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Zusammenfassung

Biopharmazeutische Proteine sind eine der am schnellsten wachsenden Medikamentenklas-

sen. In 2012 waren 14 der 37 durch die US Arzneimittelaufsicht FDA zugelassenen Me-

dikamente Biopharmazeutika. Innerhalb des Produktionsprozesses von Biopharmazeutika

muss im Anschluss an die Biosynthese des Proteins mittels genetisch veränderten Zellen,

das Zielprotein aufgereinigt werden. Dieses sog. Downstream Processing muss gewährleis-

ten, die extrem vielfältigen Typen an Verunreinigungen zu entfernen. Hierzu zählen Zellen

und Zellbruchstücke, verschiedenste Proteine die auf die Wirtszelle zurückzuführen sind,

stark geladene Nukleinsäuren, sowie unerwünschte Produktvarianten.

Die Verkürzung der Entwicklungszeiten für diese Reinigungsprozesse steht im engen Zu-

sammenhang mit der Etablierung standardisierter Vorgehensweisen in der Prozessentwick-

lung. Für die Reinigung von monoklonalen Antikörpern wurden hierzu, auf Grundlage von

besehendem Prozesswissen, sogenannte Plattformprozesse etabliert. Typische Plattform-

prozesse zur Reinigung von Antikörpern beginnen mit einer Fest-Flüssig-Trennung um

Feststoffe aus der Prozesslösung zu entfernen. Diese würden nachfolgende Prozessschritte

beeinträchtigen. Nach der Abreicherung von Feststoffen, wird die Prozesslösung mit ei-

ner Protein A Chromatographie weiter verarbeitet. In dieser kann der Antikörper selektiv

aus der Prozesslösung gebunden werden ohne das eine weitere Vorbehandlung notwendig

ist. Die meisten Wirtsproteine und die Nukleinsäuren binden nicht an den Liganden der

Protein A Säule und fließen während des Beladens oder eines nachgelagerten Waschschrit-

tes durch die Säule. Die Elution des Antikörpers erfolgt über eine Absenkung des pH

Wertes, der eine Abstoßung induziert. Der gesammelte saure Produktpool wird als nächs-

tes einer Virusinaktivierung unterzogen, um die Virussicherheit zu gewährleisten. Im An-

schluss erfolgt die weitere Reinigung mittels einer Kationenaustauscher-Chromatographie

(CEX) die in einer binde und elutions Betriebsweise eingesetzt wird, um produktähnliche

Kontaminanten, wie z.B. Produktaggregate oder Buchstücke abzutrennen. In der Regel

beinhaltet ein Plattformprozess einen dritten chromatographischen Schritt. Im Vergleich

zu den zuvor beschriebenen Schritten ist dieser relativ flexibel. Die finale Feinreinigung

erfolgt dabei häufig mittels einer Anionenaustauscher-Chromatographie (AEX) die in ei-

ner Durchfluss-Betriebsweise eingesetzt wird. Bei dieser Betriebsweise bindet das Produkt

nicht an die Säule und fließt ungehindert durch diese hindurch. Die verbleibenden Kon-

taminanten binden hingegen an die Säule. Zum Schluss erfolgt eine Virusfiltration aus

Gründen der Sicherheitsanforderungen und eine Ultra-/Diafiltration um die Flüssigkeit

in der das Produkt gelöst ist in eine Matrix zu überführen, die für die Anwendung beim

Menschen geeignet ist oder für die nachfolgende Formulierung benötigt wird.

Für hoch konservierte Molekülklassen, wie z.B. Antikörper, besteht die derzeitige Ent-

wicklung von Reinigungsprozessen in der Adaption der bestehenden Plattformprozesse an
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neue Moleküle. In der Regel erfolgt dies auf Grundlage von sog. Design of Experiments

(DoE), wobei die Planung der Experimente auf einer statistischen Grundlage erfolgt und

die Daten im Anschluss an emprische Korrelationen, wie z.B. lineare oder quadratische

Funktionen angepasst wird. Der größte Teil der Entwicklungsaufwendungen entfällt hier-

bei, aufgrund der vielen Freiheitsgrade, auf die Optimierung der Chromatographie Schritte.

Im Folgenden werden wir uns daher auf die Betrachtung der Chromatographie Schritte

beschränken.

Unter dem Konzept von Quality by Design (QbD) stellen die regulatorischen Behörden ein

neuartiges Konzept der Prozessentwicklung vor. Zuvor basierten die Zulassungsverfahren

auf engen Bereichen für Prozessparameter und einer Kontrollstrategie, auf deren Grund-

lage Abweichungen von den vorgegebenen Parametern erkannt werden müssen. Wenn ein

Prozess den vorgegebenen Parameterbereich verlässt, wird die entsprechende Produkti-

onscharge verworfen. QbD bedeutet in diesem Zusammenhang den Aufbau eines detail-

lierteren Prozessverständnisses auf einer mechanistischen Grundlage. Dies umfasst das

Verständnis wie die Parameter des Produktionsprozesses die Qualität des finalen Produk-

tes beeinflussen. Für den Aufbau dieses mechanistischen Verständnisses wird den Firmen

im Gegenzug die Zulassung flexiblerer Prozesse in Aussicht gestellt.

Um über die Möglichkeiten von DoE und empirischen Korrelationen hinausgehend das im

Rahmen von QbD erforderliche Prozessverständnis aufzubauen, steht der Einsatz einer

Hochdurchsatz-Prozessentwicklung (HTPD) und einer Prozessentwicklung basierend auf

mechanistischen Modellen im Raum. Beide Technologien werden derzeit meist unabhän-

gig voneinander eingesetzt, obwohl es offensichtliche synergistische Effekte gibt. HTPD

bezieht sich auf den Dreiklang aus Miniaturisierung, Automation und Parallelisierung von

experimentellen Abläufen. HTPD hat seinen Weg in die Industrie gefunden und ist mitt-

lerweile ein fester Bestandteil im Methodenportfolio für erste Screening-Experimente, wie

z.B. die Auswahl von Adsorbern oder von Salzen.

Aufgrund der technologischen Komplexität wird eine mechanistische Modellierung vor-

wiegend im akademischen Kontext eingesetzt. In Abgrenzung gegenüber statistischen Mo-

dellen, wie DoE oder der alleinigen Erhöhung der Menge an Daten im HTPD, basiert

mechanistische Modellierung auf zugrundeliegenden mechanistischen Prinzipien, wie z.B.

Diffusionsgesetzen.

Die mechanistische Modellierung umfasst eine fluide mobile Phase, die durch eine feste

stationäre Phase gepumpt wird. Die stationäre Phase besteht dabei aus porösen Adsor-

berpartikeln, um die Oberfläche zu vergrößern, welche über ihre Funktionalisierung für

die Adsorption verantwortlich ist. Die Kombination von verschiedenen Modellen erlaubt

sowohl die Berücksichtigung von Effekten die im interpartikulären Volumen auftreten, wie

z.B. Konvektion und axiale Dispersion und von Mechanismen die auf die poröse Struk-

tur der Partikel zurückzuführen sind (z.B. Film- und Porendiffusion). Eine Isothermen-

Gleichung wird genutzt um den Proteintransfer aus der flüssigen Phase auf die Oberfläche

des Adsorbers zu beschreiben.

In der ersten Publikation stellen wir die am Institut entwickelte Chromatographie Modellie-

rungssoftware ChromX vor und wie diese in einem Lehrumfeld eingesetzt werden kann. In

dem hier vorgestellten Bachelor-Praktikum wurde eine modellbasierte Prozessentwicklung

für einen einzelnen Chromatographie Schritt durchgeführt, um einen monoklonalen Anti-

körper aus einer Mischung aus drei Modellproteinen aufzureinigen. Die Software ChromX
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wurde in den folgenden Publikationen als Werkzeug für die modellbasierte Prozessentwick-

lung eingesetzt.

Eine modellbasierte Prozessentwicklung erfordert einen schnellen und zuverlässigen Weg

zur Bestimmung der zahlreichen Modellparameter. Diese Parameter teilen sich in solche

auf, welche die Säule beschreiben und solche die sich auf die einzelnen Proteine bezie-

hen. Die ionische Kapazität ist z.B. eine Säuleneigenschaft, welche die Konzentration von

Liganden auf der Oberfläche eines Ionentauschers beschreibt. Der traditionelle Weg zu

experimentellen Bestimmung der ionische Kapazität ist die Säure-Base-Titration. Einer

der Hauptnachteile diese Methode ist die Beeinträchtigung mancher industriell relevanter

Adsorber und die mangelnde Übertragbarkeit auf roboterbasierte Hochdurchsatzexperi-

mente. Um diese Einschränkungen zu umgehen, haben wir eine alternative Methode zur

Bestimmung der ionischen Kapazität entwickelt, die auf der Adsorption der natürlichen, im

UV Licht detektierbaren Aminosäure Histidin beruht. Die Methode stellen wir im zweiten

Artikel vor. Diese nicht-invasive, photometrische Methode kann sowohl in der konventio-

nellen Säulenchromatographie, als auch in roboterbasierten Hochdurchsatzexperimenten

eingesetzt werden. In der Folge ermöglicht dies die Kalibrierung von mechanistischen Chro-

matographiemodellen, basierend auf verschiedenen experimentellen Systemen und eröffnet

so den Weg zu Hybridansätzen aus HTPD und mechanistischer Modellierung. Zusätzlich

ermöglicht die Methode die Bestimmung der Adsorbervolumen in der sog. batch Chroma-

tographie und verbessert somit deren Datenqualität.

Die proteinbezogenen Parameter in der mechanistischen Modellierung werden in der Regel

mittels Schätzungen basierend auf experimentellen Daten und von Peakfitting bestimmt.

Diese Parameter beschreiben z.B. die Anzahl an Ladungs-Patchen die ein Protein besitzt.

Bisher werden die Experimente für die Parameterschätzung meist nach persönlichen Er-

fahrungen und Daumenregeln geplant. Im dritten Manuskript stellen wir eine Methode

namens Optimal Experimental Design (OED) vor. Diese ist ein zentraler Bestandteil ei-

nes ausgereifteren Vorgehens zur Planung von Experimenten. OED erlaubt die nüchterne

Bestimmung eines nächsten Experimentes, basierend auf einer Maximierung des Informa-

tionsgehaltes dieses Experimentes.

Chromatographie Prozesse werden meist über im Flussweg befindliche UV Detektoren

überwacht und kontrolliert. Da die mechanistische Chromatographiemodellierung auf mo-

laren bzw. Massenkonzentrationen beruht, ist eine Sensorkalibrierung erforderlich, um

die UV Signale zu konvertieren. Weiterhin müssen die molaren Konzentrationen in der

Prozesslösung bekannt sein. Die Erstellung solcher Kalibrierungen und die Untersuchung

der Prozesslösung ist in Folge der zahlreichen Komponenten in einem industriellen Pro-

duktionsprozess eine große Herausforderung und daher zumindest in der Frühphase der

Prozessentwicklung nicht vorhanden. Im vierten Artikel stellen wir einen universellen An-

satz vor, die Parameter einer Sensorkalibrierung von dem Minimierungsproblem in die

Isothermen-Gleichung zu verschieben. Dies ermöglicht eine Modellkalibrierung basierend

auf UV Signalen anstelle von molaren Konzentrationen.

Der Einsatz von HTPD in der Prozessentwicklung stellt eine große Herausforderung an den

Probendurchsatz einer nachgelagerten Analytik dar. Im fünften Artikel untersuchen wir

die Möglichkeiten einer nicht-invasiven analytischen Methode, die auf den Unterschieden

in den Proteinspektren und einer multivariaten Datenanalyse beruht, einen Limitierung

der HTPD aufgrund der Analytik zu verhindern. Der vorgestellte Ansatz ermöglicht die
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integrierte Aufnahme von Multikomponenten batch Isothermen auf einem Pipettierro-

boter. Das beobachtete kompetitive Bindungsverhalten konnte dabei basierend auf einer

mechanistischen Modellierung erklärt werden.

Die beiden letzten Manuskripte beschäftigen sich mit angewandten Prozessoptimierungs-

Fallstudien. Im sechsten Manuskript wird eine klassische DoE basierte und eine modellba-

sierte Prozessentwicklung miteinander verglichen. Die Untersuchung erfolgt dabei anhand

der Reinigung eines monoklonalen Antikörpers aus einem industriellen Produktstrom. Der

Kationentauscher soll dabei Spezies mit größerem, als auch kleinerem Molekulargewicht

erfassen. In dem experimentellen Ansatz wird eine lineare Gradientenelution, 5 Stufene-

lutionen und die entsprechenden Fraktionsanalytiken (SEC) genutzt. Im modellbasierten

Ansatz erfolgt die Kalibrierung auf Grundlage des Gradienten, zweier Stufen und der Frak-

tionsdaten. Der Prozess wurde mit beiden Methoden hinsichtlich einer Zielfunktion beste-

hend aus einer Monomer Reinheit von mindestens 90%, einer Ausbeute von mindestens

80% und einem maximalen Fraktionsvolumen von 5 Säulenvolumen (Einschränkung der

technischen Infrastruktur) optimiert. Beide Ansätze führten zu optimalen Stufenelutionen

im Bereich von 200 bis 210mM Salz. Somit konnte gezeigt werden dass die mechanistische

Modellierung eine Alternative oder sogar ein Ersatz für eine experimentelle Prozessent-

wicklung sein kann.

Die vorherige Arbeit beschränkte sich auf einen eine Säule umfassenden Prozess. Indus-

trielle Reinigungsprozesse bestehen jedoch meist auf mehreren solchen Operationen, die

nacheinander angeordnet sind. Die Optimierung solcher Mehr-Säulen-Prozesse wird in der

Regel nacheinander durchgeführt, um die experimentelle Komplexität gering zu halten.

Nichtsdestotrotz wird vermutet, dass die konzertierte Optimierung von aufeinanderfol-

genden Chromatograpahien Vorteile hinsichtlich der Identifikation eines globalen Prozes-

soptimums birgt, anstelle des Auffindens von zwei Einzeloptima. Im siebten Manuskript

kalibrierten wir ein mechanistisches Modell für einen CEX und einen AEX und eine Mi-

schung aus drei Modellproteinen. Zuerst optimierten wir die beiden Prozessfließschema-

ta (CEX→AEX und AEX→CEX) in einem konzertierten Ansatz. Hierbei wird nur die

Reinheit, Ausbeute und Konzentration in der letzten Säule ausgewertet. Die Kombina-

tion CEX→AEX zeigte sich der anderen Alternative überlegen. Um die Relevanz der

konzertierten Optimierung zu untersuchen, wiederholten wir die Optimierung des gleiches

Prozessschemas, basierend auf einer squentiellen Optimierung der beiden Säulen. Bei

einer reinen Betrachtung des Zwischenergebnissen zwischen den beiden Säulen, zeigt sich

die sequenzielle Optimierung im Vorteil. Das insgesamt überlegende Prozessoptimum wird

hingegen in dem konzertierten Ansatz gefunden.



Abstract

Biopharmaceutical proteins constitute one of the fastest growing classes of drugs. 14 out of

37 drugs approved by the US Food and Drug Administration (FDA) in 2012 are biophar-

maceuticals. Within the production process of biopharmaceutical proteins, subsequently

to the biological synthesis of the protein using cellular systems and genetic engineering

technologies, the target protein has to be purified out of the very heterogenous cultivation

media. This downstream processing has to cope with an extreme wide range of impurities,

such as cells and cell fragments, a manifold mixture of host cell proteins, highly charged

nucleic acids, and undesired product variants.

The shortening of industrial downstream process development (DSP) timelines is closely

related to the standardization of the development workflows. For the purification of mon-

oclonal antibodies so called platform processes have been derived from historical process

knowledge. Typical mAb platform downstream processes start with a solid-liquid separa-

tion to deplete solid impurities from the product feed stream and to prevent a deterioration

of the subsequent unit operations. The particle-free product feed stream is directed to an

affinity protein A chromatography, which is capable to bind the mAb selectively from the

feed without further preconditioning. Most of the host cell proteins (HCP) and the resid-

ual DNA do not adsorb to the ligand and flow-through the column during the loading or a

subsequent wash step. The elution of the mAb is triggered by a decrease of the pH value,

inducing a charge repulsion effect. The collected acidic product pool is commonly directed

to a virus inactivation procedure, to guarantee viral safety. Afterwards, a cation exchange

chromatography (CEX) is commonly operated in bind and elute mode to remove product-

related impurities such as aggregates and fragments. In most cases, platform processes

contain a third chromatographic operation. This third chromatography is quite flexible

compared to the previously mentioned process flow-sheet. As a final polishing chromatog-

raphy an anion exchange chromatography (AEX) operated in flow-through mode is a

frequently used option. In a flow-through operation, the product does not adsorb to the

AEX and flows freely through the column, whereas residual contaminants adsorb to the

AEX. Finally, a virus filtration is used to guarantee viral safety and an ultra-/diafiltration

is used to exchange the matrix against a buffer system which is suitable for the application

in humans or the subsequent formulation process.

The current status of industrial downstream process development for highly conserved

classes of biopharmaceuticals such as antibodies, is dominated by the adaptation these

platform processes to new molecules. In most cases this is carried out by Design of Exper-

iments (DoE) approaches, which rely on a statistically motivated experimental planning

and the fitting of empirical correlations, such as linear or quadratic functions. To a great
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extend, the process development effort is attributed to the chromatographic operations,

due to the numerous operational parameters. Therefore, we will focus on chromatographic

processes in the following.

Under the concept of Quality by Design (QbD), the regulatory agencies proposed a new

concept of process development. Before, the filing of a production process was predomi-

nantly based on narrow parameter ranges and a control strategy to detect an operation

outside the filed process ranges. In case of an “out of specification” operation, the pro-

duction lot was rejected. QbD means the establishment of a more detailed mechanistic

process understanding. This comprises the understanding, how operational parameters of

the production process, influences the quality of the final product. By providing this kind

of mechanistic understanding, the filing of more flexible process will be possible.

Exceeding the capabilities of DoE and empirical correlations, high-throughput process de-

velopment (HTPD) and process development based on mechanistic models are two tech-

nologies which are considered to provide the process understanding requested by the QbD

concept. Both technologies are commonly used independently from each other, despite

their synergistic potential. HTPD refers to the triad of miniaturization, automation,

parallelization of experimental workflows and has made its way into industries standard

repertoire for initial experimental screenings, such as the discrimination between different

adsorbers or types of salt.

Due to its technological complexity, mechanistic modeling has been predominantly used in

the academic context for a long time. In contrast to statistical modeling approaches such

as DoE or the sole increase of data in HTPD, mechanistic modeling is based on underlying

mechanistic principles, such as diffusion laws.

Mechanistic modeling of chromatography accounts for the fluid mobile phase that is

pumped through a solid stationary phase. The stationary phase consists of porous ad-

sorber beads, to increase the adsorber surface, which is functionalized to modulate the

adsorption process. The combination of different models, allows for the consideration of

effects occurring in the volume between the particles, such as convection and axial dis-

persion, or mechanisms arising from the porous structure of the stationary phase, such as

film or pore diffusion. Finally, an isotherm equation is used to describe the transition of

protein species from the mobile phase onto the adsorber surface.

In the 1st publication, we presented the in-house developed chromatography modeling

software ChromX and its capabilities in academic teaching. The undergraduate students

laboratory course presented in this article focused on the model-based optimization of a

single column chromatography process, to purify a monoclonal antibody from an artificial

three component mixture. The software ChromX was utilized in the following publications

as a tool for model-based process development.

Model-based process development requires a rapid and reliable way to determine the nu-

merous model parameters. These parameters can be divided in column-related properties

and protein-related ones. The ionic capacity is a column-related properties, which de-

scribes the concentration of the ligands on the surface of an ion exchange adsorber. The

traditional method to determine the ionic capacity is an acid-base titration. One of the

major drawbacks of this method is the deterioration of some kinds of industrial-relevant

adsorbers and the impossibility to transfer the method to high-throughput experiments on
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robotic work stations. To overcome the constraints of acid-base titration, we developed an

alternative method to determine the ionic capacity based on the adsorption of the natural,

uv-detectable amino acid histidine. The method is presented in the 2nd paper. This non-

invasive, photometric method can be used in conventional column chromatography and in

robotic high-throughput experiments. Therefore, it enables the calibration of mechanistic

models for chromatography in various experimental systems and it opens up the way for a

hybrid approach of robotic high-throughput chromatography and mechanistic chromatog-

raphy modeling. In addition, it enables the reliable determination of the exact adsorber

volumes in batch chromatography and improves the data quality in batch chromatography.

The protein-related parameters for mechanistic modeling are commonly estimated based

on experimental data and a peak fitting approach. These parameter describe for example

the number of charged patches of a protein. The way of generating the experimental

data for parameter estimation is predominantly based on personal experience and rules of

thumb. In the 3rd manuscript, we present a method called Optimal Experimental Design

(OED), which is a central part of a more sophisticated way of estimating model parameters.

OED enables the rational determination of the experiment which should be carried out

next, based on a maximization of the added information content of this experiment.

Chromatographic process monitoring and control is commonly based on in-line uv detec-

tors. Since mechanistic chromatography modeling requires molar or mass concentrations,

a sensor calibration for the conversion of uv signals to molar concentrations and the molar

composition of the feed solution are a prerequisite for model-based process development.

The establishment of sensor calibrations for the numerous species in an industrial purifica-

tion challenge and the analysis of the exact feed composition can be quite time consuming

and therefore it is unusual to establish these calibrations in the early stages of industrial

process development. In the 4th article, we present a generic approach to shift the param-

eters for the sensor calibrations from the minimization problem to the isotherm equation.

This enables a model calibration based on uv signals instead of molar concentrations.

The integration of high-throughput experiments in the purification process development

can be quite challenging with respect to the demands on the throughput for the subsequent

analytical methods. In the 5th article, we evaluated the capabilities of a non-invasive ana-

lytical method based on the different uv spectra of proteins and multivariate statistics, to

prevent an analytical bottleneck in high-throughput process development. The presented

analytical approach enables the integrated generation of multi-component batch isotherms

on a robotic work station. The observed competitive binding behavior could be explained

based on a mechanistic modeling approach.

The last two manuscripts cover two types of process optimization case studies. The 6th

manuscript presents a study comparing traditional DoE-driven process development and

process development based on mechanistic modeling. This work in focusing on the purifi-

cation of a monoclonal antibody (mAb) out of an industrial feed solution containing two

higher molecular and one lower molecular species, using cation exchange chromatography.

The experimental approach comprise a linear salt gradient elution and 5 step elutions with

different salt concentrations, complemented with a peak fraction analysis using analyti-

cal size exclusion chromatography. In the model-based optimization approach parameters

were estimated from a linear salt gradient experiment, two salt step elutions, and the

corresponding fraction analysis data. The process was optimized with the objective of a
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monomer purity of at least 99%, a yield of at least 80%, and a maximal fraction volume of

5 column volumes due to constrains in the technical infrastructure, using the experimental

and the model-based approach. Both optimization approaches result in steps elutions of

200 to 210mM salt, meeting the three constrains. Therefore, it could be demonstrated

that mechanistic modeling is a suitable alternative or complement for experimental driven

process development.

The previously mentioned work focused on single column purification processes. However,

industrial downstream processes commonly consist of several chromatographic operations,

which are arranged in a sequential manner. The optimization of these multi-column pro-

cesses is commonly carried out one after each other, to keep the experimental complexity

manageable. Nevertheless, the concerted optimization of two consecutive chromatogra-

phies is supposed to be beneficial, e.g. through the identification of an overall process

optimum, rather than two single chromatography optima. In the 7th manuscript, we

calibrated a mechanistic chromatography model for an artificial three component protein

mixture on a cation (CEX) and an anion exchange adsorber (AEX). First, we optimized

the two possible process flowsheets (CEX→AEX and AEX→CEX) using a concerted opti-

mization approach. For this, the purity, recovery, and concentration derived from the last

column were evaluated based on an objective function. The CEX→AEX flowsheet out-

performs the alternative process flowsheet. To evaluate the impact of a concerted process

optimization, we repeated the optimization of the CEX→AEX flowsheet, optimizing the

columns one after each other. This sequential optimization approach showed a superior

intermediate result after the first column, but resulted in an inferior overall performance.
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1 | Introduction

Biopharmaceuticals constitute one of the fastest growing classes of drugs. 14 out of 37

drugs approved by the US Food and Drug Administration (FDA) in 2012 are biophar-

maceuticals [128]. The term biopharmaceuticals can refer to proteins (e.g. antibodies

or insulin), nucleic acids (to be used in future gene therapies), or whole cells for cell-

therapies. This work will focus on biopharmaceuticals belonging to the group of proteins,

with a special attention to monoclonal antibodies (mAbs).

In contrast to chemically produced molecules, biopharmaceutical proteins are produced

by cellular systems, due to their molecular complexity. These expression systems can be

simple microbial systems such as E.coli or S.cerevisiae, or even more complex systems

such as plants or mammalian cells [103; 138; 169]. Using genetic engineering technologies,

these expression systems are empowered to produce the desired protein [107].

The production process of biopharmaceuticals starts with the cultivation of these cells,

called Upstream Processing (USP) [25]. During the USP, the cells express the protein in

huge amounts and transport them to an intracelluar compartment in case of most bacterial

systems, or secrete them into the extracelluar cultivation media for most mammalian

systems. USP ends up with a very heterogeneous mixture of cultivation media components,

the cellular expression system and its metabolites, proteins and nucleic acids related to the

expression system, and the biopharmaceutical protein in its functional conformation and

undesired product variants [40; 99]. The contaminants related to the expression system

or the production process are called process-related impurities, those related to unwanted

product variants are called product-related impurities. The biopharmaceutical protein

has to be purified out of this crude product feed stream in the so called Downstream

Processing. The following section will focus on the Downstream Processing of monoclonal

antibodies.

1.1 Downstream Process Development

The shortening of industrial Downstream Process Development (DSP) timelines is closely

related to the standardization of the development workflows. For the purification of mon-

oclonal antibodies so called platform processes have been derived from historical process

knowledge [39; 100; 145]. Different mAbs have similar physico-chemical properties as a

consequence of their similar molecular structure. This kind of framework protein sequence

enables the implementation of a platform process which can be easily adapted to different

mAbs.

1
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Typical mAb platform downstream processes start with a solid-liquid separation to de-

plete solid impurities from the product feed stream and to prevent a deterioration of the

subsequent unit operations. These solid impurities are attributed to the cellular expression

system and cell fragments (debris) due to cell disruption within the cultivation process.

The removal of cells is commonly carried out via centrifugation, followed by a depth filtra-

tion to remove the remaining debris [100]. The particle-free product feed stream is directed

to an affinity protein A chromatography. The protein A chromatography is capable to bind

the mAb selectively from the feed without further preconditioning [39]. The adsorption is

attributed to the protein A ligand which is originally derived from Staphylococcus aureus

[114]. Most of the host cell proteins (HCP) and the residual DNA do not adsorb to the

ligand and flow-through the column during the loading or a subsequent wash step. HCP

remaining after the protein A chromatography are frequently attributed to an interaction

with the adsorbed mAb and to a lesser extend with the ligand itself [98]. The elution of

the mAb is triggered by a decrease of the pH value, inducing a charge repulsion effect.

The collected acidic product pool is commonly directed to a virus inactivation procedure,

to guarantee viral safety. Viral safety is a critical concern of biopharmaceutical production

processes and addressed by the regulatory agencies [73]. Viruses might be introduced to

the product feed stream by the cellular expression system, by process solutions containing

for example animal derived components, or by employees during the production process.

To ensure the absence of viruses in the final product, two dedicated processes to inactivate

viruses and to remove viruses have to be present in the purification scheme. In addition,

other purification steps not primarily intended to remove viruses have to be evaluated with

respect to their capability to remove possible apparent viruses. In a mAb platform process

the virus inactivation is commonly implemented as a low pH incubation process. Due to

the acidity of the protein A eluate, a subsequent low pH hold is reasonable [39; 100; 145].

After the low pH incubation the pH value of the product feed stream is conditioned to a

moderate pH which is suitable for storage and the subsequent unit operations.

Following the virus inactivation, a cation exchange chromatography (CEX) is commonly

operated in bind and elute mode to remove product-related impurities such as aggregates

and fragments [39]. Aggregates commonly adsorb more strongly to the CEX adsorber due

to their increased number of charges and the increased molecular size. In addition, CEX

is capable to concentrate the product feed stream, thereby reducing the demands for the

subsequent facility sizing [49].

In most cases, platform processes contain a third chromatographic operation. This third

chromatography is quite flexible compared to the previously mentioned process flow-sheet.

As a final polishing chromatography an anion exchange chromatography (AEX) operated

in flow-through mode is a frequently used option. In a flow-through operation, the product

does not adsorb to the AEX and flows freely through the column, whereas residual con-

taminants adsorb to the AEX. The operation of the final chromatography in flow-through

mode provides the advantage, just to bind the remaining trace contaminants and not the

almost pure antibody. Therefore, the sizing of the column is less expensive [39].

As an alternative to AEX, hydrophobic interaction chromatography (HIC) [43; 155] or

combined interaction mechanisms called mixed-mode chromatography (MMC) [26; 43] are

possible. The use of membrane adsorbers instead of packed-bed chromatographic columns

is gaining increasingly relevance [135; 170].
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Finally, a virus filtration is used to guarantee viral safety [24] and an ultra-/diafiltration is

used to exchange the matrix against a buffer system which is suitable for the application

in humans or the subsequent formulation process.

To a great extend, these platform processes are fixed within a company and the adapta-

tion to new antibodies is standardized. For each unit operation a small number of process

parameters are adapted to the new molecule, such as the pH value, the elution salt concen-

tration, and the boundaries for the eluate collection in CEX [39]. This adaptation process

is commonly based on Design of Experiments (DoE) to maximize the information content,

while keeping the number of experiments fix [148; 152].

Platform processes solely exist for molecule classes which are highly conserved on a molec-

ular level. Therefore, for other molecule classes, DSP has to start to develop purification

processes from scratch, constituting a greater challenge with respect to a reduction of de-

velopment timelines. Similarly, the intensified development of antibody-derived molecules,

such as Fabs poses new challenges to the standardized DSP workflows [49]. Chemically

modified molecules such as antibody-drug-conjugates [130] require additional chemical re-

actions with specialized subsequent purification steps.

1.1.1 Regulatory Framework

Downstream process development (DSP) refers to the process of implementing purifica-

tion processes, which are capable to ensure a specified quality of pharmaceutical products.

The regulatory framework given by the regulatory agencies specifies these quality require-

ments of purification processes [76]. The regulatory agencies in the US, EU, and Japan

started a harmonization of their quality requirements and proposed a new approach to

develop processes under the term Quality by Design (QbD) [74; 75]. Previously, regula-

tion was predominantly based on a fixed process which had to be specified in detail and

analytical techniques to detect process deviations. An operation outside the filed process

specifications led inevitably to a rejection of the production lot.

Under the concept of QbD the regulatory agencies demand for the development of a de-

tailed mechanistic process understanding and granting the companies the permission to

file more flexible processes in return. The term mechanistic process understanding has

been specified by the regulatory agencies within their ICH guidelines [74]. The Quality

Target Product Profile (QTPP) specifies the characteristics of the product, to ensure the

intended quality, safety, and efficacy in the patient. The different characteristics specified

in the QTPP are evaluated concerning their criticality. The most critical attributes of

the product are classified as Critical Quality Attributes (CQA). Criticality includes the

potential impact on the patient safety, the probability of occurrence, and the probability

of detecting deviations of the CQA. Subsequently, process parameters or parameter com-

binations which influence the CQA have to be identified. These process parameters, are

called Critical Process Parameters (CPP). The term mechanistic process understanding

refers to the understanding of how CPP influence the CQA.
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1.2 High-throughput Process Development

High-throughput process development (HTPD) is one of the recent technologies that found

its way into biopharmaceutical DSP. HTPD refers to the triad of miniaturization, au-

tomation, parallelization of experimental workflows. The miniaturization of experimental

systems is of outstanding importance to be able to start process development in an ear-

lier stage of the product life cycle, when the amount of material is still limited. The

automation of the experimental workflows is essential to reduce labor intensive and prone

to error manual work. Automation in DSP is commonly achieved by the use of pipetting

robots, called liquid handling station. Beside of the automation, these systems allow for

the execution of numerous experiments in parallel, enabling the rapid generation of huge

amounts of experimental data.

In the following we will focus on HTPD of chromatographic processes, although other

topics such as solubility studies [166], protein folding studies [105], and aqueous extraction

methods [14] have been reported in literature.

The two most common techniques to chromatographic HTPD are batch chromatographic

experiments and the use of miniaturized robotic columns. Batch chromatography is com-

monly used for the initial parameter sceenings, due to the experimental throughput, the

experimental simplicity, and the low sample volume required. In batch chromatography,

adsorber volumes in the range of 6.8 to 50 µL per well [90] are filled into a 96 wells

plate. Based on this plates, three different types of batch chromatographic experiments

are commonly used in DSP. In batch adsorption isotherm experiments, different mobile

phase protein concentrations are incubated with the adsorber until equilibrium is reached.

The resulting adsorption isotherms give an insight into the strength of the adsorption and

the maximum binding capacity, with respect to the mobile phase conditions (e.g. pH,

salt concentration, or type) [88; 90; 120; 167]. Stopping the incubation of protein and

adsorber at several points in time, before the equilibrium is reached, provides batch ki-

netic data. These batch kinetics provide an insight into the adsorption rate and can give

a first guidance for the residence time in column chromatography [15; 31; 57]. Performing

one or several elution steps after the two before mentioned experimental types results in

a batch bind and elute experiment that gives an insight into both, the adsorption and

the desorption process. One of the critical concerns using batch chromatography is the

determination of the exact adsorber volume in batch chromatography. The pipetting of

the adsorber slurry is prone to error due to the rapid sedimentation of the particles and

the viscosity of the suspension. An overview of how to implement a slurry pipetting proce-

dure is given by Barker et. al [7]. Devices such as the MediaScout ResiQuot device (Atoll,

Weingarten, Germany), in which the adsorber is first forced into a stainless steal grid and

afterward transferred to the wells of a 96 well plate intend to prevent these prone to error

pipetting operations [67].

When using miniaturized chromatographic systems, there is always a trade-off between

experimental simplicity/throughput and experimental complexity/comparability to con-

ventional chromatographic formats. Batch chromatography is unable to cover effects aris-

ing from the fluid flow in a packed bed column or the different kind of diffusion effects

occurring in a column.

In the case, a higher degree of experimental complexity is necessary, miniaturized chro-

matographic columns (RoboColumns, Atoll, Weingarten, Germany) have been developed



1.3 Model-based Process Development 5

[167]. The basic concept of high-throughput column chromatography (HTCC) is to minia-

turize conventional chromatographic columns, to install them on a robotic work station,

and to carry out the fluid flow operations by linking a robotic liquid handling arm to the

column inlet. At the column outlet, the eluate can be collected drop-wise in 96 well plates.

Experiments to determine the dynamic binding capacity (DBC) from isocratic robotic

breakthrough experiments are technically straightforward and have been frequently pub-

lished, e.g. [167]. Susanto et al. [149] extended the simple experimental determination of

DBC based on HTCC by modeling of the robotic process. Baumgartner et al. [11] evalu-

ated the impact of mixed salts on the DBC in hydrophobic interaction HTCC. Summing

up, the full exploitation of HTPD can shorten the development timelines and increase the

amount of experimental data derived from a limited amount of sample.

