010; Messerschmidt et al., 2011), the Comprehensive
Observation Network for Trace gases by Airliner (CONTRAIL, see Machida et al., 2008) and
the Learjet flights described in Appendix A.3. Also included in the obspack distribution are
measurements by instruments on small aircrafts from the National Oceanic and Atmospheric
Administration/Earth System Research Laboratory (NOAA/ESRL) aircraft network.6

5As described by ESRL Global Monitoring Division - Global Greenhouse Gas Reference Network in Gas
analysers (esrl.noaa.gov/gmd/ccgg/behind_the_scenes/meas_analyzers.html).

6Information about the NOAA/ESRL aircraft network is available from the website
esrl.noaa.gov/gmd/ccgg/aircraft/

http://www.esrl.noaa.gov/gmd/ccgg/behind_the_scenes/meas_analyzers.html
http://www.esrl.noaa.gov/gmd/ccgg/behind_the_scenes/meas_analyzers.html
http://www.esrl.noaa.gov/gmd/ccgg/aircraft/index.html


10
CHAPTER 2. UNDERSTANDING, MEASURING AND MODELLING CO2 IN THE

ATMOSPHERE

60°S

30°S

0°

30°N

60°N
In-situ observations

Figure 2.4: Distribution and data density of in-situ observation sites. The radius of a circle is
proportional to

√
N
σ with N the number of available measurements at the site in this location

and σ their uncertainty estimate. The larger the symbol, the larger the weight of the site in the
model.

At many but not all of the continuous measurement sites, the measurements are averaged to
provide afternoon or night-time averages, using intra-day averaging periods representative of large
scale fluxes and discarding single measurements outside the respective averaging periods. The
averaging time period depends on the type of site, e.g., continental planetary boundary layer site
or mountain site, and is chosen to minimize influence from complex local topology or meteorology.

The low uncertainty of the measurements is only valid for measuring the concentration at the
point of the measurement. To get an uncertainty which is representative for the variability in a
larger region, the uncertainty is increased to a fixed value for each site. This value accounts for
measurement errors and for representativeness errors.

Representativeness errors originate from using the in-situ samples to represent the CO2 con-
centration in box of 6◦ longitude and 4◦ latitude (roughly 500 km sidelength). Concentration
uncertainties range from 0.75ppm for marine boundary layer sites over 2.5ppm for land sites up
to 7.5ppm for sites which experience variable meteorological conditions like varying wind from
sea and from land. The study in chapter 3 excludes some of these sites for additional validation.
Table A.1 lists the in-situ observation records used in chapter 3. Figure 2.4 shows the global
distribution of in-situ observations used in chapter 4 together with a visual representation of their
weight due to sampling frequency and representativeness error.

2.2.2 Remote sensing from ground

While CO2 concentration in the atmosphere is regularly sampled via the well established surface
air sampling network (Gurney et al., 2002), sparseness of this observation network limits the
representativeness of the measured mixing ratios for large scale variation of CO2. In addition,
the in-situ surface sampling network only provides a limited view of the atmosphere, since only
few sites are located above the boundary layer and none reach the middle of the troposphere.
Aircraft campaigns provide a way to test how well the model captures the CO2 concentration in
the middle to upper troposphere, but they are even sparser in time and space than the surface
sampling sites.
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Figure 2.5: Schematic for direct sunlight remote sensing from the ground.

Remote sensing measurements from ground provide a part of this missing information. They
differ from in-situ absorption spectrometry by looking into a remote light source like the sun as
shown in Figure 2.5 and calculating the absorption by fitting several parameters to a spectral
measurement. The most widespread system for accurate remote sensing of CO2 is the Total
Carbon Column Network (TCCON). It employs high resolution Fourier Transform Spectrometry
(FTS) and all its sites evaluate near infra-red (NIR) measurements with the same software package
(GGG from Toon et al., 2009b).

Other Fourier Transform Infra-red (FTIR) networks include the Network for the Detection of
Atmospheric Composition Change (NDACC) which operates in the mid infra-red (MIR) and uses
different instruments and evaluation methods. Its heterogeneity – using different instruments and
retrieval methods – makes its measurements harder to assimilate in a global model, but it includes
sites which already provided observations in 1991 and which measure a large number of species.
The NDACC network does not provide public CO2 data yet, but Barthlott et al. (2015) analysed
the quality of CO2 retrieved from sites which coincide with TCCON measurements, finding good
stability over the three years of the comparison, though with a bias of 2.5%. Finally IMK-ASF at
KIT is establishing the Collaborative Carbon Column Observation Network (CoCCON) built
from small FTIR spectrometers which are lower spectral resolution (and an order of magnitude
cheaper) than those used in the TCCON network. Some of these instruments were already used
in studies to detect greenhouse emissions of the city Berlin, Germany (Hase et al., 2015).

More information about FTS is available in Fourier Transform Spectroscopy by Davis et al. (2001)
and from Griffith and de Haseth (2007).

When comparing remote sensing retrievals to modelled concentration profiles, the vertical sensi-
tivity of the measurement needs to be taken into account. This sensitivity is generally called the
averaging kernel (A), defined via
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~̂x = A~xtrue + (1−A)~xb (2.1)

with the retrieval ~̂x, the averaging kernel A, the true profile ~xtrue and a prior ~xb. For total
columns, ~xtrue reduces to a scalar and A reduces to a vector ~Ac as calculated by

~Ac = ~hTA (2.2)

with the pressure weighting function ~h. The results estimated by ground-based remote sensing
sites are validated against aircraft campaigns which measure the carbon profiles with in-situ
instruments. The TCCON network reports an accuracy and precision better than 0.25% for
the aggregated total column (Wunch et al., 2011a). Representativeness errors for the TCCON
network are estimated in section 4.3.

Ground based remote sensing networks provide measurements at a high temporal resolution
(several measurements per hour), but due to the cost of the instruments only at a limited number
of fixed positions worldwide. In 2014 the TCCON network had 18 operational sites. Due to
measuring the total column, they are less affected by local effects like biospheric respiration in
close vicinity to the site than in-situ measurements.

2.2.3 Remote Sensing from satellite

Satellite-based remote sensing column measurements work similar to ground based measurements.
As shown in Figure 2.6 their light source is not the direct sunlight, but the reflected sunlight from
the Earth’s surface. As such they have to take into account effects like multiple scattering.

Current remote sensing instruments for CO2 include TANSO7 on board of the GOSAT sattelite,
launched in 2009 and still in extended operation and the spectrometer of the OCO-2 satellite,
launched in 2014. Software systems for calculating columns of CO2 and other trace gases
from GOSAT satellites include RemoTeC (Butz et al., 2011; Butz et al., 2013), ACOS-GOSAT
(O’Dell et al., 2012), BESD (Reuter et al., 2011), the algorithm from the National Institute for
Environmental Studies, Japan (Yoshida et al., 2011, 2013), and from Parker et al. (2011).

Column retrievals from GOSAT and OCO-2 are validated against TCCON measurements. The
results from the RemoTeC algorithm exhibit a scatter of 2.5 to 2.8 ppm against collocated TCCON
observations with a station-to-station bias of 0.84 (Dils et al., 2014; Butz et al., 2011).

Satellite measurements from GOSAT provide high spatial resolution, with tens of thousands
of measurement locations worldwide, but varying with cloud cover and with limited temporal
resolution – nominally returning to each position after 3 days, but practically much less due to
interference from clouds. As such they complement ground based total column measurements
which have limited spatial coverage and high temporal resolution.

2.2.4 Summary

The available measurements differ in their measurement geometry (in-situ or remote sensing),
their sensitivity (point measurement or total column), their coverage (fixed position or moving
platform) and their frequency (from once per week to several per hour). Their characteristics are
summarized in table 2.1.

7The name TANSO means carbon in Japanese, shown in Figure 2.6.
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Figure 2.6: Remote sensing from satellite using undirected reflection at the ground and glint
reflection on the ocean. The point where the satellite sees reflection of the sun on the approximately
planar ocean is called glint spot. It is defined by Wunch et al. (2011a) as the sea surface area
which has a maximum difference between the angles of incoming and outgoing light of 2◦.

The classes of measurements build on each other as validation. Satellites are validated by ground
based column measurements which in turn get checked against in-situ aircraft measurements.
All in-situ measurements are calibrated against a common standard air which is measured in
absolute units via manometric methods.

2.3 Bottom-up modelling of CO2 surface fluxes

Despite the high quality of atmospheric concentration measurements, the available spatial and
temporal data coverage is still far too limited to directly constrain the global fluxes. To fill the
gaps in the data and to keep the modelled fluxes within plausible limits, global flux estimation
builds upon bottom-up models. These use direct measurements of the surface flux of CO2, but
suffer from of limited representativeness of the flux measurements and high variability of the net
fluxes as visualized in Figure 2.2.

2.3.1 Biosphere

Measurement methods for biosphere fluxes include – ordered by increasing spatial coverage – leaf
cuvettes, plant chambers, soil chambers and eddy covariance measurements. For leaf cuvettes,
plant chambers and soil chambers, a leaf, plant or soil region is placed in an enclosed space
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to directly measure the change in trace gas concentrations due to biospheric activity (see Fig.
2.7a). They require significant experimental investment since the area they measure is very
small but they are straightforward to evaluate. For eddy covariance measurements, the trace
gas concentration and wind velocity are measured at several height levels to estimate the flux
from covariances between the concentrations and wind velocities (see Fig. 2.7b). Eddy covariance
measurements are representative of a region spanning from a few hundred meter to several
kilometre upwind (Baldocchi, 2003). Evaluation of eddy covariance methods uses the assumption
of a flat surface (Curtis et al., 2002; Papale et al., 2006; Göckede et al., 2008).

Direct flux measurements are coordinated by several groups around the world. The FLUXNET
project8 collects and provides data from over 450 active measurement sites worldwide (for details
see the readme document for Luyssaert et al., 2009).9 Biometric methods to estimate net fluxes
include litter fall to estimate the change in stored carbon (Davidson et al., 2002; Curtis et al.,
2002).

Due to the limited footprint of the flux measurement methods, they can only get data representative
of a limited region, so they require up-scaling to global scales. This study employs the Simple
Biosphere model using the Carnegie-Ames-Stanford Approach (SIBCASA as by Schaefer et al.,
2008), described by Peters (2014): “SIBCASA is a carbon cycle model that represents the uptake
of CO2 by different types of vegetation and its subsequent transfer back to the atmosphere through
autotrophic and heterotrophic respiration. Its mechanistic description of the processes involved is
driven by a combination of high-resolution weather data and satellite remote sensing products
and includes interactions between the carbon, water, and energy cycles of the land-surface”.
The resulting CO2 concentrations when using SIBCASA fluxes, however, do not match the
concentrations exactly. On an 18 months run, atmospheric CO2 concentrations which start at
a state consistent with the measurements at the background station at Mauna Loa, Hawaii,
overestimate the real measurements at the end of the run by more than 1 ppm.

8The data from the FLUXNET project is published by the Distributed Active Archive Center For Biogeochemial
Dynamics (ORNL DAAC) and available on daac.ornl.gov/FLUXNET/fluxnet.shtml.

9Currently 468 eddy covariance towers organized in the FLUXNET project are active, as reported at
fluxnet.ornl.gov/site_status.

Table 2.1: summary of the discussed measurements with precision describing the statistical scatter
around the measured value and accuracy describing the estimated systematic error.

technique precision accuracy sensitivity additional information
in-situ ground 0.071 ppm 0.03 ppm points on

ground
obspack (Masarie et al., 2014;
Zhao and Tans, 2006)

in-situ aircraft 0.071 ppm 0.03 ppm points in
vertical profiles

HIPPO (Wofsy, 2011), CON-
TRAIL (Machida et al., 2008),
IMECC (Feist et al., 2010;
Messerschmidt et al., 2011),
Learjet (see A.3)

remote-sensing
ground

<1 ppm <1 ppm total columns TCCON (Toon et al., 2009a),
CoCCON (Hase et al., 2015)

remote-sensing
satellite

2.5 ppm 0.84 ppm total columns GOSAT (Dils et al., 2014;
Butz et al., 2011; Reuter
et al., 2011; O’Dell et al., 2012;
Yoshida et al., 2011, 2013)

http://daac.ornl.gov/FLUXNET/fluxnet.shtml
http://fluxnet.ornl.gov/site_status
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(a) (b)

Figure 2.7: Measuring fluxes directly. Fig. 2.7a shows the schematic representation of a leaf bag.
Air is pumped through the bag and the CO2 concentrations are measured with a near infra-red
spectrometer. Fig. 2.7b shows an open path eddy covariance system consisting of an ultrasonic
anemometer to measure 3D air flow and an infra-red gas analyser (IRGA) to measure carbon
dioxide (Photo by Veedar, in the public domain).

Alexandrov (2014) analysed the representativeness of flux sites with a simplified system and found
that different regions on the globe need different parameters to fit atmospheric CO2 measurements,
highlighting the need to use atmospheric measurements to validate and calibrate flux models – and
to test whether climatic changes affect the reaction of the biosphere, requiring new adjustments
to the models.

2.3.2 Oceans

Ocean fluxes are modelled with a combination of ocean circulation models and atmospheric
transport.

The ocean can store large amounts of CO2 due to acid buffering. When CO2 is taken up by the
ocean’s surface, the carbon is stored in three different acid compounds, as shown in equations
(2.3), (2.4) and (2.5): carbonic acid (H2CO3), the bicarbonate ion (HCO−3 ), and the carbonate
ion (CO2−

3 ). This buffer adjusts to the atmospheric concentrations of CO2. Measuring the acidity
of the ocean can act as a proxy for dissolved inorganic carbon (DIC). Due to different transport
velocities in the ocean, increased CO2 concentrations have different regional penetration into
the deeper ocean, ranging from a few hundred meters in tropical latitudes to one kilometre in
northern pacific and the southern Atlantic (Jacobson et al., 2007). The equilibrium between DIC
and atmospheric CO2 depends on the water temperature, with warming water releasing CO2 into
the atmosphere and cooling water taking up atmospheric CO2. As such the ocean circulation and
temperature affect atmospheric concentrations of CO2.
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CO2 + H2O H2CO3 (2.3)

H2CO3 H+ + HCO−3 (2.4)

HCO−3 H+ + CO2−
3 (2.5)

This study uses the Ocean Inversion Fluxes (oif) from Jacobson et al. (2007). They combine the
Transcom3, Level 1 transport (Gurney et al., 2002) with an ocean inversion and use atmospheric
measurements from the GLOBALVIEW dataset (NOAA Global Monitoring Division: Boulder,
Colorado, U.S.A., 2013) and ocean measurements from the GLODAP project (Sabine et al., 2005)
which aggregates and harmonizes data from hydro-graphic stations active from 1985 to 1999
and from 1972 to 1990, collected in the World Ocean Circulation Experiment (WOCE Data
Products Committee, 2002), Joint Global Ocean Flux Study (Doney et al., 2002) and NOAA
Ocean-Atmosphere Exchange Study (OACES).

The model first uses concentrations with removed anthropogenic part to estimate steady state ocean
transport and then transports the anthropogenic concentration enhancements to discriminate
between air-sea fluxes and internal ocean fluxes. This assumes that the uptake of anthropogenic
CO2 increases proportional to the mismatch between atmospheric and oceanic CO2 partial
pressure.

2.3.3 Fire and Fossil Fuel Fluxes

In addition to the biospheric and oceanic fluxes, this study also uses fluxes representing fires and
fossil fuel burning. Aggregated fluxes for one year are shown in figures 2.8 and 2.9.

Fire fluxes are derived from the Global Fire Emissions Database (GFEDv2, van der Werf
et al., 2010), while fossil fuel burning fluxes use the Miller dataset (Peters et al., 2007, and its
supplement).

The different kinds of fluxes are summarized in table 2.2.

2.4 Atmospheric Transport of CO2

To adjust fluxes to fit atmospheric concentration measurements, the fluxes need to be connected
to the concentration measurements with a tracer transport model. The core of these models is a
representation of meteorology, either as dynamic system or using pre-calculated mass transport
data – wind fields.

Table 2.2: A priori fluxes used in the inverse models.

flux type model reference
biosphere SiBCASA Schaefer et al. (2008)
ocean OIF Jacobson et al. (2007)
fire GFED van der Werf et al. (2010)
fossil Miller Peters et al. (2007) and its supplement
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Figure 2.8: 1◦×1◦ map of Fossil Fuel fluxes for CarbonTracker from April 2009 to April 2010.

Figure 2.9: 1◦×1◦ map of Fire fluxes for CarbonTracker from April 2009 to April 2010.

2.4.1 Meteorological data

Tracer transport models use meteorological data to transport chemical tracers, allowing for
comparison of emissions and chemistry with atmospheric measurements.

This study uses meteorological data of the Integrated Forecast System (IFS) from the European
Centre for Medium-Range Weather Forecasts (ECMWF) with the ERA Interim reanalysis (Dee
et al., 2011) using a horizontal resolution of 80 km grid spacing and 60 vertical pressure levels.
To model mass flow, the IFS model uses different approximations for the different directions. In
vertical dimension it employs a finite elements method while the horizontal flow uses spectral
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Figure 2.10: Schematic representation of the operations in the tracer model 5 (TM5), with the
operations X,Y,Z-advection, chemistry (C), emission (E) and vertical transport (V: convection
and diffusion, parametrised). for details see the Supplement of Meirink et al. (2008).

discretization, representing modes of the atmosphere as Legendre functions on a reduced Gaussian
grid (Hortal and Simmons, 1991).

2.4.2 Transporting tracers

The mass flow from the meteorological data allows transporting tracers to estimate their evolution
with time. In this study, the Transport Model 5 (TM5, Krol et al., 2005) is used. It is a Eulerian
chemical transport model with optional two-level nesting of higher resolution regions in a lower
resolution global grid. TM5 splits the tracer transport into X,Y,Z-advection, chemistry (C),
emission (E) and vertical transport (V: convection and diffusion), chaining the operations as
shown in figure 2.10 (Meirink et al., 2008). It provides an adjoint model which yields sensitivity
information of concentrations to emissions. This fulfils the requirement for implementing inverse
modelling via four dimensional variation methods (4DVar, see section 2.5.4). To minimize
discretization errors and oscillating behaviour, TM5 uses the slope between the concentration of
neighbouring grid boxes with a spatial leapfrog scheme as base for its transport operators (Russell
and Lerner, 1981).

As shown by Patra et al. (2008), TM5 is among the models with the highest correlation of
modelled CO2 concentrations and measurements on hemispheric scale, making it a sane choice
for this comparison.

Current developments in high resolution atmospheric tracer transport (see, for example, Sofiev
et al., 2015) might allow for a reduction of the representativeness errors ascribed to measurements
(described for in-situ measurements in section 2.2.1 and for TCCON in section 4.3). However, as
shown in chapter 3, this is not guaranteed to yield better flux estimates, because the main source
of uncertainty in current estimates is the low global coverage of observational data, giving too
little information to derive robust fluxes on regional scales.

2.5 Assimilation Methods

Data assimilation (DA) combines different sources of measurements to estimate a state which is
most consistent with measurements and prior knowledge. The data assimilation methods in this
thesis estimate the surface fluxes of CO2 using a transport model which calculates atmospheric
concentrations from these fluxes.

2.5.1 Different Approaches: ensemble or variational

There are two main classes of data assimilation techniques for complex inversions, variational
methods and ensemble methods (Lahoz et al., 2007; Lahoz and Schneider, 2014). Chapter 3 of
this study compares an ensemble method and a variational method to select one of them for
going forward.
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Both approaches are approximate variants of the general Bayesian optimal estimation scheme (e.g.
Rodgers, 2000) which aims at balancing prior or background information with actual measurement
information to derive robust parameter estimates. But they make different trade-offs which can
yield different deviations from the optimal solution dependent on the background uncertainty,
the observation density and the required computational efficiency (Fairbairn et al., 2013).

Approximations are necessary to render the inverse problem computationally feasible since real-
world CO2 surface flux inversions typically involve thousands of concentration measurements
and millions of unknown flux parameters. Both schemes can either treat the entire considered
assimilation period at once or divide it into shorter periods to be treated sequentially. Ensemble
methods approximate the exact solution from an ensemble of model runs, while variational
methods approach the optimal solution step-by-step (e.g. Juhász and Bölöni, 2007; Gilbert and
Lemaréchal, 1989).

The performance of ensemble methods and variational methods has been evaluated previously
for numerical weather prediction (e.g. Kalnay, 2005) and direct optimization of atmospheric gas
abundances (Skachko et al., 2014). Chatterjee and Michalak (2013) are the first to evaluate the
performance of the two methods for the purpose of CO2 surface flux estimation. However, they use
a synthetic setup with simulated observations and a 1-dimensional transport model which has the
advantage of knowing the true fluxes and for which a direct Bayesian inversion is computationally
feasible, but which does not capture the complexities of real-world flux estimation. In particular
they find that under constraints on model runtime and resource use, the estimated surface fluxes
are more realistic with their variational implementation than with their ensemble method, and
that for both models small-scale fluxes (flux aggregation spanning up to 5% of the model size)
are very sensitive to the data coverage and distribution.

The models used in this study are TM5-4DVar using a variational method which treats the whole
assimilation period at once, and CarbonTracker, an ensemble method which steps through the
assimilation period in overlapping assimilation time windows.

The approach by TM5-4DVar allows for much longer temporal correlation than the approach
used by CarbonTracker, because it includes explicit decaying temporal correlation whereas
CarbonTracker relies on the definition of an assimilation window with implicit temporal correlation
(see section 2.5.3). However the variational approach has more complicated requirements on the
transport model (it needs an adjoint model). The difference between ensemble and variational
algorithms when applied to inverse flux modelling using real measurements has not been tested
prior to this study.

From the results of Chatterjee and Michalak (2013), we expect differences in attribution of fluxes
near sources as well as for fluxes which are influenced by long-term effects like inter-hemispheric
transport.

2.5.2 Assimilating measurements

Inverse modelling uses CO2 concentration gradients observed in the Earth’s atmosphere to quantify
the spatio-temporal distribution of the net CO2 surface fluxes (e.g. Enting, 2000; Peters et al.,
2007; Chevallier et al., 2010; Feng et al., 2011; Peylin et al., 2013). To this end, various data
assimilation (DA) techniques have been developed.

Data assimilation systems (DA systems) aim at inferring a state vector ~x that contains the value
to be optimized. In the case of surface flux data assimilation these are spatially and temporally
binned surface fluxes or a related quantity such as scaling factors for an initial guess flux field.
To this end, the systems exploit measurements chained into an observation vector ~y. For surface
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flux optimization, these are observations of the atmospheric concentration. The state and the
observations are linked through the transport and observation operator H which is linear for the
case of our CO2 flux inversions, but in general could be non-linear such as for CH4 flux inversions.
The inverse method reconstructs an optimized state vector ~̂x (along with uncertainty estimates)
from the measurements and the transport and observation operator.

Typically, the inverse problem of estimating ~̂x from a set of observations ~y is ill posed. Due to
sparse observational coverage, measurement errors or measurement configuration, the observations
contain insufficient information to determine all components of ~̂x independently. A background
flux estimate ~xb from biosphere and ocean models is used to provide a constraint that fills
the null-space where measurement information is insufficient. Accordingly, the state vector of
fluxes ~x is determined by minimizing a cost function J that typically consists of two terms, the
mismatch between measured and modelled observations and the mismatch between the fluxes to
be estimated and the background estimate,

J = (~y −H~x)TR−1(~y −H~x)+

+ (~x− ~xb)TB−1(~x− ~xb) (2.6)

with R the observation covariance and B the background flux covariance. R and B define the
relative weights of the measurement and background mismatch.

In general, minimization of Eq. (2.6) can be solved by means of matrix algebra (Rodgers, 2000),
yielding optimized fluxes and their error covariances,

~̂x = ~xb + BHT (HBHT + R)−1 (~y −H~xb) (2.7)

= ~xb + (HTR−1H + B−1)−1HTR−1 (~y −H~xb) , (2.8)

B̂ = B−BHT (HBHT + R)−1HB (2.9)

= (HTR−1H + B−1)−1, (2.10)

with ~̂x the a posteriori state vector and B̂ the respective covariance matrix. Equivalence of
equations (2.7) and (2.8) can be shown following Eqs. (4.11), (4.12) and (2.27) from Rodgers
(2000). Using

HTR−1(R + HBHT ) = (B−1 + HTR−1H)BHT (2.11)

(Rodgers, 2000, Eq. 4.11) equivalence is shown by multiplying from left with (B−1 +HTR−1H)−1

and multiplying from right with (R + HBHT )−1:

(B−1 + HTR−1H)−1HTR−1 = BHT (R + HBHT )−1. (2.12)

This minimization can be direct or indirect. Direct assimilation uses a state which corresponds to
the measurements such as the concentration of CO2. Here the model fills the null-space where
measurements are missing. This method is typically used in numerical weather prediction with
current research going towards heterogeneous high resolution assimilation like dispersion of birch
pollen (Sofiev et al., 2015).
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Indirect assimilation uses a state from which the measured quantity is derived, like sources and
sinks of carbon. In this study the result corresponds to the first order derivative, the change in
the transported tracer. For tracers like CO2 which have a high absolute concentration compared
to the changes due to sources and sinks, a small change in the tracer can lead to strong changes
in the regional attribution of sources and sinks, and missing information can lead to incorrect
attribution.

While theoretically minimizing Eq. (2.6) reduces to a matrix inversion for linear systems like CO2

flux inversion (e.g. Rodgers, 2000), the large number of parameters to be estimated and the amount
of measurements to be ingested require approximate methods which are numerically efficient such
as the Ensemble Square Root Filter (EnSRF) and four dimensional variation (4DVar).

2.5.3 Ensemble Method: CarbonTracker

CarbonTracker is an inverse modelling framework based on the Ensemble Square Root Filter
(Whitaker and Hamill, 2002) developed by Peters et al. (2007). Instead of solving the minimization
problem in one step, the EnSRF determines optimized surface fluxes sequentially in a time stepping
approach with ~xt defining a subset of ~x for a certain time window. In the setup for chapter 3, ~x
contains scaling factors for the surface fluxes for 96 weeks, while ~xt only spans 5 weeks.

Commonly, a gain matrix G is defined as

G = BHT (HBHT + R)−1 (2.13)

= (HTR−1H + B−1)−1HTR−1. (2.14)

Equations (2.7) and (2.9) then read

~̂xt = ~xb,t + Gt (~yt −Ht~xb,t) , (2.15)

B̂t = Bt −GtHtBt (2.16)

with the partial Gain Matrix

Gt = BtH
T
t

(
HtBtH

T
t + Rt

)−1
(2.17)

where subscript t indicates quantities of reduced dimensions, for the time step under investigation.

In layman’s terms the gain matrix transforms a mismatch between the model estimate H~xb,t
and observations ~y into the most probable adjustment of the flux scaling factors ~xb,t, taking the
uncertainty of the observations R and the uncertainty of the model B into account.

Once Eqs. (2.15) and (2.16) are solved for time slice t, the solution of the scaling factors ~̂xt is
used as the background estimate ~xb,t+1 for the next time slice t + 1, assuming that a simple
persistence forecast is adequate for our CO2 flux inversion problem as shown in Figure 2.11. At
each optimization step the oldest cycle at the “end” of the state vector drops out of the state
vector and is used as a posteriori flux estimate while a new cycle is added to the “beginning” of the
state vector (see Figure 2.11). As such, each one-week cycle experiences a number of optimization
steps equal to the number of weeks in the assimilation time window (Peters et al., 2005, section
2.3).
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Figure 2.11: Simplified visualization of the time stepping approach employed by CarbonTracker.
For each time step the state is represented by a number of ensemble members whose mean value
and spread are consistent with the mean value and uncertainty of the surface flux scaling factors.
In the gain step, CarbonTracker adjusts the ensemble members to fit atmospheric measurements.
In the forward step, it provides the oldest time step as result (here 1’) and adds the scaling factors
for the fluxes in the next time step. The number of time steps in CarbonTracker is defined by the
lag (default: 5), their length by the cycle fluxes (default: one week).

The covariance Bt+1 is prescribed at each time step as described in Peters et al. (2005). Given
an initial guess for the first background state, this strategy allows for sequentially calculating the
complete state vector ~̂x.

To estimate the gain matrix Gt, the EnSRF uses an ensemble approach. The ensemble members
~xib,t = ~xb,t + ∆~xib,t (i = 1 . . . E, with E the ensemble size) of the background state are drawn
such that their mean and covariance is consistent with the background state ~xb,t and background
covariance matrix Bt, respectively, so that

Bt ≈
1

E − 1

(
∆~x1b,t,∆~x

2
b,t, . . . ,∆~x

E
b,t

)
·
(
∆~x1b,t,∆~x

2
b,t, . . . ,∆~x

E
b,t

)T
(2.18)

,

with each of the vectors
(

∆~x1b,t,∆~x
2
b,t, . . . ,∆~x

E
b,t

)
defining the deviations from the mean state.

In CarbonTracker the required calculation of the “square root” of B is realized with a Cholesky
decomposition (Cholesky, 1910).
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Then, the terms HtBtH
T
t and BtH

T
t required for calculating Gt following Eq. (2.17) are

approximated using the results from an ensemble run of the possibly non-linearized transport
model H

HtBtH
T
t ≈

1

E − 1

(
Ht∆~x1b,t,Ht∆~x2b,t, . . . ,Ht∆~xEb,t

)
·
(
Ht∆~x1b,t,Ht∆~x2b,t, . . . ,Ht∆~xEb,t

)T
(2.19)

BtH
T
t ≈

1

E − 1

(
∆~x1b,t,∆~x

2
b,t, . . . ,∆~x

E
b,t

)
·
(
Ht∆~x1b,t,Ht∆~x2b,t, . . . ,Ht∆~x2b,t

)T
, (2.20)

where the approximation becomes more exact with increasing ensemble size E.

The EnSRF method can yield robust results with non-linear transport operators H as long as the
transport model is close to linear for small perturbations (H(~x+ ~∆x) ≈ H~x+ H ~∆x). Using Eqs.
(2.19) and (2.20), the gain matrix Gt can be calculated from Eq. (2.17) to update the mean state
estimate ~̂xt via Eq. (2.15).

In addition to the mean state, the ensemble deviations are updated via

ˆ∆ ~xb,t = ∆ ~xb,t − αG ·H(∆ ~xb,t) (2.21)

with the scaling factor α calculated from the model uncertainty HBHT and the measurement
uncertainty following

α =

(
1 +

√
R

HBHT + R

)−1
. (2.22)

Peters et al. (2005) and Whitaker and Hamill (2002) describe the derivation of α from the
requirement that the optimized covariance B̂ must have the same size as expected from the
additional information provided by the measurement:

B̂ = (I−GH)B(I−GH)T + GRGT = (I−GH)B. (2.23)

The updated ensemble members directly correspond to an update of the state covariance B̂t and
circumvent spurious underestimation of B̂t.

To complement this mathematical explanation, and to provide more intuitive understanding,
Appendix A.4 contains a toy implementation of an Ensemble Square Root Filter for estimating
function parameters. It optimizes a simple function consisting of Gaussians with shifted centre to
fit simulated measurements. The example in Fig. A.23 shows the limitation that the parameters
need to be preconditioned to give changes in these parameters similar weight. CarbonTracker
realizes this for real-world inversion by optimizing scaling factors applied to the prior flux. This
follows the assumption that the relative average magnitude of the prior flux fits reality reasonably
well, so that realistic adjustments to the fluxes should be proportional to the total magnitude of
the prior. The assumption can cause problems in regions which get assigned a prior flux very
close to zero, because this prior likely consists of opposing non-zero fluxes which add up to zero.
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(a)

(b)

Figure 2.12: Map of the ecoregions and covariance for their dimensionless scaling factors from
CarbonTracker. Figure 2.12a is parsed from the regions.nc input file while Figure 2.12b is taken
from the validation output of a CarbonTracker run with ecoregions. The rectangle areas before
index 200 correspond to transcom regions in the southern hemisphere in which the ecoregions are
coupled to compensate the lower density of measurements in these regions while the rectangle at
the bottom right corresponds to the covariance of the ocean regions, estimated following Jacobson
et al. (2007).

Since the flux adaptation is scaled by the magnitude of the prior flux, those regions cannot be
adapted. The impact of this effect gets smaller with increasing resolution of the model and prior.

Overall, CarbonTracker’s EnSRF approach requires running the transport modelH for E ensemble
members over the time period covered by all time steps t. At each time step t the transport
model is sampled at all measurement instances within the time step and the above methodology
is followed.

The choice of assimilation time window, here five weeks, implies that CarbonTracker can adjust
surface fluxes only when their effects are observed at a site within five weeks of atmospheric
transport. In the zonal direction this limitation is of little consequence, because typical global
zonal transport time scales are on the order of weeks. But in meridional direction and especially
for inter-hemispheric transport, where the transport time scales are on the order of months, this
choice needs to be taken into account when interpreting flux results. The time stepping also
defines the temporal binning of one-week fluxes.

The spatial binning of CarbonTracker’s state vector follows the transcom regions (Gurney et al.,
2000), further categorized into land regions with similar ecosphere following Olson et al. (1992)
and ocean regions following the Ocean Inversion Fluxes (Jacobson et al., 2007) as described in
the documentation of CarbonTracker North America.10 In total, there are 240 flux ecoregions
to be optimized, which is significantly less than the number of grid cells of the transport model
operating on 6◦×4◦ (longitude × latitude). The fluxes are further separated into 3 categories:
biosphere/ocean, fire and fossil fuel. Only the category biosphere/ocean is optimized, the others

10CarbonTracker 2011_oi results and documentation are provided by NOAA ESRL, Boulder, Colorado, USA
from the website esrl.noaa.gov/gmd/ccgg/carbontracker/CT2011_oi/. The site builds on the work from Peters
et al. (2007).

http://www.esrl.noaa.gov/gmd/ccgg/carbontracker/CT2011_oi/
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are imposed from their priors following the assumption that fossil fuel fluxes are known with much
higher precision than biosphere and ocean fluxes and that fire fluxes cannot easily be distinguished
from biosphere fluxes, so they could not be interpreted separately. Altogether, temporal and
spatial binning results in a state vector ~xt with 240× 5 = 1200 elements.

Optimizing scaling factors allows using a high resolution prior which stays in high resolution
during the optimization, even though the state to be optimized has much fewer elements. Fig.
2.3 shows the optimized fluxes of a CarbonTracker run at 1◦×1◦ resolution. The neighbouring
source and sink pixels in tropical Africa clearly show the borders between ecoregions optimized
by different scaling factors.

The structure of the background covariance Bt in the Northern Hemisphere is a diagonal matrix
with a variance of 0.64 (80% standard deviation) in units of dimensionless flux scaling factors. In
tropical and many Southern Hemisphere regions, the ecosystems are coupled with exponentially
decreasing covariance, selected such that the total covariance in the transcom region matches the
variance in Northern Hemisphere regions. The covariance for ocean regions uses the results of
the ocean inversion by Jacobson et al. (2007). Fig. 2.12 shows the ecoregions and the spatial
covariance of their flux scaling factors. Temporal covariance in CarbonTracker stems from
processing observations multiple times in the time stepping approach. The observation covariance
R is assumed diagonal.

The version of CarbonTracker used in chapter 3 is derived from version 1.0 of the code maintained
by Wageningen University with the same state vector as CarbonTracker North America (as used
in Peters et al., 2007) and without a zoom region.

The assimilation of total column measurements in chapter 4 uses the new “gridded” version
of CarbonTracker Europe, developed by Wouter Peters. The system works like the setup by
Babenhauserheide et al. (2015), except for the change that the ecoregions in the state vector are
split on the resolution of a 50×50 km grid with covariance of the unitless scaling factors around
0.6 between the grid cells within each ecoregion. This recreates the ecoregion structure in the
gridded state vector while providing more freedom for adjustments of the flux within a given
ecoregion.

This “gridded” version is yet to be published, however, and lacks the amount of polish which went
into the non-gridded version (used in Babenhauserheide et al., 2015; Peters et al., 2007).

2.5.4 Variational Method: TM5-4DVar

Whereas the EnSRF in CarbonTracker reduces the dimension of the minimization problem of
Eq. (2.6) by solving sequentially for time-sliced state vectors, the 4DVar method in TM5-4DVar
leaves the dimension of the state vector intact and approximates the solution using a limited set
of search directions, corresponding to the dominant singular vectors (Golub and Reinsch, 1970)
of the inverse problem to approach the minimum of the cost function step-by-step (Meirink et al.,
2008; Basu et al., 2013). The iterative minimization of Eq. (2.6) in TM5-4DVar is described in
detail by Chevallier et al. (2005) and Meirink et al. (2008). It employs the conjugate gradient
algorithm (Navon and Legler, 1987) which is equivalent to the Lanczos method (Lanczos, 1950;
Fisher and Courtier, 1995) and requires calculation of the cost function gradient

∇~xJ = B−1(~xn − ~xb)−HTR−1(~y −H~xn) (2.24)

where subscript n indicates the nth iterative step. The adjoint formulation of TM5 allows
calculating the cost function gradient by a single run of the transport model and its adjoint
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(Errico, 1997; Chevallier et al., 2005). The conjugate gradient algorithm further provides the
leading eigenvalues and eigenvectors of the preconditioned Hessian

∇~χ(∇~χJ) = B−1 + HTR−1H, (2.25)

which is the second derivative of the cost function J with respect to the dimensionless precondi-
tioned state ~χ defined as ~x = L~χ + ~xb, where L is the preconditioning matrix with B = LLT .
This can be used to construct the inverse of the state covariance B̂−1 as defined in Eq. (2.9).
After n steps, corresponding to n runs of the forward and the adjoint model, the minimization
algorithm yields an optimized state estimate ~̂χn and the first n eigenvalues λi (λi > 1) and
eigenvectors ~vi (i = 1, . . . , n) for the eigensystem of the preconditioned Hessian. The latter can
be used to construct an approximate error covariance matrix,

B̂n ≈ B +

n∑
i=1

(
1

λi
− 1

)
(L~vi)(L~vi)

T . (2.26)

With increasing number of iterations, the optimized state vector ~̂xn approaches the optimal
state vector ~̂x at the minimum of the cost function and the approximate state covariance B̂n

approaches B̂ from above, so that the estimated uncertainty is always larger than the analytical
value (Basu et al., 2013). For practical purposes the iteration is stopped when the gradient norm
reduction exceeds a threshold, i.e.

|∇~xJ(~xn)| ≤ η · |∇~xJ(~x0)| (2.27)

with the constant chosen to be η = 10−9 here. As shown in Fig. 2.13, the descent is roughly
exponential. An increase from η = 10−6 to η = 10−9 roughly increases the number of iterations
from 60 to 90 in our study.

TM5-4DVar’s state vector ~x is binned temporally in monthly fluxes and spatially on the transport
model grid scale, i.e. 6◦ ×4◦ longitude× latitude. Fig. 2.14 shows yearly optimized flux for the
baseline run. Since these grid boxes are coarser than the mapping of ecoregions in CarbonTracker,
the results from both systems can only be compared on transcom regions which form the smallest
exact superset of both structures of the state vectors. Fluxes are categorized into biosphere, ocean,
fire and fossil fuel. To create a setup comparable to CarbonTracker, only biosphere and ocean
fluxes are optimized. The background covariance B of the state vector is characterized by a global
temporal and spatial correlation length. By default TM5-4DVar uses an exponential decay with a
temporal and spatial length scale of 1 month and 200 km for biosphere fluxes and 3 months and
1000 km for ocean fluxes. As such, the temporal binning of TM5-4DVar’s state vector containing
monthly bins is about a factor 4 coarser than the temporal binning of CarbonTracker’s weekly bins.
TM5-4DVar’s spatial binning has a different overall structure. Whereas CarbonTracker’s prior
fluxes are fully correlated inside the 240 ecoregions and mostly uncorrelated between different
ecoregions, the correlation of TM5-4DVar’s fluxes falls off exponentially around each grid box.
The exponential decay in TM5-4DVar’s temporal background correlation limits the effects of
observations in time. However, TM5-4DVar has no strict limit on the time window during
which observations can be linked to fluxes but rather reduces the strength of the influence with
temporal lag. TM5-4DVar can adjust surface fluxes in response to any observation during the
entire considered time period given that the transport model reveals a link between fluxes and
observations. As for CarbonTracker, the observation covariance R is assumed diagonal.
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Figure 2.13: Gradient norm reduction of TM5-4DVar by iteration. 90 iterations take about one
week on our 6-core desktop system. This is on the same order of magnitude as CarbonTracker
runs using 8 CPU cores.

2.6 The promise of assimilating total column measurements

The atmospheric concentration of CO2 is controlled by sources and sinks on the surface (an-
thropogenic and biospheric fluxes) and atmospheric transport. As such, good knowledge of the
atmospheric concentration and the transport allows reconstructing sources and sinks. However,
in-situ measurements suffer from a strong influence of local fluxes.

In contrast to the point-like in-situ measurements, column data provides information about the
entire atmospheric column. Due to the limited vertical mixing speed with transport times of about
a week to a month from the ground to the tropopause (Jacob, 1999), column measurements contain
information about the fluxes in distant regions and complement in-situ measurements which
provide highly accurate information about the CO2 concentration at a given height. A column
measurement and an in-situ measurement at the same position contain information which part
of a change in concentration originates from their immediate vicinity and which part originates
from farther away. Column measurements from the ground give high-frequency measurements
at a fixed point, while satellite data gives good coverage of measurements throughout the world
with limited temporal resolution.