1.3 Model-based Process Development

In contrast to statistical modeling approaches such as DoE or the sole increase of data

in HTPD, this section will focus on modeling based on underlying mechanistic princi-

ples. Mechanistic modeling of chromatography considers effects arising from the fluid flow

through a packed bed column, the porosity of the adsorbent, and the diverse interactions

between proteins and the adsorber surface. The predictive capabilities of statistical mod-

eling and DoE are restricted to the interpolation withing the calibrated parameter range

and strongly depend on the complexity of the utilized statistical model (e.g. linear or

quadratic interpolations). Mechanistic modeling is not restricted by the calibrated param-

eter range [127]. Even process parameters outside the calibrated range can be predicted,

assuming no additional effects arising from the operation outside the calibrated range. A

detailed review of mechanistic modeling of chromatography is given in the textbooks of

Guiochon and Schmidt-Traub [55; 141].

A chromatographic separation process is characterized by a fluid mobile phase that is

pumped through a solid stationary phase. The stationary phase consists of porous ad-

sorber beads, to increase the adsorber surface, which is functionalized to modulate the

adsorption process. The porosities of the packing can be characterized by tracer injec-

tions. The total porosity εTot, the column porosity εCol, and the adsorber bead porosity

εBead can be calculated from the retention volume of a non-interacting pore-penetrating

tracer Vtracer,small, a non-interacting non-pore-penetrating tracer Vtracer,large, and the ge-

ometric column volume CV :

εTot =
Vtracer,small

CV

εCol =
Vtracer,large

CV

εBead =
Vtracer,small − Vtracer,large

CV − Vtracer,large

The resulting volumes within the chromatographic column are illustrated in Fig.1.1a-c. On

a molecular level different effects take place in the different volumes in the chromatographic

column. These effect will be explained in the next sections.
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Figure 1.1: Structure of packed beds (a-c) and adsorption process (d). The total column
volume is divided into the volume of the stationary phase (a), the volume of mobile phase
in the pore system (b), and the interstitial volume of the mobile phase (c). Molecules are
transported through the interstitial volume (d.1), pass a boundary layer (also referred to
as film) around the beads (d.2), diffuse within the pore system (d.3), and adsorb onto the

surface (d.4).[59]

1.3.1 Column Model

The column model describes the effects withing the interstitial volume of the mobile phase

on a macroscopic level. The equations describing these effects are of convection-diffusion-

reaction type, whereas the reaction is the mass transfer out of the interstitial mobile phase

volume. For reasons on simplicity and to ensure fast computation, the three dimensional

column is reduced to one dimension along the longitudinal axis of the column. The model

describes the change of the protein concentration c over the time t at a longitudinal position

x in the column. The simplest column model assumes a direct contact of the interstitial

volume with the adsorber surface, neglecting the pore volume. This equilibrium dispersive

model (EDM) is shown in Eq. (1.1). The flow velocity of the mobile phase u and the total

porosity of the volume εTot form the convection term. The apparent diffusion coefficient

Dapp covers all axial diffusion effects which lead to a peak broadening. Due to the direct

coupling of interstitial volume and the adsorber surface, the change in the adsorbed protein

concentration q is scaled by 1−εTot
εTot

.

∂c

∂t
(x, t) = −u(t)

εTot

∂c

∂x
(x, t)︸ ︷︷ ︸

Convection

+Dapp
∂2c

∂x2
(x, t)︸ ︷︷ ︸

Diffusion

− 1− εTot
εTot

∂q

∂t
(x, t)︸ ︷︷ ︸

Mass transfer

(1.1)

To introduce a higher level of complexity to the column model, a pore volume with a pro-

tein concentration cp can be introduced between the interstitial volume and the adsorber

surface. This transport dispersive model (TDM) is depict in Eq. (1.2). The apparent

diffusion coefficient Dapp from the EDM reduces to an axial dispersion coefficient Dax

covering the peak broadening effect occurring in the interstitial volume. The peak broad-

ening effects arising from the mass transfer from the interstitial volume to the pore volume

are covered by an effective mass transfer coefficient keff . The mass transfer is scaled with
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1−εCol
εCol

3
rp

with rp being the radius of the adsorber bead. EDM and TDM are complemented

with Danckwerts boundary condition at the column in and outlet [34].

∂c

∂t
(x, t) = −u(t)

εCol

∂c

∂x
(x, t)︸ ︷︷ ︸

Convection

+Dax
∂2c

∂x2
(x, t)︸ ︷︷ ︸

Diffusion

− 1− εCol
εCol

3

rp
keff (c (x, t)− cp (x, t))︸ ︷︷ ︸
Mass transfer

(1.2)

1.3.2 Pore Model

The TDM introduces a protein concentration cp within the pore volume. A simple lumped

rate pore mode (Eq. (1.3)) assumes a uniform concentration within the pore. The change

of the protein concentration in the pore cp results from the mass transition from the

interstitial volume to the pore and from the mass within the pore adsorbing to the surface

of the adsorber.

∂cp
∂t

(x, t) =
3

rp

keff
εBead

(c (x, t)− cp (x, t))︸ ︷︷ ︸
Interstitial↔Pore

− 1− εBead
εBead

∂q

∂t
(x, t)︸ ︷︷ ︸

Pore↔Adsorption

(1.3)

The more complex general rate model (GRM) introduces a radial dimension r of the

adsorber particle. The GRM is depict in Eqs. 1.4 and 1.5. The effective mass transfer

coefficient keff from the lumped rate model is splitted in a film transfer coefficient kfilm
referring to the mass transfer over the boundary layer and a pore diffusion coefficient Dpore

covering the diffusion along the radial pore position within the bead.

∂cp
∂t

(x, r, t) = Dpore

(
∂2c

∂r2
+

2

r

∂c

∂r

)
− 1− εBead

εBead

∂q

∂t
(x, r, t) (1.4)

∂cp
∂r

(x, rp, t) =
1

Dpore

kfilm
εBead

(c(x, t)− cp (x, rp, t)) . (1.5)

1.3.3 Adsorption Model

The adsorption model describes the mass transition from the pore cp onto the surface of

the adsorber q. The steric mass action (SMA) isotherm [23] is frequently used for ion

exchange chromatography. The isotherm assumes that a macro molecule exhibiting ν

charged patches, adsorbes to the ion exchange resin thereby replacing an equal amount

of counter ions from the adsorber surface. The adsorber is characterized by a ligand con-

centration Λ, called the total ionic capacity. The equilibrium of the adsorption desorption

process is captured by a coefficient keq = kads · k−1
des and the velocity of the reaction by the

coefficient kkin = k−1
des. The macro molecule adsorbed to the surface replaces ν counter-ions
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and shields σ ligands by steric effects. This steric shielding of binding sites reduces the

apparent binding capacity of the adsorber in the non-linear range of the isotherm. Oper-

ation in the non-linear range of the isotherm is common for preparative chromatography.

The SMA isotherm for n proteins is shown in Eq. (1.6) and the corresponding equation

for the replaced salt ions is given in Eq. (1.7).

kkin,i
∂qi
∂t

(x, t) = keq,i

Λ−
n∑
j=1

(νj + σj) qj (x, t)

νi

︸ ︷︷ ︸
q
νi
salt

cp,i (x, t)− cνip,salt (x, t) qi (x, t) (1.6)

qsalt (x, t) = Λ−
n∑
j=1

νjqj (x, t) . (1.7)
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1.4 Research Proposal

The current status of industrial downstream process development (DSP) for highly con-

served classes of biopharmaceuticals such as antibodies, is dominated by platform technol-

ogy. The way of adapting these generic processes to new molecules is standardized to the

greatest possible extend, to shorten the development timelines and to ensure a predictable

expenditure of time. In most cases the adaptation is carried out by Design of Experiments

(DoE) approaches, which rely on a statistically motivated experimental planning and the

fitting of empirical correlations, such as linear or quadratic functions. Under the concept

of Quality by Design (QbD), the regulatory agencies proposed a new concept of process de-

velopment. Before, the filing of a production process was predominantly based on narrow

parameter ranges and a control strategy to detect an operation outside the filed process

ranges. In case of an “out of specification” operation, the production lot was rejected.

Under the QbD concept, the regulatory agencies propose the establishment of a more

detailed mechanistic process understanding. This comprises the understanding, how op-

erational parameters of the production process, influences the quality of the final product.

By providing this kind of mechanistic understanding, the filing of more flexible process

will be possible.

Exceeding the capabilities of DoE and empirical correlations, high-throughput process de-

velopment (HTPD) and process development based on mechanistic models are two tech-

nologies which are considered to provide the process understanding requested by the QbD

concept. Both technologies are commonly used independently from each other, despite

their synergistic potential. HTPD has made its way into industries standard repertoire

for initial experimental screenings, such as the discrimination between different adsor-

bers or types of salt. Due to its technological complexity, mechanistic modeling has been

predominantly used in the academic context for a long time.

The objectives of this thesis were the identification of the major obstacles for process de-

velopment based on mechanistic modeling and the development of additional techniques

to overcome them. Particular attention was given to the synergistic potential of modeling

and HTPD. To pave the way for model-based process development, we lowered the first

hurdle for this new technology by the introduction of a modeling technology package. In

addition to the software ChromX, this technology package addressed several challenges.

Model-based process development requires a rapid and reliable way to determine the model

parameters. These parameters can be divided in column-related properties and protein-

related ones. The former method to determine the column-related ionic capacity based on

an acid-base titration was prone to deteriorate some chromatographic adsorbers. There-

fore, we had to develop a new method to overcome these limitations.

Due to the lack of pure protein samples in industrial process development scenarios,

protein-specific model parameters are commonly estimated from experimental data. The

generation of these data was based on experience and rules of thumb. We implemented

and evaluated a model-based concept of planning experiments.

In most industrial and academic purification tasks, the exact molar concentrations in

the product feed stream are unknown or they are not accessible with reasonable effort.

Mechanistic modeling is traditionally based on known molar concentration.
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To overcome this limitation, we had to develop an approach to calibrate mechanistic

models based on commonly available uv signals instead of molar concentrations.

To demonstrate the capabilities of mechanistic modeling in comparison to conventional

DoE approaches, we had to carry out a comparative study on these technologies.

Most academic modeling case studies focused on single column processes, although indus-

trial purification schemes are commonly based on multiple chromatographic operations.

Therefore we had to extend the commonly employed single column modeling to the multi-

column optimization of a complete process flow sheet.

HTPD and mechanistic modeling are commonly used separately. Batch chromatography

is frequently used for initial parameter or adsorber screenings. The reason for this restric-

tion to initial screenings is the complexity of predicting column chromatography based on

batch data, the problem of adsorber volume definition in batch experiments, and the an-

alytical bottleneck that may arise from HTPD. To resolve these limitations, we addressed

the problem of adsorber volume definition in batch experiments by the development of a

method to quantify the adsorber in batch chromatography and the adaptation of a pho-

tometric method to analyse multi-protein mixtures in batch experiments. The challenge

of predicting column chromatography based on batch data, was addressed by the use of

mechanistic models.
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1.5 Outline

1.5.1 Building Blocks

1. Simulating and Optimizing Preparative Protein Chromatography with

ChromX

T. Hahn, T. Huuk, V. Heuveline, J. Hubbuch

In this publication, the in-house developed chromatography modeling software ChromX

and its capabilities in academic teaching are presented. ChromX offers various mechanistic

models for the macroscopic mass transport through the column, the diffusion processes

within the different volumes within the column, and several adsorption models. The

undergraduate students laboratory course presented in this article focused on the model-

based optimization of a single column chromatography process, to purify a monoclonal

antibody from an artificial three component mixture. The course covered the design and

execution of the laboratory experiments to calibrate the models, the estimation of the

isotherm parameters, and the model-based process optimization.

The software ChromX was utilized in the following publication as a tool for model-based

process development.

Article accepted in Journal of Chemical Education.

2. A Versatile Noninvasive Method for Adsorber Quantification in Batch

and Column Chromatography Based on the Ionic Capacity

T. Huuk, T. Briskot, T. Hahn, J. Hubbuch

In this paper, a new method for the determination of the ionic capacity Λ is introduced.

The ionic capacity is a key characteristic of ion-exchange chromatographic adsorbers, which

quantifies the amount of ligands per adsorber volume. The ionic capacity is a column pa-

rameter which is required within the commonly used steric mass action isotherm. The

traditional method to determine the ionic capacity experimentally is an acid-base titra-

tion (AcB). AcB requires an inline conductivity probe and is therefore not applicable for

robotic high-throughput chromatography. In addition, AcB deteriorates the packing of

some chromatographic adsorbers, such as Poros adsorbers. Poros is a popular chromato-

graphic adsorber, used in several of the following industrial case studies. To overcome the

constraints of AcB, we developed an alternative method to determine the ionic capacity

based on the adsorption of the natural, uv-detectable amino acid histidine. This non-

invasive, photometric method can be used in conventional column chromatography and in

robotic high-throughput experiments. Therefore, it enables the calibration of mechanistic

models for chromatography in various experimental scales and it opens up the way for a

hybrid approach of robotic high-throughput chromatography and mechanistic chromatog-

raphy modeling. In addition, it enables the reliable determination of the exact adsorber

volumes in batch chromatography and improves the data quality in batch chromatography.

Article submitted to Biotechnology Progress.
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3. Optimal Experimental Design for the Determination of Isotherm Param-

eters of Glucose Oxidase using Mixed Mode Column Chromatography

T. Hahn, G. Wang, T. Huuk, V. Heuveline, J. Hubbuch

With the intensified utilization of mechanistic modeling in industrial process development

scenarios and the advancing complexity of mechanistic models, the procedure of how to

determine model parameter gains more and more attention. This article deals with a

method called Optimal Experimental Design (OED), which is a central part of a more

sophisticated way of estimating model parameters. Currently model parameters are com-

monly estimated based on experimental data, which are generated in a trial end error way

or by rules of thumb. OED enables the rational determination of the experiment which

should be carried out next, based on a maximization of the added information content of

this experiment. We demonstrate the capabilities of OED based on a case study using a

single model protein and three different adsorbers. The anion exchange adsorber Capto

Q and its hydrophobic counterpart Capto phenyl represent single interaction mechanism

adsorbers. The ligand of the mixed-mode adsorber Capto adhere is a combination of the

two single interaction adsorbers.

Article in preparation.

4. UV Absorption-based Inverse Modelling of Protein Chromatography

T. Hahn, P. Baumann, T. Huuk, V. Heuveline, J. Hubbuch

Chromatographic process monitoring and control is commonly based on in-line uv detec-

tors. Since mechanistic chromatography modeling requires molar or mass concentrations,

a sensor calibration for the conversion of uv signals to molar concentrations and the molar

composition of the feed solution are a prerequisite for model-based process development.

The establishment of sensor calibrations for the numerous present species and the analysis

of the exact feed composition can be quite time consuming and therefore it is unusual to

establish these calibrations in the early stages of industrial process development.

In this article, we present a generic approach to shift the parameters for the sensor cali-

brations from the minimization problem to the isotherm equation. This enables a model

calibration based on uv signals instead of molar concentrations. The approach is exempli-

fied for an anion exchange chromatography using a modified steric mass action isotherm

and an E.coli feed containing 11 lumped impurities beside to the target protein.

Article accepted in Engineering in Life Sciences.
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5. Deconvolution of High-throughput Multi-component Isotherms Using Mul-

tivariate Data Analysis of Protein Spectra

P. Baumann*, T. Hahn*, T. Huuk*, A. Osberghaus, J. Hubbuch (* contributed equally)

The integration of high-throughput experiments in the purification process development

can be quite challenging with respect to the demands on the throughput for the subse-

quent analytical methods. In this article, we evaluated the capabilities of a non-invasive

analytical method based on the different uv spectra of proteins and multivariate statistics,

to prevent an analytical bottleneck in high-throughput process development. As a case

study we prepared batch adsorption isotherms with the cation exchanger SP Sepharose

FF and two model proteins at several salt concentrations and pH values. The presented

analytical approach enables the integrated generation of multi-component batch isotherms

on a robotic work station. The observed competitive binding behavior is in agreement with

a fitted steric mass action model. Therefore, the presented method opens up the possi-

bility for future hybrid approaches, combining high-throughput and model-based process

development technologies.

Article accepted in Engineering in Life Sciences.

1.5.2 Process Case Studies

6. Calibration-free Inverse Modeling of Ion-exchange Chromatography in

Industrial Antibody Purification

T. Hahn, T. Huuk, A. Osberghaus, K. Doninger, S. Nath S. Hepbildikler, V. Heuveline, J.

Hubbuch

In this case study, the purification of a monoclonal antibody (mAb) out of an industrial

feed solution containing two higher molecular and one lower molecular species, using cation

exchange chromatography was optimized based on a traditional experimental driven ap-

proach and a model-based approach. The experimental approach comprise a linear salt

gradient elution and 5 step elutions with different salt concentrations, complemented with

a peak fraction analysis using analytical size exclusion chromatography.

The model-based optimization approach employed a general rate model for the macroscopic

protein transport and a uv absorbance-based version of the steric mass action isotherm.

The model parameters were estimated from a linear salt gradient experiment, two salt

step elutions, and the corresponding fraction analysis data.

The process was optimized with the objective of a monomer purity of at least 99%, a yield

of at least 80%, and a maximal fraction volume of 5 column volumes due to constrains in

the technical infrastructure, using the experimental and the model-based approach. Both

optimization approaches result in steps elutions of 200 to 210mM salt, meeting the three

constrains. Therefore, it could be demonstrated that mechanistic modeling is a suitable

alternative or complement for experimental driven process development.

Article accepted in Engineering in Life Sciences.
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7. Model-based Integrated Optimization and Evaluation of a Multi-step Ion

Exchange Chromatography

T. Huuk, T. Hahn, A. Osberghaus, J. Hubbuch

The previously mentioned work focused on single column purification processes. However,

industrial downstream processes commonly consist of several chromatographic operations,

which are arranged in a sequential manner. The optimization of these multi-column pro-

cesses is commonly carried out one after each other, to keep the experimental complexity

manageable. Nevertheless, the concerted optimization of two consecutive chromatogra-

phies is supposed to be beneficial, e.g. through the identification of an overall process

optimum, rather than two single chromatography optima.

In this article, we calibrated a transport dispersive lumped rate model complemented

with a steric mass action isotherm for an artificial three component mixture on cation

(CEX) and anion exchange adsorbers (AEX). First, we optimized the two possible process

flowsheets (CEX→AEX and AEX→CEX) using a concerted optimization approach. For

this, the purity, recovery, and yield derived from the last column were evaluated based

on an objective function. The CEX→AEX flowsheet outperforms the alternative process

flowsheet. To evaluate the impact of a concerted process optimization, we repeated the

optimization of the CEX→AEX flowsheet, optimizing the columns one after each other.

This sequential optimization approach showed a superior intermediate result after the first

column, but resulted in an inferior overall performance.

Article accepted in Separation and Purification Technology.
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Abstract

Industrial purification of biomolecules is

commonly based on a sequence of chro-

matographic processes, which are adapted

slightly to new target components, as the

time to market is crucial. To improve time

and material efficiency, modeling is increas-

ingly used to determine optimal operating

conditions, thus providing new challenges

for current and future bioengineers.

At the Karlsruhe Institute of Technology

(KIT), mechanistic modeling of protein

chromatography has long been part of the

curriculum of the Bioengineering master’s

degree program, supported by exercises us-

ing simulation software. Emphasis lies

on nonlinear preparative chromatography,

where the result strongly depends on the sample concentration. For undergraduate stu-

dents to gain hands-on experience in model-based optimization, a three-week, in-depth

laboratory course was designed on the purification of a ternary mixture of proteins using

15
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ion-exchange chromatography and mechanistic modeling. Students apply in-house soft-

ware ChromX, which is made available for download, together with tutorials on numerics

and practical applications.

This article presents the working principle of ChromX and results of the laboratory course

for undergraduate students.

2.1 Introduction

In a biopharmaceutical production sequence, the biggest expenditure is associated with

the purification of the target component from a very heterogeneous mixture, so-called

downstream processing (DSP). Industrial DSP development, especially for monoclonal

antibodies (mAb), is commonly based on a sequence of chromatographic processes, which

are adapted slightly to new target components [100; 145].

In order to find optimal process parameters, modeling tools are increasingly gaining the at-

tention of the pharmaceutical industry [62]. For using these tools, bioengineers are needed

to acquire a new set of skills. Statistics, numerical mathematics, scientific computing, and

data mining will play an increasing role in the future.

In the fourth semester of the bioengineering bachelor’s degree program at the Karlsruhe

Institute of Technology (KIT), students choose a three-week in-depth laboratory course in

enzyme technology, biochemical engineering, or downstream processing. The DSP course

applies cation-exchange chromatography to purify an antibody from a ternary protein

mixture. Previously, a systematic trial-and-error approach was pursued for this purpose,

which can be misleading as unexpected non-linear effects may occur. In contrast to analyt-

ical chromatography, where diluted samples are injected, industrial production processes

are performed in the so-called nonlinear or preparative mode. The maximum binding

capacity of the chromatographic medium is approached by injecting a large amount of

concentrated feed solution. This leads to concentration-dependent nonlinear retention, as

well as to competition of the species in the feed for binding sites.

Although many research groups developed their own simulation tools and published re-

sults generated with it, only few simulators are publicly available. The six simulators

found for nonlinear chromatography are: Aspen Chromatography [5], CADET [41], Chro-

mulator [154], ChromWorks [28], gProms [134], and pcs [102]. Aspen, ChromWorks, and

gProms are commercial Windows applications that cannot be downloaded directly. They

are not considered further because students should be able to use the software outside the

university on their own. Nevertheless, Aspen has been used successfully by instructors

to teach chromatography [163]. CADET is the most advanced noncommercial simulator

in terms of numerical methods, but its C++ code must be compiled manually and does

not offer a graphical interface. pcs is based on MATLAB, which usually is not taught in

undergraduate programs. Moreover, MATLAB licenses become expensive once students

graduate. Chromulator software was used in the KIT master’s degree program in the

past. As it became more troublesome to run the software on current versions of Microsoft

Windows, we decided to extend our simulation code for research, ChromX [72], with a user-

friendly interface and also to use it in undergraduate courses as a “black box”. We are
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convinced the separation processes will be designed almost entirely in a computer-assisted

fashion in the future and, hence, want to provide our students with the opportunity to

gain first experience.

ChromX for Microsoft Windows is available for download with step-by-step tutorials on

the different phenomena occurring in liquid chromatography [84]. In addition, a set of

MATLAB files explains the numerical methods. A short overview of models and their

numerical solutions is given in the Chap. 1, the Supporting Information A.1 contain some

exemplary exercises from the master’s degree program. A comprehensive introduction to

preparative and nonlinear chromatography is in the text book by Schmidt-Traub [109],

and more in-depth analyses are presented in the book by Guiochon et al. [55].

2.2 Theory

2.2.1 Chromatography Models

In column liquid chromatography, the sample is dissolved in a liquid (mobile phase) and

flows through a packed bed of porous particles or a monolithic column (stationary phase).

For simplicity, a bed of uniformly sized spherical particles is assumed in the following

sections. The physical or chemical properties of the stationary phase and the different

components are utilized in a way that some components are retained more strongly than

others. As illustrated in Figure 2.1, molecules are transported through the fluid outside

of the particles, and then enter the particle’s pore system and diffuse inside the pores.

Adsorption and desorption are followed by diffusion out of the particle. The mass trans-

port through the column and pores is described by modeling the fluid dynamics effects,

while the retention of the species is described by empirical or mechanistic models for

adsorption/desorption and/or reaction [55; 109].

For a large molecule that cannot enter the pore system, transport in flow direction depends

on the pump speed and bed porosity (alias, column porosity). All diffusive effects in

the interstitial volume leading to the broadening of an injected pulse are assumed to

follow Fick’s law of diffusion with a lumped axial dispersion coefficient. For smaller non-

interacting molecules, additional effects are included, depending on the model complexity

chosen. These include a film transfer coefficient that models the inhibition of transition

into and out of the pores by the boundary layer, and a pore diffusion coefficient that

accounts for intra-particle diffusion. Diffusion on the surface is usually neglected [55].

Adsorption onto the surface is modeled by an isotherm equation that describes the con-

centration of adsorbed protein as a function of the protein concentration in the mobile

phase at constant temperature. For ion-exchange chromatography, the steric mass action

(SMA) isotherm [23] was employed, as described in Chap. 1. It allows for modeling the

influence of the counter-ion concentration in the mobile phase on the sorption behavior of

proteins.
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Figure 2.1: Structure of packed beds (a-c) and adsorption process (d). The total column
volume is divided into the volume of the stationary phase (a), the volume of mobile phase
in the pore system (b), and the interstitial volume of the mobile phase (c). Molecules are
transported through the interstitial volume (d.1), pass a boundary layer (also referred to
as film) around the beads (d.2), diffuse within the pore system (d.3), and adsorb onto the

surface (d.4).

2.2.2 Numerical Solution

For each species, a system of partial differential equations must be solved: a convection-

diffusion equation for the interstitial volume of the mobile phase, a diffusion equation

for the pore volume, and an isotherm equation for adsorption/desorption. As all species

are coupled via the isotherm in nonlinear chromatography, no closed-form solution is

available and numerical solutions must be computed. When only linear chromatography

is considered, specialized tools provide for a higher performance [20; 142; 147].

The tutorials distributed with ChromX describe the step-by-step solution of the equations

with MATLAB and ChromX. First, convection and diffusion problems are solved in axial

or radial flow systems. Pore diffusion models are added next, before adsorption and

desorption are simulated.

Pore
volume

Stationary
phase

Inter-
stitial

volume

Axial
pos. [mm]

Radial
pos. [um]

Figure 2.2: Qualitative visualization of intra-column and intra-particle concentrations
during a step elution with ParaView.
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Figure 2.3: ChromX user interface: Comparison of peak shapes when switching from step
(semi-transparent lines) to gradient elution (solid lines).

2.3 ChromX Features

The core of ChromX is the modular equation solver. The version used for teaching

hides most of the parameters (types of finite elements, solver tolerances, matrix formats,

hardware-specific settings, etc.) to simplify the program for new users. Fixed units were

not prescribed for various reasons. Simple binding models, such as the Langmuir isotherm,

can be used with any unit that is able to quantify concentrations, e.g., M, mg/mL or even

absorption units [109]. Moreover, switching from CADET using meter as a standard unit

of length or from Chromulator that uses non-dimensional formulations to other tools is

facilitated. The embedded Help page provides information in the form “film transfer co-

efficient kf [length/time]” in the section on models; recommendations are given in the

Supporting Information A.1.

Column and component-specific parameters can be edited easily. Complex injection and

elution profiles are defined in terms of concentration events, e.g., a salt step, followed by

a gradient and a final high-salt step. Proteins can be added, removed, and sorted in the

interface. The number of proteins is only limited by the computer’s memory.

A process setup can be cloned to simulate two or more chromatography runs in parallel

with, e.g., different gradient lengths or slopes. This is done during parameter estima-

tion, where several experiments are necessary to determine all isotherm parameters by

chromatogram fitting. ChromX contains built-in heuristic and deterministic optimization

routines for this task.

When all protein parameters are determined, optimization can be performed with respect

to a chosen objective function. Alternatively, hypercube sampling [12] can be used to
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study the dependence of the objective function on system parameters, such as batch,

variations, etc.

ChromX includes extensive evaluation and export functions. How simulation results can

be evaluated and compared easily is illustrated in Figure 2.2. First, a step elution is

simulated with the SMA isotherm model and compared to a gradient elution. The results

are plotted in a semi-transparent manner and each curve can be evaluated in terms of

yield, purity, and peak area.

All results can be exported as a bitmap, vector graphic or spread sheet in XLS format.

Intra-column time series can be exported in the VTK format and represented with, e.g.,

the open source visualization software ParaView [2] (Figure 2.3). This is explained in a

dedicated tutorial [84].

2.4 Software Exercises

Software exercises accompany the lecture series on chromatography modeling and are

intended to provide a deeper understanding of the mathematical operators and parameters

in the differential equations and their effect on the chromatogram. System characteristics

are to be pre-calculated with correlations for setups with and without dispersion and film

kinetic effects. The calculated breakthrough and retention times are validated with the

simulation software and Langmuir isotherm:

� Effects of a change in the feed concentration, i.e., switching from linear chromatog-

raphy to preparative settings

� Axial dispersion affecting the shape of a breakthrough curve

� Shape changes for breakthroughs and isocratic elutions with different film kinetic

effects and pore diffusion limitations

� Multi-component settings that demonstrate that superimposition of single-component

simulations do not approximate a mixture in preparative chromatography.

Exemplary exercises and solutions are included in the Supporting Information A.1.

2.5 Laboratory Course Structure

In the DSP course, cation-exchange chromatography is used to purify an antibody from

a ternary protein mixture. Students are in three groups of two students each. The first

group performs process development with a statistical design of experiments, the second

applies model-based process optimization, and the third conducts the necessary analytics

for quality assessment. This sharing of tasks between process development and analytics

mimics DSP development at pharmaceutical companies where different departments in-

teract. For the mutual exchange of experience among the groups, daily progress meetings
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are organized. The course starts with presentations on the theory, methods, and pro-

posed proceeding, followed by two weeks of lab work. The course finishes with a poster

presentation of the results and a preparation of a report of 25-30 pages. The total time

students have to invest is estimated to be 120 hours. The only prerequisite is a course on

biotechnological separation processes that introduced the principle of chromatography.

The objectives of the model-based process optimization group are to calibrate a model

using tracer experiments, as well as step and gradient elutions, to perform simulations

outside of the lab to optimize the separation of proteins, and to validate these simulation

results. Excerpts from the lab assignments are given in Boxes 1 and 2. The lab course

results are available as a case study, including all measurements and parameter files.

Box 1. Excerpts from Laboratory Assignments: Process Development with a Statistical

Design of Experiments.

The students are to use an ion exchange step to purify the given feedstock, which con-

tains the target protein (monoclonal antibody) and two other proteins as impurities. The

concentration of the antibody is about 3.8 g/L. The concentrations of the impurities are

unknown. The two impurities have theoretical isoelectric points of 7 and 11 and molec-

ular weights of 17 kDa and 14 kDa. The first impurity has a chromophore group, which

accounts for the dark color of the solution. The feedstock has a pH of about 8 and a

conductivity of about 5 mS/cm. They are to reach the highest possible purity, yield, pro-

duction rate, and concentration of the antibody. First, the type of ion exchanger and an

appropriate adsorbent and buffer are to be selected. For regulatory reasons, the choice of

buffers is to be limited to the use of simple buffer salts and NaCl. Both batch binding

experiments and column chromatography may be performed. The process is to be carried

out in a 1 mL column with a fast protein liquid chromatography (FPLC) system. The

flow rate is to be chosen such that the contact time is roughly equivalent to 1 min (em-

pirical value). All other process parameters, such as the elution mode (step or gradient),

gradient length, ionic strengths, load volume, and pooling criteria, may be chosen freely.

To optimize the development process, a statistical design of experiments (DoE) is to be

made, with the parameters being varied by a software provided. The experiments are to be

analyzed in cooperation with the analytics group. For evaluation of the DoE and in order

to find the optimal process parameter combination, an objective function consisting of the

goals listed above is to be found. This is to be done in agreement with the model-based

development group.
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Box 2. Excerpts from Laboratory Assignments: Model-based Process Development

The students are given the same separation task and the same feedstock as described

in Box 1. However, the process is to be designed in a model-based manner. For the

characterization of the column as well as of the feedstock, additional experiments will

be required. The column selection is to be done by the first group. For this purpose,

experiments are to be planned, which provide the basic information needed for modeling.

Afterwards, the component-specific model parameters of the individual components of the

feedstock are to be determined. With these values, process simulation is to be performed,

considering the above recommendation for the flow rate. The students are to find a

combination of elution mode (step or gradient), gradient length, ionic strengths, load

volume, and pooling criteria, by means of which a high purity, yield, production rate, and

concentration of the antibody can be achieved. Finally, a validation run is to be performed

under the optimal conditions identified. The results are to be compared to those of the

first group.

2.6 Laboratory Results

Initial experiments were conducted to determine system properties such as dead volumes,

column and bead porosity, and the ionic capacity of chromatography resin. Afterwards,

four experiments in the bind/elution mode were performed for parameter estimation, i.e.,

one step elution and two gradient elutions with a low sample volume, as well as one

gradient elution with a large sample volume. The proceeding is described in detail in the

Supporting Information A.1.

Exemplary results are shown in Figures 2.4a and 2.4b. A small breakthrough of nonbinding

myoglobin and antibody was accurately modeled in the beginning. This also applied to

the elution far beyond the detector limit in the experiment with a high sample volume.

Finally, the calibrated model was used for process optimization. The objective of the

laboratory course was to find a compromise between the production rate and yield, while

achieving a high purity. There is no unique solution to this problem. Students decided

in favor of a very fast process, which concentrates the antibody at the same time (sample

volume 3.6 mL, collected volume 2 mL). The step elution shown in Figure 2.4c reaches a

purity above 99 % at 80 % yield. The results were subsequently validated experimentally

in the lab.

2.7 Pedagogical Aspects

The DSP laboratory course for undergraduate students was taught for the third time in

the 2014/2015 winter semester. Students appeared to learn preparative chromatography

in more depth compared to the previously used trial-and-error approach. The course goals

described above were met with this teaching format, although undergraduate students were

familiarized with the models necessary for this particular task (SMA for ion-exchange

chromatography) only. Because of the small number of students, statistical statements
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Figure 2.4: Comparison of simulated and measured chromatograms for the experiments
with 60 mL sample volume and 20 - 520 mM salt gradient (a), 0.5 mL sample volume
and 20 - 1020 mM salt gradient (b), and optimization result with 3.6 mL sample volume
and 230 mM salt step elution (c). The UV detector was saturated at 3 AU such that the
elution peaks in (a) and (c) were not completely recorded. Single component curves were

omitted in (a) for reasons of clarity.
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cannot be made, but statistics on the lecture series of the master’s degree program are

encouraging and given in the Supporting Information A.1.

Compared to conventional process optimization, ChromX provided an immediate feedback

that might mislead students into trying setups without first anticipating results. An

experiment that takes 30 minutes or longer has to be considered more carefully in order

not to waste time and material. Hence, the grading scheme reflected the conception of

the lab course: 20 % project plan presentation, 40 % practical work, 20 % report, and

20 % poster and poster presentation. For grading, the course of process design rather

than the actual results were considered. Nevertheless, the solutions found by the model-

based optimization group were almost identical to those of the group focusing on process

optimization with a statistical design of experiments. The long runtime of the experiments

and the daily progress meetings allowed for an extensive exchange among the groups and

joint learning.

2.8 Conclusion

In pharmaceutical practice, preparative chromatography is of highest importance. To

demonstrate the differences from analytical chromatography, a user-friendly interface was

developed for use in a simulation toolbox for research and focused on models with a

reasonable level of detail, i.e., where changes in model parameters directly related to peak

properties. Easy visualization and export of results were other design criteria. This allowed

us to establish an undergraduate laboratory course on the purification of a ternary protein

mixture using mechanistic modeling.

The feedback from students was very positive. ChromX allowed them to study the influ-

ence of system and model parameters on the outcome of experiments. It also prepared

them for the challenges lying ahead in industrial bioengineering.

Associated content

Supporting Information

ChromX for Microsoft Windows is available free of charge for academia [84]. On the

ChromX webpage, we offer introductory material that explains the underlying models,

their mathematical solution, and parameter estimation for MATLAB and ChromX. In

this way, instructors can incorporate ChromX into their existing classroom and laboratory

activities. ChromX will be further developed. We welcome any feedback and suggestions

concerning the software, the tutorials as well as the case studies.

Mathematical background, working principle of ChromX and the MATLAB tutorials,

software exercises with Langmuir isotherm, and experimental results of the laboratory

course. This material is available free of charge via the Internet at http://pubs.acs.org.
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Abstract

Within the Quality by Design (QbD) framework proposed by the International Conference

on Harmonisation (ICH), high-throughput process development (HTPD) and mechanis-

tic modeling are of outstanding importance for future biopharmaceutical chromatography

process development. In order to compare the data derived from different column scales

or batch chromatographies, the amount of adsorber has to be quantified with the same

noninvasive method.