There are several studies which try to use total column measurements from satellite missions
to provide better global coverage and extend the measurements above the boundary layer (i.e.
Basu et al., 2013), but these suffer from changing observation coverage due to cloud patterns and
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Figure 2.14: 6x4◦ longitude×latitude map of biosphere+ocean fluxes for TM5-4DVar from April
2009 to April 2010. Shown for illustrative purposes. Maps of CarbonTracker and TM5-4DVar
cannot be compared on their native resolution due to incompatible structure of the underlying
state vector.

location dependent systematic biases (Chevallier, 2015) which are hard to correct with the current
sparse availability of validation aircraft missions and the short average lifetime of satellites.

To avoid the complications from satellite measurements, this study extends and complements the
observation network with total column measurements from the TCCON network. It follows prior
work from Chevallier et al. (2011) who investigated the viability of assimilating total columns
as alternative to in-situ measurements. Here, however, the total column measurements are used
together with in-situ measurements and implemented in the well established CarbonTracker
system. Properties of column measurements are described in section 2.2.2, while section 4.1 shows
the approach taken in this study to assimilate total column measurements.

In chapter 4 this study investigates surface fluxes estimated from 4 years of inversion (2009–2012),
using columns from TCCON and in-situ measurements from obspack (NOAA Environmental
Sciences Division, Oak Ridge National Laboratory, 2013) together in the established Carbon-
Tracker data assimilation framework. This extends the work from Chevallier et al. (2011) by
running a shared assimilation of TCCON and in-situ, by estimating the representativeness error
of TCCON measurements and by investigating how assimilating total column measurements
affects model-estimated European fluxes.



Chapter 3

Uncertainty of CO2 surface fluxes
constrained by in-situ observations

Comparing two different inverse models used for real-world flux assimilation allows estimating the
systematic errors due to the choice of the approximations in the models. Varying the assimilated
observations shows the dependence of systematic errors on the density of observations and points
to a way for minimizing the flux uncertainty.

This part of the study was conducted in collaboration with Wouter Peters, one of the authors of
CarbonTracker, and Sourish Basu and Sander Houweling, two of the authors of TM5-4DVar. It
was published in Atmospheric Chemistry and Physics (Babenhauserheide et al., 2015).

3.1 Comparing CarbonTracker and TM5-4DVar

We estimate the uncertainty of fluxes from two models used for real-world flux estimation by
running them with harmonized input values. We compare their modelled concentration fields
with non-assimilated measurements to get a measure of the quality of their results. Then we
compare their optimized fluxes against each other to identify how their flux attribution differs.
When they provide concentration fields of indistinguishable quality, the differences between their
optimized fluxes gives an estimate of the uncertainty in the fluxes which stems from differences in
their implementation (i.e. inverse method and flux parametrization).

The two methods are CarbonTracker and TM5-4DVar, as described in section 2.

Both methods are used in a number of studies. CarbonTracker studies include estimates of global
CO2 fluxes (Peters et al., 2007, 2010), European fluxes (Meesters et al., 2012), Asian fluxes
(Zhang et al., 2014) as well as 13C isotope studies (van der Velde et al., 2014). Studies with
TM5-4DVar include CO2 flux estimation (Basu et al., 2013), CO estimation (Hooghiemstra et al.,
2011) and CH4 emission estimates (Meirink et al., 2008; Bergamaschi et al., 2010; Houweling
et al., 2014). Additionally the models were employed in several multi-model comparison studies
(e.g. Schulze et al., 2009; Peylin et al., 2013; Thompson et al., 2014).

To analyse the data assimilation (DA) systems, we focus on a case study for the period from
2009 to 2010 and use observational constraints collected by an in-situ measurement network and
compiled by the NOAA Environmental Sciences Division, Oak Ridge National Laboratory (2013,
exact version: obspack PROTOTYPE v1.0.2 2013-01-28). CarbonTracker and TM5-4DVar are
examples of an ensemble method and a variational method: EnSRF and 4DVar. Besides the

29
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mathematical treatment of the inversion, CarbonTracker and TM5-4DVar differ in the design of
the state vector. CarbonTracker and TM5-4DVar are introduced in sections 2.5.3 and 2.5.4.

Our goal is to evaluate the impact of the inverse method (including the flux representation) on
the estimated surface fluxes. Therefore, we must ensure that the other components of the DA
systems – the observations to be assimilated, the transport model and the prior assumptions –
are the same.

3.1.1 Harmonizing the inverse methods

DA approaches differ in four main characteristics: first, they ingest different observational
constraints, for example in-situ concentration measurements at different sites. Second, they
represent sources and sinks of carbon differently, for example by binning them by vegetation type
or on a latitude/longitude grid. Third, they relate sources and sinks to observed atmospheric
abundances using different air-mass transport models (their impact on fluxes was estimated by
Gurney et al., 2004). And fourth, they use different inverse methods that find the best estimate
of the source-sink distribution using the transport model, the observational constraints, the
representation of sources and sinks and a prior estimate of the sources and sinks. Differences
in these characteristics contribute to the differences in flux estimates from different studies. To
analyse the impact from the representation of sources and sinks and from the inverse method, it is
therefore necessary to harmonize the observational constraints, the transport model and the prior
concentration, flux and flux covariance estimates between the approaches which are compared.

That allows us to actually separate model performance from the quality of the input data. As
input data the models use the observations ~y (real measurements, see section 2.2), a transport
model ~H with meteorological data ~M (the TM5 model using the era interim data-set from the
ECMWF weather model, section 2.4), prior fluxes ~x (from several biosphere models and an ocean
model, section 2.3), an initial CO2 concentration field ~C (from a prior run of CarbonTracker).

In our approach, we adjust the input for TM5-4DVar to fit the CarbonTracker inputs. In
the following sections we describe the input parameters and data of the methods and how we
harmonize them.

3.1.2 Transport model and observation operator

To connect concentration measurements and surface fluxes, CarbonTracker and TM5-4DVar use
a transport model which transports the CO2 tracer using meteorological fields. Both models
use the Tracer Model 5 (TM5) as described by Krol et al. (2005) which utilizes meteorological
data from the European Centre for Medium-Range Weather Forecasts (ECMWF, 2013). To
reduce discretization errors, TM5 uses the gradient between the concentrations in adjacent grid
boxes (the slopes scheme Russell and Lerner, 1981), This scheme is also used to interpolate
concentrations for comparison to measurements with sensitivity on scales below the transport
model scale.

For CarbonTracker, we follow the setup used by Peters et al. (2007). For TM5-4DVar our
setup differs from the setup used by Basu et al. (2013) in one main aspect to be consistent
with CarbonTracker: the CO2 concentration field for in-situ ground sites is sampled in the
second vertical model layer (≈ 980hPa ≈ 170m) or higher instead of in the first model layer
(≈ 994hPa ≈ 50m) or higher. Except for these adjustments and some minor differences due to
different interfaces of the inverse methods, the versions of TM5 used by the CarbonTracker and
TM5-4DVar systems we are using are the same.
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3.1.3 Background flux and initial guess

CarbonTracker and TM5-4DVar use the same background fluxes and initial concentration fields.
The background fluxes used in both models are described in section sec{sec:background-flux}.

The initial concentration field is generated from the output of a previous CarbonTracker run
which ended on 1 January 2007. The field for 2009 is derived by increasing the concentration by
1.9 parts per million (ppm) per year. The value 1.9 ppm was chosen based on tests of the fit to
observation sites in the first month of 2009.

The covariance of the fluxes is defined in the models as described in sections 2.5.3 and 2.5.4.
We harmonize the overall covariance by adjusting the prior flux uncertainty in TM5-4DVar to
172.59% of the flux for ocean grid boxes and to 199.17% for land grid boxes to match uncertainty
of a CarbonTracker run with a monthly cycle for global and continental aggregates.

3.1.3.1 Background flux covariance harmonization process

Since CarbonTracker does not have a temporal flux uncertainty aggregation scheme which takes
correlations into account, its background (prior) flux uncertainty cannot simply be scaled to
fit the uncertainty of TM5-4DVar (or vice versa). The only uncertainties which stem directly
from the inverse method are on weekly scale, more exactly: on the scale of a cycle length.
These uncertainties are calculated from the spread of the ensemble runs and as such they are
guaranteed to correspond to the flux covariance. Getting a quantity which can be compared
is possible with a harmonization run of CarbonTracker in which its cycle length is increased
to 30 days – corresponding to the one-month temporal flux binning of TM5-4DVar. With this
30 days covariance data for CarbonTracker we then adjusted the flux uncertainty parameters
of TM5-4DVar to minimize the mismatch between the flux uncertainty of CarbonTracker and
TM5-4DVar on global scale and on the scale of transcom regions. The chosen values 172.59%
of the flux for ocean grid boxes and 199.17% for land grid boxes strike a balance between good
global and good regional match.

Due to the different ways of specifying the state vector ~x and its covariance B in CarbonTracker
(weekly with ecoregions) and TM5-4DVar (monthly gridded with global covariance parameters),
it is not possible to get an exact match of the flux uncertainties. This is a result of comparing real-
world systems used for flux estimation to not only capture theoretical effects but also differences
which show in practical use. While making the comparison more complex, this choice allows
getting a better understanding of the uncertainties due to the large amount of implementation
decisions which have to be taken for a production system. The remaining mismatches in the
prior flux uncertainty can have an effect on the estimated fluxes. This effect has to be taken into
account for interpreting a posteriori flux differences. Section 3.2.2.1 includes an example of such
an analysis. The remaining mismatches in the flux uncertainty per transcom region and month
are provided in Appendix A.1.

3.1.4 Observations and observation errors

Both DA systems use the same observations from the “obspack” compilation of in-situ CO2

concentration measurements (Masarie et al., 2014; NOAA Environmental Sciences Division, Oak
Ridge National Laboratory, 2013, version: PROTOTYPE v1.0.2 2013-01-28), as described in
section 2.2.1. Discrete (e.g. one sample per week) measurements from surface flask sites, in
situ continuous (and semi-continuous) measurements from surface sites and towers, and aircraft
campaign measurements are collected, aggregated and quality screened to make them suitable for



32
CHAPTER 3. UNCERTAINTY OF CO2 SURFACE FLUXES CONSTRAINED BY IN-SITU

OBSERVATIONS

60°S

30°S

0°

30°N

60°N
Observation Sites

Figure 3.1: Ground based in-situ observation sites assimilated by the baseline run (circles) and
non-assimilated validation sites (crosses). The radius of a circle or cross is proportional to
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with N the number of available measurements at the site in this location and σ their uncertainty
estimate. The larger the symbol, the larger the weight of the site in the model.

Figure 3.2: 6◦×4◦ longitude×latitude map of fluxes for TM5-4DVar aggregated from April 2009
to April 2010 when assimilating all observations. Due to the strong gradients between grid boxes
in North America and the source in the northern Pacific we exclude in the baseline run 5 sites
from the assimilation which have more than 1000 observations in the time period studied.

inverse flux estimation. For our baseline CarbonTracker and TM5-4DVar runs, we exclude 21
measurement sites from the assimilation to use them as validation sites.

Additionally we take out 5 sites which have more than 1000 measurements in the assimilation
period. This is to keep the TM5-4DVar results representative of TM5-4DVar runs which use
the native TM5-4DVar input. When using these 5 sites with the CarbonTracker preprocessing,
TM5-4DVar shows strong gradients between neighbouring grid cells in North America and a
source in the northern Pacific (see Fig 3.2) which it does not show when processing its native set
of observations. In addition to these 26 excluded sites, there are 24 further sites from which the
default run of CarbonTracker uses no data or only a subset of the observations. Reasons for not
using some of the observation data of a site include that the data is assumed not representative of
its grid-cell or recorded in aircraft campaigns. Figure 3.1 shows the sites assimilated or excluded.
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Figure 3.3: Time series of measured and modelled CO2 concentrations from CarbonTracker and
TM5-4DVar at Mauna Loa, Hawaii, Pacific (assimilated weekly flasks), NOAA site code MLO.
Also shown are the concentrations for obtained from a forward run of the transport model using
the a priori background flux estimates.

In our setup CarbonTracker and TM5-4DVar use the same representativeness errors, as described
in section 2.2.1.

3.2 Uncertainties due to model design

3.2.1 A posteriori concentration fields

As a first step, we compare and validate the performance of CarbonTracker and TM5-4DVar by
evaluating the difference between measured and modelled CO2 concentration fields at the location
of various ground sampling stations. Comparing concentration fields at the assimilated sites
provides a check to verify that data assimilation works in both systems. Comparing measured
and modelled concentrations at non-assimilated sites demonstrates to what extent the data
assimilation approaches yield improvements where observational constraints are distant in space
and/or time. CarbonTracker and TM5-4DVar are both run with the baseline setup (as described
in Sect. 3.1.1) for a 23 month period starting on 1 February 2009.

3.2.1.1 Assimilated sites

As an example for an assimilated site, Fig. 3.3 shows a time series of measured and modelled
CO2 concentrations at Mauna Loa (MLO), Hawaii, located 3399 meter above sea level (masl) in
the Pacific. For the period from 1 February 2009, to 30 December 2010, the models assimilate
94 weekly flask measurements. We compare the observations to a posteriori and a priori model
concentrations. The a posteriori concentrations are sampled using the a posteriori surface
fluxes estimated by CarbonTracker or TM5-4DVar. The prior model concentrations are sampled
using the background (prior) flux estimate common to both models.1 The Mauna Loa record

1For CarbonTracker this requires a run which does not assimilate any observations. Or, in practical terms,
with the observation uncertainty set to values on the order of 1000 ppm. The mismatch between observations
and model are mostly below 10 ppm and the uncertainty of fluxes is at roughly 80% of the flux, so this ensures
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Figure 3.4: Histograms of the mismatch between measured and modelled CO2 concentrations for
all assimilated measurements using prior fluxes, CarbonTracker optimized fluxes and TM5-4DVar
optimized fluxes. The histograms show residuals for one year (3 April 2009 to 2 April 2010) which
are normalized by the estimated representativeness error. The line on top of the histograms is
a fit of a Gauss function to the histogram. The parameters in the top left show the bias and
standard deviation of the Gaussian. The bottom right shows the number of measurements which
were accumulated into the histogram.

demonstrates that the a posteriori concentrations produced by both models match the observations
within the uncertainty estimate and that the match is substantially better than for the prior
concentration fields. Differences between CarbonTracker and TM5-4DVar are much smaller than
the representativeness error of the measurements at Mauna Loa (0.75 ppm) over the entire period.
This is consistent with the results at other sites.

The mismatch between measured and modelled CO2 concentrations for all assimilated mea-
surements is shown in Fig. 3.4, with the prior concentrations, the a posteriori concentrations
optimized by CarbonTracker, and the a posteriori concentrations optimized by TM5-4DVar. The
concentration mismatch is normalized by the representativeness error of the observations such that
a (unitless) mismatch of 1 corresponds to a mismatch with the magnitude of the representativeness
error. Unlike the time series for Mauna Loa, the histograms only integrate over the 1 year period
3 April 2009 to 2 April 2010 in order to be consistent with the analysis of the a posteriori surface
fluxes in Sect. 3.2.2. This time period gives the models sufficient spin-up and spin-down time,
because the initial concentration is already well-optimized by a previous CarbonTracker run.2

The concentrations from the Prior Forward Run in Fig. 3.4 reveal an overall bias in the normalized
(unitless) mismatch of 0.37 with a standard deviation of 1.09. Tentatively, the prior fields show a
dipole pattern with peaks around −1 and 1 which can be traced back to the Northern Hemisphere
prior generally overestimating the observations and the Southern Hemisphere prior generally
underestimating the observations. The CarbonTracker and TM5-4DVar histograms show small
biases of 0.006 and 0.025 with a standard deviation of 0.727 and 0.650, respectively. Compared
to the prior, both DA systems improve the overall bias and they substantially reduce the spread
of the observation-model mismatch. Normalized standard-deviations smaller than 1 indicate that
the mismatch is on average smaller than the estimated representativeness error, which points
to a conservative choice of representativeness errors and consequently a stronger than optimal
influence of the prior flux estimate. However, avoiding this would require using the output of the
assimilation systems to adjust their input parameters which could lead to transient errors in the
result.

that the observations have negligible impact on the optimized fluxes while still being sampled as usual. The prior
output of Carbontracker is only the prior of the current time step, but builds on the optimized concentration field
from the previous step.

2If there were significant differences in the concentration, this assumption would have to be re-evaluated.
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Figure 3.5: Time series of measured and modelled CO2 concentrations from CarbonTracker
and TM5-4DVar at Guam, Mariana Islands, Pacific (non-assimilated). Also shown are the
concentrations obtained from a forward run of the transport model using the a priori background
flux estimates (Prior forward run).

The histograms for a posteriori concentrations of CarbonTracker and TM5-4DVar reveal some
non-Gaussian behaviour with long tails toward greater mismatch and with a narrow peak at the
centre. The tails most likely stem from temporally varying contributions to the representativeness
error which our input data assumes constant in time. The narrow peak likely stems from two
sources: first, sites with high frequency measurements are assumed to provide uncorrelated data
in the models and as such give a stronger constraint than sites with low frequency measurements.
Second, an already well-optimized prior which is close to the observations causes the models to
stick to the prior in a sparse observation network.

In summary, both models show similar performance for assimilated sites, and the assimilation
substantially reduces the mismatch between modelled and measured concentrations at assimilated
sites.

3.2.1.2 Non-assimilated sites

Next, we evaluate the performance of the DA systems for sites whose observations are not
assimilated. These sites provide independent validation of the results. Figure 3.5 shows a time
series of flask measurements in Guam on Mariana Islands (GMI), West Pacific. In contrast to
Mauna Loa, the measurements are taken at sea level, and are not assimilated by the CarbonTracker
and TM5-4DVar inverse models. The observation error in Guam is 1.5 ppm, and the modelled
concentrations agree well with measurements taken at the site. Both, CarbonTracker and
TM5-4DVar, reproduce the measurements similarly well with a respective bias of 0.12 and 0.02
ppm. Their standard deviation of 0.79 and 0.82 ppm, is greater than the standard deviation at
Mauna Loa, our selected example for assimilated sites. The prior concentrations on the other
hand deviate substantially from the measurements, with a bias and standard deviation of 0.89
and 1.24 ppm, respectively.

The histograms of model-observation mismatch are shown in Fig. 3.6, for the concentrations of a
Prior Forward Run and for the a posteriori CarbonTracker and TM5-4DVar runs. They show a



36
CHAPTER 3. UNCERTAINTY OF CO2 SURFACE FLUXES CONSTRAINED BY IN-SITU

OBSERVATIONS

-3 -2 -1 0 1 2 3
CO2 mismatch [∆

σ ]

0.00
0.01
0.02
0.03
0.04
0.05
0.06

fra
ct

io
n

of
co

un
ts

N: 18557

Gauss: 0.6578± 1.0266

Prior Forward Run

-3 -2 -1 0 1 2 3
CO2 mismatch [∆

σ ]

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

fra
ct

io
n

of
co

un
ts

N: 18557

Gauss: 0.0965± 0.8354

CarbonTracker

-3 -2 -1 0 1 2 3
CO2 mismatch [∆

σ ]

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

fra
ct

io
n

of
co

un
ts

N: 18557

Gauss: 0.0041± 0.8376

TM5-4DVar

Figure 3.6: Histograms of the mismatch between measured and modelled CO2 concentrations for
all non-assimilated samples using prior fluxes, CarbonTracker optimized fluxes and TM5-4DVar
optimized fluxes. The histograms show residuals for one year (3 April 2009 to 2 April 2010) which
are normalized by the estimated representativeness error. The line on top of the histograms is
a fit of a Gauss function to the histogram. The parameters in the top left show the bias and
standard deviation of the histogram. The bottom right shows the number of measurements which
were accumulated into the histogram.

higher number of measurements than the histograms of assimilated sites, because many of the
non-assimilated measurements come from continuous sampling sites and aircraft campaigns which
provide a high number of measurements. Normalized bias and standard deviation of the prior
mismatch aggregated for all sites are 0.66 and 1.03, respectively. The normalized biases of the
mismatch for CarbonTracker and TM5-4DVar are 0.097 and 0.004, respectively, and the standard
deviation of the histograms are 0.835 and 0.839, indicating that assimilating observations with the
DA systems substantially improves the match to independent data when compared to the prior
performance. The spread of the a posteriori model-observation mismatch, however, is somewhat
greater than for the comparison to assimilated measurements. This is as expected and indicates a
slightly worse performance of both methods for the non-assimilated than for assimilated sites.

3.2.1.3 Robustness of the result

CarbonTracker a posteriori concentrations show a larger bias for non-assimiliated measurements
(0.097) than for assimilated measurements (0.006). TM5-4DVar biases are more similar for
non-assimiliated (0.004) and assimilated measurements (0.025). In order to investigate whether
these differences are likely to be an artefact of our selection of validation sites, we conduct a
resampling experiment. Out of the 50 sites for which there are non-assimilated observations
– our 26 validation sites, aircraft measurements and sites for which only a given measurement
method is assimilated – we randomly select subsets of 25 sites and recalculate the statistical
model-observation bias for non-assimilated measurements. Then we repeat the exercise 9 times
and examine the distribution of the resampled CarbonTracker and TM5-4DVar biases. Figure 3.7
shows that the normalized biases for the CarbonTracker baseline run consistently scatter around
0.08 with a standard deviation of 0.04 while the TM5-4DVar average bias and standard deviation
are −0.04 and 0.07, respectively.

So, while CarbonTracker a posteriori concentrations appear offset from the (non-assimilated)
observations, TM5-4DVar does not show a significant overall bias but greater station-to-station
variability for the model-observation mismatch.
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Figure 3.7: Model-measurement bias of TM5-4DVar against CarbonTracker for non-assimilated
measurement sites. Each symbol corresponds to a case resampling exercise where the biases
are calculated for 25 randomly drawn sites out of the total 50 resampling sites listed in Table
A.1. The baseline run (dots) is compared to a CarbonTracker run with the assimilation period
extended to 5× 20 days (×) instead of 5× 7 days and 10× 7days (+).

3.2.1.4 Impact of the CarbonTracker assimilation window length

In order to investigate whether the robust bias our resampling found for CarbonTracker can be
due to the choice of the EnSRF assimilation time window, we vary CarbonTracker’s lag and
cycle parameters. Figure 3.8 illustrates the effect of the window length on the model-observation
mismatch at Syowa (SYO), Antarctica. Syowa is located far from any major sources or sinks to be
adjusted by the DA systems. Therefore, the DA systems cannot match the Syowa measurements
by flux adjustment unless they account for long-reaching correlations between concentrations
and fluxes. While TM5-4DVar allows for such connections, CarbonTracker’s baseline assimilation
window strictly limits these to 5 weeks, which is shorter than the transport time scales from
strong flux regions to Antarctica. Therefore, the baseline CarbonTracker run shows a small but
systematic underestimation of the CO2 concentration by up to 0.5 ppm observed in Syowa in
summer and fall 2009 while TM5-4DVar a posteriori concentrations match well (not shown).
Increasing or decreasing CarbonTracker’s assimilation window length respectively improves or
deteriorates the match to Syowa observations, showing that the assumed temporal correlations
play a role. For sites which are closer to biosphere regions, this effect could manifest as flux
mi-sattribution, which would yield a mismatch to non-assimilated stations.

Figure 3.7 illustrates the resulting biases for our resampling assessment when CarbonTracker
is run with an assimilation window of 10 × 7 days or 5 × 20 days instead of 5 × 7 days. For
10 × 7 the average normalized bias reduces to 0.03 with a standard deviation of 0.03 and for
5 × 20 the average normalized bias reduces to −0.01 with a standard deviation of 0.03. Both
are consistent with TM5-4DVar’s performance and better than the run with 5 × 7 days. This
suggests that a longer assimilation window adds valuable information to CarbonTracker’s DA
system. It is unclear, though, whether this improved match to validation measurements translates
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Figure 3.8: Time series of measured and modelled CO2 concentrations in Syowa, Antarctica, for
CarbonTracker runs with different length of the assimilation time window. The baseline run uses
an assimilation window of 5× 7 days. Colour coding of shorter and longer assimilation windows
follows the legend (lag× cycle in days).

into improved flux estimates since transport model errors might have a larger impact for the
longer assimilation windows. In section 3.2.2 we discuss additional effects from a larger bin size
which may make a long assimilation window undesirable, despite the better match to validation
measurements.

3.2.2 Comparison of a posteriori surface fluxes

Section 3.2.1 shows that the methods are of similar quality when comparing the a posteriori
concentrations with assimilated and non-assimilated observations. Here, we turn to evaluating
the a posteriori surface fluxes delivered by CarbonTracker and TM5-4DVar.

As first step we describe the results of the baseline runs. Then we analyse detectable features
and the effect of a longer assimilation window in CarbonTracker.

Table 3.1: Yearly global CO2 fluxes and uncertainty (standard deviation) from the Prior forward
run and from the baseline runs of TM5-4DVar and CarbonTracker.

Biosphere+Ocean Uncertainty

Prior forward run −5.34Pg C a−1 1.86Pg C a−1

TM5-4DVar −6.69Pg C a−1 1.07Pg C a−1

CarbonTracker∗ −6.76Pg C a−1 N/A
∗ CarbonTracker provides uncertainties on weekly scale.
Aggregating them to yearly scale is not clearly defined
and would not be comparable to TM5-4DVar.
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Figure 3.9: Global fluxes from the baseline runs of TM5-4DVar and CarbonTracker. The Prior
is shown in the binning of CarbonTracker. The uncertainties shown for Carbontracker are
aggregated spatially but not temporally. As such they represent the uncertainty of the estimated
fluxes, calculated directly from the ensemble. These uncertainties are excluded from the annually
aggregated graphs, because there is no method for temporally aggregating the uncertainties in a
way which is comparable to the uncertainties estimated by TM5-4DVar.

3.2.2.1 Surface fluxes of the baseline run

For the baseline CarbonTracker and TM5-4DVar runs, Table 3.1 shows the globally aggregated a
posteriori fluxes for the biosphere and oceans from 3 April 2009, to 2 April 2010. CarbonTracker
and TM5-4DVar estimate a global carbon sink (due to the biosphere and oceans) which is stronger
than the prior estimate by 1.42 and 1.35 PgC a−1, respectively. We only show the uncertainty
for the prior and TM5-4DVar which is calculated as described by Basu et al. (2013) and in
section 3.1.3.1, because for CarbonTracker the aggregation of uncertainties from weekly to yearly
scale requires using assumptions about the temporal correlation of the uncertainties. Due to
these assumptions, the yearly uncertainties of TM5-4DVar and CarbonTracker would not be
comparable, even if we adopted existing schemes as for example the one employed by Peters et al.
(2005). The differences in the uncertainties would not be representative of actual differences in
the models. Therefore we use the uncertainties from TM5-4DVar as a metric for comparisons.
Different from the Monte-Carlo based uncertainty calculation which Chatterjee and Michalak
(2013) used, the error propagation employed in TM5-4DVar always approaches uncertainties from
above: the aggregated errors are larger than the analytical uncertainties at the exact minimum of
the cost function (Personal Communication with Sander Houweling).

Due to this we expect our uncertainties to overestimate the real uncertainties from measurement
and representativeness errors. With this caveat, the sink estimates of the two models are consistent
within the TM5-4DVar uncertainties and also match previous findings for CarbonTracker (Peters
et al., 2007). Examining the time series of globally aggregated surface fluxes in Fig. 3.9 confirms
that the two DA systems are consistent on the global scale, both showing stronger summer uptake
than the prior.

Figure 3.10 illustrates the a posteriori biogenic and oceanic fluxes aggregated over the one-year
time period on continental scale regions. Agreement between CarbonTracker and TM5-4DVar
is found for North America, Africa, Europe, and Australia, as well as for all the oceans except
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Figure 3.10: Fluxes from TM5-4DVar and Carbontracker aggregated on continental scale. The
uncertainties for TM5-4DVar are calculated following Basu et al. (2013). The error bars for the
prior are taken from TM5-4DVar. We show no uncertainties for CarbonTracker, because the
aggregation of uncertainties from weekly to yearly scale is not clearly defined.

for the Indian Ocean. The optimized fluxes in these regions differ by less than the yearly
uncertainties estimated from TM5-4DVar’s statistical error aggregation (see Basu et al., 2013).
On the other hand, the modelled fluxes from CarbonTracker and TM5-4DVar differ by more than
their uncertainty in South America, Asia and the Indian Ocean. In South America they differ
by roughly two times the estimated uncertainty, therefore we take a more detailed look at this
discrepancy.
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Figure 3.11: Regional CO2 surface fluxes from April 2009 to April 2010. CarbonTracker noreject
follows CarbonTracker baseline outside South America. The uncertainties shown for Carbontracker
are aggregated spatially but not temporally. See figure 3.9 for details.
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Figure 3.12: Time series of CO2 concentration in Arembepe, Brazil at the east coast of South
America. The two “without ABP” runs show the concentrations when the models do not assimilate
data from the Arembepe site. CarbonTracker noreject shows the concentrations for CarbonTracker
with disabled outlier rejection. The time series ends after January 2010, because data at Arembepe
is only available in obspack PROTOTYPE v1.0.2 2013-01-28 from NOAA Environmental Sciences
Division, Oak Ridge National Laboratory (2013) until then.

TM5-4DVar’s flux anomaly in South America The time series of South American surface
fluxes in Fig. 3.11 reveals that the flux differences in South America stem from particularly large
emission estimates in summer 2009 by TM5-4DVar. The temporal structure of TM5-4DVar fluxes
for the Indian Ocean as well as the Pacific Ocean, suggest that ocean uptake compensates for the
large South America source to match the hemispheric flux budget.

South America suffers from sparseness of observational constraints such that validation of the
estimated surface fluxes via comparison of measured and modelled atmospheric CO2 concentrations
is difficult. Aircraft measurements regularly conducted in South America do not provide deeper
insight, because they have a data gap in the critical time between June and August 2009. The
only other site that is close to the South America flux region is Arembepe in Brazil (ABP, 12.77◦
S, 38.17◦ W), a ground sampling station which is used as constraint within our data assimilation
exercise.

To check its impact on the fluxes, we perform a sensitivity run which does not assimilate Arembepe.
In this run both models are similarly good at matching modelled a posteriori and measured
CO2 concentrations in Arembepe and mostly follow the prior (see Fig. 3.12). When assimilating
observations from Arembepe however, TM5-4DVar closely follows the observations in spring
2009 while CarbonTracker only moves half-ways from the prior to the observations. This can be
explained by the outlier-rejection in CarbonTracker: when the difference between the model and a
measurement is more than three times the estimated representativeness error of the measurement,
CarbonTracker ignores the measurement as outlier. As marine boundary layer site, Arembepe is
assigned a representativeness error of only 0.75 ppm, so CarbonTracker ignores most measurements
before May 2009.

The aggregated fluxes in Fig. 3.10 show that assimilating the measurements in Arembepe has a
significant effect on the a posteriori fluxes of TM5-4DVar. When taking out Arembepe from the
baseline run, TM5-4DVar’s attribution of fluxes shifts: the sinks in the Pacific and the Indian
Ocean weaken while the strong source in South America disappears. The time series in Fig.
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Figure 3.13: CO2 surface fluxes during summer 2009 in Asia. The Prior Forward Run shows the
prior fluxes aggregated to the bin-size of the weekly Carbontracker scaling factors.

3.11 provide a temporal fingerprint of the flux difference due to removing Arembepe from the
assimilation which identifies the changes in the Pacific and the Indian Ocean as compensation for
the removal of the strong source in South America.

The flux changes in CarbonTracker with assimilating Arembepe are within the estimated un-
certainties, in the yearly aggregated fluxes as well as in the time series. Disabling the outlier
rejection in CarbonTracker causes the modelled concentrations to follow the observations much
more closely. Carbontracker specifies the flux uncertainty relative to the total flux, which in April
and May 2009 yields a lower uncertainty than that from TM5-4DVar, which can cause the flux to
change less than in TM5-4DVar in those months, leading to the strong reaction of the outlier
rejection. But as shown in Fig. 3.11 neither Carbontracker with nor without the outlier rejection
shows the additional source seen in TM5-4DVar between July and August 2009, where the flux
uncertainty of both models differs by less than 10%. Also it does not show the compensation
fluxes TM5-4DVar gives in the oceans. So we can reject the theory that these differences are
caused by the outlier rejection or inconsistencies in the prior flux uncertainty.

The fluxes induced by assimilating Arembepe show that TM5-4DVar is more susceptible than
CarbonTracker to the effect of single measurement sites in regions with very low observation
density.

CarbonTracker with longer assimilation window Figure 3.10 shows that when increasing
the assimilation time window of CarbonTracker to 5× 20 days (“5× 20”), CarbonTracker yields
roughly the same aggregated flux for Asia as TM5-4DVar.

The time series in Fig. 3.13 suggests that the change in the CarbonTracker estimate of Asian
fluxes when going to the longer assimilation window originates from high frequency adjustments
to the prior fluxes. If the biosphere model needs to be corrected for only one week, the run with
weekly flux bins can adjust that week separately while the run with 20 day flux bins has to adjust
a full 20 day period. To test this theory, we verified that a run with an assimilation window
consisting of ten one-week cycles yields a similar Asian sink as the run with five one-week cycles
(1.84 instead of 1.61 PgC a−1) which does not increase further when going to fifteen one-week
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Figure 3.14: Observation sites assimilated by the ‘2/cont’, ‘1988’, ‘2000’ and ‘2010’ historical
runs. The size of the symbol is proportional to

√
N
σ with N the number of available measurements

and σ their uncertainty estimate. The larger the symbol, the larger the weight of the site in the
model.

cycles (not shown), while a run with three 20 day cycles yields a similar Asian sink as the run
with five 20 day cycles (2.22 instead of 2.25 PgC a−1).

For a quantitative discussion of the propagation of aggregation errors see Turner and Jacob
(2015). Our findings suggest that there is an impact of roughly 0.5 PgC a−1 from high frequency
mismatches between the prior model and the measured concentrations during the Asian summer
which cannot be corrected accurately with a bin-size of 20 days or more.

In summary we see good agreement for the baseline fluxes between CarbonTracker and TM5-4DVar
on a global scale and for most continents and oceans. The mismatch of the fluxes in South
America, the Indian Ocean and Asia can be traced back to two distinct effects: a different flux
response in regions with very limited observation coverage and using weekly (CarbonTracker) or
monthly (TM5-4DVar) adjustments to account for mismatches on shorter time scales.

3.2.2.2 Sensitivity to observation coverage

In order to assess the importance of data density and coverage on the two DA systems, we
follow the approach which Bruhwiler et al. (2011) used to analyse the performance of their initial
version of a fixed-lag Ensemble Kalman Smoother (Bruhwiler et al., 2005). We carry out 5
“historical” model-runs where we stepwise increase the number of assimilated observation sites,
mostly following the historical availability of data. The first run, termed “2/cont”, assimilates
observations from up to 2 sites per continent. It represents an extremely sparse observation
network with different sampling frequencies per site. The runs “1988” and “2000” assimilate
observations from all sites that were active in the years 1988 and 2000, respectively. The “2000”
run assimilates roughly the same number of observations as our baseline run. The run “2010” uses
all sites which were active in the year 2010 except for Arembepe. We exclude Arembepe from the
“2010” run, because as shown in the section 3.2.2.1 the different treatment of the observations
there would dominate the flux changes and as such mask other effects. Figure 3.14 illustrates the
observation density and coverage for the different historical runs while Table A.1 lists the sites
included for all the historical runs.
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Figure 3.15: Globally aggregated surface fluxes estimated by the model runs indicated in the
legend. In all aggregated flux bar charts the uncertainties are estimated by TM5-4DVar.
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Figure 3.16: Fluxes for CarbonTracker and TM5-4DVar from April 2009 to April 2010 separated
into the two Transcom Regions in North America.

Figure 3.15 shows the globally aggregated prior and a posteriori fluxes for the baseline setup
and each of the historical runs. All the historical runs for both models, CarbonTracker as well
as TM5-4DVar, yield consistent estimates of the global (biospheric and oceanic) carbon sink.
The results differ by a few tenths of a PgC a−1 which is well below the TM5-4DVar uncertainty
estimate of about 1 PgC a−1. This consistency is expected since the global carbon sink is well
constrained by the trend in global background concentrations. Compared to the prior, all runs
indicate a stronger sink by more than 1 PgC a−1. The global flux estimate is robust against
changes in the observation coverage and against the choice of the inverse method. Global scale
fluxes are also consistent with the 2013B estimates from CarbonTracker North America (NOAA,
ESRL).3 NOAA shows a global sink of 6.79± 6.86 PgC for 2009 while we see values between 6.37
and 7.03 PgC for April 2009 to April 2010, depending on the observation data we assimilate.

3The 2013B release of the estimated fluxes of Carbontracker North America (NOAA, ESRL) is available from
esrl.noaa.gov/gmd/ccgg/carbontracker/CT2013B/fluxtimeseries.php?region=Global.

http://www.esrl.noaa.gov/gmd/ccgg/carbontracker/CT2013B/fluxtimeseries.php?region=Global
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Figure 3.17: Visualization of the weight of the measurement sites which are assimilated in North
America in the respective runs.

On the continental scale we take a closer look at North America, since changes in observation
density are historically most pronounced there. Figure 3.16 shows that TM5-4DVar and Carbon-
Tracker fluxes for North America become more similar the denser the observation network becomes,
with almost the same flux estimate in the “2010” setup in which the DA systems assimilate
more than 15 sites on the North American continent (see Fig. 3.17). This good match of both
methods suggests that the density of observation sites in North America suffices to optimize
continental scale fluxes with some degree of certainty. Separating the fluxes of the two North
America Transcom regions (Fig. 3.16) shows that for the more homogeneous transcom region in
Boreal North America the results from both methods are already converged with the observation
coverage in the “1988” run, while in the more heterogeneous North American Temperate region
with much agricultural activity, the methods only converge in the “2010” setup.

The stronger land sink seen by TM5-4DVar for “2/cont” stems from assimilating only two sites: a
site in West Branch in Iowa, USA (WBI, 41.7◦ N, 91.4◦ W), in the US corn belt, and a site on
Sable Islands, Nova Scotia, Canada (WSA, 43,9◦ N, 60.0◦ W). In TM5-4DVar, the strong summer
sink near West Branch dominates the North America fluxes and increases the sink from roughly 1
PgC a−1 in the “2010” run to more than 1.6 PgC a−1 in the “2/cont” run. CarbonTracker is less
susceptible to this effect than TM5-4DVar, because its ecoregion approach enforces a correlation
between the fluxes for all regions in the corn belt as well as for all regions with grassland – both
region-types span the area from the southern parts of North America up to the border of Canada.
This makes it more likely that a potential flux adjustment is constrained by more than one site
which gives CarbonTracker a stronger meridional coupling. Since meridional mixing is much
slower than zonal mixing, stronger meridional coupling forces a larger region to change in the
same way. For example adjusting the flux in the corn belt yields concentration changes all over
North America (downwind of the corn belt ecoregion). This effect cannot be replicated with a
single global correlation length parameter, because there are other areas where this would be
unrealistic, for example the European continent with its very heterogeneous land use.

On the other hand, the overall North American sink of 0.65 PgC a−1 estimated by CarbonTracker
in the “1988” run is 30% lower than the sink of 0.95 PgC a−1 in the “2010” run, while in
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TM5-4DVar the “1988” and the “2010” run differ only by 10% (0.1 PgC a−1). The difference
between the results for the “2000” and the “2010” runs in North America is on the order of 0.1
PgC a−1 for both models, but in different directions. So with low observation coverage, the
quality of the inversion in either system depends on the exact distribution of the observations.
This suggests that with the coverage from “2000”, we need to assume a minimum uncertainty of
0.25 PgC a−1 from only the choice of the inverse method. For the coverage from “2010” this is
down to less than 0.1 PgC a−1 in North America.

The strong reduction of the uncertainty estimate in the North America fluxes of TM5-4DVar
in the “2/cont” run, despite assimilating only 2 sites in North America, shows the sensitivity of
these uncertainty estimates to the raw number of assimilated observations. It proves that the
actual structure of the observational network has to be taken into account when interpreting the
reduction of model-estimated uncertainty.

Overall our results show that the current observation coverage in North America allows estimating
robust fluxes on continental scales and on the scales of transcom regions (as defined by Gurney
et al., 2000). The historically improving agreement between both models for the aggregated
North American fluxes and the two transcom regions in North America suggests that increasing
the observation coverage allows getting robust fluxes on even smaller scales. To get better fluxes,
we have to assimilate more observations with different coverage to improve the overall observation
density.

3.3 Conclusions

Our study evaluates the performance of the data assimilation models CarbonTracker and
TM5-4DVar by comparing their a posteriori CO2 concentration fields to measurements and
by comparing their a posteriori surface fluxes. We test the sensitivity of the a posteriori CO2

fluxes to model parameters and data coverage. To analyse the impact of the inverse method and
the flux representation, the models run in setups which are close to their production settings but
use harmonized input data, tracer transport model, prior flux and prior flux covariance estimates.
A caveat applies since prior fluxes and prior flux uncertainties cannot be made identical due to
differences in how the state vectors of the two methods are setup: Carbontracker optimizes weekly
ecosystem-wide fluxes while TM5-4DVar optimizes monthly fluxes on a regular longitude-latitude
grid.