Similarly, an important requirement for the implementation of mechanistic modeling is

the reliable determination of column characteristics such as the ionic capacity Λ for ion-

exchange chromatography with the same method at all scales and formats.

We developed a method to determine the ionic capacity in column and batch chromatogra-

phy, based on the adsorption/desorption of the natural, uv-detectable amino acid histidine.

In column chromatography, this method produces results comparable to those of classical

acid-base titration.

In contrast to acid-base titration, this method can be adapted to robotic batch chromato-

graphic experiments. We are able to convert the adsorber volumes in batch chromatogra-

phy to the equivalent volume of a compressed column.

In a case study, we demonstrate that this method increases the quality of SMA parameters

fitted to batch adsorption isotherms, and the capability to predict column breakthrough

experiments.

27
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3.1 Introduction

Chromatography is a key unit operation in the downstream processing (DSP) of biophar-

maceuticals [100; 145]. The optimization of chromatography is a complex task due to the

numerous operational parameters and their interactions.

DSP development is continuously facing the demand of accelerating the process develop-

ment, reducing the ’time to market’ [122], and meeting the evolving demands of regulatory

authorities, such as a detailed process understanding proposed by the Quality by Design

(QbD) initiative [27; 74].

To comply with these QbD requirements, new process development technologies have to

be incorporated in the current portfolio of methods. There are two possible approaches to

obtain a detailed process understanding: The massive expansion of the data basis by the

implementation of high-throughput process development techniques (HTPD), and process

modeling to gain mechanistic process insights. Currently, these two technologies are often

used independently despite the obvious synergistic potential [122; 125].

HTPD for chromatography is commonly based on batch chromatography or miniatur-

ized chromatographic columns [122; 167]. Both techniques are compatible with pipetting

robots, enabling the parallelization and automation of experimental workflows. A key

challenge for implementing high-throughput experimental systems is the proof of com-

parability to classical column chromatography at the laboratory and production scales.

Effects arising from the complex flow behavior within a chromatographic column, e.g.

axial peak broadening, are not found in batch chromatography. Therefore, batch chro-

matography is predominantly used at the early stages of DSP development, e.g. for the

screening of different adsorbers [13; 15; 120] or the selection of salts or pH value [150].

Using a combination of multiple experimental formats such as batch, robotic columns, and

classical columns, it is crucial to determine the adsorber volume in the different formats

with the same method to enable comparability.

Disregarding the technical simplifications related to high-throughput experiments, one

remaining drawback of these experiments is the limited mechanistic insight into the pro-

cesses. HTPD itself just increases the amount of data and enables the creation of black-box

models such as response-surface models or DoE studies. Although, these empirical models

are frequently used with good results, they are restricted with respect to the provided

mechanistic process insight [15; 65; 131]. In contrast to mechanistic models, they are not

based on first principle natural laws, such as Fick’s law of diffusion within a column model

and do not allow extrapolation [127].

Another technology proposed in the ICH guidelines within the QbD framework [74], is

mechanistic modeling to gain a fundamental insight into chromatographic processes. While

mechanistic modeling becomes more common in DSP development [18; 30; 122], one of

the major challenges regarding the implementation is the quality of data derived from

high-throughput experiments or classical column chromatography and the comparability

of data in different column formats and bed volumes.

In summary, one method to quantify the adsorber volume in all formats is a prerequisite to

increase the quality of HTPD data and to prove the comparability of different chromato-

graphic formats. Furthermore, to be able to use mechanistic IEX modeling in different

formats, it is necessary to determine parameters such as the ionic capacity in all formats

with the same noninvasive method.

To resolve this issue, we established a noninvasive photometric method for the determina-

tion of the ionic capacity in column chromatography. The method is based on the total
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histidine capacity of the adsorber. The determined ionic capacities are comparable to

conventional acid-base-titrations.

We automated the method on a liquid handling station and adapted it to batch chro-

matography. Using the same adsorber lot and assuming a constant bead voidage, the

method can be adapted to quantify the adsorber volume in batch chromatography.

Based on the adsorber quantification in batch chromatography, we are able to predict a

column breakthrough curve based on a single batch adsorption isotherm.

3.2 Theory

Conventional chromatography columns are packed by gravity settling or by applying a

defined flow or pressure to the adsorber bed. 96-well filter plates filled with equal volumes

of adsorber can be purchased [15] or individually prepared by slurry dispensing or ’me-

chanical approaches’ such as the ResiQuot device (Atoll, Weingarten, Germany). Slurry

dispensing requires optimized slurry mixing and calibrated pipetting procedures to ensure

reliable adsorber volumes. Calibrations are commonly based on the adsorber dry mass or

the settled adsorber volume as a reference [7; 31]. Other approaches aim to correct the

differences between the wells in batch chromatography [90], or evaluate the influence of

the adsorber surface area [69]. Especially for highly compressible adsorbers, the difference

between the settled-bed volume and the volume of a compressed column is obvious. In

addition, the influence of neighboring adsorber particles in packed-bed chromatography

can lead to a change in pore structure at the contact spots [71].

Using the ResiQuot device, an adsorber suspension is filled into a grid with defined geome-

tries by application of a vacuum. Afterwards, these adsorber plaques can be transferred

to a 96-well (filter) plate. The variation of adsorber volumes in between the plaques has

been shown to be less than 2% [67]. As in the case of slurry dispensing, the difference in

compression between the ResiQuot and a packed column is obvious.

As a consequence of the different packing procedures and the differences in adsorber com-

pression [87], application of a method for quantifying the adsorber volume within different

chromatographic formats is a precondition for comparing data derived from these chro-

matographic formats [64].

The ionic capacity Λ is of high importance for the mechanistic modeling of ion-exchange

chromatography (IEX) and describes the amount of ligands on the adsorber surface. For

example, the commonly used stoichiometric displacement (SDM) or steric mass action

(SMA) isotherms [23; 159] are based on the exchange of charged groups of a protein

and salt ions on the surface of an adsorber with a characteristic ionic capacity. Exper-

imental methods to determine the ionic capacity of an adsorber are the transition pH

method [46; 96; 97] or a simple acid-base titration [68].

Fig. 3.1 A provides a summary of the acid-base titration.

First, the counter ions bound to the cation-exchange adsorber (CEX) are exchanged by

protons, exposing the adsorber to a HCl solution. At low pH values, the interaction of the

ligand with a proton is preferred to e.g. sodium ions. Afterwards, the remaining acid in the

interstitial and pore volume is removed by a prolonged treatment with ultra-pure water.

Subsequently, the ligands can be titrated with a sodium hydroxide solution with a known

molar concentration. While the column is titrated, water is formed within the column.

When all protons are exchanged to sodium ions, sodium hydroxide breaks through the
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Figure 3.1: Experimental acid-base titration (A) and histidine capacity determination (B)
on a cation exchange adsorber. The methods are sketched on a molecular level and with

regard to the in-line traces recorded by the column chromatography system.
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column, that can be detected in the in-line conductivity trace of a HPLC system. From

the volume of the titrant and its concentration, it is possible to quantify the amount of

exchanged ions.

The acid-base titration exhibits several disadvantages. The volume of the titrant has to be

determined from the in-line conductivity or pH traces. These signals are available for most

HPLC systems, but are not available in standard robotic systems. Another disadvantage

is the exposure of the adsorber to ultra-pure water and a possible deterioration of the

packing (comp. Fig. 3.2).

0

0.5

1

volume

 

 

before UPW treatment
after UPW treatment

Figure 3.2: Deterioration of packing quality of a 16mL Poros 50HS column due to contact
to ultra-pure water (UPW). The diagram shows salt pulse injections before and after UPW

treatment. The data are normalized and peak centered.

To avoid these limitations, we developed a method based on the histidine capacity. His-

tidine is a natural amino acid and a buffer substance that is used in biopharmaceutical

formulations [139; 140]. Therefore, it can be assumed safe to expose a laboratory- or

production-scale column to histidine.

The method is presented in Fig. 3.1 B. First, the adsorber is equilibrated with a HCl

solution to exchange the counter ions to protons. Afterwards, the column is loaded with

histidine for a prolonged period of time. After this point, all ligands of the adsorber are

saturated with histidine and the interstitial and pore volumes of the adsorber are filled

with the histidine loading solution. Afterwards, histidine can be eluted from the adsorbent

by applying HCl to the column and collecting the complete eluate. The histidine in the

eluate refers to the histidine bound to the adsorber, the one in the interstitial, and pore

volumes filled with a histidine solution with a concentration equal to the load solution.

Using a low histidine concentration in the load prevents multi-layer adsorption.

The histidine in the eluate can be quantified photometrically at 230nm and an in-line uv

trace is not necessary. The method can be adopted to high-throughput experiments and

no UPW is needed.

3.3 Materials and Methods

3.3.1 Adsorbers and chemicals

This study was carried out using two different strong cation exchange adsorbers. The

agarose-based SP Sepharose FF (GE Healthcare, Buckinghamshire, GB) was selected as a

model for highly compressible adsorber beads. Poros 50HS (Applied Biosystems, Carlsbad,
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CA, USA) consists of an almost incompressible crosslinked poly(styrene-divenylbenzene)

bead, and its packing can be altered by salt-free solutions. Sepharose FF and Poros 50

have an average particle size of 90 and 50µm, respectively.

All chemicals were of analytical grade and purchased from Sigma Aldrich (St. Louis,

MO, USA) and Merck Millipore (Darmstadt, Germany). All solutions were prepared with

ultra-pure water.

3.3.2 Column chromatography

All lab scale experiments were carried out on an Äkta purifier 10 controlled by Unicorn

5.31 (both GE Healthcare). For column packing, the Poros adsorber was buffer-exchanged

into an aqueous 0.1molL sodium chloride solution, the Sepharose was packed with storage

solution. The adsorbers were packed into glass columns with an inner diameter of 6.6mm

and different bed heights (Omnifit, Danbury, CT, USA). The Sepharose and Poros ad-

sorbers were packed at a maximum pressure drop of 2bar and 3bar, respectively. The

qualification of the column packing and the determination of the voidages was carried out

by 25µL injections of a 1%(v/v) acetone (for Sepharose) or 1molL NaCl solution (for Poros)

as pore-penetrating tracer Vacetone and a 10g/L dextrane (MW 2000kDa, Sigma Aldrich)

as non-pore-penetrating tracer Vdextrane. The dead volumes of the Äkta LC and the empty

column were determined using acetone as a tracer Vdead. All tracer experiments were car-

ried out as triplicates. The flow rate for all column experiments was kept at 0.2mL/min.

The porosities were calculated from the tracer experiments and the geometric column

volume (CV).

εcolumn =
Vdextrane − Vdead

CV

εparticle =
Vacetone − Vdextrane
CV − Vdextrane

εtotal =
Vacetone − Vdead

CV
(3.1)

The order of the subsequent adsorber quantification experiments was histidine capacity,

acid-base-titration, and gravimetry. The first two were carried out as triplicates.

3.3.2.1 Histidine capacity

For the determination of the histidine capacity, the column was equilibrated with 5CV

of a 0.5molL HCl solution. Afterwards, the column was loaded with 20CV of a 0.03molL
aqueous histidine solution cloadhis . Subsequently, the histidine was eluted using a 0.5molL HCl

solution. The elution can be detected at 230nm and the eluate was collected in a pre-

balanced tube. The volume of the collected eluate V eluate
his was determined from its weight

and the density of the solution. The absorption at 230nm (A230) of the collected eluate

was determined with a NanoDrop 2000c spectrophotometer (Thermo Fisher Scientific,

Waltham, MA, USA). The molar concentration of histidine celuatehis in 0.5molL HCl solution

was calculated according to the law of Lambert-Beer and a calibration that was carried out

on the same spectrophotometer. The amount of histidine found in the collected fraction

neluatehis relates to the amount of histidine bound to the adsorber nadshis , the histidine in the
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total hold up volume of the LC system, and the mobile phase in the column. Due to

the prolonged load volume, the concentration of histidine within this hold-up volume is

assumed to be equal to cloadhis .

nadshis = V eluate
his · celuatehis − Vdead · cloadhis − CV · εtotal · cloadhis (3.2)

The histidine capacity per adsorber skeleton and geometric column volume is calculated

according to

Λskeletonhis =
nadshis

CV · (1− εtotal)
(3.3)

and

ΛCVhis =
nadshis

CV
. (3.4)

3.3.2.2 Acid-base titration

The acid-base titration (AcB titration) was carried out after the determination of the

histidine capacity. The column was equilibrated for 10CV with a 0.5molL HCl solution to

exchange the counter-ions against protons. Afterwards, the unbound HCl was removed

by flushing the column extensively with ultra-pure water (UPW) for 25CV. Finally, the

adsorber was titrated with a 0.01molL NaOH solution cNaOH . The titration volume VNaOH
was calculated from the increase of the in-line conductivity trace and the system dead

volume. The amount of exchanged sodium ions nNa+ was calculated according to

nNa+ = VNaOH · cNaOH (3.5)

. Subsequently, the total ionic capacity based on acid-base titration was calculated as

ΛskeletonAcB =
nNa+

CV · (1− εtotal)
(3.6)

and

ΛCVAcB =
nNa+

CV
. (3.7)

3.3.2.3 Gravimetry

The invasive gravimetric determination of the adsorber dry weight was carried out as an

orthogonal reference method. After flushing the column with UPW, the adsorber was

completely transferred to a pre-balanced tube and dried until a constant weight mdry was

reached.

3.3.3 Batch chromatography

Batch chromatographic experiments were carried out on an EVO Freedom 200 liquid

handling station equipped with an eight-tip liquid handling arm, a plate-moving arm,
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an orbital shaker (operated at 1000min−1), a vacuum station (operated at a vacuum of

300mbar), and a spectrophotometer. The system was controlled by EVOware 2.5 (all from

Tecan, Männedorf, CH). The batch experiments were carried out in ’MultiScreenHTS DV

Filter Plates’ with a pore size of 0.65µm purchased from Merck Millipore (Billerica, MA,

USA). Equal adsorber volumes were distributed to the 96-wells with a ResiQuot device

(Atoll, Weingarten, Germany), equipped with a 20.8µL plaque grid (V uncorrected
batch ). The

device was operated at a maximum vacuum of 300mbar.

3.3.3.1 Histidine capacity

The histidine capacities of the 96 adsorber plaques were determined in analogy to the

method for columns in triplicate. The experimental procedure is illustrated in Fig. 3.3.
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Figure 3.3: Adaptation of the experimental procedure to determine the histidine capacity
in batch chromatography.

First, the adsorber plaques were equilibrated five times with 200µL 0.5molL HCl solution

for 5 minutes on the orbital shaker and removed by vacuum. Afterwards, the adsorber

plaques were loaded five times with 200µL 0.03molL histidine solution cloadhis for 5 minutes

on the orbital shaker and removed by vacuum. Finally, the bound histidine was eluted

from the plaques by applying five times a volume of 50µL of a 0.5molL HCl solution per

well, a three-minutes incubation, and the removal by vacuum. The complete eluate of

250µL was collected in a 96-UVStar plate (Greiner Bio-One, Kremsmünster, Austria).

This collection plate and a five-fold diluted plate (dilution with 0.5molL HCl solution) were

directed to the spectrophotometer, and absorptions at 230, 900, and 995nm were recorded.

The absorptions at 230nm (A230) were corrected to a pathlength of 10mm using the 900

and 995nm signals (A900, A995) [94; 125].

A230nm,10mm = 0.1617 · A230

A995 −A900
(3.8)

The molar histidine concentrations celuatehis were calculated according to the law of Lambert-

Beer and a calibration that was carried out on the same spectrophotometer: The exact

volumes of the 96 collected fractions V eluate
his were determined using the 900 and 995nm

signals.

The amount of histidine found in the collected fractions neluatehis refers to the histidine
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adsorbed nadshis and present within the pores of the beads nporehis . Due to the prolonged

vacuum application, the histidine in the volume in between the beads is assumed to be

negligible. The hold-up volume of the membrane of the filter plate after the vacuum

process was determined to be negligible.

neluatehis = V eluate
his · celuatehis = nadshis + nporehis (3.9)

neluatehis values deviating more than three times the standard deviation from the mean of

the 288 measurements (3·96) per adsorber, were classified as outliers and excluded from

the further data processing.

3.3.4 Equivalent column volume

The approach presented in Sec. 3.3.2.1 for the histidine capacity in column chromatography

correlates the histidine bound to the adsorber nadshis,column with the column volume CV .

Based on the voidages of the column and the adsorber particle, it is also possible to

correlate the sum of histidine bound to the adsorber nadshis,column (comp. Eq. (3.2)) and

present in the pore volume of the bead nporehis,column (comp. Eq. (3.10)) with the column

volume.

nporehis,column = (1− εcolumn) · εparticle · CV · cloadhis (3.10)

ΛCV+pore
his,column =

nadshis,column + nporehis,column

CV
(3.11)

Assuming an equal particle voidage and ionic capacity (e.g. equal adsorber lot) in column

and batch chromatography, it is possible to use this correlation derived from column

chromatography to calculate an equivalent column volume V corrected
batch of the adsorber plaque

based on the amount of histidine found in the eluate neluatehis,batch.

V corrected
batch =

neluatehis,batch

ΛCV+pore
his,column

(3.12)

3.3.5 Validation

The adsorption of the model protein lysozyme on SP Sepharose FF was used as a case

study to demonstrate the ability of the histidine capacity, to predict a breakthrough curve

in column chromatography from batch adsorption data.

3.3.5.1 Experimental settings

A 30.28g/L lysozyme (Sigma Aldrich) stock solution in 0.02molL sodium phosphate buffer

at pH 7 was used for both chromatographic formats.

For the column experiments, the voidages and the histidine capacity of a 711µL column

were determined as described previously. Subsequently, a breakthrough curve was recorded

at a flow of 0.2mL/min using the lysozyme stock solution as a sample. The experiment
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was carried out using an Äkta LC equipped with a diode array detector (Thermo Fisher

Scientific) with a pathlength of 0.4mm to prevent detector saturation. A detailed review

of the system setup is given elsewhere [21; 22]. The mass of the adsorbed lysozyme was

calculated from the area between the concentration trace and the stock solution concen-

tration. Dynamic binding capacities per adsorber skeleton volume were calculated based

on a 10% and 100% breakthrough (10%DBC, 100%DBC).

Batch isotherm data were recorded based on filter plates filled with SP Sepharose FF,

prepared as described previously. Based on a serial dilution of the 30.28g/L lysozyme

stock solution, initial lysozyme concentrations in the range of 3 to 30.28g/L were pre-

pared. 200µL of this protein solutions were added to the filter plates and incubated for

2h. The filtrate was collected and the lysozyme concentration ceq was determined with a

NanoDrop 2000c spectrophotometer. The adsorbed lysozyme masses were calculated from

the initial and equilibrium lysozyme masses.

3.3.5.2 Model-based data analysis

A steric mass action isotherm [23] Eq. (3.13) was fitted to the batch data. The isotherm

accounts for a protein, exhibiting ν charged patches which interact with the adsorber,

displacing an equal amount of counter ions. The adsorber is characterized by an ionic

capacity Λ. The adsorbed protein sterically shields σ further ligands of the adsorber,

decreasing the apparent binding capacity. The adsorption/desorption process is charac-

terized by an equilibrium constant keq and is modulated by the salt concentration csalt.

Attention should be paid to the fact that in addition to the mobile phase salt concentration

csalt,0, the adsorption/desorption process releases additional salt ions (comp. Eq. (3.14)).

The parameter estimation and calculation of 95% confidence intervals for the batch data

were carried out with Matlab R2015a (Mathworks, Natick, MA, USA).

q = keq

(
Λ− (ν + σ)q

csalt

)ν
c (3.13)

csalt = csalt,0 +
(1− εtotal)
εtotal

· ν · q (3.14)

The maximum binding capacity in g
L is calculated with the molecular weight MW accord-

ing to

qmax =
Λ

ν + σ
·MW. (3.15)

Occasionally, the maximum binding capacity qmax is also referred to as static or equilib-

rium binding capacity. Subsequently, the isotherm parameters derived from batch chro-

matography, were used to predict the breakthrough curve on a chromatographic column.

The simulation of a chromatographic column was carried out with the software ChromX

(Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany) [59; 84], using a transport-

dispersive column model, a general-rate pore model, and the steric mass action isotherm

in its kinetic formulation [60]. Additional information on the model parameters are given

in the Supporting Information.
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3.3.6 Data processing

Calculations, data processing, and graphics were prepared with Excel 2013 (Microsoft,

Redmond, WA, USA), Matlab R2015a (Mathworks, Natick, MA, USA), and Corel Draw

X5 (Corel Corp., Ottawa, CA).

3.4 Results

3.4.1 Column chromatography

3.4.1.1 Poros 50HS

Five different column volumes ranging from 164 to 566µL were packed with Poros 50HS.

The determined voidages of the adsorber bed are presented in the Supporting Informa-

tion (Tab. 1). Afterwards, the ionic capacity was calculated as a function of geometric

column volume based on the histidine capacity ΛCVhis and per adsorber skeleton Λskeletonhis

as triplicate. On the basis of the five different column volumes, Λskeletonhis was calculated

to 0.387 ± 0.011molL and ΛCVhis to 0.113 ± 0.007molL . Subsequently, the ionic capacity was

determined based on acid-base titration. The ionic capacity based on acid-base titration

per column volume ΛCVAcB was determined to be 0.08±0.0056molL and per adsorber skeleton

ΛskeletonAcB to be 0.276 ± 0.042molL . Finally, the columns were unpacked and the adsorber

dry weight was determined. The data for the Poros 50HS columns are summarized in the

Supporting Information (Tab. 1). The corresponding linear regressions and the parameters

of the fits are plotted in Fig. 3.4 on the left hand side. Figure 3.4 A presents the data for

the histidine capacity nadshis (CV ), figure C the data for the acid-base titration, and figure E

the adsorber dry weight data.

The coefficients of determination R2 for the linear regressions are 98.1, 98.5, and 99.8%

for the histidine capacity, the acid-base titration, and the dry weight, respectively.

3.4.1.2 SP Sepharose FF

The experimental procedure presented for Poros 50HS was repeated for the SP Sepharose

FF adsorber (SPSFF). Five different column volumes ranging from 173 to 487µL were

packed with SPSFF. The determined voidages of the adsorber bed are presented in the

Supporting Information (Tab. 2). Afterwards, the ionic capacity was calculated as a

function of geometric column volume based on the histidine capacity ΛCVhis and per adsorber

skeleton Λskeletonhis as triplicate. On the basis of the five different column volumes, Λskeletonhis

was calculated to 5.269 ± 0.21molL and ΛCVhis to 0.285 ± 0.018molL . Subsequently, the ionic

capacity was determined based on acid-base titration. The ionic capacity based on acid-

base titration per column volume ΛCVAcB was determined to be 0.213 ± 0.018molL and per

adsorber skeleton ΛskeletonAcB to be 3.929 ± 0.21molL . Finally, the columns were unpacked

and the adsorber dry weight was determined. The data for the SPSFF columns are

summarized in the Supporting Information (Tab. 2). The corresponding linear regressions

and the parameters of the fits are plotted in Fig. 3.4 on the right hand side. Figure 3.4 B
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Figure 3.4: Column chromatography data fits for Poros 50HS (left) and SP Sepharose FF
(right). The figures A, C, and D present the linear fits of the measurements through the
origin, for the histidine capacity, the acid-base titration, and gravimetry, for Poros. The
figures B, D, and E show the respective fits for Sepharose: the slope of the fit with 95%

confidence intervals, the RMSE, and the R2.
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presents the data for the histidine capacity nadshis (CV ), figure D the data for the acid-base

titration, and figure F the adsorber dry weight data. The coefficients of determination R2

for the linear regressions are 97.1, 92.9, and 89.4% for the histidine capacity, the acid-base

titration, and the dry weight, respectively.

The results from the three methods correlate linearly with the column volume. It has to

be noted that the method of unpacking the column and drying the adsorbent is invasive

and therefore usually not applicable for characterizing a column. The acid-base titration

and the histidine capacity are both suitable for determining the ionic capacity of a column.

3.4.2 Batch chromatography

In batch chromatography on robotic work stations, acid-base titration is not feasible due

to the lack of a conductivity detector in standard robotic hardware. The determination of

adsorber dry weights for standard 96-well setups would be very labor-intensive, prone to

errors due to a lot of manual work, and inappropriate due to its invasive nature. Therefore,

the histidine capacity can be used in column and batch chromatography alike.

Using the histidine capacity in batch chromatography, it is impossible to distinguish ex-

perimentally between the adsorbed histidine nadshis and the histidine in the pore volume

nporehis .

From the known voidages determined in the column tracer experiments (comp. Eqs. (3.1),

it is possible to determine the sum of nadshis and the histidine in the pore volume nporehis

and to correlate this amount of histidine to the column volume. This adjusted correlation

derived from the column chromatography data can be used to convert the sums of nadshis

and nporehis determined in batch chromatography to equivalent column volumes per plaque.

These adjusted correlations for the column chromatography with Poros 50HS and SPSFF

are presented in Fig. 3.5.
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Figure 3.5: Experimental data for Poros 50HS (A) and SPSFF (B) columns. Plot of
column volume vs. the histidine adsorbed and in the pore volume. Each figure shows the

slope of the fit with 95% confidence intervals, the RMSE, and the R2.

Fig. 3.6 presents the experimental batch results for Poros 50HS (A, C) and for SPSFF

(B, D). The figures A and B show the distribution of the equivalent column volumes of

the adsorber plaques to the 96 wells of the filter plate. The figures C and D depict the
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distribution of the equivalent column volumes. For SPSFF, the mean equivalent column

volume of the 96 wells measured as triplicates is determined to be 13.9 ± 0.6µL. Based

on the voidages determined in the column experiments, the equivalent column volume

corresponds to an adsorber skeleton volume of 0.7µL.

For Poros 50HS, the mean equivalent column volume of the 96 wells measured as triplicates

is determined to be 14.8 ± 2.7µL (6 single measurements out of 288 excluded as outliers

due to a membrane defect). Based on the voidages determined in the column experiments,

the equivalent column volume corresponds to an adsorber skeleton volume of 4.3µL.
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Figure 3.6: Calculated equivalent column volume of adsorber plaques. The distribution of
the equivalent column volume for Poros 50HS is plotted in the figures A and C. B and D

show the data for SPSFF, respectively.

3.4.3 Validation

As case study for validation, we recorded a single batch adsorption isotherm of lysozyme

on SP Sepharose FF, estimated SMA parameters based on this batch data, and predicted

an experimental column breakthrough curve.

The results of the batch adsorption isotherms are presented in Fig. 3.7 (left). The red

dots represent the isotherm data without correction using the histidine capacity. The

red curves represent the SMA isotherm fitted to the data. The blue curves represent the

fits to the data with correction of the adsorber volume using the histidine capacity. The

estimated SMA parameters are summarized in Tab. 3.1. The maximum binding capacities

per skeleton volume (qmax) without and with histidine correction are 900g/L and 1042g/L,

respectively. The calculation of qmax is carried out according to Eq. (3.15). The histidine

correction increases the adsorbed concentrations. This effect is captured by the SMA

parameters with a decreasing steric shielding σ. The equilibrium parameter is hard to

determine due to the restriction to a single condition isotherm, but keq has little influence

on the prediction of the subsequent column breakthrough curve.

The estimated SMA parameters derived from the batch experiment were complemented

with a General Rate Model and used for the in silico prediction of breakthrough curves.
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Figure 3.7: Batch adsorption isotherm of lysozyme on SP Sepharose FF, based on the
adsorber skeleton volume (left). The red and blue dots represent the data without and
with correction using the histidine capacity, respectively. The outlier detection applied
to the data is explained in section 3.3. The red curves show the SMA isotherm fitted to
the data without histidine correction. The blue curves are SMA fits with correction using
the histidine capacity. The simulation of column breakthrough curves of lysozyme on SP
Sepharose FF, based on SMA parameters from batch adsorption isotherms is shown on the
right hand side. The black curve represents the experimental breakthrough curve. The
red curve is derived from the parameters without histidine correction and the blue curve

is based on SMA parameters with additional histidine correction.

Table 3.1: SMA parameters estimated from batch isotherm data without and with ad-
ditional correction using the histidine capacity. Parameters are related to the adsorber

skeleton volume and shown with 95% confidence intervals (CI).

Unit No histidine correction CI Histidine correction CI

keq 203 [200; 206] 93 [72; 114]
ν 1.68 [1.66; 1.70] 1.83 [1.56; 2.11]
σ 27.9 [27.8; 28.1] 23.8 [22.8; 24.7]
qmax

g
L 900.7 [896.5; 904.7] 1042.0 [994.4; 1093.9]
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The simulation results are presented in Fig. 3.7 (right). The simulated curve based on

the SMA parameters without correction using the histidine capacity is shown in red.

The experimental breakthrough curve is shown in black. The retention volumes of the

simulated break through decreased compared to the experimental curve. The area-based

calculations of the 10% and 100% dynamic binding capacities (DBC) per adsorber skeleton

are shown in Tab. 3.2. The simulated curves without histidine correction result in 10%

and 100% DBCs being 7.4 and 8.5% smaller than their experimental counter parts. The

simulated curve based on the SMA parameters with correction using the histidine capacity

is shown in blue. The histidine correction increases the break through retention volume.

The calculated 10% and 100% DBCs are 3.8 and 2.6% larger than their experimental

counter parts. The shape of the two simulated curves is almost identical, both are steeper

than the experimental one.

Table 3.2: Dynamic binding capacities based on a 10% and 100% breakthrough (10%DBC,
100%DBC) of the load solution. DBCs are calculated for the experimental breakthrough
curve and for the simulations with and without histidine correction, shown in Fig. 3.7.
DBCs are given as absolute value per skeleton volume, and in relation to the experimental

value.

Unit No histidine correction Histidine correction Experimental

10%DBC g
L 1061.1 1189.6 1146.3
% -7.4 3.8

100%DBC g
L 1145.3 1283.6 1251.1
% -8.5 2.6
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3.5 Discussion

3.5.1 Column chromatography

For Poros 50HS, the ionic capacity per geometric column volume based on five packed

columns is 0.08molL for the acid-base titration and 0.113molL for the histidine capacity. For

SP Sepharose FF, the ionic capacity per geometric column volume based on five packed

columns is 0.213molL for the acid-base titration and 0.285molL for the histidine capacity.

This results in histidine-based ionic capacities being 1.4 and 1.3 times larger than the

capacities determined by acid-base titration for Poros and Sepharose, respectively. In the

following we discuss possible causes which might contribute to this difference between the

two methods. Afterwards, we focus on the impact of the differences on the methods us-

ability for chromatography modeling.

The quality of the acid-base titration mainly depends on the concentration of the titrant

and the titration volume recorded by the LC system. The impact of the recorded titration

volume is minimized by keeping the titrant concentration low (0.01M). For the histidine

capacity, the volume of the eluate fraction and its histidine concentration are foremost of

importance. The volume is hereby determined by gravimetry and a density measurement

of the eluate pool.

The low bed heights used in this study have an identical impact on acid-base titration and

histidine capacity-based ionic capacities. Assuming an uncertainty of the caliper-based

measurement of the bed height of 0.5mm, this corresponds to an uncertainty of the ionic

capacities in the range of 10 to 3% depending on the different column volumes. Since both

methods are carried out using the same column packing and bed height measurement, this

explanation is not sufficient.

The main operational difference between acid-base titration and histidine capacity is that

titration is a type of dynamic capacity measure based on recording a dynamic break-

through of the titrant. In contrast, the histidine capacity relies on a static measure for

the histidine capacity, consisting of a prolonged loading with the histidine solution and

the complete elution of the bound histidine and subsequent measurement. Figuratively,

acid-base titration is to histidine capacity as dynamic binding capacity is to static binding

capacity. This consideration is consistent with the proportionality of ionic capacity and

binding capacity described in Eq. (3.15).

Staby et al. [146] quantified the differences in static binding capacities (SBC) and dynamic

binding capacities (10% and 50% DBC) using the model protein lysozyme and different

types of adsorbers. For Poros 50HS, Staby et al. determined the SBC to be 1.1 to 1.8

fold larger than the DBC, depending on the flow rate. This range is in line with the

ratio of the dynamic acid-base titration and the static histidine capacity of 1.4. Instead

of SP Sepharose FF, Staby et al. analyzed the closely related XL adsorber, exhibiting

additional dextrane surface extenders compared to the FF adsorber. The factor between

SBC and DBC was quantified to be in the range of 1.6 to 1.9 for the XL adsorber. This

range is close to the factor of 1.3, here determined for the two titration methods and the

FF adsorber.

Model parameter estimations based on different ionic capacities will differ. Therefore, es-

timated parameters have to be complemented with information on the underlying method,

the ionic capacity was determined with. The criterion for deciding in favor of acid-base

titration and histidine capacity is rather the applicability to different chromatographic

formats, the non-invasive nature of the method, and the methodical simplicity.
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3.5.2 Batch chromatography

The histidine capacity does not require an in-line conductivity detector and can, thus, be

adopted to batch chromatography.

As a test case, we prepared 96-well filter plates with Poros 50HS and SP Sepharose FF, us-

ing a ResiQuot device equipped with a 20.8µL grid. Using the histidine capacity method,

it is possible to determine the amount of histidine adsorbed to the resin and within the

pore volume of the adsorber particle. The amount of histidine can be converted into an

equivalent column volume value, based on a calibration carried out in column chromatog-

raphy.

The method is not restricted to a correction of the volume of adsorber plaques prepared

with the ResiQuot device as it was done in this work. The ResiQuot device was used in

this case study to compare the results to existing reports from literature, since alternative

approaches such as slurry pipetting highly depend on the individual experimental setup.

For Poros 50HS and SP Sepharose FF, the mean equivalent column volumes were deter-

mined to be 14.8±2.7µL and 13.9±0.6µL, respectively. Therefore, the presented histidine

method results in equivalent column volumes being smaller than the grid volume by a fac-

tor of 1.4 and 1.5 for Poros and Sepharose.

The difference between a settled bed and a flow compressed packed bed is reported in

literature for different adsorber materials. For a polystyrene-divenylbenzene (PS-DVB)

adsorber backbone, Nash et al.[116] found a factor describing this effect of 1.01 to 1.03

depending on the applied flow rate. Poros is composed of a PS-DVB backbone. Lee et

al. [95] reported a factor of 1.06 for the corresponding anion exchange adsorber used in this

work. A factor of 1.06 is also reported in the manual provided by the adsorber supplier [3].

For SP Sepharose FF, Dziennik et al. [38] found a factor of 1.09, and Nash et al. [116]

reported a factor of 1.05. For the corresponding anion exchange adsorber, Lee et al. [95]

found a factor of 1.15. Therefore, the reported flow compression effect can only partly

explain the measured difference between gird volume and equivalent column volume.

This conclusion is backed-up by the work of Bergander and Lacki [16] on the impact of

adsorber volume definition in batch chromatography. Bergander et al. compared the ad-

sorber volumes prepared with a ResiQuot device to a packed bed column, based on an

invasive dry weight approach. They found batch adsorber volumes to be reduced by a

factor of 1.6 compared to the grid volume (for a ResiQuot device and several different GE

adsorbers). These results are in good agreement with the results presented in this work.

According to Bergander et al., the underlying effects contributing to the different pack-

ing densities in column and batch chromatography are related to different pressure drops,

slurry concentrations, durations of the packing process, and adsorber specific properties.

3.5.3 Validation

Bergander et al. [16] emphasize the necessity to account for the exact adsorber volume in

batch chromatography, in case that a quantitative prediction of column chromatography

is needed. To evaluate the impact of the histidine correction on the data quality of batch

experiments, especially on the capability to predict column chromatographic experiments,

we predicted column breakthrough curves based on the data derived from a single condi-

tion batch adsorption isotherm.

Correcting the batch adsorber volumes using the histidine capacity minimizes the offset
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between the simulated and the experimental 100%DBC from 8.5% to 2.6%. The remain-

ing offset between the histidine corrected simulated trace and the experimental data, can

be attributed to several factors. The experimental breakthrough curve exhibits a minor

peak shoulder at the initial increase. This shoulder can be explained by impurities in the

lysozyme solution. These minor impurities are not considered in the simulation approach

and therefore increase the DBC offset. The steeper shape of the simulated curve is an-

other factor, contributing to the offset between the simulated and experimental DBCs.

In should be recalled, that the simulation approach is based on a single condition ad-

sorption isotherm. This approach can only provide information on the thermodynamics

of the interaction and not on the kinetics or fluid dynamics. The latter effects could be

accessed experimentally by batch kinetics or further column experiments. In addition,

the origination of the simulation approach from a single condition adsorption isotherm, is

sophisticated with respect to the estimation of a unique set of isotherm parameters. The

estimation of the characteristic charge ν and the shielding parameter σ seem to be less

impacted by this limitation, than the equilibrium parameters keq. The latter one is not

determinable uniquely from the single condition batch data.

3.6 Conclusion

To fulfill the QbD requirements, the pharmaceutical industry has to incorporate new tech-

nologies such as HTPD and mechanistic modeling.

Mechanistic modeling of ion exchange chromatography requires the determination of the

ionic capacity Λ of the adsorber. Standard techniques to determine the ionic capacity,

such as acid-base titration, are not compatible with high-throughput experimental sys-

tems. The presented histidine capacity avoids the pitfalls of acid-base titration, namely

the need to have a conductivity probe in high-throughput experimental systems and the

restriction to adsorbers which tolerate salt-free solutions.

Another limitation of current batch high-throughput experiments is the inadequately ad-

dressed problem of adsorber quantification. Most of the existing methods relate the batch

adsorber volume to the settled bed volume or the dry weight. Using the same adsorber

lot in column and batch chromatography and assuming an unaltered bead voidage, the

presented histidine capacity is capable of correlating the batch adsorber volume to the

equivalent volume of a packed-bed column.

In a case study, we demonstrated the possibility to predict a column breakthrough curve

based on a single condition batch adsorption isotherm, using the histidine capacity. As a

consequence, the usability of batch isotherm data can be extended from the measurement

of partition coefficients of different protein species derived from the initial isotherm slope

to determination of binding capacities which highly depend on a reliable determination of

the adsorber volume.

The presented case study can be extended from batch isotherms to batch kinetics or batch

bind-elute experiments, strengthening the role of batch data in conventional and in silico

process development.

The presented work has been focusing on CEX, but an adaptation to AEX is possible.

Modifications to characterize e.g., hydrophobicity in hydrophobic- or multi-modal chro-

matography using another molecule instead of histidine e.g., an aromatic amino acid, are

conceivable. We presented data for lab-scale column and batch chromatography, but in

principle, the method is also applicable to miniaturized robotic columns.
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Nomenclature

Abbreviation Unit Definition

εcolumn − column voidage

εparticle − particle voidage

εtotal − total voidage

Vdextrane µL retention volume of dextrane injection,

as non-pore-penetrating tracer

Vacetone or VNaCl µL retention volume of acetone or NaCl injection,

as pore-penetrating tracer

A230 AU absorption measured at 230nm

A230,10mm AU absorption measured at 230nm, pathlength 10mm

A900 or A995 AU absorption measured at 900nm or 995nm, respectively

CV µL geometric column volume

V eluate
his µL volume of eluate in the histidine capacity

neluatehis mol amount of histidine in the eluate

nadshis mol amount of adsorbed histidine

cloadhis
mol
L histidine concentration in the load solution

celuatehis
mol
L histidine concentration in the eluate

Λskeletonhis
mol
L ionic capacity per volume of adsorber skeleton,

determined with the histidine capacity

ΛCVhis
mol
L ionic capacity per column volume,

determined with the histidine capacity

nNa+ mol amount of exchanged sodium ions

VNaOH µL volume of titrant NaOH

cNaOH
mol
L concentration of titrant

ΛskeletonAcB
mol
L ionic capacity per volume of adsorber skeleton,

determined by acid-base titration

ΛCVAcB
mol
L ionic capacity per column volume,

determined by acid-base titration

mdry g adsorber dry weight

V uncorrected
batch µL volume of the uncorrected adsorber plaque, defined by

the geometric volume of the plaque grid (20.8µL)

V corrected
batch µL calculated equivalent column volume of the adsorber plaque

Vdead µL dead volume of Äkta LC and column housing

qCV g
L or mol

L adsorbed protein concentration based on the

geometric column volume

qskeleton g
L or mol

L adsorbed protein concentration based on the

adsorber skeleton volume

qCVmax
g
L maximum binding capacity per geometric column volume

qskeletonmax
g
L maximum binding capacity per adsorber skeleton volume

ceq
g
L or mol

L equilibrium fluid phase concentration of the protein

keq equilibrium parameter in the SMA isotherm

ν charge parameter in the SMA isotherm

σ shielding parameter in the SMA isotherm

csalt
mol
L apparent salt concentration (incl. displaced salt)

csalt,0
mol
L buffer salt concentration

MW g
mol molecular weight
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Abstract

Nowadays’ models in chromatography include many parameters that are hard to measure

experimentally, e.g. thermodynamic activity coefficients in models for hydrophobic inter-

action and mixed mode chromatography. In practical applications, it is hard to predict,

how many and which experiments to conduct for model calibration.

Optimal Experimental Design (OED) first determines the experimental set-up with highest

probable information content. Using this approach, the model parameters with the highest

statistical quality are found using the least number of experiments. This is especially

valuable when low sample volume is available for screening.

We present OED for column chromatography of proteins including the computation of ap-

proximate covariances and confidence intervals. A case study with the model protein glu-

cose oxidase investigates identifiability of adsorption isotherm parameters on three resins

by GE Healthcare: Capto� Q, Phenyl, and adhere. An extended General Rate Model was

developed to account for salt-dependent diffusion phenomena.

The results underline the improved reliability using OED at potentially much less time

and material consumption compared to manual experimental design. From the covariance

matrices it is further possible to gain insight into the models’ ability to describe the

protein’s sorption behavior for the various resins.

49
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4.1 Introduction

Mixed mode resins offer multiple binding interactions and are increasingly used in the

purification of antibodies [52; 160], oligosaccharides [117] and many other molecules. By

adjusting the operational conditions the binding modes can be reduced to a single inter-

action [70; 89] or used together to effect the separation. The mixed mode chromatog-

raphy (MMC) ligands often include features of ion-exchange chromatography (IEC) and

of hydrophobic interaction chromatography (HIC) ligands. They are highly suitable for

application in pH-tunable hydrophobic [81] or high salt conditions [78], and for capturing

specific proteins under physiological conditions [53].

As for other chromatographic methods, the fundamentals of mixed mode chromatogra-

phy can be understood and improved by creating reliable models [29]. The Steric Mass

Action model(SMA) [23] was employed successfully for mixed mode chromatography [83].

Mollerup’s thermodynamic framework [110; 111] increased the understanding of IEC as

well as HIC [113] and the optimisation of purification processes [112]. Based on this, Nfor

et al. developed a model for protein adsorption in IEC/HIC mixed mode chromatogra-

phy [120]. These models include many parameters, which are hard to measure experimen-

tally, for example thermodynamic activity or interaction coefficients. Especially in multi

component settings, it is hard to predict how many experiments to conduct for model cali-

bration and which ones will have the highest information content. Conventional Design of

Experiments (DoE) approaches will most probably include unnecessary experiments that

do not add certainty to the parameter estimates.

As mathematical models are available that describe the dynamics of the system, sensitivity

analysis allows to find optimal expriments for model calibration. While the objective of

parameter estimation is to find model parameters which minimize the disagreement of

simulation and measurement, Optimal Experimental Design (OED) [6] takes one step

backward and first determines the experimental set-up with highest probable information

content. Here, the objective is to minimize the uncertainty of the parameters measured

via the parameter covariance matrix. Using this approach, the model parameters with

the highest statistical quality are found using the least number of experiments. This is

especially valuable when low sample volume is available for screening.

The technique was described for nonlinear ordinary differential equations by Schlöder et al.

and applied to the reaction of urethane [9]. The same methodology was used by Arellano-

Garcia for SO2 oxidation [4]. A fed-batch reactor and the Lotka Volterra fishing problem

were approached with OED by Tenen et al. [151]. In the context of chromatography, Wozny

et al. [8] investigated the optimal determination of SMA parameters for β-lactoglobulin

using static batch experiments

Here, we present OED for column chromatography of proteins, including the computation

of approximate covariances and confidence intervals. A case study compares parameter

estimation with manually chosen experimental conditions and OED for the model protein

glucose oxidase on IEC, HIC and MMC resins to gain a deeper understanding of the

differences in sorption behavior. With Capto� adhere, GE Healthcare provides a mixed-

mode adsorbent that chemically combines the anion-exchange adsorbent Capto� Q, and

the hydrophobic interaction adsorbent Capto� Phenyl and is hence chosen for this task.
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4.2 Theory

4.2.1 Adsorption Models

The employed models for ion-exchange, hydrophobic interaction, and mixed mode chro-

matography are structurally very similar and presented in the following sections

4.2.1.1 Ion-exchange Chromatography

A protein molecule unit P in solution is assumed to bind to ν ligands L, exchanging ν

units of salt counter-ions SL:

P + νSL
 PL+ νS. (4.1)

The Steric Mass Action model [23] considers that the number of available ligands is further

reduced by steric shielding effects that are mostly caused by protein-protein repulsion [93].

The multi-component equilibrium formulation of the mobile phase concentrations c and

stationary phase concentrations q of m proteins and salt is given by

qi
ci

= keq,i

(
qsalt
csalt

)νi
i = 1, . . . ,m, (4.2)

where qsalt is the concentration of available ligands, given by

qsalt = ΛIEC −
m∑
i=1

(νi + σi) qi. (4.3)

Here, ΛIEC is the total concentration of binding sites in the stationary phase and σi
accounts for the steric shielding of protein i.

The concentration of counter-ions in the stationary phase is analogously given by

qsalt = ΛIEC −
m∑
i=1

νiqi. (4.4)

Jackobsson et al. [77] introduced binding kinetic rate constants kads and kdes with keq =

kads/kdes, here given in the formulation with kkin = k−1
des :

kkin,i
∂qi
∂t

= keq,iq
νi
saltci − cνsaltqi i = 1, . . . , n. (4.5)

4.2.1.2 Hydrophobic Interaction Chromatography

Mollerup established a model based on fundamental chemical thermodynamics [111]. In

contrast to IEC, a protein molecule unit P in solution is assumed to bind to n ligands L,

forming a protein ligand complex:

P + nL
 PLn. (4.6)
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Here, the equilibrium formulation is written in terms of the activity coefficients of the

species

qi
ci

= keq,i

(
qL
cv

)ni γPγL
γPNn

i = 1, . . . ,m, (4.7)

where γL and γPNn are assumed to be unity and the molarity of the solution in the pore

volume cv is constant. The protein solute activity coefficient is modeled as

γP,i = exp (Ks,icsalt +Kp,ici) γ
∞,w
P,i i = 1, . . . ,m, (4.8)

where Ks and Kp are constant interaction parameters and γ∞,wP is the activity coefficient

at infinite dilution.

Similarly to SMA, the concentration of available ligands qL, given by

qL = ΛHIC −
m∑
j=1

(nj + sj) qj , (4.9)

with a steric shielding coefficient s.

In the classical form [111], ΛniHIC is lumped into keq such that the loading is described with

the help of the single-component saturation concentrations qmax,i = ΛHIC/(ni + si):

qL = ΛHICq
′
L = ΛHIC

(
1−

m∑
i=1

qi
qmax,i

)
i = 1, . . . ,m, (4.10)

In the kinetic formulation, cv and γ∞,wP are lumped in the equilibrium constant:

kkin,i
∂qi
∂t

= keq,iq
′ni
L,i exp (Ks,icsalt +Kp,ici) ci − qi. (4.11)

4.2.1.3 Mixed Mode Chromatography

Nfor et al. developed a model for protein adsorption in IEC/HIC mixed mode chromatog-

raphy by assuming both adsorption modes to happen at the same time [120]:

P + νSL+ nL⇐⇒ PLn + νS. (4.12)

The equilibrium formulation was derived to be

qi
ci

= keq,i

(
qsalt
csalt

)νi (qL
cv

)ni
γp (4.13)

with the additional counter-ion balance known from SMA, Eq. (4.4).

The kinetic form is likewise:

kkin,i
∂qi
∂t

= keq,iq
νi
saltq

ni
L exp (Ks,icsalt +Kp,ici) ci

−cνisaltqi. (4.14)

The similarity to Eqs. (4.5) and (4.11) is apparent. When switching hydrophobic effects

off, i.e. n = Ks = Kp = 0, Eq. (4.14) reduces to Eq. (4.5). For ν = 0, we recover

Eq. (4.11).
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4.2.2 Column Model

The General Rate Model (GRM) [55] is employed to describe the macroscopic protein

transport through the column. The systems are of Convection Diffusion Reaction (CDR)

type. Eq. (4.15) describes the rate of change of a concentration ci(x, t) in the interstitial

phase of a column with length L to consist of convective mass transport in space with

the average interstitial velocity of the fluid u, peak broadening effects that are modeled

as dispersion in axial direction with respect to a coefficient Dax, and transition from

the interstitial concentration into the particle pore concentration cp,i which depends on

the porosity of the bed εb, the radius of adsorber particles rp and a component-specific

film transfer coefficient kfilm,i. The model is complemented with Danckwerts boundary

conditions, Eqs. (4.15),(4.17).

∂ci
∂t

= −u(t)
∂ci
∂x

+Dax
∂2ci
∂x2

− 1− εb
εb

kfilm,i
3

rp
(ci − cp,i) (4.15)

∂ci
∂x

(0, t) =
u(t)

Dax
(ci (0, t)− cin,i (t)) (4.16)

∂ci
∂x

(L, t) = 0 (4.17)

The GRM, Eq. (4.18), introduces a radial dimension r ∈ [0, rp] for the particles and a

component-specific pore diffusion coefficient Dp to model diffusion-driven mass transfer in

the pore system.

∂cp,i
∂t

=


1

r2

∂

∂r

(
r2Dp,i

∂cp,i
∂r

)
− 1− εp

εp

∂qi
∂t

for r ∈ (0, rp)

kfilm,i
εpDp,i

(ci − cp,i) for r = rp,

0 for r = 0.

(4.18)

The high salt concentrations used in the experiments influence the kinetic effects. It was

impossible to find Dp,i values that lead to sufficiently well fitting simulated chromatograms

for experiments with salt concentrations above 1 M (data not shown). Similarly, a strong

increase of the HETP value (height-equivalent of a theoretical plate) starting at 1 M salt

was reported for HIC resins [115] that could be modeled with an exponential function of

the form

HETP = a+ b exp(c · csalt). (4.19)

We also observed different HETP values for pulse injections of small tracers dissolved in

low and high salt buffer, such that the adsorption related terms in the HETP cannot be

the cause of the effect. The most influential term remaining in the HETP value for a

GRM is pore diffusivity [55]. Assuming the other contributors to be constant, the relation

is given by HETP = c1 + c2 ·D−1
p,i with two constants c1, c2 [55]. Combining this with the

HETP correlation of [115] and rearranging, we formulate the salt concentration-dependent

pore diffusion coefficient with three constants Dp0, Dp1, Dp2 as

Dp(csalt) = Dp0
1 +Dp1

1 +Dp1 · exp (Dp2 · csalt)
. (4.20)
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The formulation in this paper is chosen such that Dp (0) = Dp0 and values of differ-

ent species can be compared easily. For parameter estimation, we work the numerically

favorable equation

Dp(csalt) =
D′p0

1 +Dp1 · exp (Dp2 · csalt)
(4.21)

with D′p0 = Dp0 (1 +Dp1) in order to avoid rounding errors in the division.

4.2.3 Model Calibration

Estimation of an unknown parameter set θ̂ solves the least squares optimization problem

θ̂ = arg min
θ

Nexp∑
k=1

∑
j

(
cmeas,k(tj)− csim,k(tj ; θ)

σk

)2

, (4.22)

where cmeas,k(tj) and csim,k(tj) are the measured and simulated sum signals of experiment

k at the column outlet at point in time tj . σk is the variance of the measurement error

of the respective experiment. Assuming the noise of the parameter estimates to be zero-

mean Gaussian and isotropic, solving the least squares problem is identical to Maximum

Likelihood estimation.

4.2.4 Statistical Analysis

As a measure of parameter certainty, an estimate of the covariance matrix is used. The

diagonal elements of the covariance matrix represent the variance of the estimates. Obtain-

ing the exact covariance matrix is a complex mathematical problem that leads most studies

to use a Jacobian matrix [9] or a Fisher information matrix (FIM) instead [153; 162]. The

asymptotic variance of the maximum likelihood estimator is given by the Cramer-Rao

lower bound [33; 48], the reciprocal of the Fisher information:

Cov(θ) ≥ FIM(θ)−1 =

Nexp∑
k=1

FIMk(θ)

−1

. (4.23)

with the Fisher information matrix of each experiment k being defined with the parameter

sensitivities of a Function Fk(t) [137] :

FIMk(θ) =
1

σk2

ˆ
T

∂Fk
∂θj

∂Fk
∂θj

T

dt (4.24)

In our case, two function F are of interest, the model Fk(t) = csim,k(t) and the least

squares error Fk = (cmeas,k(t)− csim,k(t))2.

4.2.4.1 Confidence Intervals

The confidence intervals contain the true parameter of interest with an a prioi defined

probability. If not stated otherwise, confidence intervals with a probability of 95 % are
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calculated. Given an estimate of the covariance matrix created form Fk = (cmeas,k(t) −
csim,k(t))

2, a confidence intervals for θj is given by

θj ± c
√
diag (Cov (θ)) (4.25)

where c is the respective quantile of the Student’s t-distribution.

4.2.4.2 Optimal Experimental Design

The purpose of optimal experimental design is to identify the process set-ups that fa-

cilitate parameter estimation. Hence, the parameter sensitivity of the model is to be

maximized. Here, we use Fk(t) = csim,k(t) to determine the parameter covariance matrix

of the designed experiments and aim to minimize it [33; 48].

For this purpose, a scalar function of the covariance matrix has to be defined. A discussion

of proposed functions is given in [151]. In the following, the D-criterion is used that

minimizes the determinant of the covariance matrix and thus the volume of the confidence

ellipsoid.

D(Cov) = ln det (Cov) (4.26)

4.3 Materials and Methods

4.3.1 Chromatographic Instrumentation

The chromatographic experiments were carried out using an ÄKTApurifier 10 fast pro-

tein liquid chromatography (FPLC) system equipped with pump P-903, UV (10mm path

length), conductivity and pH monitor UPC-900, an autosampler A-905 and a fraction

collector Frac-950 (all GE Healthcare, Little Chalfont, Buckinghamshire, UK). The in-

strument was controlled with UNICORN 5.31 (GE Healthcare, Little Chalfont, Bucking-

hamshire, UK).

Table 4.1: Overview of chromatography resins.

Capto� Ligand Structure Binding

Q Quaternary amine R

N

ionic

Phenyl Phenyl R hydrophobic

adhere N-benzyl-n-methyl

ethanolamine

R

N

OH ionic, hydrophobic,

hydrogen bonds

4.3.2 Adsorbers, Buffers, and Protein

All resins were acquired pre-packed by ATOLL as 1 ml miniChrom columns with dimension

5 cm×0.2 cm2. The three different resins used are shown in Tab. 4.1. Capto�Q is a strong
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anion exchange resin and Capto�Phenyl is a hydrophobic interaction media. They are

used for capture or intermediate purification steps of proteins. Capto� adhere combines

the features of both Capto�Q and Capto�Phenyl. All columns were stored in 20% ethanol

at 4 ◦C.

20 mM 1-methylpiperazine buffers (Sigma-Aldrich, St. Louis, MO, USA) with 0 and

4 M NaCl (Merck, Darmstadt, Germany) were used at pH 4.5 for all experiments. The

different salt profiles were mixed from these two buffers. To regenerate the single mode

columns, the concentration of sodium chloride was increased to 4 M in case of Capto�Q

and decreased to 0 M in case of Capto�Phenyl. Because of the hydrophobic and ionic

features of Capto� adhere, the pH was reduced to 3 in a regeneration step by applying

50 mM NaH2PO4 (VWR, Darmstadt, Germany) to induce the charge repulsion effect. For

cleaning-in-place 1 M NaOH (Merck, Darmstadt, Germany) was used. All buffers were

0.22µm-filtrated and degassed by sonification.

Glucose Oxidase (from Aspergillus niger, no. G7141, Sigma-Aldrich, St. Louis, MO, USA)

was used as model protein. The protein was prepared using the respective running buffer

and 0.22µm-filtrated prior to usage.

4.3.3 System Characterization

To determine the system characteristics, experiments with tracer substances were carried

out. The flow rate was kept at 0.2 ml/min. The UV signal at 300 nm and conductivity

signal were recorded.

The FPLC dead volume was determined by tracer injections without a column attached

to the system. All other data were corrected with respect to this dead volume. The

column void volume was calculated from injections of a pore-penetrating, non-interacting

(acetone) and a non-pore-penetrating, non-interacting tracer (dextrane 2000 kDa). The

total ionic capacity was determined by acid-base titration.

4.3.4 Initial Model Calibration

Initial model calibration was performed with manually designed experiments. Thereafter,

optimal experimental design was repeated until the the D-criterion value did not change

significantly. If not stated otherwise, the sample concentration and volume were kept

constant at 0.06 mM and 0.5 ml for low salt binding, 0.02 mM and 1 ml for high salt

binding, because of solubility constraints.

In case of Capto� Q, three bind-elute runs were performed: two gradient and one step

elution. The gradients were ran from 0 M to 0.20 M NaCl, and 0 M to 4 M NaCl; the step

height was set to 0.1 M. The gradients and steps were initiated after 6 ml and the length

of the gradients was chosen to be 20 ml.

For Capto� Phenyl, three step elutions with varying binding buffer salt concentrations

were performed: 4 M, 2 M, and 1 M NaCl. All steps went down to 0 M NaCl and were

initiated after 6, 6, and 25 ml.

In case of Capto� adhere, three experiments with low-salt binding and three with high-

salt binding were performed, two steps and one gradient in each case. The steps had final

concentrations of 1 and 2 M NaCl and were again initiated after 6 ml. As before, the

gradients started at 6 ml, had a length of 20 ml and were ran from 0 to 2 M, and 4 to 0

M NaCl.
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Table 4.2: Measured (top) and calculated (bottom) column parameters.

Parameter Symbol Unit Proceeding Capto�

Q

Capto�

Phenyl

Capto�

adhere

Length L mm From

manufacturer

50 50 50

Volume V ml From

manufacturer

1 1 1

Bead radius rp mm From

manufacturer

0.045 0.0375 0.0375

System dead

volume

Vd ml Acetone pulse

without column

0.078 0.078 0.078

Retention

volume acetone

VRetAc ml Acetone pulse

with column

0.9 1.07 1.02

Retention

volume dextran

VRetDex ml Dextran pulse

with column

0.42 0.5 0.47

HETP HETP mm UNICORN peak

integration

0.366 0.283 0.182

Volume of HCl VHCl ml Acid/base

titration

24.2 13.28

Molarity of

HCl

cHCl M Manually

controlled

0.01 0.01

Flow rate u mm
s Manually

controlled

0.167 0.167 0.167

Total column

porosity

εt VRetAc − Vd 0.822 0.992 0.942

Bed porosity εb VRetDex − Vd 0.342 0.422 0.392

Particle

porosity

εp
εt−εc
1−εc

0.729 0.986 0.905

Interstitial flow uint
mm
s u/εb 0.487 0.395 0.426

Axial

dispersion

Dax
mm2

s uint/2 ·HETP 0.089 0.056 0.036

Ionic capacity Λ M cHCl·VHCl

Vc(1−εt)
1.36 2.29

4.3.5 Numerical Methods

The simulations were performed using the in-house software package ChromX [59]. A

finite element method with linear Streamline-Upwind-Petrov-Galerkin elements was used

here. The discretization in time is performed with the fractional step θ-scheme. The

non-linearity of the equation system introduced by the isotherm was treated with Picard

iteration. The resulting linear systems are solved by LU factorization.

The estimation process was performed sequentially. First, the measurements of a single

run were used for model calibration. After every completed estimation, the next exper-

iment was added to monitor the change of the confidence intervals for manually chosen

experimental set-ups. ChromX currently uses forward finite differences to compute the

parameter covariance matrix and confidence intervals.

The optimal experimental design procedure was implemented in MATLAB® R2014a that

was coupled to ChromX for chromatogram generation. For highest accuracy, the sensi-

tivities were directly calculated by differentiating the model equations. All equations are
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Table 4.3: Initial calibration of pore diffusion models.

Species Capto� kfilm[mm/s] Dp0

[
mm2/s

]
Dp1 Dp2

[
M−1

]
Glucose

oxidase

Q 7.38 · 10−4 ± 18% 3.37 · 10−6 ± 12 % - -
Phenyl 2.72 · 10−4 ± 1.5% 2.70 · 10−6 ± 6.5% 0.05± 45% 2.45± 11%

adhere 5.61 · 10−4 ± 20% 1.29 · 10−6 ± 41% 0.16± 143% 1.04± 31%

Salt

Q 5.68 · 10−3 ± 187% 2.61 · 10−5 ± 76% - -
Phenyl 1.43 · 10−4 ± 3.9% 3.75 · 10−6 ± 9.3% 0.07± 65% 0.96± 17%

adhere 1.15 · 10−4 ± 12% 1.24 · 10−5 ± 91% 13.9± 110% 0.58± 42%

Table 4.4: Initial isotherm parameter estimation results.

Capto� kkin[sM−1] keq ν σ qmax,HIC [M ]

Q 3.94·10−5 ± 28% 2.21·10−6±25% 4.79± 1.2% 143± 375% -
Phenyl 1.00± 432% 54.8± 5.6% - - 0.51± 62k%

adhere 0.21± 45% 0.16± 104% 2.54± 3.2% 283± 198% -

Capto� n s ks[M
−1] kp[M−1]

Phenyl 0.14± 62k% - 3.71± 0.9% −32.9± 20%

adhere 0.25± 463% 291± 1875% 3.68± 3.6% −8.01± 76%

sufficiently smooth to fulfill the Schwarz integrability condition. Hence, time and param-

eter derivative can be interchanged and the sensitivities can be integrated over time with

the same numerical methods.

4.4 Results and Discussion

4.4.1 Column Characterization

The dead and void volumes given in Table 4.2 were determined from the pulse injections

responses of acetone and dextran. The bead size of Capto� Q is slightly larger, leading

to a higher axial dispersion. Furthermore, its structure seems to differ as indicated by the

significantly lower bead porosity compared to the other adsorbents. Capto�Q also features

dextran surface extenders which shall increase the binding capacity. Indeed, the volume

of HCl needed for titration was almost twice as large as for Capto� adhere. However, its

lower porosity results in a lower ionic capacity per solid volume.

4.4.2 Initial Parameter Estimation

As described in section 4.2.2, different pore diffusion equations were employed to model

the measured chromatograms. For HIC and MMC, the GRM with salt-dependent pore

diffusion was used.

The estimated GRM and isotherm parameters are listed in Tables 4.3 and 4.4. The

resulting plots are displayed in Figure 4.1 and show very good agreement with the mea-

surements. The measurements have not been post-processed and include buffer effects.

The simulated sum signal consists of the protein’s UV trace and a linear contribution of

the salt concentration.
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Figure 4.1: Comparison of measured chromatogram (- -) and simulated sum signal (–) for
the salt elutions (· · · ) used for initial calibration of the IEC (A-C), HIC (D-F) and MMC
(G-L) model. Measurements have not been post-processed and include buffer effects. The
simulated sum signal consists of the protein’s UV trace and include a baseline shift (-·-).

It is interesting to note, that the two gradients on Capto� adhere show shoulders and

almost double peaks. As the peak shape is identical in the other recorded wavelengths 280

and 457 nm, it is unlikely that impurities are the cause of this. Similar phenomena have

been reported in the literature: Karger et al. described two peaks resulting from the injec-

tion of papain through HPLC and explained this two-peak phenomenon with a metastable

state of adsorbed protein after conformational change [82]. McNay et al. demonstrated

the partial unfolding of lysozyme adsorbed on hydrophobic surfaces with nuclear magnetic

and isotope-exchange techniques [108]. By applying an empirical approach, Jungbauer et

al. studied protein conformational change during hydrophobic interaction chromatography

depending on ligand type and salt concentration in the mobile phase [80].
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From the parameter estimates, it is unlikely that glucose oxidase unfolds during high

salt binding on the mixed mode resin. The characteristic parameter n is rather small.

Instead, we could observed the forming of shoulders in the simulation by varying the pore

diffusion parameters. The intra-column concentration show that during elution, part of

the desorbed protein starts to diffuse deeper into the particles, supported by the faster

diffusion rate due to decreasing salt concentration. This phenomenon continues as long as

a concentration gradient in the pores exits and the mobile phase salt concentration still

allows for binding. Numerical errors are unlikely, the simulations were performed on a fine

grid of 50 nodes in the radial dimension and did not change after further refinement.

4.4.3 Confidence Estimates

The 95% confidence intervals were determined from the respective global covariance ma-

trix including all fluid dynamic and isotherm parameter. They reveal that the remain-

ing uncertainty in the linear isotherm parameter estimates for glucose oxidase is still up

to ± 30%, ±20 % for the film transfer and pore diffusion coefficients, and the steric shield-

ing is completely undetermined. The influence of the parameter σ is only visible in the

non-linear range of the isotherm. It is safe to assume that the injected sample amount was

not sufficient to reach it. Furthermore, the correlation matrix contains some high entries

which means that the respective parameters correlate with each other and the experi-

ments did not contain information that only relates to a single one, e.g. (kkin, keq) = 0.45,

(kkin, ν) = −0.71 and (keq, ν) = −0.67.

For HIC, only keq and some of the GRM parameters could be determined with reasonable

certainty. As for IEC, the nonlinear range was not reached, n and qmax are undetermined

with confidence intervals ±62, 000%. Similar results were obtained for MMC. σ, n, and s,

the parameters that are only influential in the nonlinear range have the highest uncertainty.

It is interesting to note, that the estimated kp values are negative for both, HIC and

MMC. The parameter ks and kp were introduced by Mollerup depending on protein, salt

and pH [112]. The estimated values ks > 1 indicates that the water-protein interactions

are stronger than the salt-protein interactions under the given circumstances. The value

kp < 0 implies that the protein-protein interactions are stronger than the water-protein

interactions.

4.4.4 Optimal Experimental Design

In order to reduce the parameter uncertainty, three experiments were designed consecu-

tively for each resin.

For IEC, the proposed bind/elution conditions were

Exp. 4: a step from 0.0419 M to 4.02 M,

Exp. 5: a gradient from 0.02 M to 3.05 M over 20 CV and

Exp. 6: a gradient from 0.1642 to 0.4959 M over 20 CV.
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Table 4.5: Final calibration of pore diffusion models.

Species Capto� kfilm[mm/s] Dp0

[
mm2/s

]
Dp1 Dp2

[
M−1

]
Glucose

Oxidase

Q 6.15 · 10−3 ± 116% 1.60 · 10−6 ± 6.0% - -
Phenyl 2.43 · 10−4 ± 1.1% 2.51 · 10−6 ± 21% 0.03± 12% 2.45± 0.6%

adhere 3.74 · 10−4 ± 10% 1.26 · 10−6 ± 66% 0.18± 156% 0.94± 45%

Salt

Q 5.70 · 10−3 ± 19% 3.23 · 10−5 ± 24% - -
Phenyl 1.79 · 10−4 ± 3.7% 3.88 · 10−6 ± 19% 0.06± 18% 0.96± 9.2%

adhere 1.52 · 10−4 ± 14% 6.62 · 10−5 ± 1308% 3.23± 1233% 0.66± 129%

Table 4.6: Final isotherm parameter estimation results.

Capto� kkin[sM−1] keq ν σ qmax[M ]

Q 1.02·10−4 ± 15% 5.60·10−6±12% 4.81± 0.6% 48.4± 370% -
Phenyl 1.00± 1462% 50.4± 7.8% - - 0.13± 83%

adhere 0.15± 63% 0.15± 232% 2.90± 9% 291± 83% -

Capto� n s ks[M
−1] kp[M−1]

Phenyl 2.68± 109% - 3.58± 1.1% 3577± 422%

adhere 0.24± 984% 348± 171% 3.80± 9.8% −20.2± 51%

Over the course of OED, the logarithm of the determinant reduced as from

Exp. 1–3: ln (det (Cov)) = −123 to

Exp. 1–4: ln (det (Cov)) = −127,

Exp. 1–5: ln (det (Cov)) = −130.5, and finally

Exp. 1–6: ln (det (Cov)) = −130.9.

The last experiment was not able to improve the objective value significantly indicating

that the model cannot be improved under the given constraints.

All parameters are in the same order of magnitude. The film transfer values now attain the

maximum and kinetics are even faster. The charge value changed only slightly and steric

shielding increased by 25%. While the confidence intervals could be narrowed significantly,

not all correlations improved the same. (kkin, ν) = −0.19 and (keq, ν) = −0.19 improved

clearly, but (kkin, keq) = 0.40 did not. A very shallow salt gradient could have improved

the certainty further, but was not proposed by OED. A narrower design space would have

been beneficial, avoiding unnecessary high salt concentrations.

For HIC, most confidence intervals improved significantly. The optimally designed exper-

iments were two gradients from 4 M to 0.02 M and 3.04 M to 0.23 M, and a step from

3.1 M to 0.47 M. The kpvalue, which is now positive is still not well determined and could

be removed from the equation when staying within the explored design space. The kkin
value of 1 is at the natural upper bound but the fit would have improved further for higher

values. This indicates that the desorption term of the kinetic isotherm equation should

be smaller. The cause could be further salt concentration dependencies or a hysteresis

of adsorption and desorption kinetics. Further studies are necessary to investigate the

kinetics of HIC binding under different salt concentrations.
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Figure 4.2: Ill-posed model equations lead to a suboptimal shape of the confidence ellipsoid.
HIC isotherm parameters n, kads = keq/kkin and kdes = k−1

kin were estimated with the
optimum being located skew to the parameter axes which show the remaining size of the

confidence interval in percent compared to the first estimation.

Plotting the confidence ellipsoids can be beneficial when assessing the quality of the es-

timates. To demonstrate this, we performed parameter estimation for the HIC model

again, but with the (kads, kdes) formulation instead of (keq, kkin). In a previous study for

SMA [61], it was shown that deterministic solvers fail when the direction of decent is skew

to the parameter axes. For the HIC model parameters kads, kdes, and n, we obtained the

ellipsoids plotted in Fig. 4.2 for Exp. 1–3, 1–4, 1–5, and 1–6. While the lateral view shows

the relative shrinking of confidence intervals, the aerial view shows a similar result as in

[61] for SMA. The deterministic optimizer was not able to move away from the initial es-

timate and the confidence ellipsoid is long drawn skew to the axes. From the plot it would

have been obvious that the ratio kads/kdes must be considered to minimize the volume of

the ellipsoid.

Completely different results were obtained for MMC. Unfortunately, some of the confidence

intervals became larger after applying OED. This does not necessarily mean, that the

actual values are worse only that the fit is not as sensitive anymore to small changes in

the parameter values. The three additional runs were all gradient elutions from 0.17 M to

4.02 M, 0.22 M to 1.84 M and 3.5 M to 0.65 M.

The correlation matrix shows three clusters (Fig. 4.3). The GRM parameters of glucose

oxidase correlate strongly with each other, the same applies to salt. This could be caused

by the high salt concentrations of the first two OED gradients that lead to a significant

flow-through peak which do not seem to be sensitive to changes in the GRM parameters.