Both inverse models yield CO2 concentration fields of comparable quality. We show that increasing
the length of the assimilation time window of CarbonTracker to five bins of twenty days or ten
bins of seven days gives a good agreement to observations in Antarctica which are underestimated
in summer when using the default setup with an assimilation window of only five weeks. With
these longer windows, the difference of the bias of the models at non-assimilated measurement
sites is lower than the uncertainty of the bias due to the limited number of non-assimilated
sites. This has two implications: first, the differences between the a posteriori fluxes provide a
lower estimate of the uncertainty due to the choice of the optimization method, and second, a
choice between the two systems may reduce to practical considerations, such as (a) Carbontracker
is easily parallelisable because of the ensemble structure, but (b) TM5-4DVar yields defined
uncertainties over long time flux integrals which have to be approximated in Carbontracker, or
(c) TM5-4DVar requires an adjoint of the transport model, Carbontracker does not.

The a posteriori fluxes from both models are in good agreement on a global scale, but on
continental scales they show significant differences, most noticeably in South America which
has very sparse coverage of observation sites. Investigating the flux time series allows tracing
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these differences back to spurious flux adjustments in TM5-4DVar for South America due to
assimilating observations from a single site in Arembepe, Brazil, along with compensating fluxes
in the oceans. Also we see a difference in the adjustment of Asian fluxes, but an additional
CarbonTracker run with a coarser temporal flux adjustment bin size of 20 days gives similar
fluxes in Asia as TM5-4DVar. Here, the flux time series reveal that part of the weaker sink
in CarbonTracker with smaller bin size stems from high frequency changes which cannot be
represented with the monthly binning of flux-adaptation in TM5-4DVar and the CarbonTracker
run with bins of 20 days. The impact of this effect on the fluxes in Asia is 0.5 PgC a−1.

To better analyse the sensitivity of both models to the observation coverage, we run the models
with collections of measurement sites selected by historical availability. In North America, where
the change of observation coverage is most pronounced, fluxes estimated with the observation
network from 2000 differ by 0.25 PgC a−1. With the measurement network from 2010, the
difference reduces to 0.1 PgC a−1. In other regions the coverage from 2010 is closest to the
coverage in North America from 2000, so 0.25 PgC a−1 can serve as lower limit for the uncertainty
due to changing the method

TM5-4DVar has a stronger response to the data coverage than CarbonTracker. This shows that
the ecoregion approach in CarbonTracker with its stronger meridional coupling of fluxes and
observations makes CarbonTracker less susceptible to changes in the distribution and density of
observations than the simple global flux covariance in TM5-4DVar. As such it might be useful to
reuse CarbonTracker’s spatial flux correlation structure in TM5-4DVar.

The improved agreement between both models when adding observation sites indicates that the
coverage of observation sites in North America should be sufficient to yield robust fluxes on a
continental scale when only considering the uncertainty from the inverse methods and the flux
representation.

In layman’s terms, this study showed that with small parameter adjustments the two analysed
systems for estimating surface fluxes (CarbonTracker and TM5-4DVar) yield concentration fields
of similar quality, quantified by the mismatch to sites they did not use for the optimization of the
fluxes.

Adding to the conclusion of Babenhauserheide et al. (2015), this study showed that the main
task for getting better flux estimates is assimilating more measurements which complement the
existing network.

I chose to continue this study with CarbonTracker, because it should be more robust against
changing observation coverage, which is important for assimilating satellite data, it is easy to
parallelize in case an application requires better performance, and because due to requiring no
adjoint it will be much easier to connect to the other transport models which are developed
at our institute (IMK-ASF), including the ICON-ART system which builds on ICON, the new
multi-scale meteorology model from the German weather service (dwd).

With this choice, I started with another vector to understand uncertainty: Assimilating remote
sensing total column measurements from the TCCON network which provide constraints for the
free troposphere. This allows estimating uncertainties with an independent validation which has
a different sensitivity than the measurements used in this part of the study and which can reduce
the uncertainty of fluxes when used as a constraint in the inverse model. The structure of TCCON
measurements is similar to the existing in-situ measurements, with repeated measurements at
fixed locations, so they are well suited as a first step into assimilating column measurements.



Chapter 4

The added value of total column
observations for CO2 inverse modelling

After showing in the previous chapter that the main requirement for more robust flux estimates
are additional measurements, this part of the study investigates joint assimilation of total column
measurements from the TCCON network alongside in-situ measurements. Remote sensing
techniques measure the CO2 concentration not only close to the ground but also in the free
troposphere and higher (see section 2.2.2). They complement in-situ measurements, because they
include more information from spatially remote flux regions.

4.1 Observations and Methods

The total column data from TCCON, described in section 2.2.2, provides the currently best
measurements of the aggregated CO2 column. The average station-by-station bias is less than 0.2
ppm (Wunch et al., 2011a). This study uses the release GGG2014 from the TCCON website.1
In addition to CO2 total columns the release provides daily a-priori data and averaging kernels
binned by solar zenith angle for all sites, which makes it easy to assimilate the measurements.

The in-situ measurements assimilated here are taken from the obspack collection (NOAA Envi-
ronmental Sciences Division, Oak Ridge National Laboratory, 2013), a collection of high-precision
measurements from ground stations and aircrafts described in section 2.2.1 and also used in
chapter 3.

Every 30 minutes of model-time the employed transport model (Transport Model 5, TM5,
see section 2.4.2) calculates a CO2 vertical concentration profile of CO2 at each TCCON site.
Carbontracker represents model covariance via an ensemble of runs with disturbed fluxes. To
assimilate data from TCCON CarbonTracker calculates the modelled total column for each
ensemble member individually and use the ensemble spread as the model uncertainty.

Comparison of the modelled profile with a total column measurement requires simulating a
measurement in the model, taking the measurement sensitivity into account (Basu et al., 2011).
To simulate the measurement, the column averaging kernel of the TCCON measurement ( ~Ac) as
defined in equation (2.2) and the prior of the measurement ~xb are interpolated to the mean values
of the model layers.2 Then the model values ~x and the interpolated prior ~x′b are aggregated,

1TCCON data is available from the website tccon.ornl.gov
2Linear interpolation between pressure levels incurs some linearization errors. These could be reduced in a

future version by weighting the contribution of the different layers to the interpolated prior concentrations and
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weighted by the interpolated column averaging kernel ( ~A′c) to get the total fraction of CO2 in the
column.

CO2 =
∑
i

(
x′b,i
)

+
∑
i

(
A′c,i(xi − x′b,i)

)
(4.1)

with the elements of the apriori profile x′b,i, the model profile xi, and the column averaging kernel
Ac,i representing layer means. A detailed explanation of the column averaging process used is
given in the auxiliary information on the TCCON website.3

4.2 Viability of assimilating total column data

Before assimilating total column measurements, it is necessary to get an estimate of the perfor-
mance of the model’s vertical transport. Model transport can be evaluated by comparing modelled
vertical concentration profiles of CO2 to measured ones. The assimilation can only provide useful
information about remote regions if vertical concentration profiles of CO2 exported from the
model are sufficiently close to real profiles. Strong mismatches in a large fraction of the profiles
would indicate problems in vertical transport in the model: The region of highest influence on
the profile would differ from real influences. This would cause additional misattribution of fluxes,
making total column assimilation infeasible. And to give a robust assimilation, the shape of the
profiles must change more slowly with time than the shape of real measurements, to ensure that
adaptions due to model artefacts coinciding with measurements are much smaller than adaptions
from measured changes in the atmosphere. Export of the profiles from the transport model is
realized using a module ported from TM5-4DVar (Basu et al., 2013) to Carbontracker.

Observations to test the vertical transport are available from aircraft profiles measurements
conducted above TCCON stations. Figure 4.1 compares profiles exported from CarbonTracker
with IMECC flight profiles (Feist et al., 2010; Messerschmidt et al., 2011) over Karlsruhe and
over Bialystok, with flight profiles over Lamont from Learjet on consecutive days in August 2009
(see Appendix A.3), from a HIPPO flight on 30 January 2009 and from Learjet flights on 18
July 2010 and 31 July 2009. The shown Carbontracker profiles were optimized using the setup
described in chapter 3.

To make assimilation of total column measurements viable, most modelled profiles need to be
similar to measured profiles without systematic bias by height. Such a systematic bias would lead
to stray adaptions of the profiles because the adaptions can only take the aggregated column into
account, with some additional information where signals from different stations overlap. Also the
match must not be better than the precision of the total column measurements.

Five of the six flights show agreement between measured profile and model profile in the shape of
the profile. They show that CarbonTracker can reproduce the measurements for profiles whose
concentrations change by more than 2% with height. However, the comparison over Lamont on 2
August 2009 (Figure 4.1a) shows a mismatch of 10 ppm in the lowest 2km of the atmosphere
(1000hPa to 800hPa). Aggregated over the total column, this would still be a mismatch of roughly

column averaging kernel with the pressure given by TCCON for the layers. Due to the low variability of the prior
profiles and averaging kernel, the aggregation ignores this effect.

3The auxilliary information on the TCCON website gives detailed instructions for comparing total column
measurements with models along with estimates of the resulting error size when a given step is omitted. The data
on the auxilliary information website (averaging kernel and priors) is outdated, though, since more complete data
is included directly in the NetCDF4 based GGG2014 data product. https://tccon-wiki.caltech.edu/Network_
Policy/Data_Use_Policy/Auxiliary_Data

https://tccon-wiki.caltech.edu/Network_Policy/Data_Use_Policy/Auxiliary_Data
https://tccon-wiki.caltech.edu/Network_Policy/Data_Use_Policy/Auxiliary_Data
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Figure 4.1: Comparison of modelled profiles with flight profiles from the IMECC campaigns
over Karlsruhe and Bialystok (Feist et al., 2010; Messerschmidt et al., 2011) and the HIPPO
(Wofsy, 2011) and LEARJET (A.3) campaigns over Lamont. Differences in the height of the lower
measurements originate in differences between the model pressure and the measured pressure.
The information of the specific flights is given in the sub-captions 4.1a and 4.1b.
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(a) Karlsruhe (top), Lamont (bottom) (b) Izana (top), Antarctica (bottom)

Figure 4.2: Modelled CO2 profiles assimilating only in-situ data from ground-sites and aircraft
missions. They are coloured by time, from red 2010 to blue 2012.

2 ppm, clearly detectable with the precision of TCCON measurements of less than 1 ppm (see
table 2.1).

Correcting a profile like the one from Lamont on 2 August 2009 (Figure 4.1a) using only total
column measurements could lead to a spurious scaling of the full profile. When combined with
measurements close to the surface, though, such a total column measurement adds the information
that the fluxes to adjust need to be nearby. An incorrect adjustment of remote fluxes would
change concentrations higher in the atmosphere and as such lead to a smaller adjustment of the
profile close to the surface. This would lead to a mismatch at in-situ sites, thus matching both
total column and in-situ measurements provides information about the magnitude of the required
concentration change and about the distance of the assimilated measurements from the region
where the flux needs to be adjusted.

Analysing the long term evolution of model profiles allows to verify, that these results are robust.
To this end, Figure 4.2 shows the development of the shapes of profiles.

Since there are mostly smooth variation in the profiles above 800hPa (2km), optimizing them
with total column data should work well. The strong changes below 800hPa suggest, that
assimilating both total column data and in-situ ground data should provide sufficient information
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to discriminate between local and remote effects from most profiles, not just those validated by
aircraft flights.

Together these checks provide the confidence that assimilating total column data can provide
meaningful additional constraints for surface flux estimation.

Since chapter 3 showed that the impact from the choice of model becomes less important with
higher measurement density, CarbonTracker was chosen for a practical and strategic reason: It
has low requirements on the transport model. This makes it easier to implement new types of
measurements and to combine it with other models developed at KIT IMK-ASF.

The changes to the setup from chapter 3 are:

• it uses a gridded version of CarbonTracker Europe, as described in section 2.5.3,

• the transport model 5 (TM5) was adapted to export profiles,

• the runs use only 30 ensemble members instead of the 300 used in chapter 3. This increases
linearisation errors because the ensemble cannot capture the exact distribution but decreases
the runtime of the comparison. A result from this limitation is higher scatter of the modelled
concentrations,

• assimilation of total column measurements is realized by chaining the measured total column
values into the regular observation vector with the uncertainty calculated from the number
of measurements at that site on that day.

In the following sections total column measurements are assimilated. First they are assimilated
as the only constraint to estimate their representativeness error (section 4.3), then they are used
in joint inversions with in-situ measurements (section 4.4).

4.3 Estimating the representativeness error

As discussed in chapter 3, the quality of flux estimates depends on the choice of the represen-
tativeness error for the assimilated concentrations. If the representativeness error estimate is
too large, the uncertainty of the fluxes is higher than necessary and the flux sticks too much
to the prior. If the representativeness error is too small, the model becomes unstable and fails
to reproduce validation measurements. A suitable representativeness error needs to balance
information content against unphysically strong adaptation to single sites.

In this section a suitable representativeness error is estimated by varying the ascribed uncertainty
for TCCON measurements. An ideal choice of the representativeness error minimizes the mismatch
of the modelled concentration fields to in-situ measurements, along with minimizing the estimated
uncertainty of fluxes and keeping the estimated fluxes plausible.

Ascribed uncertainty follows the definition of the representativeness error as in chapter 3. Following
Chevallier et al. (2011) the representativeness error is given per day. This avoids inter-day biases
from different weighting due to variable measurement counts.

σ = σday ·
√
N (4.2)

with σ the uncertainty for a single measurement, N the number of measurements on the given
day and σday the daily uncertainty.
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Figure 4.4: Validation of TCCON assimilation with varying representativeness error using the
mismatch against the non-assimilated in-situ measurements, 2010-12-03 to 2011-12-02. The
histograms show the variation of the daily uncertainty from 2 ppm in the top right histogram,
reduced in a counter-clockwise circle over 0.5 ppm in the top left – the choice of Chevallier et al.
(2011) – and 0.34 ppm in the bottom left and 0.2 ppm in bottom centre – the standard choice in
this study – to 0.08 ppm in the bottom right.

Chevallier et al. (2011) choose a daily uncertainty of 0.5 ppm, doubled in Europe where the
density of TCCON sites is highest. This value can be improved by varying the representativeness
error in model runs which only assimilate TCCON measurements and comparing the resulting
CO2 concentration fields against measurements from the in-situ network. To avoid potential
biases from the limited set of validation sites (demonstrated in section 4.4.1), the optimized CO2

concentration fields are compared against all in-situ measurements.

Figure 4.4 compares different choices for the daily uncertainty for the time frame from December
2010 to December 2011. The uncertainty of the data in the histograms varies in a counter-clockwise
circle, from 2.0 ppm in the top right to 0.08 ppm in the bottom right. This contrasts the two
extremes of the values. The mean yearly fluxes on a 1◦×1◦ scale are shown in Figure 4.3. For
0.34 ppm and 0.2 ppm the histograms show the best fit to ground measurements. The flux maps
show the strengthening patterns of flux changes which at 0.08 ppm uncertainty contain strong
dipole patterns, forming a red-blue source-sink pattern throughout Eurasia and North America.
Figure 4.5 shows that the model behaviour becomes unphysical with a daily uncertainty of only
0.02 ppm. The histogram shown in Figure 4.5 shows strong distortions. Its shape is similar to the
shape of histogram for 0.08 ppm daily uncertainty, though more extreme: the tip moves towards
underestimation of the measurements. The flux map for 0.02 ppm in Figure 4.5b shows that
these distortions originate in strong oscillations in the flux patterns. All runs shown in these
histograms start in 2010 with an initial concentration field optimized for 2009, therefore they
require an initial global source to increase the CO2 concentrations by 2 ppm.

Unphysical behaviour can be detected by analysing the regionally aggregated fluxes for plausibility.
Fig 4.6 shows the fluxes corresponding to the histograms shown in Figure 4.4. The fluxes are
within the 1σ uncertainty of the in-situ fluxes for choices of the daily representativeness error
higher than 0.1 ppm. The validity of the yearly uncertainty estimates of the in-situ flux estimates
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Figure 4.5: Results with a daily uncertainty for TCCON sites of only 0.02 ppm. Mismatch
between the modelled concentration field and in-situ sites, modelled value minus measurement,
and a 1◦×1◦ world map of fluxes. The spread of more than the absolute value of CO2 and the
pattern of neighbouring strong sources and sinks in Fig 4.5b show the effect of oscillations and
unphysical behaviour due to over-fitting measurement noise as signal.
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is shown in Basu et al. (2011) and Babenhauserheide et al. (2015), so fluxes outside this range
are an indicator of unphysical behaviour.

Combining the bias against in-situ sites and the flux uncertainty estimates provides an objective
measure to choose the uncertainty. This measure is shown in Figures 4.7a and 4.7b for land and
ocean fluxes, respectively. The figures show a C-shape, since the prior fluxes are too low by roughly
1 PgC/a (as verified in chapter 3), so a too high representativeness error sticks too strongly to
the prior which results in a too weak sink and as such too quickly rising CO2 concentrations. The
unphysical values for 0.02 ppm are left out because they lie outside the scales of the graph.

These analyses show that using a representativeness error with daily uncertainty between 0.1 ppm
and 0.5 ppm provides concentration fields consistent with in-situ measurements. For assimilation
together with in-situ measurements, a value in the lower part of this range should be reasonable,
because the in-situ measurements provide a second constraint to keep the concentration field
physical. Using 0.2 ppm is on the order of the station-by-station bias of 0.2 ppm (Wunch et al.,
2011b). This choice is reasonable because with an average wind speed of more than 4 ms−1, one
day of measurements samples a section of air with a length on the order of the length of the grid
boxes of our transport model (500km). Due to this, the station-by-station bias limits the daily
accuracy of the measurements.4

The remainder of this study uses a daily uncertainty of 0.2 ppm, about 40% of the value chosen
by (Chevallier et al., 2011) but with some distance to the lowest reasonable values found here.

4.4 Joint assimilation of total column and in-situ measurements in
Carbontracker

As shown in section 3, the main requirement for better flux estimmation is assimilating more
measurements. In this section, assimilation of different combinations of measurement types
is investigated (the combinations and shorthands used to reference them are shown in table
4.1). First the results of these assimilations are compared against observations to investigate
their characteristics, then they are used to find a new estimate of Eurasian CO2 fluxes und
uncertainties.

4.4.1 Cross-comparison of modelled fields and sets of measurements

Figure 4.8 shows modelled CO2 concentrations estimated by assimilating different sets of mea-
surements compared with each of these sets of measurements. Additionally the concentration
fields are compared against non-assimilated validation measurements (V). The different runs are
specified using the shorthand defined in Table 4.1. Some aspects of Figure 4.8 will be investigated
in more detail in section 4.4.2.

The cross-comparison uses a boxplot graph (McGill et al., 1978, Figure E). The black line in each
box shows the median value of the mismatch between modelled and measured concentration for
all the validation measurements. The coloured boxes contain 50% of the values closest to the

4The best choice changes with the grid-size of the transport model. With smaller grid boxes (i.e. 1◦×1◦
longitude×latitude) the representativeness error becomes smaller, so that transport errors and genuine measurement
errors become more important. With grid sizes of 1◦×1◦ longitude×latitude for the flux representation and 6◦×4◦
longitude×latitude for the transport used in this study, the representativeness error still dominates. Even with
only 16 measurements per day, corresponding to 8 hours of measurement time with two measurements per hour, an
uncertainty of 0.4 ppm per measurement due to non-systematic measurement noise (0.1% of the total concentration
value and twice the station-by-station bias) would correspond to a daily uncertainty of 0.1 ppm, roughly half the
uncertainty used here.
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median. The dashed lines with whiskers show the spread of 95% of the values, again counted
from the median. The black circles outside the whiskers show the 2.5% highest and 2.5% lowest
values. In addition to the median line, the red hexagons show the mean value of the mismatches.
Finally the grey diamonds show the root mean square of the mismatches after removing all 2σ
outliers to avoid giving a high weight to outliers.

The left part of the plot with grey background shows the comparison against in-situ validation
data (V) as used in Babenhauserheide et al. (2015). The second part shows validation against
ground-based in-situ measurements (G). The third part against aircraft-based in-situ measurements
(A), the fourth against all TCCON sites in the GGG2014 R0 release (Ta) and the fourth against
European TCCON sites (Te) except for Bremen and Paris which did not yet upload the data
when this comparison was done.

Generally the different comparisons show a common pattern: The run with a priori fluxes
overestimates the validation data by 2–4 ppm CO2 on average (mean and median). This indicates
underestimation of the carbon sink in the SiBCASA biosphere model. Assimilating any of the
datasets reduces this mismatch to at most 1 ppm mean and median. Consequently, the RMSD
excluding the 2σ outliers is between 3 and 4 ppm for the run with a priori fluxes while it is
below 2 ppm for all comparisons except 3 sets: comparing assimilation of all TCCON sites and
all in-situ sites against the ground sites (TaGA_G), comparing assimilation of all TCCON sites
against the ground data (Ta_G) and comparing assimilation of all TCCON sites against aircraft
measurements (Ta_A).