The third cluster spans all isotherm parameters.

While the fit is certainly very good and even shoulders could be simulated, only ks and ν

have acceptable confidence intervals. For comparison, the average error reported in [120]

for protein parameters determined from batch isotherms are keq > 25 %,ν > 10 %, n >

40 %, kp > 40 %, ks > 25 %, qmax > 15 %.
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Figure 4.3: Visualization of the correlation matrix of the MMC model parameters after
applying OED. The range of correlation coefficients is [−1, 1] with higher absolute values

indicating stronger correlations.

4.4.5 Interpretation of Isotherm Parameters

Many SMA parameter sets have been reported in literature, e.g. [60; 72; 126]. The order of

magnitude of the parameters found here is reasonable: kkin is small in order to generate a

steep elution peak front and ν≈5 means that the 160 kDa molecule binds to approximately

5 ligands at once. The keq values given here are taken with respect to the adsorber

skeleton. To interpret the magnitude easier, approximate values per column volume can

be calculated. This is achieved via a transformation of the equilibrium isotherm:

q = keq (Λ− (ν + σ) q)ν c−νs c

= keq

(
1− εt
1− εt

Λ− (ν + σ) q

)ν
c−νs c

= keq (1− εt)−ν ((1− εt) Λ− (1− εt) (ν + σ) q)ν c−νs c

=: keq,CV (ΛCV − (ν + σCV ) q)ν c−νs c.
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We obtain a reasonable value of

keq,CV = keq (1− εt)−ν = 0.023

that fits to the immediate desorption observed with slightly increased salt concentration.

The steric shielding parameter is unfortunately undetermined.

The GRM parameters of the HIC model are the best in terms of certainty. The same

applies to the non-linear parameters n and qmax. The usually lower capacity of HIC resins

seems to be beneficial in this case. However, the high uncertainty in the kinetic parameter

combined with the tendency to attain values greater than one indicates that the model is

not perfectly formulated.

The confidence and correlation analysis of the MMC model parameters shows that the

nonlinear parameters could not be determined under the given constraints. Nevertheless,

OED was able to improve the remaing correlations in a way that GRM and isotherm

parameters mostly correlate among themselves.

4.5 Conclusions

The resin Capto� adhere offers the ion-exchange and hydrophobic interaction modes of

Capto�Q and Capto� phenyl but the employed model protein glucose oxidase shows a very

unique binding behavior. Models based on the SMA, Mollerups’s HIC, and Nfor’s MMC

model were calibrated initially by three (IEC and HIC) or six (MMC) chromatograms

obtained under manually selected conditions. As none of the models supports a change in

pH, only elution by varying of the salt concentration could be applied.

Based on these initial models, new experimental set-ups were designed by minimizing the

confidence ellipsoid according to the D-optimality criterion Eq. (4.26). After sequentially

conducting the new experiments , the size of the confidence ellipsoid could be reduced. The

results underline the potential of OED to reduce time and material consumption compared

to DoEs, where additional experiments do not necessarily improve the confidence.

To evaluate the reliability of estimates, approximate confidence intervals were calculated

for each estimated parameter after including the measurements of a new experiment.

After three OED runs, IEC and HIC parameter estimates became more reliable, MMC

still showed strong correlations and uncertainties.

The model parameters were analyzed to gain information on the adsorption of glucose

oxidase on Capto� Q, phenyl and adhere under the investigated experimental conditions.

In the literature, only non-negative estimates for the mixed-mode isotherm parameter kp
were reported, when modeling the adsorption between Capto� adhere and proteins with

similar pI and size as glucose oxidase [120]. Here, we obtained highly negative values for

both MMC and HIC, indicating that protein-protein interactions dominate over water-

protein interactions. This results should be subject of further studies.

Furthermore, peak distortions were observed during HIC and MMC elution. On the one

hand, these observations match with descriptions of partial unfolding of proteins during
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interaction with hydrophobic ligands in the literature [80; 108]. But this phenomenon is

currently not taken into account when modeling HIC and MMC mechanistically. On the

other hand, the characteristic HIC parameter n is too small to justify the assumption of

unfolding and we could trigger the forming of shoulders by introducing salt-dependent

pore diffusion.

In summary, mixed mode chromatography offers a broad operating window under high and

low salt conditions. The OED approach was used successfully to improve the reliability of

isotherm parameter estimates in two of three cases investigated, IEX and HIC. For MMC

it became obvious that an excellent fit does not necessarily imply a well-calibrated model.

In future, the OED approach could be used for automated process development while

enhancing the reliability and robustness of downstream-processing when implementing

the Quality by Design approach. However, expert knowledge is still necessary to define

a reasonable parameter space. Otherwise, OED might propose infeasible or unsuitable

experiments at the boundaries.
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Abstract

UV absorbance measurements play an important role in bioprocess development. Yield

and purity are often evaluated in terms of peak percentages in analytical size exclusion

chromatography or ion-exchange chromatography. Also, industrial chromatography steps

are usually controlled based on UV data with pooling decisions according to absorbance

thresholds.

Model-based process development would make elaborate screening experiments redundant,

once the model has been calibrated to the specific process step. So far, absorbance mea-

surements could not be used directly for modelling chromatography steps as the commonly

applied models rely on mass or molar concentration. This study presents mechanistic mod-

elling of an industrially relevant chromatography setting without any knowledge of the feed

composition. The model equations were re-written to employ boundary conditions in UV

absorbance units, the absorption coefficients were shifted into the isotherm, and standard

parameter estimation procedures could be applied. An anion-exchange chromatography

case study of a target protein expressed in Escherichia coli and eleven lumped impurity

peaks demonstrated practical applicability. The target protein concentration in the feed

material was estimated from chromatograms. Using this method, initially unknown feed

concentrations can be determined a posteriori for ion-exchange and multi-modal chro-

matography from single-component absorbance curves.

67
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Practical Application

This study explores the feasibility of modelling ion-exchange chromatography without

knowledge of feed composition in terms of molar or mass concentration. This is espe-

cially valuable in early-stage process development when no information is available on the

impurities. It was shown that all model parameters can be determined uniquely from

single-component elution curves. Here, the concentration of Cherry-tagged glutathione-

S-transferase within a crude feedstock could be determined from chromatograms at a

particular wavelength.

5.1 Introduction

Industrial downstream processing (DSP) faces the challenge of efficiently purifying a prod-

uct out of a very heterogeneous mixture. The purification sequence is commonly based

on platform processes that are only slightly adapted to new target components to acceler-

ate process development [100; 145]. Prior to this, high-throughput screening methods are

often used to find promising initial conditions for platform processing [17]. Mechanistic

modelling is a favorable alternative, provided the model parameters can be determined

with less effort, allowing identification of optimal process parameters in silico.

The common models in liquid chromatography describe the mass transport in the column

by so-called Convection Diffusion Reaction (CDR) equations, where the reaction term

models phase transitions and, eventually, the retention of the species. With no a priori

knowledge about the components’ behavior, the inverse method is a suitable option which

alters parameters in a systematic fashion to achieve a match of the recorded chromatogram

and the model prediction.

The potential of mathematical modelling and numerical optimization of chromatography

has already been demonstrated in academic set-ups for mixtures of small molecules [1; 42],

model proteins [127] and antibodies [35; 85], and also for industrial process steps [30; 112].

All applications have in common, that molar concentrations in the feed were known and

sensor calibrations existed for all components.

Cornel et al. [32] determined absorption coefficients for a two-component mixture directly

from the simulated concentration curves by choosing the best fitting values in each iteration

of the estimation procedure. No sensor calibration was necessary, but mass concentrations

in the feed were known a priori.

In the following sections, we describe a mechanistic modelling approach for an industri-

ally relevant chromatography setting that does not require prior knowledge of the feed

composition in terms of molar or mass concentrations. We re-write the model equation

for boundary conditions in UV absorbance units and aim at determining the unknown

feed concentrations a posteriori by taking advantage of the particular structure of stoi-

chiometric exchange models. Standard parameter estimation procedures can be applied if

single-component absorption curves are available.

A case study based on an anion-exchange chromatographic (AEX) process step (Q Sepharose

FF, GE Healthcare) demonstrates the applicability. The mixture fed into AEX is a crude

feed stock of Escherichia Coli SE 1, including the Cherry-tagged enzyme Glutathione-S-

Transferase as the product.
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Table 5.1: Measured column parameters.

Parameter Symbol Value Unit Proceeding

Diameter d 7 mm From manufacturer
Length L 25 mm From manufacturer
Bead radius rp 0.045 mm From manufacturer
System dead volume Vd 0.07 ml Acetone injection

without column
Retention volume
Acetone

VRetAc 0.96 ml Acetone peak injection
with column

Retention volume
dextran

VRetDex 0.34 ml Dextran peak injection
with column

Standard deviation of
dextran

σDex 0.029 ml Äkta peak integration

Volume of HCl VHCl 1.48 ml Acid/base titration
Molarity of HCl cHCl 0.01 M Manually controlled
Flow rate u 0.2 mm

s Manually controlled

5.2 Materials and Methods

5.2.1 Column Parameter Determination

To model the mass transport in the chromatography system, the column properties listed

in Tables 5.1 and 5.2 must be determined by pulse injections of non-interacting tracer

molecules [109]. A 1 ml column (effective volume 0.962 ml), with Q Sepharose Fast

Flow Resin (GE Healthcare, Freiburg, Germany) was analyzed firstly with an 1 % ace-

tone (Merck, Darmstadt, Germany) pulse and secondly with a dextran pulse from leu-

conostoc spp. MW 2,000,000 (Sigma Aldrich, Steinheim, Germany) using an Äkta Purifier

system (GE Healthcare, Little Chalfont, UK) controlled with Unicorn 5.2 (GE Healthcare,

Uppsala, Sweden) to determine the essential system parameters [109] presented in Table

5.1. Acid-base titration was carried out to determine the total ionic capacity: the column

was flushed with a 0.5 M NaOH solution (Merck, Darmstadt, Germany) until a constant

UV and conductivity signal was achieved. Afterwards, the column was washed with ultra

pure water until a constant UV and conductivity baseline was reached. Then, the column

was titrated at a flow of 0.64 ml/min with a 0.01 M HCl solution (Merck, Darmstadt,

Germany) until an increase in the conductivity signal was recorded. From the Cl-ion

concentration of the titrant and the volume of the applied titrant, the total number of

exchangeable ions was calculated. All chemicals used were obtained in highest quality.

With this set of parameters, all system-specific parameters occurring in the mathematical

model can be fixed as given in Table 5.2.

5.2.2 Sample Production

The applied sample consisted of an Escherichia Coli SE 1 lysate, including Cherry-tagged

Glutathione-S-Transferase (GST) as a product. The Cherry-tag, which can be fused to any
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Parameter Symbol Value Unit Proceeding

Volume V 0.962 ml 1
4 · π · d2 · L

Fluid volume Vf 0.89 ml VRetAc − Vd
Interstitial volume Vint 0.27 ml VRetDex − Vd
Total column porosity εt 0.925

Vf
V

Interstitial porosity εb 0.28 Vint
V

Particle porosity εp 0.896
Vf−Vint
V−Vint

Interstitial flow uint 0.714 mm
s

u
εb

Axial dispersion Dax 0.1 mm2

s
1
2 · L · uint ·

(
σDex
Vint

)2

Ionic capacity Λ 0.22 M cHCl·VHCl
V (1−εb)(1−εp)

Table 5.2: Calculated column parameters.

target protein, allows for straightforward product analytics by VIS absorbance measure-

ments [10]. The cultivation was performed for 24 h in 800 ml standard TB (terrific broth)

medium at 37 °C and 180 rpm rotational speed in 2.5 l Tunair flasks (Sigma Aldrich). Cell

disruption was performed by sonication of the cell pellet in 20 ml of 50 mM Tris buffer

(pH 8), including 1X Sigma FAST protease inhibitor (Sigma Aldrich), in a Branson Digi-

tal Sonifier (70 % pulse amplitude, 10 X 15 s pulse duration, 30 s resting on ice between

pulses). The lysate was centrifuged at 12000 rpm for 60 min at 10 °C using a 5810 R cen-

trifuge (Eppendorf, Germany) followed by a second clarification step using 0.2 µm sterile

PES filters (VWR, Germany). Finally, the permeate was 10 times diluted in 50 mM Tris

buffer (pH 8).

5.2.3 Sample Characterisation

For comparison, the product concentration was determined in the Caliper LabChip GX II

capillary gel electrophoresis system with LabChip GX 3.1 software (Perkin Elmer, Hop-

kinton, USA). The HT Protein Express and Pico LabChip was run with the HT Protein

Express LabChip reagent kit using the HT Protein Express 200 assay. Cherry-tagged GST

was identified using the sample ladder from the reagent kit. The product was quantified by

peak-baseline integration of the fluorescence signals (Fig. 5.1) and scaling to an external

lysozyme protein standard of 1 mg/ml.

5.2.4 Bind-elute Experiments

The component-specific isotherm parameters are determined from bind-elute experiments.

The general approach is identical to concentration-based parameter estimation [35; 85;

127]. A 50 mM Tris-HCl buffer, pH 8 was employed as the mobile phase during binding

and the same buffer supplemented with 1 M NaCl was used for elution. Different salt

gradients were generated from these two buffers. After the 0.5 ml sample was injected

(12.4 ml for the breakthrough experiment), the column was washed with low-salt buffer

for 3 ml of 50 mM Tris-HCl buffer, before initiating linear gradient (0 to 1 M NaCl) elution

over 5, 10, 15 and 20 ml. On gradient completion the columns were irrigated with 2 ml of

50 mM Tris-HCl + 1 M NaCl before re-equilibrating with 5 ml of 50 mM Tris-HCl buffer.

The linear phase linear velocity employed was 0.2 mm/s throughout.
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Figure 5.1: Capillary gel electrophoresis analysis of feed material.

5.2.5 Parameter Estimation

In general, estimation of an unknown parameter set p solves the least squares optimization

problem

min
p

∑
j

m(tj)−
∑
i≥1

ci(L, tj ; p) · ai

2

, (5.1)

where m(tj) is the measured chromatogram value at time tj , typically given in milli ab-

sorbance units [mAU]. This measurement might also contain noise, which can be neglected

when assuming the noise to be zero-mean Gaussian and isotropic.

ci(L, t) is the simulated mass or molar concentrations at the outlet of the column with

length L. The transformation into absorbance units is performed with a scaling factor ai.

According to Beer’s law, the absorption coefficient ai consists of an extinction coefficient

and UV cell path length. It is unknown in this case.

5.2.6 Chromatography Model

The Transport Dispersive Model (TDM) [109] in Eqs. (5.2) and (5.3) is used to model the

macroscopic protein transport through the column. For simplicity, the component-specific

internal and external diffusion effects are lumped in an effective mass transfer coefficient.

The system is of Convection Diffusion Reaction (CDR) type. Eq. (5.2) describes the rate

of change of the concentration ci(x, t) of component i in the interstitial volume of a col-

umn with length L, which consists of convective mass transport in space with the average

interstitial velocity of the fluid u. Peak broadening effects are modelled as dispersion in

axial direction with respect to a coefficient Dax. The exchange between the interstitial

concentration and the particle pore concentration cp,i(x, t) depends on the porosity of the

bed εb, the radius of adsorber particles rp, and a component-specific effective mass trans-

fer coefficient keff,i. The model is one-dimensional in space, such that the concentrations



72 UV Absorption-based Inverse Modelling

depend on the axial position in the column and time. Equation (5.3) models the accumu-

lation of mass in the pore volume cp,i and stationary phase qi as a function of the particle

porosity εp. The model is complemented by Danckwerts boundary conditions Eqs. (5.4),

(5.5), including the applied inlet concentration cin,i, and an isotherm equation modelling

the stationary phase concentration qi.

∂ci
∂t

= −u(t)
∂ci
∂x

+Dax
∂2ci
∂x2

− 1− εb
εb

keff,i
3

rp
(ci − cp,i) (5.2)

∂cp,i
∂t

= −1− εp
εp

∂qi
∂t

+ keff,i
3

εprp
(ci − cp,i) (5.3)

∂ci
∂x

(0, t) =
u(t)

Dax
(ci (0, t)− cin,i (t)) (5.4)

∂ci
∂x

(L, t) = 0 (5.5)

The steric mass action isotherm (SMA) [23] is a commonly used semi-mechanistic isotherm

in ion-exchange chromatography. It is capable of reproducing the influence of counter ions

on the retention behavior of protein species using the proteins’ characteristic charges νi.

In addition, it considers adsorber properties such as the total ionic capacity Λ and steric

shielding effects σi of the protein covering an amount of binding sites, greater than the

actual number of sites it interacts with. The kinetic SMA isotherm is given in Eq. (5.6) for

k proteins, with qi and cp,i being the concentration of the protein i ∈ {1, . . . , k} adsorbed

and in solution, respectively. cp,salt is the salt concentration of the solution. kads,i and

kdes,i are the constants of the adsorption and desorption rate.

∂qi
∂t

= kads,i

Λ−
k∑
j=1

(νj + σj)qj

νi

cp,i − kdes,icνip,saltqi (5.6)

qsalt = Λ−
k∑
j=1

νjqj (5.7)

The model is chosen because of its capability of simulating the whole chromatographic

process, including elution, by changing the induced salt concentration at the inlet. The

model is based on molar concentrations, such that the boundary conditions of the TDM

must be set in terms of molarities.

5.2.7 Transformation

As the SMA model is based on molar concentrations [M], interstitial and pore volume

concentrations must be given in [M] as well. This also applies to the boundary conditions.

Here, the exact molar concentrations in the feed are unknown, as are the scaling factors

for UV absorbance. We will re-write the equations to directly incorporate UV absorbance

values.

First, the injected protein concentrations are transformed into absorbance values:

c′in[mAU ] = a [mAU/M ] · cin[M ]. (5.8)
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These can be determined later from the respective peak area in the chromatogram.

The equations for the interstitial and pore volume as well as the boundary conditions are

linear in c. These can be multiplied by a to obtain

ai
∂ci
∂t

= ai

[
−u∂ci

∂x
+Dax

∂2ci
∂x2

− 1− εc
εc

kf (ci − cp,i)
]

(5.9)

⇐⇒ ∂c′i
∂t

= −u∂c
′
i

∂x
+Dax

∂2c′i
∂x2

− 1− εc
εc

kf
(
c′i − c′p,i

)
(5.10)

∂c′i
∂x

(0, t) =
u

Dax

(
c′i (0, t)− c′in,i (t)

)
(5.11)

∂c′i
∂x

(L, t) = 0 (5.12)

We obtain equations for c′i = ai · ci that use c′p,i = ai · cp,i. This is calculated from the

scaled lumped rate model

εp
∂c′p,i
∂t

+ (1− εp)
∂q′i
∂t

= keff,i
3

rp

(
c′i − c′p,i

)
. (5.13)

Again, we require an equation for q′i = ai · qi. Scaling the kinetic SMA formulation yields

ai
∂qi
∂t

= ai

kads,i
Λ−

k∑
j=1

(νj + σj) qj

νi

cp,i − kdes,icνis qi

 (5.14)

⇐⇒ ∂q′i
∂t

= kads,i

Λ−
k∑
j=1

(νj + σj) qj

νi

c′p,i − kdes,icνis q′i (5.15)

⇐⇒ ∂q′i
∂t

= kads,i

Λ−
k∑
j=1

(νj + σj)
aj
aj
qj

νi

c′p,i − kdes,icνis q′i (5.16)

⇐⇒ ∂q′i
∂t

= kads,i

Λ−
k∑
j=1

νj + σj
aj

q′j

νi

c′p,i − kdes,icνis q′i. (5.17)

Here, we multiplied by
aj
aj

in step (5.15)→(5.16) to transform the remaining q into q′.

Essentially, we shifted the unknown scaling factor from the least-squares problem (5.1)

into the isotherm.

We are left with Eq. (5.7), which can be altered to include q′ as above:

qsalt = Λ−
k∑
j=1

νjqj (5.18)

= Λ−
k∑
j=1

νj
aj
aj
qj (5.19)
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= Λ−
k∑
j=1

νj
aj
q′j . (5.20)

The transformation procedure is also applicable to other isotherms with stoichiometric

exchange, e.g. the mixed-mode isotherm in [120].

Binding models of Langmuir type and isotherms without an additional equation for counter-

ions, e.g. for hydrophobic interaction chromatography (HIC) [112], can be treated as

above, but due to the missing second equation, a will remain hidden within other con-

stants. In case of the kinetic Langmuir isotherm, we obtain

∂qi
∂t

= kads,iqmax,i

1−
k∑
j=1

qj
qmax,j

 cp,i − kdes,iqi (5.21)

⇐⇒ ∂q′i
∂t

= k′ads,iq
′
max,i

1−
k∑
j=1

q′j
q′max,j

 c′p,i − kdes,iq′i, (5.22)

with k′ads,i = kads,i/ai and q′max,i = qmax,i ·ai . These parameters can be used for UV-based

modelling but not for determining absorption coefficients and molar concentrations.

Other convection-diffusion models, such as the general rate model [109] or models of radial

flow chromatography [50], are also linear in the concentration variables and can be treated

as the TDM above.

5.2.8 Uniqueness

In this section, it is shown that the transformation does not affect the parameter determi-

nation.

The linear range of the isotherm is uninfluenced by the transformation. For

Λ�∑k
j=1

νj+σj
aj

q′j , we obtain

∂q′i
∂t
≈ kads,iΛνic′p,i − kdes,icνis q′i. (5.23)

Consequently, all methods to determine the linear SMA parameters kads, kdes, and ν

can be employed here. It has been shown that the characteristic charge ν and equilibrium

coefficient, defined as keq = kads
kdes

, determine the retention time in gradient elution [143]. At

least two gradients with different lengths and/or slopes are necessary to uniquely determine

the two values. The kinetic parameter kdes can be identified from the peak shape [85]. This

method is also applicable to multi-component settings, as no protein-protein interactions

are assumed to happen in the linear range.

The non-linear parameter σ is typically determined by a frontal experiment or from batch

isotherms. Both methods rely on determining the saturation capacity qmax = Λ
ν+σ and

calculating

σ =
Λ

qmax
− ν. (5.24)
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If the [mAU] equivalent q′max was determined, the equation becomes

σ =
Λ · a
q′max

− ν. (5.25)

With known ν and a, σ can be uniquely determined. Alternatively, the steric factor can

be identified from the peak shape in non-linear chromatography [44], again with known

ν and a. This method allows for including additional steric shielding effects in multi-

component settings.

To determine a, one of the original methods for identifying the characteristic charge can be

used. It relied on measuring the increase in conductivity caused by freed counter-ions [23].

In the UV-based case, the amount of freed counter-ions can be determined from the second

isotherm equation (5.20): ˆ L

0

k∑
j=1

νj
aj
q′j dx. (5.26)

If ν has been determined, e.g. from gradient elutions as above, a can be identified uniquely

from the increase in conductivity in single-component adsorption. In non-linear multi-

component settings, the increase of conductivity will be visible in the chromatogram.

The a-dependent locally varying counter-ion concentration in the pores due to adsorbing

proteins will lead to a different adsorption behaviour.

Summarizing, every parameter plays a distinct role and can be determined from single-

component absorbance curves. If only the chromatogram is available in multi-component

settings, the parameters might be correlated.

5.2.9 Numerical Solution

The numerical simulation is performed using the in-house software package ChromX [84].

Following the method of lines, the equation system is first discretized in space using the Fi-

nite Element Method (FEM). A Streamline-Upwind-Petrov-Galerkin (SUPG) ansatz was

used here with linear basis and test functions. The discretisation in time is performed

with the fractional step θ-scheme, a semi-implicit procedure providing second-order accu-

racy [47]. Finally, the non-linearity of the equation system introduced by the isotherm

must be treated with an iterative procedure, here, Picard iteration. The resulting linear

systems are solved by LU factorization.

A variety of algorithms is available for the solution of the optimisation problem in Eq. (5.1).

We employed a heuristic method, the genetic algorithm implementation GAlib [161], and

a deterministic Levenberg-Marquardt implementation CMinpack [37]. Genetic algorithms

prevent local minimums by performing random jumps and, hence, explore a larger area of

the search space. The result of the genetic algorithm is then refined with the deterministic

algorithm. To support this, we divide the kinetic isotherm by kdes and use the formulation

with equilibrium coefficient keq. Working with kads would require to always change kdes at

the same time to keep the retention time constant. This is unsuitable for the deterministic

algorithm that only uses first derivatives [61].
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Figure 5.2: Result of the 20 ml gradient elution: UV 280 nm (solid line), UV 536 nm
(dotted line) and conductivity (dashed line). 11 impurities were identified with peak
maxima at 0.65 ml (imp. 1), 1.21 ml (imp. 2), 1.96 ml (imp. 3), 5 ml (imp. 4), 6.5 ml
(imp. 5), 7.5 ml (imp. 6), 8.23 ml (imp. 7), 9.21 ml (imp. 8), 11.28 (imp. 9), 15.52 ml
(imp. 10), 17.11 ml (imp. 11). The target component is clearly visible in the 536 nm

signal, with the peak maximum at 11.54 ml.

5.3 Results and Discussion

5.3.1 Bind-elute Experiments

Five experiments in bind/elution mode were performed. Figure 5.2 shows the result ob-

tained with a 20 ml gradient. Several impurity peaks could be resolved. The first one is

a breakthrough at 0.65 ml. The second peak occurs slightly later at 1.21 ml, followed by

two shoulders (impurities 3 and 4) and a high peak at 6.50 ml. The signal continues with

three lower peaks (imp. 6, 7, 8), followed by a larger one at 11.28 ml that is also visible at

536 nm. It is identified to be the target component. The fact that this peak’s maximum

is reached 0.26 ml earlier at 280 nm leads to the assumption that a impurity (imp. 9) is

eluting slightly before. A small shoulder (imp. 10) and a final peak at 17.1 ml (imp. 11)

complete the elution profile.

5.3.2 Protein Parameter Estimation

The components’ peak areas were determined with Unicorn peak integration from the

280 nm signal of the 20 ml gradient chromatogram. The resulting areas in mAU·ml were

divided by the sample volume of 0.5 ml to obtain the inlet absorbance values for modelling

c′in in mAU. Hence, the estimated absorption coefficients a refer to 280 nm. The same

bounds of integration were used for the 300 nm signal. No additional simulation was

necessary, the simulated 280 nm peaks were scaled according to the ratio of 300 nm and
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Figure 5.3: Comparison of measured and simulated chromatograms with UV signals (solid
lines), conductivity measurement (dashed lines), simulated Cherry-GST absorbance (dot-
ted lines), impurity traces (light solid lines), and sum of simulated proteins (dot-dashed
lines). Plots A and B show the 10 ml gradient elution, C and D the 20 ml gradient elution,

and E and F the breakthrough experiment.
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Table 5.3: Estimated component-specific model parameters.

Component keff/10−3 k−1
des keq ν σ a/108

Impurity 1 0.010 - - - - -
Impurity 2 2.090 1 0.004 0.066 157.1 0.600
Impurity 3 5.006 0 3.939 1.293 102.5 0.056
Impurity 4 5.586 0.050 22.46 0.566 6.325 0.130
Impurity 5 15.00 0.151 32.36 0.866 1.895 41.37
Impurity 6 13.00 0 21.54 1.890 0.001 0.150
Impurity 7 12.08 0 32.22 1.930 1.702 13.24
Impurity 8 7.077 0.066 75.83 4.135 0 1.967
Impurity 9 7.100 0.070 175.8 4.289 0.022 42.91
Cherry-tagged GST 9.271 0.208 334.0 4.000 0.035 0.865
Impurity 10 14.98 0.424 3084.3 5.350 2.241 2.396
Impurity 11 7.131 0.235 152227 7.968 0.025 30.00

280 nm peak areas. The 300 nm signal was used for modeling the breakthrough experiment.

Here, the 280 nm signal was incomplete due to sensor saturation.

As the genetic algorithm performs random jumps, admissible parameter ranges have to

be set. First estimates of ν and keq were obtained from the correlation of retention times

in gradient elution as in [145] for all binding species. The resulting large equilibrium

parameter values in the order of 106 fit well to the observed retention. kdes has to reside

in the natural range k−1
des ∈ [0, 1] and the upper limit for keff is given by 3 · keff/rp = 1.

The steric factor was assumed to be in a range of σ ∈ [0, 200] as it scales approximately

with the molecular weight [86] and we expect HCPs of 100 kDa and above. The range of

absorption coefficients was chosen large, a ∈ [105, 1010]. Eventually, the curve fitting was

refined using the Levenberg-Marquardt algorithm.

Selected results are presented in Figure 5.3. The left column shows the simulated compo-

nents, their sum, and the chromatograms at 280 nm for the 10 and 20 ml gradient as well

as the 300 nm chromatogram of the breakthrough experiment. The right column shows

the same curves at 536 nm. The 15 ml gradient result looks very similar. In the 5 ml

gradient chromatogram, highly overlapping impurities lead to only three distinct peaks

(data not shown). The corresponding model parameters are given in Table 5.3. As the

first peak is not retained, isotherm parameters could not be determined. The second and

third impurity are only slightly retained and the correlation from [145] cannot be used.

Furthermore, there might be other parameter combinations of keq and ν that lead to the

same retention volume, and combinations of σ and a with the same amount of occupied

ligands. Certainty can be increased by using different low-salt buffer concentrations or

including samples with different impurity ratios. But parameter determination for compo-

nents in the flow-through is not in the focus of this study. The other linear parameters lead

to good agreement of simulation and measurement in the first and second row of Fig. 5.3.

As the species do not interact, the four linear parameters can be determined well from

the four gradient experiments. The experiment with 12.4 ml sample volume shows good

agreement as well, in particular in UV 536 nm. Thanks to this visibility of Cherry-tagged

GST in UV 536 nm, a single-component adsorption curve is available that allows for an

accurate estimation of the absorption coefficient.
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5.3.3 Capillary Gel Electrophoresis

The target protein can be identified easily in the capillary gel electrophoresis result because

of its high fluorescence value. The determined concentration was 3.73 · 105 M, resulting

in an absorption coefficient of 7.86 · 107 mAU/M at 280 nm. This is smaller than the

estimated value by approximately 9 %. The estimate of a is very good, considering the

number of interacting species.

Although capillary gel electrophoresis identified even more species, the lumped peaks found

by Unicorn peak integration were sufficient to model the elution behavior of the protein

components at all investigated wavelengths.

5.4 Concluding Remarks

This study demonstrates that mechanistic modelling can be applied to an anion-exchange

step of a crude feed stock, even if the molar concentrations of the feed components are

unknown. The model equations were re-written to define injection with respect to the peak

areas determined from chromatograms at a chosen wavelengths. The unknown absorption

coefficients that scale molar concentration to absorbance units then occur in the isotherm

equation. The counter-ion balance of stoichiometric exchange models can be used for

estimating these factors using the inverse method. For the steric mass action model, it

was shown theoretically that this additional parameter can be uniquely determined in

single-component settings.

In a multi-component case study, the molar concentration of the target protein, Cherry-

tagged GST, estimated by chromatogram fitting was only 9 % less than the value measured

by capillary gel electrophoresis. Here, a single-component absorbance curve was available

through the absorbance of the Cherry-tag in UV 536 nm. For the other components, a

correlation of the steric shielding factor and the absorption coefficient persists. Only the

total counter-ion concentration on the adsorber surface is measurable, but not the exact

amounts displaced per-component.

Additional reliability can be achieved by including samples with different impurity pro-

portions or fraction analyses that only need to provide peak percentages in one of the

observed wavelengths. In preparative chromatography process development, these frac-

tion analyses are performed on a regular basis, e.g. with size-exclusion chromatography

[85] or ion-exchange HPLC [30], such that no additional experiments are required.
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Abstract

Gaining a more profound understanding of biopharmaceutical downstream processes is a

key demand of the Quality by Design (QbD) guideline. One of the most dominant ap-

proaches to gain process understanding is the extensive use of experimental high-throughput

formats, such as batch chromatography on robotic liquid handling stations. Using these

high-throughput experimental formats, the generation of numerous samples poses an enor-

mous problem to subsequent analytical techniques.

Here, a high-throughput case study for batch chromatographic multi-component isotherms

is presented. To debottleneck the subsequent analytics, a non-invasive technique using UV

spectra and multivariate statistics was adapted to a batch chromatographic format. Using

this approach, it was possible to integrate the entire analytical setup into the robotic work

flow.

As a case study, batch isotherms for SP Sepharose FF and the model proteins cytochrome c

and lysozyme at various pH values and ionic strengths were recorded. A successful exam-

ination of the quality of the analytical procedure compared to classical single wavelength

photometry was carried out. To address the growing demand for a more profound process

understanding, the experimental data were fitted to the steric mass action isotherm, get-

ting a more detailed insight into the competitive binding behavior at various pH values

and ionic strengths.

81
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Practical application

This case study explores the usability of UV spectra and multivariate statistics to prevent

an analytical bottleneck in high-throughput batch chromatography, incorporating multiple

protein species. The presented approach enables integration of the analytical setup in the

batch chromatographic work flow, using a standard UV/VIS spectrophotometer. The

quality of the analytical data was sufficient to fit steric mass action isotherms at various

pH values and ionic strengths and get a mechanistic insight into the competitive binding

behavior.

6.1 Introduction

Nowadays, biopharmaceutical downstream process (DSP) development is mainly based

on chromatographic separation techniques. Chromatography, as many other separation

techniques for biopharmaceuticals, is influenced by numerous operational parameters that

affect process performance. The growing need for a deeper mechanistic understanding of

the technical process on a molecular level and the impact of the process on the product

quality, demanded by the Quality by Design (QbD) approach, pose a great challenge to

biopharmaceutical DSP [27; 74]. The requested process understanding can be generated by

several approaches. One very obvious approach is the systematic experimental evaluation

of the impact of different operational parameters on the downstream process performance.

A possibility to support the exploration of the design space, as basis for many statistical

DoE approaches, is the use of high-throughput techniques [88]. These approaches enable

miniaturization of the experimental systems and parallelization and automation of the ex-

perimental work flow allowing for full factorial experimental designs [13; 123; 167]. There-

fore, high-throughput techniques enable a reduction of time and material consumption.

In the context of chromatographic process development, there are several experimental

systems adapted to robotic high-throughput experiments.

Batch chromatography can be implemented very easily on a liquid handling station using

a defined adsorber volume provided in a 96-well plate. The batch chromatographic sys-

tems can be used for resin screening [88], batch bind-elute studies or the measurement of

adsorption isotherms [30; 88; 120; 121] and kinetic data [31].

One major disadvantage of these experimental high-throughput formats is that the above-

mentioned experimental bottleneck is not prevented but often only shifted to subsequent

analytics. In the simplest case, when only single protein data have to be recorded, a

photometric measurement within the robotic work flow is possible. This simple analytical

approach is restricted to the quantification of a single protein species or several protein

species with different exclusive absorption maxima beside 280 nm [10]. The major advan-

tage of photometric assays is the high sample throughput, which can easily cope with the

amount of samples generated in robotic high-throughput experiments and the non-invasive

nature of the technique.

In pharmaceutical high-throughput process development, a simple photometric measure-

ment will be unable to differentiate between several protein species. In this case, more
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sophisticated analytics have to be performed. Such advanced analytics might be e.g., ana-

lytical high-performance liquid chromatography (HPLC) and product-specific immunoas-

says [104; 157]. The time requirement of these immunoassays is still high in comparison

to that of the chromatographic experiments. HPLC assays are predominant in the char-

acterization of the size and charge heterogeneity of a target protein. One major drawback

of processing high-throughput experimental samples with HPLC assays is the low sample

throughput of HPLC techniques. Despite the mentioned drawbacks, HPLC and other

analytical techniques such as immunoassays bear the major disadvantage of an invasive

nature.

An ideal analytical technique in the context of high-throughput experimental work flows

would be a photometric assay that can be carried out in standard UV/VIS plate readers

typically installed on robotic workstations. This assay has to be protein species-specific

and quantitative. Such an assay, based on the measurement of UV spectra and subsequent

multivariate statistics, was introduced by Hansen et al. in 2011 [63]. When using protein

mid-UV (200 – 300 nm) spectra, the absorption of different protein species is strongly

influenced by properties of peptide bonds and amino acid residues. A partial least squares -

projection to latent structures (PLS) regression enables subsequent quantitative evaluation

of mixtures of different protein species.

Here, we present a case study on the high-throughput generation of multi-component

isotherm data. We combine a high-throughput method for the collection of multi-component

isotherms in an automated batch format with a non-invasive protein-specific quantifica-

tion method based on the measurement of mid-UV spectra. The collected data are subse-

quently fitted using the steric mass action isotherm including competitive protein binding

introduced by Brooks and Cramer [23].

6.2 Materials and Methods

6.2.1 Materials

6.2.1.1 Disposables & Reaction Vessels

As a strong cation exchange adsorber, sulfopropyl (SP) sepharose fast flow (FF) provided

by GE Healthcare Life Sciences, Sweden, was used. Binding experiments were carried out

in 2 mL 96-well square deep well plates (VWR, Germany). Absorption and protein spectra

measurements were carried out in 96-well flat bottom UV-Star microplates (Greiner Bio-

One, Germany). Buffers were filtered using 0.2 µm cellulose acetate filters supplied by

Sartorius, Germany.

6.2.1.2 Chemicals & Buffers

Binding experiments at pH 5 were carried out in 20 mM acetate buffer consisting of acetic

acid (Merck, Germany) and sodium acetate (Sigma-Aldrich, USA). For experiments at

pH 7, a 20 mM phosphate buffer consisting of di-sodium hydrogen phosphate and sodium
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di-hydrogen phosphate (Sigma-Aldrich, USA) was used. The ionic strength of the applied

buffers was adjusted to 42, 65, 90, 115, and 150 mM using sodium chloride (AppliChem,

Germany). The model proteins lysozyme from chicken egg white and cytochrome c from

equine heart were purchased from Sigma-Aldrich, USA. Calibrations for the multivariate

data analysis model of the two-component system were carried out using a 2.4 mg/mL pro-

tein solution. For binding experiments, a 10 mg/mL stock solution with 70 % cytochrome c

and 30 % lysozyme was used.

6.2.1.3 Instrumentation & Software

For pH adjustment of all buffers, a HI-3220 pH meter (Hanna Instruments, USA) was

used. The instrument was calibrated using high-precision standards from Hanna Instru-

ments (USA). For generation of equal amounts of adsorber per well, a Media Scout Resi

Quot System (Atoll, Germany) was applied. For pressure adjustment, a vacuum pump

with pressure regulation was used. For the batch isotherms, a Freedom EVO® 200 liquid

handling station (Tecan, Germany) was used, operated with EvoWare 2.1. The system

is equipped with eight fixed tips, a plate-moving arm and an orbital shaker (Tecan, Ger-

many). A Rotanta 46RSC centrifuge (Hettich, Germany) and an Infinite M200 UV plate

spectrophotometer (Tecan, Germany) are integrated in the system. The spectrometer was

controlled by i-control 1.9 (Tecan, Germany). Data processing and creation of figures was

performed in Matlab R2011a (MathWorks, USA).

6.2.2 Experimental Setup

6.2.2.1 Model Calibration and Validation

The multivariate data analysis calibration [63] was based on a four-level D-optimal onion

design generated with MODDE (Umetrics, Sweden) with additional data points added at

low concentration levels. The model included 7 mixing ratios (1:0; 2.5:1; 2:1; 1:1; 1:2; 1:2.5;

0:1) and 15 concentration levels (concentration levels correspond to the protein concen-

tration of cytochrome c and lysozyme in total) from 0 to 1.2 g/L (each 5 concentrations

in a range of 0 to 0.1, 0.1 to 0.5, and 0.5 to 1.2 g/L). For example, a mixing ratio of

2:1 means that the mixture contains 2/3 of cytochrome c and 1/3 of lysozyme. For a

total concentration level of 1.2 mg/mL at a mixing ratio of 2:1, the solution contains 0.8

mg/mL cytochrome c and 0.4 mg/mL lysozyme. In total, 32 samples were used for model

calibration.

8 samples were added as a test set for model validation. The cytochrome c and lysozyme

stock solutions were pipetted in the desired mixing ratios and diluted with the respective

buffers on the liquid handling station. All 40 samples were prepared as 1.8 mL solutions

in 96 deep-well plates to avoid small pipetted volumes. 300 µL of each sample were

transferred to 96-well flat bottom UV-Star microplates. Sample absorption spectra were

measured in a range of 240 – 300 nm in 2 nm steps. The spectral data of the 32 samples

mentioned above were used for model calibration in Matlab R2011a, using the PLS toolbox

(Eigenvector Research, USA). 5 samples out of 32 were used as an internal cross validation.

The regression model was then validated on the external test set of additional 8 samples

and used for the concentration determination of unknown samples.
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6.2.2.2 Generation of Equal Adsorber Volumina

Generation of equal 20.8 µL adsorber amounts was achieved using the Media Scout Resi

Quot system (Atoll, Germany) described by Herrmann et al. [67]. The system was

equipped with a pressure-controlled vacuum pump and the working pressure was set to

800 mbar. To remove the adsorber storage solution, the adsorber plaques were washed

twice with deionized water and the applied binding buffer of the respective experiment.

The equilibrated plaques were transferred into a 2 mL 96-well square deep well plate and

suspended in 100 µL binding buffer. The plate was then stored until use on the liquid han-

dling station. The outer wells were not used for isotherm experiments due to the largest

variance in adsorber volume on the plate [124].

6.2.2.3 Isotherm Experiments

Isotherms covering 10 different starting concentrations cin were generated on the liquid

handling station. As only the inner 60 wells were used for the experiments, 6 isotherms

could be created per sample plate. Each adsorber plate was used for one pH level including

5 different salt level isotherms (42, 65, 90, 115, and 150 mM) and one isotherm as duplicate

for investigating the repeatability of isotherm data.

The investigated pH levels were pH 5 and 7. 10 mg/mL stock solutions of 70 % cy-

tochrome c and 30 % lysozyme in the respective buffers were applied. The starting con-

centrations cin of the isotherm experiments were set to 2, 2.5, 3, 3.5, 4, 4.5, 5, 6, 7, and 8

mg/mL with a final volume of 800 µl per well (including 100 µL adsorber storage buffer

from plaque generation). The adsorber plate was closed with a lid by the robotic plate-

moving arm and placed in the orbital shaker for 2 h. Kinetic studies for lysozyme [38]

and a monoclonal antibody [13] have shown that an incubation time of 20 to 40 min is

sufficient for reaching the binding equilibrium on SP Sepharose FF. Afterwards, the plate

was centrifuged for 10 min at 1000 rpm in the Rotanta 46RSC centrifuge. 300 µL of the

resulting supernatant was transferred to a 96-well flat bottom UV-Star microplate. As

for model calibration, sample absorption spectra were measured in a range of 240–300 nm

in 2 nm steps. The spectral data were processed using the previously calibrated regres-

sion model. Lysozyme and cytochrome c concentrations could be determined selectively.

The validity of cytochrome c levels was additionally assured by comparison to 527 nm

absorption measurements.

6.2.2.4 Isotherm Fitting

The purpose of isotherm fitting is to validate, whether the observed measurements fol-

low the theoretical framework for protein adsorption in ion-exchange chromatography.

The adsorption model applied is the semi-mechanistic steric mass action isotherm (SMA)

introduced by Brooks and Cramer [23]. It incorporates effects of counter-ions on the reten-

tion behavior of proteins and includes characteristic charges of proteins νi. Additionally,

steric shielding effects of proteins are considered as a parameter σi, representing sterically

hindered binding sites without electrostatic interactions. As a final factor, the total ionic

capacity Λ of the applied adsorber represents the total number of electrostatic binding
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sites. The isothermal form of the SMA isotherm for a mixture of two proteins is shown in

Eq. (6.1) and Eq. (6.2), with qi and ceq,i being the concentration of the protein i adsorbed

and in solution, respectively. The effective pore salt concentration is described by csalt.

keq,i is the equilibrium constant of adsorption and desorption.

q1 = keq,1

(
Λ− (ν1 + σ1)q1 − (ν2 + σ2)q2

csalt

)ν1
ceq,1 (6.1)

q2 = keq,2

(
Λ− (ν2 + σ2)q2 − (ν1 + σ1)q1

csalt

)ν2
ceq,2 (6.2)

The SMA model allows for fitting isotherm data, including concurring binding behavior

and varying salt concentrations. The fitting procedure was carried out in Matlab R2011a

using the least squares data fitting function lsqcurvefit (trust-region-reflective algorithm).

The estimated parameters include the equilibrium constant keq,i, the characteristic charge

νi, and the steric shielding σi.

6.3 Results and Discussion

6.3.1 Model Generation & Experimental Performance

Partial least squares regression (PLS) is used to reduce data sets and finding significant

variance for correlating several input variables (e.g. wavelengths) with output variables

(e.g. concentrations). Input variables of similar information content are lumped as so-

called latent variables (LVs) leading to a data reduction. The first LV carries the highest

information content, whereas each additional LV added leads to less and less improve-

ment of the model. At a certain number of LVs, further addition of LVs then leads to

incorporation of measurement noise into the system which needs to be avoided.

For generation of the MVDA model, the optimal number of latent variables was found to

be 5, yielding normally distributed residues for the cross validation of all 32 samples. This

setup was found identical for both pH 5 and pH 7. The generated MVDA models were then

applied to the external test set consisting of 8 samples. The maximal relative deviation

in concentration was determined as 3.9 % for pH 5 and 5.3 % for pH 7. Hence, the model

performed well for a set of samples that were not used for the calibration experiments.

Besides testing the performance of the MVDA model, also the repeatability of the ex-

perimental data was investigated. The duplicates of the isotherms in the presence of

90 mM ionic strength at pH 5 and pH 7 are shown in Supplementary Fig. A.2 for cy-

tochrome c (left) and lysozyme (right). The protein bound to the adsorbent is plotted

versus the residual protein in free solution for equilibrium conditions. The trends of the

duplicates (cross/diamond) agree well for both investigated pH values and proteins. Also,

the absolute values of the duplicates are in good agreement considering the experimental

difficulties when working with low adsorbent and liquid volumes. Consequently, both the

obtained MVDA model and the experimental data were of high quality and were used in

the presented study.
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6.3.2 Multi-component Isotherms

To prove the applicability of the MVDA model for real isotherm data in a mixture of

proteins, the concentrations of cytochrome c derived from the MVDA are compared to the

values of a selective 527 nm analytical wavelength (see Supplementary Fig. A.3). The data

points from the MVDA model, plotted over the selective 527 nm wavelength measurements,

are shown in a parity plot. It has to be noted that the MVDA model was calibrated in

the UV range (240 – 300 nm) whereas the selective wavelength for cytochrome c is at a

much higher wavelength in the VIS region. For pH 5 (Supplementary Fig. A.3A) as well

as for pH 7 (Supplementary Fig. A.3B), the isotherm data agree well with coefficients of

determination of the data points for all investigated ionic strengths (ISs) of 99.74 % for

pH 5 and 99.34 % for pH 7. Thus, the MVDA model was applicable to this large data

set for straightforward HTS applications.

The isotherm data for both lysozyme and cytochrome c are shown in Fig. 6.1 as 2D (left)

and 3D (right) scatter plots. The experimental data are illustrated as markers and the

fitted SMA model is shown as curves and planes. For all data sets, the binding of proteins

decreases with increasing ionic strength (from 42 mM to 150 mM IS). For cytochrome c

(red), both pH conditions (pH 5 – Fig. 6.1A and pH 7 – Fig. 6.1B) show a similar trend

for all ionic strengths: The isotherm data increase for low starting concentrations cin and

decrease for higher values of cin. However, the overall binding of cytochrome c at pH 5

(Fig. 6.1A) is slightly increased when compared to pH 7 (Fig. 6.1B). E.g., in the setups of

42 mM IS, the maximum binding capacity qCyt c was determined to be 63.98 mg/mL for

pH 5 and 50.13 mg/mL for pH 7. Again, for lysozyme (bottomblue), both pH conditions

behave similarly for all ISs. In contrast to cytochrome c, the isotherm data increase

consistently with the starting concentrations cin. The overall binding behavior of lysozyme

at pH 5 (Fig. 6.1A) is slightly decreased when compared to pH 7 (Fig. 6.1B). The maximum

binding capacity qLys at 42 mM IS was determined to be 67.48 mg/mL for pH 5 and

74.77 mg/mL for pH 7. Although the initial amount of lysozyme in the mixture was much

lower (30 %) compared to cytochrome c (70 %), the maxima of qLys exceed those of qCyt c.

The experimental results encountered follow the expected trends. As observed for all in-

vestigated setups, an increase in ionic strength causes a weakening of the electrostatic

binding in ion exchange chromatography. Cytochrome c showed a strong increase in pro-

tein binding for low starting concentrations cin, starting to decrease with higher values of

cin. This indicates a displacement of cytochrome c by lysozyme when the binding process

approaches the maximal binding capacity of the adsorber. This assumption was confirmed

by the trends encountered for lysozyme. Here, a continuous increase in protein binding

was observed towards a maximum for the highest starting concentrations cin. This dis-

placement under all investigated conditions agrees with the isoelectric points of the two

proteins being 10 to 10.5 for cytochrome c and 11.4 for lysozyme (compare data sheet

Sigma-Aldrich) yielding a higher net charge for lysozyme and thus a stronger binding to

the cation exchange resin. This also explains the enhancement of the displacement reaction

for pH 7 compared to pH 5 due to cytochrome c being closer to its nominal pI.

6.3.3 SMA Data Fitting

For SMA data fitting, the total ionic capacity Λ for the adsorber plaques was estimated

first. A packed 1 mL of SP Sepharose FF has a total ionic capacity of 800 mM [124].
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Figure 6.1: Isotherm data derived from the MVDA model-based equilibrium concen-
trations for both cytochrome c (red) and lysozyme (blue) and the corresponding SMA
isotherm fitting curves. The experimental results at pH 5 (A) and pH 7 (B) are illustrated
for all investigated ionic strengths in a range of 42 mM to 150 mM. The experimental data
points are highlighted as markers and the SMA isotherm fitting curves are illustrated as

solid lines for 2D plots and as planes for 3D plots.
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Figure 6.2: redicted SMA model for different concentrations and mixing ratios of cy-
tochrome c and lysozyme at pH 5 (A) and pH 7 (B). Lysozyme is shown in blue (42 mM IS)
and pink (150 mM IS), cytochrome c is illustrated in red (42 mM IS) and yellow (150 mM).

Table 6.1: SMA parameters of cytochrome c and Lysozyme at pH 5 and pH 7 determined
by least squares fitting of the MVDA isotherm data.

Protein pH keq,i νi σi
Cytochrome c 5 0.010 9.955 45.775
Cytochrome c 7 0.040 4.827 36.877

Lysozyme 5 0.632 7.945 48.278
Lysozyme 7 0.454 5.834 51.871

The calculation of the equivalent Λ for the adsorber plaques being 0.504 mM followed

the description by Hermann et al. using the packed-bed porosity factor [67]. The data

fitting was performed in Matlab R2011a using qi and ceq,i being the concentration of

the protein i adsorbed and in solution inside the pore as input variables according to

Eqs. (6.1), (6.2). The corresponding SMA fitting functions are illustrated in Fig. 6.2 by

solid lines plotted combined with the respective MVDA data points. The fits were found

to be of good agreement, the experimental isotherm points are matched well and the

competitive binding trends were conserved.

The resulting SMA parameter sets for both proteins under the investigated conditions are

listed in Table 6.1. The lysozyme equilibrium constants keq,i are much higher (ranging

from 0.454 to 0.632) compared to cytochrome c (0.010 to 0.040) for both pH 5 and pH 7.

Comparable values and trends were reported by Gallant et al. for both proteins at pH 6

(keq,Lys = 0.124, keq,Cyt c = 0.006) [45]. As shown in Table 6.1, the characteristic charge

νi of cytochrome c was determined to be 20 % higher than for lysozyme at pH 5 whereas

for pH 7, the same trend is shown inversely. νi values given by Gallant et al. at pH 6

(νLys = 5.95, νCyt c = 6.15) as the center point between pH 5 and pH 7 indicated an

identical charge characteristic for both proteins agreeing well with this inversion of νi
from pH 5 to pH 7 shown in this study. Also, the absolute values for νi match well. The

steric shielding parameters σi shown in Table 6.1 are similar for all proteins under all

conditions ranging from 36.877 to 51.871. Those values are in accordance with Gallant

et al. for cytochrome c (53.4) and Osberghaus et al. for lysozyme (29.7 – 36.8) and
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cytochrome c (28.7 – 40.8) [124].

The overall model quality depends on the identifiability of isotherm parameters from the

chosen experiments. To determine the range of the design space used for model calibration,

the total concentration of occupied binding sites in equilibrium Λbound is calculated:

Λbound = Λ−
∑
i

(νi + σi) qi (6.3)

Pairs (qCyt c,qLys) can be taken from the experimental data in [mg/mL] and divided by

the respective molecular weights. MWCyt c = 12.38 kDa and MWLys= 14.30 kDa were

taken from the Sigma Aldrich data sheet and the SMA parameters for pH 5 and pH 7 are

given in Table 6.1. For the lowest salt concentration and highest initial concentration at

pH 5, Λbound adds up to 432.5 mM (166.7 mM cytochrome c, 265.8 mM lysozyme) and

for pH 7 to 371.5 mM. For the lowest initial concentration, we obtain Λbound ,pH5 = 338.7

mM and Λbound ,pH7 = 302.7 mM. Comparing these values to the total ionic capacity of Λ

of 504 mM, the loading is in a range of 60 % to 86 %.

This could be an explanation for the deviation of the equilibrium constants from literature

values. As the linear range of the isotherms is not covered by the experiments, the 95 %

confidence intervals forkeq are the largest (keq,Cyt c,pH5 94 %, keq,Cyt c,pH7 233 %, keq,Lys,pH5

68 %, keq,Cyt c,pH7 187 %). However, it should be be noted that Gallant et al. were

investigating cytochrome c and lysozyme at pH 6 and not at pH 5 and 7. Absolute

values were thus not comparable but relative trends were conserved. The confidence

intervals for the steric shielding parameter were the smallest (σCyt c,pH5 13 %, σCyt c,pH7

34 %, σLys,pH5 11 %, σCyt c,pH7 28 %) as they can be read from the concentration in

the saturated state. For the characteristic charge we determined slightly larger intervals

(νCyt c,pH5 20 %, νCyt c,pH7 42 %, νLys,pH5 21 %, νCyt c,pH7 41 %). As the parameters are

still correlated, additional experiments could be done to minimize the uncertainty, e.g.

following [8]. Nevertheless, it can be concluded that the SMA model is able to reproduce

the observed binding behavior.

Finally, the fitted SMA model was plotted for different protein concentration levels cin
of both proteins for pH 5 (Fig. 6.2A) and pH 7 (Fig. 6.2B). Lysozyme is shown in blue

(42 mM IS) and pink (150 mM IS), cytochrome c is illustrated in red (42 mM IS) and

yellow (150 mM). Data points along the x and y axes (0 mg/mL lysozyme or cytochrome c)

are the single component isotherms showing a linear slope for low concentrations and

resulting in a maximum (qmax) at the adsorber saturation. The model predicts an almost

constant maximal binding capacity at pH 5 and pH 7 at both ISs for lysozyme whereas the

binding of cytochrome c is enhanced at pH 5 especially for 150 mM IS compared to pH 7.

Furthermore the model in Fig. 6.2 predicts that already 2 mg/mL of lysozyme present in

the mixture suppresses the binding of cytochrome c on the adsorber for both pH setups.

These findings agree with the experimental data which indicated a diminished binding of

cytochrome c (Fig. 6.1) though being the species of excess concentration in the mixture

(70 % cytochrome c/ 30 % lysozyme).

6.3.4 SMA Parameters vs. Experimental Data

The equilibrium constant keq,i as a factor describing the binding affinity of proteins under

given conditions being over 10-fold higher for lysozyme compared to cytochrome c (com-

pare Table 6.1) is in accordance with the isotherms given in Fig. 6.1. The displacement
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of cytochrome c by lysozyme at higher starting concentrations cin was discussed above.

Surprisingly, the corresponding characteristic charge νi is not the crucial factor driving

this phenomenon. E.g., for pH 5, νLys of 7.945 is lower than νCyt c of 9.955 but still the

equilibrium is strongly shifted towards lysozyme. However, the above-discussed effects of

increased displacement of cytochrome c at pH 7 (towards the pI of both proteins) agree

with the change in characteristic charge from pH 5 to pH 7 which decreases strongly for

cytochrome c from 9.955 to 4.827 whereas lysozyme is much less affected. In summary,

the equilibrium constant was found to be a factor for indicating displacement phenom-

ena whereas the characteristic charge shows the extent. The shielding factors σi being

similar for both proteins were expected as lysozyme and cytochrome c are similar in size.

Lysozyme as the slightly larger molecule (MWLys = 14.30 kDa, MWCyt c = 12.38 kDa)

resulted in marginally higher σi values.

6.4 Concluding Remarks

It was demonstrated that multivariate data analysis (MVDA) of protein spectra is a

straightforward method of determining accurate concentration levels for protein mixtures

for HTS applications such as batch isotherms. The data points were of high quality and

were thus usable for modeling purposes. Based on the MVDA data, accurate SMA fits

were found that coincide with literature values.

Analyzing the presented amount of samples using a standard analytical method, such

as analytical chromatography takes approximately 5 min per sample or above. Using

the presented MVDA method, in contrast, 10-15 s per sample are sufficient. The time

requirement per sample is one of the key aspects in the concept of QbD, as the bottleneck

of HTS and exploring the design space is shifted to the analytics. Besides this, the major

advantage over traditional analytical tools, its non-invasive nature, is very convenient in

the context of performing experiments on robotic work stations, making sampling obsolete.

The proposed methodology can be used for any multi-component mixture that do show

differences in single-component absorption spectra. Brestrich et al. used the methodology

for a distinction between antibody monomers, aggregates and lower molecular weight

species though being spectrometrically similar [8; 22]. Such species can be distinguished

due to an increase or decrease of exposed amino acid residues and by included scattering

effects for larger aggregates. The analytical technology based on MVDA of protein spectra

might become a standard tool for robotic work stations and in-line analytics[21; 22]. The

technique of model calibration might be extended to more complex protein compositions

and proteins which are not available as pure components.
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Abstract

The identification of optimal process parameters for the isolation of a target component

from multi component mixtures is especially challenging in industrial applications. With

constantly increasing time to market pressure, screening a large parameter space is not

feasible and Design-Of-Experiment approaches with few experiments might fail due to

dynamic and nonlinear reactions to small parameter changes.

Model-based optimization can determine optimal operating conditions, once the model

has been calibrated to the specific process step. In this work, parameters for the Steric

Mass Action model are estimated for the target protein and three impurities of an in-

dustrial antibody cation-exchange purification step using only chromatograms at different

wavelengths and additional fraction analyses with size exclusion chromatography. Infor-

mation on the molar or mass concentrations in the feed are not available. The model-based

optimization results coincide with conventional chromatogram-based optimization.
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Practical Application

This paper demonstrates that model-based optimization can be applied to an industrial

cation-exchange step, even if the molar concentrations of the feed components are un-

known. Based on a few experiments, which might be already available from previous

screenings, the model can be calibrated. For differentiating components eluting hidden in

the sum signal, single components elution curves must be generated for peak fitting. This

is accomplished by SEC fraction analyses at the same wavelength as the chromatogram.

7.1 Introduction

Biopharmaceutical products currently constitute one of the fastest growing markets for

the pharmaceutical industry [91]. Industrial downstream processing (DSP) faces the chal-

lenge of efficiently purifying a product out of a very heterogeneous mixture. Especially

for monoclonal antibodies (mAb), the purification sequence is commonly based on plat-

form processes that are only slightly adapted to new target components [100; 145]. This

approach ensures fast process development and reduces the time to market, but it is prob-

able that the reduced exploration of design space leads to suboptimal processes [118].

Process understanding is hence a sensible and important addition to the use of platform

processes [66]. As the integration of modeling tools into process development is also an

essential part of the strategy for the implementation of the Quality by Design (QbD) ap-

proach [27; 74], modeling tools are increasingly gaining the attention of the pharmaceutical

industry. It ensures time and material-efficient process optimization as long as the model

parameters can be determined reliably with less effort.

For some sorption sub-models, such as the Steric Mass Action (SMA) model for ion-

exchange chromatography of proteins [23], model calibration protocols for pure compo-

nents exist [23], which allow for determining the component-specific parameters in a con-

secutive fashion. With no a priori knowledge about the components’ behavior within

mixtures, the inverse method is a suited option, which alters parameters in a systematic

fashion to achieve a match of measured chromatogram and model prediction. In a compar-

ative study [126], the direct approach and the inverse method were found to reach equal

prediction quality such that the latter is recommended for fast process development.

The potential of mathematical modeling and numerical optimization of chromatography

has been demonstrated in academic set-ups for mixtures of small molecules [1; 42], model

proteins [127] and antibodies [35; 85], as well as for industrial process steps [30; 112]. All

applications have in common, that sensor calibrations existed for all components, allowing

to transform UV absorption values into mass or molar concentrations. This paper dis-

cusses the challenges when applying mechanistic modeling and numerical optimization to

a data-set of industrial preparative chromatography without knowledge of feed composi-

tion in terms of molar concentrations. Additional experiments and analyses are avoided

by employing a modeling approach that estimates the absorption coefficients from the

recorded UV data.

The case study bases on a cation-exchange chromatographic (CEX) process step (Poros

50 HS resin). The antibody mixture fed into CEX is a protein A eluate after low pH
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incubation and conditioning. The mixture contains several antibody variants differing in

size and charge, that all elute in a common peak. Fraction collection and analysis has to

be performed to obtain information on the location of the impurities. Using size exclu-

sion chromatography, the targeted monomer and three impurities can be distinguished,

two high molecular weight (HMW) and one low molecular weight (LMW) species. The

found model parameters were used for in silico optimization and eventually coincide with

conventional optimization by chromatogram evaluation.

7.2 Materials and Methods

Initial experiments were conducted to determine system properties, thereafter six experi-

ments in bind/elution mode were performed. The following sections describe the experi-

mental set-up, data processing and parameter estimation.

7.2.1 Column Parameter Determination

A 20ml column, with Poros 50 HS (Applied Biosystems, Carlsbad, CA, USA) resin was

analyzed first with an acetone pulse and second with dextran using an Äkta Avant sys-

tem (GE Healthcare, Little Chalfont, UK) to determine the essential model parameters

as described in [109] and presented in Table 7.1. Acid-base-titration was carried out to

determine the total ionic capacity: The column was flushed with a 0.5 M HCl solution

until a constant UV and conductivity signal was achieved. Afterwards the column was

washed with ultrapure water until a constant UV and conductivity baseline was reached.

After that the column was titrated at a flow of 100 cm/h with a 0.01 M NaOH solution

until an increase in conductivity signal was recorded. From the Na-ion concentration of

the titrant and the volume of the applied titrant, the total number of exchangeable ions

was calculated. All chemicals used were obtained highest quality.

With this set of parameters all system specific parameters occurring in the mathematical

model can be fixed as also given in Table 7.1.

7.2.2 Bind-elute Experiments

As system liquid a 50 mM acetate buffer was used at pH 4.95, for elution a high-salt

buffer of 50 mM acetate and 750 mM NaCl was employed. The different salt profiles in

the following were mixed from these two buffers.

A sample volume of 81.3 ml = 4.2 column volumes (CV) was injected for each experiment.

First, the gradient experiment was ran from 50 mM (0 % high salt buffer) to 550 mM

(66 % high-salt buffer), with the gradient starting at 8.4 CV and ending at 18.1 CV.

As the elution peak reached its maximum at a total salt concentration of 210 mM, five

step elutions with concentrations 190, 200, 210, 220 and 230 mM were performed for

optimization. Each step was induced at 7 CV and was followed by a wash with 100 %

high-salt buffer as soon as the 280 nm UV signal fell below a threshold of 100 mAU.
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Table 7.1: Measured (top) and calculated (bottom) column parameters.

Parameter Symbol Value Unit Proceeding

Diameter d 10 mm From manufacturer
Length L 246 mm Manual measurement
Bead radius rp 0.025 mm From manufacturer
System dead volume Vd 1.98 ml Acetone injection without

column
Retention volume
Acetone

VRetAc 16.94 ml Acetone peak injection
with column

Retention volume
dextran

VRetDex 10.29 ml Dextran peak injection
with column

Standard deviation of
dextran

σDex 0.161 ml Äkta peak integration

Volume of NaOH VNaOH 130.2 ml Acid/base titration
Molarity of NaOH cNaOH 0.01 M Manually controlled
Flow rate u 0.69 mm

s Manually controlled

Volume V 19.32 ml 1
4 · π · d2 · L

Fluid volume Vf 14.96 ml VRetAc − Vd
Interstitial volume Vint 6.43 ml VRetDex − Vd
Total column porosity εt 0.77

Vf
V

Interstitial porosity εb 0.43 Vint
V

Particle porosity εp 0.6
Vf−Vint
V−Vint

Interstitial flow uint 1.61 mm
s

u
εb

Axial dispersion Dax 0.124 mm2

s
1
2 · L · uint ·

(
σDex
Vint

)2

Ionic capacity Λ 0.3 M cNaOH ·VNaOH
Vc(1−εb)(1−εp)

The elution peaks of all experiments were captured in 3 ml samples and analyzed by SEC

to determine the relative contribution of the two HMW species, the monomer, and the

LMW species to the sum signal. In the case of the step elutions, the peak occurring

during the subsequent wash was also fractionated and analyzed. The same analysis was

performed for the feed material.

As the gradient elution resulted in a blunt top (Figure 7.2) and not a distinct peak, a

longer gradient elution was performed to check for charge variants.

7.2.3 Mathematical Model

The UV absorbance based model as developed in [58] is used in the following. The General

Rate Model (GRM) [109] models the macroscopic protein transport through the column.

The system is of Convection Diffusion Reaction (CDR) type. Eq. (7.1) describes the rate

of change of a concentration ci(x, t), measured in [M] for salt and [mAU] for proteins, in

the interstitial volume of a column with length L to consist of convective mass transport in

space with the average interstitial velocity of the fluid u, peak broadening effects that are

modeled as dispersion in axial direction with respect to a coefficient Dax, and transition

from the interstitial concentration into the particle pore concentration cp,i(x, r, t) which
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depends on the porosity of the bed εb, the radius of adsorber particles rp and a component-

specific film transfer coefficient kfilm,i. The model is complemented with Danckwerts

boundary conditions, Eqs. (7.2),(7.3). Equations (7.4)-(7.6) model the accumulation of

mass in the pore volume cp,i and stationary phase qi depending on the particle porosity

εp and the component-specific pore-diffusion coefficient Dp.

∂ci
∂t

= −u(t)
∂ci
∂x

+Dax
∂2ci
∂x2

− 1− εb
εb

kfilm,i
3

rp
(ci − cp,i) (7.1)

∂ci
∂x

(0, t) =
u(t)

Dax
(ci (0, t)− cin,i (t)) (7.2)

∂ci
∂x

(L, t) = 0 (7.3)

∂cp
∂t

(x, r, t) =
1− εp
εp

∂q

∂t
(x, r, t) +

1

r2

∂

∂r

(
r2Dp

∂cp
∂r

(x, r, t)

)
(7.4)

∂cp
∂r

(x, rp, t) =
kfilm
εpDp

(c(x, t)− cp (x, rp, t)) (7.5)

∂cp
∂r

(x, 0, t) = 0 (7.6)

The steric mass action isotherm (SMA) [23], modified by [58], is a commonly used semi-

mechanistic isotherm in ion-exchange chromatography. It is capable of reproducing the

influence of counter ions on the retention behavior of protein species using the proteins’

characteristic charges νi. In addition, it considers adsorbent properties such as the total

ionic capacity Λ and steric shielding effects σi of the protein i covering an amount of binding

sites, greater than the actual number of sites it interacts with. The UV absorbance-based

kinetic SMA isotherm is given in Eq. (7.7), with qi and cp,i being the concentration of

the protein i adsorbed and in solution respectively. cp,salt is the salt concentration of the

solution. keq,i and kdes,i are the constants of equilibrium and desorption rate, and ai the

absorption coefficient that scales molar concentrations to absorbance units, according to

Lambert-Beer law. The factors ai consist of extinction coefficient and UV cell path length,

where the extinction coefficients are unknown for the impurities and cannot be determined

easily as the components are not available in pure form.

k−1
des,i

∂qi
∂t

= keq,i

Λ−
k∑
j=1

νj + σj
aj

qj

νi

cp,i − cνip,saltqi (7.7)

qsalt = Λ−
k∑
j=1

νj
aj
qj (7.8)

The model is chosen because of its capability of simulating the whole chromatographic

process, including elution, by changing the induced salt concentration at the inlet.

7.2.4 Numerical Solution

The numerical simulation is performed using the in-house software package ChromX. Fol-

lowing the method of lines, the equation system is first discretized in space on given nodes,
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using the Finite Element Method (FEM). FEM is a highly versatile method with strong

mathematical foundation and well suited for CDR equations. The solutions procedure

starts with the weak formulation, incorporating the boundary conditions and represent-

ing the variables with basis functions from the respective spaces. A Streamline-Upwind-

Petrov-Galerkin (SUPG) method was used here with linear basis and test functions. The

discretization in time is performed with the fractional step θ-scheme, a semi-implicit pro-

cedure providing second-order accuracy [47]. Finally, the non-linearity of the equation

system introduced by the isotherm must be treated with an iterative procedure, here,

Picard iteration. The resulting linear systems are solved by LU factorization.

7.2.5 Parameter Estimation

Estimation of an unknown parameter set p solves the least squares optimization problem

min
p

∑
j

m(tj)−
∑
i≥1

ci(L, tj ; p)

2

, (7.9)

where m(tj) is the measured chromatogram value at point in time tj . The measurements

might also contain noise, which can be neglected when assuming the noise to be zero-

mean Gaussian and isotropic. The concentration ci is simulated in absorbance units.

Linear scaling to molar concentrations was checked with concentrated feed samples.

The sensor signal is approximately proportional to the feed concentration up to the satura-

tion limit in UV 280, as suggested by Lambert-Beer law. Furthermore, UV 300 nm captures

approximately four times higher concentrations than UV 280 nm (data not shown). The

chromatograms were also corrected by the influence of the salt concentration in the mobile

phase.

A variety of algorithms is available for the solution of this optimization problem. In

this work, we employed a heuristic method based on a genetic algorithm (GAlib ver.

2.4.7 [161]). Genetic algorithms avoid local minimums by performing random jumps and

hence explore a larger area of the search space.

As the UV sensor is quickly saturated at 280 nm, we consider additional absorbance mea-

surements at 260 and 300 nm to capture the complete peak shape. In addition, we include

size-exclusion chromatography (SEC) analyses of fractions at a common wavelength, such

that the contributions to the UV sum signal can be quantified. This data enters the least

squares problem Eq. (7.9): m is extended with additional entries of the contributions for

each fraction and species and c is extended accordingly with entries only including those

simulated concentrations that belong to the respective contribution.

The estimation procedure using SEC data relies on pseudo absorbance profiles mi (tj) for

all components i that are generated by multiplying the UV signal with the component’s

fraction percentage in the corresponding time interval. Figure 7.1 shows the pseudo profiles

for the step elution with lowest salt concentration. A HMW1 peak is visible during the

high-salt step following elution, while LMWs are only visible at the beginning of the elution

peak.
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Figure 7.1: Single-component absorption profiles at UV 280 nm for the 190 mM salt step
elution. The curves are generated by multiplying the chromatogram by component ratios

found by fraction analysis with SEC.