Aside from the different median and mean, there is a significant difference between comparison
against validation data and the other runs. The 50% boxes of the comparison against validation
hold only a fraction of the variability of the 50% boxes of other comparisons. This difference
shows that the validation data (V) is not representative of the variability of the measurements, so
a representative comparison of a TCCON assimilation must be validated against the full ground
dataset (G), not against the limited validation dataset. This is most visible in the Ta_V and the
Ta_G datasets. The modelled concentration fields which assimilated all TCCON sites show a mean
mismatch against the validation measurements of more than 1 ppm while the mean mismatch

Table 4.1: Shorthand definition of runs with different assimilated measurements and validation
measurements. A run is defined as X_Y, with X indicating the type of measurements used in the
assimilation and Y indicating the type of measurement used for validation. The shorthands can
be combined, for example as GA_Te: Assimilating in-situ ground (G) and in-situ aircraft (A) data
and validating against European TCCON sites (Te).

shorthand definition
_ No measurements are assimilated. In section 3 this is called

the prior forward run.
V Use only in-situ validation sites. This is only used do de-

scribe validation data.
G Use in-situ measurements from ground. If this describes the

assimilated data, the measurements exclude V, if it describes
the validation data, the measurements include V.

A In-situ measurements from aircraft.
Te All TCCON sites within Europe.
Tne All TCCON sites outside Europe.
Ta All TCCON sites. Ta is equal to TeTne.
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against all ground measurements is less than 0.5 ppm. The median shows a lower difference, but
the median mismatch against the validation data is still two times as large as the the median
mismatch against all ground data.

This has an important implication on the interpretation of assimilation using only ground in-situ
measurements or ground and aircraft in-situ measurements (G_V and GA_V). While assimilating
in-situ measurements from ground and aircraft together (GA) has the best match to the validation
measurements, the other runs (TneGA, TaGA, G, Ta, TaG) have lower mean and median mismatch
for all other comparisons, against the aircraft measurements (A), the ground-based in-situ
measurements (G), all TCCON sites (Ta) and against the TCCON sites in Europe (Te), with
rising difference in that order. However the comparison of runs assimilating other data against
aircraft measurements shows a good match. This indicates that the mismatch when assimilating
aircraft data does not stem from measurement errors in the aircraft measurements, but rather
from the effect of their temporal and spatial distribution on the optimized field. The effect of
assimilating aircraft measurements on the optimized fluxes is investigated in more detail in section
4.4.2.5Also, the very good match shown against the validation measurements when assimilating
in-situ measurements from ground and aircraft needs to be seen as a warning about the effects
of optimizing parameters for a predefined set of validation sites. This effect could be shown
more prominently with resampling by site (the uncertainty of the median in Figure 4.8 only uses
resampling by measurement).}

Assimilating non-European TCCON sites in addition to in-situ measurements from ground and
aircraft (TneGA) reduces the mismatch to all measurements except for the validation sites. This
points towards effects caused by information in higher layers of the atmosphere which skew
the assimilation when using aircraft measurements, but get corrected by the information from
TCCON measurements.

4.4.2 The effect of assimilating aircraft measurements when using a biased
prior

The cross-comparison in section 4.4.1 show significant differences between assimilating in-situ
aircraft data alongside in-situ ground data (GA) and assimilating only in-situ ground data (G), with
a stronger mismatch when using aircraft data and validating against TCCON data (GA_Ta). These
differences are most pronounced in Europe (GA_Te). A detailed look at the European TCCON
site in Bremen, Germany, which is assimilated in none of the runs supports this result as shown
in Figure 4.9. The figure shows histograms of measured total columns of CO2 (tccon-bremen)
and corresponding total column values retrieved from the modelled CO2 field at the same time
(Carbontracker). It includes a linear least squares fit to the data with a value dependence and
an absolute shift. The run with a priori fluxes at the top left overestimates the total column
measurements at the Bremen site with an average bias of almost -4 ppm, but with little dependence
on the absolute value (3%). Using only the in-situ ground data (G) as shown in the middle left
histogram improves the bias to about -0.38 ppm at 390 ppm, but with a dependence on the
absolute value of -7%. Adding aircraft measurements in the top right histogram (GA) increases
the value dependence to -9% and the bias at 390 ppm to -0.88 ppm. This shows that instead of
improving the match to total column measurements by providing a constraint in high altitudes,
aircraft measurements reduce this match in this study.

However, adding measurements from non-European TCCON sites (TneGA), as shown in the middle
right, reduces the value dependence to -3% and the bias at 390 ppm to -0.64 ppm. The fit between

5{
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Figure 4.9: Scatter-histogram of CO2 total column measurements from the TCCON site in
Bremen vs. modelled total column data from Carbontracker. The bias in the fit is given as
TCCON measurement minus model where the model estimates 390 ppm. The titles use the
shorthand defined in table 4.1 to identify assimilated measurements.
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Figure 4.10: Residuals between model and the TCCON sites in Europe when assimilating in-situ
ground and in-situ aircraft data along with no TCCON data, non-European TCCON data or
all TCCON data, normalized by inverse uncertainty and by site. The run in histogram (c)
assimilates the validation sites, so it only verifies that when assimilating the sites, the modelled
concentrations match the measurements at European TCCON sites. All histograms are calculated
on a timeframe from 2010-12-03 to 2011-12-02.

the model and TCCON measurements is closer to the fit when using only the ground data (G),
with a larger bias, but a lower dependence on the absolute value than when using aircraft data
without TCCON (GA). This supports the finding from the cross-comparison in section 4.4.1 which
used all European TCCON data, but did not discriminate between different sites. The histograms
in Figure 4.10 show that this result holds in general, with the normalized (and therefore unitless)
bias against European TCCON sites of 0.67 when using only in-situ data (GA) reduces to 0.37
when adding measurements from TCCON sites outside Europe (TneGA).6 As such, assimilating
non-European TCCON sites corrects flux attribution errors caused by assimilation of the aircraft
measurements.

The plots at the bottom of Figure 4.9 (TaG and TaGA) show that when assimilating TCCON sites,
the match to European TCCON measurements does not degrade by adding aircraft measurements.
This is an indicator that the additional information from assimilating TCCON measurements
helps avoiding mistaken adjustments due to assimilating the temporally sparse aircraft data.

As expected from the changed match to non-assimilated measurements, assimilating aircraft
data has a noticeable effect on the fluxes. However, the changes are smaller than the two sigma
significance level. Figure 4.11 shows the regional attribution of fluxes on continental scale for
the different runs. Changes which are stronger than the one sigma uncertainty estimate are an
increased sink in North America when adding TCCON data to the assimilation paired with a
decreased sink in Atlantic and Pacific. For Eurasia, assimilation of TCCON data shows opposing
effects whether aircraft in-situ measurements are assimilated (TaGA) or not (TaG). The runs
assimilating only in-situ ground measurements (G) and assimilating in-situ ground and aircraft
measurements along with TCCON measurements (TaGA), show roughly the same flux, while
the run assimilating only in-situ ground and TCCON measurements (TaG) shows a more than 1
PgC/a weaker sink than the run using in-situ ground measurements without TCCON (G). These
two runs also show no significant sink in South America, which casts doubt on their results.
Therefore the first (TaG) is not used in section 4.5. The second (G) is used, because it follows
the baseline run from section 3 and as such provides a comparison between the two different

6The histograms are normalized by site, ensuring that each European TCCON site has the same weight in the
comparison, despite different measurement frequencies.



64
CHAPTER 4. THE ADDED VALUE OF TOTAL COLUMN OBSERVATIONS FOR CO2

INVERSE MODELLING

N
or

th
A

m
er

ic
a

S
ou

th
A

m
er

ic
a

A
tla

nt
ic

A
nd

P
ac

if
c

A
fr

ic
a

E
ur

as
ia

In
di

an
O

ce
an

A
us

tra
lia

-6

-5

-4

-3

-2

-1

0

1

2

fu
x

[P
g

C
/r

eg
io

n
/y

ea
r]

Impact on Regional Fluxes, 2011

Prior forward run
only in-situ ground (G)
in-situ ground and tccon (TaG)
all in-situ (GA)
all in-situ and non-EU tccon (TneGA)
all in-situ and all tccon (TaGA)

O
ce

an
P

ol
ar

l

i

Figure 4.11: Aggregated fluxes from 2010-12-03 to 2011-12-02 for the different runs shown in
Figure 4.9.

CarbonTracker versions used: gridded here, non-gridded in section 3. Both versions are described
in section 2.5.3.

Assimilating non-European TCCON sites in addition to aircrafts does not show significant effects
on continental fluxes, despite the effect on validation at European TCCON sites shown in Figure
4.10. There are changes in all the different regions but they are clearly below the one-sigma
significance criterion.

In short, the best estimates of non-assimilated observations are achieved by assimilating in-situ
ground, in-situ aircraft and TCCON measurements together (TaGA).

However, the reduced sink in Atlantic and Pacific seen in Figure 4.11 when assimilating TCCON
data hints at a relationship between flux attribution and the location of measurement sites. This
is investigated in section 4.4.3.

4.4.3 Unequal observational pressure guides flux attribution

When measurements are assimilated, the uncertainty of adjusted fluxes is reduced for purely
mathematical reasons. As such, the reduction in uncertainty in a specific region can be used as a
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Figure 4.12: Distribution and density of assimilated aircraft measurements.7 The flux maps
show differences between assimilating both aircraft and ground in-situ measurements GA and only
in-situ ground measurements (G, 4.12b) and between assimilating aircraft, ground and TCCON
(TaGA) and both in-situ ground and aircraft (GA, 4.12c)..
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Figure 4.13: Correlation histograms between flux change (dflux) and uncertainty reduction (dstd)
in Eurasia and North America (aggregated). These show the correlation between changes in
the flux and reduction in uncertainty compared to the prior, including fit parameters of a linear
fit and its correlation coefficient R. The titles use the shorthand defined in table 4.1 to identify
assimilated measurements.

proxy for pressure from observations: the effect from assimilating measurements on the modelled
fluxes.

As shown in Figure 4.12a, most assimilated aircraft measurements are located in North America.
Figures 4.12b and 4.12c indicate that where adding aircrafts (GA - G) adds a source, adding
TCCON to this (TaGA - GA) adds a sink, the inverse change. Adding TCCON measurements
(Ta) generally reverses the global shifting of fluxes seen when adding aircraft measurements (A).
This effect is most visible in South America, Africa and Eurasia.

An explanation of these shifts in global flux distribution is that measurements from aircrafts give a
higher weight to flux adaptation in North America, since the fluxes there are closest to the aircraft
measurements. Due to the (known) underestimation of the global sink in the prior fluxes, this
adaptation could result in an increased sink in North America. Adding TCCON measurements in
Europe shifts the region of highest measurement pressure partially back towards Eurasia, resulting
in a shift of the global sink. Such an effect would cast in doubt flux attribution from models



66
CHAPTER 4. THE ADDED VALUE OF TOTAL COLUMN OBSERVATIONS FOR CO2

INVERSE MODELLING

0.08

0.06

0.04

0.02

0.00
d
st

d
 [

P
g
C

/w
e
e
k]

Europe

0.03x -0.007, R=0.5

Eurasia

0.06x -0.01, R=0.6

0.3 0.2 0.1 0.0 0.1 0.2
dflux [PgC/week]

0.08

0.06

0.04

0.02

0.00

d
st

d
 [

P
g
C

/w
e
e
k]

NH Land

0.07x -0.02, R=0.5

0.3 0.2 0.1 0.0 0.1 0.2
dflux [PgC/week]

Land

0.01x -0.04, R=0.07

0.00

0.20

0.45

0.74

1.09

1.51

2.02

2.63

3.37

0.0

0.3

0.6

1.0

1.5

2.2

3.0

4.0

5.3

0.0
0.3
0.6
1.0
1.5
2.2
3.0
4.0
5.3
6.9

0.00
0.20
0.45
0.74
1.09
1.51
2.02
2.63
3.37
4.25

GA bias

Figure 4.14: Correlation histograms between flux change (dflux) and uncertainty reduction (dstd)
for regions of different scales (aggregated) when assimilating in-situ measurements from ground
sites and aircraft (GA). These show the correlation between changes in the flux and reduction
in uncertainty compared to the prior, including fit parameters of a linear fit and its correlation
coefficient R. NH Land contains transcom regions for North America, Asian Temperate, Asian
Boreal, Asian Temperate and Europe, but excludes tropical land regions (Tropical Africa and
tropical Asia).

with biased prior. It would show up in a correlation between flux uncertainty reduction and an
increased sink.

Figure 4.13 shows the flux change in North America and Eurasia correlated with the change of
the uncertainty in the region and time compared to the prior. The plot contrasts the different
runs in-situ ground (G), in-situ ground and aircraft (GA) and both these runs with the addition of
TCCON data (TaG and TaGA). It shows a correlation between reduction of uncertainty and flux
in Eurasia and North America when assimilating aircraft data: On average reduced uncertainty
moves the flux towards a sink, because the prior has a too weak sink and it is corrected where
there are measurements. Adding assimilation of TCCON measurements increases the spread
of the flux adaptation, reducing the correlation compared to a linear fit, but the points in the
histogram which give rise to the correlation when only assimilating in-situ data stay visible by
eye.
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Figure 4.15: Scatter-histograms of CO2 total column measurements from European TCCON sites
vs. modelled total column data from Carbontracker using a run assimilating in-situ measurements
from ground sites and aircrafts. The bias in the fit is given as TCCON measurement minus model
where the model estimates 390 ppm. The histogram shows the mismatch against the five sites
normalized by site and inverse uncertainty, calculated from 2010-12-03 to 2011-12-02.

As shown in Figure 4.14, increasing the size of the region to all land on the northern hemisphere
preserves the correlation, but extending it to also include the land on the southern hemisphere
makes it disappear. Unequal observational pressure even affects the carbon balance between the
hemispheres, but much less the global balance between land and oceans.

This result highlights the importance of preconditioning the prior fluxes. Further it allows defining
a criterion for good preconditioning of the prior fluxes: there should be no correlation between
the change in flux uncertainty and the change in the flux. To find a robust flux distribution on
regional scale, the flux prior should be adjusted to show no global bias. Even though a global
bias of the fluxes is corrected by a small number of observations, as shown in the observation
density experiment in section 3.2.2.2 and the assimilation of TCCON measurements with high
uncertainty in section 4.3, Figure 4.4, this can lead to regional and temporal misattribution of
fluxes in the inverse direction of the global bias of the prior.

Since the global land flux correction shows no strong correlation between uncertainty reduction
and the direction of the flux correction (Fig 4.14), using a globally aggregated weekly flux
correction from an initial run of Carbontracker to precondition the prior fluxes should introduce
no additional misattribution.

4.5 A new limit for the uncertainties of Eurasian fluxes

Using Satellite measurements, Reuter et al. (2014) estimated a European sink of 1.02±0.30
GtC/a for 2010, where Babenhauserheide et al. (2015) found a sink of 0.66±0.70 PgC/a with
Carbontracker and 0.52±0.32 PgC/a with TM5-4DVar for April 2009 to April 2010. Knowing
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Figure 4.16: Scatter-histograms of CO2 total column measurements from European TCCON sites
vs. modelled total column data from Carbontracker using a run assimilating in-situ measurements
from ground sites but no aircrafts. The bias in the fit is given as TCCON measurement minus
model where the model estimates 390 ppm. The histogram shows the mismatch against the five
sites normalized by site and inverse uncertainty, calculated from 2010-12-03 to 2011-12-02.
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Figure 4.17: Scatter-histograms of CO2 total column measurements from European TCCON
sites vs. modelled total column data from Carbontracker using a run assimilating the most
recent TCCON data which contains the Bremen site and includes the fixes by Matthias/Hase.
Those fixes resulted in differences up to 1 ppm in Karlsruhe, Germany by correctly fitting the
background of the spectrum. The bias in the fit is given as TCCON measurement minus model
where the model estimates 390 ppm. The histogram shows the mismatch against the five sites
normalized by site and inverse uncertainty.



4.5. A NEW LIMIT FOR THE UNCERTAINTIES OF EURASIAN FLUXES 69

60°S

30°S

0°

30°N

60°N
in-situ measurement distribution

(a) in-situ

60°S

30°S

0°

30°N

60°N
TCCON measurement distribution

(b) TCCON

Figure 4.18: Measurement density from in-situ sites (ground and aircraft) and TCCON sites.
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Figure 4.19: Fluxes aggregated from 2010-12-03 to 2011-12-02 for the given regions, with North
H Asia combining Eurasian Boreal and Temperate and Eurasia combining North H Asia, Europe
and Tropical Asia.

that the TCCON measurements correct problems for European concentration fields caused by
assimilating aircraft measurements allows revisiting this question.

However, there are few in-situ measurements in Europe which together with total column mea-
surements would allow discriminating remote fluxes from local fluxes. Even with the European
TCCON sites, the assimilation still lacks measurements in central and boreal Asia to distinguish
between Asian and European fluxes. Therefore the focus will be the whole Eurasian continent, be-
cause the European sink and the Asian sink cannot clearly be distinguished with this measurement
network.

Figure 4.19 shows continental scale flux estimates from the runs with different assimilated
observations: in situ ground and aircraft (GA), in-situ ground and aircraft with non-European
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TCCON sites (TneGA), in-situ ground and aircraft with all TCCON sites (TaGA), in-situ ground
(G) and all TCCON sites without any in-situ measurements (Ta).

Several caveats apply to these flux estimates. As shown in section 4.4.2, while the fluxes in Eurasia
are strongly affected by assimilating European TCCON measurements, attribution of fluxes is
partly guided by the measurement density. The run assimilating only TCCON measurements (Ta)
shows strong deviations from the flux in North America, which was shown in section 3 as robust
region due to the high density of observation sites. Other fluxes from Ta are likely contaminated
by fluxes compensating for the stronger North American sink. Finally, the run assimilating only
in-situ measurements from ground and aircraft (GA) is contaminated by strong guidance of flux
attribution by measurement density which are corrected when assimilating TCCON sites outside
Europe (shown in section 4.4.2 and Figures 4.15 and 4.17).

Therefore the flux results to use for investigating the uncertainty of flux estimates due to
characteristics of the measurements stem from three runs: only assimilating in-situ ground
measurements (G), assimilating in-situ ground, aircraft and non-European TCCON measurements
(TneGA) and assimilating all available measurements (TaGA). As shown in Figure 4.18, these runs
have an even distribution of measurement sites: The high density of aircraft measurements in
North America (see Figure 4.12a) is either avoided or compensated by additional sites in other
regions.

This allows estimating the uncertainty of the fluxes due to the characteristics of assimilated
measurements. The Eurasian sink differs between 2.5±1 PgC/a for assimilating in-situ and
non-European TCCON sites (TneGA) and 3.5±1 PgC/a for assimilating in-situ and all TCCON
sites (TaGA) in-situ ground assimilation (G) in between. The European fluxes of these runs are
spread between 2 PgC/a and 2.5 PgC/a with a one sigma uncertainty of ±0.5 PgC/a. The
estimate is within two sigma of the fluxes reported by Reuter et al. (2014) who assimilated
satellite retrievals.

Adding non-European TCCON sites (TneGA) does not significantly change the flux in Eurasia,
but rather redistributes the sink from temperate Asia towards Europe (see Fig. 4.19). Adding
European TCCON sites (TaGA), however, increases the aggregated sink in Eurasia, while decreasing
the sink in Atlantic and Pacific. The sink in Europe is similar whether assimilating in-situ sites
with non-European TCCON sites (TneGA), in-situ sites and all TCCON sites (TaGA) or only
TCCON sites (Ta). However, assimilating only in-situ ground measurements (G, 4.16) gives a
similarly good match to European TCCON sites as assimilating all measurements (TaGA, Fig.
4.17), while assimilating only TCCON measurements (Ta) still shows a good match against
ground sites (Fig 4.4). This points towards a stronger sink in Europe than seen by either
Reuter et al. (2014) or Babenhauserheide et al. (2015), but highlights again that proper flux
attribution within Eurasia requires higher density of measurements. Another clear indication
that the density of measurements from using only TCCON measurements (Ta) does not suffice
to resolve sub-continental fluxes in Eurasia is that north hemispheric Asia is estimated to be a
source, though it includes the boreal forests.8 However, the total Eurasian flux is still within two
sigma of the 2.5 PgC flux shown in Figure 3.10.