7.3 Results and Discussion

7.3.1 Bind-elute Experiments

The feed analysis by SEC showed 96.79 % monomer, 2.95 % + 0.17 % species with

higher molecular weight (HMW 1 and HMW 2) and 0.09 % species with lower molec-

ular weight (LMW) at 280 nm. Further IEC analysis revealed, that the exact composition

of the monomer is 15.4 % acidic, 63.3 % main and 21.3 % basic variant. An example of

a step elution result is presented in Figure 7.1. It shows a steep front, long tailing and a

considerable peak after the final high salt step. The gradient elution result in Figure 7.2

shows a blunt top, indicating that the monomer variants elute differently.

7.3.2 Reference Optimum

When not using model-based optimization in combination with reliable feed concentrations

or alternative assays, the optimum has to be defined using only UV absorbance data.

Purity is defined as average SEC target peak area of involved fractions divided by total

absorbance and yield is similarly defined as ratio of collected peak area by total area.

Because of process performance requirements, only step elution scenarios are considered
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Figure 7.2: Gradient elution peak recorded at UV 260, 280 and 300 nm. Only the 300 nm
signal shows the entire top. The peak shape indicates that the monomer consists of

differently eluting charge variants.
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Figure 7.3: Monomer purity over yield when collecting fractions consecutively. Higher
steps lead to co-eluting contaminants and lower purity. Lower steps allow to separate

contaminants but do not collect all of the target component.

that achieve at least 99 % purity and 80 % yield with fraction size smaller than 5 column

volumes.

Figure 7.3 shows the development of monomer purity over yield when starting to collect

from the first fraction of the elution peak and successively adding the other fractions.

Based on this data, the 200 and 210 mM steps perform best. Gradient elutions are

undesired in the final process and were not considered. When collecting the first 33

fractions (= 99 ml ≈ 5 CV), the 210 mM step achieves a purity of 99.3 % and 86.5 %

yield. The 200 mM step achieves a slightly better purity of 99.5 %, but only 80 % yield.

The 220 mM step reaches a higher yield with fewer fractions but does not attain the

desired purity.

7.3.3 Protein Parameter Estimation

The estimation algorithm employed is a genetic algorithm, to quickly cover a large search

space. The inlet absorbance values are set for all components using the known peak area
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Figure 7.4: Comparison of measured chromatogram (· · · ) and simulated sum signal (–)
for the salt elutions (- -) used for model calibration.
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Table 7.2: Estimated model parameters.

Component kfilm Dp k−1
des keq ν σ a

Salt 0.0083 7.00·10−04 - - - - -
LMW 0.0083 3.49·10−06 1.61·10−2 1.70 3.32 65.0 4.4·107

Monomer Acidic 0.0083 2.10·10−05 9.00·10−5 1.98 3.05 75.3 8.22·107

Monomer Main 0.0083 5.34·10−06 1.90·10−3 1.42 5.21 75.3 8.22·107

Monomer Basic 0.0083 1.57·10−04 6.08·10−4 1.91 6.90 75.3 8.22·107

HMW 1 0.0083 3.60·10−06 3.50·10−6 2.40 8.23 210 2.14·108

HMW 2 0.0083 7.72·10−06 3.90·10−5 5.70 5.20 287 2.10·108

at 300 nm, the scaling factor from 300 to 280 nm and the results from SEC and IEC

analysis of the feed at 280 nm.

From the available data, the gradient and the highest and lowest salt steps were used for

estimation, as the peak shape did not change much for the intermediate steps.

Absorbance-based modelling is able to determine the non-linear parameters σi and ai
uniquely from single-component curves [58]. These are available for all impurities, but not

for the monomer charge variants. As the variants are indistinguishable in SEC, we can

assume them to have equal steric shielding coefficients and absorption coefficients.

Curve fitting finished with a very good match of measurement and simulation, considering

the complex elution behavior with long tailing step elutions and blunt gradient top. The

result is shown in Figure 7.4.

The found parameter set in Table 7.2 is reasonable, the characteristic charges ascend with

the molecule size and in the monomer case with charge variant type. Steric shielding

factors and absorption coefficients ascend approximately with molecule size as expected.

Sorption kinetics and film diffusion are fast, as indicated by the steep elution fronts.

7.3.4 Optimization

Again, the genetic algorithm was employed to determine the optimal salt step height

together with the fractionation boundaries. The optimization of load conditions was per-

formed with traditional high-throughput screening beforehand. Hence, comparison to a

non-model-based approach in this particular scale was not possible.

Results of the genetic algorithm are plotted in Figure 7.5. Although the model was cal-

ibrated only with the gradient and the 190 mM and 230 mM steps, the results resemble

the findings in section 7.3.2 closely: only step concentrations below 210 mM allow a purity

above 99 % and only step concentrations below 200 mM achieve high yields above 95 %.

The yield values are slightly higher in the model-based optimization results as some parts

of the reference elution peaks were not analyzed by SEC and could not be considered when

calculating the reference optimum (cf. Fig. 7.1).

A compromise between yield and purity is found at approximately 200 mM, closely followed

by 210 mM, just like in the reference analysis. The admissible volume of 100 ml would be

fully exploited by a 195 to 200 mM step. A 210 mM step is predicted to achieve a yield

of 91 % at the required purity of 99 % using only 60 ml.
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Figure 7.5: Intermediate values of salt step optimization with a genetic algorithm. Step
concentrations below 210 mM allow a purity above 99 %. Highest yield values are achieved

by step concentrations above 200 mM.

7.4 Concluding Remarks

The benefit of model based optimization compared to the traditional approach is foremost

given by the fast adaptation to changes in the feed composition and the possibilities of

further optimization. For example, salt profiles can be constructed consisting of several

steps in combination with a gradient.

The reduction of the number of experiments in this case is not significant, as conventional

optimization was straight forward and the model-based optimum would have to be verified

by an additional experiment.

Fractionation itself is a necessity for both approaches, where further studies should examine

if good results can be obtained with lower resolution.
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Abstract

Current approaches to downstream process development in the biopharmaceutical indus-

try are commonly based on a combination of platform technology, high-throughput ex-

perimentation, and ’rules of thumb’. These empirical strategies conflict with demands for

a mechanistic process understanding and a rational definition of design space, issued by

the Quality by Design approach (QbD). Model-based process simulation and optimization

are options for implementation of QbD. A model-based process optimization approach

has to consider the complexity of biopharmaceutical downstream processes, especially the

interactions of multiple chromatographic operations.

We present a case study on model-based concerted process optimization of two consecu-

tive ion exchange chromatographies (Poros 50HS and Q Sepharose FF). Our optimization

approach includes a process flowsheet optimization, the shape of the salt gradient, and

the boundaries of fraction collection for both columns. The superiority of the presented

concerted process optimization approach is demonstrated by comparison to a sequential

approach that optimizes the two ion exchange chromatographies (IEX) consecutively. Ver-

ification is carried out with a set of three model proteins (cytochrome c, chymotrypsin,

ribonuclease A).

The in silico optimum is reproduced in lab experiments and the modeling tool is success-

fully employed for the identification and characterization of critical process parameters

(CPP).

105
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Nomenclature

Abbreviation Unit Definition

cp,i M concentration of protein i in the pores of the adsorber

cp,salt M salt concentration in the pores of the adsorber

ci M protein concentration i in the interstitial phase

cin M protein concentration i at the column inlet

cout M protein concentration i at the column outlet

Dax mm2s−1 axial dispersion coefficient

εb voidage of the bed

εp particle voidage

εt total voidage of the bed

HETPDex mm height equivalent of a theoretical plate calculated

from dextran injection

kads,i adsorption coefficient of protein i in the SMA

isotherm

kdes,i desorption coefficient of protein i in the SMA

isotherm

keq,i kads,i · k−1
des,i

keff,i mm2s−1 effective mass transfer coefficient of protein i

kkin,i k−1
des,i

L mm length of the column

Λ M total ionic capacity per adsorber skeleton volume

νi characteristic charge of protein i in SMA isotherm

qi M protein concentration i on the adsorber skeleton

phase

rp mm radius of adsorber particles

σi steric shielding coefficient of protein i in the SMA

isotherm

t s time

u(t) mms−1 interstitial velocity of the fluid

x mm axial position in the column

8.1 Introduction

Nowadays, the majority of downstream processes (DSP) for biopharmaceuticals are based

on multiple chromatographic and non-chromatographic separation techniques. The use of

chromatography is by large due to its mild conditions, the diversity of possible interaction

modes, and the long history of chromatographic operations in industry and regulatory

authorities. Aside from chromatography, non-chromatographic techniques such as micro-

or ultra-filtration or pH conditioning operations are necessary to prepare the process solu-

tions for a chromatographic operation or to ensure bacterial or viral safety and to remove

insoluble particles [100; 145]. Industrial DSP development, especially for monoclonal an-

tibodies (mAb), is commonly based on platform processes which are slightly adapted to

new entities [35; 100; 145], high-throughput experimentation or ’rules of thumb’ [122]. On
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the one hand, platform approaches ensure fast process development and reduce the time

to market. On the other hand, it has to be assumed that the strongly reduced exploration

of design space during adaptation of platform processes to new entities is prone to lead

to suboptimal processes [118; 164]. In addition, the limited mechanistic knowledge might

account for an increased number of batch failures [27]. Model-based process understand-

ing and optimization are sensible and important additions to platform processes [62; 66].

The integration of modeling tools into process development is an essential part of the

strategy for implementation of the Quality by Design (QbD) approach [27; 62; 74]. Con-

sequently, modeling tools are increasingly gaining the attention of the pharmaceutical

industry [19; 36; 92].

Most experimental and modeling approaches focus on single chromatographic operations [30;

35; 51; 124; 127], or optimize consecutive operations in a sequential manner [54], or

with strong simplifications such as non-mechanistic peak shapes (triangles instead of

peaks) [132; 133] or short-cut methods [106]. However, industrial downstream processes

(DSP) are commonly based on chromatographic and non-chromatographic operations,

which are arranged in a sequential manner to meet the ambitious purity requirements [145;

158]. An approach that only focuses on single-unit operations will probably be unable to

identify the global process optimum with respect to yield, purity or economic considera-

tions [66; 119]. To meet the growing requirements of industry to integrate modeling tools

into industrial DSP, the commonly used modeling approach has to be extended from single

chromatographic operations to concerted multi-step optimization tasks.

In 2012, Helling et al. [66] presented a chromatographic sequence of hydrophobic inter-

action chromatography (HIC) and cation exchange chromatography (CEX) to justify the

need for integrated optimization of a two-column sequence. The presented approach is

restricted to optimization of the fraction boundaries and disregards optimization of the

salt elution gradients or a process flowsheet optimization. Furthermore, the approach only

mentions one set of isotherm parameters to predict the retention behavior of a whole crude

antibody feedstock.

Nfor et al. [119] presented a model-based optimization of a multi-step downstream se-

quence, focusing on the optimal arrangement of several different chromatographic modi.

The approach is restricted to a partial fraction of possible operational variables (linear flow,

gradient length, loading factor). The implications of intermediate operations in between

the chromatographic operations are only considered under economic aspects.

An approach disregarding the dynamics of interaction between the single-column processes

(e.g. salt gradient, flow, fractionation, etc.) for all unit operations in a concerted manner

including a process flowsheet optimization will most probably be unable to identify the

global process optimum [118; 164].

In this manuscript, an integrated modeling approach for two consecutive ion exchange

operations and an intermediate buffer exchange is presented. This approach is capable

to identify the global process optimum for the separation of several protein species and

is demonstrated by a case study combining cation and anion exchange chromatography

(CEX: Poros 50HS, AEX: Q Sepharose FF). A ternary mixture of chymotrypsin (Chy),

cytochrome c (Cyt), and ribonuclease A (RibA) is chosen as model system for the sep-

aration problem. This set of model proteins covers a narrow pI range of 8.7, 9.5, and
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9.6, respectively, constituting a great challenge to the presented separation task. Inverse

calibration of a lumped rate model for chromatography, combined with steric mass action

isotherm, is carried out on linear gradient elution data and breakthrough curves [124].

First the column parameters are determined experimentally (e.g. voidage). Afterwards,

the isotherm parameters are estimated iteratively by minimizing the discrepancy between

the experimental and simulated chromatograms. Alternatively, the isotherm parameters

could also be determined experimentally from isocratic, gradient, and frontal experiments

and correlations (e.g. [129; 144]). In this case study we decided to use the model-based

inverse calibration due to its better compatibility with industrial process development

workflows, the waiver of correlations, and the faster process development. For a compari-

son of the inverse calibration and correlation approach we refer to [124]. The calibration is

done separately for both chromatographic operations. A subsequent in silico optimization

is used to identify the global process optimum for an objective function with respect to

cytochrome c purity, yield, and a minimal volume of the fraction collected from the final

column. The optimization includes the shape of the salt gradient and the boundaries of

fraction collection. In addition, the optimization accounts for an arbitrary order of the

two IEX (flowsheet optimization), namely an AEX→CEX and a CEX→AEX process flow-

sheet. The optimization of all parameters for both columns is carried out in a concerted

manner. The advantage of this concerted optimization approach is demonstrated by a

comparison with a conventional sequential optimization of the two IEX. The use of three

linear gradient elutions and one breakthrough curve for model calibration reduces the

sample consumption for this case study, as compared to classical approaches using Design

of Experiments (DoE). This case study bases on a two-column process, but the presented

modeling approach is extendable to more complex arrangements of unit operations and

larger sets of protein species.

8.2 Theory

8.2.1 Transport-dispersive Model

The transport-dispersive model (TDM) [109] depicted in Eqs. (8.1),(8.2) is used to model

the macroscopic mass transport through the column. The system is of convection-diffusion-

reaction (CDR) type. The rate of change of a protein concentration ci(x, t) in the intersti-

tial phase consists of convective mass transport in space with respect to the average inter-

stitial velocity u(t) of the flowing fluid. Peak broadening effects are modeled as dispersion

in space with respect to a lumped coefficient Dax, and transition from the interstitial con-

centration into the particle pore concentration cp,i(x, t) depending on the voidage of the

bed εb, the radius of adsorber particles rp, and an effective transfer coefficient keff,i. The

model is one-dimensional, such that the concentrations depend on the axial position in the

column x ∈ [0, L] and time. Hence, the axial dispersion coefficient Dax can be calculated

from the height equivalent of a theoretical plate (HETPDex) of a dextran injection and

the interstitial velocity (Dax = HETPDex · u(t)/2) [109]. The approach to determine Dax

from the HETP stems from the van Deemter equation and works well, but correlation for

film and pore diffusion coefficients (e.g. [79]) often do not describe the behavior for high

and low concentrations at the same time. Hence we rather estimate the effective mass

transfer coefficient keff or set it constant if the axial dispersion is dominant and we do

not see a change in peak shape.
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The second equation models the accumulation of mass in the pore phase cp,i and stationary

phase qi (protein binding to the adsorber) depending on the particle voidage εp. The model

is complemented with Danckwerts boundary conditions, Eqs. (8.3),(8.4), and an isotherm

equation modeling the stationary phase concentration qi.

∂ci(x, t)

∂t
= −u(t)

∂ci(x, t)

∂x
+Dax

∂2ci(x, t)

∂x2

−1− εb
εb

keff,i
3

rp
(ci(x, t)− cp,i(x, t)) (8.1)

εp
∂cp,i(x, t)

∂t
+ (1− εp)

∂qi(x, t)

∂t
= keff,i

3

rp
(ci(x, t)− cp,i(x, t)) (8.2)

∂ci
∂x

(0, t) =
u(t)

Dax
(ci (0, t)− cin,i (t)) (8.3)

∂ci
∂x

(L, t) = 0 (8.4)

8.2.2 Steric Mass Action Isotherm

The steric mass action isotherm (SMA) introduced by Brooks and Cramer in 1992 [23] is

a commonly used semi-mechanistic isotherm in ion exchange chromatography, involving

one or more macromolecules with steric hindrance, in this case of proteins. It is capable

to reproduce the influence of counter ions on the retention behavior of protein species,

using the proteins’ characteristic charges νi. Besides this, it considers column properties

like the total ionic capacity Λ and steric shielding effects σi of the proteins, blocking an

amount of binding sites greater than the actual number of sites it interacts with. The

kinetic SMA isotherm is given in Eq. (8.5), with qi and cp,i being the concentration of

the protein i adsorbed and in solution, respectively. cp,salt is the salt concentration of the

solution. kads,i and kdes,i are the adsorption and desorption coefficients.

∂qi(x, t)

∂t
= kads,i

νiΛ−
k∑
j=1

(νj + σj)qj(x, t)


︸ ︷︷ ︸

q̄salt(x,t)

cp,i(x, t)

−kdes,icνip,salt(x, t)qi(x, t) (8.5)

This formulation is not well suited for inverse parameter estimation as the change of kads or

kdes always affects peak height and retention at the same time. In order to alter peak height

unimpededly, the isotherm equation was modified as shown in Eq. (8.6). In this isotherm

equation, parameters for kinetic effects (kkin = 1/kdes) and equilibrium (keq = kads/kdes)

are separated, such that a change in kkin strongly affects peak height, while the retention

time is preserved to a large extent; vice versa for keq [61].

1

kdes,i︸ ︷︷ ︸
kkin,i

∂qi(x, t)

∂t
=

kads,i
kdes,i︸ ︷︷ ︸
keq,i

q̄νisalt(x, t)cp,i(x, t)− c
νi
salt(x, t)qi(x, t) (8.6)

According to our experience, correlations for determining the linear isotherm parameters

from the gradient elution results [129; 168] only determine the characteristic charge pa-

rameter well. A previous study [124] showed that this parameter can be found accurately
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with chromatogram fitting as well, and that estimation of keq is inevitable for simulation.

For an elaborate discussion on the applicability of correlations we refer to the Handbook

of Process Chromatography by Hagel, Jagschies and Sofer [56].

8.2.3 Numerical Solution

Following the method of lines, the equation system is first discretized in space on given

nodes, using the finite element method (FEM). FEM is a highly versatile method with

strong mathematical foundation and well suited for CDR equations. The solution proce-

dure starts with the weak formulation, incorporating the boundary conditions and repre-

senting the variables with basis functions from the respective spaces. A Galerkin ansatz

was used here, choosing basis and test functions from the same spaces, specifically first-

and second-order polynomials. The discretization in time is performed with the Crank-

Nicolson method, a semi-implicit procedure providing second-order accuracy. Finally, the

non-linearity of the equation system introduced by the isotherm must be treated with

an iterative procedure, here Picard iteration or Newton’s Method. The resulting linear

systems are solved depending on their dimension with a direct method (e.g. LU factoriza-

tion) or iterative method (e.g. GMRES). For a general overview of numerical methods for

PDEs, we refer to [136].

8.2.4 Estimation and Optimization

Because of the system’s non-linearity, finding a global optimum for parameter estimation

and subsequently for process optimization is challenging. Deterministic methods cannot

leave local minimums and only provide quadratic convergence when starting sufficiently

near the optimum. Heuristic methods such as simulated annealing, genetic or evolutionary

algorithms cover a larger search space by performing random jumps, but give no guar-

antee on the convergence rate. A common approach is to start with a heuristic method

to identify candidates for global optima and find the final solution using a deterministic

algorithm. For parameter estimation, the objective is constituted by curve fitting, such

that the goal function is given by the sum of square errors between simulation and mea-

surement data. The simulation uses molar concentrations. Therefore, the measured UV

traces are converted from absorption units to molar concentrations using the known molar

protein amounts injected to the column and the recorded peak areas. For process opti-

mization, the found parameter estimates are fixed and a system parameter such as salt

concentration is used as optimization variable. In this case study, the objective consists

of the product-related quality attributes, namely loss, purity, and dilution of the target

component cytochrome c.

8.3 Materials

8.3.1 Chromatographic Instrumentation

The chromatographic experiments were carried out using an ÄKTApurifier 10 fast protein

liquid chromatography (FPLC) equipped with Pump P-903, UV (10mm path length),

conductivity and pH monitor UPC-900, an autosampler A-900 and a fraction collector

Frac-950 (all GE Healthcare, Little Chalfont, Buckinghamshire, UK). The instrument was

controlled with UNICORN 5.10 (GE Healthcare, Little Chalfont, Buckinghamshire, UK).
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8.3.2 Adsorbers, Buffers, and Proteins

For ion exchange chromatography (IEX), a 1mL column (8x20mm) prepacked with Poros

50HS strong cation exchange adsorber (Applied Biosystems, Carlsbad, CA, USA, column

packing by Atoll, Weingarten, Germany) was used. A second 1mL column (7x25mm) pre-

packed with the strong anion exchange resin Q Sepharose FF (QFF) was supplied by GE

Healthcare (Carlsbad, CA, USA). Between the runs, the columns were stored in a bacterio-

static solution. After storage, the columns were pre-charged by a prolonged equilibration

with low and high salt buffer. For cation exchange chromatography, a 50mM sodium

citrate buffer (Merck, Darmstadt, Germany) with 0 and 1M additional NaCl (Merck,

Darmstadt, Germany) was used at pH 5.0. For the anion exchange experiments, a 50mM

1-methylpiperazine buffer (Sigma, St. Louis, MO, USA) supplemented with 0 or 1M NaCl

was used at pH 9.8. All solutions were prepared using ultra-pure water (UPW) (arium

pro UV, Sartorius, Göttingen, Germany). Buffers were 0.22µm-filtrated and degassed by

sonification.

Lyophilized α-chymotrypsin (bovine pancreas, no. C4129), ribonuclease A (bovine pan-

creas, no. R5503), and cytochrome c (bovine heart, no. 30398) were used as model

proteins (all from Sigma, St. Louis, MO, USA). All protein solutions were prepared using

the respective low salt buffer and were 0.22µm-filtrated prior to usage.

8.3.3 Software

Isotherm parameter estimation, chromatogram simulation, and process optimization were

carried out using the in-house developed software ChromX. ChromX provides numerical

tools for solving various kinds of chromatography models, including the model combination

of TDM and SMA. The discretization scheme chosen was a linear finite element ansatz in

space using 100 equidistant nodes, which provided a high simulation speed and maintained

accuracy as compared to runs with quadratic elements and a higher number of computa-

tional nodes. The aforementioned Crank-Nicolson scheme was used for time-discretization

with the time step set constant to one second. A Picard iteration was employed for the

non-linearity together with UMFPACK as linear solver. ChromX was used for a first eval-

uation of results, the final chromatograms were exported as comma-separated values and

plotted with Matlab R2012b (The Mathworks, Natick, ME, USA) and CorelDRAW X5

(Corel, Ottawa, Canada). For parameter estimation and process optimization, ChromX

offers interfaces to various libraries. The implementations used here were levmar [101]

as deterministic method, based on the Levenberg-Marquardt algorithm (LMA), and the

genetic algorithm optimizer GAlib [161] as heuristic counter-part (GA).

8.4 Methods

8.4.1 Extra Column Effects

The chromatographic system and the two columns were characterized with 25µL tracer

injections at a linear flow of 100cm/h. This corresponds to a volumetric flow of 0.838 and
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0.641mL/min for the CEX and AEX, respectively. 1%(v/v) acetone (Merck, Darmstadt,

Germany) injections were used to determine the system dead volume. As pore-penetrating,

not interacting tracer, 1M NaCl and acetone were applied to the Poros 50HS and QFF

column, respectively. The determined dead volumes calculated from the 280nm and con-

ductivity signals were used for the correction of the measured raw data. 25µL injections

of a filtrated 10g/L dextran 2000kDa solution (Sigma, St. Louis, MO, USA) onto the

two columns were used to determine the volume of the inter-particle space. Furthermore,

the dextran signals at 215nm were used to calculate the axial dispersion coefficient using

UNICORN.

8.4.2 Column Titration

Acid-base titration was carried out to determine the total ionic capacity Λ of the two

columns. In brief, the CEX column was flushed with a 0.5M HCl solution until a constant

UV and conductivity signal was achieved. Afterwards, the column was washed with UPW

until a constant UV and conductivity baseline was reached. After that, the column was

titrated at a flow of 100cm/h with a 0.01M NaOH solution until an increase in conductivity

signal was recorded. From the Na-ion concentration of the titrant and the volume of the

applied titrant, the total number of exchangeable ions was calculated. In the procedure

for the AEX, the HCl and NaOH solutions were exchanged.

8.4.3 Linear Gradient Elution

Linear gradient elution (LGE) data were used for isotherm parameter estimation. The

whole method was carried out at a linear flow of 100cm/h. After a two-column volume

(CV) equilibration with the respective low salt buffer, 25µL of a 0.6mM pure protein

solution was automatically injected onto the column. Ribonuclease A was applied in a

concentration of 1.2mM due to its lower extinction coefficient. Unbound protein was

removed from the column during a 2CV flushing with low salt buffer. Afterwards, 15CV

linear gradient elutions with a final NaCl concentration of 500, 600 and 700mM for the CEX

and 300, 400 and 500mM for the AEX were carried out. The final NaCl concentrations

for ribonuclease A on the AEX were 200, 300 and 400mM, and for cytochrome c on the

CEX 400, 500, 600mM. A subsequent 2CV wash with the final gradient concentration

buffer and an additional 2CV regeneration step using the respective buffer with 1M NaCl

were applied. The 280nm traces plotted over the volume were exported with UNICORN

in Microsoft Excel format.

8.4.4 Breakthrough Curves

Breakthrough curves (BC) were used for the estimation of the shielding parameter σ in

the SMA isotherm. For the BC, a 0.6mM protein or 1.2mM ribonuclease A solution in low

salt buffer, respectively, was applied to the equilibrated column with a SuperLoop (GE

Healthcare, Little Chalfont, Buckinghamshire, UK). The flow was chosen to 100cm/h.

The 280nm traces plotted over the volume were exported with UNICORN in Microsoft

Excel format.
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8.4.5 Buffer Exchange

A buffer exchange was carried out between the CEX and AEX step during the experimental

process evaluation. For buffer exchange purposes, a VivaSpin 20 centrifugal concentrator

(Sartorius, Göttingen, Germany) equipped with a 3kDa molecular weight cut-off (MWCO)

polyethersulfone (PES) membrane was used. The fraction collected from CEX was twofold

concentrated and adjusted with the target buffer. This procedure was repeated three times

to exchange the buffer.

8.4.6 Parameter Estimation

The SMA isotherm parameters kkin, keq, and the charge ν were estimated from the three

linear gradient elution data using the software ChromX. The gained set of parameters was

completed by the estimation of the shielding parameter σ from the breakthrough curves.

Due to the appearance of multiple protein signals for ribonuclease A, ribonuclease was

treated as two protein species, represented by two different sets of isotherm parameters

(RibA1 and RibA2). For the AEX, a blank substraction due to a salt-induced baseline

drift of the buffer was carried out. For estimation, the GA and LMA algorithms were

used. The 280nm traces plotted over the volume, exported with UNICORN, have been

imported into ChromX respecting the FPLCs dead volume.

8.4.7 In silico Process Optimization

The reviewed model process consists of one CEX and one AEX in arbitrary order. A

ternary protein mixture containing 0.6mM of cytochrome c and chymotrypsin and 1.2mM

ribonuclease A is applied to the first column in silico. The initial gradient condition, the

gradient length and slope are in silico optimized for both IEX. In addition, the start and

end of fraction collection are optimized in silico for both columns. The fraction collected

from the first column is in silico desalted, doubled, and injected to the second column.

Within the concerted optimization approach, the process parameters are optimized for

both columns at once, just evaluating the fraction collected from the second column with

respect to an objective function. The order of CEX and AEX is kept arbitrary. The

concerted optimization approach is illustrated in Figs. 8.4 A and 8.5 A.

To evaluate whether the concerted approach is superior to conventional sequential opti-

mization, the CEX→AEX process optimization is repeated using a sequential optimiza-

tion. In the sequential approach, the first column is optimized with respect to the objective

function. Afterwards, the fraction from the first column is virtually injected to the sec-

ond column for its optimization. The sequential optimization approach is illustrated in

Fig. 8.6 A. The parameters to be optimized and their ranges are illustrated in Fig. 8.1.

The overlapping ranges for the start and end concentration of the salt gradient allow linear

gradient and isocratic elution. The lower limit of the starting time for fraction collection

is zero. Therefore, a flow-through operation is allowed besides bind-elute.

The objective function used in all approaches intends to achieve a great molar purity and

a great molar yield of the target protein cytochrome c and a low dilution of cytochrome c
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Figure 8.1: Parameters with ranges for the optimization of the IEX salt gradient (A)
and the boundaries for the collection of fractions (B) in AEX and CEX. The gray boxes
indicate the ranges of the specified parameters. Table C lists the boundaries for parameter

optimization.

in the evaluated fraction. With weighting factors, the objective function is given by

purity[mol/mol] ∈ [0, 1]

yield[mol/mol] ∈ [0, 1]

fraction[s] ∈ [0, 2400]

min
p̄

(
(1− purity)︸ ︷︷ ︸

impurity

+0.5 · (1− yield)︸ ︷︷ ︸
loss

+0.01 · fraction
mL

)
(8.7)

with p̄ depicting the variable parameter set. The terms refer to cytochrome c in the chosen

fraction. The weighting terms were introduced to compensate the different magnitudes of

the three factors. The range of time, respectively volume values is much larger then purity

and yield, such that it has been weighted with 0.01. The model describes concentration

over time, therefore the boundaries for fraction collection are given in seconds. Irrespective

of this calculation, the objective of ’fraction’ is calculated using volumes instead of times,

therefore the fraction size within the objective function is given in mL. The first column

is run in duplicate and the fractions are pooled and directed to the second column. The

factor 0.5 for yield equalizes this intermediate pooling. Due to its insensitivity to local

minimums of the objective function, the GA was used for process optimization.
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Table 8.1: Voidages are calculated from tracer injections. The total ionic capacity is
measured by acid-base titration. The axial dispersion coefficient is calculated from dextran

injections.

Poros 50HS Q Sepharose FF

bed voidage εb 0.341 0.315
particle voidage εp 0.449 0.851
total voidage εt 0.638 0.898
total ionic capacity per adsorber volume/M Λ 0.165 2.117

axial dispersion coefficient/mm
2

s Dax 0.135 0.176

8.4.8 Experimental Process Evaluation

The best process in the in silico optimization was reproduced in lab experiments on the

Äkta FPLC, namely the concerted optimized sequence of CEX→AEX. The ternary protein

mixture was applied to the CEX and the optimized salt gradient and peak fractionation

were executed. The collected fractions from two identical runs were pooled and the buffer

was exchanged to the low salt AEX buffer. Afterwards, the sample was applied to the

AEX, executing the optimized salt gradient and fraction collection. The performances

of the experimental systems were evaluated with respect to the data predicted in the

modeling approach.

8.5 Results

8.5.1 System Characterization

The FPLC dead volume of 70µL was determined by tracer injections without a column at-

tached to the system. All other data were corrected with respect to this dead volume. The

column voidages were calculated from injections of a pore-penetrating, non-interacting and

a non-pore-penetrating, non-interacting tracer. The total ionic capacity was determined

by acid-base titration. The calculated voidages and capacities are given in Tab. 8.1.

8.5.2 Parameter Estimation

Estimation of the isotherm parameters was carried out using the Levenberg-Marquart

(LMA) and genetic algorithm (GA). First, the kinetic, equilibrium and charge parame-

ters were estimated from the three linear gradient elution (LGE) data. Afterwards, the

shielding parameter was estimated from the three LGE and the breakthrough curve (BC).

After estimation of the shielding parameter, a comparison of the model response and the

experimental data revealed that for the presented case study, film diffusion has a negligible

impact on the model quality. Therefore, keff was set to rp · 3−1 (ref. Eq. (8.1)).

The measured data and the model responses from parameter estimation are given in

Figs. 8.2 and 8.3 for Poros 50HS and Q Sepharose FF, respectively. The estimated pa-

rameters for both columns are summarized in Tab. 8.2.
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Figure 8.2: Results of the estimation of the isotherm parameters for Poros 50HS. A., C.,
and E. show the measured (solid lines) and estimated (dashed lines) data for the linear
gradient elution experiments. B., D., and F. present the corresponding breakthrough curve
data. A. and B. represent the cytochrome c data, C. and D. the chymotrypsin data, and

E. and F. the ones for ribonuclease A.
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Figure 8.3: Results of the estimation of the isotherm parameters for Q Sepharose FF. A.,
C., and E. show the measured (solid lines) and estimated (dashed lines) data for the linear
gradient elution experiments. B., D., and F. present the corresponding breakthrough curve
data. A. and B. represent the cytochrome c data, C. and D. the chymotrypsin data, and

E. and F. the ones for ribonuclease A.
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Table 8.2: Estimated isotherm parameters for cytochrome c (Cyt), chymotrypsin (Chy)
and the two ribonuclease A components (RibA1 and RibA2) on the Poros 50HS and the

Q Sepharose FF column.

Poros 50HS Cyt Chy RibA1 RibA2

kinetic kkin 0.054 0.049 0.1 0.203
equilibrium keq 497.327 32.213 3.128 55.527
charge ν 4.447 4.575 3.673 3.128
shielding σ 5.001 0.1 53.245 2.964

Q Sepharose FF Cyt Chy RibA1 RibA2

kinetic kkin 0.3 0.465 2 0.067
equilibrium keq 0.009 0.033 3.722 0.22
charge ν 2.25 2.61 0.066 1.545
shielding σ 1 16.131 40.441 15.842

8.5.3 In silico Process Optimization

8.5.3.1 Concerted Flowsheet Optimization

After characterization of the Poros 50HS and Q Sepharose FF column with respect to the

retention behavior of the model proteins, given in the estimation section, the isotherm pa-

rameters were used for in silico optimization of the process sequence. In this sequence, the

salt gradients’ starting point in time and concentrations and the gradient slopes and lengths

were optimized within predefined ranges for both columns (for details ref. to Fig. 8.1).

In addition, the boundaries of fraction collection were optimized for both columns. The

fraction collected from the final column was evaluated with respect to the objective func-

tion given in Eq. (8.7). The results of concerted optimization after 2300 iterations using a

genetic algorithm are given in Figs. 8.4 and 8.5 for the two process flowsheets CEX→AEX

and AEX→CEX, respectively. Subfigure A illustrates the optimization approach, Table

B presents the optimized parameters. The chromatograms of the optimized IEX are given

in C and D for the first and second column, respectively. The gray boxes indicate the

boundaries for fraction collection. E presents the protein amounts injected to the first

column and the ones collected from the first and second column. Table F summarizes the

purity, yield, and fraction volumes for both IEX and gives the calculated objectives.

The concerted optimization of the CEX→AEX process flowsheet leads to a steep gradient

starting at 65s at 196mM NaCl and ending at 627s at 992mM (Fig. 8.4 C). In the optimized

fraction collected from the CEX, chymotrypsin and ribonuclease A1 can be separated from

the target protein cytochrome c. Ribonuclease A2 can only be partly separated from the

target protein. The fraction collected from the CEX is virtually buffer exchanged to the

buffer of the AEX, the protein amount is doubled, and the sample is injected to the AEX.

The optimized parameters for the AEX represent a flat gradient starting at 237s at 68mM

NaCl and ending at 2378s at 394mM (Fig. 8.4 D). The fraction collection from the AEX

starts with the first increase of the cytochrome c trace and stops fractionation before the

elution of the remaining contaminant ribonuclease A2. The cytochrome c purity can be
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increased from initially 25% to nearly 90%, accepting a loss of about 45%. The objective

function which has to be minimized starts at a value of 0.75 for the initial sample, decreases

after the CEX to 0.53, and finally gives a value of 0.36.