In general assimilating in-situ ground measurements and TCCON measurements together reduces
the uncertainty of the fluxes while keeping a similarly good fit to aircraft measurements, and
assimilating all measurements gives a best fit to the Bremen TCCON site (not assimilated in the

8The attribution within Eurasia when using only TCCON measurements is less robust than when also
assimilating in-situ measurements, because as shown in Figure 4.18, the in-situ measurements include four sites in
eastern Asia which are missing in the pure TCCON run (validation of the TCCON-only run against these sites
does not show major problems, though).
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comparison run in Figure 4.9), suggesting that the fluxes provide the best match to atmospheric
concentration measurements. Still, the fluxes for which the model assimilated as much information
as possible suffer from insufficient (essentially in-existent) independent validation.

As shown in 4.19 the plausible range of Eurasian fluxes spans from 0.5 Pg carbon per year up
to 4 Pg carbon per year. It is important to note that the assimilation in this chapter uses the
gridded version of Carbontracker as described in section 2.5.3. Consequently all the results are
preliminary.

4.6 Summary

This chapter presents a joint assimilation of in-situ and total column measurements to estimate
the global distribution of CO2 surface fluxes. Measurements with different spatial and temporal
structure yield orthogonal information which improves the robustness of the estimated sources
and sinks.

Based on more than 3 years of assimilated measurements, this part of the study assesses the impact
of assimilating different kinds of measurements into the CarbonTracker data assimilation system.
The system assimilates total column data from the TCCON network and in-situ measurements
from the obspack compilation, the latter from ground and from aircraft.

It is shown that (a) assimilating high precision total column data from 18 TCCON sites achieves
a comparable level of quality as assimilating data from over 100 in-situ sites from the obspack
compilation, that (b) assimilating in-situ data from aircraft measurements skews the CO2

concentration field in Europe, leading to a higher mismatch against European TCCON sites
which is reduced when additionally assimilating non-European TCCON sites and that (c) the
location of measurement sites skews the attribution of the global sink towards regions with high
observation pressure. Avoiding this effect will either need adjustment of representativeness errors
per region to equalize globally the observation pressure, or require a correction of global biases in
the prior fluxes before using the prior fluxes in the assimilation.

Investigating the resulting fluxes from assimilating different sets of observations points towards a
stronger European sink than previous estimates which only used in-situ measurements. Feng et al.
(2015) raise the question whether the larger European sink found by Reuter et al. (2014) when
using satellite measurements is a real signal or an artefact of the inversion. The results shown in
Figure 4.19 as well as the reduced misattribution due to correlation of observation pressure and
flux adaption (section 4.4.3) support the conclusion that the stronger biospheric sink in Europe
seen when assimilating total column measurements is a real signal. The uncertainty caused by
characteristics of the measurements is on the order of the model-internal uncertainty estimate.
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Conclusions and Outlook

Inverse modelling of carbon dioxide surface fluxes has become an important approach to gain
insight into the functioning of the Earth’s contemporary carbon cycle. Particular interest relates
to the land biosphere and the oceans which, on global scale, take up roughly half of the carbon
dioxide emitted by human activity. On smaller scales such as continents or countries, however, it is
highly uncertain whether the large gross fluxes across the land-atmosphere and ocean-atmosphere
interface balance to a net sink or source of carbon dioxide within a given region. Uncertainties
become even larger when projecting the future evolution of the natural carbon cycle under climate
change.

This study aims at contributing to a better understanding of the capabilities of current CO2

inverse modelling, what uncertainties to expect and how to advance toward robust regional-scale
surface flux estimates. To this end, the study first compares two established inverse models for
CO2 surface flux estimation gaining insight into modelling uncertainties and sensitivities. Second,
the study examines the benefit of simultaneously assimilating different types of measurements.

In the first part – the comparison of the inverse models – both models are run in a harmonized
setup (Babenhauserheide et al., 2015). Assimilated measurements and prior fluxes are chosen
identical. Both inverse models use the same transport model and are evaluated consistently.
Finally the background covariance is harmonized as far as the spatially and temporally different
flux representations permit.

The selected inverse models are CarbonTracker and TM5-4DVar. Both models approximate the
optimal solution to make the inversion viable. The different approximations lead to different
deviations from the ideal solution. Thus inter-model differences can serve as estimate of the
uncertainty due to the choice of approximations.

CarbonTracker uses an ensemble method which steps through the assimilation time period
sequentially. It scales fluxes binned spatially in regions with similar ecosystem (ecoregions) and
binned temporally in a time window of 5 weeks, progressing by one week in each step. TM5-4DVar
uses a four dimensional variational method and adjusts the flux following the largest singular
values one by one over the whole assimilation time period. TM5-4DVar uses spatial binning on a
6◦×4◦ longitude×latitude grid and temporal binning in monthly fluxes.

The assimilation experiments performed with both models provide a measure of inter-model
uncertainties due to from differences in the inverse method und the flux representation. Compar-
ing the optimized atmospheric CO2 concentration fields from both models to non-assimilated
observations shows that the difference between the models is lower than the uncertainty due to

73



74 CHAPTER 5. CONCLUSIONS AND OUTLOOK

the limited number of non-assimilated observation sites. Therefore the quality of the estimated
fluxes is indistinguishable and it is possible to use the difference between the fluxes as a lower
limit for the flux uncertainty. Additionally the criteria for selecting a method reduce to practical
considerations, such as the complexity of adapting the method to other transport models.

Varying the number of assimilated observations based on historical availability reveals a dependency
between the lower limit for the uncertainty from inter-model differences and the observation
coverage. For continental-scale biospheric net fluxes the flux uncertainty ranges from 0.1 to 0.5
petagram carbon per year when assimilating all currently available in-situ measurements. This is
about 25% to 100% of the continental biospheric sink. Adding more measurements decreases the
lower limit of the uncertainty, with North America, where the density of in-situ measurements is
highest, reaching the lowest uncertainty of 0.1 petagram carbon per year. This shows that the
main limitation for the accuracy of the estimated surface fluxes due to inter-model differences is
the density of measurement sites.

In addition to the effects of limited measurement density, comparison of flux estimates in Asia
reveals uncertainties of the fluxes due to the temporal binning. In Asia, the differences between
the prior fluxes and the fluxes optimized by CarbonTracker vary significantly week over week.
These corrections cannot be represented with monthly binned adaptations to fluxes as used by
TM5-4DVar. This leads to flux artefacts in TM5-4DVar which accumulate to 0.5 Pg carbon per
year. The artefacts are reproduced in CarbonTracker when coarsening its temporal binning from
7 days to 20 days, but are not detectable with the regular weekly binning.

To match summer concentrations of CO2 in Antarctica with CarbonTracker, its assimilation time
window must be increased from 5 weeks to 10 weeks: the assimilation time window must be long
enough to connect regions with high biospheric activity to measurement sites. Carbon transported
from these regions needs to reach atmospheric measurement sites by means of atmospheric
transport within that time period.

In the second part of the study, total column measurements of CO2 from the ground-based TCCON
network are assimilated in CarbonTracker. The TCCON network was selected because it provides
the most accurate total column measurements. CarbonTracker was chosen for the practical reason
that it can be used with transport models which do not provide an adjoint, therefore it will
be easier to adapt to the transport models used and developed at the Institute of Meteorology
and Climate Research at KIT. This second part uses a newer version of CarbonTracker which
optimizes fluxes on a 1◦×1◦ longitude×latitude grid and recreates the ecoregion structure of the
previous version by adding strong correlations between grid-boxes in the same ecoregion.

Assimilating measurements with different sensitivities und coverage allows investigating the impact
of the characteristics of different kinds of measurements on the estimated fluxes. The investigation
yields two key findings: First, assimilating in-situ measurements from aircrafts together with
ground-based in-situ measurements leads to misattribution of the fluxes on continental scales.
This misattribution is corrected when adding total column measurements. However, while it
is strongest with aircraft measurements, such a misattribution cannot be completely avoided
when the flux prior has a global bias. Second, the best estimate of Eurasian fluxes is achieved
by assimilating in-situ measurements from ground and from aircraft together with total column
measurements. This yields a one-sigma range of the Eurasian sink between 2.5 Pg and 4.5 Pg
carbon per year, using the model estimate of the uncertainty. The additional uncertainty for
Eurasian fluxes due to the temporal and vertical coverage of measurements is on the order of 1
Pg carbon per year.
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The assimilated aircraft measurements are only available with irregular temporal distribution.
For most locations, there are measurements for only a few days per year. Assimilating these
measurements leads to adjustments of the CO2 concentrations in the middle and upper troposphere,
revealed by mismatches to total column measurements. These concentrations in higher regions of
the atmosphere only have a small impact on ground based in-situ measurements, though, which
causes them not to be corrected by in-situ measurements conducted on the ground. Consequently,
constraints from the aircraft measurements which are only representative for a short time cause
lasting concentration changes and misattribution of fluxes.

A further effect contributing to the observed mismatch between modelled concentration fields
and total column measurements is unequal observational pressure. Fluxes are adjusted to fit the
measurements. If the measurement density is highest in one given region, the flux adjustment
reduces mismatches to the measurements in this region more strongly than for other regions.
If the prior fluxes have a global bias, the correction for this bias – in case of this study an
increase of the biospheric carbon sink – is localized in the region with the highest density of
measurements. With aircraft measurements this region currently is North America. In short: The
global biospheric sink is attributed to the region with most measurement sites. Assimilating total
column measurements in addition to in-situ measurements equalizes the density of measurement
sites and as such the observation pressure, since the density of total column sites is highest in
Europe.

The irregular temporal distribution of aircraft measurements and the global bias of the prior
together lead to an overestimation of European CO2 total column concentration measurements
by about 1 ppm when assimilating aircraft measurements in addition to ground based in-situ
measurements. Assimilating total column measurements outside Europe reduces this concentration
bias to about 0.5 ppm. Also adding total column measurements within Europe reduces the
concentration bias of the non-assimilated TCCON site in Bremen to 0.07 ppm. This shows that
assimilating total column measurements corrects the artefact introduced by the assimilation of
aircraft measurements.

For the Eurasian sink, the one sigma range between 2.5 Pg and 4.5 Pg carbon per year is larger
than reported in previous studies – including the results from Reuter et al. (2014) who used total
column measurements from satellite – and larger than those found in the comparison from the
first part of this study which used only in-situ data. All fluxes are still within their reported
two sigma uncertainty, though. To avoid artefacts from unequal observation pressure, only the
assimilation which uses in-situ data from ground and the assimilation which uses all TCCON
measurements in addition to in-situ measurements from ground and from aircraft are used to
estimate the Eurasian fluxes.

Taken together, the comparison of two models in the first part and the comparison of assimilation
using different kinds of measurements in the second part provide an estimate of the magnitude
and uncertainty of the biogenic sink in Europe. The differences between results can be used to
calculate an aggregated estimate for the systematic error. The inter-model difference found is
below 0.2 Pg carbon per year and the difference from characteristics of the measurements is on
the order of 0.5 Pg carbon per year. These differences are consistent with an unbiased standard
deviation of 0.4 Pg and 0.9 Pg, respectively. The flux is taken from the setup which assimilates
all measurements. Adding the model-intrinsic uncertainty of 0.5 Pg carbon per year, this gives a
best estimate of the European biogenic sink of 2.5 ± 1.8 Pg carbon in 2011.

Feng et al. (2015) raised the question whether this stronger European sink seen when assimilating
total column measurements is a real signal or an artefact. Independent reproduction in this study
of the stronger sink seen by Reuter et al. (2014) indicates that this sink is likely a real signal.
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However comparing CO2 concentrations from different fluxes with the measurements in central
Asia did not find a robust difference between the different setups. As such the question is still
open, due to missing measurements with sufficiently high frequency and accuracy in central Asia.

Outlook: This study showed that improving the robustness of the estimated sources and sinks of
carbon mostly requires assimilating additional measurements, especially in weakly constrained
regions like the southern hemisphere. It showed that assimilating total column measurements can
correct artefacts introduced by the temporally sparse aircraft measurements, complementing in-situ
measurements. This indicates that temporally and spatially sparse satellite measurements should
likewise complement the currently assimilated measurements. However the correction of these
artefacts works only partially for regions for which no total column measurements are available.
Therefore a future strategy to find more robust flux estimates should improve the situation using
all four of the following angles: increasing the global coverage of in-situ sites, especially outside the
USA, increasing the frequency of aircraft measurements to reduce the artefacts incurred by their
temporal structure, improving the global coverage of total column measurement sites to correct
the artefacts from assimilating aircraft measurements, and assimilating satellite measurements to
improve the coverage in inaccessible regions.

Also integrating different meteorological models and different kinds of measurements presents a
challenging scientific goal, since this integration requires careful investigation of the characteristics
of the different methods and measurements.

To avoid misattribution of the fluxes due to unequal observation pressure of the available
measurements, the prior fluxes should be corrected to remove a global bias of the net flux before
using the prior fluxes in the assimilation.

As a concrete step, a robust estimate of the biospheric carbon sink in Europe would require at
least one additional measurement site in central Asia. Having an elevated in-situ instrument (i.e.
a tower site) and a remote sensing instrument at the same location would allow distinguishing
between local biosphere and remote fluxes, which together with European sites should provide
the means to calculate robust European fluxes.

An obvious path towards extension of the total column measurement network would be to build on
the work of Barthlott et al. (2015) and investigate whether the CO2 total column measurements
conducted by many sites in the Network for Detection of Atmospheric Composition Change
(NDACC) provide sufficient accuracy to use as constraint for estimating surface fluxes. The
measurements from NDACC go back 20 years, so they would improve long-term statistics, making
it easier to detect changes in the sources and sinks of carbon dioxide. Improved flux estimates
can inform decision making, because the carbon sink in the biosphere and the oceans determines
the fraction of antropogenic carbon emissions which stays in the atmosphere, the strongest
anthropogenic driver of climate change.

The uncertainty this study finds for the net flux from different regions with the current mea-
surement network makes quantification of biospheric carbon sources and sinks difficult, though.
Providing estimates of the sources and sinks of carbon dioxide with sufficient accuracy to detect
changes in the biosphere due to global warming would be even more challenging.

However, the key to a better scientific understanding of biospheric and oceanic flux estimates lies
in assimilating more measurements at additional observation sites, especially in central Asia and
on the southern hemisphere, as well as measurements from different types of instruments, like
total column retrievals from ground, as shown here, or from satellite, for which the foundation
was lain with the assimilation of ground-based total column measurements implemented in this
study.
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Appendix A

Appendix

A.1 Prior flux uncertainty harmonization

We use the flux uncertainties of a Carbontracker run with a monthly instead of weekly cycle,
which allows us to avoid the unspecified temporal aggregation of covariances in Carbontracker,
and a run of TM5-4DVar as a proxy to harmonize the covariance matrices of the models.

Due to the different specification of fluxes, harmonizing global and regional flux uncertainties
is at odds. To understand the impact of the global harmonization on the flux in the different
transcom regions (the smallest unit in which we can compare differences between the models), we
compare the time series of prior fluxes and flux uncertainties for each region.

The time series in Fig. A.1 shows that there is a mismatch in the flux uncertainty definition, but
this mismatch occurs in April and May 2009 and in Winter 2009/2010, while as figure 9 shows,
the flux difference in TM5-4DVar from assimilating the site in Arembepe extends from April to
August. April and May are the months, however, where the outlier rejection of Carbontracker
makes a difference in the estimated weekly.

The prior flux time series of other regions are shown in figures A.2, A.3, A.4, A.5, A.6, A.7, A.8,
A.9, A.10, A.11, A.12, A.13, A.14, A.15, A.16, A.17, A.18, A.19, A.20, A.21 and A.22.

A.2 In-situ measurement sites

Table A.1 shows the measurement sites which are either assimilated in the different setups of
CarbonTracker and TM5-4DVar or used in the resampling study. Figurse 3.1 and 3.14 show a
graphical representation of the observations used in the assimilation and used for validation in
the different runs. The sites are referenced by their NOAA sitecode, as defined in OBSPACK
from Masarie et al. (2014), compiled by the NOAA Environmental Sciences Division, Oak Ridge
National Laboratory (2013, exact version: obspack PROTOTYPE v1.0.2 2013-01-28).
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Figure A.1: Monthly prior flux and uncertainty for South America.
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Figure A.2: Monthly prior flux and uncertainty for Boreal North America.
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Figure A.3: Monthly prior flux and uncertainty for Temperate North America.
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Figure A.4: Monthly prior flux and uncertainty for Tropical South America.
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Figure A.5: Monthly prior flux and uncertainty for Temperate South America.
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Figure A.6: Monthly prior flux and uncertainty for Africa (both regions combined due to different
region specification).
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Figure A.7: Monthly prior flux and uncertainty for Boreal Eurasia.
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Figure A.8: Monthly prior flux and uncertainty Temperate Eurasia.
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Figure A.9: Monthly prior flux and uncertainty for Tropical Asia.
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Figure A.10: Monthly prior flux and uncertainty for Australia.
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Figure A.11: Monthly prior flux and uncertainty for Europe.
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Figure A.12: Monthly prior flux and uncertainty for Temperate North Pacific.
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Figure A.13: Monthly prior flux and uncertainty for Tropical West Pacific.
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Figure A.14: Monthly prior flux and uncertainty for Tropical East Pacific.
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Figure A.15: Monthly prior flux and uncertainty for Temperate South Pacific.
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Figure A.16: Monthly prior flux and uncertainty for the Northern Ocean.
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Figure A.17: Monthly prior flux and uncertainty for Temperate North Atlantic.
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Figure A.18: Monthly prior flux and uncertainty for Tropical Atlantic.
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Figure A.19: Monthly prior flux and uncertainty for Temperate South Atlantic.
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Figure A.20: Monthly prior flux and uncertainty for the Southern Ocean.
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Figure A.21: Monthly prior flux and uncertainty for Tropical Indian Ocean.
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Figure A.22: Monthly prior flux and uncertainty for Temperate Indian Ocean.
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Table A.1: Observation sites assimilated in the different runs or used in the resampling study,
referenced by their NOAA sitecodes. Sites marked with * were removed as not representative of
TM5-4DVar-input. Sites not assimilated in the base run are used to validate it. The Site column
lists the sitecode, the Meas column gives the measurement type (f: discrete manual flask sampling,
c: continuous in situ measurement, p: discrete automated flask sampling), the σ column gives
the used representativeness error, the columns base, columns 2/cont, 1988, 2000 and 2010 list
whether the site is assimilated in the given model run and the resampling column shows whether
the site is used in the resampling study.

Site Meas σ [ppm] base 2/cont 1988 2000 2010 resampling
ABP f 0.75 yes - - - yes -
ALT c 2.50 yes - yes yes yes -
ALT f 1.50 yes - yes yes yes -
AMT c 3.00 yes - - - yes -
AMT f 3.00 - - - - - -
AMT p 3.00 yes - - - yes -
ASC f 0.75 yes - yes yes yes -
ASK f 1.50 yes yes - yes yes -
AZR f 1.50 yes - yes yes yes -
BAL f 7.50 yes - - yes yes -
BAO c 3.00 * - - - yes yes
BAO p 3.00 * - - - yes yes
BGU f 1.50 - - - - - yes
BHD f 0.75 yes - - yes yes -
BKT f 7.50 yes - - - yes -
BME f 1.50 yes - - yes yes -
BMW f 1.50 yes - - yes yes -
BNE p 2.00 - - - - - yes
BRA c 3.00 - - - - yes yes
BRW f 1.50 - - yes yes yes yes
BRW c 2.50 - - yes yes yes yes
BSC f 7.50 yes - - yes yes -
CAR p 2.00 - - - - - yes
CBA f 1.50 yes - yes yes yes -
CDL c 3.00 - - - - yes yes
CFA f 2.50 yes yes - yes yes -
CGO f 0.75 - - yes yes yes yes
CGO c 2.50 - - yes yes yes yes
CHM c 3.00 - - - - yes yes
CHR f 0.75 yes - yes yes yes -
CIB f 1.50 - - - - - yes
CMA p 2.00 - - - - - yes
CPT f 2.50 - - - - - -
CPT c 2.50 - - - yes yes yes
CRI f 0.75 - - - - - yes
CRZ f 0.75 yes - - - yes -
CYA f 0.75 yes - - yes yes -
DND p 2.00 - - - - - yes

Continued on next page
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Table A.1 – continued from previous page
Site Meas σ [ppm] base 2/cont 1988 2000 2010 resampling
DRP f 0.75 - - - - - yes
EGB c 3.00 yes - - - yes yes
EIC f 7.50 - - - yes yes -
ESP c 3.00 - - - yes yes yes
ESP p 3.00 - - - - - yes
ESP f 3.00 - - - - - -
EST c 1.50 - - - - - yes
ETL c 3.00 yes yes - - yes yes
ETL p 3.00 - - - - - yes
FIK f 1.50 - - - - - yes
FNS c 1.50 - - - - - yes
FSD c 1.50 - - - - - yes
GMI f 1.50 - - yes yes yes yes
HBA f 0.75 yes yes yes yes yes -
HDP c 3.00 - - - - yes yes
HEI c 1.50 - - - - - yes
HIL p 2.00 - - - - - yes
HPB f 2.50 yes - - - yes -
HUN f 7.50 - - - yes yes yes
HUN c 7.50 - - - - - -
ICE f 1.50 yes - - yes yes -
IZO f 1.50 yes - - yes yes -
IZO c 1.50 - - - - - -
JFJ c 1.50 - - - - - yes
KEY f 2.50 yes - yes yes yes -
KUM f 1.50 yes - yes yes yes -
KZD f 2.50 yes - - yes yes -
KZM f 2.50 yes - - yes - -
LEF c 3.00 - - - - yes yes
LEF f 2.50 - - - - - yes
LEF p 3.00 - - - - yes1 yes
LJO f 1.50 - - - - - yes
LLB c 3.00 yes - - - yes -
LLB f 3.00 - - - - - -
LLN f 2.50 yes - - - yes -
LMP f 2.50 yes - - - yes -
LPO f 1.50 - - - - - yes
LUT c 1.50 - - - - - yes
MAA f 0.75 yes - - yes yes -
MEX f 2.50 - - - - - yes
MHD f 2.50 yes yes - yes yes -
MID f 1.50 yes - yes yes yes -
MKN f 2.50 yes - - - yes -
MLO f 1.50 yes yes yes yes yes -
MLO c 0.75 - − yes yes yes -

Continued on next page
1only afternoon samples
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Table A.1 – continued from previous page
Site Meas σ [ppm] base 2/cont 1988 2000 2010 resampling
MQA f 0.75 yes - - yes yes -
NHA p 2.00 - - - - - yes
NMB f 2.50 yes yes - yes yes -
NWR f 1.50 - - yes yes yes yes
NWR p 1.50 - - yes yes yes yes
NWR c 1.50 - - yes yes yes yes
OBN f 7.50 yes yes - - - -
ORL p 1.50 - - - - - -
ORL f 1.50 - - - - - -
OTA f 2.50 - - - - - yes
OXK f 2.50 yes - - - yes -
PAL f 2.50 yes - - yes yes -
PAL c 2.50 - - - - - -
PDM f 1.50 - - - - - yes
PFA p 2.00 - - - - - yes
POC f 0.75 yes - yes yes yes -
PSA f 0.75 yes - yes yes yes -
PTA f 7.50 yes - - yes yes -
RBA c 1.50 - - - - - yes
RPB f 1.50 yes yes yes yes yes -
RTA p 2.00 - - - - - yes
SBL c 3.00 yes - - - - -
SAN f 2.00 - - - - - yes
SAN p 2.00 - - - - - yes
SCA p 2.00 - - - - - yes
SCT c 3.00 * - - - yes yes
SCT p 3.00 * - - - - yes
SEY f 0.75 yes yes yes yes yes -
SGP f 2.50 yes - - - yes -
SGP c 3.00 yes - - - yes -
SGP p 2.50 - - - - - -
SHM f 2.50 yes - yes yes yes -
SMO f 1.50 yes yes yes yes yes -
SMO c 0.75 yes yes yes yes yes -
SNP c 3.00 - - - - yes yes
SPL c 3.00 yes - - - yes -
SPO f 1.50 yes - yes yes yes -
SPO c 0.75 yes - yes yes yes -
STM f 1.50 yes - yes yes yes -
STR p 3.00 yes - - - yes -
SUM f 1.50 yes - - yes yes -
SYO f 0.75 - - yes yes yes yes
SYO c 0.75 - - - - - yes
TAP f 7.50 yes - - yes yes -
TDF f 0.75 yes - - yes yes -
TGC p 2.00 - - - - - yes

Continued on next page
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Table A.1 – continued from previous page
Site Meas σ [ppm] base 2/cont 1988 2000 2010 resampling
THD f 2.50 yes - - - yes -
THD p 2.50 - - - - - -
TOT c 1.50 - - - - - yes
TRN c 1.50 - - - - - yes
UTA f 2.50 yes - - yes yes -
UUM f 2.50 yes - - yes yes -
WBI c 3.00 * yes - - yes yes
WBI p 3.00 * yes - - yes yes
WGC c 3.00 * - - - yes yes
WGC p 3.00 * - - - yes yes
WIS f 2.50 yes - - yes yes -
WKT c 3.00 * - - - yes yes
WKT p 3.00 * - - - yes yes
WKT f 2.50 * - - - - yes
WLG f 1.50 yes yes - yes yes -
WPC f 1.50 - - - - - -
WSA c 3.00 yes yes - - yes -
ZEP f 1.50 yes yes - yes yes -

A.3 Learjet flight information

Information about the learjet data used in this study to assess the viability of assimilating column
data from the TCCON network.

CO2 data from the Learjet flight over the SGP ARM Site on July 31, 2009.
aircraft_info: NASA Glenn Lear-25 (5–13 km altitude) and Cessna 210 (0.3–5 km altitude)
flight_date: 2009-07-31
aircraft_floor_time_UTC: 2009-07-31 16:01:00
aircraft_start_time_UTC: 2009-07-31 14:37:00
aircraft_stop_time_UTC: 2009-07-31 17:31:00
altitude_source: Aircraft
pressure_source: Radiosonde SGPCCG
temperature_source: Radiosonde SGPCCG
h2o_profile_source: Radiosonde SGPCCG
co2_profile_source: NOAA Flask Samplers
aircraft_co2_error_2sigma_ppm: 0.31
aircraft_ceiling_m: 11233.4
aircraft_floor_m: 457.2
co2_surface_source: SGP Flasks
h2o_surface_source: FTS RH Measurement
TCCON_site_name: Lamont
TCCON_site_longitude_E: -97.486
TCCON_site_latitude_N: 36.604

CO2 data from the Learjet flight over the SGP ARM Site on August 02, 2009.
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aircraft_info: NASA Glenn Lear-25 (5–13 km altitude) and Cessna 210 (0.3–5 km altitude)
flight_date: 2009-08-02
aircraft_floor_time_UTC: 2009-08-02 16:30:00
aircraft_start_time_UTC: 2009-08-02 15:05:00
aircraft_stop_time_UTC: 2009-08-02 17:57:00
altitude_source: Aircraft
pressure_source: Radiosonde SGPCCG
temperature_source: Radiosonde SGPCCG
h2o_profile_source: Radiosonde SGPCCG
co2_profile_source: NOAA Flask Samplers
aircraft_co2_error_2sigma_ppm: 0.31
aircraft_ceiling_m: 12831.8
aircraft_floor_m: 457.2
co2_surface_source: SGP Flasks
h2o_surface_source: FTS RH Measurement
TCCON_site_name: Lamont
TCCON_site_longitude_E: -97.486
TCCON_site_latitude_N: 36.604

CO2 data from the Learjet flight over the SGP ARM Site on August 03, 2009.
aircraft_info: NASA Glenn Lear-25 (5–13 km altitude) and Cessna 210 (0.3–5 km altitude)
flight_date: 2009-08-03
aircraft_floor_time_UTC: 2009-08-03 16:40:00
aircraft_start_time_UTC: 2009-08-03 15:14:00
aircraft_stop_time_UTC: 2009-08-03 18:00:00
altitude_source: Aircraft
pressure_source: Radiosonde SGPCCG
temperature_source: Radiosonde SGPCCG
h2o_profile_source: Radiosonde SGPCCG
co2_profile_source: NOAA Flask Samplers
aircraft_co2_error_2sigma_ppm: 0.31
aircraft_ceiling_m: 12855.5
aircraft_floor_m: 457.2
co2_surface_source: SGP Flasks
h2o_surface_source: FTS RH Measurement
TCCON_site_name: Lamont
TCCON_site_longitude_E: -97.486
TCCON_site_latitude_N: 36.604

CO2 data from the Learjet flight over the SGP ARM Site on July 18, 2010.
aircraft_info: Learjet
flight_date: 2010-07-18
aircraft_floor_time_UTC: 2010-07-18 18:25:14
aircraft_start_time_UTC: 2010-07-18 16:15:39
aircraft_stop_time_UTC: 2010-07-18 20:27:54
altitude_source: Learjet
pressure_source: Radiosonde SGPCCP
temperature_source: Radiosonde SGPCCP
h2o_profile_source: Radiosonde SGPCCP
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co2_profile_source: Stephanie Vay’s CO2
aircraft_co2_error_2sigma_ppm: 0.3
aircraft_ceiling_m: 12932.0
aircraft_floor_m: 410.0
co2_surface_source: Extrapolated from aircraft measurements
h2o_surface_source: FTS RH Measurement
TCCON_site_name: Lamont
TCCON_site_longitude_E: -97.486
TCCON_site_latitude_N: 36.604

A.4 The EnSRF Toy Model
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Figure A.23: Output from the EnSRF toy model in appendix A.4 using a linear model. The
example shows how EnSRF optimization deviates from the true value even with a dense measure-
ment coverage when the model parameters have very different weight. It motivates the need to
precondition the state.

This section contains a toy implementation of an Ensemble Square Root Filter (EnSRF) written
in Wisp, an indentation based syntax for Guile Scheme. It is used in section 2.5.3 as motivation
for the need to precondition the state vector.

http://draketo.de/light/english/wisp-lisp-indentation-preprocessor
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1 # -*- wisp -*-
2 # save this file in the wisp folder and execute it in place.
3 exec guile -L . --language=wisp -e ’(@@ (ensrf) main)’ -s "$0" "$@"
4 ; !#
5

6 ;; Simple Ensemble Square Root Filter to estimate function parameters
7 ;; based on measurements.
8

9 ;; Provide first guess parameters x^b and measurements y0 to get
10 ;; optimized parameters x^a.
11

12 ;; This EnSRF toy model uses Wisp syntax, also known as SRFI-119. See
13 ;; http://draketo.de/light/english/wisp-lisp-indentation-preprocessor
14 ;; http://srfi.schemers.org/srfi-119/srfi-119.html

Listing 1: Basic file execution and information.

1 ;; Method
2 ;; x^b = ’(...) ; first guess of the parameters
3 ;; P = ’((...) (...) ...) ; parameter covariance
4 ;; y0 = ’(...) ; observations
5 ;; R = ’((...) (...) ...) ; observation covariance
6 ;; H: H(x) → y ; provide modelled observations for the given parameters.
7 ;; with N ensemble members (i=1, ... N) drawn from the state x^b:
8 ;; For each measurement y0_j:
9 ;; x’^b: X = 1/√(N-1)(x’b_1, ..., x’b_N)^T

10 ;; with P = XX^T ; in the simplest case x’^b are gaussian
11 ;; distributed with standard distribution from
12 ;; square root of the diagonals.
13 ;; x_i = x^b + x’^b_i
14 ;; H(x^b_i) = H(x^b + x’^b_i)
15 ;; H(x^b) = (1/N)·Σ H(x^b + x’^b_i)
16 ;; H(x’^b_i) = H(x^b + x’_i) - H(x^b)
17 ;; HPHt = 1/(N-1)(H(x’_1), ..., H(x’_N))(H(x’1), ..., H(x’N))T
18 ;; PHt = 1/(N-1)(x’_1, ..., x’_N)(H(x’1), ..., H(x’N))T
19 ;; K = PHt*(HPHt + R)−¹
20 ;; x^a = x^b + K(y0_j - H(x^b))
21 ;; α = (1 + √(R/(HPHt+R)))−¹
22 ;; x’^a = x’^b - αK·H(x’^b)

Listing 2: The EnSRF algorithm.

1 define-module : ensrf
2 use-modules : srfi srfi-42 ; list-ec
3 use-modules
4 : ice-9 popen
5 . #:select : open-output-pipe close-pipe
6

7 ; seed the random number generator
8 set! *random-state* : random-state-from-platform

Listing 3: Module definition, imports and preparation
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1 define : make-diagonal-matrix-with-trace trace
2 let : : dim : length trace
3 list-ec (: i dim)
4 list-ec (: j dim)
5 if : = i j
6 list-ref trace i
7 . 0.0
8

9 define : make-covariance-matrix-from-standard-deviations stds
10 make-diagonal-matrix-with-trace : map (lambda (x) (expt x 2)) stds
11

12 define : mean l
13 . "Calculate the average value of l (numbers)."
14 / : apply + l
15 length l
16

17

18 define : standard-deviation l
19 . "Calculate the standard deviation of list l (numbers)."
20 let : : l_mean : mean l
21 sqrt
22 / : sum-ec (: i l) : expt {i - l_mean} 2
23 . {(length l) - 1}
24

25 define : standard-deviation-from-deviations . l
26 . "Calculate the standard deviation from a list of deviations (x - x_mean)."
27 sqrt
28 / : sum-ec (: i l) : expt i 2
29 . {(length l) - 1}
30

31 define* : write-multiple . x
32 . "Helper to avoid suffering from write-newline-typing."
33 map : lambda (x) (write x) (newline)
34 . x

Listing 4: Helper functions.

1 ;; Start with the simple case: One variable and independent observations (R diagonal)
2 ;; First define a truth
3 define x^seed ’(0.5 0.6 7 0.1 0.7 0.9 0.8 0.4)
4 define x^true
5 append-ec (: i (length x^seed))
6 list-ec (: j x^seed) : * j : list-ref x^seed i
7 ;; And add an initial guess of the parameters
8 define x^b : append-ec (: i (length x^seed)) ’(1 1 1 1 1 1 1 1)
9 define P

10 make-covariance-matrix-from-standard-deviations
11 append-ec (: i (length x^seed)) ’(0.5 0.1 0.3 0.1 0.2 0.2 0.2 0.2)
12

13 ;; Then generate observations
14 define y0-num 3000
15 define y0-pos-max 100
16 ;; At the positions where they are measured. Drawn randomly to avoid
17 ;; giving an undue weight to later values.
18 define y0-pos : list-ec (: i y0-num) : * (random:uniform) y0-pos-max

Listing 5: Setup of model and observation locations.
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1 ;; We need an observation operator to generate observations from true values
2 define : H x pos
3 . "Observation operator. It generates modelled observations from the input.
4

5 x are parameters to be optimized, pos is another input which is
6 not optimized. For plain functions it could be the position of
7 the measurement on the x-axis. We currently assume absolute
8 knowledge about the position.
9 "

10 let*
11 : len : length x
12 ystretch y0-pos-max
13 x-pos : list-ec (: i len) : * ystretch {{i + 0.5} / {len + 1}}
14 apply +
15 list-ec (: i len)
16 * : list-ref x i
17 . pos
18 exp
19 -
20 expt
21 / {pos - (list-ref x-pos i)} {ystretch / 20}
22 . 2

Listing 6: The observation operator.

1 ;; We start with true observations which we will disturb later to get
2 ;; the equivalent of measured observations
3 define y^true : list-ec (: i y0-pos) : H x^true i
4 ;; now we disturb the observations with a fixed standard deviation.
5 ;; This assumes uncorrelated observations.
6 define y0-std 50
7 define y0 : list-ec (: i y^true) : + i : * y0-std : random:normal
8 ;; and define the covariance matrix. This assumes uncorrelated observations.
9 define R : make-covariance-matrix-from-standard-deviations : list-ec (: i y0-num) y0-std

10

11 ;; Alternative: define observations
12 ;; define y0-mean 0.8
13 ;; The actual observations
14 ;; define y0 : list-ec (: i y0-num) : + y0-mean : * y0-std : random:normal

Listing 7: Generate observations and observation uncertainty.

1 observations-to-process y
2 observation-variances : list-ec (: i (length y)) : list-ref (list-ref R i) i
3 observation-positions y-pos
4 x^b x
5 x-deviations
6 list-ec (: i N)
7 list-ec (: j (length x))
8 * : random:normal
9 sqrt : list-ref (list-ref P j) j ; only for diagonal P!

Listing 8: EnSRF Step, part 1: Start of one EnSRF step.
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1 y_cur : car observations-to-process
2 R_cur : car observation-variances
3 y-pos_cur : car observation-positions
4 Hx^b_i
5 list-ec (: i x-deviations)
6 H
7 list-ec (: j (length i))
8 + (list-ref x^b j) (list-ref i j)
9 . y-pos_cur

10 Hx^b
11 / : sum-ec (: i Hx^b_i) i
12 . N
13 Hx^b-prime
14 list-ec (: i N)
15 - : list-ref Hx^b_i i
16 . Hx^b

Listing 9: EnSRF Step, part 2: Processing one observation.

1 HPHt
2 / : sum-ec (: i Hx^b-prime) {i * i}
3 . {N - 1}
4 PHt
5 list-ec (: j (length x^b))
6 ; for each x^b_i multiply the state-element
7 ; and model-deviation for all ensemble members.
8 * {1 / {N - 1}}
9 sum-ec (: i N)

10 * : list-ref (list-ref x-deviations i) j
11 list-ref Hx^b-prime i
12 K : list-ec (: i PHt) {i / {HPHt + R_cur}}

Listing 10: EnSRF Step, part 3: Calculating the Kalman gain matrix.

1 x^a
2 list-ec (: j (length x^b))
3 + : list-ref x^b j
4 * : list-ref K j
5 . {y_cur - Hx^b}
6 α-weight-sqrt : sqrt {R_cur / {HPHt + R_cur}}
7 α {1 / {1 + α-weight-sqrt}}
8 x^a-deviations
9 list-ec (: i N) ; for each ensemble member

10 list-ec (: j (length x^b)) ; and each state variable
11 - : list-ref (list-ref x-deviations i) j
12 * α
13 list-ref K j
14 list-ref Hx^b-prime i

Listing 11: EnSRF Step, part 4: Update state and deviations.
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1 define : EnSRF H x P y R y-pos N
2 . "Observation function H, parameters x,
3 parameter-covariance P, observations y, observation covariance R
4 and number of ensemble members N.
5

6 Limitations: y is a single value. R and P are diagonal.
7 "
8 let step
9 :

10 <<wisp-ensrt-start>>
11 cond
12 : null? observations-to-process
13 list x^b x-deviations
14 else
15 let*
16 :
17 <<wisp-ensrt-oneobs>>
18 <<wisp-ensrt-gain>>
19 <<wisp-ensrt-update>>
20 step
21 cdr observations-to-process
22 cdr observation-variances
23 cdr observation-positions
24 . x^a
25 . x^a-deviations

Listing 12: The EnSRF implementation.

1 format #t "x0: ~A ± ~A\nx: ~A ± ~A\nx^t:~A\ny: ~A ± \ny0: ~A ± ~A\nnoise: ~A\n"
2 . x^b
3 list-ec (: i (length x^b)) : list-ref (list-ref P i) i
4 . x-opt
5 list-ec (: i (length x-opt))
6 apply standard-deviation-from-deviations
7 list-ec (: j x-deviations) : list-ref j i
8 . x^true
9 * {1 / (length y0)} : apply + : map (lambda (x) (H x-opt x)) y0-pos

10 mean y0

11 standard-deviation y0

12 . y0-std

Listing 13: Show EnSRF information.
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1 ; plot the result
2 let : : port : open-output-pipe "python"
3 format port "import pylab as pl\n"
4 format port "y0 = [float(i) for i in ’~A’[1:-1].split(’ ’)]\n" y0

5 format port "ypos = [float(i) for i in ’~A’[1:-1].split(’ ’)]\n" y0-pos
6 format port "yinit = [float(i) for i in ’~A’[1:-1].split(’ ’)]\n" : list-ec (: i y0-pos) : H x^b i
7 format port "ytrue = [float(i) for i in ’~A’[1:-1].split(’ ’)]\n" : list-ec (: i y0-pos) : H x^true i
8 format port "yopt = [float(i) for i in ’~A’[1:-1].split(’ ’)]\n" : list-ec (: i y0-pos) : H x-opt i
9 format port "pl.plot(*zip(*sorted(zip(ypos, yinit))), label=’prior’)\n"

10 format port "pl.plot(*zip(*sorted(zip(ypos, ytrue))), label=’true’)\n"
11 format port "pl.plot(*zip(*sorted(zip(ypos, yopt))), label=’optimized’)\n"
12 format port "pl.plot(*zip(*sorted(zip(ypos, y0))), marker=’+’, linewidth=0, label=’measurements’)\n"
13 format port "pl.legend()\n"
14 format port "pl.xlabel(’position [arbitrary units]’)\n"
15 format port "pl.ylabel(’value [arbitrary units]’)\n"
16 format port "pl.title(’ensemble optimization results’)\n"
17 format port "pl.show()\n"
18 format port "exit()\n"
19 close-pipe port

Listing 14: Plot EnSRF results.

1 <<wisp-header>>
2 <<wisp-math>>
3 <<wisp-setup>>
4 <<wisp-helpers>>
5 <<wisp-input>>
6 <<wisp-obsoperator>>
7 <<wisp-observations>>
8 <<wisp-ensrt>>
9

10 define : main args
11 let*
12 : optimized : EnSRF H x^b P y0 R y0-pos 30
13 x-opt : list-ref optimized 0
14 x-deviations : list-ref optimized 1
15 <<wisp-show>>
16 <<wisp-plot>>

Listing 15: Collect the parts into the EnSRF toy model.
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