The concerted optimization of the AEX→CEX process flowsheet leads to a gradient start-

ing at 151s at 93mM NaCl and ending at 1522s at 571mM (Fig. 8.5 C). In the optimized

fraction collected from the AEX, chymotrypsin and ribonucease A2 can be partly sepa-

rated from the target protein cytochrome c. Ribonuclease A1 cannot be separated from

the target protein. The fraction collected from the AEX is virtually buffer exchanged to

the buffer of the CEX, the protein amount is doubled, and the sample is injected to the

CEX. The optimized parameters for the CEX represent a steep gradient starting at 83s

at 91mM NaCl and ending at 551s at 979mM (Fig. 8.5 D). The boundaries for fraction

collection from the CEX are capable to separate chymotrypsin and ribonuclease A1 al-

most completely from the target protein. The amount of residual ribonuclease A2 remains

almost constant. The cytochrome c purity can be increased from initially 25% to nearly

66%, accepting a loss of about 31%. The objective function which has to be minimized

starts at a value of 0.75 for the initial sample, falls in quality after the AEX to 0.78, and

finally gives a value of 0.60.

Comparing the two process flowsheet options, the CEX→AEX sequence leads to an ob-

jective of 0.36 and the AEX→CEX sequence to an objective of 0.60. Therefore, the

CEX→AEX sequence is superior to the alternative IEX arrangement based on the given

objective function. In the following Section 8.5.3.2, the found process optimum for the

CEX→AEX sequence using a concerted optimization approach is compared to the same

IEX arrangement, however using a sequential optimization approach.

8.5.3.2 Sequential Process Optimization

In the sequential process optimization approach given in Fig. 8.6 A, the CEX is optimized

separately. Afterwards, the optimal fraction collected from the CEX is subjected to the

AEX optimization.

The sequential optimization of the CEX→AEX process flowsheet was carried out for 2300

iterations on the CEX and the same number of iterations for the AEX to ensure compa-

rability to the concerted optimizations with 2300 iterations for the whole process.

The optimization leads to a steep gradient starting at 50s at 195mM NaCl and ending at

724s at 915mM (Fig. 8.6 C). In the optimized fraction collected from the CEX, chymo-

trypsin and ribonuclease A1 can be separated from the target protein cytochrome c. Ri-

bonuclease A2 can only be partly separated from the target protein. The fraction collected

from the CEX is virtually buffer exchanged to the buffer of the AEX, the protein amount

is doubled, and the sample is injected to the AEX. The optimized parameters for the AEX

represent a flat gradient starting at 51s at 172mM NaCl and ending at 2279s at 234mM

(Fig. 8.6 D). The fraction collection from the AEX exhibits the same purity as the fraction

collected from the CEX (60%), but a lower yield of the target protein. The cytochrome c

purity can be increased from initially 25% to nearly 60%, accepting a loss of about 27%.

The objective function which has to be minimized starts at a value of 0.75 for the initial

sample, decreases after the CEX to 0.46, and finally gives a value of 0.59. The decline of
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Figure 8.4: Results of the concerted in silico optimization of Poros 50HS (CEX) and Q
Sepharose FF (AEX). The optimization principle is given in A. Table B summarizes the
results of the parameter optimization. C. and D. present the corresponding chromatograms
of the CEX and AEX, respectively. The gray boxes illustrate the boundaries of fraction
collection. E. indicates the protein amounts injected to the first column and the ones
collected from each column. Table F. summarizes the outcome of the process optimization.
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Figure 8.5: Results of the concerted in silico optimization of Q Sepharose FF (AEX)
and Poros 50HS (CEX). The optimization principle is given in A. Table B summarizes the
results of the parameter optimization. C. and D. present the corresponding chromatograms
of the AEX and CEX, respectively. The gray boxes illustrate the boundaries of fraction
collection. E. indicates the protein amounts injected to the first column and the ones
collected from each column. Table F. summarizes the outcome of the process optimization.
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process performance from CEX to AEX is due to the failure to enhance the product purity

on the final column, while accepting a loss of product. From a practical point of view, the

process would have been stopped after the initial CEX, but this case study focuses on the

comparison of a concerted and a sequential multi-column process optimization.

In comparison with the concerted optimization approach of the CEX→AEX process flow-

sheet which gave an objective of 0.36, the sequential optimization shows an objective

of 0.59. Therefore, the concerted optimization approach achieved a superior process in

comparison to the sequential approach, based on the given objective function.

8.5.4 Experimental Process Evaluation

To validate the best in silico chromatographic sequence, namely Poros 50HS→ Q Sepha-

rose FF, this process is reproduced in lab experiments. In the in silico process, the buffer

is exchanged virtually, the salt concentration is adjusted to the initial condition of the

QFF, and the protein amount is doubled. In the experimental evaluation, the Poros oper-

ation is carried out twice, the two fractions are pooled and the buffer is exchanged using

a UF/DF spin filter. Afterwards, the sample is injected to the QFF column. Fig. 8.7

presents the experimental results of the reproduced sequence. The blue line corresponds

to the 280nm protein sum signal. The red 527nm signal equates to cytochrome c. The

ratio of high salt buffer applied to the column entrance and the conductivity trace recorded

at the column outlet are given by the dashed and dotted black curves. Fig. 8.7 A presents

the experimental results of the Poros 50HS run, corresponding to the in silico optimum

given in Fig. 8.4 C. In the experimental chromatogram, there is a minor flow-through

fraction of proteins apart from cytochrome c. The in silico optimum reveals a fraction

of chymotrypsin and ribonuclease A1 being apparent in the flow-through. The in silico

optimization predicts the majority of proteins, eluting within two peaks in the increasing

salt gradient. The first one contains chymotrypsin, ribonuclease A1 and a minor fraction

of ribonuclease A2. The second peak, which corresponds to the in silico collected fraction,

equates to the residual ribonuclease A2 and the target component cytochrome c. The

experimental validation of this prediction is given in Fig. 8.7 A. In the validation, the two

peaks are less resolved than in the simulation. The experimental peak size and the distri-

bution of the target component cytochrome c is in accordance with the model prediction.

The boundaries for fraction collection cover the cytochrome c peak.

The buffer of the collected fraction is exchanged with a spin filter and the doubled pro-

tein amount is injected to the Q Sepharose FF column. The in silico and experimental

chromatograms are given in Figs. 8.4 D and 8.7 B, respectively. The model predicts that

about half of the cytochrome c flows through the column without binding. The residual

cytochrome c co-elutes with the remaining contaminant ribonuclease A2 at the beginning

of the salt gradient. The experimental validation revealed greater deviations from the

model prediction, but the overall peak composition still matches. Cytochrome c elutes in

the flow-through and at the beginning of the salt gradient. The amount of protein besides

cytochrome in the second peak is still predominant. The elevated baseline in Fig. 8.7 B

results from the 1-methylpiperazine buffer and the increased salt concentration. However,

the peak resolution and shape do not match to the model predictions acceptably.
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Figure 8.6: Results of the sequential in silico optimization of Poros 50HS (CEX) and Q
Sepharose FF (AEX). The optimization principle is given in A. Table B summarizes the
results of the parameter optimization. C. and D. present the corresponding chromatograms
of the CEX and AEX, respectively. The gray boxes illustrate the boundaries of fraction
collection. E. indicates the protein amounts injected to the first column and the ones
collected from each column. Table F. quantifies the outcome of the process optimization.
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Figure 8.7: Experimental validation of the in silico optimized process. A presents the
Poros 50HS and subfigure B the Q Sepharose FF chromatogram. The blue 280nm signal
corresponds to the sum of proteins, the red 527nm signal is cytochrome c specific. The
dashed and dotted black curves represent the ratio of high salt buffer applied to the column
inlet and the conductivity trace, detected at the column outlet. The gray boxes indicate

the boundaries for fraction collection.

8.5.5 Model-based Error Analysis

To evaluate the reasons for this mismatch between experimental data and the model

prediction in AEX, the conductivity traces in Fig. 8.7 B were examined in more detail.

Fig. 8.8 A presents the ratio of high salt buffer at column inlet (dashed line) and the

conductivity trace recorded at the outlet (dotted line) in the experimental validation. The

dotted conductivity trace exhibits an increase during the sample injection from about one

to four mS/cm. The in silico optimized AEX step given in Fig. 8.4 D, does not account

for this elevation of conductivity. To correct the model with respect to the experimental

reality, the salt concentration of the sample injected to the Q Sepharose FF column, was

in silico estimated and adjusted to 30mM NaCl. The resulting model prediction of the

ionic strength traces is given in Fig. 8.8 B. It is obvious that the introduction of 30mM

NaCl to the injected sample, leads to a correction of the predicted traces. The effect of

the modified salt concentration to the in silico chromatogram is given in Fig. 8.8 C. For

clarity, only the two remaining major proteins, cytochrome c and ribonuclease A2 are

shown. The appearance of two poor-resolved peaks, both containing cytochrome c and

just the latter one containing ribonuclease A2, matches the model prediction better.

8.6 Discussion

The model-based concerted optimization showed the superiority of the process flowsheet

combining CEX→AEX as compared to the AEX→CEX process. Within the CEX→AEX

process, the Poros 50HS exhibits a steep salt gradient. The majority of contaminants

elute in the flow-through after sample injection and at the beginning of the salt gradient.

The optimized boundaries for fraction collection match the peak of the target component

cytochrome c. The collected fraction contains residual ribonuclease A2, which is difficult
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Figure 8.8: Evaluation of an elevated ionic strength of the protein sample, injected to
the Q Sepharose FF column. Subfigure A presents the experimental traces for the ratio
of high salt buffer applied to the column inlet (dashed line) and the conductivity trace
recorded at the column outlet (dotted line). Subfigure B shows the effect of an elevated
ionic strength of the injected protein sample. The dashed line shows the in silico ionic
strength at the column entrance, the dotted line the in silico ionic strength at the column
outlet. Subfigure C presents the effect of an elevated ionic strength of the injected sample

to the chromatogram recorded in silico from Q Sepharose FF.



126 Multi-step Ion Exchange Chromatography

to separate from the target protein due to similar physico-chemical properties. In the

subsequent AEX, the cytochrome c purity can be increased from 52% to nearly 90%,

accepting a loss of half of the target species. After the final AEX, the achieved objective

is 0.36 in comparison to the inferior AEX→CEX process with an objective of 0.6. The

optimized process flowsheet is strongly influenced by the composition of the objective

function and the introduced weighting factors. If protein purity or a high yield is the more

important attribute, this can be considered by the modification of weighting factors.

To prove the necessity of a concerted process optimization, we reproduced the best column

arrangement found in the concerted optimization within a sequential process optimization.

In the sequential approach, the CEX was optimized independently and afterwards, the

found optimum was used in a subsequent optimization of the AEX (for more details, ref.

to Fig. 8.6 A).

In comparison to the concerted CEX→AEX process with a purity of 52%, a yield of 96%,

and an objective of 0.53 after the initial CEX, the sequential optimization results in a

purity of 60%, a yield of 92%, and an objective of 0.46 after the CEX. Therefore, the opti-

mization of the CEX solely is superior to the intermediate result of the concerted process

optimization. This finding coincides with the general expectation, because the concerted

optimization intends to achieve a minimal objective after the final AEX, disregarding the

quality of intermediate results like the fraction collected from the CEX. After the final

AEX, the concerted optimization leads to a purity close to 90%, a yield of 56%, and an

objective of 0.36. In contrast, the sequential optimization results in a final purity of 60%,

a yield of 73%, and an objective of 0.59. Therefore, the result of the concerted optimiza-

tion for the final AEX is superior to the one found for the sequential optimization. In

addition, the objective for the concerted optimization is also superior to the intermediate

result of the sequential optimization. This finding underlines the impressive capability

of the concerted process optimization approach to avoid an over- or under-optimization

of single intermediate states, as occurred for the sequential optimization. The latter one

over-optimizes the intermediate CEX, indeed achieving an excellent intermediate result,

but being clearly inferior when looking at the overall process performance.

The number of 2300 iterations in the optimization algorithm was kept constant for the

two concerted processes. For the sequential process optimization, 2300 iterations per

single IEX were used. Therefore, comparability of the found optima should be given with

respect to an equal computational effort. However, it remains unclear whether the late

termination of fraction collection in the sequential AEX (ref. Fig. 8.6 D) in comparison

with the concerted CEX→AEX process (ref. Fig. 8.4 D) is coincidental.

To verify the in silico process optimization, the best process, namely the concerted opti-

mized sequence of CEX→AEX, is reproduced in lab experiments.

The experimental reproduction of the in silico optimum for the CEX matches the model-

derived data. The model predicts the flow-through and the two peaks within the salt

gradient accurately. Minor differences occur with respect to the resolution of the two

major peaks.

The in silico optimization of the subsequent Q Sepharose FF leads to a flat salt gradient

elution profile. The contaminants exhibit a slightly greater affinity to the resin. About half

of the target component cytochrome c elutes in the flow-through during sample injection.
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The flow-through is collected as target fraction. The residual cytochrome c and the major

contaminant ribonuclease A2 co-elute at the begin of the salt gradient. The co-eluting

proteins are discharged due to the requirement of cytochrome purity in the objective

function. The experimental validation of the optimized AEX operation reveals aberrations

from the model prediction. In the experimental chromatograms, the flow-through peak

and the one eluting at the beginning of the salt gradient achieve a better peak separation.

In conjunction with this finding, there are differences in the overall peak shape.

We attribute the accurate prediction of the CEX and the difficulties with the AEX to

the poorer model parameter estimation for the QFF in contrast to the Poros 50HS runs.

The assumption that e.g. ribonuclease A consists of just two different species simplifies

the more heterogeneous composition of ribonuclease species. This simplification has a

negative impact on the quality of the estimation. In analytical chromatographic runs

of the different model proteins, in AEX there are more protein peaks visible (data not

shown). In addition, effects of propagation of uncertainty have to be considered. In

practice, there are minor experimental process uncertainties apparent during the Poros

50HS run. These inaccuracies, e.g. in the collection of the target fraction, will propagate

during the second column. To account for this finding, a term considering the process

robustness or insensitivity against minor process changes might be introduced into the

objective function in future experiments.

In addition to this general difficulty of considering the propagation of uncertainties [19;

124], we review the model-based approach to analyze the impact of potential contributors

to the inaccurate fit of the experimental to the in silico data. The conductivity traces from

the AEX validation experiments revealed an increase from one to four mS/cm during the

sample injection(ref. Fig 8.7 B). The in silico process optimization does not exhibit this

increase in conductivity during sample injection (ref. Fig. 8.4 D), because it assumes a

complete buffer exchange in between the two IEX. To prove that the incomplete exchange

of buffer during the experimental process validation is the major contributor to the uncer-

tainty of the modeling approach, we estimated and adjusted the protein sample injected

to the AEX in silico to a NaCl concentration of 30mM . Fig. 8.8 presents the consequence

of an elevated salt concentration of the sample injected to the AEX onto the AEX chro-

matogram. The increased salt concentration shifts the elution profile of cytochrome c in

a manner that the in silico chromatogram and the one obtained during the experimental

validation achieve an excellent degree of similarity. This finding indicates that the ap-

plication of model-based tools within protein purification tasks is not only restricted to

process development, but also capable of identifying critical process parameters or crit-

ical unit operations. Such an approach could probably support a QbD-driven approval

of pharmaceuticals [19; 30; 165]. In the presented in silico optimized model process, the

imperfectness of buffer exchange in between the two IEX seems to be the most critical

operation to be considered. In comparison to classical process development using DoE,

the overall sample consumption is reduced. For the three linear gradient elutions, 25µL

of a 0.6mM protein solution were required per gradient (1.2mM for ribonuclease A). The

breakthrough curves (BC) constitute the major contributor to the overall protein con-

sumption, as volumes from 5 to 10mL protein solution per BC were required. The BC is

only necessary to estimate the shielding parameter σ within the SMA isotherm, so BCs

are only required if the model has to extrapolate to the non-linear adsorption range of the

isotherm. Otherwise, the protein consumption can be reduced extremely.
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In addition, the time requirement can probably be minimized in contrast to classical

DoE approaches to process optimization. An additional advantage of model-based process

optimization in contrast to DoE approaches is that the lab experiments and parameter

estimation have to be carried out just once. Testing, for example, different objective

functions or column arrangements only demands multiple in silico process optimization

cycles. In contrast, classical DoE approaches would require additional lab experiments,

e.g. to incorporate the different possibilities of salt gradient profiles.

The model system used in this case study consists of two pure proteins (cytochrome c and

chymotrypsin) and ribonuclease A which was treated as a two-component mixture. Beside

the estimation of two isotherm parameter sets from one chromatogram, the presented

modeling approach is also capable of predicting more heterogeneous protein mixtures.

The latter case is just dependent on adequate analytics for fraction analysis.

In this study we used the SMA isotherm to model the interaction of the proteins with

the adsorber surface. The use of a ’simpler isotherm’ such as Langmuir is not prac-

tical because of the need to respect salt gradients. The SMA isotherm would reduce

to Langmuir isotherm for csalt = const. and ν = 1. According to Parente and Wet-

laufer [129] ν = 1 implies that the retention volumes of the species would have to fulfill

Vr · (cgradient,end− cgradient,begin) = const. This is not the case in our results. Furthermore,

some of the breakthrough experiments show a short steep ascent followed by a slower

rise (Figs. 8.2 F, 8.3 D). This behavior could only be modeled with slow kinetics (steep

ascent) and non-zero shielding parameter (slower rise). Equilibrium models or a pure

stoichiometric displacement model would not have been sufficient.

8.7 Conclusion

We presented an approach to a model-based integrated downstream process optimization,

considering a flowsheet optimization, the salt gradient elution profile, and the bound-

aries for fraction collection for two subsequent IEX steps. The modeling and process

optimization approach was successfully applied to the task of global optimization of the

chromatographic operations. The systematic comparison of sequential and concerted pro-

cess optimization proved that a concerted process optimization approach prevents over-

or under-optimization of single-unit operations. The time and effort to calibrate a model

for concerted or two models for sequential optimization is identical.

The drawback of this concerted optimization approach is the impossibility to do the com-

putation for the two columns in parallel, e.g. by the distribution across multiple computers,

to reduce the overall time consumption.

Difficulties with the intermediate operation of exchanging the buffer system highlighted the

need for an integration of such operations into the modeling approach. In future, interme-

diate operations such as ultra-/diafiltration will be integrated into our modeling approach,

e.g. by inclusion of black-box models in between the chromatographic operations.

In addition, we applied our modeling tool to the evaluation of the impact of an imperfect

buffer exchange operation in between the two IEX. The presented methodology might be
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a useful tool in QbD-based approvals of biopharmaceuticals, especially for identification

and characterization of critical process parameters.

The presented optimization approach using an in-house developed software toolbox is

extendable to greater process sequences, including commonly used platforms in DSP. Fur-

thermore, our modeling approach and the implemented software are capable of handling

larger numbers of protein species (e.g. mAb heterogeneity or sets of host cell proteins)

and are not restricted to small-scale chromatographic columns. Concluding, model-based

optimization is open to coping with industrial downstream process development.
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9 | Conclusion and Outlook

In this thesis we implemented a methods portfolio witch can support downstream process

development based on mechanistic modeling. The software ChromX was introduced as

a tool for model-based process development, enabling the application of the technology

in teaching and in academic research. As a contribution to a more sophisticated way

of model calibration, we established an alternative experimental method determine the

ionic capacity in column chromatography and extended the technology to batch chro-

matography. By the way this method is capable to quantify the amount of adsorber in

batch chromatography, opening up the possibility for future hybrid approaches, linking

mechanistic modeling and high-throughput process development. Model parameters are

commonly estimated based on experimental data. We addressed the problem of planing

and selecting the experiments with the highest information content. Chromatographic

processes are usually monitored and controlled based on uv signals. Mechanistic model-

ing is carried out based on molar or mass concentrations. We resolved this limitation,

by introducing a reformulation of the model equations, enabling the direct usage of uv

signals in model calibration. High-throughput process development (HTPD) is a further

key technology in in downstream process development, that was until now, mostly used

apart from mechanistic modeling. HTPD can pose a huge challenge on the throughput

of subsequent analytical techniques. We addressed this challenge by the adaptation of a

photometric high-throughput analytical method to batch chromatography, enabling the

integrated generation of multi-component batch isotherms on a robotic work station. In

a first application case study we compared the traditional process development approach,

based on DoE with mechanistic modeling. Finally, we extended the commonly employed

single column modeling technology to the modeling of multi-column processes.

Summing up, we could implement several technologies, which can serve as a kind of build-

ing blocks for future process development concepts. Nevertheless, the fields of mechanistic

modeling, HTPD, and future hybrid approaches are rapidly developing. From an academic

and probably also from an industrial perspective, the model equations have to be extended

continuously. Effects such as reactions on the adsorber surface, leading to an aggregate

formation and dissolution or the consideration of proteins, exhibiting multiple binding

orientations are not addressed adequately. With respect to future hybrid approaches,

combining model-based approaches and HTPD, the definition of a technology interface

has to be focused in future research. Mechanistic modeling can probably simplify the

current way of designing high-throughput experiments, while maximizing the knowledge

derived from the experimental data.
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A.1 Supporting Information for: Simulating and Optimiz-

ing Preparative Protein Chromatography with ChromX

Tobias Hahn1, Thiemo Huuk1, Vincent Heuveline2, Jürgen Hubbuch1

1 Karlsruhe Institute of Technology (KIT), Institute of Process Engineering in

Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe,

Germany
2 Heidelberg University, Interdisciplinary Center for Scientific Computing,

Engineering Mathematics and Computing Lab, Heidelberg, Germany

A.1.1 List of Model Parameters

Symbol Unit Type Recommended

Unit

Description

c Conc. M Mobile phase concentration in

interstitial volume

cp Conc. M Mobile phase concentration of protein

in pore volume

cp,s Conc. M Mobile phase concentration of salt in

pore volume

rp Length mm Particle radius of adsorbent

Dapp
Length2

Time
mm2

s Apparent dispersion coefficient

Dax
Length2

Time
mm2

s Axial dispersion coefficient

Dpore
Length2

Time
mm2

s Pore diffusion coefficient

εCol - - Column/bed porosity

εBead - - Stationary phase porosity

εTot - - Total porosity

keff
Length
Time

mm
s Effective film/pore transfer coefficient

keq - - Adsorption equilibrium coefficient

keq,L Conc.−1 M−1 Adsorption equilibrium coeff. for

Langmuir isotherm

kkin Time·Conc.ν sMν Adsorption rate coefficient

LCol Length mm Column length

133
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Λ Conc. M Stationary phase ionic capacity

ν - - Characteristic charge for SMA isotherm

q Conc. M Stationary phase concentration of

protein

qmax Conc. M Single-component max. conc. for

Langmuir isotherm

qs Conc. M Stationary phase concentration of salt

σ - - Steric shielding coefficient for SMA

isotherm

t Time s Time dimension

uint
Length
Time

mm
s Interstitial mobile phase velocity

x Length mm Space dimension

A.1.2 Experimental Parameter Determination

In the laboratory course, initial experiments were conducted to determine system proper-

ties. Afterwards, four experiments in the bind/elution mode were performed for parameter

estimation, i.e. one step elution and two gradient elutions with a low sample volume and

one gradient elution with a large sample volume.

First, the necessary system and column parameters were determined and verified by check-

ing the agreement of the simulated salt elution profile and conductivity signal. Then, the

isotherm parameters were determined by chromatogram fitting.

A.1.2.1 Dead Volumes

The system’s dead volumes from the auto-sampler to the UV detector and to the con-

ductivity detector were determined with an acetone pulse injection without column to be

Vdead,cond = 140µL and Vdead,UV = 122µL.

A.1.2.2 Column and Bead Dimensions

In this case study, a pre-packed SP Sepharose FF column (GE Healthcare, LCol = 25mm,

VCol = 0.962mL) was used. The radius of the adsorber beads is 0.045mm according to

the manufacturer.

A.1.2.3 Linear Flow Rate

The pump flow was set to uV ol = 0.962mL/min. In ChromX, we have to specify the flow

in distance/time. We use the units mm and s below, as they fit the process scale best.

The linear flow rate can be calculated easily as shown below.

u
[mm
s

]
=

Lcol
Vcol
· uvol

[
mL
min

]
60

=
25

0.962
· 0.962

60

mm

s
= 0.4167

mm

s
(A.1)
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A.1.2.4 Porosities

20µL pulse injections of 1 M NaCl (pore-penetrating) and 10 g/L dextran (2000 kDA,

non-pore-penetrating) at the same flow rate were used to determine the porosities. The

measured retention volumes were VNaCl,rt = 0.98mL and VDex,rt = 0.38mL. We first

subtract the respective system dead volumes

� VNaCl = VNaCl,rt − Vdead,cond = 0.84mL,

� VDex = VDex,rt − Vdead,UV = 0.258mL,

and then calculate the porosities

� Total porosity: εtot = VNaCl
Vcol

= 0.84
0.962 = 0.873,

� Column porosity: εcol = VDex
Vcol

= 0.258
0.962 = 0.268,

� Bead porosity: εbead = VNaCl−VDex
Vcol−VDex = 0.827.

A.1.2.5 Axial Dispersion

The axial dispersion coefficient Dax can be derived from the broadening of the dextran

pulse. Moment analysis for the injection of an ideal Dirac pulse of a non-pore-penetrating,

non-interacting tracer yields the following Eq. (A.2) for the parameter σDex of the resulting

Gaussian peak that can be solved for Dax.[156]

σ2
Dex = 2DaxLCol

(εCol
u

)3
. (A.2)

Typically, the control software of the chromatography system includes peak analysis tools

that calculate this value automatically or the height equivalent of a theoretical plate

(HETP), which is defined as the rate of increase of the Gaussian peak profile per unit

length, and can be written as in Eq. (A.3).[109; 156]

HETP =
σ2
Dex

LCol

(
u

εCol

)2

= 2Dax

(εCol
u

)
. (A.3)

Here, we obtained the value HETP = 0.4798mm. Using the linear flow rate and the

column porosity from above, we can now calculate the axial dispersion coefficient

Dax = HETP · u

2 · εcol
= 0.373mm2/s. (A.4)
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Table A.2: Bind/elute experiments.

Elution
Mode

Sample Vol-
ume (mL)

Gradient/Step Height
(% Buffer B)

Length of
Elution (CV)

Step 0.5 15 10
Gradient 0.5 50 10
Gradient 0.5 100 10
Gradient 60 50 10

A.1.2.6 Ionic Capacity

The total ionic capacity Λ of the packed resin was determined by acid-base titration.[72]

The column is flushed with 0.5 M HCl, such that all ligands are saturated with H+ ions

and then washed with ultrapure water. We then inject 0.1 M NaOH (= cNaOH) solution to

replace H+ by Na+ ions. The conductivity signal starts to increase at VNaOH = 3.27mL.

Consequently, cNaOH × VNaOH = 0.327mol are exchanged. To obtain the capacity of the

stationary phase, we divide by its volume, expressed by total column volume and total

porosity:

Λ =
VNaOH · cNaOH
Vcol (1− εtot)

= 2.677M. (A.5)

A.1.2.7 Bind/Elute Experiments

Three experiments with a low sample volume (0.5mL) and one with a breakthrough

(60mL) were conducted with the mixture of antibody, lysozyme, and myoglobin. The

used buffers were Buffer A (20mM Bicine, 0mM NaCl, pH 8.2) and Buffer B (20mM

Bicine, 1000mM NaCl, pH 8.2). Elution was initiated 5.2 mL after the end of injection

with the settings given in Table A.2, followed by washing with 100 % Buffer B after

9.5mL ≈ 10 column volumes (CV). As salt was not injected via the auto-sampler, but via

a mixing chamber, an additional dead volume of 1.35mL had to be added to the event

in ChromX. In case of steps, the additional dead volume is only 1.10mL, if a pump wash

was performed prior to the step.

The results were exported from the control software as XLS files, including volume, UV

280 nm, and conductivity data columns.

A.1.2.8 Component-specific Parameters

The column parameters were first checked by comparing the simulated salt elution profile

with the recorded conductivity signal. Film transfer and pore diffusion parameters for the

salt component were estimated.

The proteins’ SMA parameters were determined by chromatogram fitting. First, the pa-

rameters that are active in the linear range of the isotherm were estimated from the
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experiments with a low sample volume. Two gradient experiments are sufficient to de-

termine the characteristic charge and equilibrium parameter by their effect on retention

time.[129; 143] The kinetic parameter is responsible for additional peak broadening and

can also be determined from low-sample-volume experiments.[86] A step elution experi-

ment was included as well, as film transfer and pore diffusion parameters have a stronger

influence on the peak shape in this mode. The steric shielding parameter cannot be es-

timated from experiments with a low sample volume, as it occurs only in the sum of

Eq. (??) which is then close to zero. It was estimated from the experiment with a high

sample volume, while keeping the other parameters constant.

A.1.3 Master’s Degree Program and Software Exercises

The lecture series on chromatography modeling is well-established in the curriculum of

the bioengineering master’s degree program at KIT. It shifts the focus from finding a

workable solution in the lab to understanding the effects that lead to a certain peak shape

in the chromatogram. At first, the partial differential equations seem to have several

parameters, but in the course of the lecture series, the influences of void volumes and

diffusion effects become more obvious. Relating isotherm parameters to elution peak

shapes provides for a connection to practical laboratory experience. The software exercises

accompany the lecture series on chromatography modeling and are intended to provide

a deeper understanding of the mathematical operators and parameters in the differential

equations.

Surveys on the lecture series were conducted by the Executive Support Department of KIT,

Section III: Quality Management. In 2014, seven students responded to the survey on the

last day of class. From the 28 questions, one of the most important aspects in this context

was that the students recognized the importance of the lecture for further study (4.86/5,

standard deviation (SD) 0.38, 0=very low, 5=very high). They felt that difficult issues

could be presented, liked the practical examples, and were encouraged to work on their

own outside class (each 4.71/5, SD 0.49). One student commented that he/she particularly

liked the ChromX exercises. In comparison, 14 students performed the software exercises

with the Chromulator in 2011. They rated the practical examples and encouragement

to learn on their own with 3.93/5 (SD 0.92), and 4.43/5 (SD 0.65). Larger comparative

studies would be necessary to find the most effective way to use ChromX in the classroom.

In the following, we present exemplary exercises performed with the Langmuir isotherm.

A.1.3.1 Single-component Ideal Model

Analyze and simulate the following system with a single-component equilibrium Langmuir

isotherm:

� Column length = 25 mm,

� Column volume = 0.962 mL,

� Total porosity = 0.82,

� Flow rate = 1 mm/s,

� Dapp = 0.01 mm2/s,

� keq,L = 1 M−1,

� qmax = 20 M,

� c(x, 0) = 0 M,

� c(0, 0 s ≤ t < 5 s) = 0.001 M,

� c(0, t ≥ 5 s) = 0 M.
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Start a new ChromX session and set the model to EquilibriumDispersive, NoPoreModel,

and Langmuir. For a better resolution, increase the Axial Cells to 200 and reduce the

Initial Step to 0.1. Copy the column parameters from above and remove the Salt compo-

nent. Set the Langmuir parameters as above and kinetics to zero to obtain the equilibrium

model. Adjust the injection start concentration and time of the end of injection.

1. Do your observations agree with the theoretical retention time for an ideal model?

2. Set the injection end to 200 s. Does the time of breakthrough agree with the retention

time of a shock?

3. What is the sample concentration that generates a breakthrough at 80.5 s? Validate

your result by simulation.

4. Reduce the injection end to 30 s. Describe the result.

5. Estimate when the rear of the peak will reach the base line. Explain deviations.

6. What happens when the capacity doubles and qmax increases to 40? Explain.

A.1.3.2 Competitve Adsorption and Displacement

Keep the simulation and column setup of the previous section and simulate two single-

component experiments and one with both components:

� Component 1: keq,L = 1 M−1, qmax = 20 M,

� Component 2: keq,L = 3 M−1, qmax = 10 M,

Both components shall be injected for 20 s with a sample concentration of 0.05 M.

7. Compare the peaks. Explain the result.

8. Increase the injection time to 200 s to simulate a two-component breakthrough ex-

periment. Explain the behavior of the first component.

9. What happens, when adding a third component with keq,L = 5 M−1, qmax = 10 M?

A.1.3.3 Proposed Solutions

1. The equation correctly predicts the peak maximum at 113 s (Fig. A.1a).

2. Yes, the inflection point of the breakthrough at 0.0005 M is exactly at 110.5 s

(Fig. A.1a).

3. The concentration is 0.5 M (Fig. A.1b).

4. The shock front stays at 80.5 s. We observe a short plateau and a diffuse rear. The

peak ends at 145 s (Fig. A.1b).
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Figure A.1: Plots of simulation results

5. The rear of the pulse is to migrate according (with tinj instead of tinj/2) and reach

the base line at 140.5 s. Because of the non-zero dispersion, additional broadening

occurs. The value of 0.01 mm2/s leads to an approximate broadening of 0.05 mm/s

in each axial direction. The contact time of 140.5 s− 30 s = 110.5 s leads to a total

broadening of 5.525 mm. At an interstitial flow rate of u/εTot = 1/0.82 mm/s, this

equals 4.5 s.

6. Theoretically, the shock retention time is 110 s and 215.5 s for a symmetrical peak.

We observe a shock at 143 s with a height of 0.4 M. Obviously, the intra-column

concentrations were not sufficient to develop the whole shock (Fig. A.1b).

7. In preparative chromatography, the system response to multi-component feedstocks

is not just a superposition of the single-component breakthroughs or peaks. Com-

ponent 1 competes with Component 2 for binding sites, while having the smaller

keq,L value. It does not adsorb as much as in the single-component case and, thus,

migrates faster through the column, resulting in a slightly earlier and higher peak.

Component 2 also moves slightly faster, as it cannot bind with the same amount in



140 Supporting Information

the beginning. Again, the concentration migrates faster. As Component 2 follows

the even faster moving Component 1, binding sites are constantly freed at the front

of the band of Component 2, leading to a less strong shock build-up and a smoother

top (Fig. A.1c).

8. Because of its smaller keq,L, Component 1 adsorbs more slowly and the concentra-

tion front migrates faster. The following Component 2 partly displaces the first

component and the desorbed concentration accumulates in a faster-moving plateau.

Because of the nonlinear adsorption behavior described by the Langmuir isotherm,

the additional concentration cannot fully re-adsorb.

9. The effect is increased in the three-component setting. Component 1 is displaced

even more strongly and also Component 2 shows this behavior. Component 3 having

the largest keq,L, follows the others and adsorbs in the three-component equilibrium

state.
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Table 1: sadf

Table 2: sadfdf

Table 3: Additional parameters and settings used for the simulations of the col-

umn breakthrough curves. The case study was carried out using an alternative

adsorber lot.

Unit Value

Column model Transport dispersive

Pore model General rate

Isotherm Steric mass action

Number of axial cells 50

Number of radial cells 10

Time step s 1

Length mm 20.8

Volume mL 0.711

Column porosity 0.44

Bead porosity 0.8

Axial dispersion mm2

s 0.1

Ionic capacity mol
L 1.86

Salt: Film di�usion mm
s 1.5 · 10−2

Salt: Pore di�usion mm2

s 1 · 10−4

Lysozyme: Film di�usion mm
s 1.5 · 10−2

Lysozyme: Pore di�usion mm2

s 4 · 10−5

Lysozyme: kkin 0.5

1
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Figure A.2: Comparison of isotherm data for determination of the experimental robustness
and model performance. Duplicates of the isotherm experiments performed at 90 mM
ionic strength for pH 5 and pH 7. The duplicates are indicated as diamonds and crosses,
respectively. The results for cytochrome c are shown in red (left) and for lysozyme in blue

(right).
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Figure A.3: Comparison of cytochrome c isotherm data points at pH 5 (A) and pH 7 (B)
derived from the MVDA model and the selective 527 nm wavelength as a secondary an-
alytics for validation. The agreement of the different data point is shown in parity plots
for the equilibrium concentration of cytochrome in solution and bound to the adsorbent.
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